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Abstract: Crop models are crucial in assessing the reliability and sustainability of soil water conser-
vation practices. The AquaCrop model was tested and validated for maize productivity under the
selected climate smart agriculture (CSA) practices in the rainfed production systems. The model was
validated using final biomass (B) and grain yield (GY) data from field experiments involving seven
CSA practices (halfmoon pits, 2 cm thick mulch, 4 cm thick mulch, 6 cm thick mulch, 20 cm deep per-
manent planting basins (PPB), and 30 cm deep) and the control (conventional practice) where no CSA
was applied. Statistics for coefficient of determination (R2), Percent bias (Pbias), and Nash–Sutcliffe
(E) for B and GY indicate that the AquaCrop model was robust to predict crop yield and biomass as
illustrated by the value of R2 > 0.80, Pbias −1.52–1.25% and E > 0.68 for all the CSA practices studied.
The relative changes between the actual and simulated water use efficiency (WUE) of grain yield
was observed in most of the CSA practices. However, measured WUE was seemingly better in the
2 cm thick mulch, indicating a potential for water saving and yield improvement. Therefore, the
AquaCrop model is recommended as a reliable tool for assessing the effectiveness of the selected CSA
practices for sustainable and improved maize production; although, the limitations in severely low
soil moisture conditions and water stressed environments should be further investigated considering
variations in agroecological zones.

Keywords: climate smart agriculture practices; AquaCrop model; rainfed production systems and
maize production

1. Introduction

The global population growth is expected to increase over the next 50 years and, hence,
rise the demand for food [1]. This will necessitate an increase in agriculture production
per unit land area, especially in the developing countries of sub-Sahara Africa (SSA) [2,3].
In SSA, food production, which is majorly dependent on natural rainfall, has been greatly
affected by water stress related to rainfall fluctuation associated with climate change.
Therefore, efforts to increase food production should address the challenges of water
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shortages through improved soil water management strategies [4]. In Uganda, the situation
is worsening because of the torrential (high intensity in a short time) nature of the rains
often causing crop damage and soil erosion [3,5,6]. In some places in Uganda, the rainfall
pattern is characterized by long dry spells (five months), which cause severe crop water
stress during critical growth stages, leading to low crop yields or total crop failure.

Among the crops affected is maize, a major cereal crop that significantly contributes to
food security and income generation in Uganda, whereby smallholder farmers account for
90% of the total production under natural rainfed conditions [7]. However, the increase
in dry spells without supplemental water management practices in the cropping seasons
affects maize productivity. The adoption of climate smart agriculture practices for soil
water conservation could boost maize production in these areas.

Climate smart agriculture (CSA) practices are gaining momentum as an adaptation
option to address the challenges of unreliable rainfall and water shortages in agriculture
production while protecting the environment [8,9]. Climate smart agriculture practices refer
to farm management practices that sustainably increase productivity, resilience, and reduce
greenhouse gases to enhance the achievement of national food security and sustainable
development goals [8]. The primary purpose of CSA is to transform and reorient existing
agricultural systems to support food security under a changing climate [10]. These CSA
practices have been used by farmers in humid, sub-humid, and dryland areas worldwide to
increase soil moisture storage and boost agricultural productivity [9,11,12]. Numerous CSA
practices including mulching, permanent planting basins, halfmoon pits, tied ridges, crop
varieties, and irrigation have been used on cultivated land in different parts of SSA [10,12].

Despite the fact that CSA practices have been promoted, their adoption has remained
very low due to lack of evidence on their efficiency over time among others [10,13]. In
order to recommend some of these practices for future use aiming at sustaining crop
production, crop simulation modeling is one of the alternatives and methods for testing
the future efficiency of the CSA practices. Among many crop models available, the Food
and Agriculture Organisation (FAO) AquaCrop simulation model provides a user-friendly
interface and practioner-oriented output to maintain optimal balance between accuracy,
robustness, and simplicity [14]. The model has successfully simulated the growth, biomass,
and yield of various crops such as maize [14–16], wheat [17], and soybean [18] under
different climatic conditions.

The FAO AquaCrop simulation model also provides a sound theoretical framework
to investigate, assess crop biomass, and yield response to various environmental condi-
tions [15,19–22]. In Uganda, the FAO AquaCrop simulation model has specifically been
employed to assess the impact of climate change and adaptation options on maize produc-
tion [23]. However, there are conflicting reports on the performance of this model under
different climatological zones [24,25]. This study, therefore. aimed to test and validate
the AquaCrop model for maize under selected CSA practices in the tropical sub-humid
environment of the mid-west Albert region of Uganda.

2. Materials and Methods
2.1. Field Experiments

A completely randomized block design field experiment was conducted at Bulindi
Zonal Agriculture Research Development Institute, Western Uganda (1◦00′–2◦00′ N and
30◦30′–31◦45′ E, 1276 m asl) [26]. The climate of Bulindi is tropical, wet and dry with
highly spatial and temporal rainfall distribution [27]. The study was conducted for three
growing seasons and it was completely rainfed, whereby the first season begun in March
2019 and ended in August 2019 and was characterised by relatively long rains (Figure 1a).
The second season ran from October 2019 to February 2020 (Figure 1b), while the third
season started in March 2020 and ended in August 2020 (Figure 1c).
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Figure 1. Rainfall recorded during the first (April–August 2019) (a), second (October 2019–February
2020) (b), and third (March–August 2020) (c) maize cropping seasons. Source: Field climate data
collected in 2019–2020.

During the study period, data on daily rainfall, air temperature, humidity, wind speed
(at 2 m height), and solar radiation were collected from a site installed weather station at
Bulindi Zonal Agriculture Research Institute. The mean maximum temperature was 21.5 ◦C
in season 1 (Figure 1a), 24.4 ◦C for season 2 (Figure 1b), and 20.9 for season 3 (Figure 1c).
The temperature over seasons varied greatly between the months of June (20.1 ◦C), October
(23.4 ◦C), and April to May (22.8 ◦C). The highest rainfall (529 mm) was recorded in the
first season while the third season received the lowest rainfall (406 mm). Although the
second season received higher rainfall (418 mm) than the third season, most of the rainfall
was concentrated in two months (October and November in 2019) (Figure 1b).

2.2. CSA Treatments and Experimental Set Up

A completely randomized block design with four replications was used to establish
the experiment (Figure 2). The experiment consisted of seven treatments, which included
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grass mulch with thicknesses of 2 cm (M2 cm), 4 cm (M4 cm), and 6 cm (M6 cm), halfmoon
(HM), permanent planting basins (PPB) of 20 cm (PPB20 cm) and 30 cm (PPB30 cm) depths,
and the control.
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Figure 2. Experimental layout in field experiments with four treatments C = Control, HM = Half-
moon, PPB 20cm = Permanent Planting basin circular pits of 15 cm diameter and depth of 20 cm;
PPB 30cm = Permanent Planting basin circular pits of 15 cm diameter and 30 cm depth; M 2 cm,
M 4 cm and M 6 cm = soil surface covered with 2 cm, 4 cm, and 6 cm thick layer of dry grass
materials, respectively.

For mulching treatments, the soil in each plot was covered with dry grass materials
to obtain thicknesses of 2 cm, 4 cm, and 6 cm above the soil surface. This was done
immediately after sowing, such that the mulching materials were put between the rows.
For the halfmoon treatment, six moon shaped pits measuring 30 cm deep, 50 cm wide,
and 100 cm circumference were dug using a hand hoe at a spacing of 30 cm [10,28]. The
permanent planting basin treatments were established by digging circular pits of 15 cm
diameter and depths of 20 cm (PPB20 cm) and 30 cm (PPB 30 cm). The PPB treatments
were established one day before sowing.

The control treatment comprised of a bare surface field without any water management
technique, which is the conventional cultivation practice used in the study area. In all
treatments, maize (Longe 9H variety) was sown 5 cm deep at spacing of 75 cm between
rows × 30 cm between hills on 1 April 2019, 5 October 2019, and 17 March 2020 for seasons
one, two, and three, respectively.

Plots of 5 × 5 m with borders of 1 m between plots and 2 m between blocks were
used. To cater for the maize nutrient requirements, diammonium phosphate (60 kg ha−1)
and muriate of potash (60 kg ha−1) were basally applied at blanket rates during sowing.
At eight weeks after sowing, top dressing was conducted by applying urea fertilizer at a
blanket rate of 90 kg ha−1 [7,29]. The pests and diseases were controlled wherever they
appeared while weeds were controlled by hand pulling. The study was repeated only for
the long rain season while the short rain season experiment was not repeated.

2.3. Maize Growth and Yield

Data on aboveground biomass were collected at vegetative, tasseling, silking, and
maturity stages in the three growing seasons and the cumulative soil moisture in each CSA
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practice, respectively (Table 1). At vegetative, tasseling, and silking stages, biomass was
determined using four maize plants selected from the outer plot rows. The maize shoot was
cut off at the ground level and its weight determined using a weighing scale. At maturity,
the above ground biomass and grain yield were measured in a 4 m2 subplot. The maize
shoots from the harvested area were weighed to obtain fresh weight immediately after
harvesting. From each plot, sub samples of the grain and stover were collected and oven
dried at 60 °C at Makerere University soil science laboratory until constant weight was
obtained. The dry weights of maize biomass and grain were used to calculate the yields of
maize biomass and grain yield on hectare basis (t ha−1).

Table 1. Phenological growth stages and soil moisture in CSA treatments.

Agronomic Details Season 1 Season 2 Season 3

Planting density 44,444 44,444 44,444
Sowing date 31 March 2019 5 October 17 March

Days to emergence 6 7 6
Days to vegetative

stage 44 44 44

Days to tasseling 59 59 59
Days to silking 73 73 73

Days to maturity 140 140 140

Cumulative soil moisture (%)

Control 20.6 35.9 36.3
Halfmoon 23.6 38.6 36.2
PPB20 cm 32.9 36.4 36.0
PPB30 cm 40.3 32.8 36.0

M2 cm 22.0 31.4 35.8
M4 cm 37.6 36.4 35.8
M6 cm 34.3 36.7 36.1

Key: Control = conventional practice without any water management technique; Halfmoon = moon shaped pits
measuring 30 cm deep, 50 cm wide, and 100 cm circumference; PPB20 cm = circular pits of 15 cm diameter and
depth of 20 cm; PPB30 cm = circular pits of 15 cm diameter and 30 cm depth; M2 cm = soil surface covered with
2 cm thick layer of dry grass materials; M4 cm = soil surface covered with 4 cm thick layer of dry grass materials;
M6 cm = soil surface covered with 6 cm thick layer of dry grass materials.

2.4. AquaCrop Model

The model evolved through the approach of modelling crop yield and water [30]. The
model links soil, crop, and water relations, for example rain, temperature, evapotranspira-
tion, and carbon dioxide to existing environmental conditions together with plant growth
characteristics (crop cover, phenology, root depth, biomass, and agronomic practices like
fertilizer use and irrigation [16,31]. The AquaCrop model calculates daily water balance
and separates evapotranspiration and transpiration. The non-productive water use is not
considered in the simulation since actual evapotranspiration is computed. The model also
allows the crop to respond to water stress through the stress coefficients embedded within
the AquaCrop model engine, namely, leaf expansion, stomatal closure, canopy senescence,
and harvest index. In addition, the model uses canopy cover from daily transpiration into
leaf area development, hence, the canopy cover development, senescence, and harvest
index are simulated [22,32,33]. The values within the model can be adjusted for different
environmental conditions and related growth stress.

The changes in the soil water of the root zone enables the simulation of crop growth,
its development and yield through the water balance approach, which considers incoming
and outgoing water fluxes. The water stress coefficients are embedded in the AquaCrop as
a function to account for water deficit in the rooting zone and this also relates to canopy
expansion, senescence, and pollination [4].
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2.4.1. Model Parameters and Inputs
Climate Data

The soil-water plant relation of the AquaCrop model relies on climate such as air
temperature, rainfall, reference evapotranspiration (ET0), and carbon dioxide. The ET0
was computed by employing the FAO Penman–Monteith equation [34]. The minimum
and maximum air temperature, wind speed, relative humidity, sunshine hours, and solar
radiation were collected from the weather station at Bulindi agriculture research station.

Crop Characteristics

The crop evapotranspiration (ETc) was calculated by multiplying the ET0 with crop
coefficient at each crop growth stage for the three growing seasons (Equation (1)) [34,35].
Since there were no site-specific Kc values for maize in the study area, we adopted the crop
coefficient values of Food and Agriculture Organisation [34] for the four maize growth
stages (initial, development, middle, and late stages).

ETc = ET0 × κc (1)

where,

ETc represents the crop evapotranspiration (mm day−1),
ET0 represents the reference crop evapotranspiration (mm day−1),
κc represents the crop coefficient (dimensionless).

The total length of maize growth was 140 days. The dates of maize growth stages were
determined from phenology of the crop and its percentage ground cover. The growing
period was divided into initial, development, middle, and late stages [34–36]. The initial
stage was when plants occupied 10% ground cover while the crop development stage was
when plants occupied 10% to 70% ground cover. The middle stage included flowering and
grain filling with yield formation and the late stage consist of the ripening and harvest
phase when there is effective full cover [34, 35]. Kc values ranged between 0.3 to 1.2.

The ground water table was below the effective rooting depth, thus, the effects of
water through capillary rise are not simulated. Moreover, the information relating to
studied climate smart agriculture practices for all the three growing seasons was included
in the AquaCrop model. The crop input in the model consisted of conservative parameters
and non-conservative parameters such as planting density, germination, flowering, and
maturity time, yield, root depth, and the harvest index.

In this study, crop parameters included the crop canopy cover, biomass for water
productivity, coefficients of crop transpiration and response of water stress and the stomatal
closure all embedded in the AquaCrop model. The percentage canopy cover is estimated
in the model using methods proposed by Farahani et al. [19] and Steduto et al. [21,37].
Since the first season was conducted in the anticipated long-term rains (March to August
2019) where waterlogging is anticipated to occur, the consideration of aeration stress
was inevitable. Exceeding the anaerobiosis point in the root zone results in decrease in
transpiration [4,21].

Soil Characteristics

The soil data included soil water characteristics like volumetric water contents at
the permanent wilting point, saturation, field capacity, and hydraulic conductivity of the
soil at depths 10 cm, 20 cm, 30 cm, and 40 cm. Measurements of water contents of the
soil were conducted using the Frequency-Domain-Reflectometry (FDR) profile probe-type
PR2/4 [38], while the saturated soil water conductivity (Ksat) was determined using the
water permeameter [39]. The Rosetta pedotransfer function was also used to estimate the
hydraulic parameters using soil texture data [40]. The Ksat, bulk density, field capacity, and
permanent wilting point were used as initial estimates. All the mentioned soil parameters
were determined following standard procedures.
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2.4.2. Model Calibration and Validation

Assessment of the performance and robustness of the AquaCrop model under varying
crop growing conditions was achieved by comparing the biomass accumulation, grain
yield, ETc, and WUE of maize against field measurements and estimations in the CSA
treatments. All the simulations were limited to the conditions of no nutrient and salinity
stress in the AquaCrop (v. 6.1).

As a first step, the model was calibrated using season 3 outputs from the control
experiment and validated using seasons 1 and 2. The procedure was an iterative process of
adjusting sensitive parameters, mainly non-conservative parameters in the AquaCrop and
assessing both the absolute and relative difference. For each change in input, simulations
were run using the calibrated crop file and the corresponding CSA treatment. The recent
study [15,41] reports the most sensitive parameters in the AquaCrop obtained through
sensitivity analysis testing similar to those in Table 2. The main parameters used to calibrate
the AquaCrop model for simulating maize growth and productivity for the study location
are presented in Table 2. The harvest index of 48%, which was used in the model, is
comparable to those of previous studies [4].

Since the study area was flat, runoff was negligible and the options were selected in
the AquaCrop model under field management options.

Table 2. AquaCrop calibrated values for main parameters used in maize simulation.

Crop Variables Value

Base temperature (°C) 9
Upper temperature (°C) 34

Maximum rooting depth (m) 0.45
Effect of canopy cover in late season (dimensionless) 60

Soil surface covered by an individual seedling at 90% emergence (cm2) 5
Plant population per hectare 44,444

Canopy growth coefficient per day (dimensionless) 0.10988
Maximum canopy cover (%) 0.84

Canopy decline coefficient per day (dimensionless) 0.1003
Germination days 6

Planting days to maximum root depth 61
Days to senescence stage 114
Maturity period (days) 140

Days to flowering 59
Length of flowering stage 8

Period from building up of Harvest Index (days) 81
Reference Harvest Index (HIo) (%) 48

Water Productivity normalized for ET0 and CO2 (gram/m2) 30.5

2.4.3. Model Evaluation

The statistical indices were used to evaluate the AquaCrop model and they included
(1) the coefficient of determination (R2), (Equation (2)); (2) the Nash–Sutcliffe efficiency (E)
(Equation (3)) [42]; (3) the Willmott Index of Agreement; (4) (Equation (4)) [43]; and (5) the
root mean square error (RMSE) (Equation (5)) [44]. Proportions of model variance were
determined using the R2, which ranged between 0 and 1.0, with high values indicating low
variance of error [14]. The E was used to indicate efficiency of the model and determine the
relative scale of residual variance between the observed and simulated maize grain yield or
biomass [45]. According to Schaap et al. [40], E of 1.0 indicates the best fit for the observed
and simulated data [46].

The d estimates the degree of relative error between observed and simulated values
from the model predictions. The values of d range from 0 to 1.0, whereby 0 indicates
disagreement while 1 shows a perfect model agreement. The percentage bias (Pbias)
(Equation (6)) was also used to assess the deviation between observed and simulated
values in the CSA treatments. The optimal value of Pbias is 0%, with positive and negative
values indicating model underestimation and overestimation bias, respectively [46].
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In addition to the above quantitative statistics for model evaluation, the RMSE
(Equation (5)) was considered as a statistical measure of the error differences between
measured and simulated values. It shows the overall deviation of values and indicated
the model uncertainty [41]. The unit of measurement is similar to the observations and
simulated variables, the values near 0 represent a very good model performance and
vice versa.

R2 =

[
∑n

i=1
(
0i − 0

)(
Si − S

)]2

∑n
i=1

(
0i − 0

)2 ×∑n
i=1

(
Si − S

)2 (2)

E = 1− ∑n
i=1(0i − Si)

2

∑n
i=1

(
0i − 0

)2 (3)

d = 1− ∑n
i=1(0i − Si)

1

∑n
i=1

(
0i − 0

)1 (4)

RMSE = 1− ∑n
i=1(0i − Si)

2

n
(5)

Pbias = 1− ∑n
i=1(0i − Si)

∑n
i=1(0i)

× 100 (6)

where, 0i is the measured and Si is the simulated data, 0 is the average measured, and Si is
the simulated data, and n is the total number of measurements or observations. The closer
the index value is to one, the better the agreement between the two variables that are being
compared and vice versa.

3. Results
3.1. Soils of the Study Area

The soil type at the study site were Ferralsols with a bulk density of 1.34 g cm–3. The
predominant soil texture is clay according to the United States Department of Agriculture
classification [47]. The average field capacity, permanent wilting point, and saturation
were 25.2%, 19.9%, and 37.9%, respectively. Before the onset of experiments, soil at the
experimental site was characterized for physical soil properties following recommended
laboratory methods (Table 3).

Table 3. Soil water characteristics of the study site.

Soil Hydraulic Properties
Soil Depth (cm)

0–10 10–20 20–30 30–40

Saturated hydraulic conductivity (mm day−1) 832.2 837.0 848.8 856.2
Field capacity (% Vol) 24.0 20.5 26.7 29.7
Permanent wilting point (% Vol) 19.6 20.5 20.2 19.1
Saturation (% Vol) 35.8 36.3 38.6 41.0

3.2. The AquaCrop Model Performance Indicators for Total Maize Biomass
Model Calibration and Validation

The statistical indices used to calibrate the model are presented in Table 4. The root
mean square error (RMSE) and percentage bias (Pbias) were in the range of 1.21–2.74 and
−0.54%–1.36%, respectively (Table 4), in all the CSA practices. The PPB 20 cm treatment
had the least Pbias while the control had the highest Pbias. The control treatment had
lower values of Nash–Sutcliffe efficiency (E) and Willmott index of agreement (d) compared
to other CSA practices (Table 4). The coefficient of determination (R2) for the calibrated
dataset between simulated and measured R2 values range was 0.66–0.96, whereby the
M 6 cm, M 4 cm, and M 2 cm had the highest and control treatment with the lowest values,
respectively (Table 4).
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Table 4. Statistical indices of the AquaCrop results for the calibrated total maize biomass.

Variables C HM PPB 20 cm PPB 30 cm M 2 cm M 4 cm M 6 cm

RMSE 2.50 1.94 1.50 2.35 1.63 1.43 1.21
Pbias 1.46 0.98 0.70 1.36 1.31 −0.54 −0.55

d 0.86 0.94 0.97 0.92 0.96 0.97 0.98
E 0.46 0.80 0.89 0.69 0.82 0.91 0.93

R2 0.66 0.85 0.92 0.80 0.95 0.95 0.96

Key: RMSE = Root mean square error, Pbias % = percentage bias, d = Willmott index of agreement,
R2 = Coefficient of determination, E = Nash–Sutcliffe efficiency, C = conventional practice without any water
management technique; HM = moon shaped pits measuring 30 cm deep, 50 cm wide, and 100 cm circumference;
PPB 20 cm = circular pits of 15 cm diameter and depth of 20 cm; PPB 30 cm = circular pits of 15 cm diameter and
30 cm depth; M 2cm = soil surface covered with 2 cm thick layer of dry grass materials; M 4 cm = soil surface
covered with 4 cm thick layer of dry grass materials; M 6 cm = soil surface covered with 6 cm thick layer of dry
grass materials.

The reliability under control treatment lessened, indicating water shortages. The rela-
tively lower coefficient of determination (R2) and low Nash–Sutcliffe efficiency (E) values
for the control treatment compared to other CSA practices. The validated dataset, for simu-
lated and measured data had an overall R2 = 0.83 for the control treatment (Tables 4 and 5).

Table 5. Statistical indices of the AquaCrop results for the validated total maize biomass.

C HM PPB 20 cm PPB 30 cm M 2 cm M 4 cm M 6 cm

RMSE 1.88 1.64 2.74 0.94 2.24 1.27 1.38
Pbias 1.25 0.62 −1.52 0.65 0.96 0.89 0.76

d 0.92 0.95 0.92 0.98 0.90 0.97 0.97
E 0.72 0.83 0.72 0.93 0.68 0.88 0.89

R2 0.83 0.89 0.88 0.97 0.80 0.94 0.96

Key: RMSE = Root mean square error, Pbias % = percentage bias, d = Willmott index of agreement,
R2 = Coefficient of determination, E = Nash–Sutcliffe efficiency, C = conventional practice without any water
management technique; HM = moon shaped pits measuring 30 cm deep, 50 cm wide, and 100 cm circumference;
PPB 20 cm = circular pits of 15 cm diameter and depth of 20 cm; PPB 30 cm = circular pits of 15 cm diameter and
30 cm depth; M 2 cm = soil surface covered with 2 cm thick layer of dry grass materials; M 4 cm = soil surface
covered with 4 cm thick layer of dry grass materials; M 6 cm = soil surface covered with 6 cm thick layer of dry
grass materials.

Other R2 values obtained in CSA practices and their relationships between the mea-
sured total maize biomass and individual treatments were above 0.80. However, the control
treatment had lower E (0.46). There was generally a good model fit for all treatments, except
the control (Table 4). During model validation, the control treatment had relatively lower
R2 compared to all the CSA practices (Table 4). It was also noted that values of percentage
bias achieved using control treatment were also the highest. The M 2 cm, control, and PPB
20 cm treatments had the lowest values of E while M 6 cm and PPB 30 cm had the highest
values for the coefficients of determination of 0.97 and 0.96 (Table 4).

The accuracy of the model was also further assessed using correlation analysis
(Figure 3a,b). The overall correlation between the measured and simulated biomass at
maturity was medium (0.57) (Figure 3a), while there was a strong positive correlation (0.77)
between the measured and simulated values of grain yield (Figure 3b).
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3.3. Biomass and Grain Yield
3.3.1. Calibrated Data Set

The measured and simulated values of biomass and grain yield are presented in
Table 6. The measured values of aboveground maize biomass were 8.1–11.3 t ha−1, while
the simulated values ranged between 8.7 and 12 t ha−1 (Table 6). All CSA practices
produced higher total biomass than the control. The highest value of measured total
biomass was harvested from plots treated with M 2 cm, while PPB 20 cm had the highest
simulated total biomass. The deviation between measured and simulated values of total
biomass ranged from−13.5 to 14.4%. The CSA practices M 2 cm and M 4 cm had the lowest
and highest deviation in total biomass, respectively (Table 6).

The measured grain yield ranged between 4.2 and 5.7 t ha−1, whereby the control
produced the lowest grain yield while treatments M 2 cm and M 4 cm highest values. The
values of measured grain achieved using M 2 cm and M 4 cm, and halfmoon, PPB 20 cm
and M 6 cm were similar. The simulated values of grain yield ranged between 4.2 and
6.3 t ha−1. All CSA practices had higher simulated values of grain yield than the control.
The M 4 cm CSA practice had the highest value of simulated maize grain yield.
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The relative change between measured and simulated values of grain yield ranged
between −8.4 and 10.6%, treatments M 2 cm and M 4 cm had the lowest and highest values
of deviation, respectively (Table 5). All treatments had negative values of relative change,
except PPB 20 cm, M 4 cm, and M 6 cm.

Table 6. Simulated maize biomass and grain yield at harvest for CSA treatments for the
calibrated dataset.

CSA
Practices

Total Biomass (t ha−1) Relative
Change (%) Grain Yield (t ha−1) Relative

Change (%)

Measured Simulated Measured Simulated

C 8.1 ± 0.8 8.65 6.53 4.2 ± 0.7 4.2 −1.05
HM 10.1 ± 0.2 11.43 12.82 5.5 ± 0.7 5.5 −0.75

PPB 20 cm 10.8 ± 0.7 12.00 11.15 5.5 ± 0.6 5.7 2.76
PPB 30 cm 10.2 ± 2.1 11.01 7.86 5.4 ± 0.4 5.3 −0.21

M 2 cm 11.3 ± 1.6 9.77 −13.51 5.7 ± 0.7 5.2 −8.41
M 4 cm 10.2 ± 0.1 11.67 14.43 5.7 ± 0.7 6.3 10.60
M 6 cm 10.2 ± 1.0 11.09 8.58 5.5 ± 0.7 5.9 8.12

Key: C = Control, conventional practice without any water management technique; HM = Halfmoon shaped pits
measuring 30 cm deep, 50 cm wide and 100 cm circumference; PPB 20 cm = circular pits of 15 cm diameter and
depth of 20 cm; PPB 30 cm = circular pits of 15 cm diameter and 30 cm depth; M 2 cm = soil surface covered with
2 cm thick layer of dry grass materials; M 4 cm = soil surface covered with 4 cm thick layer of dry grass materials;
M 6 cm = soil surface covered with 6 cm thick layer of dry grass materials.

3.3.2. Validated Data Set

Maize simulated biomass and grain yields are shown in Table 7. It ranged between
9–11 t ha−1. The M 6 cm treatment produced higher biomass than all other CSA practices
while M 2 cm and PPB 30 cm treatments were relatively lower. Moreover, treatment PPB
20 produced the highest values of simulated biomass compared to all the CSA practices
(Table 7).

Table 7. Simulated compared values of biomass and grain yield at harvest in CSA practices for the
validated dataset.

CSA
Practices

Total Biomass (t ha−1) Relative
Change (%) Grain Yield (t ha−1) Relative

Change (%)

Measured Simulated Measured Simulated

C 10.0 ± 1.4 9.8 −1.76 4.6 ± 0.7 4.5 −0.6
HM 8.9 ± 2.3 10.0 12.1 4.0 ± 0.4 4.1 −2.0

PPB 20 cm 10.2 ± 1.1 12.0 14.4 5.0 ± 0.8 4.6 −9.0
PPB 30 cm 9.2 ± 1.0 8.9 −1.7 4.4 ± 0.4 4.2 −5.1

M 2 cm 8.7 ± 0.7 10.4 19.6 4.9 ± 0.5 5.3 12.3
M 4 cm 11.1 ± 0.5 10.0 −8.8 4.6 ± 0.7 5.0 11.0
M 6 cm 11.1 ± 0.6 10.5 −1.5 5.1 ± 0.7 4.6 −8.5

Key: C = Control, conventional practice without any water management technique; HM = Halfmoon shaped pits
measuring 30 cm deep, 50 cm wide, and 100 cm circumference; PPB 20 cm = circular pits of 15 cm diameter and
depth of 20 cm; PPB 30 cm = circular pits of 15 cm diameter and 30 cm depth; M 2 cm = soil surface covered with
2 cm thick layer of dry grass materials; M 4 cm = soil surface covered with 4 cm thick layer of dry grass materials;
M 6 cm = soil surface covered with 6 cm thick layer of dry grass materials.

The measured grain yield ranged between 4 and 5.1 t ha−1 with M6 cm and PPB 20 cm
having the highest grain yield (Table 7). The lowest values of measured grain yield were
recorded from plots treated with halfmoon and control treatments. Simulated grain yields
M 2 cm and M 4 cm was the highest during model validation compared to all the CSA
practices. Under M 2 cm, grain yield increased by 18% and 11% for the M 4 cm from the
control treatment. Moreover, the M 6 cm and PPB 20 cm increased grain yield by only
2% while the halfmoon and PPB 30 cm did not increase the grain yield from the control
treatment (Table 7). In comparison, measured yield increased from the control by 24% for
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M 4 cm and M 6 cm treatments (Table 7). The PPB 20 cm treatment increased grain yield
also by only 4%.

3.4. Crop Evapotranspiration and Water Use Efficiency

Overall, the average crop evapotranspiration (ETc) was 554 mm and 379 mm from
validation and calibration datasets of the AquaCrop model (Table 8). During the validation
exercise, a difference of 119 mm of ETc was observed between the validated and calibrated
ETc. The average measured water use efficiency (WUE) observed was 12 kg mm−1 ha−1

and 10 kg mm−1 ha−1 for the validated and calibrated data, respectively. The AquaCrop
model was robust in estimating WUE in all the CSA treatments as observed (Table 8). In
the validated database, WUE also increased from the control treatment by 13%, 9%, and
1% under PPB 20 cm, M 4 cm and HM treatments, respectively, while other CSA practices
did not increase WUE in the field observations. For the simulated WUE, the increase was
50%, 42%, 39%, and 19% for M 4 cm, M 6 cm, PPB 20 cm, and M 2 cm, respectively. Only
PPB30 cm and the HM treatments did not show increase of WUE from the AquaCrop model
simulated data (Table 8).

Table 8. Crop evapotranspiration and water use efficiency.

CSA
Practice

ETc (mm) WUE (kg mm−1 ha−1)

Measured Simulated Relative Change
(%) Measured Simulated Relative Change

(%)

Calibrated

C 379 380 0.4 8.4 4.7 −44
HM 379 378 −0.2 10.9 7.4 −32

PPB 20 cm 379 379 0 14.5 10.8 −25
PPB 30 cm 379 379 0 10.6 7.7 −28

M 2 cm 379 379 0 10.9 10.3 −6
M 4 cm 379 379 0 15.1 15.8 5
M 6 cm 379 379 0 14.5 15.3 6

Validation

C 554 507 −8 8 5 −33
HM 554 507 −8 8 5 −28

PPB 20 cm 554 446 −15 8 7 −19
PPB 30 cm 554 508 −8 6 4 −22

M 2 cm 554 507 −8 8 6 −21
M 4 cm 554 508 −5 8 8 −4
M 6 cm 554 507 −6 6 7 24

Key: C = Control, conventional practice without any water management technique; HM = Halfmoon shaped pits
measuring 30 cm deep, 50 cm wide, and 100 cm circumference; PPB 20 cm = circular pits of 15 cm diameter and
depth of 20 cm; PPB 30 cm = circular pits of 15 cm diameter and 30 cm depth; M 2 cm = soil surface covered with
2 cm thick layer of dry grass materials; M 4 cm = soil surface covered with 4 cm thick layer of dry grass materials;
M 6 cm = soil surface covered with 6 cm thick layer of dry grass materials.

4. Discussion

Findings from the model simulation show that maize production using the control
treatment was affected by relatively low soil moisture content. However, maize produc-
tivity simulated better using CSA practices, indicating better model performance under
moderately low soil moisture content, water stressed, and non-stressed environment con-
ditions. This is confirmed by the statistical indicators of root mean square error (RMSE),
Nash–Sutcliffe efficiency (E), and Willmott index of agreement (d) observed during the
calibration process (Table 4). It is also further corroborated by the simulation results in
the present study and past studies, which show that the performance of the AquaCrop
depends on the water shortages and stress levels experienced by the plants during the crop
growth cycle [48].

The statistical analysis of the comparison between the measured and simulated final
biomass showed high R2 (0.77), indicating that the model predicted final biomass with
a good degree of accuracy. The results of model validation indicate generally good fit
between the measured and predicted datasets across CSA practices, except for the control
treatment (Table 5). This is relatively due to low soil moisture content experienced in the



Sustainability 2022, 14, 2036 13 of 17

control treatment resulting in lower model efficiency. The values of d and E obtained during
the study (Table 5) also indicate that the model was robust in simulating biomass and grain
yield in different CSA practices.

The decline in model performance under reduced soil moisture content could also
be attributed to reduced leaf water potential to −1.2Mpa, below which the AquaCrop
model is unable to predict maize grain yield [15,24]. Due to low soil water content in
the control treatment, the yield is affected, and this suggests that the model was not able
to simulate the temporary recovery from water shortage due to insufficient soil water
conservation in the control treatment and this corroborates with previous studies [19,22,49],
where low soil moisture availability resulted into low yield and water use efficiency in non-
irrigated treatments. In addition, Figure 1 indicates lower seasonal rainfall (406–529 mm)
during seasonal experiments than the amount (500–800 mm/season) required for optimum
maize production [34]. The relative changes in the observed and simulated biomass
under halfmoon, PPB 20 cm, and M 4 cm could be the differences in soil moisture storage.
The relatively higher changes between observed and simulated biomass under M 4 cm
can be attributed to reduced mulch thickness arising from termite degradation of grass
materials, which exposed the soil to solar radiation and increased evaporation (Table 7).
The shallow depth of treatment PPB 20 cm could have reduced soil moisture storage and
caused water stress due to higher evaporative loss and this is also related to previous
studies of He et al., [50,51].

In addition, the relative increases of the AquaCrop simulation model for maize biomass
under PPB 20 cm and M 4 cm CSA practices may be attributed to overestimation of stom-
atal conductance by the model [52]. This process allows plants to increase carbon dioxide
uptake, which subsequently enhance photosynthesis, hence, higher biomass accumulation,
especially where there is soil moisture availability. The range of yield reduction for both
measured and simulated data with a decline in model accuracy under limited soil moisture
conditions (Table 6) has been previously reported [20,24,31,53]. The implication is that
the AquaCrop model can adequately predict grain yield under varying environmental
conditions. In comparison, however, the higher final maize biomass and grain yield ob-
served in CSA treatments could also be attributed to higher rainfall, which increased soil
moisture storage and enhanced maize growth. The higher rainfall and lower tempera-
tures could have promoted canopy growth and biomass accumulation [54], thus reducing
evapotranspiration and higher final biomass and grain yields.

The results of the model performance on simulation of ETc and WUE under different
CSA practices are similar to previous reports, which showed that the AquaCrop model
systematically underestimated the seasonal ET, and relative changes with the declining
soil moisture content [55–57]. Moreover, the change between estimated and simulated
ETc obtained during the current study are higher than those reported by De et al. [15,58],
but less than those reported by Katerji et al. [15] while using the AquaCrop model to
simulate maize growth under low soil moisture conditions. This could be attributed to
differences and variability in soil properties, soil moisture storage, climatic conditions, and
crop varieties.

The results indicated no consensus of the deviations in WUE values being a function
of the level of plant water shortages. However, measured WUE was higher in the CSA
practices, indicating a potential for water saving, given the observed field measurements in
the CSA treatments. Moreover, relatively higher values of maize grain yield and biomass
were obtained in the CSA practices than in the control treatment (Table 7). The simulated
values of WUE achieved during the study are similar to those of previous studies using
maize in varying environmental conditions [41]. The relative changes also observed with
the AquaCrop model simulated WUE from measured values and R2 is relatively lower
than those previously reported [40,58]. This implies that there is considerable room for
improvement in the model estimation of WUE, which relies heavily on predictions of crop
ET under well-watered conditions [50], but performs poorly in cases of low soil moisture
shortages and severe moisture stress [24].
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The calibration process showed higher efficiency of the AquaCrop model in simulation
of the ETc and WUE (Table 8), probably due to the effectiveness of CSA practices arising
from residual effect. This suggests that once the model is calibrated properly, the AquaCrop
can reliably predict these variables in environments extremely variable in weather con-
ditions, and the calibrated model can work reasonably well across seasons. The relative
error percentage between the simulated and measured values for both ETc and WUE was
generally in the ranges previously reported in studies [4,58,59]. This implies that the model
reliability for these water variables decreases when challenged by extreme weather vari-
ations such as intense rainfall events, and, therefore, model improvement is required for
better performance.

In the current era of climate change, climate smart agriculture (CSA) practices enhance
resilience and combat water shortages through mitigating risks of soil evaporation, e.g.,
mulch and permanent planting basins. This is an alternative towards soil water conserva-
tion in a changing climate. Feeding the growing population requires increase in agriculture
productivity as a pre-requisite to food security, which is possible through adoption of CSA
practices to reduce negative impacts of climate change in agriculture, hence, alleviating
hunger and poverty, a key contribution to realization of sustainable development goals
(SDGs), especially zero hunger, climate action, and poverty eradication among smallholder
farmers and successful implementation of the 2015 Paris agreement on climate change
mitigation and adaptation.

5. Conclusion

The AquaCrop was robust to predict maize yield with the selected climate smart
agriculture (CSA) practices as indicated by the statistical indictors with a high degree of
accuracy. The AquaCrop model adequately predicts final biomass and grain yield under
different CSA practices and this can be a reliable tool in prioritizing climate smart agricul-
ture practices and informing the choice of CSA adoption. Such information is important in
enhancing maize productivity and sustainable agriculture production. Furthermore, the
study has demonstrated that the AquaCrop model could be used to predict maize biomass
and yield with a high degree of reliability and, therefore, the validated model can be used
for evaluating the effects of sowing dates on grain yield and biomass. Thus, the model is
a valuable tool to inform decision makers on the selection of suitable CSA practices for
improved maize production in rainfed production systems. The study was conducted in
one agroecological zone and for a short period, future studies would be crucial to assess
the AquaCrop model in different agroecological zones over mid to long term periods.
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