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A FDG‑PET radiomics 
signature detects esophageal 
squamous cell carcinoma 
patients who do not benefit 
from chemoradiation
Yimin Li1,2,11, Marcus Beck3,11, Tom Päßler3, Chen Lili1, Wu Hua4, Ha Dong Mai3, 
Holger Amthauer3, Matthias Biebl5, Peter C. Thuss‑Patience6, Jasmin Berger3, 
Carmen Stromberger3, Ingeborg Tinhofer3,7, Jochen Kruppa8, Volker Budach3, 
Frank Hofheinz9, Qin Lin1,11* & Sebastian Zschaeck3,10,11*

Detection of patients with esophageal squamous cell carcinoma (ESCC) who do not benefit from 
standard chemoradiation (CRT) is an important medical need. Radiomics using 18-fluorodeoxyglucose 
(FDG) positron emission tomography (PET) is a promising approach. In this retrospective study of 184 
patients with locally advanced ESCC. 152 patients from one center were grouped into a training cohort 
(n = 100) and an internal validation cohort (n = 52). External validation was performed with 32 patients 
treated at a second center. Primary endpoint was disease-free survival (DFS), secondary endpoints 
were overall survival (OS) and local control (LC). FDG-PET radiomics features were selected by Lasso-
Cox regression analyses and a separate radiomics signature was calculated for each endpoint. In the 
training cohort radiomics signatures containing up to four PET derived features were able to identify 
non-responders in regard of all endpoints (DFS p < 0.001, LC p = 0.003, OS p = 0.001). After successful 
internal validation of the cutoff values generated by the training cohort for DFS (p = 0.025) and OS 
(p = 0.002), external validation using these cutoffs was successful for DFS (p = 0.002) but not for the 
other investigated endpoints. These results suggest that pre-treatment FDG-PET features may be 
useful to detect patients who do not respond to CRT and could benefit from alternative treatment.

Esophageal squamous cell carcinoma (ESCC) is a tumor with an unfavorable outcome and a high global disease 
burden, especially in Asia and Southern Africa. Established treatment options are surgery alone (for limited stages 
of disease), preoperative chemoradiation (CRT) followed by surgery, or definitive CRT. Several phase-III studies 
addressed the role of preoperative CRT compared to surgery alone in locally advanced ESCC and reported an 
improvement of disease-free survival (DFS) and overall survival (OS) by the additional use of CRT​1–3. Despite 
improved treatment results, up to 20% of patients do not benefit from preoperative CRT, as tumors of these 
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patients do not present regressive changes at the time of surgery2. These tumors may progress despite CRT or 
develop distant metastases during fractionated CRT​4. While for the majority of patients CRT might still provide 
palliative relief, these patients obviously would need a different treatment approach. Future aims to personalize 
treatment should enable clinicians to detect these highly chemo-radioresistant tumors already prior to the start 
of preoperative CRT and potentially treat these patients with alternative treatment regimes.

Radiomics, i.e. generation of quantifiable parameters of certain imaging features, might be a useful tool for 
patient stratification and treatment individualization. Radiomics can be performed on routinely acquired clinical 
imaging data, e.g. from 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET), which is often used 
for staging and radiation treatment planning of ESCC patients. Radiomics refers to the analysis of textural and 
other features that contain parameters which are not amenable to the human eye or conventional assessment 
(e.g. routinely used PET parameters like standardized uptake values). Therefore, FDG-PET radiomics might be 
a promising approach to decipher specific tumor phenotypes that are associated with CRT responsiveness or 
resistance. One important drawback of this approach is the widespread use of single institutional data for the 
establishment and validation of radiomics signatures. Due to the plethora of parameters and the correspond-
ing risk of statistical overfitting, independent external validation is an important prerequisite for the further 
implementation of radiomics signatures into clinical practice. In the present study we developed a radiomics 
risk score using the pre-treatment PET imaging data of Chinese patients. This score was subsequently validated 
using an internal patient cohort, and additionally an external cohort of European patients. Primary endpoint 
for this study was disease-free survival (DFS).

Results
Prognostic radiomics signatures could be established in the training cohort for the endpoints DFS, OS and local 
control (LC). Calculation of a freedom from distant metastases (FFDM) signature was not successful due to the 
low number of events within the training cohort. The obtained radiomics signatures showed a high prognostic 
impact and a significant discrimination of high and low-risk patients over a broad range of cutoff values. Details 
on the calculation of the radiomics signatures can be found in Supplementary Table S2. Independence from 
known clinical risk factors was assessed by multivariate analysis of the radiomics signature and all potentially 
relevant clinical parameters. Additionally no correlation with other clinical or treatment parameters was observed 
(Supplementary Table S3). Maximal standardized uptake values (SUVmax) did not show a high prognostic value in 
this cohort of patients, as already published5. Including radiomics signatures as metric parameters in the model 
revealed their significant interaction with DFS, LC and OS (p-values < 0.001, 0.003 and 0.001 respectively). The 
radiomics signatures showed a high correlation with metabolic tumor volume (MTV) (Spearman coefficient: 
DFS signature r = 0.83, p < 0.001; LC signature r = 0.96, p < 0.001; OS signature r = 0.86, p < 0.001), therefore MTV 
was not included in multivariate analyses. In contrast to the radiomics signatures it was not possible to identify 
very-high risk patients by the use of MTV only, except for LC (Supplementary Figs. S1–S3 for an example of the 
best high-risk discriminations). Additionally SUVmax was not able to identify high-risk groups (Supplementary 
Figs. S4–S6). Upon multivariate testing the radiomics signatures remained an independent prognostic factor for 
DFS, OS and LC. Table 1 summarizes the results of uni- and multivariate analyses for all endpoints of the train-
ing cohort. Figure 1 shows the Kaplan–Meier estimates for all endpoints with radiomics signatures developed 
to detect patients with very unfavorable outcome. By this approach a significant discrimination of risk-groups 
was feasible for all endpoints (DFS: cutoff for radiomics signature = 6.73, p = 0.002; OS: cutoff for radiomics 
signature = 9.00, p = 0.001; and LC: cutoff for radiomics signature = 11.48, p < 0.001).

In a second step the radiomics signatures were calculated for the internal validation cohort. We were able to 
validate the prognostic value with the generated cutoff values for DFS (p = 0.025) and OS (p = 0.002) but not LC 
(p = 0.97). Additionally the MTV cutoff values of the training cohort also failed to identify patients with high 
risk for local recurrence in the internal validation cohort (Supplementary Fig. S7). Table 2 shows the hazard 
ratios for all investigated endpoints with non-binarized radiomics signatures. Figure 2 shows the corresponding 
Kaplan–Meier estimates with the cutoff values generated in the training cohort. To account for survival imbal-
ances between training cohort and internal validation cohort that might have affected the LC endpoint, synthetic 
minority oversampling technique (SMOTE) was used to balance the data. Even when using SMOTE, it was not 
possible to validate the LC prognostic signature in this cohort (Supplementary Fig. S8).

After successful internal validation, external validation was performed in a completely independent group of 
patients. Despite several differences regarding patient characteristics and treatment, it was possible to validate 
the radiomics signature cutoff for DFS (p = 0.002) but not for OS (p = 0.792) or LC (p = 0.114), the corresponding 
Kaplan–Meier plots are shown in Fig. 3. The non-binarized radiomics signatures did not show an association 
with DFS, OS or LC, see Table 3 for a summary of the univariate cox regression analyses. The MTV cutoff of 
the training cohort did not discriminate LC risk groups in this independent cohort (Supplementary Fig. S9).

Discussion
Identification of patients who do not benefit from current therapeutic approaches is a pivotal challenge. This 
holds especially true for locally advanced ESCC since all patients receive CRT. CRT is either applied preopera-
tively which has been shown to be superior to surgery alone in several randomized trials or as definitive CRT 
for organ preservation2,3. Two randomized phase-III studies compared definitive CRT and preoperative CRT 
followed by surgery and did not find a statistical significant OS benefit in favor of the additional surgery but an 
increased number of loco-regional recurrences in the organ preservation arm6,7. After preoperative CRT tumor 
specimens of up to 20% of patients do not show major signs of regression2, these patients would be candidates 
for alternative treatment approaches that might comprise immediate surgery, checkpoint inhibition, image based 
radiation dose escalation or other8–12.
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Here we were able to demonstrate that a pre-therapeutic radiomics signature is able to identify patients at risk 
for early tumor recurrence or death. The prognostic value was externally validated when using a pre-specified 
cutoff value. This is a remarkable finding since patients´ characteristics and treatment between participating 
centers differed considerably. However the prognostic value for the calculated signature could not be validated 
by non-dichotomized cox-regression. In addition the radiomics signatures failed in the further investigated 

Table 1.   Training cohort. Univariate and multivariate cox regression analyses of clinical parameters, treatment 
characteristics, the conventional PET parameter metabolic tumor volume (MTV) and radiomics signatures 
with respect to DFS, LC and OS. Due to the high correlation of radiomics signatures and MTV only radiomic 
signatures were included in multivariate analysis.

Parameter Univariate HR (range) Univariate p Multivariate HR (range) Multivariate p

Disease free survival

Age 1.01 (0.99–1.03) 0.47

Gender 1.09 (0.65–1.83) 0.75

Grading 0.81 (0.53–1.23) 0.32

UICC group 1.01 (0.76–1.33) 0.95

Type of chemotherapy 0.87 (0.64–1.18) 0.37

Radiation dose 0.96 (0.91–1.01) 0.101

MTV 1.00 (1.00–1.00)  < 0.001

SUVmax 1.00 (1.00–1.00) 0.068

Radiomics signature 8.64 (2.7–27.1)  < 0.001

Local control

Age 0.99 (0.96–1.03) 0.74

Gender 1.14 (0.53–2.43) 0.74

Grading 0.75 (0.39–1.41) 0.37

UICC group 0.80 (0.56–1.16) 0.24

Type of chemotherapy 1.11 (0.72–1.73) 0.63

Radiation dose 1.00 (0.92–1.09) 0.99

MTV 1.00 (1.00–1.00) 0.004

SUVmax 1.00 (1.00–1.00) 0.55

Radiomics signature 1.19 (1.06–1.34) 0.003

Overall survival

Age 1.01 (0.99–1.04) 0.26

Gender 1.19 (0.71–2.01) 0.50

Grading 0.73 (0.47–1.12) 0.15

UICC group 1.09 (0.82–1.46) 0.54

Type of chemotherapy 0.80 (0.59–1.08) 0.14

Radiation dose 0.95 (0.90–0.99) 0.035 0.94 (0.89–0.99) 0.02

SUVmax 1.00 (1.00–1.00) 0.073

MTV 1.00 (1.00–1.00) 0.001

Radiomics signature 6.93 (2.28–21.05) 0.001 7.47 (2.43–22.98)  < 0.001

Figure 1.   Training cohort. Kaplan–Meier estimates with prognostic groups split by endpoint-specific radiomics 
signatures (RS) into high and low-risk population.
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endpoints (OS and LC). The inability to validate all signatures might be due to small group sizes (especially in 
the external validation cohort) and a relatively large number of intercurrent deaths within the internal validation 
cohort hampering validation of the LC signature. Nonetheless it is remarkable that it was feasible to confirm a 
radiomics signature for DFS.

Table 2.   Internal validation cohort. Univariate and multivariate cox regression analyses of clinical parameters, 
treatment characteristics, the conventional PET parameter metabolic tumor volume (MTV) and radiomics 
signatures with respect to DFS, LC and OS. Due to the high correlation of radiomics signatures and MTV, only 
radiomic signatures were included in case of multivariate testing.

Parameter Univariate HR (range) Univariate p Multivariate HR (range) Multivariate p

Disease free survival

Age 1.07 (1.01–1.13) 0.014 0.99 (0.95–1.02) 0.375

Gender 0.65 (0.24–1.77) 0.40

Grading 1.06 (0.63–1.78) 0.84

UICC group 0.84 (0.42–1.66) 0.51

Type of chemotherapy 0.96 (0.65–1.40) 0.81

Radiation dose 0.94 (0.87–1.02) 0.16

SUVmax 1.00 (1.00–1.00) 0.55

MTV 1.00 (1.00–1.00)  < 0.001

Radiomics signature 10.18 (2.37–43.80) 0.002 9.74 (2.17–43.71) 0.003

Local control

Age 0.94 (0.83–1.06) 0.32

Gender 1.38 (0.12–15.50) 0.80

Grading 1.29 (0.57–2.94) 0.54

UICC group 0.001–15.58 0.39

Type of chemotherapy 1.47 (0.79–2.74) 0.22

Radiation dose 0.94 (0.81–1.09) 0.41

SUVmax 1.00 (1.00–1.00) 0.29

MTV 1.00 (1.00–1.00) 0.44

Radiomics signature 1.03 (0.85–1.25) 0.74

Overall survival

Age 1.08 (1.01–1.16) 0.024 0.98 (0.95–1.02) 0.323

Gender 0.34 (0.08–1.35) 0.11

Grading 0.97 (0.58–1.65) 0.92

UICC group 0.63 (0.22–1.82) 0.59

Type of chemotherapy 0.88 (0.60–1.29) 0.52

Radiation dose 0.93 (0.86–1.02) 0.11

SUVmax 1.00 (1.00–1.00) 0.76

MTV 1.00 (1.00–1.00)  < 0.001

Radiomics signature 15.77 (2.98–83.48) 0.001 15.63 (2.87–85.21) 0.001

Figure 2.   Internal validation cohort. Kaplan–Meier estimates with prognostic groups split by endpoint-specific 
radiomics signatures (RS) into high and low-risk population.
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One important drawback of current radiomics strategies is the variability of tumor delineation. This holds true 
for any diagnostic imaging data but especially for computed tomography (CT) since demarcation to non-tumor 
affected esophagus can be challenging. Recently, it has been shown that inter-observer delineation variability 
influences radiomics parameters significantly and that semi-automated segmentation algorithms are more robust 
regarding feature extraction13–15. One big advantage of PET imaging is the high signal intensity of the standard 
PET tracer FDG in malignant tissue. This enables automatic or semi-automatic delineation of tumor volumes 

Figure 3.   External validation cohort. Kaplan–Meier estimates with prognostic groups split by endpoint-specific 
radiomics signatures (RS) into high and low-risk population.

Table 3.   External validation cohort. Univariate cox regression analyses of clinical parameters, treatment 
characteristics, the conventional PET parameter metabolic tumor volume (MTV) and radiomics signatures 
with respect to DFS, LC and OS.

Parameter Univariate HR (range) Univariate p

Disease free survival

Age 1.07 (1.01–1.13) 0.014

Gender 0.65 (0.24–1.77) 0.40

Grading 0.96 (0.28–3.25) 0.94

UICC group 0.001–12.74 0.99

Type of chemotherapy 1.29 (0.99–1.70) 0.06

Radiation dose 1.03 (0.97–1.09) 0.35

SUVmax 1.00 (1.00–1.00) 0.39

MTV 1.00 (1.00–1.00) 0.70

Radiomics signature 1.03 (0.33–3.22) 0.95

Local control

Age 0.94 (0.83–1.06) 0.32

Gender 1.38 (0.12–15.50) 0.80

Grading 0.35 (0.27–38.57) 0.33

UICC group 0.001–15.58 0.73

Type of chemotherapy 1.73 (0.95–3.17) 0.034

Radiation dose 1.03 (0.90–1.18) 0.72

SUVmax 1.00 (1.00–1.00) 0.34

MTV 1.00 (1.00–1.00) 0.43

Radiomics signature 1.20 (0.88–1.64) 0.21

Overall survival

Age 1.08 (1.01–1.16) 0.024

Gender 0.34 (0.08–1.35) 0.11

Grading 0.82 (0.16–4.26) 0.82

UICC group 0.001–13.02 0.99

Type of chemotherapy 1.47 (1.04–2.09) 0.02

Radiation dose 1.10 (0.98–1.22) 0.08

SUVmax 1.00 (1.00–1.00) 0.85

MTV 1.00 (1.00–1.00) 0.93

Radiomics signature 0.85 (0.28–2.63) 0.78
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that are much less prone to inter-observer variability and therefore lead to a better reproducibility16,17. Nonethe-
less a major drawback of PET images is the poor spatial resolution and cross-fade effects on neighboring voxels. 
Given the limitations of PET imaging the use of radiomics on PET data is controversial18. A recent analysis of a 
large cohort of patients with esophageal cancer was not able to validate the prognostic value of pre-therapeutic 
quantitative PET imaging features19. However Re-Staging PET seems to deliver valuable prognostic information, 
both by radiomics approaches20 but also by conventional analyses of tumor metabolism21,22. Nevertheless for 
potential non-responders to CRT it would be pivotal to identify these patients prior to therapy. The prognostic 
model may be further improved by the implementation of CT derived parameters, as a recent multicenter study 
showed promising results regarding risk stratification based on CT data23.

Another important prerequisite for the clinical application of radiomics features is robustness of features 
to image processing steps. Whybra and colleagues investigated the stability of PET features to interpolation. 
All PET features identified in our study were categorized as either stable or correctable, with all features except 
GLCM_IDN classified as very stable (correlation coefficients of 0.9)24.

One strength of our study is the large cohort of patients and the internal and external validation of the radiom-
ics signature. An important limitation regards the differences in patient characteristics: Chinese patients were all 
treated with definitive CRT, while European patients were treated with definitive or preoperative CRT. However 
the vast majority of European patients was treated with definitive CRT. Another limitation regards the imbalance 
between the internal exploration and validation cohort. When designing this study we decided to allocate patients 
randomly to the exploration or internal validation cohort and calculate the optimal radiomic signatures in all 
patients of the exploration cohort. This may be a reason why internal validation of the local control signature 
was not successful. Another weakness is the relatively short follow-up time in the European cohort of patients 
leading to few events for each endpoint (OS, LC), limiting the external validation to DFS with a higher number 
of events. The relatively short follow-up might be justified by the aim of the study: Identification of patients 
with dismal outcome defined by tumor persistence, early recurrence or risk death. The heterogenous treatment 
might however affect other endpoints, especially LC. Another shortcoming is the strong correlation of selected 
radiomics parameters and the derived radiomics signatures with the standard PET parameter MTV. As compre-
hensively discussed in a current opinion paper by Buvat and Orlhac, this is a common and well-known limitation 
of several PET based radiomcis approaches25. Nonetheless the important clinical question in our study was the 
identification of non-responders to CRT. At least in the training cohort MTV did not show convincing results 
regarding this specific aim, except for LC. In other words MTV is highly prognostic but lacks a high sensitivity 
do detect non-responders since also very large tumors can potentially be highly CRT sensitive. Supplementary 
Fig. S10 shows examples of two high risk patients with nearly the same DFS radiomics risk signature but large 
differences in MTV. We think the identified radiomics signature has potential to detect non-responders with 
a relatively high sensitivity (2 year EFS rates of 11%, 18% and 0% in each individual cohort of patients). One 
important limitation of our approach is the use of non-isotropic voxels as some textural features might benefit 
from re-sampling to isotropic voxels26. Other limitations of our study include the use of the fixed-bin intensity 
discretization only, instead of implementing both most commonly used approaches and differences in PET 
scanners and acquisition protocols and consecutive reconstruction algorithms. Several methods like ComBat 
harmonization can potentially be used to account for these differences and have shown improved external model 
validation in radiomics studies27,28. Variance analysis of the radiomic parameters and standard PET parameters 
showed significant differences between the two independent cohorts (Supplementary Table S6), very likely due 
to differences during clinical image aquisition. Nonetheless, harmonization using this method would be hardly 
possible in an interventional trial when patients are enrolled consecutively and treatment decision has to be done 
immediate after imaging. Therefore, we decided not to include these methods to see how our model performs 
in a routine clinical practice scenario.

Taken together our study shows that a radiomics signature might be a clinically useful tool for detection of 
ESCC patients with dismal outcome after current CRT based standard treatment approaches. However it is not 
possible to further discriminate if this is due to radioresistance or resistance to the concomitant chemotherapy, 
since patients received combined treatment. Additionally the external validation cohort was relatively small, 
therefore further prospective validation in a larger cohort of patients is warranted to use this signature for future 
aims on treatment individualization.

Methods
Inclusion criteria.  Inclusion criteria for this retrospective study were:

•	 Histologically confirmed ESCC treated with normo-fractionated CRT, curative intent and prescribed radia-
tion doses in case of definitive CRT between 50 and 66 Gy. Or (external validation cohort only) preoperative 
CRT with 41.4 Gy.

•	 Staging FDG-PET performed before any radiotherapy or chemotherapy

Patients and treatment.  In total, 184 patients were included in this study. A summary of patient and 
tumor characteristics is given in Supplementary Table S1.

Pseudonymisation was performed and consecutive numbers were randomly assigned to all patients starting 
with the Chinese cohort of patients treated at the University hospital Xiamen. Patients with the numbers 1 to 
100 (n = 100) were used as training data set and patients with the subsequent numbers 101 to 152 (n = 52) were 
used for internal validation of the radiomics model. For subsequent external validation, 32 patients treated at 
the Charité were used (patients 153 to 184).
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152 patients from the Department of Radiation Oncology of the University Hospital Xiamen were included 
in this study. Imaging and treatment of patients have been previously described29,30. Briefly, patients received 
definitive CRT between 2009 and 2013, mostly using intensity modulated radiotherapy (IMRT). All patients 
received a radiation dose of 50 Gy to the tumor, affected and elective lymph nodes and safety margins. Thereafter 
a consecutive boost of 4–16 Gy was prescribed to tumor/affected lymph nodes (average total dose: 57 Gy) with 
reduced margins. Concomitant chemotherapy consisted of two cycles of cisplatin (25 mg/m2/day, days 1–3 and 
days 29–31) and either paclitaxel (135 mg/m2/day, day 1 and day 29) or 5-fluorouracil (500 mg/m2/day, days 
1–5 and days 29–33).

The external validation cohort consisted of 32 patients with pre-therapeutic FDG-PET scans available. 22 
patients received definitive CRT (50–66 Gy) while 10 patients received preoperative CRT to a total dose of 41.4 Gy 
followed by surgical resection. All patients were treated between 2015 and 2018 at the Department of Radiation 
Oncology, Charité University Hospital, Campus Virchow-Klinikum, Germany. In case of definitive CRT, radio-
therapy treatment consisted of volumetric modulated arc or tomotherapy with an elective dose of 50.4 Gy and a 
consecutive boost to macroscopic tumor volumes with reduced margins of 0 to 9 Gy. Some patients received a 
simultaneous integrated boost to the metabolic tumor volume delineated on the pre-treatment FDG-PET up to 
64 or 66 Gy. In the majority of patients concomitant chemotherapy consisted of weekly Carboplatin (AUC = 2.0) 
and Paclitaxel (50 mg/m2).

PET imaging.  Patients from Xiamen were scanned with a Discovery STE (General Electric Medical Systems, 
Milwaukee, WI, USA). Data acquisition started 67 ± 22 min (range 50–140 min) after injection of 142–548 MBq 
FDG (3D PET acquisition, 90 s acquisition time per bed position). PET data were reconstructed using CT-based 
attenuation-weighted OSEM reconstruction (2 iterations, 20 subsets, 6 mm FWHM Gaussian filter). Voxel size 
was 4 × 4 × 5 mm.

Patients from Berlin were scanned with a Gemini TF 16 Astonish (Philips Medical Systems, Cleveland, OH, 
USA). Data acquisition started 71 ± 9 min (range 60–86 min) after injection of 236–248 MBq FDG (3D PET 
acquisition, 90 s acquisition time per bed position). PET data were reconstructed using BLOB-OS-TF reconstruc-
tion (Philips Astonish TF technology: 3 iterations, 33 subsets). Voxel size was 2 × 2 × 2 mm and was re-scaled 
to 4 × 4 × 5 mm.

Image analysis.  For the radiomics analysis the metabolically active part of the primary tumor was delin-
eated in the PET data by an automatic algorithm based on adaptive thresholding that considers the local 
background16,17. The resulting delineation was inspected visually by an experienced observer and, if necessary, 
manually corrected. In case of neighboring affected lymph nodes or high physiological tracer uptake (e.g. within 
the myocardium) these regions were manually subtracted. Tumor delineation was performed with the ROVER 
software, version 3.0.34 (ABX GmbH, Radeberg, Germany). Subsequently the DICOM data containing the 
structure sets of the tumors were exported and imported in 3D Slicer (https​://www.slice​r.org, version 4.8.1). 
Extraction of radiomics parameters was performed in all PET scans using the plugins SlicerRadiomics (Revision 
8e5f1e8).

SlicerRadiomics based on PyRadiomics (version 2.0.1) is an open-source python package for the extraction 
of radiomics features from medical images31. We extracted seven classes of radiomics features with a total of 105 
features according to the recommendations of Reuzé and colleagues dedicated to radiomics of PET images32. 
Shape (13 features), first order statistics (18 features), gray level co-occurrence matrix (glcm, 23 features), gray 
level size zone matrix (glszm,16 features), gray level run length matrix (glrlm,16 features), neighboring gray tone 
difference matrix (ngtdm, 5 features) and gray level dependence matrix (gldm,14 features). For a detailed list 
see Supplementary Table S4. All 105 radiomics features were calculated on the PET image data sets on a speci-
fied voxel-size of 4X4X5 millimeters. Suplementary Table S5 shows the procedure of image analysis according 
to IBSI recording guidelines33. Absolute gray-level discretization of PET images was performed using the fixed 
bin width approach and a bin size of 25, the rationale for using this approach was one publication showing a 
potential superiority of this approach compared to lesion-relative resampling of FDG-PET images34. Texture 
matrices were calculated as mean of texture values obtained from each normalized matrix in each direction with 
distance of 1 pixel/voxel. Importantly, some aspects of the PyRadiomics approach differ from ISBI guidelines, 
a detailed explanation can be found within the PyRadiomics documentation (https​://pyrad​iomic​s.readt​hedoc​
s.io/en/lates​t/faq.html). Auto-evaluation acording to the radiomics quality score was performed and revealed a 
score of 44% (Supplementary Table S7)35.

Statistical analysis.  First feature selection was performed in the training cohort of 100 patients. Primary 
endpoint was DFS, which was defined as the time between the first fraction of radiotherapy and any loco-regional 
tumor recurrence, distant metastasis or death of any cause. Secondary primary tumors were not regarded as an 
event. Further additional endpoints were overall survival (OS), local control (LC) and freedom from distant 
metastases (FFDM). It was pre-specified to select three or four radiomics features for the generation of a radiom-
ics signature to avoid statistical overfitting and excessive selection of parameters potentially inter-correlated to 
each other. Radiomics signatures were calculated for each endpoint separately, i.e. each signature contains differ-
ent parameters and different weighting. LASSO-COX regression was repeated 100 times in R (Comprehensive 
R Archive Network, https​://www.r-proje​ct.org, version 3.4.1). Up to four radiomics parameters that were most 
frequently selected as significant (p < 0.05) by repeated Lasso-Cox regression analyses were implemented into 
the radiomics signature. The active coefficient for all features that showed significant association with outcome 
upon Lasso-Cox analyses were calculated for each run separately. The radiomics signature is a linear combina-
tion of the Lasso-Cox-Coefficient mean of all 100 runs and the patient specific value of the selected radiomics 

https://www.slicer.org
https://pyradiomics.readthedocs.io/en/latest/faq.html
https://pyradiomics.readthedocs.io/en/latest/faq.html
https://www.r-project.org
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features. For better interpretability of the radiomics signatures we multiplied each radiomics signature by ten to 
avoid very small decimal values. The radiomics signatures for each endpoint were calculated independently and 
were tested for significance using the log-rank test. Additionally for dichotomization and generation of cuttoff 
values Kaplan–Meier curves were visually inspected using the software X-Tile (version 3.6.1) 36. The clinical 
rational for this study was pre-therapeutic detection of patients who are resistant to CRT and do not benefit from 
this treatment approach. Therefore cutoff values were selected in a way to detect a small proportion of patients 
(10–20%) with a dismal outcome applying current CRT based standard approaches. Univariate analysis of clini-
cal parameters and radiomics signatures was performed for all endpoints. Supplementary Fig. S2 illustrates two 
high-risk patients with the same radiomics signature. To ensure independence of known prognostic factors, 
parameters with at least a trend for significance (p ≤ 0.1) in univariate analysis were tested by multivariate cox-
regression analyses using SPSS (IBM, Armonk, New York, version 24).

For validation of the model, PET feature extraction and calculation of the radiomics signatures were per-
formed in the same way as in the internal validation cohort using the coefficients of the internal validation cohort. 
After successful internal validation of cutoff values for the respective radiomics signatures, external validation 
was performed in the same manner.

Ethical approval.  The studies were approved by the Institutional Review Boards of the participating cent-
ers (Ethics Committee of the first affiliated hospital of Xiamen University and Charité’s Ethics Committee) and 
the joint-analysis was additionally approved by the Institutional Review Board of the last authors’s institution 
(Charité’s Ethics Committee, application number EA2/122/17) and was conducted in accordance with the guide-
lines of the International Conference on Harmonization/Good Clinical Practice and the principles of the Dec-
laration of Helsinki. All patients provided written informed consent that their pseudonymized data can be used 
for scientific purposes and publications.

Data availability
The data to generate the Radiomics signatures generated during this study are included in this published article 
(and its Supplementary Information files). The datasets analysed during the current study are not publicly avail-
able due to data safety policies but are available from the corresponding author on reasonable request.

Received: 8 November 2019; Accepted: 6 October 2020

References
	 1.	 Bosset, J. F. et al. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. 

N. Engl. J. Med. 337, 161–167 (1997).
	 2.	 van Hagen, P. et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 366, 2074–2084 (2012).
	 3.	 Yang, H. et al. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell 

carcinoma of the esophagus (NEOCRTEC5010): a phase III multicenter, randomized, open-label clinical trial. J. Clin. Oncol. 36, 
2796–2803 (2018).

	 4.	 Kroese, T. E. et al. Detection of distant interval metastases after neoadjuvant therapy for esophageal cancer with 18F-FDG PET(/
CT): a systematic review and meta-analysis. Dis. Esophagus https​://doi.org/10.1093/dote/doy05​5 (2018).

	 5.	 Hofheinz, F. et al. Confirmation of the prognostic value of pretherapeutic tumor SUR and MTV in patients with esophageal 
squamous cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 46, 1485–1494 (2019).

	 6.	 Stahl, M. et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the 
esophagus. J. Clin. Oncol. 23, 2310–2317 (2005).

	 7.	 Bedenne, L. et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: 
FFCD 9102. J. Clin. Oncol. 25, 1160–1168 (2007).

	 8.	 Venkat, P. S. et al. Dose escalated neoadjuvant chemoradiotherapy with dose-painting intensity-modulated radiation therapy and 
improved pathologic complete response in locally advanced esophageal cancer. Dis. Esophagus 30, 1–9 (2017).

	 9.	 Kojima, T. & Doi, T. Immunotherapy for esophageal squamous cell carcinoma. Curr. Oncol. Rep. 19, 33 (2017).
	10.	 Zhao, Q., Yu, J. & Meng, X. A good start of immunotherapy in esophageal cancer. Cancer Med. 8, 4519–4526 (2019).
	11.	 den Bakker, C. M. et al. Non responders to neoadjuvant chemoradiation for esophageal cancer: why better prediction is necessary. 

J. Thorac. Dis. 9, S843–S850 (2017).
	12.	 Hsu, P.-K. et al. Comparison of survival among neoadjuvant chemoradiation responders, non-responders and patients receiving 

primary resection for locally advanced oesophageal squamous cell carcinoma: does neoadjuvant chemoradiation benefit all?. 
Interact. Cardiovasc. Thorac. Surg. 17, 460–466 (2013).

	13.	 Pavic, M. et al. Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol. 57, 
1070–1074 (2018).

	14.	 Huang, Q. et al. Interobserver variability in tumor contouring affects the use of radiomics to predict mutational status. J. Med. 
Imaging 5, 011005 (2018).

	15.	 Parmar, C. et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 9, e102107 
(2014).

	16.	 Hofheinz, F. et al. Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with 
manual delineation in clinical data sets. Nuklearmedizin 51, 9–16 (2012).

	17.	 Hofheinz, F. et al. An automatic method for accurate volume delineation of heterogeneous tumors in PET. Med Phys 40, 082503 
(2013).

	18.	 Hatt, M. et al. Characterization of PET/CT images using texture analysis: the past, the present… any future?. Eur. J. Nucl. Med. 
Mol. Imaging 44, 151–165 (2017).

	19.	 Foley, K. G. et al. External validation of a prognostic model incorporating quantitative PET image features in oesophageal cancer. 
Radiother. Oncol. 133, 205–212 (2019).

	20.	 Beukinga, R. J. et al. Prediction of response to neoadjuvant chemotherapy and radiation therapy with baseline and restaging 18F-
FDG PET imaging biomarkers in patients with esophageal cancer. Radiology 287, 983–992 (2018).

	21.	 Bütof, R. et al. Prognostic value of SUR in patients with trimodality treatment of locally advanced esophageal carcinoma. J. Nucl. 
Med. https​://doi.org/10.2967/jnume​d.117.20767​0 (2018).

https://doi.org/10.1093/dote/doy055
https://doi.org/10.2967/jnumed.117.207670


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17671  | https://doi.org/10.1038/s41598-020-74701-w

www.nature.com/scientificreports/

	22.	 Fang, P. et al. Multimodal Imaging of Pathologic Response to Chemoradiation in Esophageal Cancer. Int. J. Radiat. Oncol. Biol. 
Phys. 102, 996–1001 (2018).

	23.	 Wang, Q. et al. Tumor Compactness based on CT to predict prognosis after multimodal treatment for esophageal squamous cell 
carcinoma. Sci. Rep. 9, 10497 (2019).

	24.	 Whybra, P., Parkinson, C., Foley, K., Staffurth, J. & Spezi, E. Assessing radiomic feature robustness to interpolation in 18F-FDG 
PET imaging. Sci. Rep. 9, 9649 (2019).

	25.	 Buvat, I. & Orlhac, F. The dark side of radiomics: on the paramount importance of publishing negative results. J. Nucl. Med. https​
://doi.org/10.2967/jnume​d.119.23532​5 (2019).

	26.	 Pfaehler, E. et al. Experimental Multicenter and Multivendor Evaluation of the Performance of PET Radiomic Features Using 
3-Dimensionally Printed Phantom Inserts. J. Nucl. Med. 61, 469–476 (2020).

	27.	 Fortin, J.-P. et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161, 149–170 (2017).
	28.	 Peeken, J. C. et al. Tumor grading of soft tissue sarcomas using MRI-based radiomics. EBioMedicine 48, 332–340 (2019).
	29.	 Li, Y. et al. Value of sequential 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) 

in prediction of the overall survival of esophageal cancer patients treated with chemoradiotherapy. Int. J. Clin. Exp. Med. 8, 
10947–10955 (2015).

	30.	 Li, Y. et al. Increased evidence for the prognostic value of FDG uptake on late-treatment PET in non-tumour-affected oesophagus 
in irradiated patients with oesophageal carcinoma. Eur. J. Nucl. Med. Mol. Imaging https​://doi.org/10.1007/s0025​9-018-3996-1 
(2018).

	31.	 van Griethuysen, J. J. M. et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104–e107 
(2017).

	32.	 Reuzé, S. et al. Radiomics in nuclear medicine applied to radiation therapy: methods, pitfalls and challenges. Int. J. Radiat. Oncol. 
Biol. Phys. https​://doi.org/10.1016/j.ijrob​p.2018.05.022 (2018).

	33.	 Vallières, M. et al. Responsible radiomics research for faster clinical translation. J. Nucl. Med. 59, 189–193 (2018).
	34.	 Forgács, A. et al. Impact of intensity discretization on textural indices of [18F]FDG-PET tumour heterogeneity in lung cancer 

patients. Phys. Med. Biol. 64, 125016 (2019).
	35.	 Lambin, P. et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749–762 

(2017).
	36.	 Camp, R. L., Dolled-Filhart, M. & Rimm, D. L. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based 

cut-point optimization. Clin. Cancer Res. 10, 7252–7259 (2004).

Author contributions
Y.L., M.B. and S.Z. provided ideas for the study. Y.L., M.B. and S.Z. performed the analysis and drafted the 
manuscript. JK and FH calculated the underlying statistics. Y.L., M.B., T.P., C.L., W.H., H.D.M., H.A., M.B., 
P.C.T.P., I.T., J.B., C.S., V.B., Q.L. and S.Z. were responsible for treatment, imaging, collection of patient data and 
follow-up. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was partly supported by the Major 
Projects of Fujian Natural Science Foundation (NO. 2008-59-11), the Nature Science Foundation of China (No. 
81101066), the Xiamen city science and technology project guidance (3502Z20164009) and the Berliner Kreb-
sgesellschaft (ZSF201720). The funding sources had no influence on data acquisition, evaluation or writing of 
the manuscript.

Competing interests 
Dr. Amthauer reports personal fees from SIRTEX Medical Europe, grants from GE Healthcare, grants and 
personal fees from Novartis, outside the submitted work. The other authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-74701​-w.

Correspondence and requests for materials should be addressed to Q.L. or S.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.2967/jnumed.119.235325
https://doi.org/10.2967/jnumed.119.235325
https://doi.org/10.1007/s00259-018-3996-1
https://doi.org/10.1016/j.ijrobp.2018.05.022
https://doi.org/10.1038/s41598-020-74701-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A FDG-PET radiomics signature detects esophageal squamous cell carcinoma patients who do not benefit from chemoradiation
	Results
	Discussion
	Methods
	Inclusion criteria. 
	Patients and treatment. 
	PET imaging. 
	Image analysis. 
	Statistical analysis. 
	Ethical approval. 

	References


