
Contributions to the detection of non-reference
sequences in population-scale NGS data

D i s s e r t a t i o n

zur Erlangung des Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich für Mathematik und Informatik

der Freien Universität Berlin

vorgelegt von Thomas Krannich

Berlin 2022

Erstgutachter: Prof. Dr. Knut Reinert
Zweitgutachterin: Prof. Dr. Birte Kehr

Tag der Disputation: Freitag, 29. April 2022

2

"Finding your way in life is like finding the genome in a De Bruijn Graph:
it is very easy to find *a* path, very hard to find *the* path."

Lex Nederbragt

3

Zusammenfassung

Fehlende Sequenzen im Referenzgenom (englische Abk. NRS) sind eine vergleichsweise
wenig untersuchte Klasse an genomischer Strukturvarianten. NRS sind Sequenzen im
Genom einzelner Individuen, welche bei einem Vergleich mit einem gegebenen Referen-
zgenom neuartig erscheinen. Eine gängige These zum Ursprung der NRS ist, dass diese
keine neuen Sequenzen in einem einzelnen Individuum darstellen, sondern vorrangig In-
dikatoren für fehlende genetische Diversität im Referenzgenom sind. Da Referenzgenome,
wie zum Beispiel das menschliche Referenzgenom, überwiegend aus einzelnen Genomen
erstellt wurden, weisen neue und nicht für das Referenzgenom genutzte Genome einzelner
Individuen Sequenzen auf, welche folglich nicht im Referenzgenom auffindbar sind.

Im modernen Zeitalter der Hochdurchsatz-Sequenzierung lässt sich genomische Struk-
turvarianten routinemäßig in hunderten und tausenden an Individuen feststellen. Beim
Auffinden von NRS mit Hilfe von kurzen Sequenzierungs-Daten ist jedoch eine Rekon-
struktion längerer genomischer Sequenzen unerlässlich. Dieser Prozess der Rekonstruktion
ist ein rechnerisch komplexes Problem und benötigt große Mengen hochqualitativer Daten.
Studien haben gezeigt, dass das Vereinen von Sequenzierungs-Daten mehrerer Individuen
eine zuverlässige Methode ist, um gemeinsame NRS innerhalb einer Studiengruppe oder
Population aufzufinden. Die in diesen Studien benutzen Algorithmen zeigen jedoch eine
begrenzte Anwendbarkeit für große Datensätze auf.

Im Rahmen dieser Doktorarbeit werden neue Konzepte vorgestellt, um NRS gleichzeitig
in mehreren Individuen zu entdecken. Ein wichtiger Fokus hierbei ist, dass diese neuen
Konzepte große Datensätze verarbeiten können und sich auf eine zuvor unerreichte Anzahl
an individuellen Genomen anwenden lassen. Zudem wird eine Software vorgestellt, genannt
PopIns2, mit welcher sich die vorgestellten Konzepte in der Praxis anwenden lassen. Den
wichtigsten Beitrag leistet dabei ein neuer Algorithmus zur Vereinigung rekonstruierter
genomischer Sequenzen aus mehreren Individuen. Die vereinte Menge an genomischen
Sequenzen bildet anschließend die Grundlage zur präzisen Charakterisierung von NRS
in den Genomen vieler Individuen. Versuche mit künstlichen Sequenzierungs-Daten
haben gezeigt, dass PopIns2 und der darin enthaltene neue Algorithmus ein genaues
Auffinden von NRS in großen Datensätzen ermöglicht. Zudem haben Versuche mit
echten Sequenzierungs-Daten gezeigt, dass PopIns2 das Auffinden von NRS in Daten-
sätzen ermöglicht, deren Größenordnung die rechnerische Leistungsgrenze vorhergehender
Programme weit übersteigt.

5

Abstract

Non-reference sequence (NRS) variants are a less frequently investigated class of genomic
structural variants (SV). Here, DNA sequences are found within an individual that are
novel with respect to a given reference. NRS occur predominantly due to the fact that a
linear reference genome lacks biological diversity and ancestral sequence if it was primarily
derived from a single or few individuals. Therefore, newly sequenced individuals can yield
genomic sequences which are absent from a reference genome.

With the increasing throughput of sequencing technologies, SV detection has become
possible across tens of thousands of individuals. When using short-read data, the detection
of NRS variants inevitably involves a de novo assembly which is a complex computational
problem and requires high-quality sequence data at high coverage. Previous studies have
demonstrated how sequence data of multiple genomes can be combined for the reliable
detection of NRS variants. However, the algorithms proposed in these studies have a
limited capability to process large sets of genomes.

This thesis introduces novel contributions for the discovery of NRS variants in many
genomes, which scale to considerably larger numbers of genomes than previous methods.
A practical software tool, PopIns2, that was developed to apply the presented methods is
elucidated in greater detail. The highlight among the new contributions is a procedure
to merge contig assemblies of unaligned reads from many individuals into a single set of
NRS by heuristically generating a weighted minimum path cover for a colored de Bruijn
graph. Tests on simulated data show that PopIns2 ranks among the best approaches
in terms of quality and reliability and that its approach yields the best precision for a
growing number of genomes processed. Results on the Polaris Diversity Cohort and a set
of 1000 Icelandic human genomes demonstrate unmatched scalability for the application
on population-scale datasets.

7

Acknowledgements

First and foremost, I would like to thank my supervisor Birte Kehr. I am ineffable grateful
for all the guidance, support and opportunities I was given and provided throughout the
years. During my initial month and years as PhD student I experienced an incomparable
patience and dedication to introduce me into the field of sequence analysis and variant
calling, particularly when I struggled and doubted my capabilities the most. Birte has
always been available for advise and has consistently propelled my interest and enthusiasm
for my work. I am very thankful for her kind and pleasant mentoring that taught me
numerous skills and a vast amount of knowledge. Also, when I became more confident in
my field of research, I was granted the trust to manage scientific work in a self-reliant
manner. I am also particularly thankful for all the support and opportunities I was
granted to publically share and present my research, gain scientific experience from
industry leading companies and to expand my professional network across the globe.
Birte’s professionalism and passion for her work is unprecedented and has been a great
encouragement for myself to follow her example.

I am grateful to Knut Reinert who has accompanied my way from the early days of my
Bachelor studies until the final days of my PhD studies. I really enjoy the memories of his
lectures on Algorithms and Data structures in Bioinformatics which have been, without
a doubt, the major driver for me to carry on with the Bioinformatics major. During
my PhD seminars he provided valuable feedback on my projects and his SeqAn team
has provided a fundamental resource and support for my work on Bioinformatics software.

I would like to thank the all current and former members of the Kehr Lab. I con-
sistently experienced a pleasant working atmosphere throughout my PhD years at the
BIH and could always find a helping hand when needed. I appreciated our open and lively
exchange of ideas and feedback in the office a lot. Many thanks to Sebastian Niehus and
Timothy White for supporting and co-authoring my scientific work. Also, I am grateful
for the support and many scientific discussions with the members of the Kircher Lab, Core
Unit Bioinformatics (at the BIH) and Rayan Chikhi (at several international conferences).

I believe that getting oneself a PhD position is not just about a presentable skill set and
the impression you leave in an interview but you also need a strong advocate. I would
like to thank Annalisa Marsico for her flattering positive evaluation of my work at the
MPIMG and for recommending me for my PhD position.

Last but not least, I am forever grateful for the steady support of my family.

9

Contents

1 Introduction 17

2 Definitions and preliminaries 29
2.1 Sets and Vectors . 29
2.2 Genomic sequences, sequence alignment and insertions 30
2.3 Genotype and inheritance . 36
2.4 Graphs . 38
2.5 Sequence assembly . 41
2.6 Bifrost . 44
2.7 PopIns . 46

3 Related work 53
3.1 Overview and classification of variant calling methods 53
3.2 Methods for detection and genotyping of non-reference sequences 58
3.3 Methods for detection and genotyping of non-reference sequences in population-

scale data . 60
3.4 Selected projects conducting variant calling using population-scale data . . 61

4 Methods 63
4.1 The roadmap of Popins2 . 63

4.1.1 Motivation . 63
4.1.2 Objective . 65
4.1.3 Classification . 68

4.2 Merging NRS of many genomes using a CDBG 69
4.2.1 Problem formulation . 69
4.2.2 A greedy heuristic . 70

4.3 Implementation of PopIns2 . 71
4.3.1 Design pattern . 72
4.3.2 Control flow . 75
4.3.3 Bridging unitigs of low entropy genomic sequence 77
4.3.4 A multi-k construction algorithm for CDBG 79
4.3.5 The Alignment score factor . 83
4.3.6 Availability and resources . 84

5 Results 87
5.1 Assessment of PopIns2 using simulated data 87

5.1.1 Data simulation pipeline . 87
5.1.2 Evaluation of NRS callsets . 89
5.1.3 Preliminary results utilizing the multi-k module 93

5.2 Application of PopIns2 using the reads of many human individuals 95

11

5.2.1 Detecting NRS in the Polaris Diversity Cohort 96
5.2.2 Genotype assessment using the Polaris Kids Cohort 100
5.2.3 Detecting NRS in 1000 Icelandic genomes 106

6 Conclusion and Future Work 109

References 117

Appendix 133

Index 137

12

List of Figures

1 Nucleotides and the DNA helix. 18
2 DNA sequencing and the reconstruction of a genome. 21
3 Types of structural variants (SV). 23
4 Minimizer sampling. 31
5 A genomic read. 32
6 Read pairs. 33
7 Read coverage of a genome. 34
8 Split read alignment. 35
9 Insertions. 36
10 Mendelian inheritance. 37
11 Types of de Bruijn Graphs. 40
12 Assembly of genomic sequences. 42
13 Tips and singletons. 45
14 PopIns. 47
15 PopIns - positioning subproblem. 49
16 Signal types to detect SV. 55
17 PopIns - Merging subproblem. 67
18 Class diagram of the PopIns2 merge module. 74
19 Flowchart of the PopIns2 merge module. 76
20 Low entropy connected component (LECC). 78
21 PopIns2 - Multi-k approach. 81
22 Sampling and inspection of k-mer positions in a unitig. 83
23 Snakemake workflow of PopIns2. 86
24 Pipeline for data simulation and callset evaluation. 88
25 Bipartite matching graph between a truthset and a callset. 90
26 Evaluation of SV detection using a growing number of simulated genomes. 93
27 True positives from the NRS callsets separated by different size ranges. . . 94
28 Evaluation of the SV detection with the PopIns2 multi-k module. 95
29 Length histograms of supercontigs from the PDC. 97
30 Benchmarks of the PopIns and PopIns2 merging modules using a growing

number individuals. 98
31 Parameter space exploration of the PopIns2 merge module. 99
32 Sequence overlaps between the callsets of PopIns and PopIns2. 101
33 Number of NRS per individual of the 49 PDC/PKC trios. 102
34 Intersection of NRS per trio for different SV callers. 103
35 PCA of the genotype predictions of PopIns2. 104
36 Mendelian inheritance patterns and transmission rate for the insertion

genotypes of the 49 Polaris trios. 105
37 Mendelian inheritance patterns and transmission rate for the insertion

genotypes of the 49 Polaris trios (Pamir). 106

13

38 Length histograms of the supercontigs from the 1000 Icelandic genomes. . 107
39 Long-range connectivity information. 113
40 The sequencing cost per genome over the last two decades. 134

14

List of Tables

1 Average number of selected reads and contigs per simulated individual. . . 90
2 Precision and recall of NRS callsets from simulated human short-read data. 92
3 Counts of the precision and recall statistics. 92
4 Wall clock times for PopIns2 merge computing supercontigs from the PDC. 97
5 Wall clock times for PopIns2 merge computing supercontigs from the 1000

Icelandic genomes. 107

15

1 Introduction

Since the dawn of civilisation people have tried to find the origin of life, understand the
proliferation of physical traits and characterize the diversity of populations. A variety
of species ranging from bacteria and fungi to birds, fish, reptiles and mammals all unite
characteristics like growth, heredity, procreation and metabolism. Even if not understood
in the past, and still not fully understood today, the hypothesis emerged [Sutton, 1903;
Punnett, 1926; Portin, 2014] that all living organisms must underlay some common
principles of life. Therefore, early on researchers attempted to find a blue print for the
origin of life [Watson and Crick, 1953a; Gamow, 1954].

The first discovery that led to our understanding of genetics today was in 1869 when
Friedrich Miescher accidentally discovered an unknown substance during his research
on leucocytes [Miescher, 1871]. As he extracted the new substance from the nucleus he
labelled it "Nuklein" (ger. "nuclein"). That discovery marks the birth of what we know
today as deoxyribonucleic acid (DNA).

Hierarchies of DNA – From nucleotides to genomes

The four nucleobases, adenine (A), cytosine (C), guanine (G) and thymine (T), are the
building blocks of DNA. Together with a five-carbon sugar and one or more phosphate
groups they build nucleotides which are considered the smallest units of genetic infor-
mation. In a living cell these four nucleotides are connected to DNA strands that chain
up to millions of nucleotides with a covalent chemical bond. A more general term for a
chain of nucleotides of arbitrary length is DNA sequence and is abstracted by solely its
nucleobase abbreviations. In genetics the chemical term base is often used interchangeably
for nucleotide, even if not chemically accurate.

After Miescher’s discovery it took almost a century until Francis Crick and James Watson
in 1953 first described the molecular structure of DNA [Watson and Crick, 1953b]. In
their model, which in general is accepted till this day, they first described the DNA double
helix . The DNA double helix is composed of two winding DNA strands (Figure 1). The

17

sugar-phosphate bonds of the nucleotides build the backbone of the helix while their
nucleobases form the interconnection between the strands with non-covalent hydrogen
bonds. Two interconnected bases of the two strands are called a base pair . Bases normally
only pair in the combinations adenine-thymine and cytosine-guanine, i.e. if for instance an
adenine base is observed at one DNA strand, the opposing strand contains a thymine as
complementary base. The opposing strands in a DNA helix are paired in an anti-parallel
direction. The directionality of a strand is determined by its endings. To put it simply,
the strand ending with the phosphate group is called 5’-end and the other end (of the
same strand) is called 3’-end. Because of these two properties (anti-directional strands
and complementary base pairing) one strand of the DNA helix is said to be reverse
complement to the other strand.

5'

5'

3'

3'

G

GC

C T A

TA

O

O
P

O

O

O

-

Base

Figure 1: Excerpt of the DNA double helix. The two winding DNA strands (black) are
held together by the hydrogen bridge bonds (dotted lines) of the base pairs (red-blue and
green-yellow). The bases pair only in the specific combinations adenine-thymine (A and
T) and cytosine-guanine (C and G). The DNA strands have a directionality (3’-end and
5’-end) defined by the tail that ends with a phosphate group (purple). One tail is called
5’-end because the phosphate group binds to the fifth carbon atom in the pentose sugar
ring (zoom box).

In a living cell, the DNA double helix would be too long and too vulnerable to structural
damage to remain in its linearly outstretched form inside the nucleus. Therefore, cells
usually keep the DNA double helix in a more compacted and shorter form. Inside the
nucleus there exists a protein complex, called histone, to densely pack the DNA. The
DNA winds around the histones in a highly ordered manner such that the 2 nm thin
DNA double helix forms a 30 nm tube-like fiber. Subsequently, the 30 nm fiber forms
loops and folds into an even wider and higher compacted fiber. The final tight coiling
of the fiber is called a chromatid . Depending on the phase of the cell cycle, a nucleus
contains one or two distinct copies of a chromatid, building a chromosome.

18

The amount of chromosomes and potential abnormalities, both together called kary-
otype, describe the genetic characteristics of an organism. Hereby, different organisms or
cell types have a varying number of distinct chromosomes as well as an individual amount
of complete sets of chromosomes (ploidy). For instance, humans as diploid organisms
typically have two complete sets of 22 sex unrelated chromosomes (autosomes) and two sex
chromosomes (gonosomes). Deviations from this karyotype emerging at the replication of
gametes or fertilization have shown to cause severe physiological conditions [Down, 1995;
Antonarakis et al., 2004; Turner, 1938; Saenger, 1996]. On a more local cell-specific scale
the genetic origin of some cancer types have been linked with variations in the karyotype
[Thompson and Compton, 2011; Nicholson and Cimini, 2013; Vasudevan et al., 2020].

The entire genetic material of an organism is called its genome. For completeness
it should be noted that the genome consists of more DNA outside the nucleus (extrachro-
mosomal DNA) [Gaubatz, 1990; Kim et al., 2020]. Extrachromosomal DNA can be found
in the cell plasma [Sin et al., 2020; Ma et al., 2021] even if the number of nucleotides is
much smaller compared to the nucleus. Aside from DNA in different cell compartments,
some genomes are even composed of different nucleotides than DNA. For instance, some
viruses store their genetic material using RNA, a different set of nucleotides than DNA.
Nonetheless, the genetic material of a virus is called a virus genome.

In brief, a genome and its set of nucleotides are the blueprint of the cell and many
of its metabolites. The DNA of chromosomes is classified into genes and intergenic re-
gions . As opposed to intergenic regions the genes yield the DNA sequence that is directly
processed by the cell. Processing genes can involve multiple steps like transcribing DNA
into RNA, deleting and rearranging RNA sequence fragments (splicing) or translating
RNA into amino acids. Ultimately, all the intermediate and final products of DNA
processing define the cell type, the cell’s morphology and functionality.

DNA sequencing deciphers the code of life

Having the knowledge about DNA and genomes from the perspective of experimental
biology one immediate challenge is to precisely characterise the nucleotide sequence
of a particular organism. With the advancement of computers, micro technology and
biochemical engineering a methodology called DNA sequencing evolved. DNA sequencing
is the procedure of capturing the precise order of nucleotides in a DNA sequence and can
be divided in two major steps. The first step is an in vitro preparation of the sample (e.g.
blood, saliva, epithelial cells or tumor tissue). The second step is typically a combination
of a chemical, mechanical and computational process that actually captures the nucleotide
sequence.

The first widely applied sequencing technology was developed by Frederick Sanger in
1977. In the in in vitro phase of the Sanger sequencing protocol [Sanger et al., 1977] the
DNA was fragmented into 100-500 bp segments and gradually hybridized with fluorescent

19

dideoxynucleotides. In the second phase a chromatograph and a laser detector produced
chromatograms whose peak sequence could be used to read out the nucleotide sequence.

However, the Sanger sequencing protocol had the drawback of being labor-intensive
especially during the sample preparation. The yield of DNA sequence was barely suitable
for the purpose of large scale sequencing like the sequencing of large genomes. This
limitation motivated the development of further sequencing methods for higher through-
put [Voelkerding et al., 2009], commonly termed next generation sequencing methods
(NGS). Today, the most prevalent and widely used NGS technology is commercialized by
Illumina Inc., therefore sometimes called Illumina sequencing . Their core innovation is
a combination of two biochemical reactions, bridge amplification on an oligonucleotide
matrix and sequencing by synthesis , that enable signal amplification and a rapid read out
of optical reaction signals, respectively. Within a machine (sequencer) the optical signals
are captured and translated into their respective nucleotide sequence. NGS sequencing
has the advantage of achieving a significantly higher throughput than Sanger sequencing
[Pareek et al., 2011]. With a modern sequencer, e.g. Illumina NovaSeq 6000, at maximum
performance one can sequence about 48 entire human genomes in about 44 hours (see
www.illumina.com/systems/sequencing-platforms/novaseq.html, accessed on April 28th,
2021). In addition, sequences generated with Illumina sequencers today are less prone to
experimental and technical errors compared to the complex procedure of Sanger sequencing.

Nevertheless, the few NGS technologies that dominate the global market today have
one striking disadvantage for the downstream data analysis. The up to billions of DNA
sequences they generate are only very short pieces (called reads) of the given DNA sample.
For instance, one single read of an Illumina sequencer is typically 150 bp long. On a bigger
picture, this means that sequencers today do not explicitly generate the sequence of an
entire genome or even chromosome but only tiny, local and randomly ordered snapshots
of it. Over the course of decades many algorithmic approaches have been developed with
the objective to piece together this enormous puzzle of reads into entire chromosomes
(Figure 2). A DNA sequence that got reconstructed from multiple reads is called an
assembly (chapter 2.5) and the applied algorithmic approach an assembly algorithm.
Modern assembly algorithms [Simpson et al., 2009; Zerbino and Birney, 2008; Bankevich
et al., 2012; Chikhi and Rizk, 2013] are highly complex, utilize many advanced algorithms
and data structures [Idury and Waterman, 1995; Schleimer et al., 2003] and require a
large amount of compute resources. DNA assembly is formally defined in chapter 2.5.

Over the last decade the latest developments in sequencing technologies yielded novel
third-generation sequencing technologies (e.g. Oxford Nanopore Technologies, Pacific
Biosciences). Third-generation sequencing technologies and their mechanics differ a lot
from the next generation sequencing methods. In brief, both leading technologies utilize
pores, biological or artificial, to drag DNA sequences through and capture an electric
current or light emission. The reads that are generated form third-generation sequencing
technologies (often termed long-reads) are substantially longer than the reads from NGS

20

Genome

Reads

Reconstructedgenome

Sequencing

Assembly

Figure 2: Sketch of sequencing and reconstructing a genome. The precise base pair
sequence of the genome (on top) is unknown. When a genome is sequenced, e.g. with
the NGS sequencing technology, it results in many reads covering fractions of the genome
(middle). The reads are then used to reconstruct the genome, called genome assembly. The
final assembly of a genome (bottom) might differ from the actual biological sequence of the
genome. Some fractions of the assembled genome might differ in their length compared to
actual sequence (left green block). This typically happens when the same sequence occurs
multiple times in the genome (green blocks) or the sequence itself has a highly repetitive
base pair pattern. Other fractions of the sequenced genome are potentially missing in
the reconstructed genome (dotted line) if no reads captured these base pairs during the
sequencing.

technologies. Long-reads typically show an average read length of 10-30 kbp [Amarasinghe
et al., 2020] but can reach up to over two million base pairs [Payne et al., 2019]. Longer
reads tend to facilitate the assembly of even longer sequences making long-reads the best
data resource to assemble whole chromosomes [Phillippy, 2017]. However, state-of-the-art
third-generation sequencing technologies have a comparably high error rate, i.e. the
individual bases in the read are more likely to be incorrectly interpreted from the raw
signal of the sequencer.

The exploration of the human genome and its diversity

With the technology of DNA sequencing in hand the National Institute of Health (NIH)
sought to sequence the entire human genome for the first time in history. From 1988
on the NIH started to gather scientists for the Human Genome Project and a year later
founded the National Center for Human Genome Research (which later became the
National Human Genome Research Institute, short NHGRI). Over the course of eleven
years (1990-2001) many researchers at the NHGRI sequenced and assembled the human
genome. About the same time an American company named Celera Genomics led a
privately funded effort to outpace the Human Genome Project for the first draft of the

21

human genome. Ultimately, in 2001 both sources published [Lander et al., 2001; Venter
et al., 2001] their early genome drafts. These early genome drafts, together with multiple
succeeding sequencing efforts over the years, have evolved and have been refined into
what is known as the human reference genome today.

The breakthrough of high-throughput sequencing using NGS has substantially facili-
tated the sequencing of individual genomes since the era of the Human Genome Project.
Today individual human genomes can be sequenced within a day with modern sequencers.
Therefore, recent projects [Sherman et al., 2019; Turnbull et al., 2018; Byrska-Bishop
et al., 2021] comprise many hundreds or thousands of genomes of moderate quality. For
instance, the Thousand Genomes Project (1KGP) in its latest phase [Auton et al., 2015;
Sudmant et al., 2015; Byrska-Bishop et al., 2021] comprises over 3,200 human genomes.
As the human reference genome is mostly assembled from the DNA sample of a single
anonymous African-American donor [Goldfeder et al., 2017] it lacks ethnic and conse-
quently genetic diversity. In contrast, the 1KGP contains samples from five different
continental super-populations. Such a diverse repertoire provides a valuable resource to
investigate the incidence of genetic traits between and within populations. In 2018 an
even larger project [Turnbull et al., 2018] was completed by sequencing 100.000 genomes
in the United Kingdom. The scale of the 100.000 genomes project enables advanced
diagnosis and personalized treatments of rare diseases and cancer.

A latest trend in genomics is the large-scale sequencing of individual demographic groups
[Liu et al., 2015; Mallick et al., 2016; Hehir-Kwa et al., 2016; Maretty et al., 2017;
Kehr et al., 2017; Wong et al., 2018; Sherman et al., 2019; Eisfeldt et al., 2020; Taliun
et al., 2021], in case of country-specific studies sometimes called national cohorts . These
sequencing projects often investigate how certain demographic groups differ from the
reference genome, whether they have characteristic, overabundant genes and how this
affects susceptibility or resistance to certain diseases.

The long and short of DNA variants

Single nucleotide variants. As opposed to deviations in the karyotype, i.e. gain or
loss of an entire chromosome, it is much more common that the DNA sequence itself
differs from the reference genome and between individuals. If such a difference comprises
the substitution of only one singe nucleotide it is termed single nucleotide variant, short
SNV . A substitution of one singe nucleotide that specifically affects in the germline is
termed single nucleotide polymorphism, short SNP . More general, nucleotides can not
only be substituted but also be inserted or deleted at a certain position in the strand.
This insertion or deletion of a single or few nucleotides is commonly abbreviated indel .
Due to a plethora of mechanisms involved that process DNA to their intermediate or
final products in a cell [Crick, 1970; Fredrick and Ibba, 2009; Rédei, 2008; Chang et al.,

22

2007] SNVs are not necessarily harmful. For instance, some SNVs cause silent mutations
[Zheng et al., 2014] where the variants can go unnoticed by the cell.

Reference

Sample

Deletion Insertion Inversion

Reference

Sample

Tandem duplication Interspersed duplication Translocation

Figure 3: Types of structural variants between a reference and a sample. Types of
structural variants are deletions (red), insertions (yellow), inversion (green), duplication
(blue) and translocation (orange and purple). As opposed to SNVs, structural variants
span a larger number of base pairs.

Structural variants. In addition to variants that affect only a single nucleotide, a DNA
strand can also be subject to variants that affect whole segments, i.e. larger consecutive
chains of nucleotides, called structural variants (SV). In the literature [Alkan et al., 2011;
Ebert et al., 2021], the threshold of 50 bp is commonly used to distinguish between smaller
indels and SVs. Today, many studies [Ho et al., 2020; Mahmoud et al., 2019; Willson,
2020] discovered and described various classes of SVs (Figure 3): sequence that is present
in the reference genome but missing in a sample (deletion), sequence that is present in the
sample but missing and unknown in the reference genome (insertion), sequence that has a
reverted orientation in the sample compared to the reference genome (inversion), sequence
of the reference genome that is copied multiple times consecutively to one position or
non-consecutively to many positions of the sample (tandem duplication or interspersed
duplication, respectively) and sequence that is present in the reference genome but appears
at a different position, possibly different chromosome, in the sample (translocation). Since
SVs affect many more base pairs than SNV they occur less frequently but often times
have a more severe effect [Wang et al., 2020; Collins et al., 2020] especially when present
in gene coding regions of the DNA [Walsh et al., 2008; Collins et al., 2020]. Multiple
studies [Carvalho and Lupski, 2016; Mahmoud et al., 2019] observed that SVs can occur
combined at the same time. For instance, some inversions were found to be flanked by
deletions or tandem duplications [Mahmoud et al., 2019]. Also, recent findings describe
more complex chromosomal rearrangements [Meyerson and Pellman, 2011; Fukami et al.,
2017] that can be dissected into multiple canonical SVs.

23

Non-reference sequences. Figure 3 shows that insertions are the only type of variant
where a sample contains DNA sequence that is absent from the reference genome (non-
reference sequence, NRS). Such NRS are found in every individual [Faber-Hammond and
Brown, 2016] and are occasionally associated with a disruption of DNA processing of the
cell [Wong et al., 2020]. Insertions are a less frequently investigated class of variants as
their detection inevitably requires an assembly (follows in chapter 2.5) of the NRS. Aside
from the computational complexity of sequence assembly a majority of NRS contains
highly repetitive DNA sequence [Delage et al., 2020; Manni and Zdobnov, 2020] which
additionally complicates assembly.

Some references [Delage et al., 2020; Wong et al., 2020] refer to the insertions of non-
reference sequences as novel sequence insertions because the insertions describe a novel
sequence content with respect to the reference genome. However, it has been found [Lee
et al., 2020; Kehr et al., 2017] that a vast majority of NRS in humans is ancestral sequence
from other primate genomes rather than actual novel sequence. A convincing theory is
that NRS are not inserted into particular genomes but rather that the reference genome
lacks diversity and therefore misses certain human sequences (called reference bias).

Alleles and genotypes. The characteristic form of a variable genomic locus, which
might be equal to a given reference or affected by one or more variants, is called an
allele. Related to the ploidy of an organism or cell type a gene can coexist as different
specific alleles. For instance, a healthy human tissue cell has a diploid chromosome set
and therefore contains two alleles of a distinct gene. Thus, with respect to the reference
genome there are three different possible combinations of the two alleles (genotypes): both
alleles are identical to the reference and do not carry a variant (homozygous reference),
one allele is identical to the reference while the other allele differs from the reference by
one or more variants (heterozygous) or both alleles differ from the reference (homozygous
alternative).

Importance of variants. The immediate questions once variants have been identified
is how they affect disease and diversity. DNA variants play an important role for the
susceptibility and resistance to certain diseases [Leffler et al., 2017; Dolatabadian et al.,
2020] and phenotypes [White and Rabago-Smith, 2011]. For instance, the MHC complex ,
which is one of the key components of the human immune system, is highly dependent
on its genetic diversity to maintain its functionality against a variety of pathogens and
viral agents [Norman et al., 2017]. Other variants are associated with a reduced or
increased risk to develop medical conditions [Pritchard et al., 2016]. Variants can also be
associated with morphological traits like eye color [White and Rabago-Smith, 2011] or
limb malformation [Spielmann et al., 2018].

Spread of variants. A variants that is present in a gamete is called a germline variant
and can be passed on to an offspring generation. If the variant is passed to the offspring
that variant gets incorporated into the DNA of every cell of that individual. In contrast,

24

somatic variants initially occur in a single somatic body cell and proliferates to identical
mutant cells . A growing population of viable but severely dysfunctional mutant cells is
what is termed cancer [Li et al., 2020].

DNA variants aid the characterization of genetic diversity

The previous section introduced single nucleotide variants, indels and large structural
variants. As shown in Figure 3 the position, orientation and length of a variant is the
result of a sequence comparison between two DNA sequences. A fundamental method to
determine sequence similarly and variants is called sequence alignment (explained in more
detail in chapter 2.2). Sequence alignments [Smith and Waterman, 1981; Needleman and
Wunsch, 1970] optimize a weighted scoring function to report on the similarity of two or
more strings, e.g. DNA sequences. In the case of DNA sequences the individual matching
bases and dissimilarities between the sequences determine a total alignment score. The
alignment score of a DNA sequence alignment is a quantification of the similarity between
the sequences. The alignment itself, the layout of pairwise matching bases, characterizes
matching and mismatching fractions of the sequences.

An example for the wide spectrum of applications that utilizes sequence alignments
is to determine the relationship between species. The general idea is that close related
species share a larger amount of common DNA sequences whereas variants, in this context
also called mutations, indicate evolutionary separation. A very prominent model that
describes evolutionary relationships is called a phylogenetic tree. Phylogenetic trees cluster
individuals or species into groups of common ancestors based on their sequence conformity
and mutations. Close related but also some seemingly different species share a vast
amount of sequence [van Dijk et al., 2001; Yazhini et al., 2021]. Shared sequence among
species derived from a common ancestor it is called homologous .

The era of DNA sequencing shapes medical diagnostics and
treatments

The enormous amount of sequence data being available today provides insight into the
genetic origin of many diseases [Kingsmore and Saunders, 2011; Posey, 2019; Liu et al.,
2019] and subsequently a plethora of variants with medical implications [Stankiewicz and
Lupski, 2010; McColgan and Tabrizi, 2018; Schüle et al., 2017; Wilfert et al., 2021] has
been found over the last decades. In recent years it has become a prevailing method
to sequence individuals with phenotypes of a certain disease or trait and compare the
samples to individuals without the phenotype. Ideally, if this comparison yields a sig-
nificant correlation between a variant and a phenotype the variant is called associated
with the disease or trait. When initially the variants of the entire genome are taken
into consideration, these comparative studies are termed genome-wide association studies
(GWAS). For instance, a GWAS [Meddens et al., 2020] of the relative intake of macro
nutrients has discovered fourteen SNPs that correlate with phenotypes of obesity, type 2

25

diabetes and heart disease. Another GWAS [Weuve et al., 2018] has associated non-
carriers of the APOE ε4 allele with an increased risk for Alzheimer’s disease and dementia.

The catalogues of variants identified with GWAS have shown to be a valuable and
sustainable resource beyond their initial generation [Kehr et al., 2017; Jakubosky et al.,
2020]. A study of the Icelandic population identified a set of structural variants in
non-repetitive regions of the human genome that is absent from the human reference
genome [Kehr et al., 2017]. A few of the detected SVs strongly correlate with known
variants from the EMBL-EBI GWAS catalogue [Buniello et al., 2019] and hence indicate
associations with disease phenotypes, e.g. with age-related macular degeneration [Yang
et al., 2006] and Psoriasis [de Cid et al., 2009].

Today, DNA sequencing has become an important factor for modern medicine and
emerging medical treatments. A recent success in the treatment of sickle-cell anaemia
[Ledford, 2020] has been driven by the molecular insights into human DNA. Promising
results were shown from a bone-marrow transplantation of a CRISPR-Cas9 gene-edited
stem and progenitor cells [Frangoul et al., 2020]. Another method [Esrick et al., 2020] for
the same disease directly targets RNA. Both approaches target the cell pathway of the
BCL11A transcription factor and upregulate the γ-globin production. Ultimately, this
stabilizes a healthier production level of fetal hemoglobin.

Another recent and salient benefit of DNA sequencing has been surveillance in a pandemic
outbreak [Oude Munnink et al., 2021]. The rapid spread of the COVID-19 coronavirus
has globally challenged healthcare systems and demanded an immediate intervention.
Here, DNA sequencing and subsequent variant detection has helped twofold. First, it was
used to decipher the virus’ RNA sequence [Zhou et al., 2020; Zhu et al., 2020; Sarma
et al., 2021] which is essential to start the pharmaceutical research on vaccines. With the
RNA sequence in hand conventional clonal vector vaccines (AstraZeneca PLC, Johnson
& Johnson Inc.) and novel mRNA vaccines (BioNTech SE, Moderna Inc.) could be
developed and manufactured. Second, frequent or routine sequencing of infected patients
has given insight into mutations of the virus [Harvey et al., 2021]. The global surveillance
of virus mutations is important to estimate the contagiousness of emerging variants and
whether they might escape the immunization of certain vaccines.

Outline of the thesis

The previous explanations have illustrated that DNA sequencing and the subsequent
genomic sequence analysis is an essential building block in many fields of biology and
modern medicine. However, as part of the genomic sequence analysis, the detection of SV
in the genomes of newly sequenced individuals remains challenging, particularly with the
short reads of NGS technologies.

From data analyses [Alkan et al., 2011] and methods developed in recent years [Kehr et al.,

26

2016; Kavak et al., 2017] it was found that the detection and characterization of NRS
can benefit from the processing of genomic sequence data from multiple individuals at
once. Still, NRS have received less attention compared to other types of SV and there is
only a small number of applications which can efficiently process the vast amount of NGS
data from multiple individuals. These observations (section 4.1.1) revealed a demand for
methods to efficiently detect NRS from large groups of individuals and motivated the
contributions to the field presented in this thesis.

Thesis structure. In brief, the methods chapter describes how a highly efficient data
structure [Holley and Melsted, 2020] can be utilized to substantially improve the com-
putational performance of a previous application [Kehr et al., 2016] while maintaining
comparable results and improving in certain aspects. A practical implementation in
C++ is provided for the described methods that scales to, till this day, unmatched
input data sizes. A preceding chapter provides definitions, terminology and theoretical
preliminaries. The last chapter summarizes and discusses the thesis, draws conclusions
about the methods and results and provides an outlook on potential future research in
the field.

In detail, chapter 2 provides descriptions and definitions of key concepts in set the-
ory, genetics and genomic sequence analysis that are essential for the understanding of
the remaining chapter. Moreover, the de Bruijn graph and its derivations are explained
in greater detail. The final two subchapters describe previous applications which were
fundamental elements for the development of the presented methods.

Chapter 3 provides a literature review of SV detection methods and highlights projects
which applied these methods to large groups of individuals. At first, a broad spectrum
of classification criteria is introduced to distinguish SV methods and to determine their
precise field of application. Methods for the detection of NRS are assessed in more detail
with a focus on their application to many individuals. The last subchapter highlights the
extend and findings of projects which applied NRS detection to many individuals.

Chapter 4 presents new contributions to the field of NRS detection. The first sub-
chapter introduces the observations which motivated the development of a new method
and a description of its general objective. Next, the approach and objective of the new
method is presented by a precise problem formulation together with a greedy heuristic to
generate a solution, i.e. a set of NRS. Finally, a software (PopIns2) that implements the
many individual steps of the new NRS detection method as well as its parameters and
optional features are presented in the last subchapter.

Chapter 5 showcases and examines the application of PopIns2 to simulated and real NGS
data. First, the accuracy of the NRS detection is evaluated using NRS data of simulated,
individual human genomes. A use case with real human NGS data is presented and
evaluated using the Polaris Diversity Cohort and Polaris Kids Cohort. The application of

27

PopIns2 to 1000 Icelandic genomes shows its unprecedented scalability for NRS detection
using data of large study groups and populations.

The final chapter 6 summarizes the contributions of the thesis and classifies them in the
context of ongoing research in the field. The concluding comments reflect on the findings
and achievements presented in the previous chapters and discuss the advantages and
limitations of the presented methods. An outlook hints potential directions for future
research on the topic.

28

2 Definitions and preliminaries

This second chapter introduces notations and concepts that are essential for the subsequent
methods section of this thesis. First, common notations for sets and its operations are
introduced. The second and third subsections provide formal descriptions for foundations
in biology and bioinformatics like DNA sequences, sequence alignment and inheritance.
In the forth and fifth subsections, particular algorithms and data structures used in the
methods section are explained. Finally, the last two subsections describe two programs
and their implementations as they are used in the methods.

The first three subsections introduce very basic concepts in computer science and biology
that a reader from these fields might wants to skim. The chapters 2.4 and 2.5 explain
the concepts of a de Bruijn graph and sequence assembly in more detail which are rather
known to an experienced audience. The last two subsections yield the foundation to a
deep understanding of chapter 4 and are highly recommended for any reader.

2.1 Sets and Vectors

Sets. An unordered set of unique elements is denoted with curly braces. The cardinality
of a set X is denoted as ∣X ∣. The formulation X = ∅ denote an empty set. An element x
of set X is denoted x ∈ X. Is an element x not present in set X it is denoted x ∉ X. A
set Y is a subset of X if and only if every element y ∈ Y is also an element of X. Y ⊆X
denotes Y being a subset of X.

Further, common set operators apply:

• The intersection of two sets X and Y is

X ∩ Y ∶ {x ∶ x ∈X and x ∈ Y }

• The union of two sets X and y is

X ∪ Y ∶ {x ∶ x ∈X or x ∈ Y }

29

Some evaluations in chapter 5.1 assume the validity of common set properties and
operations (commutative law, set difference, etc) which can be found in [Cormen et al.,
2009] at appendix B.1. Two sets are called disjoint if X ∩ Y = ∅. The Jaccard Index
[Jaccard, 1912] of two sets X and Y is a measure of similarity of the sets and is defined
as the ratio of their set intersection divided by their set union.

Vectors. Within the scope of this thesis the term vector refers to its definition in
computer science, i.e. here a vector is a container for an ordered sequence of elements. A
vector whose elements are of the basic arithmetic data type boolean is called bitvector.
The Jaccard Index of two equally long bitvectors x and y is defined as

J(x, y) =
∑i xi ∧ yi

∑i xi ∨ yi

where xi and yi are the i-th elements in the vectors, respectively.

2.2 Genomic sequences, sequence alignment and insertions

Genomic sequences. A genomic sequence s ∈ Σm is a character string (string) of
length m over the alphabet Σ = {A,C,G,T}. The characters σ ∈ Σ encode the four
different nucleotides. The formulation ∣s∣ of a string s denotes the length of s, i.e. its
number of characters. The reverse of a string is the string in its inverted order. The
complement of a genomic sequence is built by a transition function fc that converts every
character σ ∈ Σ as follows: fc(A) = T , fc(C) = G, fc(G) = C and fc(T) = A. The reverse
complement s̄ is the transformation of a string s after both operations, i.e. inverting the
string and applying fc to every character in s. A string in its given and reverse complement
form are termed to be in forward (+) and backward (-) orientation, respectively. Further,
the canonical representation s̃ of a string s is defined as the lexicographically smaller
representation of s and s̄. A dimer d is a short genomic sequence with ∣d∣ = 2.

A prefix of a string s is a substring that starts at the first position in s. A suffix
of a string s is a substring that ends at the last position in s. Both a prefix and suffix is
defined by its length l and therefore termed l-prefix and l-suffix, respectively. A genomic
sequence of length k is called k-mer. Chromosomes are genomic sequences and a genome
is a set of chromosomes.

A minimizer [Schleimer et al., 2003; Roberts et al., 2004] is the smallest substring of
length m of a character sequence according to an order function f (Figure 4). Unless
stated otherwise, a minimizer in this thesis will be the smallest substring according to
their lexicographical order.

A repetitive sequence s = p1, p2, ..., pn is a genomic sequence that consist of multiple
consecutive instances of a certain base pair pattern p = b1, b2, ..., bm. In real biological
data, s potentially contains instances p̃ of the pattern p that have a different base b̃k than

30

T G C T C A A A G A A A
T G C T

CG C T
C T C A

T C A A
C A A A

A A A G
A A G A

A G A A
G A A A

011101
011101
010000
000000
000000
000000
000010
000000
000000

29
29
16
0
0
0
2
0
0

s =
2-bit

encoding integer
C

A
A

A
G

A
A

A
A

A

Figure 4: Sketch how to determine minimizers from k-mers of a genomic sequence s. First,
a sliding window size k and a minimizer length m are chosen with the condition m ≤ k.
For every consecutive k-mer (here k = 5) in s every subsequence of length m (here m = 3)
is translated into an integer via a 2-bit base pair encoding, i.e. A↦ 00, C ↦ 01, G↦ 10
and T ↦ 11. The subsequence of length m that translates to the smallest integer (given as
2-bit encoding in the middle column and as integer in the right column) is reported as a
minimizer (red boxes) for that particular k-mer. For instance, for the first k-mer TGCTC
the substring CTC translates to the smallest integer 29 among the other substrings TGC
(57) and GCT (39) of length 3. Note that consecutive k-mers have k −m overlapping
subsequences of length m. Therefore, consecutive k-mers likely share their minimizer. The
minimizers in the solid red boxes are the ones that are newly discovered with respect to
the previous k-mer. The minimizers in the dashed red boxes are the ones that are equal to
the previous k-mer.

bk at the same pattern position k, where 1 ≤ k ≤m. A pattern instance p̃ is considered to
be similar enough to p, and therefore to be subsequence of s if ∑m

k=1 b̃k ≠ bk ≤ ε for a given
error parameter ε ∈ N+.

The entropy e ∈ R+ of a genomic sequence s is defined as

∑
p∈P

−p ⋅
log(p)

log(2)
= ∑
p∈P

−p ⋅ log2(p)

where P (∣P ∣ = 42) is the set of all relative frequencies of dimers in s. A sequence s is said
to have low complexity if e < θ for a given threshold θ.

Reads. Chapter 1 introduced the principle that sequencers do not capture the entirety
of a chromosome at once but only small fragments at a time. These fragments are called

31

A
0 101 98765432

A C AT A A AG T A T A A CA A G GA... ...Chromosome c
Index i 65 67 6866 69 71 7270 73 74 75 76 78 7977 80 82 8381

A A A AG T A G A ARead r

length = 11, orientation = +

Figure 5: Sketch of a read. In bioinformatics a read r (green) is a subsequence of any
given genomic sequence c (here a chromosome). These subsequences are generated by a
sequencer. The origin (blue) of the read in c can be precisely described by its starting
position in c (i = 68), its length (11) and orientation (+). Note that in this example r is
an exact copy of its origin in c. In real data individual bases may vary due to an error
probability during the sequencing.

reads. Therefore, reads are substrings of chromosomes (Figure 5). Depending on the
sequencing platform and the laboratory protocol in use reads can have a different expected
length. Unless stated otherwise, in this thesis reads will refer to NGS reads of expected
150 bp length.

Every sequencer of the different vendors reports base quality scores for every identi-
fied nucleotide in a read. This base quality score refers to the predicted accuracy of the
nucleotide being correctly identified given the measured signal (light emission or electric
current). The NGS reads that are referred to in the methods section typically come
from Illumina Inc HiSeq or HiSeqX sequencers and have a base quality score Q that is
logarithmically related to the error probability P of the identified nucleotide:

Q = −10 log10P

This base quality scoring is called Phred Quality Score1 and is scaled into the interval
[0,50] of N+ (P = 1

100,000 is considered the lowest error rate by the machine).

In brief, during NGS chromosomes are sheared into smaller fragments which are se-
quenced from each end. As a result, reads come in a pair of two per fragment, called read
pair . The reads in a read pair are a l-prefix and l-suffix of the fragment and are oriented
in forward and backward orientation, respectively (Figure 6).

Due to the requirements of some data processing steps (explained in chapter 2.5), chro-
mosomes are typically sequenced with a large redundancy. This redundancy is created
by sequencing many technical replicates of the chromosome such that every base pair is

1https://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf

32

A
A

AA
A AAAA

AAA TTT
TT

T
T TT

T T
T T
AC C C
CCC

C
CC

C
CCC

CC
C CC

G
CGGG

GG GG
G

G
GG

GGG GG G
G

Chromosome
fragment

5’
5’3’
3’

A AAT CC CG G

AAA TCCCG G

Forward read

Backward read

5’

5’

3’

3’

Inner distance

C

G

Figure 6: Schematic of a read pair. During the sequencing process long DNA strands are
partitioned in smaller fragments (yellow). During NGS these fragments are sequenced
from both ends resulting in a read pair (green). The internal mechanism of this sequencing
technique always reads the strands of the fragment in 5′ → 3′ direction. As a result, each
read in a pair originates from one of the two complementary DNA strands. The inner
distance is the number of base pairs in the fragment between the 3′ ends of the reads in a
pair.

captured by multiple reads (Figure 7). The number of reads that capture a particular base
pair position is called coverage. The average coverage of the genome (genome coverage) C
can be calculated with the Lander-Waterman equation [Lander and Waterman, 1988] as:

C =
L ⋅N

G

where L is the read length, N is the number of reads and G is the length of the haploid
genome.

Sequence alignment. An approximate match between two or more genomic sequences
is commonly called sequence alignment . Sequence alignment is a fundamental and well
explored field in bioinformatics. Even if used extensively, sequence alignment is not the
main focus of the methods presented in this thesis and therefore only its fundamental
idea is outlined here.

The essence of a sequence alignment is to decide whether two sequences are related
to each other or similarity only occurred by chance. In order to make this decision the
four key issues ([Durbin et al., 1998], chapter 2.1) are which type of alignment to choose,
how to score the alignment, the algorithm to find optimal or approximate alignments and
a statistical method to evaluate the significance of the alignment score. The sequence
alignments used in this thesis are mainly pairwise local alignments and split alignments .

33

Genome

Reads

Figure 7: Read coverage of a genome. During NGS a genome (blue) or genomic sequence
s is replicated and sequenced many times to achieve a random but approximately uniform
distribution of read pairs (green) across s. The number of times a precise base pair position
(red) in s is covered by a read sequence is called its coverage. The black lines connecting
the reads of a pair denoted the inner distance.

A local sequence alignment of two genomic sequences x, y is to find the best align-
ment between subsequences of x and y ([Durbin et al., 1998], chapter 2.3). In the
workflows of chapter 2.7 and 4 the genomic sequences used for local sequence alignments
are pairwise combinations of reads, longer contiguous genomic sequences and a reference
genome. A well established algorithm for local sequence assembly is the Smith-Waterman
algorithm [Smith and Waterman, 1981]. The original version of this algorithm uses
dynamic programming [Bellman, 1957] where the final solution is incrementally computed
via partial solutions. Given a fixed set of parameters, the Smith-Waterman algorithm is a
deterministic method. In order to find one or multiple local sequence alignments between
genomic sequences with a strongly uneven length, e.g. when aligning reads (short) to the
human reference genome (very long), some methods [Li, 2013] implement a preceding
indexing phase for the longer sequences. The indexing phase is utilized to rapidly identify
potential alignment positions P̃ in the longer sequence before the positions p ∈ P̃ are
verified with comparatively slower local sequence alignments.

Within the scope of this thesis the concept of a split alignment (Figure 8) and its
implementation2 is taken from the seqAn library [Reinert et al., 2017]. A split alignment
here is a sequence alignment between the genomic sequences x, y, y′ where

1. y has an additional continuous subsequence s relative to x, such that the prefix to
the left of s and the suffix to the right of s align to x and the bases of s in the
center remain unaligned or

2. only a prefix of y and a suffix of y′ align to the left and to the right of a particular
position in x, respectively. The bases of y (y′) not being part of the aligned prefix
(suffix) remain unaligned in their entirety.

2https://docs.seqan.de/seqan/2.3.2/global_function_splitAlignment.html

34

Case 1

Case 2

reference AGCATGTTAGATAAGATAGC-----------TGTGCTAGTAGGCAGTCAGCGCCAT
 |||||||||||||||||||| |||||||||||||||||||||||||
read AGCATGTTAGATAAGATAGCCCCCCCCCCCCTGTGCTAGTAGGCAGTCAGCGCCAT

reference AGCATGTTAGATAAGATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
 ||||||||||||||||| [|| |
read 1 AGCATGTTAGATAAGATTGATGCCC

]| |||||||||||||||||||||||
 CCACTATGCTAGTAGGCAGTCAGCGCCAT read 2

Figure 8: Split read alignments between reads and a reference. The "|" denote matches
between the bases of a read and the reference. In Case 1 the read has an additional
subsequence compared to the reference. The additional sequence in the read is unaligned
while the flanking sequences to its left and right have alignments to the reference. In Case
2, read 1 has an alignment of its prefix until the position denoted with "[". The bases to
the right of the prefix remain unaligned even though some bases match with the bases of
the reference. Read 2 has an alignment of its suffix until the position denoted with "]".

Insertions. If not stated otherwise, insertions refer to genomic sequences of 50 or more
base pairs that are present in a sequenced individual but absent at the corresponding
location in the reference genome. An insertion is defined by an insertion breakpoint on
the reference genome, the genomic sequence that is added at the insertion breakpoint and
an orientation of the added genomic sequence (Figure 9). A set of insertion that was
discovered from a single or multiple individuals is termed a callset .

The location of an insertion where genomic sequence is added with respect to a given
reference sequence is called insertion breakpoint. An insertion breakpoint is defined by
three identifiers: a reference the individual is compared to (typically a reference genome),
a chromosome or sequence identifier if the reference comprises multiple sequences and
either one or two base pair positions on the reference depending on whether the ends of the
added sequence link to the same or different positions in the reference, respectively. The
methods in chapter 4 refer to the Human reference genome version 38 3 which consists of
a primary assembly of 22 autosomes as well as the X and Y sex chromosomes.

The type of genomic sequence that is present in an individual but missing at the corre-
sponding location in the reference genome is generally not clearly defined. Some studies
[Ebert et al., 2021] count duplications and larger tandem repeats as insertions as these
sequences are per se inserted with respect to the reference. Others studies [Kehr et al.,

3downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405

35

Reference

Sample

Figure 9: Insertions comprise additional genomic sequences (yellow) with respect to the
reference genome (grey). The additional genomic sequence of an insertion is located at a
precise base pair position (red star) in the reference genome, called the insertion breakpoint .
The dark yellow arrows indicate the orientation of the additional genomic sequence.

2017] are more stringent and constrain the definition of the inserted genomic sequence to
not be present elsewhere in the reference genome, therefore called non-reference sequence
(NRS). Within the scope of this thesis the genomic sequences of insertions refer to NRS.

NRS can be present in an individual in two possible orientations, forward and reverse-
complement. Since an insertion is defined as not being known in the reference the
insertion’s orientation of the NRS can indeed be determined but here the distinction of
forward and reverse-complement relies on how the NRS is stored in the callset. NRS are
commonly stored either in their canonical representation or in the orientation they were
discovered first. Chapter 2.7 describes a method that determines the orientation for every
NRS of a given callset that is present in a particular individual.

2.3 Genotype and inheritance

Genotype. The genotype of a genomic variant is the description of how many of the
chromosome sets of the cell carry that particular variant. Each allele has the variant
either present or absent which is commonly binary encoded with boolean values 1 or
0, respectively. A somatic non-cancer cell in the human body is typically diploid and
therefore variants can occur in the genotypes homozygous reference (0/0), heterozygous
(0/1) and homozygous alternative (1/1).

The process of determining the genotype of a variant is called genotyping . Genotyping
methods commonly implement statistical models (e.g. as part of the method in chapter
2.7) that assign predicted likelihoods g ∈ R to each genotype, called genotype likelihoods .

Mendelian Inheritance. Later in this thesis the accuracy of the predicted genotypes
for the NRS detected with the method introduced in chapter 4 will be evaluated using
the first two Mendelian inheritance rules [Mendel, 1865] for single genetic traits:

36

1. Law of dominance and uniformity. If two organisms that differ from each other in
just one characteristic are crossed, then the resulting hybrids F1 are uniform in the
chosen characteristic.

2. Law of segregation. An intermediate crossing of F1 hybrids results not in a uniform
segregation of the characteristic in the F2 generation but in a ratio 1:2:1.

Figure 10 shows how the Mendelian inheritance rules can be used along with the genetic
information of a mother-father-offspring trio (called family trio, short trio) to evaluate
the accordance with the expected ratios. Both first and second Mendelian inheritance
rule implies that each allele is inherited from the parent to the offspring generation with
a 50% likelihood.

Parents

Offsprings

Offsprings’
genotypes 0/1 0/1 0/1 0/1 0/1 0/11/1 0/0

1. Mendelian rule 2. Mendelian rule

Figure 10: First and second Mendelian inheritance rule. The diploid chromosome set of
a human cell (blue) consists of two chromatids (white) that separate during the gamete
formation. Each chromatid potentially contains a structural variant (yellow). The first
rule of Mendelian inheritance considers a parent generation of a homozygous carrier and
a homozygous non-carrier (1/1 and 0/0). After crossing of the gametes (black lines) all
offspring cells are heterozygous carriers (0/1). The second rule of Mendelian inheritance
considers a parent generation of heterozygous carriers. After a crossing of the gametes
the offsprings exhibit a ratio of genotypes of 1:2:1 for homozygous carrier, heterozygous
carrier and homozygous non-carrier, respectively.

Hardy-Weinberg equilibrium. The Hardy-Weinberg equilibrium (HWE) [Hardy,
1908] is the population-genetic law that the genotypes and the frequencies of alleles
in a population remain constant from generation to generation. The HWE assumes a
number of requirements about the population to be valid like a minimum size to neglect
random fluctuation, no constrains for the mate choice, no occurring mutations, equal

37

survival and reproduction rates and no migration into or out of the population. While
these assumptions are virtually impossibly to establish in population studies the HWE
remains a useful modelling for the dynamics of alleles in a population.

For a population with known genotypes of every individual the relative occurrence
of an allele in the population (allele frequency , AF) can be determined. Let p, q be
the AFs for a genetic characteristic (e.g. a structural variant) to be present or absent,
respectively. In a population of diploid individuals the HWE is

p2 + 2pq + q2 = 1

where each term p2,2pq, q2 is a genotype frequency , i.e. the proportion of each genotype
in the population.

2.4 Graphs

Undirected graph. An undirected graph G = (V,E) consists of a set of vertices V and
a set of edges E = V × V . An edge e ∈ E in an undirected graph is an unordered pair
(u, v) of vertices u, v ∈ V .

Directed graph. A directed graph G = (V,E) consists of a set of vertices V and a set
of edges E = V ×V . An edge e ∈ E in a directed graph is an ordered pair (u, v) of vertices
u, v ∈ V .

In an edge (u, v) we call u a predecessor of v and v a successor of u. The in-degree and
out-degree of a vertex is the number of predecessors and successors, respectively.

A walk w = v1, v2, ..., vn through a graph is a sequence of vertices such that every vertex
vi−1 is a predecessor of vi for all 1 < i ≤ n. A path p = v1, v2, ..., vn is a walk without
circuits, i.e. there exist only distinct vertices in p. A path p is called non-branching if v1
has out-degree 1, all vertices v2, ..., vn−1 have in- and out-degree 1 and vn has in-degree 1.
A non-branching path p = v1, v2, ..., vn is maximal if the in-degree of v1 and out-degree vn
are both unequal to 1.

A Hamiltonian cycle wHam is a walk through G with the property that all vertices
v ∈ V exist exactly once in wHam except for v1 = vn. An Eulerian cycle wEul is a walk
through G with the properties that the set of edges EEul = {(vi−1, vi)∣vi−1, vi ∈ wEul,1 <

i ≤ n} ∪ {(vn, v1)∣vn, v1 ∈ wEul} is equal to E. In other words, a walk wEul is an Eulerian
cycle through G if and only if wEul contains every edge of G exactly once and wEul starts
and ends in the same node.

An induced subgraph Gsub is a graph that consist of a subset of vertices Vsub ∈ V and all
edges that connect the nodes of Vsub in G.

38

A connected component in an undirected graph is an induced subgraph where any two
vertices are connected to each other by a path.

Path cover. Let Vp ⊆ V be the set of vertices of a path p. The set P = {p1, p2, ..., pm}

of paths through a graph G = (V,E) is called a path cover if and only if each vertex v ∈ V
is present in at least one p ∈ P , i.e. V = ⋃p∈P Vp.

De Bruijn Graph. A de Bruijn Graph (DBG) is a directed graph G = (V,E) built
from a set of sequences S and a given k-mer size k, such that every k-mer that is a
substring of either s or s̄ ∈ S corresponds to a vertex v ∈ V . An edge e = (u, v) ∈ E
between the vertices u, v ∈ V exists if and only if the (k − 1)-suffix of u is equal to the
(k − 1)-prefix of v. A walk or path p of n vertices in a DBG corresponds to a genomic
sequence ω(p) of length n + k − 1. The genomic sequence corresponding to a maximal
non-branching path in a DBG is called a unitig .

A compacted DBG G′ = (V ′,E′) is a de Bruijn Graph where every maximal non-branching
path is represented as a unitig v′ ∈ V ′. In a compacted DBG G′ an edge e′ = (u′, v′)
between the two unitigs u′ and v′ exists if and only if the (k − 1)-suffix of u′ is equal to
the (k − 1)-prefix of v′. Figure 11 shows on a small example how a DBG is transformed
into a compacted DBG. A maximal unitig path [Krannich et al., 2021] p = {v′1, v

′
2, ..., v

′
m}

through a compacted DBG is a path where the in-degree of v′1 and out-degree of v′n are
both equal to 0.

Modern practical implementations of the de Bruijn Graph are often designed as a bidi-
rected de Bruijn Graph. Bidirected de Bruijn Graphs account for the strand information of
a vertex’ sequence. Each vertex represents a k-mer (or unitig) and its reverse complement.
An edge between two vertices is, as the name indicates, bidirected as each direction
connects either the forward or reverse complement sequences [Medvedev et al., 2007]. A
bidirected de Bruijn graph complies with the definition of an undirected graph. Therefore,
connected components can be determined in a bidirectional DBG. If not stated otherwise,
a de Bruijn graph is always considered bidirected for the remainder of this thesis.

The definition of the DBG used in this thesis is called node-centric [Chikhi and Rizk,
2013], i.e. k-mer sequences are associated with vertices while the edges arise implicitly
as a result of vertex overlaps of length k − 1. Other publications [Muggli et al., 2017]
use an edge-centric definition where edges (u, v) are associated with k + 1-mers and the
nodes u and v arise implicitly as their k-prefix and k-suffix, respectively. Ultimately, both
definitions result in the same graph topology.

Colored de Bruijn Graph. The de Bruijn Graph is defined over an input set S of
one or multiple sequences. In contrast, a colored de Bruijn Graph (CDBG) G = (V,E,C)

is built from a set of sequence sets S = {S1, S2, ..., Sn}. A CDBG extends the DBG by
adding a label to every k-mer in G indicating which sequence sets Si ∈ S contain the k-mer.

39

build graph from k-mers

color annotation

compacting

A C C G T

C C G T T

C C G T A

C G T T A

C G T A A G T A A A

G T T A A T T A A C

T A A A C A A A C T

T A A C T

A A C T A

G T A A G T A A G G A A G G G

ACCGTTAACTA ACCGTAAACTA ACCGTAAACTA ACCGTAAGGG
Sequence 1: Sequence 2: Sequence 3: Sequence 4:

A C C G T

C C G T T A A C T

A A C T A

G T A A G G G

C C G T A A G T A A A C T

A C C G T

C C G T T A A C T

A A C T A

G T A A G G G

C C G T A A G T A A A C T

de Bruijn Graph (k = 5)

Input

compacted de Bruijn Graph

colored compacted de Bruijn
Graph

Figure 11: Sketch of de Bruijn Graph (DBG) types. The box at the top shows the input
sequences S for the de Bruijn Graphs. The second box from the top shows a DBG with k-mer
length five. Every continuous 5-mer of every s ∈ S is a vertex in the DBG and edges exist if
and only if two vertices have a continuous overlap of four bases. The second box from the
bottom shows a compacted DBG where every maximal non-branching path p of vertices is
compacted into one new vertex (unitig). The sequence of the unitig is ω(p). The box at the
bottom shows a colored and compacted DBG (CDBG). Each k-mer in a CDBG is labelled
with the corresponding input sequences s ∈ S which contain the k-mer. In this example, the
color labels indicating the input sequences are shown at the leading base of each k-mer.

40

The labels of the k-mers in a CDBG are commonly implemented with bitvectors. The i-th
entry of the bitvector, with 1 ≤ i ≤ n, denotes the presence (1) or absence (0) of the k-mer
in sequence set Si. A unitig of base pair length l contains l − k + 1 bitvectors, one for ev-
ery k-mer. Therefore, a CDBG requires (l−k+1)×n additional bits of memory per unitig.

In practise, the bitvectors of all k-mers are often stored in a matrix Cn×m, where n
is the number of input sets and m is the number of distinct k-mers in S. Every entry
ci,j ∈ C indicates whether k-mer j is present in input set Si. In the initial publication
[Iqbal et al., 2012] of the CDBG the bits were thought of as colors (Figure 11, lowest box).
We therefore refer to the bitvectors as color vectors and the matrix C as color matrix .

2.5 Sequence assembly

The objective of a sequence assembly is to reconstruct a character sequence S from many
of its much shorter subsequences. To obtain a complete S every character ci ∈ S, with
1 ≤ i ≤ ∣S∣, has to be present in at least one of the subsequences. In order to piece together
the subsequences correctly with respect to S without knowing S (called de novo assembly),
the subsequences need to have sufficiently overlapping ends.

The assembly of genomic sequences underlays the same requirements. Here, S is usually
a genome (called genome assembly) or, more general, one or multiple genomic sequences
(called DNA fragment assembly [Pevzner et al., 2001] or local assembly). The comparably
short subsequences that are used to reconstruct one or many genomic sequences are
the reads of a sequencer. The resulting contiguous sequences of an assembly are called
contigs . To obtain a completely reconstructed (assembled) S every base pair bi ∈ S, where
1 ≤ i ≤ ∣S∣, has to be present in at least one read. In chapter 2.2 it was noted that
NGS typically produces enough reads for a multiple genome coverage C. The multiple
read coverage of S generated by all modern high-throughput sequencing technologies,
irrespective of whether it be NGS or third-generation sequencing, is vital for the assembly
of any genomic sequence due to the following probabilistic properties:

• more reads (randomly sampled from S) will more likely contain every bi ∈ S,

• a higher C will likely yield longer and more unique pairwise read overlaps and

• a poor base quality score, and potentially misinterpreted nucleotide, of a certain
bi in a read can be compensated and corrected with many confidently identified
nucleotides in other reads that contain bi.

The challenge in the assembly of genomic sequences is to piece together a set of reads R
into one or multiple sequences S̃ that match the true S as much as possible. The majority
of de novo assembly algorithms for this task can be categorized into the two following
prevailing paradigms (Figure 12).

41

A T
C CC

C CCAA
A

A A
GG G
GG

T TAA
TT

AC T
GAC T

Reads

Overlap-Layout-Consensus assembly de Bruijn Graph assembly

Assembled genomic sequences

A T CCAA GAC

C AG GT AC

GAC T

CCGG TAAC T

CA AGGTTGC T

A T CCAA GAC
T CC TTGAC T

C CATTGAC T
CA AGGTTGT

C AG GT AAC T
CCG AAAC TA
CCGG TAAC T

Figure 12: Assembly of genomic sequences. The two prevailing methods to assemble a
set R of genomic reads (top) are the overlap-layout-consensus (left) and de Bruijn graph
(right) paradigm. In brief, the overlap-layout-consensus methods are finding pairwise
overlaps of the reads and gradually extent a group of matching sequences. Finally the
consensus sequences (bottom) can be extracted. In contrast, the de Bruijn graph methods
build a de Bruijn graph and extract consecutive unitigs. The concatenation of the unitig
sequences are the assembled genomic sequences (bottom).

Overlap-Layout-Consensus. The overlap-layout-consensus (OLC) paradigm for the
assembly of genomic sequences consists of three consecutive phases:

1. Overlap. In the overlap phase all pairs of reads ri, rj ∈ R are aligned to detect
overlaps of a given minimum length `min.

2. Layout. In the layout phase all ri, rj with an overlap `ri,rj ≥ `min are put together.
Often times the result of the layout phase is an Overlap graph G = (V,E) that stores
reads in vertices and has edges (ri, rj) if the reads ri, rj satisfy `ri,rj ≥ `min.

3. Consensus. In the consensus phase contigs are generated from the reads that were
put together, e.g. by following walks and paths across G. The resulting sequence or
set of sequences is S̃.

42

However, there are some substantial problems associated with the classical OLC paradigm
and its corresponding assembly algorithms [Compeau et al., 2011]. One problem is the
number of reads in R. In the overlap phase every read is aligned to every other read which
results in a quadratic increase of alignments. With modern sequencers easily generating
billions of reads the native overlap phase would need to perform at least 1018 alignments.
Another algorithmic problem (of the layout phase) is to find the sequence or set of
sequences of S in G. For instance, early on the concept of a Hamiltonian cycle was used
[Kececioglu and Myers, 1995; Adams et al., 2000] for the assembly of comparatively small
circular genomes [Fleischmann et al., 1995]. But as the computation of a Hamiltonian cycle
is NP-complete (proof in [Cormen et al., 2009], chapter 34.5, "NP-complete problems")
this approach does not scale to larger and more complex genomes, e.g. the human genome.

Assembly via de Bruijn Graphs. Another approach to DNA fragment or genome
assembly is the utilization of a de Bruijn Graph. It starts with the construction of a
DBG G = (V,E) by extracting every consecutive k-mer of all reads in R. As the k long
sequences of all v ∈ V originated from reads r ∈ R and all r ∈ R are subsequences of S it
means in reverse that the entire set V has to be used in order to reconstruct a complete
S (given that R already covers S and that there are no v ∈ V due to incorrectly identified
bases in the reads r ∈ R as they are uninformative to reconstruct S).

The usage of a de Bruijn Graph circumvents the need for a pairwise sequence align-
ment of all r ∈ R as seen in the OLC paradigm. However, from a given DBG one still
needs to find walks or paths that reconstruct S (equivalent problem of the layout phase).

An early approach [Pevzner et al., 2001] for genome assembly used a DBG built from a
set of reads in order to reconstruct S (their DBG was slightly modified by introducing
multiplicity of edges). Their approach to generate S̃ is to find an Eulerian cycle in G for
which there are known polynomial time algorithms [Hierholzer, 1873]. If the objective is
to find multiple non-cyclic sequences (∣S∣ >> 1) from a DBG other approaches to follow
along the edges can be beneficial that use a breadth-first search [Chikhi and Rizk, 2013]
or depth-first search [Krannich et al., 2021].

Evaluation statistics. Once an assembly S̃ is generated, irrespective whether it was
done with the OLC or DBG approach, an evaluation method is required to determine
how accurate S̃ matches the true S. The N50 assembly statistic [Lander et al., 2001]
is the length of the shortest contig (i.e. the contigs are sorted by length) at 50% of
the total assembly length. The N50 is solely a measure for contiguity of the contigs
and has no validity for the correctness of the assembly, i.e. whether the contigs are an
accurate reconstruction of S. The NG50 statistic [Earl et al., 2011; Magoc and Salzberg,
2011; Mäkinen et al., 2012] is very similar to the N50 but instead of using the assembly
length the actual or approximated genome length is used. In order to compute the
NA50 assembly statistic [Gurevich et al., 2013] all contigs are aligned to a given reference
genome to identify erroneous contigs, i.e. contigs that have discontiguous alignments with

43

respect to the reference. Each junction of two discontiguous alignments is accounted for
as a misassembly . Next, contigs with misassemblies are split, at the junctions and the
individual subsequences (blocks) are realigned to the reference. After all junctions are
split the set aligned contigs and blocks is used to compute the N50 statistic, where the
assembly length also includes the unaligned contigs and blocks. The resulting value is the
NA50 value. The NGA50 assembly statistic [Gurevich et al., 2013] is an adaption of the
NG50 to the NA50 statistic. It uses the NG50 statistic instead of the N50 statistic in the
final step of the NA50 computation.

2.6 Bifrost

Introduction. Bifrost [Holley and Melsted, 2020] is an efficient implementation of the
colored and compacted de Bruijn Graph. The software can efficiently build, index and
query either a DBG or a CDBG. The internal data structures (see paragraph below) and
its software design were chosen to maximize the compute performance in terms of speed
and memory consumption. Hereby, Bifrost can take advantage of multi-core processors
as well as the processor instruction set (SIMD operations). Bifrost allows for a dynamic
modification of its graphs, i.e. k-mers or entire sequences can be added to or removed
from a graph without the need for a full reconstruction of the graph. DBGs in Bifrost are
bidirected DBGs (chapter 2.4).

Application. Bifrost can be used as a binary (via command line interface) or as a
C++11 software library (application programming interface, API). The following describes
a selection of Bifrost’s API limited to the functionality that is used in the methods section
of this thesis. Note that the CDBG in Bifrost is a C++ template class that is derived
from a DBG template class, therefore every function that exists for the DBG can also be
applied to a CDBG but not vice versa.

Bifrost has a multi-threaded file I/O that can read one or multiple FASTA, FASTQ
and GFA files. Optionally, the input can be effortlessly filtered to only include k-mers
with a minimum abundance of ≥ 2. The Bifrost API has a build function that builds
the compacted de Bruijn Graph from a preliminary data structure that stores the input
k-mers. The building process also creates an index for the unitigs such that unitigs can
be enumerated and when a k-mer query has a positive result (k-mer exists in DBG)
the corresponding unitig is returned. Once a DBG is built, the compacted structure is
always maintained if k-mers are added or removed from the graph. For a given unitig
ucurrent all predecessor and successor unitigs (collectively termed neighbors) can be ob-
tained in constant time. For any given unitig the strandness can be retrieved, i.e. the
current orientation of the unitig within a walk or path. By default, unitigs are stored
in an arbitrary orientation. Only unitigs obtained as predecessors or successors have a
predetermined strandness with respect to ucurrent. Bifrost additionally provides a small
set of simplification operations on a DBG’s topology. Functions are provided to remove

44

tips and singletons (Figure 13) from a DBG. For each k-mer in a CDBG the color vector
can be retrieved and modified.

Figure 13: Compacted de Bruijn graph of several connected and unconnected unitigs
(thick bars). Singletons (red) are unitigs u where {(v, u)∣v ≠ u} ∪ {(u, v)∣v ≠ u} = ∅ and
∣u∣ is smaller than a user defined threshold. Tips (green) are unitigs u where ∣{(v, u)∣v ≠
u} ∪ {(u, v)∣v ≠ u}∣ = 1 and ∣u∣ is smaller than a user defined threshold. The image was
generated with bandage [Wick et al., 2015].

Data structures. To build, index and query the CCDBG efficiently, Bifrost utilizes
multiple carefully designed data structures.

In order to build a compacted DBG, Bifrost utilizes Bloom filters [Bloom, 1970] for
fast membership queries of k-mers in the input data. A Bloom filter B = (B,H) con-
sists of a bitvector B and a set of hash functions H, with ∣H ∣ ≥ 1. Initially all bits
in B are zero. To insert a given set E of elements into B, each hash function h ∈ H
generates a hash value between 0 and ∣B∣ − 1 for each element e ∈ E. Next, the bits
in B at the positions of the hash values are set to one. A request whether an element
ẽ is a member of B, i.e. whether ẽ was previously inserted into B, works in a similar
way. All hash values for ẽ with the functions H are generated. If all bits in B at the
corresponding positions of the hash values are ones then B returns true, i.e. ẽ is a member
of B. If any of the checked bits is zero then B returns false. Since the hash functions
of a Bloom filter can potentially generate the same hash value for different elements
(called hash collision), a positive result of a membership query has a chance to be a false
positive. Bifrost implements additional strategies to speed up the operations of check-
ing and setting the bits [Putze et al., 2010] and to reduce hash collisions [Azar et al., 1999].

The compacted DBG itself is implemented with a data structure D = (U,M), where U is
a vector of unitigs and M is a hash table of minimizers (chapter 2.2). Each minimizer
m ∈M is associated with a list of tuples (idu, pm), where idu is a unique unitig identifier
and pm is a position in unitig idu. The list of tuples contains the information in which

45

unitigs and at what starting position in the unitig the corresponding minimizer can be
found. This data structure provides the important functionality to rapidly obtain the
unitig for a given k-mer (e.g. when traversing the graph and searching for neighbors) by
querying the minimizer of the k-mer.

Moreover, every unitig in a CCDBG is associated with a binary matrix indicating the
presence or absence of each k-mer in the input sets (see chapter 2.4 for color matrix).
Depending on the size and sparsity of each binary matrix different compression algorithms
are applied.

Performance. In its original publication [Holley and Melsted, 2020] Bifrost built the
DBG from a set S of 696 million short reads of the human individual NA12878 in two
hours wall clock time using 37.78 GB RAM (16 threads and k=63). 30 million short reads
were queried on a DBG (16 threads and k=31) build from S in just over 16 minutes. The
CDBG was benchmarked on up to 117,913 Salmonella strains from Enterobase4. Bifrost
built the CDBG using 16 threads and k = 31 with 4000 (117,913) strains and used 1.66
(93.35) hours, 3.7 (102.74) GB RAM and no additional disc space. In comparison, the
best state-of-the-art competing tool ([Muggli et al., 2019] together with [Deorowicz et al.,
2015]) under the same conditions used 12.35 hour, 138 GB RAM and 449 GB RAM for
4000 strains and couldn’t finish the task for all 117, 913 strains under the given time and
memory constraints.

These benchmarks showcase an unprecedented performance to store and access the
genomic sequence of many individuals. In conclusion, Bifrost is a suitable DBG imple-
mentation for the demands of the software presented in chapter 4.3.

2.7 PopIns

Introduction. PopIns [Kehr et al., 2016] is an approach to characterize insertions
across a large number of individuals simultaneously. Each insertion is characterized
by a genomic sequence (non-reference sequence, NRS), an insertion breakpoint on a
given reference genome and the genotype of the NRS. In PopIns, determining the three
properties of insertions across many individuals is divided in four distinct subproblems
(Figure 14): assembly, merging, positioning and genotyping.

The assembly subproblem is a classical genome assembly problem as introduced in chapter
2.5. The aim of the assembly subproblem is to determine the genomic sequences that are
absent from the reference genome in every distinct individual.

PopIns’ approach to the assembly subproblem is to generate contigs from unmapped reads
of whole-genome sequencing (WGS) data. Let R be the set of input short-reads. In order
to generate contigs per individual PopIns’ first step is to filter a set of reads R− ⊆R that

4https://enterobase.warwick.ac.uk/

46

Figure 14: PopIns workflow for the detection and genotyping of NRS. For every individual
unaligned reads are filtered and assembled. The resulting contigs are merged into one unified
set of supercontigs. Subsequently, another step attempts to find an insertion breakpoint and
orientation in the reference genome for each supercontig. Supercontigs, for which an insertion
breakpoint could successfully be determined, are genotyped.

47

do not or only poorly align to the reference genome. Here, poorly is defined via a set of
criteria. One important criterion is the alignment score (this will be elaborated in more
detail in chapter 4.3.5). Next, each read r ∈ R− undergoes a quality trimming 5 where
fractions of r are trimmed off if their sequence does not surpass a given minimum base
quality score. The remaining high quality reads are passed to an assembly tool [Zerbino
and Birney, 2008] that produces a set of contigs C.

The merging subproblem aims to generate a set of supercontigs S from all sets of contigs
C1, ...,Cn, where n > 1, such that every s ∈ S represents an element of C = ⋃

i
Ci and ∣S ∣ is

minimal. A supercontig, due to its generation from the individuals’ contigs, consist of a
NRS and some flanking base pairs from around its insertion breakpoint. A supercontig
s ∈ S is said to represent a contig c ∈ C if c aligns to a substring of s with a given maximum
error rate ε, where ε is calculated as edit distance divided by the length of c.

In PopIns, generating the supercontigs S is done in two steps. The first step is to
find all adjacent pairs of contigs (ci, cj) ∈ C, where adjacent means that ci and cj locally
align (chapter 2.2) to each other. Then, all original contigs c ∈ C are partitioned into
new sets D1, ...Dm. Every two contigs cp, cq in a set Dj, where 1 ≤ j ≤ m, have to
be connected by a sequence of adjacent pairs of contigs (cp, ci1), ..., (cir , cq) such that
(cix , cix+1) ∶ ∀i1 ≤ ix ≤ ir. The second step is to generate ideally one supercontig from each
Dj. In order to do this the sequence of adjacent pairs of contigs is followed and their
sequence concatenated. Since the merging subproblem is a major aspect of this thesis,
chapter 4.1.2 explains PopIns’ merging approach in greater detail.

The positioning subproblem aims to determine an insertion breakpoint for every su-
percontig. In PopIns, this is done in two major steps (Figure 15). In the first step all read
pairs of an individual where one read aligns to the reference genome and the other reads
aligns to a supercontig (anchoring read pair) are filtered and sorted by their position in
the genome. Next, a scan over the anchoring read pairs attempts to identify a cluster of
reads per supercontig end that gives evidence for a potential position in the reference. Up
to that point the anchoring read pairs only give a first estimate for an insertion position.
In the second step all reads of an individual that have a prefix aligning to the reference
genome and a suffix aligning to a supercontig or a prefix aligning to a supercontig and a
suffix aligning to the reference genome (split reads) are filtered. The split reads are used
with a split alignment (chapter 2.2) to find the precise insertion position.

In [Kehr et al., 2017], a part of PopIns’ original implementation that approaches the
positioning subproblem was improved. If the flanking reference sequences of a supercontig
align to the location (determined by anchoring read pairs) around the predicted NRS
breakpoint, the verification of the breakpoint is left to the genotyping step.

5https://github.com/najoshi/sickle

48

Reference

NRS

Reference

NRS

Anchoring read pairs

Split reads

Figure 15: Sketch of the two step process how supercontigs are positioned on the reference
genome. First, anchoring read pairs (blue) are used to find an approximate location for
an insertion breakpoint on the reference genome. As in an anchoring read pair one read
aligns to the reference and one read aligns to the NRS (upper panel), the inner distance d
of the read pair provides the information that the insertion breakpoint must be within the
next d bases downstream of the 3′ end of the reference aligned read. Next, all split reads
are collected that align to the genomic interval [p + r, p + r + d], where p is the position
on the reference genome of the 5′ end of reference aligned read and r is the read length.
The split positions of the split reads in that interval are used to determine the most likely
precise position of the insertion breakpoint on the reference genome (lower panel).

The genotyping subproblem aims to determine the genotype of every predicted NRS
breakpoint in every individual. Note that the genotyping in PopIns is tailored to diploid
species, i.e. the reads R are presumed to originate from a diploid set of chromosomes.

PopIns approaches the genotyping subproblem by first generating the two possible alleles
around each predicted NRS breakpoint. One allele R, where the NRS is absent, is just a
local copy of the reference genome of ω base pairs to each side of the predicted NRS break-
point b. The other allele A, where the NRS is present, is a concatenation of ω bases from
the reference genome and ω bases from the NRS. Depending on whether the left or right
end of the NRS is considered, A is either the sequence of p−ω to p concatenated with the
first ω bases of the NRS or the last ω bases of the NRS concatenated with the sequence of
p to p+ω, respectively. Subsequently, all reads R of an individual are re-aligned to both al-
leles. From this re-alignment and its alignment scores sS, where S ∈ {A,R}, the likelihoods
of the NRS being present in 0, 1 or 2 chromosomal copies can be determined. The proba-
bility to observe a read r ∈R aligned to an allele sequence S is assumed to be P (r∣S) ∼ esS .

49

Hence, the likelihood of observing a read being aligned to one allele over the other is

P (r∣S) ∼
esS

esA + esR

where sA and sR are the alignment scores of r to A and R, respectively. Computing this
likelihood for every read is necessary because the quantity of reads (likely) being assigned
to one or the other allele will ultimately determine the insertions genotype. Therefore,
every read contributes a little evidence to the final decision of the insertion’s genotype.

Under the assumption that the reads got generated from both alleles with equal prob-
ability the resulting genotype likelihoods for homozygous reference, heterozygous and
homozygous alternative are

P (r∣R,R) ∼
esR

esR + esA

P (r∣R,A) ∼
1

2

esR

esR + esA
+

1

2

esA

esR + esA
=

1

2

P (r∣A,A) ∼
esA

esR + esA

respectively. Under the assumption that the reads R are independent the individual’s
genotype for a NRS is the maximum of

P (R∣S1, S2) ∼∏
r∈R

P (r∣S1, S2)

where (S1, S2) ∈ {A,R} × {A,R}.

Again, the original implementation of PopIns that addresses the genotyping subproblem
was extended in [Kehr et al., 2017]. Since, in some cases, NRS were found to be flanked
by duplicated reference sequence (for duplication see chapter 1, Figure 3), the genotyping
considers another allele to improve the genotype prediction. Under the constraint that a
precise insertion breakpoint was successfully determined, a segment of the reference se-
quence at the insertion breakpoint is copied and the NRS inserted between. Consequently,
the allele in this model is a NRS flanked by a duplication.

Application. PopIns is a workflow of several submodules that generates NRS among
the population and the individuals’ insertion breakpoints and genotypes. The input at the
starting point of the workflow is a read alignment (BAM and BAI files) per sample and
the reference genome that was used for the alignments. The final output is a summary
file (VCF file) that contains the NRS genotypes per sample. The inserted sequences are
stored in a separate FASTA file. The description for how to utilize all modules can be
found on the PopIns Github page6. The utilization of the assemble and merge module
will be taken up again in chapter 5.

6https://github.com/bkehr/popins

50

Performance. In its original publication, the applicability and scalability of PopIns
was demonstrated on a set of 100 simulated diploid human genomes. The entire workflow
for the simulated data finished in 3 ∶ 30h and had a hardware constraint of 16GB RAM.

PopIns was further tested on sequence data of 305 Icelandic human individuals. PopIns
selected an average of 35531 unaligned reads per individual that assembled to an average
of 961 contigs with a N50 of 334. The merging module reduced the total number of
210892 contigs of all individuals to 8437 supercontigs, where 6141 of them are unique to
one individual.

51

3 Related work

This third chapter provides an overview of variant calling methods and examines the
ones that yield important principles and have similar approaches to the novel method
of chapter 4. First, criteria and categories are introduced to classify methods for variant
calling (universal for detection and genotyping). The second subchapter provides a
deeper look into the methods to detect NRS from short-read sequencing data. The third
subchapter highlights the software tools that approach the NRS detection problem for
many sequenced individuals simultaneously. Finally, the fourth subchapter presents recent
projects that investigated structural variants in population-scale sequencing data.

3.1 Overview and classification of variant calling methods

With the rise of commercially available next-generation sequencing technologies7,8 in
2007 the cost per sequenced genome began to decrease strongly, even outperforming
Moore’s law (Appendix, Figure 40). This rapid technological advancement initiated the
sequencing of many human individuals [Levy et al., 2007; Wheeler et al., 2008; Schuster
et al., 2010] and accelerated the widespread availability of genomic sequencing data. With
the available genomic sequencing data and the following algorithmic advancements [Li
and Durbin, 2009, 2010; Li, 2013] in aligning sequences to a reference genome, researchers
became capable to routinely identify DNA alterations (variants) in individual genomes.

Today, about a decade later, many different types of variants are know and can be
distinguished (see Introduction). The detection and genotyping of different variants
requires careful algorithmic design and a plethora of software tools has been developed,
each of them tailored and more or less effective to detect individual variant types [Kosugi
et al., 2019]. The remainder of this subsection lists and elaborates on common criteria
to consider when developing a method for variant calling or choosing a software tool for
data analysis.

7https://www.roche.com/
8https://www.illumina.com/

53

Variant type. The first distinction is the variant type which is commonly defined by
the length of the variant. Shorter variants up to 50 base pairs (SNPs [Sachidanandam
et al., 2001; International HapMap Consortium, 2003; Altshuler et al., 2005] and indels
[Weber et al., 2002; Bhangale et al., 2005; Mills et al., 2006; Mullaney et al., 2010]) are
often considered one class as opposed to variants longer than 50 base pairs (structural
variants [Iafrate et al., 2004; Sebat et al., 2004; Kidd et al., 2008]).

Two of the most prominent variant callers for SNPs and indels are the GATK Hap-
lotype Caller [Poplin et al., 2018], short GATK , and Freebayes [Garrison and Marth, 2012].
Both GATK and Freebayes are computationally scalable to process many sequenced
individuals.

In contrast to SNPs and indels, the length of SVs can span the majority or entirety
of short reads. For instance, in [Collins et al., 2020] insertions, deletion, duplications and
inversions of over 100, 000 base pairs were found in multiple human individuals. Therefore,
SV detection methods typically utilize signals that affect the entire read or even the read
pair as evidence for a variant [Cameron et al., 2019; Mahmoud et al., 2019].

Signal types for SV detection. Over the course of time the myriad of tools developed
to detect SVs have utilized various signals (Figure 16) from the read data:

1. discordant alignment information, i.e. the inner distance of a read pair differs from
an expected size or one/both reads in a pair have an unexpected orientation to each
other after an alignment

2. split read alignments (chapter 2.2), i.e. different contiguous parts of the read do not
align to the reference genome or align to different parts of the reference genome

3. coverage information, i.e. the local read coverage of a given reference drops or
increases in an unexpectedly high ratio

4. unaligned reads , i.e. one or both reads of a read pair have no alignment to a given
reference

Early SV detection methods like BreakDancer [Chen et al., 2009] used the discordant
alignment information to classify read pairs into a set of normal or SV supporting reads.
However, methods relying exclusively on discordant alignment information likely overlook
variants of smaller size if the length of the variant is smaller or equal to the variance of the
inner distance distribution of the paired-end reads [Mahmoud et al., 2019]. To overcome
this shortcoming other methods like DELLY [Rausch et al., 2012] additionally integrated
split read information. Even though small and medium size variants can be accurately
detected with DELLY, larger variants were still hard to distinguish from mapping artifacts.
Therefore, a third signal type, the coverage information, is used by subsequently developed
SV detection tools like LUMPY [Layer et al., 2014] and Manta [Chen et al., 2016].

54

Reference
Genome

Individual

Signal

DEL

Example

Discordant alignment information

Reference
Genome

Individual
INS

Unaligned reads/
split read alignments

Coverage information

Reference
Genome

Individual
DUP

Figure 16: Examples for the different signal types which can be utilized to detect SVs. The
example for discordant alignment information shows a deletion (DEL) in the individual’s
sequence with respect to the reference genome. The deletion causes an increased insert size (red
lines) of the individual’s read pair when aligned to the reference. The example for unaligned
reads and split read alignments shows an insertion (INS) in the individual’s sequence with
respect to the reference genome. The insertion causes the individual’s reads to be unaligned or
only partially aligned (red arrows) when aligned to the reference. The example for coverage
information shows a duplication (DUP) in the individual’s sequence with respect to the
reference genome. The duplication causes a locally increased read coverage (small red arrows)
when the individual’s reads are aligned to the reference.

55

Different signal types, or a combination of those, have appeared to provide better evidence
for individual SV types. Deletions can be detected with a variety of signals like discordant
alignment information, coverage and split reads if the deletions are small. The vast
majority of methods to detect copy number variants (CNV), e.g. tandem or interspersed
duplications, is using read depth information [Zhao et al., 2013]. Methods to detect
insertions (the chapters 3.2 and 3.3 discuss NRS detection in greater detail) typically
utilize split read alignments and unaligned reads [Cameron et al., 2017; Ye et al., 2009].

As some signals, and hence some methods, turned out to be favourable to detect particular
variant types so called meta methods [Jeffares et al., 2017; Mohiyuddin et al., 2015; English
et al., 2015; Zarate et al., 2020; Fang et al., 2018] have been developed that combine
multiple SV detection methods to obtain a comprehensive callset comprising all variant
types.

Sequencing technology. The aforementioned methods all have in common that they
operate on plain short-read whole-genome sequencing data. That implies certain con-
straints, expectations and properties of the reads, e.g. read length, per base error model,
random but nearly uniform sampling across the genome, pairing of reads and coverage. In
the era of sequencing after the initial next-generation sequencing technologies the rise of
novel sequencing technologies and protocols (Pacific Biosciences CLR9, Pacific Biosciences
CCS/HiFi10, 10X Genomics Chromium Genome and Exome11) requires novel algorithms
and software tailored to their new formats of reads.

In brief, the third-generation sequencing methods by Pacific Biosciences or Oxford
Nanopore12 generate much longer and unpaired reads [Amarasinghe et al., 2020; Ou
et al., 2020], hereafter just called long reads . Structural variant detection and genotyping
methods using long reads commonly utilize two beneficial properties of the reads:

1. Long reads typically have much longer alignments with the reference that is not
affected by the variant than short-reads.

2. The sequence length of long reads can span a much larger size spectrum of structural
variants than short-reads.

Sniffles [Sedlazeck et al., 2018] and SVIM [Heller and Vingron, 2019] are two SV detection
methods which utilize at least one of (1) and (2). The signals are utilized to either cluster
breakpoints of the split read alignments or explicitly cluster genomic sequences which
deviate from the reference genome.

9https://www.pacb.com/tag/continuous-long-read-clr/
10https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-

sequencing/
11https://www.10xgenomics.com/blog/a-basic-introduction-to-linked-reads
12https://nanoporetech.com/

56

Read alignment vs genome-to-genome alignment. All the aforementioned meth-
ods investigate structural variants based on the alignment of reads to a reference genome.
For the sake of completeness it should be mentioned that the routine assembly of human
genomes has become increasingly feasible over the last years [Li, 2016; Ebert et al., 2021]
and that novel SV detection methods [Li, 2016; Heller and Vingron, 2020] can utilize
assembled sequences for a comparison of sample and reference.

Sample size. Another increasingly important aspect for variant callers is the number of
samples the methods can process and whether the methods can make use of the data from
multiple individuals. Early SV detection methods were primarily designed to operate
with the data of one single individual. It was shown [Kehr et al., 2016; Niehus et al.,
2021] that most of these methods have a restrictive scalability of computational resource
requirements or a notable drop in their prediction accuracy with an increasing number of
individuals given to the programs. To circumvent the former there are methods [Kirsche
et al., 2021; Eggertsson et al., 2019; Jeffares et al., 2017; Becker et al., 2018] to merge the
variant callsets from many individuals.

However, a posteriori merging of variant callsets from many individuals does not utilize
the explanatory power of population-scale data. This way weak signals or incomplete data
at the scope of a single individual is likely to vanish in the mass of data (more details in
chapter 3.3). Contrary to methods that are designed for the use on only single individuals
other methods like SVIM or pbsv13 can process multiple individuals at once and leverage
their joined signals. SVIM can seamlessly incorporate and maintain the alignment signals
from the long reads of many individuals. Only the many pairwise computations of its
span-position distance together with the maximal clique finding algorithm constrain the
number of individuals that can be processes at once. The precise details and source code
of pbsv are undisclosed intellectual property of Pacific Biosciences but the program is
designed to process multiple individuals. Another program [Niehus et al., 2021] to detect
and genotype structural variants jointly from the short-read data of up to thousands of
individuals is PopDel. PopDel utilizes discordant alignment information (deviations from
the insert size, which is related to the inner distance of Figure 6) to detect SVs. In the
variant calling phase of PopDel the signals of all samples are used for a likelihood ratio
test per given window size of the reference genome.

A striking conceptual similarity in the design of pbsv and PopDel is, even though
they operate on different sequencing technologies, that both programs first gather and
compress the signals for every individual before they deploy their algorithms to validate
the signals jointly from all individuals. This is a common pattern in algorithms that
operate on population-scale data and is implemented, in a different form, in methods for
NRS detection too (chapters 3.3 and 4).

13https://github.com/PacificBiosciences/pbsv

57

Germline vs somatic variants. Finally, many methods have a clear distinction
whether they examine germline or somatic variants [Gong et al., 2021]. To understand
their potential similarities and differences14 from a broad perspective three aspects will
be highlighted here using the tools GATK HaplotypeCaller and Mutect2 [Benjamin et al.,
2019].

The first aspect and difference is the samples that are compared. In germline vari-
ant calling a normal sample (blood, tissue, saliva, etc.) is compared to a control (e.g.
reference genome, other individuals from the same pedigree). In contrast, somatic variant
calling works preferentially with a pair of case (tumor) and normal sample. Mutect2
contrasts a case and normal sample from the same individual and by its definition only
variants that differ from the normal and reference are reported as somatic. The second
aspect is the detection of variants or their signals from the data. A method to detect a
particular variant type can usually be applied to detect either somatic or germline variants
as they exhibit the same signal type. For instance, a deletion will always cause a greater
inner distance of a read pair independent of whether the variant is somatic or germline.
The third aspect is the genotyping of the variant. In germline variant calling the genotype
likelihoods and genotypes are typically calculated under the assumption of a predefined
fixed ploidy [Kehr et al., 2016; Poplin et al., 2018]. In contrast, somatic variant calling
as in Mutect2 is not constrained to a fixed ploidy and can report any fraction of allele
frequency. This extra degree of freedom in somatic variant calling is important as tumor
samples can have varying ploidy due to the fractional sample purity, different subclones
or CNVs.

3.2 Methods for detection and genotyping of non-reference se-
quences

Only few of the aforementioned methods in chapter 3.1 are capable to detect and genotype
insertions, even less are capable to do so using short-read sequencing data. Insertions in
particular are a less frequently investigated class of structural variants because as opposed
to other classes of structural variants the full description of an insertion requires not just
the breakpoint on the reference genome but also the genomic sequence (NRS) that is
missing from the reference. If the NRS is longer than the read, which is often the case for
short-read data, a local sequence assembly of unaligned reads into the NRS is inevitable.
Therefore, many software tools for SV discovery omit insertion detection as sequence
assembly adds a high algorithmic complexity.

14https://gatk.broadinstitute.org/hc/en-us/articles/360035890491-Somatic-calling-is-NOT-simply-a-
difference-between-two-callsets

58

Methods using short-reads for insertion detection comprise of three major steps:

• Local or whole-genome assembly of NRS

• Determining the position of each NRS in the reference genome

• (Optional) Genotyping of the detected variant

The remainder of this subsection outlines how different methods approach these step.

Two early methods for the assembly and breakpoint detection of NRS are Pindel and
SOAPindel [Ye et al., 2009; Li et al., 2013]. Both approaches filter anchoring read pairs.
Pindel determines an anchor point on the reference genome with the aligned read, i.e.
knowing the position and orientation of the aligned read in the reference genome con-
straints the expected alignment location for the unaligned other read in the pair. The
unaligned read is split into three fragments and the two terminal fragments are separately
re-aligned to the reference within the expected interval. This approach restrains the NRS
detection to small (smaller than a read) variants. Thus, its succeeding method SOAPindel
added a local assembly step to detect larger NRS (larger than a read). SOAPindel piles
up unaligned reads at their expected virtual genomic location and identifies cluster. If
there are enough unaligned reads in such a cluster the reads are assembled into a NRS.
Mind that both Pindel and SOAPindel rely on one read in a pair being accurately aligned
to the reference genome.

About the same time another method, NovelSeq [Hajirasouliha et al., 2010], followed
a different approach to solve the detection also for larger NRS. One major difference
to Pindel/SOAPindel is in the first step of NovelSeq where it filters not just read pairs
with precisely one unaligned read in the pair (in the original publication called one-end
anchored reads, short OEA reads) but also reads pairs which have no aligned read (in the
original publication called orphan reads). The orphan reads are assembled into orphan
contigs using external assemblers like EULER [Chaisson and Pevzner, 2008] or ABySS
[Simpson et al., 2009]. In a separate process OEA reads around insertion breakpoints on
the reference genome are clustered and assembled into OEA contigs. Finally, a merging
process attempts to align an OEA contig to each side of an orphan contig. NovelSeq
gained recognition as NRS detection method in the pilot phase of the 1000 Genomes
Project [Mills et al., 2011]. Unfortunately, a functional version of the tool was never made
available.

A few years after the development and deployment of the alignment-based NRS detection
methods a new tool, MindTheGap [Rizk et al., 2014], was developed. MindTheGap
approaches the assembly and breakpoint detection step from a different angle than the
other tools before. Instead of using pre-computed alignments of the reads MindTheGap
operates on k-mers, in particular on the difference of k-mer sets. At first, MindTheGap
builds a de Bruijn Graph from all reads. Next, a comparison to the k-mers present in the
reference genome identifies runs of k-mers in the graph that are absent from the reference.

59

The transitions of present and absent k-mers in the graph are treated as putative NRS
breakpoints in the reference genome. The second step is the assembly of NRS from the
graph. For each NRS breakpoint of the first step a (L,R)-pair of k-mers is extracted
that flanks the breakpoint from the left and right on the reference genome, respectively.
The L k-mer is used as start node for a BFS through the graph component of k-mers
that are absent from the reference genome. The BFS goes on (under some maximum
branching constraints [Chikhi and Rizk, 2013] until the R k-mer is found in a node of the
graph. Finally, the path of k-mers from L to R in the dBG is converted to a consecutive
sequence, the NRS.

BASIL and ANISE [Holtgrewe et al., 2015] is a NRS detection method that extends
the ideas of [Hajirasouliha et al., 2010] for insertion site detection and implements an
assembly step (ANISE) with a technique to better resolve the assembly of highly repetitive
sequences. Once the OLC assembly has created an initial contig the corresponding reads
are re-mapped to the contig to identify base positions that differ from the contig. Next,
a statistical test checks if a significant number of reads exhibits differences at common
base positions in the contig. A cluster of reads that passes the test is then used to
assemble another copy of the location they were taken from. The newly assembled copies
vary by few but statistically verified base positions. As a finalizing step ANISE uses a
digraph-based scaffolding procedure to bring an order into the new copies.

3.3 Methods for detection and genotyping of non-reference
sequences in population-scale data

All methods for NRS detection in chapter 3.2 were designed for the application of one
donor genome at a time. None of the methods has an algorithmic strategy that is partic-
ularly designed to leverage short-read sequence data from many individuals. However,
since the commercial availability of high-throughput whole-genome sequencing initiated
an era of population-scale sequencing it is evident that the genomics community needs
variant calling methods that scale to large sample sizes. As explained earlier, SV detection
methods which consider NRS variants are comparatively rare and even fewer exist for
population-scale data. This subsection summarizes the two methods, Cortex [Iqbal et al.,
2012] and Pamir [Kavak et al., 2017], that compare the closest to the original PopIns and
the method described in chapter 4. Both methods are tailored to short-read data, can
process multiple individuals simultaneously and can detect NRS variants.

Cortex is a tool for metagenome assembly, i.e. it attempts to assemble entire strains
of microbes, and is able to call variants from its graph structures. Initially, Cortex
builds a DBG for every sample using multiple sizes of k. Next, the individual DBGs are
merged into a colored DBG. The colored DBG can be built from at least one sample
and a reference genome or at least two samples if built without a reference genome.
Depending on the presence or absence of a reference genome Cortex uses the Path-
Divergence or BubbleCalling algorithm [Iqbal et al., 2012], respectively, to detect and

60

genotype variants based on the different paths that alternative alleles induce in the CDBG.

Pamir is inspired by many of the principles of NovelSeq but was designed to process
many individuals simultaneously. Similar to NovelSeq, Pamir filters orphan reads and
OEA reads first and assembles the orphan reads to orphan contigs. But in contrast to
NovelSeq Pamir does not immediately assemble the OEA reads. The OEA reads that are
not aligned to the reference or only have a partial alignment are grouped according to the
location of their mapped counterpart. Next, Pamir generates clusters, each consisting of a
group of OEA reads and one or multiple orphan contigs that align to the OEA reads. The
clusters are assembled to insertion candidates and locally aligned to a confined reference
region (determined by the aligned OEA reads). Finally, insertion candidates with a
successfully determined insertion breakpoint are genotyped similar to the genotyping
approach described in 2.7.

The novel algorithmic feature that enables Pamir to leverage the data from multiple
individuals is that the assembly of the orphan contigs and the formation of the clusters
can recruit the read pairs from multiple given individuals. As a result, the set of insertion
candidates contains the NRS sequences from all individuals. All insertion candidates in
that joint set have their genotype determined for every individual.

In summary, the colored de Bruijn Graph and Cortex’ algorithms on CDBGs have
been milestones in the analysis and comparison of genomic sequences across individuals.
However, the implementation of the CDBG and Cortex at the time of its original publica-
tion was designed for bacterial genomes not applicable to a great number of large and
highly complex genomes. PopIns is one of the first approaches for the joint detection of
NRS across multiple individuals that was demonstrated to work on (unaligned) human
sequencing data and to work effectively on data sets of several hundred individuals.
Later, Pamir demonstrated a superior recall to PopIns in some scenarios but was never
successfully applied to data sets whose cardinality match those processed by PopIns.

3.4 Selected projects conducting variant calling using population-
scale data

This last subsection provides an overview of selected projects which deployed NRS variant
calling at population-scale.

Country-specific sequencing projects. Over the past few years, national cohorts
have become a rising trend in genomics. Multiple (mostly Western and Asian) countries
started or are already actively sequencing great quantities of individuals [Hehir-Kwa et al.,
2016; Gudbjartsson et al., 2015a; Eisfeldt et al., 2020; Duan et al., 2019; Maretty et al.,
2017; Sherman et al., 2019].

61

In 2016, a Dutch human reference panel [Hehir-Kwa et al., 2016] of 769 individuals
was used to detect an overall 1.9 million SNPs and SVs. Among those variants it was
over 4 megabases of novel sequence detected. 191 known and trait-associated SNPs were
found to be strongly related to the presence of SVs. For the structural variant discovery
12 different tools have been used (with Pindel among the ones mentioned in 3.2) which
together comprise all different signal types.

Similarly, in 2019, reports of the Human Pan-genome Analysis were published [Duan et al.,
2019] comprising the variant calling of 275 Han Chinese genomes. Here, a total of 29.5
megabases of novel genomic sequence was detected with at least 188 novel protein-coding
genes.

One of the largest genomic data resource of a single human population is collected
on Iceland [Gudbjartsson et al., 2015a; Jónsson et al., 2017] comprising the whole genome
sequences of about 60,000 individuals15. In their studies [Gudbjartsson et al., 2015b;
Jónsson et al., 2017; Kehr et al., 2017; Beyter et al., 2021] about sequence diversity
and structural variants they recently discovered a median 22,636 SVs (median of 13,353
insertions) per genome. Structural variant callsets at various stages of data collection have
been used successfully to identify high risk variants, e.g. causing myocardial infarction
[Kehr et al., 2017] or abnormal cholesterol levels [Bjornsson et al., 2021].

Sequencing projects of diverse human populations. Aside from the projects in-
vestigating structural variants in a single human population there is a growing number of
large-scale sequencing project comprising individuals of various ancestries [McVean et al.,
2012; Auton et al., 2015; Telenti et al., 2016; Mallick et al., 2016; Wong et al., 2018, 2020;
Taliun et al., 2021; Byrska-Bishop et al., 2021].

One of earliest and most prominent diverse population-scale sequencing project is the
1KGP. With initially 1,092 [McVean et al., 2012] and by now 3,202 human genomes
[Byrska-Bishop et al., 2021] it remains one of largest publically available resources for
human sequence data of various sequencing technologies and pre-computed variant callsets.
Early investigations [Mills et al., 2011; McVean et al., 2012] of SVs in the 1KGP were
widely limited to deletions. With the latest phase 3 release of the 1KGP more SVs
types were investigated [Auton et al., 2015; Sudmant et al., 2015] but insertion detection
was still limited to Alu and L1 elements. A latest work [Byrska-Bishop et al., 2021]
investigated all fundamental types of SVs (Figure 3) with short-reads aligned to a more
recent version (GRCh38) of the human reference genome and a higher per-sample read
coverage (mean depth 30x instead of 7.4x) than earlier work. The ensemble callset of
all individuals comprises 51,829 insertions that were curated and integrated from three
different pipeline. Mind that these insertions do not necessarily comply with this thesis’
definition of strictly being absent from the reference genome. In general, the quantity of
SVs in the ensemble callset is 170% higher than in the phase3 release.

15https://www.the-scientist.com/profile/master-decoder–a-profile-of-kri-stefnsson-65517

62

4 Methods

The method described in this chapter was developed and evaluated in collaboration with W. Timothy
J. White, Sebastian Niehus, Birte Kehr, Guillaume Holley and Bjarni V. Halldórsson. Birte Kehr
supervised the research project. The method was presented at scientific conferences and seminars including
Genome Informatics 2018, Computational Genomics Summer Institute (CGSI) 2019, European Society
of Human Genetics (ESHG) 2020 and RECOMB Satellite Workshop on Massively Parallel Sequencing
(RECOMB-Seq) 2021, and published in Bioinformatics by Oxford University Press:

Krannich T., White W.T.J., Niehus S., Holley G., Halldórsson B.V., Kehr B. Population-scale
detection of non-reference sequence variants using colored de Bruijn Graphs. Bioinformatics 2021,
btab749, https://doi.org/10.1093/bioinformatics/btab749

This chapter proposes a novel algorithm [Krannich et al., 2021] for the detection and
genotyping of long sequence variants that are absent from the reference genome but present
in one or many individuals. The first subchapter examines limitations of its predecessor,
classifies the new method in terms of the criteria in chapter 3.1 and provides an informal
description of its objective. The second subchapter introduces a precise, formal description
of the new method and its core mechanism is formulated as an optimization problem.
Moreover, a greedy heuristic approach to find an approximate solution is introduced. The
third and last subchapter elaborates on the implementation of the new method in more
detail, highlights particular features of the software and describes its best-practise usage.

4.1 The roadmap of Popins2

4.1.1 Motivation

Building on top of Popins. The starting point for this work was PopIns ([Kehr et al.,
2016], chapter 2.7), an algorithm and software developed to detect and genotype NRS
variants from population-scale NGS data. A major driver that led to the design principles

63

of PopIns is the observation [Miller et al., 2010; Zerbino et al., 2012] that the assembly
problem (chapter 2.5) for a single individual requires high-coverage sequencing data. As
the detection of large NRS variants inevitably requires sequence assembly, NRS callsets
derived from low-coverage data are often fragmented and largely incomplete [Alkan et al.,
2011]. This is a particularly hard problem for the detection of NRS variants with a
low-frequency in a given study group [Kehr et al., 2016]. For instance, large projects that
were instigated to include, but are not limited to, the detection of rare diseases might
overlook disease causing variants or underestimate allele frequencies.

Popins was designed to overcome such limitations. Its merge step joins the sets of
contigs from unaligned reads of an entire study group and thereby increases the total
sequence coverage of NRS that are common in multiple individuals. An increasing number
of individuals added to this merging strategy increases the chance that the contigs from
multiple individuals compensate the uncovered bases in the NRS of a single individuals.
As a result, the NRS detected across multiple individuals are typically less fragmented
and enable genotyping even in individuals where the read coverage is not sufficient to
assemble a particular NRS.

In summary, PopIns is a carefully designed insertion detection algorithm whose sub-
modules seamlessly integrate into a comprehensive workflow. PopIns’ merge step jointly
uses the signal from many individuals during the variant detection.

Scalability for larger cohorts. A major challenge for population-scale insertion detec-
tion methods like PopIns is the processing and maintenance of huge amounts of data. An
increasing amount of data added to the problem instance affects the detected sequences,
duration of its computation and memory consumption.

The aforementioned advantages of PopIns may suggest that more data automatically
leads to more accurately detected NRS. However, in practise it is challenging to retain the
signal-to-noise ratio, i.e. with more sequence data added to the method it gets increasingly
difficult to not amplify sequencing artifact as well. Moreover, many biological sequences
(especially from eukaryotic cells) contain various repetitive elements [Jurka et al., 2005,
2007; Chen, 2004] that are difficult to assemble. The complexity to accurately reconstruct
the original biological sequence of these repetitive elements increases with a growing
number of individuals.

PopIns is a modular software that can process sequence data at various stage of the
insertion detection with dedicated units of the program. However, particularly the merge
step is a bottleneck in the computational performance of PopIns as it inevitably needs to
handle the data of the entire population or study group. At its core, the merge step of
PopIns groups the many contigs from all individuals by sequence similarity [Rasmussen
et al., 2006] and assembles the sequences of each group via an approach similar to [Feng
and Doolittle, 1987]. The determination of sequence similarity and its subsequent assembly

64

of all contigs across the entire population is a dominating if not limiting factor for the
scalability of PopIns. The time of execution and memory consumption rapidly increase
with a growing number of individuals.

In summary, detecting insertions at population-scale is challenging in terms of an accurate
NRS assembly and computational resource management.

CDBG as replacement. In the past, assembly via DBGs [Chaisson and Pevzner, 2008;
Bankevich et al., 2012; Zerbino and Birney, 2008; Li et al., 2015; Chikhi and Rizk, 2013]
has become a frequently used alternative approach for the OLC paragigm [Kececioglu and
Myers, 1995; Sutton et al., 1995; Miller et al., 2010] for the assembly of NGS data. The
DBG has the advantage that many established graph algorithms in computer science can
be applied to it as every DBG can be considered to be a directed graph (or undirected
graph if it is a bidirectional DBG, see chapter 2.4). For instance, the EULER [Pevzner
et al., 2001] and Minia [Chikhi and Rizk, 2013] assemblers implemented an Eulerian
path [Euler, 1736] and breadth-first search approach on a DBG. Also, the CDBG has
successfully been used for the meta-genomic analysis of many bacterial strains [Iqbal
et al., 2012, 2013]. If implemented carefully [Holley and Melsted, 2020; Khan and Patro,
2021; Khan et al., 2021], the DBG and CDBG have a low memory footprint.

In summary, the DBG and CDBG are entrenched data structures for assembly and
sample comparison. DBGs scale particularly well if the many added sequences are highly
similar.

Synopsis. PopIns introduced a sophisticated method and a practical implementation
that, for its purpose, scales to an unmatched numbers of individuals. Especially its merge
step comprises an elaborate concept to merge many highly similar contigs. Nevertheless,
the scalability in the application of PopIns [Kehr et al., 2017] has been limited by the
algorithmic complexity and massive compute resource consumption of the merge step.
The CDBG is a practical data structure that can be used as a foundation to rework the
merge step. These insights, together with a continuously growing number of individuals
in population-scale projects, motivated the development of a successor of PopIns that
detects NRS from the same set of individuals using much less compute resources and with
at least equivalent accuracy.

4.1.2 Objective

This subchapter explains which methods and data structures of PopIns are subject to
changes and which novel contributions have to be done in order to achieve a scalability to
greater numbers of individuals. It is advised to have read the chapters 2.7 and 4.1.1 for
the fundamental preliminaries of PopIns merge and the motivation to develop this new
approach, respectively.

65

The approach of PopIns2 to jointly process more individuals than its predecessor is
to replace the old data structures of the merge step with a CDBG and to develop an
algorithm that generates a set of supercontigs S from the CDBG.

Replacing data structures. PopIns utilizes two data structures in the merge step
(Figure 17) to implement an assembly procedure similar to OLC. One data structure is
a union-find data structure that maintains sets C1, ...,Cn of similar contigs. This data
structure has two major drawbacks. It reallocates and doubles the size of compute memory
every time a set cannot store another contig because it reaches its maximum capacity.
Further, within a set Ci there is hardly any compression or reduction in redundancy of
similar sequences. The second data structure is a sequence graph for every Ci, where
vertices store subsequences of the contigs c ∈ Ci and directed edges represent adjacencies
between a pair of substrings. A depth-first search through a sequence graph is used
to generate supercontigs, representative for the consensus phase of the OLC paradigm.
However, if there are many branching components in the graph, the time complexity of
this approach can become prohibitive [Kehr et al., 2016]. A new approach is to replace
both data structures from PopIns’ merge step with a CDBG.

Multi-sample local assembly. Given the new data structure, the CDBG, it requires
a novel algorithmic method to generate a set S of supercontigs from the graph that
represents a non-redundant set of NRS from an entire population of given individuals.
The objective is to implement an assembly approach (chapter 2.5) that builds a CDBG
from the contigs of many individuals, generates a set of paths P from the CDBG (see
chapter 2.4 for paths) and finally translates the paths into supercontigs. Intuitively, a set
P of paths from the CDBG G = (V,E,C) has to fulfill three properties:

1. Each path p ∈ P should have a high conformity of colors between any two consecutive
vertices ui, ui+1, where ui, ui+i ∈ p.

2. Every v ∈ V should be a vertex in at least one path p ∈ P .

3. P should have low redundancy δ, i.e. any two path pi, pj ∈ P should have a smallest
possible sum

δ = ∑
u∈pi
w∈pj

u == w,

where ’==’ is the logical equivalence operator that returns 1 if u and w are the
same vertex in V or 0 otherwise.

Property (1) is the property that identifies similar or equivalent contigs of across individuals.
In other words, paths from the CDBG that have a long streak of vertices with similar
colors likely result from similar contigs. Property (2) aims for the data integrity from
input (contigs) to output (supercontigs) for the approach. The necessity for this property
can be outlined with a short counter proof. A basic assumption is that every contig that
goes into the CDBG is already a NRS or part of a NRS. Therefore, missing a vertex v ∈ V

66

C1 C2 Cn...

D1 Dk...

Contigs

sets of union-find
data structure

Sequence graph

Supercontigs

a,b,c

d,e,f,g

a,d b,e

c,f,g

Figure 17: Merging method of PopIns. The sets C1, ...,Cn are contig sets from n individuals.
Let D = D1, ...,Dk be a union-find structure where each D ∈ D is a set of contigs. A contig
c ∈ C is added to D by taking the union of all sets D ∈ D that contain a contig that aligns
to c and finally adding c to that union. If c has no alignment to the contigs of any D ∈ D
then a new set is added containing only c. Next, a sequence graph G = (V,E) is built for each
set D, where V are substrings of contigs and E are adjacencies between the substrings. In
order to add a contig d ∈D to G all paths in G are enumerated (red dashed lines), d is locally
aligned to the concatenation of substrings of all paths and the path with the best alignment
is chosen. Depending on the position of the local alignment to the path, nodes are split and
added or a prefix or suffix is added to a label of a leaf node. Finally, a concatenation of all
paths starting and ending in a leaf node (solid red lines) are reported as supercontigs. The
identifiers a,b,c,d,e,f,g indicate the start and endpoints of all paths that make a supercontig.

67

from P means that (parts of) a NRS is missing from the supercontigs. This is contrary to
the objective. Finally, property (3) determines the redundancy of the supercontigs. If the
approach would enforce δ = 0 it means that all paths in P are pairwise disjoint. However,
two different NRS might share one or multiple k-mers and therefore the corresponding
two paths need to contain the same vertex of the shared k-mer. If the approach allows
for δ > 0 it means that any two paths pi, pj ∈ P can share one or more common v ∈ V . In
a more extreme scenario, if δ is a very large integer the approach might generates two
equal paths (both paths have the same or reverse sequence of vertices) or one path is
a subsequence of the other. The sought approach requires a way to control and find a
sensible setting for the redundancy.

4.1.3 Classification

Chapter 3.1 gave an overview of different criteria to consider for the development or
application of NRS detection methods. Here, the method’s properties and intended
domain of application of the second major version of PopIns, PopIns2 [Krannich et al.,
2021], are defined in terms of those criteria.

• Variant type. PopIns2 is designed for the sequence assembly, breakpoint detection
and genotyping of NRS. While chapter 1 introduced SV as a set of variants typically
larger than 50 bp, the minimum length of NRS that can be detected with PopIns2
is 2k − 1.

• Signal type. From all reads aligned to the reference PopIns2 filters unaligned
reads and partially aligned reads. Unaligned reads are utilized to assemble the
contigs that ultimately result in NRS and to associate supercontigs (chapter 2.7)
with approximate breakpoint positions on the reference genome. Poorly aligned
reads are utilized for a split read alignment. Successful split read alignments are
utilized to determine the precise base pair position of the insertion breakpoint in
the reference genome.

• Sequencing technology. PopIns2 is tailored to short-read paired-end sequencing
technologies. It was designed, implemented and tested exclusively with Illumina
short-read WGS data.

• Alignment type. PopIns2 utilizes the information of read alignments. Reads are
either aligned to each other, to supercontigs or to the reference genome. At no stage
of the algorithm whole genomes are assembled or aligned.

• Sample size. PopIns2 is designed to process the NGS data of hundreds to thousands
of individuals. PopIns2 jointly utilizes the data of many individuals during NRS
detection.

68

• Germline and somatic variants. The NRS detection phase of PopIns2 is ap-
plicable to investigate germline as well as somatic structural variants. However,
the genotyping phase assumes the reads to originate from a diploid genome. This
assumption might be violated for somatic cells.

None of these classifications changed with the advancement from PopIns to PopIns2.

4.2 Merging NRS of many genomes using a CDBG

While chapter 4.1.2 aimed to explain the objective of PopIns2’s new merging procedure in
an intuitive way, this chapter presents a formal problem definition and provides a greedy
approach to solve the problem.

4.2.1 Problem formulation

Derivation. The objective of the new merging step is to extract NRS from a CDBG
that was created from the sets of contigs generated by the assembly step (chapter 2.7)
applied to the reads of each individual. This means that, in contrast to whole-genome
assembly which aims to minimize the amount of contigs and maximize the contiguity (see
chapter 2.5 at Evaluation statistics), the new merging approach aims to generate many
comparably short genomic sequences. The assembly of many short NRS was found to
be more related to transcript assembly [Xing et al., 2004; Trapnell et al., 2010] than to
whole-genome assembly. An important difference is that transcript assembly algorithms
typically operate on a directed acyclic graph (DAG). Similarly to a transcript assembly,
the sought set of paths through the CDBG has to be a path cover (see chapter 2.4) of
the CDBG assuming that every vertex (k-mer or unitig) is part of at least one NRS.
The rationale for this condition to be desired was discussed in the previous chapter.
A naive solution to generate a path cover P is to enumerate all possible paths in the
CDBG. However, this solution comprises a large amount of paths with widely duplicated
subsequences of vertices and therefore leads to a large and unwanted redundancy. Also,
many of the paths would not correspond to actual NRS.

The weighted minimum path cover problem. The problem of the new merge step
is formulated as a minimum path cover problem. That is to find the smallest number of
paths in a given graph that forms a path cover. The minimum path cover problem is
NP-complete [Garey and Johnson, 1990] for all graphs other than DAGs [Lawler, 2001].
It was shown [Rizzi et al., 2014] that the smallest solution to test, namely whether there
exists a path cover of cardinality one, is equivalent to finding a Hamiltonian path. In a
minimum path cover some paths can share one or many common vertices. The biological
equivalent of these common vertices from a CDBG is shared genomic sequence between
multiple individuals, e.g. low complexity sequence or mobile elements.

If applied to a CDBG, the minimum path cover problem in its original form has no
constraint that utilizes the information of the underlying contigs, yet. Therefore, the

69

problem formulation is extended by weights of the paths. The idea is that if multiple
genomes carry the same or a similar NRS there will be a path in the CDBG with the
corresponding colors of the genomes. More precise, all k-mers along a path that corre-
sponds to an actual NRS should be labeled with a similar set of colors. Using the color
vectors of the k-mers and the Jaccard index for bitvectors J (chapter 2.1) the weight
function φ ∶ p→ [0,1] that assigns a weight φ(p) to each path p = u1, u2, ..., un through a
compacted CDBG is defined as

φ(p) = 1 − min
1<i<n−1

J(last(vi), first(vi+1)) (1)

where last(vi) and first(vi+1) are the bitvectors corresponding to the last and first k-mer
of vertex (unitig) vi and vi+1, respectively. Using Equation 1 for the path weights, the
minimum path cover problem is reformulated into a weighted minimum path cover problem.
That is to find a path cover P = {p1, p2, ..., pn} with the objective function

min∑
p∈P

φ(p) (2)

In terms of the NRS detection, a solution to this combinatorial optimization problem
corresponds to a set of NRS merged from the contig sets of many individuals.

4.2.2 A greedy heuristic

PopIns2 introduces a greedy heuristic as a practical solution to solve the weighted
minimum path cover problem on a CDBG built from a set S = S1, S2, ..., Sn of contig sets.
Each contig set Si ∈ S is assembled from the unaligned and poorly aligned reads of an
individual’s genome and corresponds to a color in the CDBG. The key idea is to initiate
a depth-first search (DFS) from sources of the graph, i.e. vertices that have at least
one successor but no predecessors. During the traversal of the DFS, the decisions which
vertex to proceed with at branching nodes is prioritized by the Jaccard index of color
bitvectors. The traversal continues until a sink is found, i.e. a vertex that has at least one
predecessor but no successors, or aborts in case a local substructure of the CDBG cannot
be resolved by the traversal. In case the traversal finds a sink, the path is checked whether
its vertices contain a minimum number of previously undiscovered k-mers. If the path
passes the test its vertices are concatenated and one final genomic sequence is returned.
A pseudo code of the DFS’ main routine is included in the appendix (Algorithm 1).

More formally, let G=(V,E,C) be a compacted CDBG of input set S of contig sets
and k-mer size k. Every vertex u ∈ V has a traversal state that can be either seen or
unseen. Initially, all vertices are in the state of being unseen. Further, a unitig set D
records which k-mers have been covered by a path. Note that every vertex has at most
four predecessors and successors as the CDBG is built with genomic sequences (chapter
2.2).

70

DFS initialization. In the initialization step of the DFS all nodes u ∈ V are checked
whether they have predecessors and successors. This check has three potential outcomes:

1. Vertex u has no predecessors and no successors, i.e. u is a singleton

2. Vertex u has predecessors

3. Vertex u has only successors, i.e. u is a source

If u is a singleton then the genomic sequence of u is returned as a final genomic sequence
without further ado. Since a singleton, by its definition, is isolated from other vertices in
V none of its k-mers can be members of the path cover already. If u has predecessors the
vertex is ignored in the initialization step. If u has only successors then u is a source and
is passed to the recursion step of the DFS.

DFS recursion. Let uc be the currently visited vertex of the traversal. At first, vertex
uc is checked whether it has any unseen successors N ⊂ V . If N = ∅ then uc is a sink. In
that case the number of k-mers in the path p from source to uc that are not members
of D is determined. If that number of novel k-mers in p exceeds a user-defined thresh-
old τ then the novel k-mers are added to D and the NRS ω(p) (see chapter 2.4) is returned.

If uc has a non-empty set of unseen successors N the traversal algorithm has to make
a decision how to continue the traversal through the CDBG. This decision is a crucial
design choice of the algorithm since it determines the order of the vertices in the path
and, consequentially, the genomic sequence of the NRS. The decision which successor to
continue with is made by utilizing the colors of the CDBG. For each successor n ∈ N of uc
an edge weight is computed using the color vectors last(uc) and first(v) corresponding
to the last k-mer of vertex uc and the first k-mer of vertex v, respectively. The edge
weight is defined as 1 − J(last(uc), f irst(v)) where the function J is the Jaccard index
defined over bitvectors. Then, the recursive traversal at uc is continued with the successor
returned from

argmin
v∈N

{1 − J(last(uc), last(v))} (3)

If all successors of the current vertex have been seen before the recursion takes one
step back and continues with the next best successor returned from Equation (3). The
recursion of the DFS continues until a sink is found. In that case the traversal states of
all vertices in G are reset to unseen and the DFS algorithm is continued with the next
source. The final output of the greedy heuristic is a set of sequences (supercontigs) which
correspond to a set of maximal unitig paths.

4.3 Implementation of PopIns2

This chapter walks the reader through the practical implementation of the methods de-
scribed in chapter 4.2, explains optional features and provides hints and tips for large-scale
data processing with PopIns2. The majority of the code refactoring in PopIns2 was done

71

in the merge module. Thus, this chapter will predominantly focus on this module.

To follow the subsequent explanations of this chapter the reader requires a fundamental
knowledge of high-level programming languages and common programming paradigms.
Fundamental knowledge about the Unified Modeling Language (UML) and high perfor-
mance computing environments is beneficial but not strictly necessary. For an in depth
understanding of some selected design pattern, knowing a few terms and concepts that
are specific to the C++ programming language is inevitable. As this chapter does not
aim to educate about technical details of the C++ programming language, references are
provided at the given place.

4.3.1 Design pattern

The new merge module of PopIns2 is designed with the Object Oriented Programming
(OOP) paradigm. All the functionality to generate paths from the CDBG, and subse-
quently the NRS, is implemented in classes and their member functions (Figure 18).
During the merging step there are five classes whose instances interact with each other.

The class with the most and most complex code is the ExtendedCCDBG, which stands
for Extended Colored and Compacted de Bruijn Graph. Later, the paragraph about the
UnitigExtension class is going to explain why the implementation of the ordinary CDBG
needed to be extended even further. The essential functionality of the ExtendedCCDBG
is the DFS traversal (chapter 4.2.2) and prioritizing the successors of a unitig using the
Jaccard index of colors bitvectors. Once the graph is built the only member function
that needs to be called for the invocation of the DFS is traverse. The traverse member
function is a wrapper function for the DFS initialization phase. It iterates over every
vertex in the CDBG and if a vertex u ∈ V is a source then the DFS is initiated from u.
All the other functionality for the traversal, like determining the Jaccard index between
two color bitvectors, ranking the neighbors or the DFS recursion, is hidden in private
member functions that are called from within the traverse function.

The ExtendedCCDBG class itself does not explicitly implement any functionality to
inspect the genomic sequence of a vertex, the predecessors and successors of a vertex
or the colors of a k-mer. Instead, the ExtendedCCDBG inherits functionality from the
ColoredCDBG class (Figure 18). ColoredCDBG stands for Colored and Compacted de
Bruijn Graph and is a template class from the Bifrost API (chapter 2.6). The Colored-
CDBG again inherits functionality from the template class CompactedDBG. Together the
underlying ColoredCDBG and CompactedDBG classes provide all the functionality for
the ExtendedCCDBG that is required to inspect the unitig sequence of a vertex, find a
unitig via a given k-mer in constant time (see data structures in chapter 2.6), determine
the neighbors of a vertex and inspect the color bits of every k-mer in a unitig. Further,
the ExtendedCCDBG inherits the basic functionality for reading and writing FASTA and
FASTQ files for genomic sequences, the Graphical Fragment Assembly (GFA) format
for DBGs, the Bifrost-specific BFG_COLORS format for a compressed color matrix,

72

constructing a DBG for a given k-mer and minimizer length, simplifying a DBG (that is
deleting tips and singletons shorter than a given minimum number of k-mers) and for
annotating k-mers with the colors of their corresponding input samples.

In the Bifrost API, the unitigs of the ColoredCDBG are instances of the class Unitig-
ColorMap (abbreviated with ucm in function parameters in Figure 18). Although the
UnitigColorMap class complies with all the aforementioned functionality of the Colored-
CDBG it had to be extended in order to use it for the DFS traversal in the PopIns2 merge
algorithm. In PopIns2, the UnitigColorMap of the ColoredCDBG (and subsequently of
the ExtendedCCDBG) needs to be extended by two properties. The first property is
a unique identifier (ID). The ID of a unitig is implemented rather for convenience and
traceability since any k-mer of a unitig could be used as a unique identifier too. The
second and strictly necessary additional property of the unitigs is the DFS states, i.e.
a member variable of the UnitigColorMap that indicates whether the vertex has been
visited before. Note that in PopIns2 each vertex has two DFS states because the CDBG is
bidirectional and forward and reverse complement sequence require individual DFS states.

In many higher programming languages a straightforward way to associate additional
data to given (unique) elements is to use a map (e.g. in C/C++/Java) or dictionary
(e.g. in Python). This way a map can store any single of a unitig’s k-mers as a key and
store its corresponding ID or DFS states as values. However, for this use case the Bifrost
API has a sophisticated solution to circumvent the usage of additional data structures.
The CompactedDBG and ColoredCDBG are class templates16 whose instances can be
constructed with a template parameter17. The CompactedDBG implements a mechanism
that associates an instance of the template parameter type to every vertex (UnitigCol-
orMap) of the graph. From a practical point of view, this means that the CompactedDBG
and ColoredCDBG can be constructed with a data type that extends the UnitigColorMap
class with auxiliary data. In contrast to additional data structures like a map, now the
auxiliary data resides within the graph. One important constraint in the Bifrost API is
that the template parameter type of the CompactedDBG or ColoredCDBG is a child
class of the type CCDBG_data_t (Figure 18). The ExtendedCCDBG introduced in the
beginning of this chapter is a child class of the ColoredCDBG with a template parameter
of type UnitigExtension. An instance of the UnitigExtension class contains a unique
unitig ID and two DFS states for every vertex in the graph.

A class that has a frequent interaction with the ExtendedCCDBG is the Traceback
class. An instance of the Traceback class records the vertices that have been visited from
the source to the current node. Upon request the Traceback class concatenates the unitig
sequences of the vertices whilst taking into account the k − 1 overlap and writes the final
genomic sequence (supercontig) to a file.

16https://en.cppreference.com/w/cpp/language/class_template
17https://en.cppreference.com/w/cpp/language/template_parameters

73

MergeOptions

verbose: bool

nb_threads: type

filename_seq_in: vector<string>

filename_ref_in: vector<string>

k: int

g: int

clipTips: bool

deleteIsolated: bool

prefixFilenameOut: string

setcover_min_kmers: int

MergeOptions(): void

ExtendedCCDBG : ColoredCDBG<UnitigExtension>

id_init_status: bool

ExtendedCCDBG(k=63, g=23): void

init_ids(): void

traverse(setcover_threshold, ofs, write_setcover, prefixFilenameOut): uint

DFS(ucm, direction, tb, sc, jumped): uint

reset_dfs_states(): void

is_startnode(ucm): bool

rank_neighbors(omm, ucm, neighbors, direction): void

get_neighbor_overlap(extract_head, extract_tail): float

UnitigExtension: CCDBG_Data_t<UnitigExtension>

ID: uint

DFS_STATUS_FW: uint

DFS_STATUS_BW: uint

ColoredCDBG<UnitigExtension> : CompactedDBG<UnitigExtension>

ColoredCDBG(k, g): void

buildColors(opt): bool

CompactedDBG<UnitigExtension>

CompactedDBG(k, g): void

read(input_filename): bool

simplify(deleteIsolated, clipTips, verbose): bool

build(opt): bool

write(output_filename, nb_threads, verbose): bool

Extends

Extends

Uses

Setcover

_setcover: unordered_set<uint>

_current_path: unordered_map<uint, uint>

_min_kmer_contribution: uint

Setcover(threshold): void

add(ucm): void

test(): bool

Uses

Traceback

_contig: string

_direction: uint

_k: int

Traceback(direction, k): void

add(unitig, startnode): void

addFullSink(unitig): void

write(ofs, sv_counter): void

Uses

Uses

Uses

Uses as
template

parameter

Figure 18: Class diagram of the PopIns2 merge module. Every box in the diagram denotes
a class in the program. Classes with a grey background in the header are implemented by
the Bifrost API. If a horizontal line splits the class description, entries above the line denote
member variables and entries below the line denote member functions (also written with
parentheses before the return type). The Extends-relation arrow denotes a class inheritance
from derived class to base class. The Uses-relation arrow denotes that a class interacts with
another class in one or multiple of its member functions.

74

The second class that interacts during the DFS traversal is the Setcover class. Its
purpose is to regulate the redundancy in the set of supercontigs. The test member func-
tion of the Setcover class checks whether the unitig sequences of a given path contribute a
minimum number of novel k-mers to the set of supercontigs till this point of the traversal.
The Setcover class is a practical solution of PopIns2 for property (3) in chapter 4.1.2.

For completeness, Figure 18 also includes the MergeOptions class. The MergeOption
class is only a data class containing the command line parameters. All three major
classes involved in the traversal (ExtendedCCDBG, Setcover and Traceback) obtain their
parameters and thresholds from this data class, predominantly at construction time.

4.3.2 Control flow

In the new merge module of PopIns2 there are primarily three classes whose instance
interact with their member functions. Figure 19 shows a flowchart about the chronology
of events within the merge module and how the classes ExtendCCDBG, Setcover and
Traceback interact. The focus of the subsequent description are the mechanisms of the
DFS traversal. Details of the implementation to wield the bidirectionality of the graph
are omitted.

Graph build. Initially, an instance of the ExtendedCCDBG reads one or many files
of contigs in FASTA or FASTQ format, e.g. from the PopIns2 assembly module, and
builds a colored and compacted de Bruijn Graph G = (V,E,C) from the contigs using
a given k-mer size k. Building the graph G is composed of three subroutines. First, a
compacted DBG G′ = (V,E) is built from the contigs. Second, G′ is simplified, i.e. all
tips and singletons are deleted from G′ (chapter 2.6). Third, a color matrix C (chapter
2.4) is generated for G′, where each file of contigs is an input set (color). Together, G′ and
C define G. Once G is built, simplified and annotated with colors, every unitig receives
an unique identifier (ID).

Graph traversal. The DFS traversal through G is implemented in the traverse function
of the ExtendedCCDBG. The function first constructs an instance S of the Setcover class
and starts a program loop over all unitigs in G (red rhombus in Figure 19). Let u be the
control variable, i.e. the currently observed unitig of the loop. The function is_startnode
checks if u is a source. If this check evaluated to false then the loop continues with the
next unitig. If this check evaluates to true then an instance T of the Traceback class is con-
structed and the DFS function is called with u as initial vertex. Next, the function hasSuc-
cessors checks whether u has successors N . If this check evaluates to false then u is a sink
too and, consequentially, a singleton. In that case T reports the entire genomic sequence of
u as supercontig and the ID of u is added to S. The latter is not strictly necessary for the
traversal since a singleton cannot be observed again but the PopIns2 merge module can op-
tionally report the entirety of visited unitigs from S for a manual inspection of the CDBG.
Until here, all three cases of the DFS initialization in chapter 4.2.2 are detected.

75

<<constructor>>

hasSuccessors

true

<<destructor>>

true

TracebackExtendedCCDBG

read,build,simplify,buildColors

init_ids

write

traverse

Setcover

add

add

<<constructor>>

<<destructor>>

is_startnode

false

add
false

addFullSink

test

true
write

false

reset_dfs_states

DFS

Figure 19: Flowchart of the PopIns2 merge module. Each solid long bar in the flowchart
denotes the lifetime of a class instance from top to bottom. The black dots at the class
instances denote an invocation of a member function. The red tiles denote the start and end
point of a for-loop over all unitigs of the ExtendedCCDBG instance. The green tiles denote
that the flow can follow two different paths at this point depending on the incoming boolean
return statement of the preceding function. The blue dot denotes a recursive invocation of the
DFS function.

76

If the check for the presence of neighbors evaluates to true then Equation (3) is evaluated
to find the unseen neighbor nc ∈ N for the recursive continuation of the DFS. In Figure
19 the blue dot symbolizes and hides the details of the steps associated with the DFS
recursion, e.g. marking u as seen and passing nc to the next call of DFS. Also, every time
an eligible successor is determined the current unitig has its genomic sequence added to T
and its ID added to S. The recursion goes on until a sink is found or local substructures
in the graph cannot be resolved.

If the DFS reaches a sink, S tests whether the unitigs in the path p from source to
sink exceeds a threshold τ of novel k-mers with respect to the already reported supercon-
tigs. Here, the test function sums up the number of k-mers of all unitigs in p whose IDs
are not in S yet. If the test evaluates to true, the genomic sequence ω(p) is reported as
supercontig, the unitig IDs of all unitigs in p are permanently stored in S and T is deleted.
Only the latter happens if the minimum number of novel k-mers in p does not exceed τ .

This point marks the end of instructions related to the current control variable u of
the loop. If the iteration of the loop is not finished then all DFS states are reset to unseen
and the iteration starts with the next u. If the iteration of the loop is finished, S is
deleted and the CDBG can optionally be written to disc.

4.3.3 Bridging unitigs of low entropy genomic sequence

This subsection examines a feature of the PopIns2 software that masks subsequences
of low complexity (chapter 2.2) in NRS, i.e. instead of reporting the actual genomic
subsequences of the NRS that are of low entropy, they are replaced with generic characters.
This feature was successfully tested for its principal functionality and applicability on
real genomic sequence data. However, the extend of genomic sequence being masked with
different entropy thresholds was not thoroughly evaluated in [Krannich et al., 2021] and
the decision whether low entropy masking is desired is left to the user. By default no low
entropy masking is applied by PopIns2.

In some genomes, including the human genome, sequences of low entropy (e.g. short
tandem repeats, homopolymers or poly-A tails) are observed frequently [Dechering et al.,
1998; Willems et al., 2014]. These sequences contain a notably less diverse spectrum of
nucleotide dimers. Consequentially, sampling k-mers from low entropy sequences results
in many highly similar k-mers. If these similar k-mer are inserted into a DBG they form
characteristic topologies (Figure 20a,b). Those characteristic topologies tend to further
cluster into larger and densely interconnected components (Figure 20c), here termed low
entropy connected components (LECC). The DFS procedure described in chapter 4.2
can make poor traversal decisions in subgraphs of highly similar and abundant k-mers
from LECCs and hence return incorrect supercontigs, i.e. the reconstructed sequence
is erroneous with respect to the true biological sequence. The same consequence of low
entropy sequence from real biological data was already discovered in the original version of

77

PopIns, even though the algorithmic approach was different. The approach of PopIns to
handle sequences of low complexity is to exclude contigs below a certain entropy threshold
from the merge procedure. The masking option of PopIns2 intends to not ignore the entire
sequence but to mask its low entropy k-mers during the creation of the supercontigs.

a) b)

c)

LECC

Figure 20: Frequently recurring DBG topologies of low entropy genomic sequences.
Vertices in yellow are unitigs with a sequence entropy below a given threshold. Figure a)
and b) show characteristic topologies in a DBG that are caused by unitigs of low entropy.
Figure c) shows a densely connected subgraph of unitigs with a low entropy sequence,
called Low Entropy Connected Component (LECC).

Finding partners around LECCs. If the low entropy masking is activated by pro-
viding an entropy threshold other than zero, all unitigs whose sequence entropy is below
the given threshold (from here called low entropy unitigs) are annotated. Next, all LECCs
are identified. Finding the LECC of a given low entropy unitig in a DBG is trivially
realized by starting a depth-first search. Initially, any vertex u of the DBG is marked
as visited. If u is a low entropy unitig, it is assigned a unique LECC identifier. All

78

neighbors of a low entropy unitig u (at most eight) that are low entropy unitigs as well
and have not been visited yet are annotated with the same LECC identifier as u and
marked as visited in the DFS. The latter step is recursively repeated with the neighbors
of u until no more neighbors can be visited. If after the recursion another vertex of the
DBG is still not visited, it becomes the new u to start the DFS from. If all vertices
of the DBG are visited then every low entropy unitig is assigned a unique LECC identifier.

For each LECC L all unitigs UL which border L (so each u ∈ UL is not a low entropy unitig)
are stored together with the k-mer kL that connects to L. For every u ∈ UL another DFS
is initiated through L to find all accessible unitigs P ⊆ UL, called Partners. Accessible
here means there exists a path from source u to sink p ∈ P through L. Next, the Jaccard
index of the color bitvectors of kL ∈ u and each kL of p ∈ P is computed. As a result, a
mapML stores the associations of every u with its partner p that has the highest color
match.

DFS traversal with jumps. Once theML is computed for every LECC in the graph
the PopIns2 merge module starts the main DFS traversal to generate the set of supercontigs.
Let u be the currently observed vertex of the latest recursive step of the DFS. With low
entropy masking enabled, if the unseen successor v of u returned from Equation (3) is
annotated as low entropy sequence then v is a vertex of a LECC L and u is a vertex
that borders L. Hence, u can be looked up in the mapML together with its partner p
of the highest color match. Instead of continuing with v, the DFS continues with p (the
DFS is said to "jump" over the LECC). Later, when function ω concatenates the unitig
sequences of the path, a jump is encoded as ’N’ characters of length k.

Masked sequences. The decision to mask low entropy sequence is left to the user. By
default the masking process is disabled. With the command line parameter −e of the
PopIns2 merge subcommand the user can specify an entropy threshold for the masking
and jumping process. Further, PopIns2 offers a command line parameter −l to write out
a CSV file with all vertex IDs of the CDBG whose genomic sequence were annotated as
low entropy. That CSV file, together with the GFA file of the CDBG, can be loaded into
Bandage [Wick et al., 2015] to visually inspect the masking process.

4.3.4 A multi-k construction algorithm for CDBG

This chapter examines a prototype method that builds the CDBG directly from reads
instead of contigs and therefore circumvents the contig assembly per individual. The
method is implemented as part of the PopIns2 software and was successfully tested for
its principal functionality. However, tests with simulated data at the early stage of
its development did not show improvement on benchmarks at intermediate checkpoints
of the PopIns2 workflow (chapter 5.1.3). Therefore, the implemented feature remains
experimental and is not thoroughly documented or published. Also, note that the current
implementation was not yet optimized for performance but for traceability.

79

In the standard workflow of PopIns2, one of the first steps is a contig assembly per
individual of all its reads which are unaligned and poorly aligned to the reference genome
(chapter 2.7). The resulting sets of contigs are then used as input for the merge module.
This implies that the contigs which go into the merge module, and hence into the CDBG,
were already subject to certain parameter settings and the algorithmic design of the
external assembly software that is used for the contig assembly. All the external assembly
software that was assessed during the development of PopIns2 is tailored to whole-genome
assembly and therefore optimized towards continuity (see Evaluation statistics in 2.5).
In contrast to whole-genome assembly which aims to reconstruct only few but long
chromosomes, the contig assembly of PopIns2 aims to reconstruct many but rather short
genomic sequences, the NRS.

Additionally, each external assembly software has its dedicated methods to reduce the
complexity of the assembly problem and to eliminate technical artifacts in the sequence
data. Common methods for this are filters for k-mer abundance, trimming of spurious
vertices from graphs or exclusion of sequences below a minimum length. Not always are
all of these methods known to the user or can be trivially deactivated.

To circumvent that the aforementioned properties of external assembly software af-
fect the merge procedure of PopIns2, an alternative method was developed to build the
CDBG from raw genomic reads, called the multi-k method . The multi-k method uses the
unmapped and poorly mapped reads instead of the contigs per individual. Its general idea
is to build the CDBG from several k-mer lengths k to combine the graph connectivity of
small k-mer sizes with the unitig continuity of large k-mer sizes. In the PopIns2 workflow
(Figure 14), the multi-k method can be used between the assemble and merge module as a
substitution for an external assembly software (which is part of the assemble module). To
save computational resources, the assemble module can disable the usage of an external
assembly software via the --skip-assembly flag. Mind that the usage of the assemble
module per individual is still required as it returns the FASTQ files with unaligned and
poorly aligned reads. The result of the multi-k method is a CDBG that can be loaded
into the merge module.

The iteration. The multi-k method is an iterative procedure (Figure 21) that requires
an initial k-mer size k, a maximal k-mer size kmax, a k-mer step size ∆k and a set Iin of
FASTQ or FASTA files (one file per individual). The first step is to build a CDBG G
from Iin and k. In the implementation of the multi-k method this is done with the Bifrost
API (chapter 2.6). After G is built, graph simplifications can be applied. Next, k is
increased by ∆k. If k is now larger than kmax the iteration ends at this point. Otherwise
a function f decides for each unitig if it is selected for the next iteration. A map stores for
each color (individual) of G which unitigs are selected for the next iteration. The selected
unitigs are written into a temporary file per color. Let Ik be the set of temporary files for
the current value of k. The input data Iin is updated by concatenating the sequence file

80

of each individual with its corresponding unitigs from Ik. After that the iteration starts
the next cycle.

sample1.fa sample2.fa sampleN.fa

2

1

5
4

3

...

for unitig in Graph:
f(unitig,k)

1,4

1,2,3

5

End.

k=k+Δk

if k > k_max

...

Graph.build(k)

concat

write unitigs

5 -----1 -----
4 -----

1 -----
2 -----
3 -----

Start.

Figure 21: Sketch of the iterative multi-k approach to build a CDBG. The three core
mechanisms of the iterative process are building a CDBG, increasing k and choosing unitigs
to be taken into the next iteration.

Choosing unitigs from a CDBG. The iterative procedure is not a novel concept for
DBG. In fact, it has been implemented in multiple programs for DBG based assembly
[Chikhi and Rizk, 2013; Li et al., 2015] or variant calling [Turner et al., 2018]. In PopIns2 it
is attempted to transfer this concept to a CDBG. The alert reader noticed that in the last
paragraph the decision criterion how to select the unitigs for the next iteration was hidden
in the function f . This function is trivial for plain DBGs, where f ∶ unitig × k → {0,1}
simply decides whether the length (in base pairs) of the unitig is larger or equal to k.

81

However, in a CDBG using this trivial function is likely to introduce a lot of additional
genomic sequence to the next iteration that actually was not present in the graph. This
effect can be illustrated with the example in Figure 21. In the CDBG the unitig with the
identifier 3 (UID3) has two colors, i.e. k-mers of UID3 originate from two individuals. All
k-mers of UID3 are present in the individual corresponding to the blue color but only few
k-mers of UID3 are present in the individual corresponding to the green color. Let i be
the counter of the iterations of the multi-k method. If function f(UID3, k) is evaluated
and returns true for the current value of k then UID3 in its entirety is utilized for the
graph construction in iteration i + 1. Therefore, the questions remains which individuals
should add UID3 to their input data for iteration i + 1. If UID3 is naively added to the
set of sequences of each individual that contributed a color to UID3 in iteration i then, in
the example above, the individual corresponding to the green color will gain k-mers in
iteration i + 1 that are actually not its original input data.

The challenge in finding a function f for a CDBG is to incorporate the color infor-
mation into the decision which individuals that contributed k-mers to a particular unitig
in iteration i will receive its full or partial unitig sequence in iteration i + 1.

The idea for function f in the prototype of the PopIns2 multi-k method is a coeffi-
cient 1

δ that defines what minimum fraction of k-mers in a unitig have to be present in an
individual in order to add the entire unitig to the individual’s input data for the next
iteration. However, using a minimum fraction of a unitig as threshold means that f has
to check at least ⌈∣unitig∣ ⋅ 1δ ⌉ bits in the color matrix C per individual for all unitigs. This
number of bits to check rapidly becomes impractical for a large number of individuals. To
reduce the number of bits that f has to check per unitig, a k-mer sampling scheme was
implemented in PopIns2. Let δ ∈ N≥2 and g ∶ δ × l → P a function that returns an ordered
set P of k-mer positions from a unitig of k-mer length l. Function g returns a set of δ + 1
equidistant k-mer positions between and including 0 and l − 1. For instance, g returns
the set {0, ⌈ l−12 ⌉, l − 1} if δ = 2. It follows that an interval [pi, pi+1] of any two contiguous
numbers pi, pi+1 ∈ P span a range of ∣unitig∣/δ k-mer positions in a unitig.

Now, f uses the sampled k-mer positions P to estimate whether there are enough k-mers
of a certain color in the unitig in order to satisfy the minimum threshold ⌈∣unitig∣ ⋅ 1δ ⌉ and
add the unitig sequence to its input of iteration i + 1. Under the assumption that k-mers
with a certain color appear continuously in the unitig, f can test the minimum threshold
by only checking O(δ) bits per color. This is done by testing whether there exists a
pair (pi, pi+1) of any two positions pi, pi+1 ∈ P (pi, pi+1 are contiguous in P) where their
corresponding k-mers in the unitig both have the color bit set for a particular individual.

The prototype of the multi-k method in PopIns2 was implemented with δ = 2, i.e. an
estimated 50% of the k-mers of a unitig have to be annotated with a particular color
in order for the unitig to be added to the sequences of the corresponding individual.
Figure 22 illustrates f with δ = 2 applied to a unitig of length l = 11 and three colors.

82

000 0

0 000

0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1

0k-mer position p ...

color matrix

unitig

l-1...

in
di

vi
du

al
s

k-mers

P p1 p2 p3

Figure 22: Sampling and inspection of k-mer positions in a unitig. The grey bar is a
unitig of k-mer size l = 11. Each k-mer has a color vector of three bits (red, blue, green).
The sampled unitig positions P are p1 = 0, p2 = 5 and p3 = 10.

It follows that there are ∣P ∣ = δ + 1 = 3 sampled k-mer positions (P = {0,5,10}) and
⌈∣unitig∣ ⋅ 1δ ⌉ = ⌈11 ⋅0.5⌉ = 6 is the minimum threshold. Unitig positions contiguous in P are
the pairs (0,5) and (5,10). Therefore, if the bits for a particular color are set for the k-
mers at positions 0 and 5 or at positions 5 and 10 then the unitig is added to the sequences
of the corresponding individual. In Figure 22 the individual corresponding to the red color
has the bits set at the sampled positions 0, 5 and 10 such that the unitig will be added,
the individual corresponding to the blue color has the bit set only at the sampled position
10 such that the unitig will not be added and the individual corresponding to the green
color has the bits set at the sampled positions 5 and 10 such that the unitig will be added.

To highlight the benefit of the k-mer sampling scheme in terms of checked bits, let’s
assume that f would check every k-mer position in a unitig from 0 to l − 1 for every
color without the k-mer sampling. In the given example of Figure 22 function f without
k-mer sampling needs to find a continuous run of at least six k-mers in order to exceed
the minimum threshold. Hence, f would check six red bits (results in true), six blue
bits (results in false) and ten green bits (results in true). In contrast, f with the k-mer
sampling scheme g checked the two red bits at p1, p2, the three blue bits at p1, p2, p3 and
the three green bits at p1, p2, p3.

4.3.5 The Alignment score factor

This subsection describes a minor update in the implementation between the first and
second major release of the PopIns workflow. This minor update gives the freedom to the
user to adjust a crucial selection criterion for detecting unmapped reads in an individual

83

before its contig assembly. In contrast to the previous chapters, this change affects the
assemble module of PopIns2.

The assemble module implements a set of criteria [Kehr et al., 2016, 2017] to evaluate
whether a read has a low quality alignment to a given reference genome and consequentially
is added to the set of reads that is considered for the contig assembly. One important
criterion of that set includes the alignment score of a read. As the PopIns2 workflow
starts from a set R of reference aligned short-reads of every individual (chapter 2.7) it is
expected that every r ∈ R has a corresponding alignment score ASr. Assuming that r is
part of an unobtrusive read pair (in PopIns defined as a pair of reads of oriented towards
each other and with less than 1000 base pairs inner distance) then the alignment quality
of r is considered low if the inequation

ASr < ASF ⋅ ∣r∣

holds. The ASF is the alignment score factor , where ASF∈ [0,1], that can be specified
via the command line interface of PopIns2 (--alignment-score-factor FLOAT). With a
growing ASF the reads with a high AS are still considered having a low alignment quality.
In other words, a higher ASF will filter more reads into the set of unaligned and poorly
aligned reads per individual.

4.3.6 Availability and resources

This last chapter of the methods summarizes all available resources to get started with
PopIns2 and provides practical knowledge to apply PopIns2 to large data sets.

Source code, dependencies and test data. PopIns2 was built upon the source code
of its predecessor PopIns [Kehr et al., 2016]. The new software, PopIns2, is available
from a separate Github project18. PopIns2 is written entirely in the C++ programming
language and was developed for the usage on 64-bit UNIX based operating systems.

The source code can trivially be compiled via a provided Makefile once all dependencies
are installed and specified accordingly in a configuration file. As dependencies, PopIns2
requires the Bifrost [Holley and Melsted, 2020] and seqAn [Reinert et al., 2017] C++
libraries, the BWA [Li, 2013] read alignment software, the Sickle read trimming software19

and at least one of the three supported genome assemblers (Minia [Chikhi and Rizk,
2013], Velvet [Zerbino and Birney, 2008] or SPAdes [Bankevich et al., 2012]). Minia is
automatically downloaded and supported with the recommended installation process of
PopIns2. Mind that Minia requires a Python2.7 language interpreter. Further details
about the installation and application of PopIns2 can be found at the Github project page.

18https://github.com/kehrlab/PopIns2
19https://github.com/najoshi/sickle

84

The Github project also refers to test data20 to apply PopIns2 to a minimum work-
ing example (MWE). The MWE comprises simulated reads from three human individuals
and a modified genomic sequence of the human chromosome 21. If PopIns2 is applied to
the data of the MWE with default parameters, the user will obtain a small set of NRS
genotyped for all three individuals.

Workflow language support. PopIns2 is implemented as a program of multiple,
consecutively executable modules (Figure 14) which seamlessly integrate into workflow
languages like Snakemake [Mölder et al., 2021]. The Github project of PopIns2 refers to
another auxiliary repository21 that contains a generic Snakemake workflow for a quickstart
of PopIns2 with minimal dependencies. That workflow only requires a reference genome,
a list of sample identifiers and a predefined project structure. Figure 23 shows the
Snakemake workflow for the three individuals of the MWE. The workflow has a directed
non-cyclic progression of the PopIns2 modules where every module reports its successful
or unsuccessful execution status to its successor and the final control instance, called
all -rule.

SIMD and hardware optimization. All building blocks of PopIns2 were carefully
evaluated and chosen for its computational efficiency, with no exception to new merge
module and the external Bifrost library. The graph data structures implemented in
Bifrost are highly optimized for their performance in terms of build and accession time.
Among those optimizations is the usage of single instruction multiple data (SIMD op-
erations, chapter 2.6) instructions which are, in practice, specific to the CPU architecture.

As PopIns2 is designed to process large data sets, it is recommended to distribute
its workflow among a high performance computing (HPC) environment, like a cluster
environment of many computational units (nodes). However, with the SIMD instructions
enabled (default behaviour) the executable, binary program of PopIns2 is specific to the
CPU architecture of the machine it was compiled on. Consequentially, running PopIns2
on a HPC cluster environment of heterogeneous nodes likely leads to a failure at some
point of the workflow. It is left to the user to distribute the PopIns2 workflow among
a suitable HPC cluster environment. Optionally, with noticeable loss in computational
performance, SIMD instructions can be disabled in Bifrost and PopIns2.

20https://doi.org/10.5281/zenodo.4890793
21https://github.com/Krannich479/PopIns2_snakeproject

85

assemble:
sample_0001

assemble:
sample_0002

assemble:
sample_0003

merge_contigs

contigmap:
sample_0001

place_refalign

contigmap:
sample_0002

contigmap:
sample_0003

place_splitalign:
sample_0001

place_splitalign:
sample_0002

place_splitalign:
sample_0003

place_finish

genotype:
sample_0001

genotype:
sample_0002

genotype:
sample_0003

check_genotype_status

all

Figure 23: Snakemake workflow of the PopIns2 modules applied to three individuals.

86

5 Results

This fifth chapter describes the evaluation process of PopIns2 and assesses results from
different intermediate stages of the program as well as from its workflow in total. First,
PopIns2 is assessed using simulated genomic sequences of many individuals such that
the NRS detection can be evaluated on a know variant callset. Thereafter, PopIns2 is
applied to different cohorts comprising real genomic data where particularly the aspect
of computational performance is highlighted but also the insertions after the entire
workflow are assessed. To rate the results and performance of PopIns2, it is predominantly
compared to its predecessor PopIns v.1.0.1 [Kehr et al., 2016], Pamir [Kavak et al., 2017]
and McCortex [Turner et al., 2018], as they were found to be the only other programs
tailored to the classification in chapter 4.1.3 that can be successfully applied to reasonable
large data sets.

5.1 Assessment of PopIns2 using simulated data

The simulated data mentioned in this chapter was generated entirely for the purpose of
the assessment of PopIns2 [Krannich et al., 2021] and is, as opposed to the real genomic
sequence data later in this chapter, not publically available in its entirety. However,
chapter 5.1.1 provides a comprehensive description of the simulation process such that
an interested user can repeat the evaluation. The data simulation was inspired by the
original publication of PopIns ([Kehr et al., 2016], chapter 3.5.1) and thus implements
similar concepts. In 5.1.2, the simulated data is used to determine how different setups of
the PopIns2 workflow perform in terms of NRS detection and how they compare to other
tools.

5.1.1 Data simulation pipeline

The following workflow (Figure 24) is designed to generate many sets of paired short-read
sequencing data which, if aligned to a given reference, yield NRS. The reference used for the
workflow is the human chromosome 21 (downloaded from ftp://ftp.ncbi.nlm.nih.gov/
genomes/all/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/
GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz on November 8th, 2016) as

87

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz

it is the chromosome with the fewest total base pairs of the human reference genome at
version GRCh38.

Let Isim be a set of sequences from the chromosome 21. Isim contains 500 randomly
selected sequences of mean length 1455.17 with standard deviation of 1526.08, a minimum
length of 41 and a maximum length of 9190. Further, every two sequences in Isim are
non-overlapping, contain no unidentified bases ’N’ and are at least 1000 bp distant from
the nearest ’N’ sequence in chromosome 21. The sequences Isim were cut from the original
human chromosome 21 resulting in a modified chromosome 21 (chr21−).

NRS-2 NRS-3 NRS-4 Isim

Chr21

Chr21-

NRS-1 NRS-2

NRS-2

NRS-1

NRS-1

Individual1-h1

IndividualN-h1

......
NRS-2 Individual1-h2

Individual2-h1

NRS-2 NRS-3 Individual2-h2

NRS-1 IndividualN-h2

NRS-1
NRS-2
NRS-3

Truthset

Callset
(supercontigs)

PopIns2
All-vs-all alignment

Precision/Recall

Figure 24: Pipeline for data simulation and callset evaluation. The data simulation of
this pipeline results in a set of paired short-reads per simulated individual that, if aligned
to a modified reference chromosome, yields NRS (truthset). A set of NRS generated by
a SV caller (callset) from the sets of reads is compared to the truthset to determine the
precision and recall of the SV detection.

88

The chr21− is used to generate data of diploid individuals. First, for each simulated indi-
vidual two copies (haplotypes) h1, h2 are created from chr21−. Next, two sets Ih1 , Ih2 ⊆ Isim
are selected and its sequences incorporated into h1, h2, respectively. At this point the two
haplotypes h1 and h2 together contain the set of sequences Ih = Ih1 ∪ Ih2 as NRS with
respect to chr21−. Note that this way of simulating NRS with respect to chr21− does
not add artificially generated sequence to the data simulation pipeline but only keeps
operating on real human sequences that originated form chromosome 21. Finally, from
the two haplotypes h1, h2 reads are generated [Huang et al., 2012] and aligned [Li, 2013]
to the reference genome. The generated reads are paired short-reads with the error profile
for individual base pairs as with the Illumina HiSeq 2500 sequencer, 150 bp long, of 15x
read coverage per haplotype, generated from 300 bp fragments (standard deviation σ = 50
bp) of the simulated haplotypes and aligned to chr21−.

Using the described data simulation pipeline, 100 individuals were simulated resulting in
100 sets of reads at 30x total read coverage. The set of reads with their corresponding
alignment information of all individuals are used as input data for PopIns2, PopIns and
Pamir, the raw sequences are used as input data for McCortex [Turner et al., 2018]. All
four tools return a set of NRS across all individuals (callsets).

5.1.2 Evaluation of NRS callsets

The callset C of each SV calling method is compared to the truthset T , which is the
union of Ih from all individuals. To compare a callset with T an all-vs-all alignment was
performed, i.e. every sequence t ∈ T is aligned to every c ∈ C. An alignment is reported if
STELLAR [Kehr et al., 2011] finds and an alignment with a minimum length of 50 base
pairs and a maximum error rate of 0.05.

Once all alignments under the given conditions are computed, a bipartite matching proce-
dure (Figure 25) is used in order to determine the number of true positives (TP), false
positives (FP), false negatives (FN) and redundant alignments . Every t ∈ T that is at least
90% covered by at least one individual alignment with a sequence c ∈ C is counted as a TP.
All remaining t ∈ T that were not counted as TP are counted as FN, i.e. FN = ∣T ∣ − TP .
The number of FP is calculated as ∣C∣ − TP . This definition of FP implies that in this
evaluation is more stringent than prior analysis [Kehr et al., 2016; Rizk et al., 2014]
because redundant alignment are counted as FP. The number of redundant alignments is
calculated as the number of all c ∈ C that cover 90% of a t with an alignment minus TP.
From the counts the recall, precision and F1 score of the NRS detection are calculated
as TP

TP+FN ,
TP

TP+FP and TP
TP+ 1

2
(FP+FN) , respectively. The F1 score is the harmonic mean

between precision and recall.

To evaluate the new merge method of PopIns2, each set of reads of the 100 simulated
individuals got passed to the PopIns2 assemble module to create a set of contigs per indi-
vidual before passing all sets of contigs to the new PopIns2 merge module. Additionally,

89

Truthset

Callset

TP

TP

TP
FP

FP

(FP)

(FP)

FN

TP

TP

TP

Figure 25: Bipartite matching graph between a truthset and callset of NRS.

the contig assembly of the PopIns2 assemble module was assessed with different external
assembly software: Minia [Chikhi and Rizk, 2013] as it is a more recent software, Velvet
[Zerbino and Birney, 2008] for backward compatibility with the predecessor PopIns and
SPAdes [Bankevich et al., 2012] because it is a widely established software. Another
entrenched software [Peng and Xu, 2011] has a seemingly fitting objective to be considered
but was quickly ruled out due to its lack of compatibility with the format the aligned
reads are stored in.

ASF Avg. selected reads per sample Avg. contigs per sample
0.50 19647.20 152.2
0.67 20921.86 145.1
0.75 21358.84 140.2

Table 1: Average number of selected reads and contigs per simulated individual
resulting from the read selection and contig assembly of the PopIns2 assemble
module.

90

Impact of the ASF parameter on the assembly step. After the read alignment in
data simulation pipeline, each individual yields an average of 7.49 million reads where 7.38
million reads are fully or partially aligned to their correct original position in chr21−, 12.7
thousand reads are labelled as unaligned and 99.1 thousand reads are fully or partially
aligned to chr21− but at a wrong location with respect to their position of origin. With
the given alignment information per individual, the ASF parameter (chapter 4.3.5) plays
a key role for the number of reads being selected for the contig assembly of the PopIns2
assemble module. A range of practical values for the ASF parameter is shown in Table 1.
Among the reads being selected for the contig assembly 35.36%, 41.84% and 44.07% of the
reads have a poor alignment to chr21− with ASF parameter setting 0.50, 0.67 and 0.75,
respectively. Interestingly, within the scope of tested ASF values there is an inversely
proportional relation between the number of selected reads and the number of contigs
assembled with Minia (default assembler of the PopIns2 assemble module).

Evaluation of the merging step. The NRS detection of PopIns2, PopIns, Pamir
and McCortex was evaluated taking the contig assemblies from the three different ASF
parameter settings, using different numbers of individuals (subgroups) and applying the
different external assembly methods. The callset of each setup is evaluated for its recall,
precision and F1 score with respect to the corresponding T (there are multiple truthsets
for different numbers of individuals). Pamir reports the detected NRS (in its original
publication called events) with 1000 bp flanking regions of the reference genome. To
avoid that the all-vs-all alignment underlying the calculation of precision and recall is
penalized because of the flanking regions (the flanking regions are not part of the t ∈ T),
the flanking regions were trimmed off prior to the evaluation of the callset.

The results from the evaluation are summarized in Table 2 and 3. Among all tested setups
the combination of PopIns2 with Minia exhibits the highest precision. Pamir exhibits the
higher recall compared to the setups with PopIns and PopIns2. Velvet and SPAdes were
discarded from further analysis as early results indicated that Minia performs best in the
context of NRS detection with PopIns2. PopIns2 was tested with ASF parameter values
0.5 (default in PopIns), 0.67 (default in PopIns2) and 0.75 (very lenient read selection).
The evaluation with the group of 50 individuals showed a total gain in F1 score of 16 and
18.7 percentage points for PopIns and PopIns2, respectively. The three best performing
setups in terms of F1 score differ by 5.5 and 4.8 percentage points for the group of 50 and
100 individuals, respectively.

A more detailed analysis of the best performing methods and setups is shown in Figure 26.
The recall and precision of PopIns, PopIns2 and Pamir were evaluated using an increasing
number of individuals. PopIns2 has the best recall for smaller numbers of individuals up
to about 20 individuals, then Pamir outperforms the best setup of PopIns2 by 2.2 to 4.7
percentage points. The recall of each setup of PopIns and PopIns2 is virtually constant.
Pamir revealed a two and a half times increase in recall from 0.29 to 0.77 within the first
20 individuals before reaching its plateau and steady recall. The precision of PopIns2 is

91

SV caller Assembler #Individuals ASF Recall Precision F1 score
PopIns Velvet 50 0.50 0.623 0.536 0.576
PopIns Minia 50 0.50 0.591 0.589 0.590
PopIns Minia 50 0.67 0.715 0.748 0.731
PopIns Minia 50 0.75 0.742 0.758 0.75
PopIns2 Minia 50 0.50 0.589 0.616 0.602
PopIns2 Minia 50 0.67 0.709 0.781 0.743
PopIns2 Minia 50 0.75 0.734 0.854 0.789
PopIns2 SPAdes 50 0.67 0.673 0.669 0.671
Pamir - 50 - 0.776 0.837 0.805
PopIns2 Minia 100 0.67 0.708 0.789 0.746
PopIns2 Minia 100 0.75 0.737 0.862 0.794
PopIns2 SPAdes 100 0.67 0.622 0.593 0.608
Pamir - 100 - 0.784 0.747 0.765
McCortex - 100 - 0.010 0.833 0.020

Table 2: Precision and recall of NRS callsets from simulated human short-read
data.

SV Caller Assembler #Individuals ASF #elements covered
from truthset |Callset| #elements being aligned

from callset
#elements being redundant

from callset
PopIns Velvet 50 0.50 297 554 298 1
PopIns Minia 50 0.50 282 479 286 4
PopIns Minia 50 0.67 341 456 347 6
PopIns Minia 50 0.75 354 467 370 16
PopIns2 Minia 50 0.50 281 456 281 0
PopIns2 Minia 50 0.67 339 432 341 2
PopIns2 Minia 50 0.75 350 411 355 5
PopIns2 SPAdes 50 0.67 321 480 337 16
Pamir - 50 - 370 442 418 48
PopIns2 Minia 100 0.67 347 440 349 2
PopIns2 Minia 100 0.75 361 419 365 4
PopIns2 SPAdes 100 0.67 305 514 323 18
Pamir - 100 - 384 514 480 96
McCortex - 100 - 5 6 5 0

Table 3: Counts of the precision and recall statistics of Table 2. The truthset for
the group of 50 and 100 individuals contains 477 and 490 contigs, respectively.

relatively constant at 0.77 to 0.86 depending on the setup with the exception of a slight
drop of up to 4 percentage points at about 15 to 20 individuals. PopIns2 shows the best
precision for all data sets of more than 40 individuals (precision of 0.87) with up to 6.6
percentage points over Pamir. Pamir has its highest precision at very few individuals and
shows a slowly linear decline in precision with an increasing number of individuals. The

92

Figure 26: Evaluation of the SV detection with PopIns, PopIns2 and Pamir using simulated
data. Both PopIns and PopIns2 were set to use Minia as external assembler for the
individuals’ contig assemblies but used their default settings for the ASF value (0.50 for
PopIns and 0.67 for PopIns2) if not stated otherwise. For each software precision, recall
and F1 score are shown depending on an increasing number n of individuals given as input
data (n = 1,2,3,4,5,10,20,30,40,50,100).

linear decline in precision is predominantly attributed to the rapid increase of redundant
sequences in the callsets of Pamir (numbers shown in Table 3).

For each SV caller the TP among the NRS callsets were categorized by their length in base
pairs to verify whether the detection has a bias towards certain contig lengths. However,
the length distributions resulting from all tested programs are approximately proportional
to the length distribution of the truthset (of 50 individuals). Pamir’s callset has a few
more NRS in accordance with the truthset for the length categories smaller than 1000 bp
while PopIns2 has a few more NRS in the length categories from 1000 to 5000 bp. It is
important to note here that PopIns2 does not report NRS smaller than 2k − 1 due to (the
recommended) graph simplifications of Bifrost. All tests of PopIns2 using simulated data
were performed with k = 63.

5.1.3 Preliminary results utilizing the multi-k module

In chapter 4.3.4 a multi-k algorithm for the construction of a CDBG was introduced. As
stated earlier, this method is still experimental and not part of the official release build
of PopIns2, yet. Nevertheless, preliminary results using the simulated data indicate the
potential of this method.

The multi-k method is implemented in a separate module of PopIns2. To assess and
compare the precision and recall of the method the PopIns2 multik module was utilized
to compute a CDBG from the sets of unaligned and poorly aligned reads for all growing

93

10−100 100−200 200−500 500−1K 1K−2K 2K−5K 5K−10K

0
20

40
60

80
10

0
12

0

Size Range

Q
ua

nt
ity

Truthset
Pamir
PopIns2 (default)
PopIns2 (ASF=0.75)

Figure 27: Number of TP from the NRS callsets separated by different size ranges. The
grey line shows the ground truth (numbers from truthset). The colored lines show the
results for PopIns2 and Pamir. The analysis was performed with the simulated data of 50
individuals.

subsets of individuals as in Figure 26. The iteration was set to start with an initial k-mer
size k = 27 growing by the step size ∆k = 20 until it reaches the maximum k-mer size
kmax = 127. Subsequently, the resulting CDBGs were used as input data for the merge
module (using parameter −y for the GFA file, −z for color file and −k to match the
k-mer size of 127 where the multi-k module stopped). For comparison with Table 3, the
computation of supercontigs using the final CDBG that was created from the multi-k
module and the full set of 100 individuals resulted in 479 supercontigs.

Even though the supercontig callsets resulting from the workflow including the multi-k
module seem promising at first, e.g. with the simulated data of all 100 individuals the
cardinality of the callset has the smallest absolute deviation from the truthset among
Pamir and the best performing setups of PopIns2 without the multi-k module, there is
a conspicuous tendency in the tests with larger sets of individuals. Figure 28 shows an
excerpt of the results from PopIns2 with ASF=0.75 and Pamir again (as they were the

94

best performing software and setup) together with the results from the PopIns2 workflow
including the multi-k module. The PopIns2 workflow including the multi-k module has
a decent performance up until an input of 80 individuals improving the precision and
recall of PopIns2 across all sizes of input sets larger than five individuals. However, what
raises concern at the present state of the method is the decline in recall and an even
steeper decline in precision for the NRS detection if more than 80 individuals are provided
as input data. The test with 100 individuals resulted in a worse F1 score than the test
without the usage of the multi-k module and Pamir. As PopIns2 aims to process much
larger numbers of individuals in practise this has to be subject to further analysis.

5.2 Application of PopIns2 using the reads of many human
individuals

As opposed to the last chapter, the following evaluations of PopIns2 utilize real human
short-read sequencing data. Real sequencing data is typically a lot more complex than
simulated data, i.e. both NRS detection and genotyping methods have to deal with
more sequencing artifacts as well as more repetitive sequences. Moreover, the following
applications utilize a much larger number of individuals with a much larger amount of
read data. Together, solving NRS detection and genotyping on real genomic sequences
as well as very large quantities of data are ultimately the real challenge and objective of
PopIns2.

Figure 28: Evaluation of the SV detection with PopIns2, PopIns2 with the multi-k
module and Pamir using simulated data. For each software precision, recall and F1

score are shown depending on an increasing number n of individuals given as input data
(n = 1,2,3,4,5,10,20,30,40,50,100).

95

5.2.1 Detecting NRS in the Polaris Diversity Cohort

To assess the new merge module on real population-scale data sequencing data PopIns2 was
applied to the Polaris Diversity Cohort (PDC). The PDC comprises short-read sequencing
data (Illumina HiSeqX platform) of 150 individuals from three continental groups (AFR,
EUR, EAS) at a targeted sequencing coverage of 30x per individual. Since PopIns,
PopIns2 and Pamir all require aligned reads as input data, the reads of each individual
were aligned [Li, 2013] to the human reference (hg38) prior to the analysis. Pamir was
not thoroughly assessed in this analysis because the program execution exceeded the
longest possible computation time of 28 days using 16 threads on the HPC cluster in use
[Krannich et al., 2021].

The assembly step. The aligned reads (BAM file format) are used as input data for
the PopIns2 assemble module. PopIns2 assemble with default parameters produced an
average of 8049 contigs per individual from about 1.2 million reads that were classified as
unaligned or poorly aligned to the reference genome. Later, for a fair comparison these
sets of contigs were subsequently used for both the PopIns and PopIns2 merge module.
The contig assembly reduces the disc memory requirement from an average 1.6 GB for
the selected reads to 6 MB for the set of contigs.

The individual program executions (instances) of PopIns2 assemble can be effectively
distributed across a HPC cluster environment and support multi-threading CPU archi-
tecture for the computationally most intensive tasks (decontamination and assembly).
For the analysis of the PDC the PopIns2 assemble instances were distributed across 16
compute nodes (Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz) that support the same
CPU instruction set, s.t. SIMD instructions stayed enabled (default). The individual
instances took approximately 80 hours wall clock time to finish.

The merging step. The sets of contigs from the PopIns2 assemble module were used
as input data for the PopIns2 merge module. The merging of the contigs resulted in
15306 supercontigs, generated in 50 minutes CPU time using a single thread (total wall
clock time was 139 minutes, see Table 4). Building and traversing the CDBG are the
dominating factors for the total computation time with a ratio of approximately 1 ∶ 3,
respectively. In comparison, using the same contigs as input data for PopIns, 13456
supercontigs were reported in 94 minutes CPU time using a single thread. Figure 29
shows the length distributions for the sets of supercontigs generated with PopIns and
PopIns2. Both callsets exhibit similar length distributions with characteristic peaks at
the 300 base pairs mark which is known to be caused by SINEs/Alu elements [Deininger,
2011; Ade et al., 2013] in the human DNA. Moreover, the right panel of Figure 30 shows
a monotonic increase in the number of supercontigs generated with PopIns and PopIns2
merge for a growing number of individuals (i.e. the number of contig sets). Interestingly,
one can clearly observe a jump at the 100 individuals mark. The data from the PDC is
sorted by continental groups and therefore at each 50 individuals a new continental group
is added to the merging process.

96

The jump at the 100 individuals mark is due to the additional continental group (AFR)
being introduced to the merging process at this mark.

Figure 29: Length histograms of the supercontigs from the PDC generated with PopIns
and PopIns2. Every panel shows the same data but in different zoom levels on the x-axis.

Function Wall clock time [min]
Graph build (threads) 35 (1)
Graph simplification 3
Graph color annotation 2
Graph traversal 98
Other 1

Table 4: Wall clock times measured in minutes for PopIns2 merge computing
supercontigs from the PDC.

97

Figure 30: Benchmarks of the PopIns and PopIns2 merging modules using a growing
number n of contig sets of individuals from the PDC (n = 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100).
The left panel shows the CPU time in minutes, the middle panel shows the main memory
consumption in gigabytes and the right panel shows the number of supercontigs.

Further, the merge algorithms of PopIns and PopIns2 were examined for their scalability
by analysing their required CPU time and main memory consumption for a growing
number of individuals (left and middle panel of Figure 30). PopIns shows a rapid increase
in main memory consumption for growing numbers of individuals. Merging the contigs
of the entire PDC with PopIns requires almost 100 GB of main memory. In contrast,
PopIns2 requires only 342 MB of main memory for merging all 150 sets of contigs and
can store the corresponding CDBG in only 154 MB disc space. Within the scope of tests
performed using the PDC, both PopIns and PopIns2 show a computation time that grows
linearly with the number of individuals. However, the computation time of PopIns2 grows
substantially slower than that of PopIns.

Figure 31 shows two heatmaps which display the effect of the DBG parameter k (k-
mer length) and g (minimizer length) on the computation time and memory consumption
of PopIns2 merge in more detail. The upper heatmap indicates an inversely proportional
relationship of the minimizer length to the computation time, i.e. the larger g the lower
the CPU time. These observations follow the expectations that the choice of a larger
minimizer length results in fewer lookup operations (into the index structure of Bifrost, see
2.6) in order to determine whether a k-mer is a substring in one of the unitigs. The lower
heatmap shows that there is a favourable middle ground between k-mer and minimizer
length to optimize the memory consumption. A ratio of approximately 1.5 ∶ 1 between
k-mer and minimizer length appears to be a sensible setting. Therefore, k = 63 and g = 47
were chosen as defaults for PopIns2 merge.

98

Figure 31: Parameter space exploration of kmer size (k) and minimizer size (g).
Both parameters g and k influence the construction time, k-mer accession time and
memory requirement of the colored de Bruijn Graph and hence the performance of
PopIns2 merge. The upper heatmap shows the CPU time measured in minutes for
PopIns2 merge. The lower heatmap shows the peak memory consumption during the
computation of PopIns merge in megabytes. A high (undesired) and low (desired)
demand of computational resources are denoted in red and white, respectively. Each
tile in the heatmaps is the result of a parameter combination of odd values of k and g,
i.e. k = 31,33, ...,63 and g = 27,29, ...,59. Bifrost, and consequentially PopIns2 merge,
is constrained to odd values of k, odd values of g and g < k − 1.

99

5.2.2 Genotype assessment using the Polaris Kids Cohort

In addition to the PDC the Polaris project comprises short-read data of another study
group called the Polaris Kids Cohort (PKC). The 50 individuals of the PKC are the
F1 offspring of 100 parent pairs of the PDC. As of March 22nd, 2021, 49 individuals
of the PKC were publically available such that 49 family trios were utilized for NRS
detection and genotyping. The final genotype predictions of PopIns2 are assessed by
their concordance with Mendelian Inheritance rules (chapter 2.3) and expected allele
transmission rates.

Running PopIns and PopIns2 on the 49 trios. Analogous to the previous analysis
in 5.2.1, the read pairs of the PKC were aligned to the human reference genome and
used as input data for the PopIns2 assemble module. PopIns2 assemble generated on
average 8187 contigs per individual. Next, the 49 contig sets of the PKC together with
the corresponding 98 contig sets of the PDC were used as input data for the PopIns
and PopIns2 merge modules. PopIns and PopIns2 generated sets of 12889 and 15450
supercontigs, respectively. Figure 32 shows the overlap between the sets of supercontigs.
The two sets overlap each other by 19-65% depending on the chosen threshold for a
minimum sequence overlap by sequences of the orthogonal callset.

Finally, the placing and genotyping modules were applied to the callset of both PopIns
and PopIns2. The genotype predictions for all 147 individuals were jointly reported in
one multi-sample VCF file using VCFtools [Danecek et al., 2011].

Running Pamir on the 49 trios. As the 49 family trios and the PDC itself comprise
approximately the same number of individuals and read depth it is assumed that running
Pamir with the entire set of trios at once would not finish its computation within the
maximum computation time of the given HPC cluster. Therefore, Pamir was applied to
one trio at a time, i.e. Pamir computed 49 callsets from three individuals each.

Variant counts. The SV calling from the 49 trios resulted in a median of 2256, 2463
and 1873 NRS per individual for PopIns, PopIns2 and Pamir, respectively. Figure 33 shows
the number of NRS sequences per individual separated by the continental groups. The
NRS were counted in the final VCF files of insertions, i.e. every counted NRS was partially
or fully placed in the reference genome and genotyped. Further, a NRS was only counted
if it has a minimum length of 50 bp and its corresponding insertion is not genotyped as
homozygous reference (0/0). Consistent with previous studies [Wong et al., 2020; Abel
et al., 2020] the individuals from the African superpopulation (AFR) reveal the highest
average numbers of NRS. Since there is no unified NRS callset from all 49 trios available
for Pamir, the accordance of NRS between all three pairwise combinations of SV calling
methods was compared for each trio separately (Figure 34). PopIns and PopIns2 showed
the largest absolute intersection of NRS among those three pairs. The median number of
NRS per trio is 1650, 1898 and 6661 for PopIns, PopIns2 and Pamir, respectively.

100

Figure 32: Sequence overlaps between the callsets of PopIns and PopIns2 merge utilizing
the 147 related individuals of the PDC and PKC. The two panels show how many sequences
of the callset of PopIns (CP1) have a fractional sequence overlap with a sequence of the
callset of PopIns2 (CP2) and vice versa. To determine the sequence overlaps an all-vs-all
alignment between CP1 and CP2 was computed [Kehr et al., 2011] using standard parameter
(minimum alignment length of 50 and maximum error rate of 0.05). Here, a supercontig
s1 ∈ CP1 is overlapped by a supercontig in s2 ∈ CP2 (and vice versa) if one or multiple
local alignments of s2 span a fraction of a least t base pairs in s1. For both tools the
fraction of supercontigs overlapped by the orthogonal callset was tested for the thresholds
t = 0.1,0.2, ...,1.0.

Principal component analysis. In preparation for the subsequent analysis the geno-
type predictions of PopIns2 were subject to a sanity check. If the genotypes are fairly
accurate then a Principal component analysis (PCA) should be able to distinguish the
individuals by their SVs and to cluster them by their corresponding continental groups.
Analogous to the procedure in [Niehus et al., 2021] variants with the exact same genotypes
for all individuals and variants in linkage disequilibrium were excluded from the variants
that are utilized for the PCA as they are not or weakly informative to distinguish the
individuals. After the filtering the remaining 1787 variants from the final VCF file of
PopIns2 were used for a PCA (Figure 35). The first and second principal components
distinctly cluster the continental groups with 5.138% and 2.217% explained variance,
respectively.

101

Figure 33: Number of NRS per individual of the 49 trios separated by continental groups
(superpopulations).

Mendelian inheritance error rate and transmission rate. So far the majority of
evaluations assessed and quantified the NRS detection phase of the SV calling methods.
However, another quality measure for a callset of germline NRS is that the variant geno-
types comply with the Mendelian inheritance rules and expected transmission rate. Since
there is no truthset available for real data sets, deviations from these rules or expectations
aid the identification of NRS with spurious genotypes that the user might wants to
separate from the higher quality results. As PopIns and PopIns2 both report genotypes
and their corresponding genotype qualities for every NRS, the predicted genotypes can
be assessed using the pedigree information. Pamir will be subject to a slightly different
but comparable assessment since Pamir does not report genotype qualities or likelihoods
for its predicted genotypes.

The Mendelian inheritance error rate and transmission rate was calculated as in [Niehus
et al., 2021] for both PopIns and PopIns2. The Mendelian inheritance error rate is an
indicator how credible the genotype predictions are. It is the fraction of genotypes in
the offsprings that cannot be explained with the Mendelian inheritance rules and the
parental genotypes. The transmission rate is the frequency how often an allele is inherited
from parent to child generation. In the diploid human genome it is expected that a

102

600

400

200

0

593

515

226

M
ed

ia
n

in
te

rs
ec

tio
n

si
ze

NRS detection method

Pamir

PopIns2

PopIns

Figure 34: Median absolute intersection of NRS per trio for all pairwise combinations of SV
callers. The intersection of two NRS callsets A,B is the number of distinct pairs (a, b) of
sequences a ∈ A, b ∈ B which align with a reciprocal sequence overlap of at least 50% (using the
same software and parameters as in Figure 32). For a fair and comparable alignment among
all SV callsets the NRS of Pamir had their flanking reference sequences trimmed. NRS were
considered for alignment only if they are partially or fully placed in the reference genome, have
a minimum length of 50 bp and their corresponding insertion is not genotyped as homozygous
reference (0/0).

103

Figure 35: Principal component analysis (PCA) using PopIns2’s NRS genotype predictions
of the trio data. The NRS genotypes of all individuals were converted into a matrix M V ×I ,
where V is the number of variants and I the number of insertions. Duplicated variants
(rows of M) and variants with a significant Spearman correlation were removed from
M . Finally, 1787 remaining informative variants were used for the PCA. The red, blue
and green data points encode the African, European and East Asian superpopulations,
respectively.

heterogeneous carrier of a variant transmits the variant allele in 50% of the cases. In
this analysis the transmission rate was determined from all cases where one parent is a
heterozygous carrier and the other parent is a homozygous non-carrier. Additionally, since
heterozygous variant calls were found to be particularly overabundant among predictions
with low genotype quality, the same assessments of Mendelian inheritance error rate and
transmission rate were conducted with only a subset of the NRS callsets where variants
are in Hardy-Weinberg Equilibrium (HWE, chapter 2.3).

Figure 36 shows the results of the genotypes assessment for the insertion callsets of PopIns
and PopIns2. The analysis of the Mendelian inheritance error rate shows that the callset
of both tools can be filtered to a conservative callset of at most 1% error rate. For both
conditions (filtered and unfiltered) the number of insertions consistent with the Mendelian
inheritance rules is virtually identical. However, the HWE filtered subsets show that

104

Figure 36: Mendelian inheritance patterns and transmission rate for the insertion genotypes
of the 49 Polaris trios. The top row shows the results for the full set of variants, the bottom
row shows the results for only the variants that are in Hardy-Weinberg Equilibrium. The
left panels show the Mendelian inheritance error rate by the number of insertions per trio
that are consistent with the Mendelian inheritance rules. The middle panels show the
transmission rate of insertions unique to one trio with one heterozygous parent by the
number of overall transmissions. The right panels show the transmission rate of insertions
unique to one trio with one heterozygous parent by Mendelian inheritance error rate. Each
data point in the panels corresponds to an observation of decreasing minimum genotype
quality (from left to right on the x-axis). The grey lines denote the ideal values.

PopIns has a marginally lower (≤ 0.25 percentage points) Mendelian inheritance error rate
and reports more consistent insertions than PopIns2. Interestingly, the marginal tendency
in terms of the Mendelian inheritance error rate inverts for more lenient genotype quality
thresholds, i.e. PopIns2 has a sightly lower Mendelian inheritance error rate. For both
the unfiltered and HWE filtered condition PopIns2 has a slightly lower absolute deviation
from the targeted 50% transmission rate but reports fewer total observed transmissions.

For comparison the genotypes reported with Pamir undergo the same assessments as with
PopIns and PopIns2. However, since Pamir only reports final genotype predictions but no
corresponding likelihoods or genotype qualities there is only one data point (blue) added
to the upper panels of Figure 36. As a reminder, the results of Pamir were computed

105

using one trio at a time. The data points in Figure 36 are the median values over the
individual measurements for each trio. There is no data for Pamir in the lower panels
because the three individuals of one trio are not enough data to compute a HWE. The
Mendelian inheritance error rates determined for Pamir have median value of over 8.5%
which is more than twice the percentage points of any observation from the results of
PopIns and PopIns2. The distributions of observed values with Pamir are shown in Figure
37.

5.2.3 Detecting NRS in 1000 Icelandic genomes

In 4.1.1, it was elucidated that the motivation, objective and major challenge for the
development of PopIns2 was the scalability, i.e. to enable the NRS detection for a greater
number of individuals simultaneously. In this third and last evaluation with real human
sequencing data the scalability of the new merge algorithm is put to a test by utilizing a
previously prohibitive number of individuals [Kehr et al., 2017]. Here, PopIns2 merge is
applied to a data set of 1000 Icelandic individuals [Gudbjartsson et al., 2015a; Jónsson
et al., 2017].

Previously, the raw NGS data had been processed routinely by the PopIns assemble
module such that a set S of unaligned and poorly aligned reads had already been selected
per individual. In order to obtain the favourable set of contigs from PopIns2 over PopIns

Figure 37: Mendelian inheritance patterns and transmission rate for the insertion genotypes
of the 49 Polaris trios. The panels show the distributions resulting from runs of Pamir
with one family trio each. Grey lines denote ideal values. The axes describe the same
dimensions as in Figure 36.

106

Figure 38: Length histograms of the supercontigs from the 1000 Icelandic genomes cohort.
Every panel shows the same data but in different zoom levels on the x-axis.

Function Wall clock time [min]
Graph build (threads) 3 (24)
Graph simplification 1
Graph color annotation 1
Graph traversal 220
Other 1

Table 5: Wall clock times measured in minutes for PopIns2 merge computing
supercontigs from the 1000 Icelandic genomes.

(as shown with the simulated data in chapter 5.1.2) the set S per individual was manually
assembled with Minia [Chikhi and Rizk, 2013]. The contig assembly resulted in an average
of 6301 contigs per individual. The 1000 sets of contigs were taken as input data for the
PopIns2 merge module resulting in a set of 61,515 NRS. The length distribution of the
NRS is shown in Figure 38.

The computation of the PopIns2 merge module took 4 hours and 45 minutes wall clock
time (3 days, 18 hours and 1 minute CPU time) using 24 CPU core. The contributions to
the total computation time are shown in Table 5. As shown in the analysis for the PDC
(chapter 5.2.1), building and traversing the CCDBG are the dominating factors for the
total computation time. The peak memory requirement during the computation was 2.47
gigabytes of main memory.

107

6 Conclusion and Future Work

This final chapter summarizes and concludes the presented work on the detection of NRS
from population-scale NGS data. The benefits and limitations of the presented method
will be discussed and put into context of today’s development and direction of the field.
Finally, a perspective on potential future extensions to this method and its application
will be provided.

Summary

This thesis introduced variants in the human genome as a major driver for environmental
adaptation [Norman et al., 2017] and medical conditions. Today, improving medical
surveillance and genomic data aggregation continues to determine structural variants as
a root cause for severe and sometime rare diseases [Wilfert et al., 2021]. Breakthrough
technologies like NGS have greatly improved our ability to sequence large amounts of
individuals in a much shorter period of time and to make variant detection a routine
analysis. However, detecting each different class of large structural variants from NGS
data has comprised several algorithmic challenges. Non-reference sequences, large genomic
sequences absent from a given reference genome, are a less investigated and particularly
difficult to detect class of SV as they inevitably require de novo assembly. De novo
assembly becomes even more difficult, often impossible, if the sequencing data yields
a low average genome coverage [Alkan et al., 2011]. Unfortunately, larger sequencing
projects comprising up to hundreds or thousands of individuals [McVean et al., 2012]
historically have tended to compensate a higher yield per cost with a lower average
genome coverage per individual. Thus, NRS detection and genotyping from a single such
individual has a lower chance of success or being comprehensive [Kavak et al., 2017]. The
limitation of analyzing one individual at a time motivated the development of methods
[Kehr et al., 2016; Kavak et al., 2017] which utilize the large quantity of sequenced
individuals jointly during the NRS detection. Both most eminent methods specifically
tailored for the detection of NRS from the NGS data of many individuals, PopIns and
Pamir, were assessed in terms of assembly quality, consistency of the genotypes and com-
putational performance. Each method revealed its superiority in a subset of those aspects.

109

An ongoing trend of national cohorts and other population-scale sequencing projects as
well as recent practical implementations of efficient data structures eventually motivated
the development of another NRS detection method scaling to hundreds or thousands of
individuals while maintaining high precision and recall. This thesis presents the results of
this development, PopIns2, in unprecedented extend and detail. While building on the
established predecessor PopIns, PopIns2 introduces an entirely novel approach to generate
a NRS callset jointly from the contigs of many individuals. The novel approach first
utilizes a fast and highly memory-efficient software [Holley and Melsted, 2020] to construct
a colored and compacted de Bruijn Graph. The key idea is that PopIns2 approximates
a weighted minimum path cover given the graph and a set of constraints in order to
generate a path. Each generated path represents an NRS present in at least one of a
population’s individuals. PopIns2 has a greatly improved computational performance
compared to PopIns and Pamir, i.e. it can process the same numbers of individuals in
less time and main memory. Additionally, evaluations on simulated data showed that the
NRS callsets from PopIns2 rank among the most precise and sensitive.

PopIns2 is a freely available C++ program under the permissive GNU GPL v2 license.
All its dependencies are again non-commercial and freely available. The modular design
of PopIns2 facilitates the evaluation of intermediate steps and results as well as the
integration of alternative external software for particular tasks of the workflow. The
full workflow of all PopIns2 modules has only minimal sequential dependencies and can
be trivially automated with a workflow management system and effectively distributed
among a HPC cluster environment.

Conclusion

Even though the benefits of genomic data acquisition and analysis at population-scale
is known to yield tremendous potential for a future personalized medicine [Taylor et al.,
2015; Boycott et al., 2017; Splinter et al., 2018] it requires an ongoing effort to analyze this
staggering amount of data. To be able to understand the cause and to develop treatments
for cancer, Mendelian diseases, rare and to date unknown diseases we have to reveal
their genetic origin and must be able to routinely identify them among a vast quantity of
information. The methods and software in this thesis shall provide a contribution to this
global scientific effort. PopIns2 provides a practical solution to detect one of the many
potentially disease causing structural variants in the genome, the non-reference sequences,
from the whole-genome sequencing data of many individuals. Moreover, the algorithmic
approaches and analyses shall provide a stimulus for ideas and hint about pitfalls when
wielding population-scale data and detecting NRS.

110

PopIns2 was carefully evaluated on a variety of simulated and real human data sets.
Evaluations on simulated data demonstrated that the accuracy of PopIns2 meets that of
previous methods while real data shows that the new merging approach scales to orders
of magnitude more input data.

The selection of unaligned and poorly aligned reads from each individual is crucial
for the assembly of the NRS. Raising the ASF from PopIns’ default value led to a substan-
tial increase in precision and recall. Otherwise, a very lenient selection of unaligned reads
leads to a distortion of the contig assembly, particularly at the flanking regions of the
contigs. The new ASF default value in PopIns2 is adjusted to a reasonable middle ground.

The new merging method in PopIns2 allows simultaneous processing of many genomes
together. It utilizes a highly efficient implementation of a CDBG and heavily relies on
the color information. The paths generated from the CDBG are eventually translated
into NRS being present in one or multiple of the originally many genomes. There exists a
strong interplay between the number of genomes being processed and the graph complexity.
Fewer individuals can lead to a poor decision making when traversing the CDBG and
hence lead to flawed assemblies of the NRS while many individuals lead to more complex
graph structures. Still, it was observed in the simulated data that the precision and recall
of the NRS detection remains robust with growing numbers of individuals suggesting
that the color-based decision making counteracts graph complexity. Moreover, PopIns2
shows the lowest redundancy in its callsets among the tested approaches, i.e. the callsets
comprise the fewest cases where multiple sequences from the callset align to one particular
sequence from the truthset. The NRS detection with PopIns2 indicates no bias towards
certain variant lengths.

Merging NRS using PopIns2 and real human sequence data was performed on a group of
150 and 1000 individuals simultaneously running for not more than 50 and 285 minutes
wall clock time, respectively. The main memory consumption when merging sets of contigs
decreased by orders of magnitude making the computation feasible for a modern consumer
laptop.

Current estimates report that the human genome comprises 50%-65% repetitive se-
quence with a majority of it being transposable elements [Haubold and Wiehe, 2006;
Criscione et al., 2014]. The short-read sequencing technology providing the data for the
presented methods as well as the CDBG traversal itself are not beneficial to accurately
assemble repetitive sequence. A NRS from a callset of PopIns2 that is predominantly
composed of low entropy sequence or short tandem repeats should be treated with caution.
Tools like ANISE and BASIL [Holtgrewe et al., 2015] include additional steps during the
NRS detection to better resolve the precise order of near-identical repetitive sequences.
Another ad hoc solution that still detects many reliable and potentially medical relevant
NRS is to exclude strongly repetitive NRS [Kehr et al., 2017].

111

Finally, assigning individuals to continental groups solely by their variants’ genotype pre-
dictions demonstrates solid predictive power of the genotyping of PopIns2. The credibility
of the genotype predictions and the transmission rate of observed alleles closely resemble
its predecessor and exceed those of its competing software Pamir. If the number of
individuals being processed with PopIns2 is large enough, applying a filter that rigorously
selects only variants which comply to the HWE reduces the overabundant number of
heterozygous genotype predictions.

Even though the third generation of sequencing technologies is on the rise and its
data already has been shown to resolve NRS variants better [Meleshko et al., 2019; Ebert
et al., 2021] than NGS, short-read data is still the most prevalent type of sequencing
data. With the advance of software and sequencing technology, long-reads will most
likely be the unrivalled data of choice for structural variant detection in the near future.
Nevertheless, until the cost effectiveness and sequencing error rate of third-generation
sequencing technologies will be superior to NGS, accurate and routine NRS detection
from short-reads remains highly relevant.

Future Work

The presented work can be extended and complemented by various directions of future
research. The suggestions and perspectives provided here can be broadly classified into
algorithmic improvements and data analysis.

Long-range connectivity information. An algorithmic approach to consider for an
improved genomic sequence assembly is the integration of long-range connectivity infor-
mation. It was shown [Turner et al., 2018; Jain et al., 2018a] that long-range connectivity
information can reduce the number of errors in the assembly. Irrespective of the type
of assembly (OLC or via DBG), long-range connectivity information can disambiguate
the contiguity of sequence fragments during the assembly. Long-range connectivity in-
formation exists on different scales. Essentially every continuous sequence or set of
related sequences that spans a larger genomic interval than the present fragments of the
assembly provides additional information that can guide the assembly. In terms of an
assembly that utilizes a de Bruijn Graph these fragments are the k-mers. Therefore,
every continuous sequence or set of related sequences longer than k provides additional
long-range connectivity information. Considering solely paired NGS reads as original data
for the assembly the long-range connectivity information can be either a read itself or
the information about the pairing [Turner et al., 2018]. Figure 39 illustrates on a simple
case how the pairing of NGS reads solves a local ambiguity during the reconstruction of a
genomic sequences from a DBG.

A similar approach was applied to the latest assembly of the haploid CHM13 cell line
[Jain et al., 2018b, 2020; Nurk et al., 2021]. Here, an accurate assembly from complex
local substructures in a genome assembly graph was achieved by aligning ultra-long reads

112

A

B

C

D

Figure 39: Long-range connectivity information in an excerpt of a compacted de Bruijn
Graph. The thin solid lines denote the connections between unitigs A, B, C and D. Without
further ado the maximal unitig paths AC, ABC and AD are valid candidates for contig
assemblies. However, the read pairs (green) provide long-range connectivity information
(thin dotted lines) that guides the traversal through the path ABC.

to the graph. Even though ultra-long reads have a relatively high per base error rate
compared to other sequencing technologies they still preserve the long-range structure of
genomic sequences that aids solving ambiguities during the assembly [Jain et al., 2018a].
The methodology of aligning a sequence to a graph, the structure of assembly graphs
and the details about ultra-long reads are beyond the scope of this theses but what is
to take away from this approach is that additional reads longer than the original input
sequences can guide the assembly in complex graph structures. Mind that in comparison
to the read pairs as long-range connectivity information the second approach required
additional sequence data.

Regarding future directions of PopIns2 a potential improvement to the merging al-
gorithm could be to include long-range connectivity information into the CDBG, either
from read pair information or reads from additional sequencing protocols. The expected
outcome of this improvement is more accurate NRS where the merging method had to
traverse densely interconnected substructures of the CDBG. Despite the fact that adding
long-range connectivity information seems like a promising idea in general it must be
monitored whether PopIns2 can still maintain its scalability.

113

Concurrent graph traversal. Another future project for algorithmic improvement
could be a multi-threading mode of the graph traversal. The traversal of the CDBG is
trivially parallelizable when applied to individual connected components of the graph. In
all presented applications of PopIns2, simulated and real data, the CDBG was composed
of many connected components.

Confidence scoring. Thirdly, the individual traversal decisions when generating the
paths from the CDBG can be interpreted as following the a heaviest outgoing edge (the
edge with the highest Jaccard index) of a vertex. The edge weights of an entire path
could be accumulated to a confidence score indicating a certainty for the correctness of
the NRS. Also, in addition to the edge weights, the superiority of the heaviest edge to
the second heaviest edge can be taken into account similar to the computation22 of the
mapping quality score in [Li, 2013].

Genotyping improvements. Finally, the genotype module can be revised by inte-
grating a more sophisticated genotyping framework. As shown recently [Chen et al.,
2019; Eggertsson et al., 2019; Ebler et al., 2020], sequence graphs have great potential to
improve the genotyping accuracy for SVs.

Understanding and reducing the reference bias. The other major direction to
follow up on the development of PopIns2 is to apply the software to more data sets
and diverse reference panels. For instance, a simple but promising adjustment is to
apply PopIns2 to sets of reads aligned to the latest Telomere-to-Telomere human genome
reference (T2T) [Miga et al., 2020; Nurk et al., 2021]. The authors of the T2T addressed
the accurate and comprehensive assembly of a human genome, particularly the estimated
8% genomic sequence (200 million base pairs) previously unidentified in the GRCh38
reference. Utilizing such a more comprehensive reference genome promises to reduce
the reference bias [Aganezov et al., 2021]. This approach can be taken even further by
applying PopIns2 to only those sequences that do not align to an entire collection of
references, e.g. provided by a pan-genome graph [The Computational Pan-Genomics
Consortium, 2018; Li et al., 2020] or a r-Index [Mun et al., 2020].

Comparison to SV callsets from other sequencing technologies. Another data
analysis that can shed more light on the extend of NRS that the population-scale approach
of PopIns2 is able to detect from NGS data is a comparative study between sequencing
technologies on the same data set.

For instance, multiple studies [Sedlazeck et al., 2018; Mahmoud et al., 2019] have shown
that long reads strongly improve structural variant calling even though long reads typically
come with a higher per base error rate [Jain et al., 2018a; Wenger et al., 2019] compared
to the shorter reads of NGS protocols and exhibit problems particularly with indels

22https://genome.cshlp.org/content/suppl/2008/09/26/gr.078212.108.DC1/maq-supp.pdf

114

[Amarasinghe et al., 2020; Carneiro et al., 2012; Weirather et al., 2017] and homopolymers
[Wenger et al., 2019]. Another sequencing technology that gained a lot of popularity over
the last years are so called linked reads . With the pluralistic promise to combine the best
of each world, the per base accuracy of next-generation short-reads and the long range
information of long reads, they rapidly caught the attention of the genomics community
and methods [Karaoglanoglu et al., 2020; Elyanow et al., 2018; Fang et al., 2019; Meleshko
et al., 2019] for SV detection evolved.

Given a population or study group of individuals sequenced with NGS and at least
one other sequencing technology, population-scale SV calling can be applied and the
resulting NRS callsets compared. However, even though more and more data sets of many
individuals are being generated [Francioli et al., 2014; Beyter et al., 2021] only few release
publically available raw data [Zook et al., 2016; Byrska-Bishop et al., 2021; O Connell
et al., 2021] and even fewer have data sets from multiple sequencing technologies available.
The latter is a promising starting point for additional data analysis comprising publically
available NGS and long reads of at least 26 individuals.

Application to other species. Finally, even though this thesis addresses exclusively
human genomic sequences the methods can seamlessly be applied to other species.

115

References

Abel,H.J. et al. (2020) Mapping and characterization of structural variation in 17,795
human genomes. Nature, 583 (7814), 83–89.

Adams,M.D. et al. (2000) The Genome Sequence of Drosophila melanogaster. Science,
287 (5461), 2185–2195.

Ade,C. et al. (2013) Alu elements: An intrinsic source of human genome instability.
Current opinion in virology, 3 (6), 639–645.

Aganezov,S. et al. (2021). A complete reference genome improves analysis of human
genetic variation. Technical report Department of Computer Science, Johns Hopkins
University, Baltimore MD, USA.

Alkan,C. et al. (2011) Genome structural variation discovery and genotyping. Nature
Reviews Genetics, 12 (5), 363–376.

Altshuler,D. et al. (2005) A haplotype map of the human genome. Nature, 437 (7063),
1299–1320.

Amarasinghe,S.L. et al. (2020) Opportunities and challenges in long-read sequencing data
analysis. Genome Biology, 21 (1), 30.

Antonarakis,S.E. et al. (2004) Chromosome 21 and down syndrome: from genomics to
pathophysiology. Nature Reviews. Genetics, 5 (10), 725–738.

Auton,A. et al. (2015) A global reference for human genetic variation. Nature, 526
(7571), 68–74.

Azar,Y. et al. (1999) Balanced Allocations. SIAM Journal on Computing, 29 (1),
180–200.

Bankevich,A. et al. (2012) SPAdes: A New Genome Assembly Algorithm and Its Applica-
tions to Single-Cell Sequencing. Journal of Computational Biology, 19 (5), 455–477.

Becker,T. et al. (2018) FusorSV: an algorithm for optimally combining data from multiple
structural variation detection methods. Genome Biology, 19 (1), 38.

Bellman,R. (1957) Dynamic Programming. Dover Publications.

Benjamin,D. et al. (2019). Calling Somatic SNVs and Indels with Mutect2. Technical
report The Broad Institute, 415 Main Street, 02142 Cambridge, MA, USA.

Beyter,D. et al. (2021) Long-read sequencing of 3,622 Icelanders provides insight into the
role of structural variants in human diseases and other traits. Nature Genetics, 0, 1–8.

117

Bhangale,T.R. et al. (2005) Comprehensive identification and characterization of diallelic
insertion–deletion polymorphisms in 330 human candidate genes. Human Molecular
Genetics, 14 (1), 59–69.

Bjornsson,E. et al. (2021) Lifelong Reduction in LDL (Low-Density Lipoprotein) Choles-
terol due to a Gain-of-Function Mutation in LDLR. Circulation. Genomic and Precision
Medicine, 14 (1), e003029.

Bloom,B.H. (1970) Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM, 13 (7), 422–426.

Boycott,K.M. et al. (2017) International Cooperation to Enable the Diagnosis of All Rare
Genetic Diseases. The American Journal of Human Genetics, 100 (5), 695–705.

Buniello,A. et al. (2019) The NHGRI-EBI GWAS Catalog of published genome-wide
association studies, targeted arrays and summary statistics 2019. Nucleic Acids Research,
47 (D1), D1005–D1012.

Byrska-Bishop,M. et al. (2021) High coverage whole genome sequencing of the expanded
1000 Genomes Project cohort including 602 trios. bioRxiv, 0, 2021.02.06.430068.

Cameron,D.L. et al. (2019) Comprehensive evaluation and characterisation of short read
general-purpose structural variant calling software. Nature Communications, 10 (1),
3240.

Cameron,D.L. et al. (2017) GRIDSS: sensitive and specific genomic rearrangement detec-
tion using positional de Bruijn graph assembly. Genome Research, 27 (12), 2050–2060.

Carneiro,M.O. et al. (2012) Pacific biosciences sequencing technology for genotyping and
variation discovery in human data. BMC Genomics, 13 (1), 375.

Carvalho,C.M.B. and Lupski,J.R. (2016) Mechanisms underlying structural variant for-
mation in genomic disorders. Nature reviews. Genetics, 17 (4), 224–238.

Chaisson,M.J. and Pevzner,P.A. (2008) Short read fragment assembly of bacterial genomes.
Genome Research, 18 (2), 324–330.

Chang,Y.F. et al. (2007) The Nonsense-Mediated Decay RNA Surveillance Pathway.
Annual Review of Biochemistry, 76 (1), 51–74.

Chen,K. et al. (2009) BreakDancer: an algorithm for high-resolution mapping of genomic
structural variation. Nature Methods, 6 (9), 677–681.

Chen,N. (2004) Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences.
Current Protocols in Bioinformatics, 5 (1), 4.10.1–4.10.14.

Chen,S. et al. (2019) Paragraph: a graph-based structural variant genotyper for short-read
sequence data. Genome Biology, 20 (1), 291.

118

Chen,X. et al. (2016) Manta: rapid detection of structural variants and indels for germline
and cancer sequencing applications. Bioinformatics (Oxford, England), 32 (8), 1220–
1222.

Chikhi,R. and Rizk,G. (2013) Space-efficient and exact de Bruijn graph representation
based on a Bloom filter. Algorithms for Molecular Biology, 8 (1), 22.

Collins,R.L. et al. (2020) A structural variation reference for medical and population
genetics. Nature, 581 (7809), 444–451.

Compeau,P.E.C. et al. (2011) How to apply de Bruijn graphs to genome assembly. Nature
Biotechnology, 29 (11), 987–991.

Cormen,T.H. et al. (2009) Introduction to Algorithms, Third Edition. 3rd edition„ The
MIT Press.

Crick,F. (1970) Central Dogma of Molecular Biology. Nature, 227 (5258), 561–563.

Criscione,S.W. et al. (2014) Transcriptional landscape of repetitive elements in normal
and cancer human cells. BMC Genomics, 15 (1), 583.

Danecek,P. et al. (2011) The variant call format and VCFtools. Bioinformatics, 27 (15),
2156–2158.

de Cid,R. et al. (2009) Deletion of the late cornified envelope LCE3B and LCE3C genes
as a susceptibility factor for psoriasis. Nature Genetics, 41 (2), 211–215.

Dechering,K.J. et al. (1998) Distinct frequency-distributions of homopolymeric DNA
tracts in different genomes. Nucleic Acids Research, 26 (17), 4056–4062.

Deininger,P. (2011) Alu elements: know the SINEs. Genome Biology, 12 (12), 236.

Delage,W.J. et al. (2020) Towards a better understanding of the low recall of insertion
variants with short-read based variant callers. BMC Genomics, 21 (1), 762.

Deorowicz,S. et al. (2015) KMC 2: fast and resource-frugal k-mer counting. Bioinformatics,
31 (10), 1569–1576.

Dolatabadian,A. et al. (2020) Characterization of disease resistance genes in the Brassica
napus pangenome reveals significant structural variation. Plant Biotechnology Journal,
18 (4), 969–982.

Down,J.L. (1995) Observations on an ethnic classification of idiots. 1866. Mental Retar-
dation, 33 (1), 54–56.

Duan,Z. et al. (2019) HUPAN: a pan-genome analysis pipeline for human genomes.
Genome Biology, 20 (1), 149.

119

Durbin,R. et al. (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press, Cambridge.

Earl,D. et al. (2011) Assemblathon 1: A competitive assessment of de novo short read
assembly methods. Genome Research, 21 (12), 2224–2241.

Ebert,P. et al. (2021) Haplotype-resolved diverse human genomes and integrated analysis
of structural variation. Science, 372 (6537).

Ebler,J. et al. (2020). Pangenome-based genome inference. Technical report Institute for
Medical Biometry and Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf,
Germany.

Eggertsson,H.P. et al. (2019) GraphTyper2 enables population-scale genotyping of struc-
tural variation using pangenome graphs. Nature Communications, 10 (1), 5402.

Eisfeldt,J. et al. (2020) Discovery of Novel Sequences in 1,000 Swedish Genomes. Molecular
Biology and Evolution, 37 (1), 18–30.

Elyanow,R. et al. (2018) Identifying structural variants using linked-read sequencing data.
Bioinformatics, 34 (2), 353–360.

English,A.C. et al. (2015) Assessing structural variation in a personal genome—towards a
human reference diploid genome. BMC Genomics, 16 (1), 286.

Esrick,E.B. et al. (2020) Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle
Cell Disease. New England Journal of Medicine, 0.

Euler,L. (1736) Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, 8, 128–140.

Faber-Hammond,J.J. and Brown,K.H. (2016) Anchored pseudo-de novo assembly of
human genomes identifies extensive sequence variation from unmapped sequence reads.
Human Genetics, 135 (7), 727–740.

Fang,L. et al. (2018) NextSV: a meta-caller for structural variants from low-coverage
long-read sequencing data. BMC Bioinformatics, 19 (1), 180.

Fang,L. et al. (2019) LinkedSV for detection of mosaic structural variants from linked-read
exome and genome sequencing data. Nature Communications, 10 (1), 5585.

Feng,D.F. and Doolittle,R.F. (1987) Progressive sequence alignment as a prerequisitetto
correct phylogenetic trees. Journal of Molecular Evolution, 25 (4), 351–360.

Fleischmann,R.D. et al. (1995) Whole-genome random sequencing and assembly of
Haemophilus influenzae Rd. Science (New York, N.Y.), 269 (5223), 496–512.

Francioli,L.C. et al. (2014) Whole-genome sequence variation, population structure and
demographic history of the Dutch population. Nature Genetics, 46 (8), 818–825.

120

Frangoul,H. et al. (2020) CRISPR-Cas9 Gene Editing for Sickle Cell Disease and beta-
Thalassemia. New England Journal of Medicine, 0.

Fredrick,K. and Ibba,M. (2009) PROTEIN SYNTHESIS. Nature, 457 (7226), 157–158.

Fukami,M. et al. (2017) Catastrophic cellular events leading to complex chromosomal
rearrangements in the germline. Clinical Genetics, 91 (5), 653–660.

Gamow,G. (1954) Possible Relation between Deoxyribonucleic Acid and Protein Structures.
Nature, 173 (4398), 318–318.

Garey,M.R. and Johnson,D.S. (1990) Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA.

Garrison,E. and Marth,G. (2012) Haplotype-based variant detection from short-read
sequencing. arXiv:1207.3907 [q-bio], 0.

Gaubatz,J.W. (1990) Extrachromosomal circular DNAs and genomic sequence plasticity
in eukaryotic cells. Mutation Research, 237 (5-6), 271–292.

Goldfeder,R.L. et al. (2017) Human Genome Sequencing at the Population Scale: A
Primer on High-Throughput DNA Sequencing and Analysis. American Journal of
Epidemiology, 186 (8), 1000–1009.

Gong,T. et al. (2021) Detection of somatic structural variants from short-read next-
generation sequencing data. Briefings in Bioinformatics, 22 (3), bbaa056.

Gudbjartsson,D.F. et al. (2015a) Large-scale whole-genome sequencing of the Icelandic
population. Nature Genetics, 47 (5), 435–444.

Gudbjartsson,D.F. et al. (2015b) Sequence variants from whole genome sequencing a large
group of Icelanders. Scientific Data, 2 (1), 150011.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assemblies. Bioin-
formatics, 29 (8), 1072–1075.

Hajirasouliha,I. et al. (2010) Detection and characterization of novel sequence insertions
using paired-end next-generation sequencing. Bioinformatics, 26 (10), 1277–1283.

Hardy,G.H. (1908) Mendelian Proportions in a Mixed Population. Science, 28 (706),
49–50.

Harvey,W.T. et al. (2021) SARS-CoV-2 variants, spike mutations and immune escape.
Nature Reviews Microbiology, 19 (7), 409–424.

Haubold,B. and Wiehe,T. (2006) How repetitive are genomes? BMC Bioinformatics, 7,
541.

121

Hehir-Kwa,J.Y. et al. (2016) A high-quality human reference panel reveals the complexity
and distribution of genomic structural variants. Nature Communications, 7 (1), 12989.

Heller,D. and Vingron,M. (2019) SVIM: structural variant identification using mapped
long reads. Bioinformatics, 35 (17), 2907–2915.

Heller,D. and Vingron,M. (2020) SVIM-asm: structural variant detection from haploid
and diploid genome assemblies. Bioinformatics, 36 (22-23), 5519–5521.

Hierholzer (1873) Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne
Unterbrechung zu umfahren. Mathematische Annalen, 6, 30–32.

Ho,S.S. et al. (2020) Structural variation in the sequencing era. Nature Reviews Genetics,
21 (3), 171–189.

Holley,G. and Melsted,P. (2020) Bifrost: highly parallel construction and indexing of
colored and compacted de Bruijn graphs. Genome Biology, 21 (1), 249.

Holtgrewe,M. et al. (2015) Methods for the detection and assembly of novel sequence in
high-throughput sequencing data. Bioinformatics, 31 (12), 1904–1912.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator. Bioinformatics,
28 (4), 593–594.

Iafrate,A.J. et al. (2004) Detection of large-scale variation in the human genome. Nature
Genetics, 36 (9), 949–951.

Idury,R.M. and Waterman,M.S. (1995) A new algorithm for DNA sequence assembly.
Journal of Computational Biology: A Journal of Computational Molecular Cell Biology,
2 (2), 291–306.

International HapMap Consortium (2003) The International HapMap Project. Nature,
426 (6968), 789–796.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using colored de Bruijn
graphs. Nature Genetics, 44 (2), 226–232.

Iqbal,Z. et al. (2013) High-throughput microbial population genomics using the Cortex
variation assembler. Bioinformatics, 29 (2), 275–276.

Jaccard,P. (1912) The Distribution of the Flora in the Alpine Zone. The New Phytologist,
11 (2), 37–50.

Jain,C. et al. (2020). A long read mapping method for highly repetitive reference
sequences. Technical report Genome Informatics Section, National Human Genome
Research Institute, Bethesda, MD 20892, USA.

Jain,M. et al. (2018a) Nanopore sequencing and assembly of a human genome with
ultra-long reads. Nature Biotechnology, 36 (4), 338–345.

122

Jain,M. et al. (2018b) Linear assembly of a human centromere on the Y chromosome.
Nature Biotechnology, 36 (4), 321–323.

Jakubosky,D. et al. (2020) Properties of structural variants and short tandem repeats
associated with gene expression and complex traits. Nature Communications, 11 (1),
2927.

Jeffares,D.C. et al. (2017) Transient structural variations have strong effects on quantitative
traits and reproductive isolation in fission yeast. Nature Communications, 8 (1), 14061.

Jurka,J. et al. (2007) Repetitive Sequences in Complex Genomes: Structure and Evolution.
Annual Review of Genomics and Human Genetics, 8 (1), 241–259.

Jurka,J. et al. (2005) Repbase Update, a database of eukaryotic repetitive elements.
Cytogenetic and Genome Research, 110 (1-4), 462–467.

Jónsson,H. et al. (2017) Whole genome characterization of sequence diversity of 15,220
Icelanders. Scientific Data, 4 (1), 170115.

Karaoglanoglu,F. et al. (2020) VALOR2: characterization of large-scale structural variants
using linked-reads. Genome Biology, 21 (1), 72.

Kavak,P. et al. (2017) Discovery and genotyping of novel sequence insertions in many
sequenced individuals. Bioinformatics, 33 (14), i161–i169.

Kececioglu,J.D. and Myers,E.W. (1995) Combinatorial algorithms for DNA sequence
assembly. Algorithmica, 13 (1), 7.

Kehr,B. et al. (2017) Diversity in non-repetitive human sequences not found in the
reference genome. Nature Genetics, 49 (4), 588–593.

Kehr,B. et al. (2016) PopIns: population-scale detection of novel sequence insertions.
Bioinformatics, 32 (7), 961–967.

Kehr,B. et al. (2011) STELLAR: fast and exact local alignments. BMC Bioinformatics,
12 (9), S15.

Khan,J. et al. (2021). Scalable, ultra-fast, and low-memory construction of compacted de
Bruijn graphs with Cuttlefish 2. Technical report Computer Science department at the
University of Maryland.

Khan,J. and Patro,R. (2021) Cuttlefish: fast, parallel and low-memory compaction of de
Bruijn graphs from large-scale genome collections. Bioinformatics, 37 (Supplement_1),
i177–i186.

Kidd,J.M. et al. (2008) Mapping and sequencing of structural variation from eight human
genomes. Nature, 453 (7191), 56–64.

123

Kim,H. et al. (2020) Extrachromosomal DNA is associated with oncogene amplification
and poor outcome across multiple cancers. Nature Genetics, 52 (9), 891–897.

Kingsmore,S.F. and Saunders,C.J. (2011) Deep Sequencing of Patient Genomes for Disease
Diagnosis: When Will It Become Routine? Science translational medicine, 3 (87),
87ps23.

Kirsche,M. et al. (2021). Jasmine: Population-scale structural variant comparison and
analysis. Technical report Department of Computer Science, Johns Hopkins University,
Baltimore MD.

Kosugi,S. et al. (2019) Comprehensive evaluation of structural variation detection algo-
rithms for whole genome sequencing. Genome Biology, 20 (1), 117.

Krannich,T. et al. (2021) Population-scale detection of non-reference sequence variants
using colored de Bruijn graphs. Bioinformatics, 0 (btab749).

Lander,E.S. et al. (2001) Initial sequencing and analysis of the human genome. Nature,
409 (6822), 860–921.

Lander,E.S. and Waterman,M.S. (1988) Genomic mapping by fingerprinting random
clones: A mathematical analysis. Genomics, 2 (3), 231–239.

Lawler,E. (2001) Combinatorial Optimization: Networks and Matroids. Dover Publica-
tions.

Layer,R.M. et al. (2014) LUMPY: a probabilistic framework for structural variant discovery.
Genome Biology, 15 (6), R84.

Ledford,H. (2020) CRISPR gene therapy shows promise against blood diseases. Nature,
588 (7838), 383–383.

Lee,Y.g. et al. (2020) Insertion variants missing in the human reference genome are
widespread among human populations. BMC Biology, 18 (1), 167.

Leffler,E.M. et al. (2017) Resistance to malaria through structural variation of red blood
cell invasion receptors. Science, 356 (6343).

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS biology,
5 (10), e254.

Li,D. et al. (2015) MEGAHIT: an ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de Bruijn graph. Bioinformatics (Oxford, England),
31 (10), 1674–1676.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. arXiv:1303.3997 [q-bio], 0.

124

Li,H. (2016) Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics, 32 (14), 2103–2110.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics (Oxford, England), 25 (14), 1754–1760.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics (Oxford, England), 26 (5), 589–595.

Li,H. et al. (2020) The design and construction of reference pangenome graphs with
minigraph. Genome Biology, 21 (1), 265.

Li,S. et al. (2013) SOAPindel: Efficient identification of indels from short paired reads.
Genome Research, 23 (1), 195–200.

Li,Y. et al. (2020) Patterns of somatic structural variation in human cancer genomes.
Nature, 578 (7793), 112–121.

Liu,H.Y. et al. (2019) Diagnostic and clinical utility of whole genome sequencing in a
cohort of undiagnosed Chinese families with rare diseases. Scientific Reports, 9 (1),
19365.

Liu,S. et al. (2015) Discovery, genotyping and characterization of structural variation and
novel sequence at single nucleotide resolution from de novo genome assemblies on a
population scale. GigaScience, 4 (s13742-015-0103-4).

Ma,M.J.L. et al. (2021) Fetal mitochondrial DNA in maternal plasma in surrogate
pregnancies: Detection and topology. Prenatal Diagnosis, 41 (3), 368–375.

Magoc,T. and Salzberg,S.L. (2011) FLASH: fast length adjustment of short reads to
improve genome assemblies. Bioinformatics, 27 (21), 2957–2963.

Mahmoud,M. et al. (2019) Structural variant calling: the long and the short of it. Genome
Biology, 20 (1), 246.

Mallick,S. et al. (2016) The Simons Genome Diversity Project: 300 genomes from 142
diverse populations. Nature, 538 (7624), 201–206.

Manni,M. and Zdobnov,E. (2020) Microbial contaminants cataloged as novel human
sequences in recent human pan-genomes. bioRxiv, 0, 2020.03.16.994376.

Maretty,L. et al. (2017) Sequencing and de novo assembly of 150 genomes from Denmark
as a population reference. Nature, 548 (7665), 87–91.

McColgan,P. and Tabrizi,S.J. (2018) Huntington’s disease: a clinical review. European
Journal of Neurology, 25 (1), 24–34.

McVean,G.A. et al. (2012) An integrated map of genetic variation from 1,092 human
genomes. Nature, 491 (7422), 56–65.

125

Meddens,S.F.W. et al. (2020) Genomic analysis of diet composition finds novel loci and
associations with health and lifestyle. Molecular Psychiatry, 0, 1–14.

Medvedev,P. et al. (2007) Computability of Models for Sequence Assembly. In Algorithms
in Bioinformatics, (Giancarlo,R. and Hannenhalli,S., eds), vol. 0, of Lecture Notes in
Computer Science pp. 289–301 Springer, Berlin, Heidelberg.

Meleshko,D. et al. (2019) Detection and assembly of novel sequence insertions using
Linked-Read technology. bioRxiv, 0, 551028.

Mendel,G. (1865) Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden
Vereines in Brünn, Bd.4 (1865-1866), 3–47.

Meyerson,M. and Pellman,D. (2011) Cancer Genomes Evolve by Pulverizing Single
Chromosomes. Cell, 144 (1), 9–10.

Miescher,J. (1871) Ueber die chemische Zusammensetzung der Eiterzellen. In Medicinsich-
chemische Untersuchungen vol. 4,. Hoppe-Seyler pp. 441–60.

Miga,K.H. et al. (2020) Telomere-to-telomere assembly of a complete human X chromo-
some. Nature, 585 (7823), 79–84.

Miller,J.R. et al. (2010) Assembly algorithms for next-generation sequencing data. Ge-
nomics, 95 (6), 315–327.

Mills,R.E. et al. (2006) An initial map of insertion and deletion (INDEL) variation in the
human genome. Genome Research, 16 (9), 1182–1190.

Mills,R.E. et al. (2011) Mapping copy number variation by population-scale genome
sequencing. Nature, 470 (7332), 59–65.

Mohiyuddin,M. et al. (2015) MetaSV: an accurate and integrative structural-variant caller
for next generation sequencing. Bioinformatics, 31 (16), 2741–2744.

Muggli,M.D. et al. (2019) Building large updatable colored de Bruijn graphs via merging.
Bioinformatics, 35 (14), i51–i60.

Muggli,M.D. et al. (2017) Succinct colored de Bruijn graphs. Bioinformatics (Oxford,
England), 33 (20), 3181–3187.

Mullaney,J.M. et al. (2010) Small insertions and deletions (INDELs) in human genomes.
Human Molecular Genetics, 19 (R2), R131–136.

Mun,T. et al. (2020) Matching Reads to Many Genomes with the r-Index. Journal of
Computational Biology, 27 (4), 514–518.

Mäkinen,V. et al. (2012) Normalized N50 Assembly Metric using Gap-Restricted Co-Linear
Chaining. BMC Bioinformatics, 13, 255.

126

Mölder,F. et al. (2021). Sustainable data analysis with Snakemake. Technical Report
10:33 F1000Research.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48 (3), 443–453.

Nicholson,J.M. and Cimini,D. (2013) Cancer Karyotypes: Survival of the Fittest. Frontiers
in Oncology, 3.

Niehus,S. et al. (2021) PopDel identifies medium-size deletions simultaneously in tens of
thousands of genomes. Nature Communications, 12 (1), 730.

Norman,P.J. et al. (2017) Sequences of 95 human MHC haplotypes reveal extreme coding
variation in genes other than highly polymorphic HLA class I and II. Genome Research,
27 (5), 813–823.

Nurk,S. et al. (2021). The complete sequence of a human genome. Technical report
Genome Informatics Section, Computational and Statistical Genomics Branch, National
Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA.

O Connell,J. et al. (2021) A population-specific reference panel for improved genotype
imputation in African Americans. Communications Biology, 4 (1), 1–9.

Ou,S. et al. (2020) Effect of sequence depth and length in long-read assembly of the maize
inbred NC358. Nature Communications, 11 (1), 2288.

Oude Munnink,B.B. et al. (2021) The next phase of SARS-CoV-2 surveillance: real-time
molecular epidemiology. Nature Medicine, 27 (9), 1518–1524.

Pareek,C.S. et al. (2011) Sequencing technologies and genome sequencing. Journal of
Applied Genetics, 52 (4), 413–435.

Payne,A. et al. (2019) BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files.
Bioinformatics, 35 (13), 2193–2198.

Peng,Y. and Xu,J. (2011) RECOMB. Lecture Notes in Computer Science, 5541, 31–45.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assembly. Pro-
ceedings of the National Academy of Sciences, 98 (17), 9748–9753.

Phillippy,A.M. (2017) New advances in sequence assembly. Genome Research, 27 (5),
xi–xiii.

Poplin,R. et al. (2018) A universal SNP and small-indel variant caller using deep neural
networks. Nature Biotechnology, 36 (10), 983–987.

Portin,P. (2014) The birth and development of the DNA theory of inheritance: sixty years
since the discovery of the structure of DNA. Journal of Genetics, 93 (1), 293–302.

127

Posey,J.E. (2019) Genome sequencing and implications for rare disorders. Orphanet
Journal of Rare Diseases, 14 (1), 153.

Pritchard,C.C. et al. (2016) Inherited DNA-Repair Gene Mutations in Men with Metastatic
Prostate Cancer. The New England Journal of Medicine, 375 (5), 443–453.

Punnett,R.C. (1926) The Theory of the Gene. Nature, 118 (2969), 435–437.

Putze,F. et al. (2010) Cache-, hash-, and space-efficient bloom filters. ACM Journal of
Experimental Algorithmics, 14, 4:4.4–4:4.18.

Rasmussen,K.R. et al. (2006) Efficient q-Gram Filters for Finding All Epsilon Matches
over a Given Length. Journal of Computational Biology, 13 (2), 296–308.

Rausch,T. et al. (2012) DELLY: structural variant discovery by integrated paired-end
and split-read analysis. Bioinformatics (Oxford, England), 28 (18), i333–i339.

Reinert,K. et al. (2017) The SeqAn C++ template library for efficient sequence analysis:
A resource for programmers. Journal of Biotechnology, 261, 157–168.

Rizk,G. et al. (2014) MindTheGap: integrated detection and assembly of short and long
insertions. Bioinformatics, 30 (24), 3451–3457.

Rizzi,R. et al. (2014) On the complexity of Minimum Path Cover with Subpath Constraints
for multi-assembly. BMC Bioinformatics, 15 (9), S5.

Roberts,M. et al. (2004) Reducing storage requirements for biological sequence comparison.
Bioinformatics, 20 (18), 3363–3369.

Rédei,G.P. (2008) Protein Synthesis. In Encyclopedia of Genetics, Genomics, Proteomics
and Informatics. Springer Netherlands Dordrecht pp. 1580–1585.

Sachidanandam,R. et al. (2001) A map of human genome sequence variation containing
1.42 million single nucleotide polymorphisms. Nature, 409 (6822), 928–933.

Saenger,P. (1996) Turner’s Syndrome. New England Journal of Medicine, 335 (23),
1749–1754.

Sanger,F. et al. (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of
the National Academy of Sciences of the United States of America, 74 (12), 5463–5467.

Sarma,A. et al. (2021) Tracheal aspirate RNA sequencing identifies distinct immunological
features of COVID-19 ARDS. Nature Communications, 12 (1), 5152.

Schleimer,S. et al. (2003) Winnowing: local algorithms for document fingerprinting. In
Proceedings of the 2003 ACM SIGMOD international conference on Management of
data SIGMOD ’03 pp. 76–85 Association for Computing Machinery, New York, NY,
USA.

128

Schuster,S.C. et al. (2010) Complete Khoisan and Bantu genomes from southern Africa.
Nature, 463 (7283), 943–947.

Schüle,B. et al. (2017) Parkinson’s disease associated with pure ATXN10 repeat expansion.
npj Parkinson’s Disease, 3 (1), 1–7.

Sebat,J. et al. (2004) Large-scale copy number polymorphism in the human genome.
Science (New York, N.Y.), 305 (5683), 525–528.

Sedlazeck,F.J. et al. (2018) Accurate detection of complex structural variations using
single-molecule sequencing. Nature Methods, 15 (6), 461–468.

Sherman,R.M. et al. (2019) Assembly of a pan-genome from deep sequencing of 910
humans of African descent. Nature Genetics, 51 (1), 30–35.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.
Genome Research, 19 (6), 1117–1123.

Sin,S.T.K. et al. (2020) Identification and characterization of extrachromosomal circular
DNA in maternal plasma. Proceedings of the National Academy of Sciences of the
United States of America, 117 (3), 1658–1665.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular subsequences.
Journal of Molecular Biology, 147 (1), 195–197.

Spielmann,M. et al. (2018) Structural variation in the 3D genome. Nature Reviews
Genetics, 19 (7), 453–467.

Splinter,K. et al. (2018) Effect of Genetic Diagnosis on Patients with Previously Undiag-
nosed Disease. New England Journal of Medicine, 379 (22), 2131–2139.

Stankiewicz,P. and Lupski,J.R. (2010) Structural variation in the human genome and its
role in disease. Annual Review of Medicine, 61, 437–455.

Sudmant,P.H. et al. (2015) An integrated map of structural variation in 2,504 human
genomes. Nature, 526 (7571), 75–81.

Sutton,G.G. et al. (1995) TIGR Assembler: A New Tool for Assembling Large Shotgun
Sequencing Projects. Genome Science and Technology, 1 (1), 9–19.

Sutton,W.S. (1903) The chromosomes in heredity. The Biological Bulletin, 4 (5), 231–250.

Taliun,D. et al. (2021) Sequencing of 53,831 diverse genomes from the NHLBI TOPMed
Program. Nature, 590 (7845), 290–299.

Taylor,J.C. et al. (2015) Factors influencing success of clinical genome sequencing across
a broad spectrum of disorders. Nature Genetics, 47 (7), 717–726.

129

Telenti,A. et al. (2016) Deep sequencing of 10,000 human genomes. Proceedings of the
National Academy of Sciences, 113 (42), 11901–11906.

The Computational Pan-Genomics Consortium (2018) Computational pan-genomics:
status, promises and challenges. Briefings in Bioinformatics, 19 (1), 118–135.

Thompson,S.L. and Compton,D.A. (2011) Chromosomes and cancer cells. Chromosome
research : an international journal on the molecular, supramolecular and evolutionary
aspects of chromosome biology, 19 (3), 433–444.

Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nature
Biotechnology, 28 (5), 511–515.

Turnbull,C. et al. (2018) The 100 000 Genomes Project: bringing whole genome sequencing
to the NHS. BMJ (Clinical research ed.), 361, k1687.

Turner,H.H. (1938) A SYNDROME OF INFANTILISM, CONGENITAL WEBBED
NECK, AND CUBITUS VALGUS1. Endocrinology, 23 (5), 566–574.

Turner,I. et al. (2018) Integrating long-range connectivity information into de Bruijn
graphs. Bioinformatics, 34 (15), 2556–2565.

van Dijk,M.A. et al. (2001) Protein sequence signatures support the African clade of
mammals. Proceedings of the National Academy of Sciences of the United States of
America, 98 (1), 188–193.

Vasudevan,A. et al. (2020) Single-Chromosomal Gains Can Function as Metastasis Sup-
pressors and Promoters in Colon Cancer. Developmental Cell, 52 (4), 413–428.e6.

Venter,J.C. et al. (2001) The Sequence of the Human Genome. Science, 291 (5507),
1304–1351.

Voelkerding,K.V. et al. (2009) Next-generation sequencing: from basic research to diag-
nostics. Clinical Chemistry, 55 (4), 641–658.

Walsh,T. et al. (2008) Rare structural variants disrupt multiple genes in neurodevelop-
mental pathways in schizophrenia. Science (New York, N.Y.), 320 (5875), 539–543.

Wang,W.J. et al. (2020) Chromosome structural variation in tumorigenesis: mechanisms
of formation and carcinogenesis. Epigenetics & Chromatin, 13 (1), 49.

Watson,J.D. and Crick,F.H.C. (1953a) Genetical Implications of the Structure of Deoxyri-
bonucleic Acid. Nature, 171 (4361), 964–967.

Watson,J.D. and Crick,F.H.C. (1953b) The Structure of Dna. Cold Spring Harbor Symposia
on Quantitative Biology, 18, 123–131.

130

Weber,J.L. et al. (2002) Human diallelic insertion/deletion polymorphisms. American
Journal of Human Genetics, 71 (4), 854–862.

Weirather,J.L. et al. (2017) Comprehensive comparison of Pacific Biosciences and Oxford
Nanopore Technologies and their applications to transcriptome analysis. F1000Research,
6, 100.

Wenger,A.M. et al. (2019) Accurate circular consensus long-read sequencing improves
variant detection and assembly of a human genome. Nature Biotechnology, 37 (10),
1155–1162.

Weuve,J. et al. (2018) Cognitive aging in black and white Americans: Cognition, cognitive
decline, and incidence of Alzheimer disease dementia. Epidemiology (Cambridge, Mass.),
29 (1), 151–159.

Wheeler,D.A. et al. (2008) The complete genome of an individual by massively parallel
DNA sequencing. Nature, 452 (7189), 872–876.

White,D. and Rabago-Smith,M. (2011) Genotype–phenotype associations and human eye
color. Journal of Human Genetics, 56 (1), 5–7.

Wick,R.R. et al. (2015) Bandage: interactive visualization of de novo genome assemblies.
Bioinformatics, 31 (20), 3350–3352.

Wilfert,A.B. et al. (2021) Recent ultra-rare inherited variants implicate new autism
candidate risk genes. Nature Genetics, 53 (8), 1125–1134.

Willems,T. et al. (2014) The landscape of human STR variation. Genome Research, 24
(11), 1894–1904.

Willson,J. (2020) Resolving the roles of structural variants. Nature Reviews Genetics, 21
(9), 507–507.

Wong,K.H.Y. et al. (2018) De novo human genome assemblies reveal spectrum of alterna-
tive haplotypes in diverse populations. Nature Communications, 9 (1), 3040.

Wong,K.H.Y. et al. (2020) Towards a reference genome that captures global genetic
diversity. Nature Communications, 11 (1), 5482.

Xing,Y. et al. (2004) The Multiassembly Problem: Reconstructing Multiple Transcript
Isoforms From EST Fragment Mixtures. Genome Research, 14 (3), 426–441.

Yang,Z. et al. (2006) A variant of the HTRA1 gene increases susceptibility to age-related
macular degeneration. Science (New York, N.Y.), 314 (5801), 992–993.

Yazhini,A. et al. (2021) Signatures of conserved and unique molecular features in Afrotheria.
Scientific Reports, 11 (1), 1011.

131

Ye,K. et al. (2009) Pindel: a pattern growth approach to detect break points of large
deletions and medium sized insertions from paired-end short reads. Bioinformatics, 25
(21), 2865–2871.

Zarate,S. et al. (2020) Parliament2: Accurate structural variant calling at scale. Giga-
Science, 9 (12), giaa145.

Zerbino,D.R. and Birney,E. (2008) Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 18 (5), 821–829.

Zerbino,D.R. et al. (2012) Integrating Genomes. Science, 336 (6078), 179–182.

Zhao,M. et al. (2013) Computational tools for copy number variation (CNV) detection
using next-generation sequencing data: features and perspectives. BMC Bioinformatics,
14 (11), S1.

Zheng,S. et al. (2014) Silent Mutations Make Some Noise. Cell, 156 (6), 1129–1131.

Zhou,P. et al. (2020) A pneumonia outbreak associated with a new coronavirus of probable
bat origin. Nature, 579 (7798), 270–273.

Zhu,N. et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019.
New England Journal of Medicine, 382 (8), 727–733.

Zook,J.M. et al. (2016) Extensive sequencing of seven human genomes to characterize
benchmark reference materials. Scientific Data, 3 (1), 160025.

132

Appendix

133

Figure 40: The sequencing cost per genome over the last two decades. With the rise of NGS
technologies in 2007, the decrease in cost per individual genome started to outperform Moore’s
law. Moore’s law describes the historical trend in the computer hardware industry that the
computing power (measured in integrated circuits) doubles roughly every two years. Image was
taken from the NHGRI website https://www.genome.gov/about-genomics/fact-sheets/
DNA-Sequencing-Costs-Data.

134

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Algorithm 1 (Depth First Search in a colored dBG [Krannich et al., 2021]). Given
a colored and compacted de Bruijn Graph G = (V,E,C), the Depth First Search (DFS)
algorithm searches for the path with the highest consistent set of colors for every startnode
s ∈ V . Let u.id be a unique identifier of a unitig u ∈ V and G.Adj[u] the list of all directly
accessible vertexes of u in G. Further, every node maintains a discovery state u.seen
determining whether it has been visited by the DFS or not. The set S is a global storage
for unitig identifiers. W.l.o.g. the Pseudo-code assumes only one consistent traversal
direction. Mind that in a bidirected dBG predecessors and successors have to be determined
with respect to the strand of the unitig.

1 DFS−I n i t (G)
2 for each u ∈ G.V
3 p <− empty path
4 i f i s S t a r t n o d e (u)
5 i f not DFS−V i s i t (u , p)
6 p . append (u)
7 for each u ∈ G.V
8 u . seen = f a l s e
9 i f hasEnoughNovelKmers (p , S)
10 for each q ∈ p
11 S . add (q)
12 print (p)
13 i f i s S i n g l e t o n (u)
14 p . append (u)
15 i f hasEnoughNovelKmers (p , S)
16 S . add (u)
17 print (p)
18
19 DFS−V i s i t (u , p)
20 i f u . seen == f a l s e
21 u . seen = t rue
22 i f G. Adj [u] i s empty :
23 p . append (u)
24 return f a l s e
25 G. Adj [u] <− sor tByCo lor s (G. Adj [u])
26 for each v ∈ G. Adj [u]
27 i f not DFS−V i s i t (v , p)
28 p . append (u)
29 return f a l s e
30 return t r u e

135

Selected contributions to other projects during my PhD studies

Bifrost. During the early development phase of the Bifrost library I contributed to the
correctness of its functionality by supplying unit tests and bug reports. This contribution
has been acknowledged in its original publication [Holley and Melsted, 2020].

Bcmap. Recently, I am involved into a project that focuses on efficient alignment-free
barcode mapping of linked-read data. My contribution is the assessment of the approach
for a subsequent, local sequence assembly, predominantly for loci of known structural
variants. It is intended to submit a manuscript of this work to the ISMB 2022 (Proceeding
Submission Deadline on January 13, 2022).

Exploratory workflows for PopIns2. Another recent project I am involved in is
the development of workflows for better exploratory experience and automated quality
assessment of PopIns2. My contribution is software development and maintenance of a
PopIns2 release that is optimized for a better workflow integration.

136

Index

100.000 genomes project, 22

alignment, 25, 101
discordant, 54
local, 33
pairwise, 33
redundant, 89
split, 33, 48, 54

alignment score, 25, 48, 84
factor, ASF, 84, 111

allele, 24, 36, 49, 102
frequency, AF, 38, 64

Alu element, 96
application programming interface, API,

44, 72
assembly, 20, 41, 48

algorithm, 20
de novo, 41, 109
DNA fragment, 41
genome, 41
local, 41, 58, 59

associated variant, 25
autosomes, 19, 35

Bandage, 79
base, 17

complementary, 18
pair, 18

base quality score, 32, 41, 48
bifrost, 44, 72, 80, 84, 93, 99
bipartite matching, 89
Bloom filter, 45
boolean, 30
breadth-first search, BFS, 43, 60, 65
bridge amplification, 20
bwa, 84

callset, 35, 56, 87
cancer, 25, 110
canonical representation, 30, 36

cell cycle, 18
chromatid, 18
chromosome, 18, 30
color matrix, 41, 72, 75, 82
color vector, 41, 71, 72
ColoredCDBG, 72
command line interface, 44
complement, 30
confidence score, 114
connected component, 39
contigs, 41
Copy number variant, CNV, 56
coronavirus, COVID-19, 26
covalent, 17
coverage, 33, 34, 41, 54
CRISPR-Cas9, 26
cycle

eulerian, 38, 43
hamiltonian, 38, 43

de Bruijn Graph, DBG, 29, 39, 43
bidirected, 39
colored, CDBG, 39, 110
compacted, 39
edge-centric, 39
node-centric, 39
simplification, 73

deletion, 23
dependencies, 84
depth-first search, DFS, 43, 66, 70
dimer, 30, 77
directed acyclic graph, DAG, 69
DNA, 17

backbone, 18
double helix, 17
extrachromosomal, 19
sequence, 17
sequencing, 19
strand, 17

137

strand directionality, 18
dynamic programming, 34

edge, 38
entropy, 31, 77, 111
error rate, 21
ExtendedCCDBG, 72

family trio, 37
FASTA, 72, 75
FASTQ, 72, 75
Freebayes, 54

gamete, 19
GATK, 54
gene, 19
genome, 19, 30

coverage, 33
human, 43

genome-wide association studies, 25
genotype, 24, 36, 46, 102, 112

likelihood, 36, 50, 102
genotype frequency, 38
genotyping, 36, 100, 114
germline variant, 24, 58, 102
GFA, 72
Github, 84
gonosome, 19, 35
graph

directed, 38
genome assembly, 112
pan-genome, 114
sequence, 66, 67
undirected, 38, 39

Hardy-Weinberg equilibrium, HWE, 37,
104, 112

hash
collision, 45
function, 45
table, 45
value, 45

heterozygous, 24, 36
high performance computing, HPC, 72,

85, 96

histone, 18
homologous, 25
homopolymer, 77
homozygous, 24, 36, 100, 103
Human Genome Project, 21

Illumina sequencing, 20
in-degree, 38
indel, 22, 23
indels, 54
indexing, 34
induced subgraph, 38
inner distance, 33
insertion, 23, 35, 87, 100, 104

breakpoint, 35, 36, 46
instance, 96
intergenic region, 19
interspersed duplication, 23
inversion, 23

Jaccard Index, 30, 71, 72, 114

k-mer, 30, 39, 112
sampling, 82

karyotype, 19

Lander-Waterman equation, 33
long-range connectivity information, 112
low complexity, 31, 77
Low Entropy Connected Component,

LECC, 77

Makefile, 84
mapping quality score, 114
maximal unitig path, 39, 71, 113
Mendelian disease, 110
Mendelian inheritance, 36, 100, 102

error rate, 102
meta genome, 65
meta method, 56
MHC complex, 24
Minia, 84
minimizer, 30, 45, 98, 99
minimum path cover problem, 69

weighted, 70, 110

138

minimum working example, MWE, 85
misassembly, 44
multi-k method, 80, 93
mutant cell, 25
mutation, 25

N50, 43
NA50, 43
national cohort, 22
National Institute of Health, NIH, 21
neighbors, 44, 72
next generation sequencing, 109
next generation sequencing, NGS, 20, 32
NG50, 43
NGA50, 44
non-reference sequence, NRS, 24, 36, 46
novel sequence insertions, 24
nucleobase, 17
nucleotide, 17
nucleus, 18

object oriented programming, OOP, 72
orientation, 30, 32, 35, 44
out-degree, 38
overlap graph, 42
overlap-layout-consensus, OLC, 42, 112

path, 38
maximal non-branching, 38
non-branching, 38

path cover, 39, 69
phylogenetic tree, 25
ploidy, 19
Polaris Diversity Cohort, 96
Polaris Kids Cohort, 100
poly-A tail, 77
popins, 46

assembly, 46
genotyping, 49
merging, 48
positioning, 48

precision, 89
predecessor, 38, 44
prefix, 30

principal component, 101
Principal component analysis, PCA, 101
Python, 84

r-Index, 114
read, 20, 32

linked, 115
long, 56
orphan, 59
split, 48

read pair, 32, 113
anchoring, 48, 59
OEA, 59
unaligned, 54

recall, 89
reference bias, 24, 114
reference genome, 22

human, 35
repetitive, 30, 60
reverse complement, 18, 30, 39
RNA, 19

Sanger sequencing, 19
seqAn, 84
sequence alignment, 25, 33
sequencer, 20

HiSeq, 32
HiSeqX, 32

sequencing by synthesis, 20
set, 29

cardinality, 29
disjoint, 30
empty, 29
intersection, 29
union, 29

short tandem repeat, 77, 111
Sickle, 84
sickle-cell anaemia, 26
silent mutation, 23
SIMD, 44, 85, 96
SINE, 96
single nucleotide polymorphism, SNP, 22,

54
single nucleotide variant, SNV, 22

139

singleton, 45, 71, 75
sink, 70
Smith-Waterman algorithm, 34
Snakemake, 85
somatic variant, 25, 58
source, 70, 71
SPAdes, 84
splicing, 19
STELLAR, 89
strandness, 44
string, 30

reverse, 30
structural variants, 109
structural variants, SV, 23, 54
successor, 38, 44
suffix, 30
supercontig, 48, 71, 75, 77, 79, 96
superpopulation, 100

tandem duplication, 23
Telomere-to-Telomere human genome

reference, T2T, 114
third-generation sequencing, 20, 112

Thousand Genomes Project, 1KGP, 22,
62

tip, 45, 75
Traceback, 73
transcribtion, 19
translation, 19
translocation, 23
transmission rate, 102
truthset, 89, 91, 102

union-find, 66
unitig, 39

low entropy, 78
UnitigColorMap, 73
UnitigExtension, 72
UNIX, 84

vector, 30
Velvet, 84
vertex, 38

walk, 38
whole-genome sequencing, WGS, 46, 68

140

Selbstständigkeitserklärung

Name: Krannich
Vorname: Thomas Günter Kurt

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Dissertation
selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel
angefertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen,
die wörtlich oder inhaltlich aus anderen Schriften entnommen sind, habe ich als solche
kenntlich gemacht. Diese Dissertation wurde in gleicher oder ähnlicher Form noch in
keinem früheren Promotionsverfahren eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich mich
einverstanden.

Datum: Unterschrift:

141

	Introduction
	Definitions and preliminaries
	Sets and Vectors
	Genomic sequences, sequence alignment and insertions
	Genotype and inheritance
	Graphs
	Sequence assembly
	Bifrost
	PopIns

	Related work
	Overview and classification of variant calling methods
	Methods for detection and genotyping of non-reference sequences
	Methods for detection and genotyping of non-reference sequences in population-scale data
	Selected projects conducting variant calling using population-scale data

	Methods
	The roadmap of Popins2
	Motivation
	Objective
	Classification

	Merging NRS of many genomes using a CDBG
	Problem formulation
	A greedy heuristic

	Implementation of PopIns2
	Design pattern
	Control flow
	Bridging unitigs of low entropy genomic sequence
	A multi-k construction algorithm for CDBG
	The Alignment score factor
	Availability and resources

	Results
	Assessment of PopIns2 using simulated data
	Data simulation pipeline
	Evaluation of NRS callsets
	Preliminary results utilizing the multi-k module

	Application of PopIns2 using the reads of many human individuals
	Detecting NRS in the Polaris Diversity Cohort
	Genotype assessment using the Polaris Kids Cohort
	Detecting NRS in 1000 Icelandic genomes

	Conclusion and Future Work
	References
	Appendix
	Index

