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A B S T R A C T   

Precipitation induced mudflows are a major and longstanding threat in Uzbekistan, impacting on many prop-
erties and livelihoods. In this paper, the role of large-scale atmospheric circulation in producing the conditions 
necessary to initiate mudflows in piedmont areas of Uzbekistan have been evaluated based on historical and 
scenario (Representative Concentration Pathways; RCP8.5) experiments along from 10 Coupled Model Inter-
comparison Project Phase 5 (CMIP5) models. Applying the well-established circulation weather type (CWT) 
technique, and CMIP5 models reveal that mudflow generating large-scale circulation flows will increase by up to 
5% to the end of the century. Considering the historical simulations over 1979–2005 and following the pro-
jections of RCP8.5 emission scenario for the target period of 2071–2100, precipitation climatology has been 
evaluated using bias correction techniques. By this way, the synthetic rainfall series were linked to a central 
proxy – a mudflow generating weather types, such as cyclonic (C), westerly (W) and south-westerly (SW) in order 
to diagnose potential changes in mudflow occurrences given the changed CWT characteristics by running the 
statistical-empirical algorithm of antecedent daily rainfall model (ADRM) and statistical logistic regression 
(LRM). Results for the important weather types (C, W and SW) confirm that mudflow activity will increase in the 
selected region as precipitation values associated with the CWT C and W flows in CMIP5 projections are expected 
to increase in the warm season for the target period of 2071–2100. 

The research focuses on piedmont areas of Uzbekistan as it has remained poorly understood due to limited 
climate research, particularly, in mountain areas. This is important in the face of climate change, which is likely 
to increase pressure upon high mountain areas that may need to investigate more frequent mudflow occurrences.   

1. Introduction 

In the last 15 years, more than 50 people died, many properties 
destroyed, and livelihoods threatened due to precipitation induced 
mudflow occurrences in Uzbekistan (source Uzhydromet1). Also, a large 
part of the country is involved in agriculture making it very vulnerable 
to hydrometeorological disasters. With the population forecasted to 
grow over the rest of this century (UN report2) and associated increase in 
human settlements and land use activities in the piedmont and mountain 
zones of Uzbekistan, it is important, that the complex weather phe-
nomena and their impacts over the country is investigated considering 
various global warming scenarios. 

Future projections of anthropogenic climate change have focused on 

surface temperatures and precipitation characteristics over the Central 
Asian region, which includes Uzbekistan. For instance, Ozturk et al. 
(2012, 2017) investigated the impact of climate change results on sea-
sonal variability of precipitation and temperature over Central Asia 
under the framework of Coordinated Regional Climate Downscaling 
Experiment (CORDEX) Region 8 by using RegCM4 and RegCM4.3.5. 
Results obtained from the regional RegCM4 model driven by the 
ECHAM5 A1B scenario for the future (2070–2100) climatology of Cen-
tral Asia show relatively high warming trend in surface temperature 
(from 3 ◦C up to 11.4 ◦C on average) and a decrease in precipitation, 
particularly, in the south-eastern part of the domain (Ozturk et al., 
2012). RCP4.5 and RCP8.5 scenarios of the HadGEM2-ES and the 
MPI-ESM-MR models downscaled by the RegCM4.3.5 climate projection 
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for near future (2011–2040), mid-future (2041–2070) and far future 
(2071–2100) in Ozturk et al. (2017) also show reasonably good agree-
ment with the outputs of previous study by Ozturk et al. (2012). 

The high-resolution regional climate model (RCM) REMO has been 
implemented over Central Asia by Mannig et al. (2013) in order to better 
understand the seasonal cycle of precipitation and temperature under 
the anthropogenic climate change. Downscaled ECHAM5/MPI-OM A1B 
emission scenario indicates a warming of up to 7 ◦C in the northern part 
of Central Asia and mountain areas until the end of the twenty-first 
century. However, climate change scenarios predict dryer summer 
conditions in a large area of Central Asia and wetter cold seasons over 
the northern part of the region and for most areas of the Tibetan Plateau. 

Huang et al. (2014) projected future change in the annual precipi-
tation over Central Asia for the period 2011–2100 by applying CMIP5 
(Taylor et al., 2012) GCMs under the different emission scenarios 
(RCP2.6, RCP4.5 and RCP8.5). The authors found increasing trends in 
annual precipitation (over 3–9 mm per decade) for the northern Central 
Asia, the Tian-Shan Mountains and northern Tibet by the end of 2100 
when they compared with the previous investigations on climate change 
signals over the Central Asia. The authors suggested that large scale 
atmospheric water vapour fluxes and surface evaporation over the study 
region could be the possible mechanisms of the increasing changes in 
projected precipitation (Huang et al., 2014). 

In many studies (Sorg et al., 2012, 2014; Kure et al., 2013) the 
adverse effects of global warming to the Central Asian glacier zones have 
been evaluated. Researchers have predicted a substantial glacier 
shrinkage due to the increase in air temperature over the Tien Shan and 
the Pamir Mountains, considered to be the water tower of Central Asia 
and its effects on the water availability until the end of the century. 
Using the recent developments in the field of climate modelling, Malsy 
et al. (2012), White et al. (2014) and Radchenko et al. (2017) investi-
gated the impact of climate change on water resources in Central Asia, 
including Uzbekistan. Moreover, increased risks due to climate change 
and its negative consequences on agriculture and food productivity over 
Central Asia have been investigated by employing Crop Syst and DSSAT 
crop modelling approach (Sommer et al., 2013; Bobojonov and 
Aw-Hassan, 2014). 

These studies aside, there have been relatively few investigations 
focusing on the projected changes in large scale atmospheric circulation 
as a main driver of precipitation extremes over Central Asia under global 
warming conditions. Zhao et al. (2018) simulated subtropical westerly 
jet (SWJ) stream and its effect on the projected precipitation over Cen-
tral Asia for the summers of 2071–2100 by using of 25 CMIP5 models. By 
applying the empirical orthogonal function (EOF) method, these authors 
revealed the strength and position of SWJ over Central Asia in the future. 
According to the ensemble results from CMIP5, Zhao et al. (2018) 
explained the SWJ axis shifting further south over Central Asia which 
will result in more summer rainfall in most of northern and 
north-eastern part of the region in the future, however, the authors 
found uncertainties regarding future precipitation changes in the rest of 
the Central Asia. 

Hitherto only Reyers et al. (2013) studied the link between weather 
system and precipitation frequency and its magnitude for the Aksu river 
basin in Central Asia, considering CWT approach as a controlling factor 
for future climate change scenarios. CWT representatives were dynam-
ically downscaled with the RCM COSMO-CLM4.8 forcing ERA-40 
reanalysis for historical simulation coupled with the future scenarios 
of the ECHAM5/MPI-OM1 models, the authors projected the changes in 
precipitation climatology over the Aksu basin until 2100. Outputs of 
statistical-dynamical approach show a decrease in annual precipitation 
over large parts of the Aksu river basin in Tien Shan Mountains and an 
opposite sign is defined to the southeast of the investigation area. 

In contrast, many studies have investigated the large scale atmo-
spheric circulation as a main driver of precipitation extremes by 
employing the weather typing approach using CMIP5 models for the last 
few years for Europe and other continents (Santos et al., 2016; El 

Kenawy and Mccabe, 2016; Brigode et al., 2018). All studies suggest that 
projected changes in large scale circulation can be robust indicators to 
investigate not only the precipitation climatology, but it would be 
beneficial for a wide range of climate change impact assessments and 
predictions of extreme events such as frequency and intensity of flooding 
and droughts, water resources and agricultural production under the 
global warming trends. The results of these studies provide inspiration 
to postulate that extreme rainy atmospheric circulation type can be a 
good indicator for mudflow frequency and intensity for the future in 
Uzbekistan. 

Precipitation plays a major role in landslide formation, including 
mudslides, worldwide and the projected atmospheric circulation 
modulating precipitation extremes could predict such phenomena and 
help set up warning systems. A number of studies attempted to inves-
tigate the impact of global warming on different types of landslide oc-
currences by application of downscaled precipitation patterns as an 
input parameter obtained from GCMs (Schmidt and Dehn, 2000; Chiang 
and Chang, 2011) and RCMs (Schmidt and Glade, 2003). These studies 
mainly focused on mountain and hilly areas prone to slope failures with 
the interaction of the climatic variables such as extreme rainfall events. 
The main drawback in the use of downscaled climate variables such as 
precipitation from GCMs output for landslide-climate analyses lie in the 
inherent uncertainty of downscaled climate projections (Gariano and 
Guzzetti, 2016). Additionally, raw GCM precipitation simulations may 
still have biases especially in the mountain regions (Fowler et al., 2007; 
Fang et al., 2015). Mannig et al. (2013) suggested that additional model 
run would be desirable to assess the uncertainties and biases in the 
precipitation patterns in their study domain such as Central Asia. The 
authors suggested adoption of dynamical or statistical downscaling ap-
proaches to obtain high spatial and temporal resolution in order to 
examine climate change impacts on precipitation parameters. Inade-
quate observational or empirical data due to lack of meteorological 
stations in the study area has been often cited as a limitation (e.g. Ozturk 
et al. (2017) and Reyers et al. (2013)) to explain the model bias over the 
mountains and high plateau regions of Central Asia. 

Mudflow rheology, dynamics and various other hydrogeological 
characteristics of natural hazard in Uzbekistan were carried out by many 
researchers (Trofimov, 2006; Chub et al., 2007; Karpov and Pushkar-
enko, 1968; Karpov et al., 1976; Babko, 1978; Isakova et al., 2009; 
Juliev et al., 2019). Climatologists such as Salikhova (1975) and Lya-
khovskaya (1989) predicted mudflow occurrences in river basins and 
mountain areas of Uzbekistan based on analysis of synoptic circulation 
and remote sensing data. Unfortunately, the scarcity of studies on 
extreme weather events particularly landslides including mudflow oc-
currences in a changing climate in Uzbekistan is especially pronounced. 
Furthermore, the post-Soviet era scientific vacuum (Xenarios et al., 
2018) created in Uzbekistan, similar to many post-Soviet countries still 
exists. To the best of our knowledge, mudflow occurrences in Uzbekistan 
under climate change conditions were investigated by Chub (2007) 
which was based on IPCC SRES scenarios (A2 and B2) indicating the risk 
initiated by rainfall will be increasing up to 50% by 2080. Moreover, 
third UNFCCC3 national report of Uzbekistan have also confirmed the 
increase of precipitation induced natural hazards such as mudflows to be 
4 times more in the country by 2080. 

Gariano and Guzzetti (2016, 2021) systematically documented the 
existing investigations world-wide; they detailed the concepts used in 
the selected studies and associated methodologies and included the re-
sults of analyses due to the climate change impact on different types of 
landslides. Geographical distribution of the climate change studies in 
relation to all type of landslide events for each country reported by 
Gariano and Guzzetti (2016, 2021) confirms that no peer-reviewed 
research regarding landslide (in our case mudflow) – climate change 

3 https://unfccc.int/sites/default/files/resource/TNC of Uzbekistan under 
UNFCCC_english_n.pdf. 

G. Mamadjanova and G.C. Leckebusch                                                                                                                                                                                                    

https://unfccc.int/sites/default/files/resource/TNC%20of%20Uzbekistan%20under%20UNFCCC_english_n.pdf
https://unfccc.int/sites/default/files/resource/TNC%20of%20Uzbekistan%20under%20UNFCCC_english_n.pdf


Weather and Climate Extremes 35 (2022) 100403

3

has been done in Central Asian countries including Uzbekistan. There-
fore, the work presented in this research is one of the pioneer in-
vestigations analysing the potential impacts of future climate conditions 
in Uzbekistan, particularly, as a response to changes in large scale at-
mospheric circulation as a main driver of precipitation extremes induced 
mudflows in the piedmont and mountainous areas of the country. 

Considering the climate change studies on atmospheric circulation 
and projections for precipitation induced extreme landslide events 
across the globe, the main scope and aims of this study are twofold: 1) to 
construct recent and future changes of large scale atmospheric circula-
tion defined on a daily basis as a diagnostic tool for a more compre-
hensive dynamical interpretation of precipitation driving mechanisms 
and its association with mudflow frequencies in Uzbekistan, 2) to 
evaluate the skills of CMIP5 models to replicate precipitation threshold 
known to trigger potential mudflow occurrences under both current and 
future idealised climates over the study area, and 3) to use this knowl-
edge to further assess the mechanisms inducing mudflows associated 
with extreme precipitation in a longer time scale over Uzbekistan. 

2. Data 

2.1. Reanalysis of geopotential height field 

The ERA-Interim global atmospheric reanalysis data (Dee et al., 
2011) is applied as a reference for the 27-year historical period 
1979–2005. Only daily mean geopotential height field at 700 hPa (Z700 
hereafter) is considered in this study. The gridded data set has 0.75◦

spatial resolution (approximately 80 km) and 12 h temporal resolution. 
Reanalysis data is available at ECMWF’s meteorological archive.4 

2.2. CMIP5 GCM outputs 

The daily mean Z700 outputs from 10 GCMs namely ACCESS1-0, bcc- 
csm1-1, CMCC-CM, CNRM-CM5, GFDL-CM3, HadGEM2-CC, HadGEM2- 

ES, IPSL-CM5A-LR, MIROC5 and MPI-ESM-LR of the CMIP5 (Taylor 
et al., 2012) projection are considered in this study. The atmospheric 
component of horizontal and vertical resolutions for each model and 
other main characteristics of each GCM are described in Table A1. 

The daily outputs of two different experiments are applied:  

1. The “historical” experiment or a simulation of the recent past under 
the historical forcing which is available for the years 1950–2005.  

2. The Representative Concentration Pathways “RCP8.5” scenario or 
the high radiative forcing surplus at approximately 8.5 W/m2 

available from 2006 to 2100. 

For all models and experiments, only the first ensemble member 
(r1i1p1) is considered. The time period for historical simulations eval-
uated in this study is 1979–2005 and for the future scenario is 
2071–2100. 

Shortlisted 10 GCMs (ACCESS1-0, bcc-csm1-1, CMCC-CM, CNRM- 
CM5, GFDL-CM3, HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-LR, 
MIROC5 and MPI-ESM-LR) from the multimodel CMIP5 ensemble 
(Table A1) for historical run (1979–2005) and future scenarios 
(2071–2100) of precipitation are also used in this study. The main focus 
is precipitation timeseries for the warm season of the year (March-
–August) since all recorded mudflow episodes with different origins 
mostly occur during this period and it is towards to examine the long- 
term impact of climate change on precipitation threshold resulting 
mudflows over the study area. CMIP5 data used in this paper is available 
on CEDA5 and CERA6 online archives. 

2.3. Observed data 

Daily observed precipitation data for a period of 27 years 
(1979–2005) from the Gallyaaral and Sokh stations (Fig. 2) recorded by 
Uzhydromet according to WMO standards is used for bias correction of 

Fig. 1. Schematic flow chart of the methodology used in this study.  

4 https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. 

5 http://data.ceda.ac.uk/badc/cmip5/data/cmip5/output1/.  
6 https://cera-www.dkrz.de/WDCC/ui/cerasearch/. 
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GCM predictors and validation of the historical experiment. 

3. Methods 

Fig. 1 presents the systematic approach implemented in this 
research. First, 10 CMIP5 models namely ACCESS1-0, bcc-csm1-1, 
CMCC-CM, CNRM-CM5, GFDL-CM3, HadGEM2-CC, HadGEM2-ES, IPSL- 
CM5A-LR, MIROC5 and MPI-ESM-LR have been shortlisted based on 
data availability and data quality at all pressure levels over the entire 
investigation area for a predictor used in this paper. Evaluation of 10 
GCMs from CMIP5 projection was conducted to examine the effects of 
anthropogenic climate change on large scale atmospheric circulation by 
adopting statistical downscaling approach namely circulation weather 
type (CWT) for the recent (1979–2005) and future (2071–2100) cli-
mates in Uzbekistan. In the next step, GCM outputs were applied to an 
empirical-statistical antecedent daily rainfall model (ADRM) to assess 
the effect of anthropogenic emissions of greenhouse gases on precipi-
tation threshold inducing mudflows for the target period of 2071–2100 
in the study area. For this purpose, the extracted daily precipitation 
timeseries from the CMIP5 GCMs for the control run (1979–2005) and 
future experiment (2071–2100) under the RCP8.5 emission scenario was 
examined by bias correction procedure. Then, the CMIP5 GCMs were 
evaluated by calculating frequency means between the station-based 
climate and the raw precipitation by CMIP5 and bias corrected values. 
The results of two selected GCMs out of 10 were used to run the ADRM 
together with logistic regression model (LRM). The analysis demon-
strates that model outputs for climate change studies are capable to 
predict mudflow occurrences and is unique to this field of research for 
Uzbekistan. 

3.1. CWT classification of the historical and future experiments 

CWT approach is used as perfect prognosis statistical downscaling 
method (Maraun and Widmann, 2018) to link the large scale predictors 
(circulation type in this case) to local scale predictands (precipitation 
and mudflow occurrences). 

Before the downscaling process, the daily mean Z700 historical and 
future experiments data from 10 GCMs of CMIP5 multi-model projection 
are interpolated using bilinear interpolation onto the same horizontal 
resolution as the ERA-Interim reanalysis (0.75◦ longitude × 0.75◦ lati-
tude) using Climate Data Operator (CDO) application. Therefore, CMIP5 
GCM outputs are statistically downscaled to define the frequency of each 
weather type by CWT approach (Jones et al., 1993) which is initially 
based on the Lamb weather types scheme for the British Isles (Lamb, 
1972). 

Using calculations of total shear vorticity (Z), the resultant flow 
strength (F), and direction (with an increment of 45◦), the Lamb scheme 
can provide information on the pure airflow direction (northerly, 
southerly, easterly, westerly, north-easterly, north-westerly, south- 
easterly and south-westerly, corresponding to N, S, E, W, NE, NW, SE, 
and SW), non-direction type (i.e., cyclonic, anticyclonic) of the flow, 
hybrid types (CN, CS, CE, CW, CNE, CNW, CSE, CSW, AN, AS, AE, AW, 
ANE, ANW, ASE, and ASW) and undefined class (U). The southerly flow 
(SF), westerly flow (WF), total flow (F), southerly shear vorticity (ZS), 
and westerly shear vorticity (ZW) are computed from pressure at Z700 
level at the 16 grid points (1–16) shown in Fig. 2 using the following 
formulas: 

W =
1
2
(12+ 13) −

1
2
(4+ 5) (1)  

Fig. 2. Location of the grid points over 
Uzbekistan and Central Asia used in the 
calculation of the CWT. The allocated grid 
point numbers are used in the equations 
given in Jones et al. (1993). Black dot is the 
central grid point (40.0◦N-67.5◦E) used in 
this study. The pressure value of the central 
grid point is not considered in the equation. 
Representative stations Gallyaaral 
(40.02◦N-67.60◦E) and Sokh 
(39.97◦N-71.13◦E) are indicated in red tri-
angles. (For interpretation of the references 
to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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S= 1.74
[

1
4
(5+ 2× 9+ 13) −

1
4
(4+ 2× 8+ 12)

]

(2)  

F =
(
S2 + W2)1/2 (3)  

ZW = − 1.07
[

1
2

(

15+ 16) −
1
2
(8+ 9

)]

− 0.95
[

1
2

(

8+ 9) −
1
2
(1+ 2

)]

(4)  

ZS= 1.52
[

1
4

(

6+2
)

×10+14
)

−
1
4

(

5+2×9+13
)

−
1
4

(

4+2×8+12
)

+
1
4

(

3+2×7+11
)]

(5)  

Z =ZW + ZS (6) 

The following rules (Table 1) need to be taken into account in order 
to define the appropriate weather circulation based on Lamb classifi-
cation scheme. 

In this study similar to Mamadjanova et al. (2018), the CWT objec-
tive method generates a daily circulation database based on ERA-Interim 
reanalysis (1979–2005) and 10 GCMs from CMIP5 projection for his-
torical run (1979–2005) and future scenario (2071–2100) of 11 basic 
groups which include eight directional, two synoptic and unclassified 
types (AC, C, N, NE, E, SE, S, SW, W, NW, undefined) around a central 
point located (40.0oN-67.5Eo) over Uzbekistan (Fig. 2 and A1). 

3.1.1. Bias and climate change signal 
CWT seasonal frequencies of historical experiments from CMIP5 

GCMs are substantially biased compared to real climate data (ERA- 
Interim reanalysis in this case). This is calculated by the following 
equation (7) adopted from Maraun and Widmann (2018): 

Biasθ(Z700)= θmod(Z700) − θobs(Z700) (7)  

where, Biasθ(Z700) is a systematic difference between a historical simu-
lation of GCMs θmod(Z700) for the period of 1979–2005 and an observed 
data θobs(Z700) for the same period as a model data. 

The CWT projection for the 10 CMIP5 GCMs ensemble scenarios 
constructed as a seasonal rate per CWT class attributable to climate 
change signal calculated by formula (8): 

ACWT(Z700)=CWTsce(Z700) − CWTpres(Z700) (8)  

where, ACWT(Z700) is burden of CWT frequency attributable to climate 
change, CWT is a frequency per airflow direction, CWTsce(Z700) is the 
CWT frequency for the years 2071–2100, CWTpres(Z700) CWT frequency 
for the present time period 1979–2005. 

3.2. Extraction of CMIP5 ensemble daily rainfall timeseries 

Before the extraction CMIP5 GCMs precipitation data, selected 10 
models were interpolated using bilinear algorithm. Thereafter, the grid 

box that included the location of selected weather stations Gallyaaral 
and Sokh (Fig. 2) used to extract raw precipitation values from CMIP5 
GCMs based on nearest grid point interpolation using CDO commands. 
Daily rainfall values for the 10 selected GCMs for historical simulation 
(1979–2005) were extracted in order to validate the raw data with the 
observational timeseries. Daily rainfall values for future scenario 
2071–2100 under the RCP8.5 emission were also extracted at the same 
grid box. 

3.3. Bias correction methods for GCM precipitation data 

The choice of a bias correction algorithm plays a significant role in 
assessing the precipitation pattern for recent and future climate condi-
tions. In this study, three bias correction methods such as linear scaling 
(LS), local intensity scaling (LOCI) and power transformation (PT) are 
employed for adjusting GCMs outputs. Timeseries of daily precipitation 
data for the period of 1979–2005 and 2071–2100 are used for bias 
correction techniques. 

3.3.1. Linear scaling of precipitation 
The linear scaling (LS) or simply scaling method introduced by 

Lenderink et al. (2007) quantifies the bias by application of monthly 
correction values based on the differences between observed and raw 
data of the model (Fang et al., 2015). The formula for LS is: 

Pcor,m,d =Praw,m,d ×
μ
(
Pobs,m

)

μ
(
Praw,m

) (9)  

Pcor,m,d is corrected precipitation on the dth day of mth month, and Praw, 

m,d is the model raw precipitation on the dth day of mth month. μ rep-
resents the expectation operator (e.g., μ (Pobs,m) represents the mean 
value of observed precipitation at given month m). 

3.3.2. Local intensity scaling of precipitation 
Local intensity scaling method (LOCI) presented by Schmidli et al. 

(2006) consists of three steps (Teutschbein and Seibert, 2012) that can 
effectively correct for biases during the wet-day frequency and intensity. 
In a first step, a model precipitation threshold for the mth month (Pthres, 

m) is calibrated such that the number of GCM simulated days exceeding 
this threshold matches the number of observed days with precipitation 
more than 0 mm (Teutschbein and Seibert, 2012; Fang et al., 2015). 
Thereafter, the following formula quantifies a scaling factor s from the 
wet day intensities: 

sm =
μ
(
Pobs,m,d

⃒
⃒Pobs,m,d > 0

)

μ
(
Praw,m,d

⃒
⃒Praw,m,d > Pthres,m

) (10) 

Finally, GCM simulated precipitation is corrected by the scale 
parameter: 

Pcor,m,d =

{
0,
Praw,m,d × sm

if Praw,m,d < Pthres,m (11)  

3.3.3. Power transformation of precipitation 
The power transformation (PT) approach uses an exponential form to 

further adjust the variance statistics of precipitation time series while 
the above two algorithms (LS and LOCI) are limited to correct the dif-
ferences in the variance (Teutschbein and Seibert, 2012). Following 
Fang et al. (2015) bm the exponent for the m th month is estimated 
(Shresta, 2015) by the LOCI combination approach formula: 

f (bm)=
σ
(
Pobs,m

)

μ
(
Pobs,m

) −
σ
(
Pbm

LOCI,m
)

μ
(
Pbm

LOCI,m
) (12)  

where σ indicates the standard deviation, PLOCI,m is the corrected pre-
cipitation by the LOCI algorithm for the mth month. If the exponent 

Table 1 
Circulation types defined by total shear vorticity (Z) and resultant flow (F).  

Weather type acronym Calculation 

Directional (N, NE, E, SE, S, SW, W, 
NW) 

|Z| < F 

Cyclonic (C) |Z| > 2 F,Z > 0 
Anticyclonic (A) |Z| > 2 F,Z < 0 
Unclassified cyclonic (UC) Z < mean annual Z,F < mean annual F,Z >

0 
Unclassified anticyclonic (UA) Z < mean annual Z,F < mean annual F,Z <

0 
Cyclonic hybrid (HYC) F < |Z| < 2 F and Z > 0 
Anticyclonic hybrid (HYA) F < |Z| < 2 F and Z < 0  
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factor b is greater than 1 for the mth month it means that the GCMs 
underestimates the coefficient of variances of observed precipitation 
timeseries for the mth month. After the identification of the bm factor, 
the parameter 

sm =
μ
(
Pobs,m

)

μ
(
Pbm

LOCI,m
) (13)  

is adjusted in a stepwise manner to match the mean corrected values to 
the observed mean. Thereafter, the corrected precipitation timeseries by 
LOCI approach is used: 

Pcor,m,d = sm × Pbm
LOCI,m,d (14)  

Fig. 3. Seasonal frequencies of ERA-Interim reanalysis and 10 CMIP5 GCMs historical experiments for each CWT for the period of 1979–2005.  
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3.4. Antecedent daily rainfall method 

The antecedent daily rainfall model (ADRM) introduced by Crozier 
and Eyles (1980) is based on simple formula:  

ra0 = kr1 + k2r2 + … + knrn                                                          (15) 

where ra0 is the antecedent daily rainfall for day 0; r1 is the rainfall on 
the day before day 0; rn is the rainfall on the n th day before day 0; and k 
is a constant <1.0, in this case k = 0.84. 

After the calculation of antecedent rainfall index of bias corrected 
precipitation from two GCMs (CMCC-CM and MPI-ESM-LR) obtained by 
PT approach, the daily rainfall value as a driving factor of mudflow 

occurrences in the study area is applied to ADRM for the control run and 
future scenario. 

3.5. Logistic regression model 

Logistic regression (LRM) is based on the idea transforming the 
predict and (mudflow in this case) to a binary (or dummy variable), 
taking in the values zero and one (Hosmer and Lemeshow, 2000; Wilks, 
2011) expressed in equation (16): 

x2 =

{
1, if x1 > c
0, if x2 ≤ c (16) 

Fig. 4. Seasonal differences between historical experiments in 10 CMIP5 models and ERA-Interim reanalysis (1979–2005 GCM minus 1979–2005 ERA-Int) over 
Uzbekistan at 700 hPa GPH. 
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where x2 is a binary variable (mudflow occurrence), x1 predictor (daily 
precipitation and daily antecedent rainfall index), 1 is presence of 
mudflows and 0 can be assigned if no mudflow is present. 

LRM technique is fit to binary predictands using log-odds, or logit, 

link function g(p) = ln
[

p
1− p

]

, yielding the generalised linear function is 

expressed in the formulation of 17. 

ln
(

pi

1 − pi

)

= b0 + b1x1 + … + bkxk (17)  

where pi is predicted value from the i th set of predictors, b is slope or 
gradient, x is predictor variable, K is single predictor case, when b0+

b1x1 → + ∞ exponential function approach becoming large than the 
predicted value pi, in case b0 + b1x1 → − ∞ the pi approaches zero. 

The values of the variables are the input data for the logistic algo-
rithm to calculate the precipitation threshold equation and plot proba-
bility (P) curves for P = 0.1, P = 0.5 and P = 0.9. This approach is 
analogous to the one presented in Glade et al. (2000). 

3.6. Selection of extreme rainfall events triggering mudflows 

Based on results in Mamadjanova et al. (2018), the precipitation 
values for more than 20 mm and antecedent index with ≤40 mm during 
the CWT C, SW and W days have been derived from the bias corrected 
precipitation data for control run (1979–2005) and future projection 
(2071–2100) simulated for the Gallyaaral station. It was assumed that 
the chance of mudflow occurrences in case of precipitation below 20 mm 
is relatively less, and this assumption has been validated in Mamadja-
nova et al. (2018) whereby it shows that there is only 10% probability of 
mudflow occurrences for the Gallyaaral area when precipitation amount 
is ≤ 20 mm. However, it should be duly taken into account that higher 
antecedent rainfall index could trigger mudflow magnitude even though 
the precipitation amount is less than 20 mm. The limitation of this 
approach lies with the fact that only daily rainfall values are included as 
mudflow inducing factor and neglecting temperature patterns. 

4. Results 

4.1. Changes in CWT frequencies experimented by CMIP5 GCMs 

4.1.1. Historical experiments of seasonal CWT 
The effects of large-scale atmospheric circulation over Uzbekistan 

have been examined by evaluating GCMs ensemble to simulate the 

historical CWT frequencies for the warm and cold periods of 1979–2005. 
The seasonal frequencies of CWT are generally well simulated by 
applying statistical downscaling procedure. Fig. 3 presents ERA-Interim 
outputs and historical experiments of seasonal distribution for each 
weather type simulated by 10 CMIP5 GCMs. Based on the findings of the 
statistical downscaling, compared to the observational data (ERA- 
Interim in this case) most models capture the seasonal frequencies of 
CWT as same as in observation or with small discrepancies. 

Fig. 4 summarizes the frequency changes calculated between ERA- 
Interim and GCM historical experiment for the period of 1979–2005. 
From the 10 GCMs ACCESS1-0, HadGEM2-ES, HadGEM2-CC and MPI- 
ESM-LR represent nearly realistic outputs of CWT frequencies for the 
historical period with less than 5% of changes for each CWTs for the 
warm and cold periods of the year. Only NE flow (6.5%) in March-
–August is overestimated by both HadGEM2 models also C days (7%) in 
September–February is increased by MPI-ESM-LR. 

In contrast, bcc-csm1-1 model performs the CWT frequency differ-
ences significantly throughout the year. This model overestimates 
(10–12%) the frequency of cyclonic days and underestimates (8–18%) 
the undefined circulation type over the historical period. Therefore, this 
model overestimates the NE airflow (7.2%) in summer and SW flow 
(6.7%) in winter period of the year. 

The CCMC-CC model simulates well and underestimates slightly only 
the days of undefined flow direction in March–August (7%) and Sep-
tember–February (5.3%). Further remarkable results between observa-
tion and biases achieved by simulation of CNRM-CM5 with minor 
decreases on C days in summer (6%) and W flow in winter (6%). 

GFDL-CM3 overestimates slightly the W days (6.8%) in winter and C 
days (6.9%) in summer, as well as underestimates AC (5.8%) and SW 
(6.2%) airflow directions in winter. This model also is similar to most of 
the models and reproduces the decrease of undefined weather type 
(5.9%) especially in the warm phase of the year. However, IPSL-CM5A- 
LR underestimates AC (5.9%), undefined weather type (6.7%) in sum-
mer and overestimates W airflow during the warm (11.2%) and cold 
(11.8%) phases of the year. The frequency of C days (7.2%) in a warm 
period is underestimated and W days (10.6%) in cold phase of the year is 
overestimated by MIROC5. 

The correlation distributions of the CWT frequencies of each GCM for 
the warm and cold periods of the year show that historical experiments 
of selected models match well with the observation (Fig. 5). However, 
bcc-csm1-1 differs from the other models and observation and signifi-
cantly maintains CWT changes and uncertainties, especially in warm 
season of the year. Therefore, it is reasonable that historical simulation 
of CWT frequencies of selected models can reproduce accurately, to a 

Fig. 5. Pearson correlations between CWT frequencies of ERA-Interim and 10 GCMs historical experiences of CMIP5 projection over the study area for the 
March–August (red circle) and September–February (blue) of 1979–2005 years. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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great extent, the large-scale atmospheric circulation over Uzbekistan 
and CA. 

4.1.2. Future projections of CWT frequencies 
The effects of changes in large scale atmospheric circulation fre-

quencies over Uzbekistan and Central Asia at the end of this century 

2100, under RCP8.5 scenario (Fig. 6) is explored in this section. Fig. 7 
and Tables 2–3 display the changes in the CWT frequencies in lower 
troposphere (Z700) over the study area (2071–2100 minus 1979–2005). 

The results of CMIP5 GCMs suggest that CWT W direction will 
become more frequent and increase up to 4.5% in the target period of 
2071–2100. Of the 10 GCMs selected, only the bcc-csm1-1 model shows 

Fig. 6. Scenario of seasonal frequencies of CWT under the selected 10 GCMs for the period of 2071–2100.  

G. Mamadjanova and G.C. Leckebusch                                                                                                                                                                                                    



Weather and Climate Extremes 35 (2022) 100403

10

that W airflow will decrease (− 0.8%) during the period of Septem-
ber–February in the future. 

7 GCMs of the 10 diagnose that the CWT C weather will be actively 
increasing in the warm season up to 2.6%. The bcc-csm1-1 model and 
IPSL-CM5A-LR show that cyclonic days will be less frequent in summer 
(− 1.9% and − 4.4%). In contrast to the warm period, the cyclonic cir-
culation will be less active during the cold season (September–February) 
in the future; only ACCESS1-0 and HadGEM2-CC models highlight that C 
days will be stronger by increasing its frequency up to 2.3% in the winter 
for the 2071–2100 period. 

CWT AC days will decrease up to − 4.5% in the warm phase, 

however, there are model uncertainties for the cold period of the year. In 
contrast to the CWT AC days, the CWT SW airflow will decrease in cold 
season of the year and there are model uncertainties during the warm 
season in the future. The three models, ACCESS1-0, HadGEM2-ES and 
HadGEM2-CC show increase (from +0.3% to +1.7%), whereas the 
remaining seven models show decrease (from − 0.4% to − 1.9%) in the 
SW circulation lower troposphere during the summer for the 2071–2100 
period. 

The projections of the ensemble of CMIP5 models show that NE and 
N atmospheric circulations will decrease, especially the NE type show a 
decrease of up to − 2.5% (March–August) over the study area in the 

Fig. 7. Seasonal frequencies of CWT for CMIP5 GCMs scenarios (2071–2100 minus 1979–2005) over Uzbekistan at 700 hPa GPH.  
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future. The CWT E, SE and S days will remain at the same level or 
change by ±0.6% in the 2071–2100 years. Model uncertainties exist for 
the CWT NW flow direction with the amount of ±1% in the future. Due 
to the topography, the undefined weather type is projected to increase 
(4.3%) notably in warm phase of the year. 

In general, based on the CMIP5 GCMs ensemble results it can be 
predicted that CWT frequencies and magnitudes will not change in some 
cases (CWT SE and S), as ensemble mean has clear anomalous results 
with maximum seasonal variation ±2.3% in the diagnostic period of 
2071–2100 (Tables 2–3). However, it can be concluded that CWT C and 

Table 2 
Climate change signal for the warm season of March–April (2071–2100 minus 1979–2005) in the CWT frequencies (%) in each weather 
class and for each model (for the expansions of model abbreviation and acronym see Table A1. 

Table 3 
Same as Table 2 but for the period of September–February (2071–2100 minus 1979–2005). 
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W directions will be stronger during the warm phase, and it is important 
to link these airflows to mudflow occurrences associated with named 
circulation patterns in the future. 

4.2. Changes in precipitation climatology experimented by CMIP5 

4.2.1. Evaluation of bias correction methods applied to precipitation 
The evaluation of daily mean precipitation values of GCM simula-

tions before and after bias corrections against the observational variable 
at the Gallyaaral and Sokh meteorological stations are listed in Table 4 
and Table A2. Time-series based performances of observed precipita-
tion, GCM outputs and corrected data are visualised as 7 days running 
mean to smooth daily variability of precipitation (Figs. 8–9). Addition-
ally, Q-Q plot is used to compare the theoretical distributions of each 
parameter for the Gallyaaral station (Figs. 10 and 11). 

Table 4 present that the raw data of the models, namely ACCESS1-0, 
CNRM-CM5, HadGEM2-CC, HadGEM2-ES and IPSL-CM5-LR 

overestimate the average precipitation (1.84, 1.34, 1.50, 1.58, 1.27 mm 
each) compared to the observation (1.04 mm) for the investigation 
period 1979–2005 in Gallyaaral station. In contrast, MIROC5 and MPI- 
ESM-LR GCMs underestimate the precipitation values (0.86 and 0.78 
mm), at the same time bcc-csm1-1 (1.09 mm) slightly overestimates 
precipitation over the Gallyaaral station. It is notable that mean values 
of raw precipitation data presented by CMCC-CM (1.04 mm) and GFDL- 
CM3 (1.02 mm) models are similar to the mean value (1.04 mm) of 
observed timeseries. 

Frequency statistics of mean values at the Gallyaaral station after the 
application of bias correction techniques (LS, LOCI and PT) significantly 
improved and had a good estimation of bias corrected precipitation 
values compared to the GCM raw data. Correcting the precipitation 
timeseries with LS method ensures that maximum rainfall never ex-
ceeds the raw maximums if the model raw overestimates the observed 
data. After correction of daily rainfall, the response of corrected values 
at Gallyaaral station by scaling algorithm gives more realistic mean 

Table 4 
Frequency based statistics (unit: mm) of daily mean observed precipitation, GCM raw data and bias-corrected values (LS, LOCI, PT) at the Gallyaaral station for the 
historical period (1979–2005) and future scenario (2071–2100).    

standard deviation mean median 75th percentile 99th percentile 

control scenario control scenario control scenario control scenario control scenario 

ACCESS1-0 Obs 0.98  1.04  0.84  1.70  3.52  
Raw 1.54 1.81 1.84 2.18 1.63 2.13 2.68 3.43 5.87 6.74 
LS 0.86 1.12 1.04 1.30 1.02 1.23 1.66 2.09 3.39 3.96 
LOCI 1.40 3.31 1.65 3.87 1.47 3.41 2.69 5.87 4.85 13.32 
PT 0.94 1.52 1.04 1.53 0.90 1.24 1.58 2.47 4.01 6.57 

bcc-csm1-1 Obs 0.98  1.04  0.84  1.70  3.52  
Raw 0.88 0.91 1.09 0.99 1.09 0.84 1.78 1.71 3.07 3.11 
LS 0.84 0.89 1.05 0.95 1.04 0.81 1.64 1.55 2.97 3.24 
LOCI 1.33 1.54 1.65 1.54 1.52 1.03 2.72 2.62 4.93 5.39 
PT 1.02 1.37 1.04 1.13 0.84 0.64 1.61 1.64 3.69 5.95 

CMCC-CM Obs 0.98  1.04  0.84  1.70  3.52  
Raw 0.97 1.24 1.04 1.7 0.93 0.87 1.68 1.93 3.86 4.57 
LS 0.97 1.35 1.04 1.21 0.92 0.84 1.69 1.89 3.75 5.56 
LOCI 0.99 1.37 1.05 1.22 0.93 0.84 1.67 1.93 3.77 5.72 
PT 0.97 1.41 1.04 1.23 0.91 0.82 1.65 1.98 3.70 6.15 

CNRM-CM5 Obs 0.98  1.04  0.84  1.70  3.52  
Raw 1.19 1.28 1.34 1.42 1.21 1.11 2.09 2.27 4.60 4.74 
LS 0.95 1.08 1.04 1.13 0.91 0.86 1.70 1.78 3.60 4.22 
LOCI 1.08 1.19 1.25 1.31 1.13 1.05 1.89 2.04 4.23 4.49 
PT 1.00 1.18 1.04 1.16 0.85 0.80 1.70 1.79 3.71 4.42 

GFDL-CM3 Obs 0.98  1.04  0.84  1.70  3.52  
Raw 0.79 0.78 1.02 0.94 1.04 0.94 1.63 1.53 2.83 2.83 
LS 0.84 0.85 1.05 0.97 1.05 0.92 1.72 1.64 3.10 3.18 
LOCI 1.33 1.36 1.59 1.47 1.51 1.31 2.59 2.52 4.57 4.90 
PT 0.97 1.22 1.04 1.13 0.89 0.83 1.73 1.77 3.78 4.63 

HadGEM2-CC Obs 0.98  1.04  0.84  1.70  3.52  
Raw 1.37 1.90 1.50 2.01 1.14 1.64 2.17 3.23 5.47 7.37 
LS 0.88 1.34 1.04 1.46 0.98 1.38 1.68 2.46 2.99 4.89 
LOCI 1.73 2.43 1.74 2.43 1.33 2.00 2.72 3.88 7.33 9.62 
PT 0.99 1.89 1.04 1.82 0.87 1.41 1.68 3.11 3.59 7.60 

HadGEM2-ES Obs 0.98  1.04  0.84  1.70  3.52  
Raw 1.38 1.74 1.58 1.99 1.30 1.84 2.29 3.18 5.52 6.46 
LS 0.84 1.30 1.04 1.43 0.98 1.37 1.67 2.38 3.13 4.94 
LOCI 1.44 2.01 1.63 2.22 1.42 2.06 2.56 3.56 5.69 7.49 
PT 0.96 1.75 1.04 1.73 0.90 1.42 1.69 2.96 3.80 6.44 

IPSL-CM5-LR Obs 0.98  1.04  0.84  1.70  3.52  
Raw 1.24 1.06 1.27 0.99 0.93 0.66 2.26 1.65 4.08 3.96 
LS 0.88 0.77 1.04 0.80 1.01 0.70 1.69 1.32 3.15 3.04 
LOCI 1.27 1.09 1.44 1.09 1.31 0.95 2.41 1.82 4.37 4.05 
PT 0.99 0.98 1.04 0.88 0.82 0.63 1.66 1.43 3.67 4.01 

MIROC5 Obs 0.98  1.04  0.84  1.70  3.52  
Raw 0.75 0.89 0.86 0.98 0.64 0.75 1.31 1.54 2.88 3.78 
LS 0.92 1.08 1.04 1.19 0.85 0.95 1.62 1.90 3.46 4.24 
LOCI 1.16 1.38 1.39 1.59 1.16 1.38 2.06 2.45 4.39 5.49 
PT 1.00 1.34 1.04 1.32 0.78 0.93 1.63 2.07 3.94 5.19 

MPI-ESM-LR Obs 0.98  1.04  0.84  1.70  3.52  
Raw 0.81 0.93 0.78 0.78 0.58 0.48 1.36 1.27 2.80 3.54 
LS 1.10 1.18 1.05 1.01 0.86 0.61 1.74 1.67 3.85 4.71 
LOCI 1.10 1.23 1.04 1.04 0.79 0.61 1.77 1.66 3.87 4.87 
PT 1.00 1.19 1.04 1.06 0.87 0.68 1.76 1.67 3.58 4.74  
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values even though the method underestimates the maximums of 
observed precipitation (Table 4, Figs. 8–11). 

Compared to the LS method, LOCI algorithm significantly over-
estimates the GCM simulation from observation values, likewise fre-
quency statistics of corrected values are higher than the mean values. 

After the correction by LOCI procedure for the bias in the station, 27 
years averaged precipitation data, it was found that it is insignificant for 
most of models, however, results from CMCC-CM, CNRM-CM5 and MPI- 
ESM-LR are more realistic (Table 4, Figs. 8–11). 

The ability of PT method to reproduce the precipitation shows 

Fig. 8. Daily mean precipitation of observed, raw GCM-simulated and bias corrected values at the Gallyaaral station with the 7-day smoothed moving average 
method for the years of 1979–2005. 
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robust results amongst bias correction techniques applied in this study. 
Frequency statistics of mean values (Table 4 and A2) and visualisation 
(Figs. 8–11) perform that method fits well and improves the GCM raw 
data achieving close agreement of the mean corrected values with the 
observed timeseries. 

Out of ten selected GCMs the best frequency metrics and bias cor-
rected results are related to CMCC-CM and MPI-ESM-LR models. In a 
first case, the raw data of CMCC-CM model reveals similar station based 
timeseries with minor overestimation in the beginning of winter season 
(Fig. 8). For the MPI-ESM-LR model, the raw values, after applying bias 

Fig. 9. Daily mean precipitation of observed, GCM raw-scenario and bias corrected values at the Gallyaaral station with the 7-day smoothed moving average method 
for the years of 2071–2100. 
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correction techniques, match the observation variable. Hence, the above 
named two models’ bias corrected outputs, preferably obtained by PT 
technique, could help to identify precipitation threshold triggering 
mudflows in the study area for the recent and future climate. 

4.2.2. Linking global circulation model outputs to ADRM 
Probabilities of mudflow occurrences using antecedent daily rainfall 

conditions as an independent factor triggering mudflow events has been 
analysed in this section. Equation (18) explained for the Gallyaaral 
station adapted from Mamadjanova et al. (2018) was used to calculate 

Fig. 10. Q-Q plot of corrected daily average precipitation against station (Gallyaaral) daily mean precipitation for the period of 1979–2005.  

Fig. 11. Q-Q plot of corrected precipitation from selected GCMs scenarios for the period of 2071–2100.  
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the threshold probability line for control run (1979–2005) and future 
scenarios (2071–2100) of two selected GCMs (CMCC-CM and 
MPI-ESM-LR) (Table 5). Model outputs are presented in Fig. 12. 

log
(

P
1 − P

)

= − 3.87 + 0.10*r + 0.05*ra (18) 

Probability envelopes of mudflow occurrences based on model data 
which include antecedent rainfall condition and daily precipitation as 
input data for ADRM show that results using equation (18) works 
satisfactorily for both GCMs (Fig. 12). However, calculation of the 
probability line (Table 5) based on the synthetic mudflow occurrences 
assumed by taking into account the selected rainfall class CWT C, SW 
and W generating extreme events, show that CMCC-CM underestimates 
the 0.5 and 0.9 threshold probability lines for control run and future 
scenario (Fig. 12). This might be due to exclusion of information on 
temperature conditions as this is an important parameter to be taken 
into account while running the ADRM as it was discussed in Mamadja-
nova et al. (2018). The modelling results for MPI-ESM-LR precipitation 
data suggest that the probability line is underestimated (<0.5 and < 0.9) 
for the control period, however, the probability for the future scenario 
fits, but has some uncertainties. This might be due to the very high 
values of precipitation and antecedent rainfall index projected by 
MPI-ESM-LR GCM. In general, both GCMs were able to capture proba-
bility lines even though the ADRM has some limitations due to the 
exclusion of temperature conditions. Overall the outputs from the GCMs 
(CMCC and MPI-ESM-LR) for the threshold probabilities are acceptable 
as both can capture the antecedent conditions and extreme events 
evaluated by ADRM taking into account CWT C, SW and NW airflows as 
a proxy to simulate and project future risk of mudflows in Uzbekistan. 

5. Discussion 

5.1. Projected CWT 

The research presented in this study compared the abilities of 10 
GCMs from CMIP5 multi-model projections with the aim to investigate 
large scale circulation and precipitation climatology as the main trig-
gering factor of mudflow occurrences in Uzbekistan for the historical 
period of 1979–2005 and future scenarios under the RCP8.5 for the 
2071–2100 period. 

CMIP5 models are used to evaluate CWT frequencies under recent 
and future climate conditions to enable to link the changes in CWT to 
mudflow occurrences induced by precipitation associated with specific 
circulation patterns. Only a limited number of investigations are focused 
on the projected changes in atmospheric circulation over Central Asia, 
particularly in Uzbekistan and they must be duly taken into account to 
compare achieved results in this study. To our knowledge, no study has 

examined the relationship between projected large-scale circulation and 
its impact on future mudflow risk in Uzbekistan. 

The increased frequency of CWT W airflow is expected to contribute 
to an overall increase of precipitation by the end of the century. This 
outcome is corroborated by Reyers et al. (2013) in which 
ECHAM5/MPI-OM1 ensemble is dynamically downscaled by CWT 
approach for the Aksu River basin located in Central Asia. Moreover, this 
weather type gives a climate change signal in mudflow occurrences 
associated with the mechanism of westerly airflow in lower troposphere 
over the study area for the future. Conversely, the robust decrease in the 
occurrence of CWT AC leads to lower precipitation particularly when it 
is hybrid or associated with W and SW flows. Further, the smaller 
magnitude of ensemble mean in changes associated with CWT E, SE, S, 
NW and N circulation patterns show that the relationship between 
named weather types and precipitation has a weaker climate change 
signal and it is assumed to remain invariant (Tables 2–3 and Fig. 7). 
Similar results have been obtained by Reyers et al. (2013). 

However, model outcomes for the CWT C strongly vary in seasonal 
frequencies which predict that the climate will be rainy in warm period 
(March–August) and mudflows associated with cyclonic days will occur 
frequently in comparison to the cold period (September–February) for 
Uzbekistan in the future. Therefore, the skill of CMIP5 models projected 
for CWT SW highlight that significant uncertainties exist over spring and 
summer even though there is a clear signal that SW will be less frequent 
in future autumns and winters. Zhao et al. (2018) confirms that sub-
tropical westerly jet centred over Caspian Sea will change its position by 
shifting further south in the last 50 years of the 21st century and it will 
affect summer rainfall in Central Asian countries including Uzbekistan. 
Ensemble mean results in this study also indicate the frequency of CWT 
SW which brings tropical moist and warm air associated with extreme 
rainfall to Uzbekistan is more likely to decrease under future climate 
conditions. However, results in Reyers et al. (2013) show opposite signs 
in frequency of CWT SW in the future climate. This disagreement mo-
tivates a more detailed investigation in future. 

Finally, the significant changes in undefined weather class especially 
in warm periods can be summarised by regarding the influence of 
orographic features of the investigation area. On the other hand, it can 
be attributed to outperform identified biases of individual models along 
with CMIIP5 projection. 

5.2. Projected precipitation threshold 

Simulated precipitation was analysed by applying three bias 
correction algorithms (LS, LOCI, PT) to select suitable model outputs to 
run the ADRM model. Precipitation threshold triggering mudflow oc-
currences for the control period (1979–2005) and future scenario 
(2071–2100) obtained for the Gallyaaral station were evaluated using 
logistic approach equation (please see Mamadjanova et al. (2018) for 
details). At the same time threshold probability was identified taking 
into account mudflow generating weather patterns namely CWT C, SW 
and W associated with daily rainfall (≤20 mm) and antecedent condi-
tions (≤40 mm) as central proxies to simulate synthetic mudflow oc-
currences under the recent and future climate scenarios. 

However, several limitations still exist in this study. First, amongst 
the ten models used only outputs from two models captured well to 
establish the precipitation threshold probabilities using ADRM and 
statistical transfer function of LRM. Huang et al. (2014) note for instance 
that out of 28 CMIP5 models only 5 models have better ability to capture 
a multimodel ensemble mean and simulates well rainfall observation 
over Central Asia and Tibetan Plateau. Zhao et al. (2018) also report that 
only 14 models of the 25 models from CMIP5 projection in which the 
precipitation distribution matches well with subtropical westerly jet 
circulation over the Central Asia. It would be desirable to run different 
GCMs with rainfall data and compare the achieved results in order to 
better understand future risk of extreme mudflow events and the trig-
gering factors. 

Table 5 
Rainfall threshold probability equations of mudflow occurrences in the Gal-
lyaaral station established using GCM corrected precipitation data (P – proba-
bility, r – daily rainfall, ra-antecedent rainfall, Pr(>chi) - chi-squared results).  

Time period CMIP5 
GCM 

Probability equation Pr(>chi) 

Control 
1979–2005 

CMCC-CM 
log

(
P

1 − P

)

= − 5.62+ 0.19r+

0.10∗ra  

3.12e- 
13 

MPI-ESM- 
LR log

(
P

1 − P

)

= − 4.43+ 0.17*r+

0.07*ra  

5.25e- 
10 

Scenario 2071- 
2100 

CMCC-CM 
log

(
P

1 − P

)

= − 4.61+ 0.15*r+

0.06*ra  

7.99e- 
09 

MPI-ESM- 
LR log

(
P

1 − P

)

= − 3.86+ 0.13*r+

0.03*ra  

0.00082  
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Fig. 12. ADRM applied to the observed and 
representative CMIP5 GCMs outputs for the Gal-
lyaaral station for the March–August covering 
three time period: station data 1984–2013 
adapted from Mamadjanova et al. (2018) (a), 
1979–2005 for the control run (b, c) and 
2071–2100 for future scenario (d, e). Red lines 
indicate the 0.1, 0.5 and 0.9 probability threshold 
triggering mudflow occurrences. Equation (18) 
and Table 5 were used for calculation of the 
probability lines at the selected station. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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Second, the synthetic or probable mudflow derived from the rainfall 
data on relevant day with CWT C, SW and W circulations, which are used 
as a proxy in this case, cannot be dated exactly for the same day of 
observational data. Schmidt and Glade (2003) have shared this limita-
tion in their study. Nevertheless, the results from the use of two GCMs 
demonstrate reasonable outputs when compared with the thresholds 
obtained from observational data. 

Despite all weaknesses, it can be concluded that CMIP5 GCMs pre-
cipitation timeseries with efficient downscaling and bias correction 
techniques can link precipitation extremes and rainfall induced land-
slide types using antecedent rainfall model together with logistic 
regression function for any region with available rainfall and landslides 
data. 

6. Conclusion 

In this study, daily mean Z700 and precipitation outputs from 10 
GCMs of CMIP5 system have been evaluated under both current and 
future climate scenarios enabling better understanding of climate vari-
ability and precipitation induced natural hazards under global warming 
conditions in a longer timescale. Only the first member (named r1ip1) 
from the historical experiment (1979–2005) and future (2071–2100) 
under the RCP8.5 emission scenario (radiative forcing surplus of 8.5 W/ 
m2 in 2100) has been considered for each GCM. 

Several conclusions can be made from the analysis done in this study:  

1. Seasonal frequencies of CWTs do not change significantly as the 
overall results indicate that spatial frequency of airflow directions 
have an amplitude up to ±5 percent in the 2071–2100 years. 

2. Changed frequencies of cyclonic (C) and westerly (W) airflow di-
rections will potentially contribute to more extreme mudflow oc-
currences during the warm season (March–August) by up to 5% near 
the end of the century 2071–2100. However, the ensemble results 
show uncertainties regarding the CWT SW airflow associated with 
the most devastating mudflow events in Uzbekistan for the projected 
period of March–August in 2071–2100. These uncertainties in the 
projected atmospheric circulations frequencies for the future climate 
(2071–2100) could be also attributed to the systematic errors be-
tween individual model simulations. Future research should concern 
on more detailed analysis of these factors in order to obtain robust 
estimates of climate change signal.  

3. The outputs of linear scaling (LS), local intensity scaling (LOCI) and 
power transformation (PT) of precipitation bias correction tech-
niques indicate that the PT approach has a higher ability to capture 
the observed precipitation and reproduce more realistic precipitation 
values from the model raw data for the historical experiments.  

4. CMCC-CM and MPI-ESM-LR models, of the 10 selected GCMs of 
CMIP5 models, show realistic results for the historical experiments of 
precipitation data. Whereas CNRM-CM5, GFDL-CM3, IPS-C5M-LR 
and MIROC5 represent remarkable outputs for future scenarios. 
The remaining four models overestimate precipitation values over 
Uzbekistan.  

5. CMCC-CM and MPI-ESM-LR model outputs corrected by PT bias 
technique are suitable to investigate changes in precipitation 
timeseries and its link to mudflow occurrences under recent and 
future climate conditions for the study area.  

6. Threshold probability equation based on observed data works 
satisfactorily, however equation coefficients which are not derived 
from the observed data give slightly underestimated threshold lines 
in both GCMs (CMCC-CM and MPI-ESM-LR).  

7. CWT C, SW and W airflow directions can work satisfactorily as 
proxies to identify precipitation threshold triggering mudflows in the 
study area.  

8. The model outputs show that mudflow occurrences will increase by 
the end of the century, as the model scenarios show increasing pre-
cipitation amount in the study area. 

However, several open questions still exist, and much works remain 
to be done to connect the results in the current study. First, decreasing of 
the weather circulations (e.g., SW) favourable for mudflow occurrences 
in Uzbekistan will assign less mudflows under this directional flow 
despite the overall result shows increasing of precipitation induced 
natural hazard by the end of the century. The reasons behind thisis 
unclear: will SW frequency reduce due to the significant poleward 
movement of subtropical westerly jet as suggested by Hunt and Dimri 
(2021); Thapa et al. (2020) as observed in the past or propagation to 
south as hypothised by Zhao et al. (2018) which could possibly increase 
the frequency of other circulation types (e.g., C and W) contributing to 
more mudflow occurrences in the future? Secondly, it will be important 
to explore how the large-scale circulations will impact on moisture 
source and flux associated with the directional flows and their rela-
tionship with extreme rainfall events initiating mudflows in a changing 
climate. And finally, the impact of elevated heating (Hu and Boos, 2017) 
by the rise of orography which has important effects on regional scale 
circulations, and therefore its interaction with convective precipitation 
in future climate scenarios need to be investigated. Furthermore it 
would be pertinent to explore whether this would have any relation to 
the rise of days with undefined weather class or is this related to model 
uncertainty. The interactions between all these factors could potentially 
lead to very strong impacts, and therefore all these caveats motivate 
further studies. 
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Appendix A  

Table A1 
CMIP5 model acronyms, modelling centre name and acronym, experiment type, time period of data availability, model grid resolution, and a representative reference.  

Model 
name 

Model 
abbreviation 

Climate centre Acronym for the 
climate centre 

Calendar Experiment Time period for this study GCM 
resolution 
(lat × lon) 

Reference 

control scenario 

ACCESS1- 
0 

Australian 
Community 
Climate and Earth- 
System Simulator, 
version 1.0 

Commonwealth 
Scientific and 
industrial Research 
Organization/ 
Bureau of 
Meteorology, 
Australia 

CSIO 
CAWCR, 
Australia 

prolepticgregorian RCP8.5 
r1i1p1 

1979–2005 2071–2100 1.9 × 1.2 
L38 

Bi et al. 
(2012) 

bcc-csm1- 
1 

Beijing Climate 
Centre, Climate 
System Model, 
version 1.1 

Beijing Climate 
Centre, China 
Meteorological 
Administration, 
China 

BCC, CMA, 
China 

365 day RCP8.5 
r1i1p1 

1979–2005 2071–2100 2.8 × 2.8 
L26 

Wu et al. 
(2014) 

CMCC-CM CMCC-CM CMCC - Centro Euro- 
Mediterraneo per i 
Cambiamenti, Italy 

CMCC, Italia standard RCP8.5 
r1i1p1 

1979–2005 2071–2100 0.75 ×
0.75 L31 

Scoccimarro 
et al. (2011) 

CNRM- 
CM5 

Centre National de 
Recherches 
Météorologiques 
Coupled Global 
Climate Model, 
version 5 

Centre National de 
Recherches 
Meteorologiques 
(CNRM), France and 
Centre European de 
Recherches et de 
Formation Avancee 
en Calcul 
Scientifique 
(CERFACS), France 

CNRM- 
CERFACS, 
France 

standard RCP8.5 
r1i1p1 

1979–2005 2071–2100 1.4 × 1.4 
L31 

Voldoire 
et al. (2013) 

GFDL-CM3 Geophysical Fluid 
Dynamics 
Laboratory 
Climate Model, 
version 3 

Geophysical Fluid 
Dynamics 
Laboratory (GFDL) 
at National Oceanic 
and Atmospheric 
Administration 
(NOAA) 

NOAA-GFDL, 
United States 

365 day RCP8.5 
r1i1p1 

1979–2005 2071–2100 2.5 × 2.0 
L48 

Donner et al. 
(2011) 

HadGEM2- 
CC 

Hadley Centre 
Global 
Environment 
Model, version 2, 
Carbon Cycle 

Met Office Hadley 
Centre, United 
Kingdom 

MOHC, UK 360 day RCP8.5 
r1i1p1 

1979–2005 2071–2100 1.9 × 1.2 
L60 

Martin et al. 
(2011) 

HadGEM2- 
ES 

Hadley Centre 
Global 
Environment 
Model, version 2, 
Earth System 

Met Office Hadley 
Centre, United 
Kingdom 

MOHC, UK 360 day RCP8.5 
r1i1p1 

1979–2005 2071–2099  Jones et al. 
(2011) 

IPSL- 
CM5A- 
LR 

L’Institut Pierre- 
Simon Laplace 
Coupled Model, 
version 5 A, low 
resolution 

Institute Pierre 
Simon Laplace, 
France 

IPSL, France 365 day RCP8.5 
r1i1p1 

1979–2005 2071–2100 3.7 × 1.9 
L39 

Dufresne 
et al. (2013) 

MIROC5 Model for 
Interdisciplinary 
Research on 
Climate, version 5 

Atmosphere and 
Ocean Research 
Institute (The 
University of 
Tokyo), National 
Institute for 
Environmental 
Studies, and Japan 
Agency for Marine- 
Earth Science and 
Technology, Japan 

AORI- 
NIESJAMSTEC, 
Japan 

standard RCP8.5 
r1i1p1 

1979–2005 2071–2100 1.4 × 1.4 
L40 

Watanabe 
et al. (2011) 

MPI-ESM- 
LR 

Max Planck 
Institute Earth 
System Model, low 
resolution 

Max Planck Institute 
for Meteorology, 
Germany 

MPI-N, 
Germany 

prolepticgregorian RCP8.5 
r1i1p1 

1979–2005 2071–2100 1.9 × 1.9 
L47 

Zanchettin 
et al. (2013)   
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Table A2 
Frequency based statistics (unit: mm) of daily mean observed precipitation, GCM raw data and bias-corrected values (LS, LOCI, PT) at the Sokh station for the historical 
period (1979–2005) and the future scenario (2071–2100).   

standard deviation mean median 75th percentile 99th percentile 

control scenario control scenario control scenario control scenario control scenario 

ACCESS1-0 Obs 0.72  0.96  0.80  1.29  3.14  
Raw 1.49 1.49 2.16 2.20 1.62 1.78 3.09 3.23 6.02 6.05 
LS 0.52 0.64 0.96 1.04 0.83 0.99 1.31 1.50 2.18 2.66 
LOCI 1.39 1.50 1.95 2.14 1.59 1.96 2.62 3.21 6.16 5.99 
PT 0.68 1.13 0.96 1.35 0.79 1.05 1.32 1.97 3.10 4.67 

bcc-csm1-1 Obs 0.72  0.96  0.80  1.29  3.14  
Raw 0.96 1.04 1.51 1.44 1.59 1.55 2.24 2.30 3.41 3.60 
LS 0.55 0.49 0.96 0.84 0.84 0.76 1.24 1.18 2.61 2.00 
LOCI 1.18 1.29 1.91 1.84 1.70 1.74 2.76 2.86 4.77 4.72 
PT 0.80 0.86 0.96 1.02 0.71 0.79 1.31 1.57 3.87 3.73 

CMCC-CM Obs 0.72  0.96  0.80  1.29  3.14  
Raw 1.87 2.07 2.14 2.33 1.72 2.05 2.98 3.69 7.89 7.79 
LS 0.70 0.73 0.96 0.94 0.88 0.88 1.29 1.45 3.09 2.65 
LOCI 0.93 1.11 1.24 1.33 1.11 1.16 1.71 2.10 3.73 4.18 
PT 0.78 1.02 0.96 1.11 0.82 0.90 1.35 1.76 3.48 4.06 

CNRM-CM5 Obs 0.72  0.96  0.80  1.29  3.14  
Raw 1.11 1.32 2.00 2.22 1.77 1.94 2.63 3.24 5.39 5.67 
LS 0.54 0.67 0.96 1.08 0.85 0.97 1.32 1.61 2.58 2.79 
LOCI 0.87 1.02 1.50 1.66 1.35 1.47 2.04 2.49 4.05 3.89 
PT 0.71 0.90 0.96 1.15 0.82 0.97 1.34 1.79 3.41 3.80 

GFDL-CM3 Obs 0.72  0.96  0.80  1.29  3.14  
Raw 1.42 1.46 2.07 2.04 2.08 2.04 3.03 3.06 5.24 5.50 
LS 0.55 0.60 0.96 0.96 0.86 0.86 1.24 1.37 2.54 2.30 
LOCI 1.18 1.33 1.84 1.99 1.80 1.95 2.52 2.85 5.20 5.04 
PT 0.77 1.04 0.96 1.20 0.79 0.96 1.36 1.75 3.55 4.78 

HadGEM2-CC Obs 0.72  0.96  0.80  1.29  3.14  
Raw 1.31 1.44 1.96 2.08 1.49 1.79 2.84 3.10 5.29 5.76 
LS 0.51 0.66 0.96 1.07 0.89 1.06 1.34 1.57 2.23 2.61 
LOCI 1.27 1.49 1.90 2.17 1.60 2.06 2.73 3.16 5.48 5.85 
PT 0.77 1.19 0.96 1.38 0.80 1.21 1.27 1.96 3.34 5.09 

HadGEM2-ES Obs 0.72  0.96  0.80  1.29  3.14  
Raw 1.46 1.44 2.08 2.18 1.55 1.96 3.15 3.19 5.93 5.74 
LS 0.49 0.64 0.96 1.07 0.88 1.07 1.31 1.53 2.18 2.54 
LOCI 1.54 1.55 2.09 2.34 1.63 2.21 2.77 3.34 6.65 6.13 
PT 0.72 1.39 0.96 1.56 0.79 1.30 1.26 2.27 3.31 5.92 

IPSL-CM5-LR Obs 0.72  0.96  0.80  1.29  3.14  
Raw 1.27 1.31 2.28 1.84 2.40 1.98 3.21 2.91 4.81 4.47 
LS 0.54 0.53 0.96 0.72 0.85 0.64 1.28 1.04 2.42 2.15 
LOCI 1.19 1.28 1.94 1.65 1.94 1.60 2.75 2.60 4.83 4.85 
PT 0.80 1.07 0.96 0.96 0.75 0.67 1.42 1.38 3.46 4.60 

MIROC5 Obs 0.72  0.96  0.80  1.29  3.14  
Raw 1.34 1.73 2.28 2.61 2.07 2.61 3.17 3.87 5.55 6.86 
LS 0.52 0.68 0.96 1.06 0.88 0.91 1.27 1.29 2.51 3.37 
LOCI 0.95 1.25 1.70 2.00 1.66 1.82 2.26 2.67 4.17 5.81 
PT 0.70 1.15 0.96 1.33 0.83 1.04 1.31 1.79 3.17 5.14 

MPI-ESM-LR Obs 0.72  0.96  0.80  1.29  3.14  
Raw 1.78 1.93 2.29 2.34 2.30 2.38 3.53 3.69 6.38 7.19 
LS 0.78 0.86 0.96 0.92 0.83 0.85 1.26 1.26 3.44 3.09 
LOCI 1.01 1.21 1.40 1.50 1.30 1.40 2.05 2.25 3.82 4.47 
PT 0.83 1.00 0.96 1.11 0.77 0.93 1.31 1.66 3.47 3.93   
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Fig. A1. CWT north-east (a), south-west (b), west (c), north-west (d), north (e), cyclonic (f), anticyclonic (g) and undefined (h) weather type characteristics on the 
mudflow days occurring in Uzbekistan for the period of 1984–2013. ERA-Interim 700 hPa geopotential height, relative humidity and wind component were used to 
produce this figure. Red circle indicates the central grid point (40.0◦N-67.5◦E). Black contour lines together with black dots show the area where the topography is 
above 2000 m further corresponding 3000 and 4000 m.. 
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