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Dedicated to my parents, Christopher and Lorelei.

“I say so strange a dreaminess did there then reign over the ship and all over the
sea, only broken by the intermitting dull sound of the sword, that it seemed as if

this were the Loom of Time, and I myself were a shuttle mechanically weaving and
weaving away at the Fates. There lay the fixed threads of the warp subject to but
one single, ever returning, unchanging vibration, and that vibration merely enough
to admit of the crosswise interblending of other threads with its own. This warp

seemed necessity; and here, thought I, with my own hand I ply my own shuttle and
weave my own destiny into these unalterable threads.”

- Herman Melville, Moby-Dick





SUMMARY

This dissertation presents recent contributions to two major topics in discrete geom-
etry. The first topic is Ehrhart theory, which is the study of the discrete volume of
convex polytopes. Ehrhart theory is named for Eugène Ehrhart, who showed that for
a positive integer k, the number of lattice points in the k-th dilate of a lattice poly-
tope is given by a polynomial in k [51]. The first three chapters of this dissertation
each handle a different type of Ehrhart theory.
In Chapter 1, which is part of joint work in progress with Donghyun Kim and

Mariel Supina, we investigate equivariant Ehrhart theory, which unites Ehrhart the-
ory with representation theory to study the properties of convex polytopes and their
symmetries. Let P be a lattice polytope invariant under the linear action of a finite
group. Stapledon introduced a formal power series, called the equivariant Ehrhart
series EE(P ; t), which encodes simultaneously, for all group elements, the number
of fixed lattice points in each dilate [99]:

EE(P ; t) =
∑
m≥0

χmP t
m =

H∗(P ; t)
det(I − t · ρ) =

H̃(P ; t)
(1− tN )d+1 .

We prove basic results about this series, including proofs that it has the above
rational generating functions. We also provide two original methods for calculating
the equivariant Ehrhart series using invariant triangulations. Finally, we present
Sagemath code to calculate the equivariant Ehrhart series. It could provide the means
for the interested mathematician to prove or disprove the following conjecture:

Conjecture (Stapledon: [99, Conjecture 12.2]). If the H∗-series is polynomial, then
it has nonnegative, integral coefficients, i.e., it is effective.

In Chapter 2, we study rational Ehrhart theory. This chapter is joint work with
Matthias Beck and Sophie Rehberg [11]. For polytopes with rational vertices, the
Ehrhart counting function is given by a quasipolynomial. We extend the Ehrhart
counting function to count the number of lattice points in rational and real dilates
of rational polytopes. This continues work of Linke, who showed that the rational
and real Ehrhart counting functions of rational polytopes are quasipolynomial [77].
Our goal is to add a generating function perspective to this work. We associate
two rational generating functions to a rational polytope that completely describe its
rational and real Ehrhart counting functions. We provide structural theorems about
these generating functions: rationality, nonnegativity theorems, connections to the
h∗-polynomial in classical Ehrhart theory, and combinatorial reciprocity theorems.
We also extend the notion of Gorenstein polytopes to the rational setting.

In Chapter 3, we perform a computational investigation of themultivariate Ehrhart
theory of tropical polytopes using methods from toric geometry. This chapter is joint
work with Marie-Charlotte Brandenburg and Leon Zhang [20]. The tropical convex
hull of a finite set of points is not necessarily a classically convex polytope. When it
is, we call the resulting convex hull a polytrope. Polytropes appear classically as al-
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cove polytopes of type A, which are of much interest in their own right. For instance,
it is not known if alcove polytopes of type A have unimodal h∗-vectors, which are
vectors associated with the Ehrhart polynomial. In this work, we compute multivari-
ate volume, Ehrhart, and h∗-polynomials for all polytropes up to dimension 4, in
which there are 27 248 types of maximal polytropes. We also provide a combinatorial
description of the coefficients of the volume polynomials in dimension 3 in terms of
regular central subdivisions of the fundamental polytope FP3.

In Chapter 4, which comprises the second part of this dissertation, we study sim-
plicial hyperplane arrangements. Chapter 4 is joint work with Jean-Philippe Labbé
and Michael Cuntz published in Annals of Combinatorics [34]. A finite, central, real
hyperplane arrangement is called simplicial if the bounding hyperplanes to each re-
gion have linearly independent normal vectors. Our work is particularly motivated
by the following open question:

Open Question. What is the number of isomorphism classes of rank three simpli-
cial hyperplane arrangements?

In 1971, Grünbaum published a catalogue of rank-3 simplicial arrangements with
three infinite families and 90 sporadic arrangements [61]. Since then, 5 new arrange-
ments have been found [33]. In [34], we provide the most up to date catalogue of
simplicial hyperplane arrangements of rank 3, giving normals and invariants. In
Chapter 4, we add structure to the catalogue by classifying the arrangements ac-
cording to whether their associated lattices of regions are always, sometimes, or
never congruence normal depending on the choice of base region. Our novel meth-
ods for checking congruence normality work in any dimension and make use of the
oriented matroid associated to a hyperplane arrangement. We prove that finite Weyl
groupoids of any dimension have congruence normal lattices of regions.
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ZUSAMMENFASSUNG

Diese Dissertation präsentiert neue Beiträge zur zwei wichtigen Themen in diskreter
Geometrie. Das erste Thema ist Ehrhart Theorie, welche das diskrete Volumen kon-
vexer Polytope studiert. Ehrhart Theorie ist nach Eugène Ehrhart benannt. Ehrhart
zeigte 1962, dass die Anzahl an Gitterpunkten in der k-ten Streckung eines Git-
terpolytopes mit einem Polynom in k übereinstimmt, wobei k eine natürliche Zahl
ist [51]. Die ersten drei Kapiteln dieser Dissertation behandeln verschiedene Verall-
gemeinerungen von Ehrhart Theorie.
In Kapitel 1, eine gemeinsame Arbeit mit Donghyun Kim und Mariel Supina,

untersuchen wir Äquivariante Ehrhart Theorie, diese vereint Ehrhart Theorie mit
Darstellungstheorie um die Eigenschaften von konvexen Polytopen und ihren Sym-
metrien zu untersuchen. Sei P ein ganzzahliges Polytop das invariant unter der
linearen Aktion einer endlichen Gruppe ist. Stapledon hat eine formale Potenzreihe
eingeführt, die äquivariante Ehrhart Reihe EE(P ; t) genannt wird. Diese kodiert gle-
ichzeitig, für jedes Gruppenelement die Anzahl der Gitterpunkte, welche Fixpunkte
unter der Aktion des Gruppenelementes sind, in jeder Streckung des Polytopes:

EE(P ; t) =
∑
m≥0

χmP t
m =

H∗(P ; t)
det(I − t · ρ) =

H̃(P ; t)
(1− tN )d+1 .

Wir zeigen grundlegende Eigenschaften für diese Reihe, unter anderem beweisen
wir die obige Darstellung als rationale erzeugenden Funktion. Wir stellen auch zwei
neue Methoden vor um mit Hilfe von invarianten Triangulierungen die äquivariante
Ehrhart Reihe zu berechnen. Schließlich präsentieren wir Sagemath Code um die H∗-
Reihe zu berechnen. Es könnte für die interessierte Mathematiker/innen ein Mittel
bereitstellen um die folgende Vermutung zu beweisen oder zu widerlegen:

Vermutung (Stapledon: [99, Conjecture 12.2]). Wenn die H∗-reihe ein Polynom ist,
dann hat diese nicht-negative ganzzahlige Koeffizienten.

In Kapitel 2, studieren wir rationale Ehrhart Theorie. Dieses Kapitel ist gemein-
same Arbeit mit Matthias Beck und Sophie Rehberg [11]. Für rationale Polytopes ist
die Ehrhart-Gitterpunktzählfunktion für natürliche Zahlen durch ein Quasipolynom
gegeben. Wir erweitern die Ehrhart-Gitterpunktzählfunktion um die Anzahl von Git-
terpunkten in rationalen und reellen Streckungen von rationalen Polytopen zu zählen.
Das erweitert Arbeit von Linke, die gezeigt hat das die rationale und reelle Ehrhart
Gitterpunktzählfunktionen von rationalen Polytopen quasipolynomiell sind [77]. Unser
Ziel ist es eine rationale erzeugenden Funktion zur diese Arbeit hinzuzufügen. Wir
definieren für jedes Polytop zwei rationale erzeugenden Funktionen, die die ratio-
nalen und reellen Gitterpunktzählfunktionen vollständig beschreiben. Wir geben
strukturelle Theoreme über diese erzeugenden Funktionen: Rationalität und Nicht-
Negativität, Verbindungen zu dem h∗-Polynom in klassischer Ehrhart Theorie, und
Theoreme zur kombinatorischen Reziprozität. Wir erweitern auch den Begriff von
Gorenstein Polytopen auf das rationale Szenario.
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In Kapitel 3 machen wir eine computergestützte Untersuchung der multivariaten
Ehrhart Theorie von tropischen Polytopen mit Hilfe von Methoden aus der torischen
Geometrie. Dieses Kapitel ist gemeinsame Arbeit mit Marie-Charlotte Brandenburg
und Leon Zhang. Die tropische konvexe Hülle einer endlichen Punktmenge ist nicht
notwendigerweise konvex im klassischen Sinne. Ist dies jedoch der Fall, so nennen
wir die tropische konvexe Hülle ein Polytrop. Polytrope tauchen auch als alkove Poly-
topen von Typ A auf, die von großem Interesse sind. Zum Beispiel ist nicht bekannt,
ob alkove Polytope von Typ A unimodale h∗-Vektoren haben. In diesem Kapitel
berechnen wir multivariate Volumina, Ehrhartpolynome und h∗-Polynome für alle
Polytrope bis Dimension 4, wo es 27 248 Arten von maximalen Polytropen gibt. Wir
geben auch eine kombinatorische Beschreibung der Koeffizienten des Volumenpoly-
nomen in Dimension 3 im Hinblick auf die reguläre und zentrale Unterteilungen des
Fundamentalpolytopes FP3.

In Kapitel 4 studieren wir simpliziale Hyperebenenarrangements, das zweite Haupt-
thema dieser Dissertation. Kapitel 4 ist gemeinsame Arbeit mit Michael Cuntz und
Jean-Philippe Labbé, die bereits in den Annals of Combinatorics publiziert wurde
[34]. Ein endliches, zentrales, reelles Hyperebenenarrangement heißt simplizial wenn
die Stützehyperebenen zu jeder Region linear unabhängige Normalenvektoren haben.
Unser Arbeit wurde besonders durch die folgende offene Frage motiviert:

Offene Frage. Wie viele Isomorphismusklassen von simplizialen Hyperebenenar-
rangements mit Rang drei gibt es?

1971 hat Grünbaum einen Katalog von simplizialen Arrangements mit Rang drei
veröffentlicht. Dieser enthält drei unendliche Familien und 90 sporadischen Arrange-
ments [61]. Seitdem sind 5 neue Arrangements gefunden wurden [33]. In [34] präsen-
tieren wir den aktuellsten Katalog von simplizial Hyperebenenarrangements mit
Rang drei, mit Normalvektoren und Invarianten. Außerdem geben wir dem Katalog
Struktur durch eine Klassifizierung der Arrangements bezüglich der Frage, ob der
Regionenverband immer, manchmal, oder nie kongruenz normal ist, abhängig von
der Wahl der Basisregion. Unsere neuen Methoden zur Prüfung ob eine Arrangement
kongruenz normal ist funktionieren in jeder Dimension und benutzen das zugehörige
orientierte Matroid zu einem Hyperebenenarrangement. Wir zeigen auch, dass die
endlichen Weyl-Gruppoide in jeder Dimension kongruenz normale Regionenverbände
haben.
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introduction

As a child, perhaps you ran to the candy store with 70 cents in your hand and had to
figure out how many tootsie rolls (10¢) and jawbreakers (25¢) you could buy, given
that you had to buy your best friend a jawbreaker. Systems of linear equations
and inequalities lie at the heart of polyhedral geometry and are abundant in life.
The mathematics that has emerged from this simple setup is bountiful, with rich
problems and applications. As in the case of the jawbreakers and tootsie rolls, often,
the only solutions of importance are the integral ones, since in the real world, it’s not
so easy to split things up (without chipping a tooth). Ehrhart theory is the study of
integral points in polytopes and their dilates, for instance representing the different
buying scenarios above; in other words, it is the study of the discrete volume of
polytopes. The Ehrhart counting function evaluated at a positive integer k returns
the number of lattice points in the k-th dilate of a polytope. Ehrhart’s theorem states
that for a lattice polytope, i.e. a polytope whose vertices have integral coordinates,
this counting function is given by a polynomial of degree equal to the dimension
of the polytope [51]. More generally, for a rational polytope, the Ehrhart counting
function is given by a quasipolynomial [51], and for a vector-dilated polytope by a set
of quasipolynomials, see [65] or [103]. So, for example, Ehrhart theory can be used to
model: problems in enumerative combinatorics [4] such as knapsack-type problems,
chromatic polynomials of graphs [14] and hypergraphs [89], solutions in computer
programming and compiler optimization [103]; and has deep ties to toric geometry
[55, Section 5.3]. Open questions in Ehrhart theory include: What polynomials can
be Ehrhart polynomials of lattice polytopes? It is known that the leading coefficient
of the Ehrhart polynomial encodes the volume of the polytope, and the second
coefficient is equal to 1

2 the sum of the relative volumes of the facets [12, Sections
5.3 and 5.4], but what do the other coefficients encode geometrically? Which lattice
polytopes have positive Ehrhart polynomial coefficients [78]? The coefficients of the
Ehrhart polynomial may be transformed to other bases to create the so called h∗- and
f∗-vectors [22]. Much study has gone into the characterization of these vectors, and
it is open to determine inequalities among their coefficients, for instance when they
are unimodal [21]. For example, Bruns and Römer showed in 2005 that Gorenstein
polytopes with a regular unimodular triangulation have unimodal h∗-vectors [24].

Changing tack, we can ignore the inequalities in our linear system and study the
equations themselves. Each linear equation gives rise to a hyperplane, a (d − 1)-
dimensional subset of d-dimensional space. A set of hyperplanes forms a hyperplane
arrangement. It is often useful to study hyperplane arrangements combinatorially.
For example one can use Möbius inversion to calculate the number of regions of the
arrangement [106]. One can also create various posets from a hyperplane arrange-
ment, such as the poset of regions [50] or facial weak order [46]. Björner, Edelman,
and Ziegler showed that the poset of regions is a lattice if the arrangement is sim-
plicial [17]. Much attention has lately been given to discerning which arrangements
are the normal fans of polytopes, mostly focusing on Coxeter cases, see [82] and [81].
For simplicial arrangements an open problem is to count isomorphism classes of
arrangements, see [34], [33], or [62].
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4 Introduction

The rest of this introduction outlines the contents of this dissertation. The inves-
tigation of Ehrhart theory within this dissertation is threefold. Chapter 1 discusses
equivariant Ehrhart theory, a generalization of Ehrhart theory that takes the sym-
metry of the polytope into account. Suppose we have a lattice polytope and a group
of its symmetries. For any one of these symmetries, we can ask, How many lattice
points in the polytope are fixed by the symmetry? What about for any integral dilate
of the polytope? In 2010, Alan Stapledon introduced equivariant Ehrhart theory [99]
and with it the equivariant Ehrhart series, which is an analogue of the usual Ehrhart
series and encodes simultaneously for all group elements the number of fixed lattice
points in each dilate of a polytope invariant under a linear group action. This chapter
focuses on the study of the equivariant Ehrhart series. Our first major contribution is
a sequence of structural results on the equivariant Ehrhart series that provide more
detail to Stapledon’s results and extend them. Stapledon showed that the coefficients
of the series are quasipolynomial, and he studied a generating function for the se-
ries with numerator H∗(P ; t) that is an equivariant analogue of the h∗-polynomial.
We reprove quasipolynomiality results and additionally show that the equivariant
Ehrhart series has another rational generating function with the classical denomi-
nator (1− tN )d+1 where N and d are positive integers. Our second contribution in
this chapter is implemented open-source Sagemath code for the computation of the
numerator H∗(P ; t). This allows anyone to compute the H∗-series as long as they
have a current version of Sagemath. As it opens experimental approaches, it could
be useful to answer some of the open questions about equivariant Ehrhart theory:
When is the H∗-series polynomial and effective? What is the H∗-series for (nearly
any chosen) family of polytope and group action? Finally, the main theorems of this
chapter, Theorem 1.4.1 and Theorem 1.4.6, provide two new ways to compute the
equivariant Ehrhart series by utilizing the symmetry of the polytope and creating
symmetric triangulations.

a=(1,2,3)

c=(1,3,2)b=(2,1,3)

e=(3,1,2) d=(2,3,1)

f=(3,2,1)

∅

f e

ef

d

dfcf

c

cd

cdf

b

bc bebf

bcf bef

a

ab ac

abc

Figure 1: A half-open decomposition of the permutahedron Π3 determined by a triangulation
(left image) and a partition of the face poset of the triangulation into intervals
shown via its Hasse diagram (right image)

In Chapter 2, we continue to play with the power of rational generating func-
tions. For for both lattice and rational polytopes, the Ehrhart series have rational
generating functions. However, the usual Ehrhart series only encodes the number of



Introduction 5

lattice points in integral dilates of a polytope. If we want to perform this count for
rational dilates or even real dilates, things get much more subtle (and rewarding).
For example, for the line segment [1,2] and a nonnegative dilation factor λ,

| λ[1, 2] ∩Z | = b2λc − dλe+ 1

=


n+ 1 if λ = n for some n ∈ Z>0 ,

n if n < λ < n+ 1
2 for some n ∈ Z>0 ,

n+ 1 if n+ 1
2 ≤ λ < n+ 1 for some n ∈ Z>0 .

Continuing work of Linke, Stapledon, and Henk among others (see [77],[100], and
[65]), we look at rational and real dilates of rational polytopes. Our main contribu-
tion is a discretization of the problem: we create a rational generating function that
describes the real and rational Ehrhart theory of any rational polytope. This view-
point is inspired by [100]. Additionally, we define γ-rational Gorenstein polytopes,
which are the rational analogue of lattice Gorenstein polytopes. We show that γ-
rational Gorenstein polytopes enjoy many of the appealing equivalent properties
that characterize lattice Gorenstein polytopes, for example, the numerators of their
rational generating functions are symmetric. We reprove Betke and McMullen’s the-
orem that states that the h∗-polynomial of a lattice polytope may be decomposed
into a sum of two symmetric polynomials with nonnegative coefficients [15] and offer
many examples, including examples related to period collapse.

How much can you tell from the normal fan of a polytope? Namely, if I hand you
a normal fan, can you tell me, for any polytope P with this normal fan, how many
lattice points are in P? This is the subject of multivariate Ehrhart theory and the
study of Chapter 3. We describe methods and algorithms from toric geometry [43]
for computing multivariate versions of volume, Ehrhart and h∗-polynomials of lat-
tice polytropes, which are both tropically and classically convex. Polytropes are also
known as alcoved polytopes of type A, which are beloved in their own right (see [75,
76]). These algorithms are applied to all polytropes of dimensions 2, 3 and 4, yield-
ing a large class of integer polynomials. For example, in the case of 2-dimensional
polytropes, with facet normals ei− ej ≤ aij for i 6= j ∈ [3] (and seen for example in
the chart x3 = 0), the multivariate Ehrhart function is

1
2
∑

i 6=j∈[3]

(
aij − a2

ij

)
+ a12a13 + a13a23 + a21a23 + a21a31 + a12a32 + a31a32 + 1,

as may also be determined by Pick’s theorem ([12, Section 2.6]). We give a complete
combinatorial description of the coefficients of volume polynomials of 3-dimensional
polytropes in terms of regular central subdivisions of the fundamental polytope. Fi-
nally, we provide a partial characterization of the analogous coefficients in dimen-
sion 4.

We continue to study normal fans of polytopes in the second part of this dis-
sertation. Namely, we concern ourselves with the normal fans of simple zonotopes,



6 Introduction

otherwise known as simplicial hyperplane arrangements. A catalogue of simplicial hy-
perplane arrangements was first given by Grünbaum in 1971, see [61] or [62]. These
arrangements naturally generalize finite Coxeter arrangements and also the weak
order through the poset of regions. The weak order is known to be a congruence
normal lattice, and congruence normality of lattices of regions of simplicial arrange-
ments can be determined using polyhedral cones called shards [88]. In Chapter 4,
we add structure to Grünbaum’s catalogue by determining which arrangements al-
ways or sometimes or never lead to congruence normal lattices of regions. To this
end, we use oriented matroids to recast shards as restricted covectors with entries
(0, +, −, ∗), which we call shard covectors. For example, the ∗ in coordinate 2 of
the shard covector σ1 in Figure 2 indicates that the points in shard Σ1 lie on both
sides of hyperplane H2; the position of hyperplane H2 is irrelevant for describing the
points in the shard Σ1.

Σ1 Υ2

Θ3Γ3

H1H2

H3

1 2 3
σ1 0 ∗ ∗
υ2 ∗ 0 ∗
γ3 + - 0
θ3 - + 0

Figure 2: The 4 shards of the Coxeter arrangement A2 with respect to the chosen region
marked with a dot, and their corresponding shard covectors.

We show that shards are in bijection with shard covectors, and use an intersection
operation on shard covectors to determine congruence noramlity on the level of the
oriented matroid. We also show that lattices of regions coming from finite Weyl
groupoids of any rank are always congruence normal.



background

The following notation is used throughout. N = {0, 1, 2, . . . }, d,m,n ∈N \{0}, and
[m] := {1, 2, . . . ,m}. We use bold faced n, p, x, etc. to denote vectors in the real
Euclidean space Rd equipped with the usual dot product Rd ×Rd → R. The linear
span of a finite, ordered set of vectors P is denoted span(P), its affine hull by aff(P),
and its convex hull by conv(P). To ease reading, we often abuse notation and write
for instance span(x1, x2) instead of span({x1, x2}). The orthogonal complement of
a linear subspace A ⊆ Rd is denoted A>. The relative interior of a subset P of Rd

is denoted by P◦.
In this section, we give select background on polyhedral geometry and Ehrhart

theory that is used in this dissertation. We adopt the vocabulary of polyhedral
geometry as in [108], and freely use notions of polyhedra and their faces.
A (real) hyperplane H is a codimension-1 affine subspace in Rd:

H :=
{

x ∈ Rd : n · x = a for some nonzero n ∈ Rd and a ∈ R
}

.

The vector n is called the normal of H. A finite hyperplane arrangement A

is a finite non-empty set of m hyperplanes. If a = 0 for all hyperplanes in A, then
the hyperplane arrangement is called central. In this case, the hyperplanes are
completely determined by their normals.
A polytope P ⊆ Rd is the convex hull of a finite set of points in Rd. Equivalently,

polytopes are determined by hyperplane arrangements as the bounded intersections
of finitely many closed half-spaces: P = {x ∈ Rd : Ax ≤ b} for some A ∈ Rm×d and
b ∈ Rm. A polytope P ⊆ Rd is called full-dimensional if its dimension, dim(P ),
is equal to d. Occasionally, we write d-polytope to refer to a d-dimensional polytope.
A polytope is a lattice polytope if its vertices are in a lattice Λ ⊆ Rd, which we
normally take to be Zd. Let P ⊆ Rd be a polytope with vertices {v1, . . . , vn}. The
cone over P , denoted Cone(P ), is the following set of points in Rd+1:

Cone(P ) =
{

x ∈ Rd+1
∣∣∣ x =

n∑
i=1

λi(vi, 1) where λi ≥ 0 for all i ∈ [n]

}
.

Definition 0.0.1 ([108, Definition 5.1]). A polyhedral complex C is a finite col-
lection of polyhedra in Rd such that:

1. the empty polyhedron is in C,
2. if P ∈ C, then all faces of P are also in C,
3. the intersection P ∩Q of two polyhedra P ,Q ∈ C is a face of both P and of Q.

A polytopal subdivision of a polytope P is a polytopal complex C with underlying
space |C| = P . The subdivision is called a triangulation if all polytopes in C are
simplices. We think of a triangulation T as a simplicial complex and identify faces
with sets of vertices when convenient. A triangulation of a polytope into lattice
simplices is called a lattice triangulation.

7



8 Background

The main reference we follow for Ehrhart theory is [12]. The Ehrhart counting
function of P , written ehr(P ;m), gives the number of lattice points in the m-th
dilate of P for m ∈ Z≥1:

ehr(P ;m) = |mP ∩Zn| = |{x ∈ Zn : Ax ≤ mb}|.

Ehrhart’s theorem [51] says that for positive integers, ehr(P ;m) agrees with a poly-
nomial in m of degree equal to the dimension of P . Furthermore, the constant term
of this polynomial is equal to 1 and the coefficient of the leading term is equal to the
Euclidean volume of P within its affine span. The interpretation of other coefficients
of the Ehrhart polynomial is an active direction of research, see for example [53].
Ehrhart-Macdonald reciprocity says that ehr(P ,−m) = (−1)dim(P )|(mP )◦ ∩Zn|,
see [13, Section 4.6].
Generating functions play a central role in Ehrhart theory. The Ehrhart series

Ehr(P ; t) of a polytope P is the formal power series given by

Ehr(P ; t) = 1 +
∑
m≥1

ehr(P ;m)tm.

For a d-dimensional lattice polytope, the Ehrhart series has the rational generating
function

Ehr(P ; t) = 1 +
∑
m≥1

ehr(P ;m)tm =
h∗(P ; t)
(1− t)d+1 ,

where h∗(P ; t) =
∑d
i=0 h∗i ti is a polynomial in t of degree at most d, called the h∗-

polynomial. Furthermore, each h∗i is a non-negative integer [95]. The coefficients
of the h∗-polynomial form the h∗-vector: (h∗0, h∗1, . . . , h∗d).

The normalized volume of P is defined as Vol(P ) = dim(P )! vol(P ), where
vol(P ) is the Euclidean volume of P within its affine span. The normalized volume
Vol(P ) measures the volume of P with respect to unimodular simplices, which have
normalized volume 1. The Euclidean volume vol(P ) measures the volume of P with
respect to unit dim(P )-dimensional cubes, which have Euclidean volume 1. The nor-
malized volume of P is equal to the sum of the coefficients of the h∗-polynomial. The
Ehrhart polynomial may be recovered from the h∗-vector through the transformation

ehrP (m) =
d∑
i=0

h∗i

(
m+ d− i

d

)
. (1)

Let P ⊆ Rd be a rational d-polytope with denominator k, i.e., k is the smallest
positive integer such that kP is a lattice polytope. Then ehr(P ;m) is a quasipolyno-
mial with period dividing k, i.e., of the form ehr(P ;m) = cd(m)md+ · · ·+ c1(m)m+

c0(m) where c0(m), c1(m), . . . , cd(m) are periodic functions. In this case, the Ehrhart
series has the rational generating function

Ehr(P ; t) :=
∑

m∈Z≥0

ehr(P ;m) tm =
h∗(P ; t)

(1− tk)d+1 (2)

where h∗(P ; t) ∈ Z[t] has degree < k(d+ 1).



Part I

E H R H A RT T H E O RY

“Och så ska man ju ha några stunder att bara sitta och glo också!”

- Astrid Lindgren, Diary 1964





1
EQUIVARIANT EHRHART THEORY THROUGH SYMMETRIC
TRIANGULATIONS

How can we bring the symmetries of a polytope in to bear on its Ehrhart theory?
Alan Stapledon’s work from 2011 [99] gives one approach to this question. Suppose we
have a lattice polytope and a group of its symmetries. For any one of the symmetries,
we can count the number of lattice points in the polytope that are fixed by that
symmetry. We can do the same for any integral dilate of the polytope. Stapledon
introduced a formal power series, which is an analogue of the usual Ehrhart series,
and encodes simultaneously for all group elements the number of fixed lattice points
in each integral dilate. Let P be a lattice polytope invariant under the linear action
of a group G. The mentioned analogue of the Ehrhart series is the equivariant
Ehrhart series:

EE(P ; t) =
∑
m≥0

χmP t
m,

where χmP is the character of the permutation representation of G on the lattice
points in them-th dilate of P . There is much left to explore in this novel, natural, and
beautiful generalization of Ehrhart theory. In this chapter, we set out to do just that,
and provide three main contributions. First, we give fundamental structural results
on the equivariant Ehrhart series and add details to the proofs that are not explained
in Stapledon’s original work. Second, we provide new, implemented Sagemath [91]
methods for the computation of the equivariant Ehrhart series. Third, we prove two
theorems, Theorem 1.4.1 and Theorem 1.4.6, for computing the equivariant Ehrhart
series using symmetric triangulations.
The chapter is structured as follows. The symmetric triangulations that we use are

referred to as G-invariant half-open decompositions and are introduced in Section 1.1.
They are closely related to partitionability of posets. Also in Section 1.1, we provide
the necessary background on the representation theory of finite groups.

In Section 1.2, we give the mentioned structural results for the equivariant Ehrhart
series. We show that χmP is a quasipolynomial in m and that EE(P ; t) has the
following generating functions:

EE(P ; t) =
∑
m≥0

χmP t
m =

H∗(P ; t)
det(I − t · ρ) =

H̃(P ; t)
(1− tN )d+1 .

The first generating function H∗(P ;t)
det(I−t·ρ) is studied in [99], and the numerator H∗(P ; t)

is a priori a formal power series in t with coefficients in the character ring of the acting
group. In the denominator, I is the identity matrix, ρ is the matrix representation
of the acting group, and for g ∈ G, t · ρ[g] is the matrix representation of g where
each entry is multiplied by the variable t. In [99], H∗(P ; t) is referred to as φ[t]. This
notation was updated in [3] to reflect that H∗(P ; t) is a generalization of the usual
h∗(P ; t) polynomial, and we adopt H∗(P ; t) here.

11
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The second rational generating function, H̃(P ;t)
(1−tN )d+1 , is a typical rational expression

for a formal power series with coefficients given by a quasipolynomial [97, Chapter 4],
and we do not believe it has been looked at before in the setting of equivariant
Ehrhart theory. In the denominator, N is the exponent of G and d is the dimension
of the polytope. The numerator, H̃(P ; t), is necessarily a polynomial in t. One benefit
of this rational generating function is that it is easy to transform from H̃(P ; t) to
the quasipolynomial χmP , see Example 1.4.9 and Example 1.4.10.

Section 1.2.1 discusses the author’s implementation of the H∗-series in Sagemath,
which is the second major contribution of this chapter. The new methods are open-
source and included with current Sagemath versions. This code will allow the math-
ematical community to compute examples and explore the topic, and was already
used by the authors of [3] for verification of their computations on the equivariant
Ehrhart theory of the permutahedron under a symmetric group action. We explain
how to use the code and provide examples. One motivation for considering the H∗-
series is its connection to toric geometry, see [99, Sections 7 and 8]. A lattice polytope
P ⊆ Rd defines a projective toric variety XP . A hypersurface in XP is given by the
vanishing set of f =

∑
v∈P∩Zd a(v)xv, where a(v) ∈ C. This hypersurface is said

to be G-invariant if a(v) = a(w) for all lattice points v, w ∈ P in the same orbit.
The hypersurface is smooth if the gradient vector ( ∂f∂x1

, . . . , ∂f
∂xn

) is never zero when
x1, . . . ,xn ∈ C∗. The hypersurface is nondegenerate if f |F =

∑
v∈F⊆P∩Zd a(v)xv

is smooth for all faces F of P . The H∗-series is effective if the coefficient of ti is an
effective character for all i, where an effective character is a nonnegative integral
sum of the irreducible characters of the group. Stapledon conjectured [99, Conjecture
12.2] that the following are equivalent:

1. There exists a G-invariant nondegenerate hypersurface for P .
2. The H∗-series is effective.
3. The H∗-series is polynomial.

He showed that 1⇒ 2⇒ 3. It is known that 2 does not imply 1, but the equivalence
of 2 and 3 is still open. Stapledon also showed that when a polytope’s vertices
coincide with the primitive ray generators of its G-invariant face fan, then H∗(P ; t)
coincides with the G-representation on the cohomology of the associated toric variety
[99, Proposition 8.1].
In Section 1.3, we review a theorem of Stapledon which gives the equivariant

Ehrhart series of a simplex; it allows one to compute H∗(P ; t) by counting fixed
lattice points in the fundamental parallelepiped. In Theorem 1.4.1, we generalize
this theorem, allowing geometric computation of the H∗-series for polytopes with
G-invariant half-open decompositions. In Theorem 1.4.6 we give a second method
for computing the equivariant Ehrhart series using G-invariant half-open decomposi-
tions, and show that in this case χmP is polynomial in m. Theorems 1.4.1 and 1.4.6
make up the third major contribution of this chapter.
Finally, we provide two additional sections, Section 1.5 and Section 1.6, with more

exploratory results. In Section 1.5, we turn our attention to restricted representations.
We show that if the H∗-series of P under the action of G (admits a G-invariant non-
degenerate hypersurface / is effective / is polynomial), then the H∗-series of P under
the action of G restricted to a subgroup will have the same property. However, we
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show in Example 1.5.4 that even if H∗(P ; t) is not polynomial for a G-action, it may
be polynomial for the action of a subgroup. Likewise, an irreducible representation of
a group G does not necessarily restrict to an irreducible representation of a subgroup,
making it worthwhile to study the equivariant Ehrhart theory of subgroup actions.

In light of these observations, in Section 1.6, we consider the permutahedron under
the action of cyclic groups. The equivariant Ehrhart theory of the permutahedron
under the action of the symmetric group was studied by Ardila, Supina, and Vindas-
Meléndez in [3]. They find combinatorial expressions for the fixed subsets of the
permutahedron for each conjugacy class of the symmetric group. They also show
that Stapledon’s conjecture [99, Conjecture 12.2] holds for the permutahedron under
the symmetric group action. In Theorem 1.6.5, we give an explicit expression for the
H∗-series of the permutahedron under the action of prime cyclic groups and show
that it is effective as a corollary. In Theorem 1.6.2, we give a result on the usual
Ehrhart theory of the permutahedron: the coefficients of the h∗-polynomial of the
permutahedron Πp for prime p are equivalent to 1 modulo p.
This chapter is part of joint work in progress with Donghyun Kim and Mariel

Supina.

1.1 half-open decompositions

In this section, we define the half-open decompositions of polytopes that are used to
calculate the equivariant Ehrhart series in Section 1.4. For background definitions
on discrete geometry see Section 2.

Definition 1.1.1. A half-open decomposition of a lattice polytope P with lattice
triangulation T is a partition of the face poset of T into intervals such that the empty
set is not in its own class. We use T [ ) to refer to the half-open decomposition, i.e.,
the triangulation together with the partition of the face poset.

Definition 1.1.1 is closely related to that of partitionability; the face poset of a pure
simplicial complex is partitionable if it can be partitioned into disjoint intervals
such that each maximal element is a facet of the complex, see [96, Chapter 2]. In this
case, it is easy to read off the h-vector of the simplicial complex by recording the
heights of the minimal simplices in the intervals. It was conjectured by Stanley that
Cohen-Macaulay simplicial-complexes are partitionable, but a counterexample was
found in 2016, see [48]. The following two examples are used as running examples
throughout the chapter.

Example 1.1.2. The two-dimensional permutahedron Π3 ⊆ R3 obtained as the
convex hull of the permutations of the coordinates (1, 2, 3) admits a half-open de-
composition. Figure 3 shows a triangulation of Π3 and a partition of the face poset
of the triangulation. The broken edges in the triangulation indicate which faces are
open and which are closed in the cone over Π3 according to the partition.
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a=(1,2,3)

c=(1,3,2)b=(2,1,3)

e=(3,1,2) d=(2,3,1)

f=(3,2,1)

∅

f e

ef

d

dfcf

c

cd

cdf

b

bc bebf

bcf bef

a

ab ac

abc

Figure 3: A half-open decomposition of the permutahedron Π3 determined by a triangulation
(top image) and a partition of the face poset of the triangulation into intervals
shown via its Hasse diagram (bottom image)

Example 1.1.3. The 0/1 square admits a half-open decomposition. Triangulate
the square into two triangles: ∆(abc) = conv({(0, 1), (0, 0), (1, 1)}) and ∆(bcd) =

conv({(0, 0), (1, 1), (1, 0)}), as shown on the left in Figure 4. Partition the face poset
into three intervals: [a, abc], [∅, bc], [d, bcd] to create the half-open decomposition, as
shown on the right in Figure 4. The broken edges in the triangulation shown in Fig-
ure 4 indicate which faces in the cone over the triangulated square are open according
to the partition of the face poset. The maximal simplex bc in the interval [∅, bc] is
not full-dimensional, which is a flexibility offered by these half-open decompositions.

b=(0,0)

a=(0,1) c=(1,1)

d=(1,0)
∅

a b c d

ab ac bc bd cd

abc bcd

Figure 4: A half-open decomposition of the 0/1 square determined by a triangulation (left
image) and a partition of the face poset of the triangulation into intervals shown
via its Hasse diagram (right image)
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Definition 1.1.4. Let P ⊆ Rd be a lattice polytope, and let I = [S,S] be an
interval in a half-open decomposition T [ ) of P . The half-open cone over the
interval I, denoted Cone(I), is the set of points x ∈ Rd+1 such that:

x =
∑

vi∈S
λi(vi, 1) +

∑
vj∈S\S

µj(vj , 1), where λi ∈ R>0 and µj ∈ R≥0.

Proposition 1.1.5. The cone over a lattice polytope P with half-open decomposi-
tion T [ ) is equal to the disjoint union of half-open cones over the intervals of T [ ):

Cone(P ) =
⊔

I∈T [ )

Cone(I).

Proof. The inclusion Cone(P ) ⊇
⊔
I∈T [ ) Cone(I) is clear. The origin is contained

in the half-open cone, Cone(I), for the unique interval I = [∅,S] that contains
the empty set. Let z ∈ Cone(P ), z 6= 0. There exists a minimal simplex S =

conv(v1, . . . , vn) ∈ T [ ) (with respect to inclusion) such that z ∈ Cone(S) and
z =

∑n
i=1 λi(vi, 1), λi ∈ R>0 for all i ∈ [n]. The simplex S is contained in a unique

interval I = [S,S] of T [ ). Thus,

z =
∑

vi∈S
λi(vi, 1) =

∑
vi∈S

λi(vi, 1) +
∑

vi∈S\S
λi(vi, 1) +

∑
v∈S\S

0(v, 1).

This implies that all vertices of S have a coefficient in R>0, and all vertices of
v ∈ S \ S have a coefficient in R≥0. Thus, z ∈ Cone(I).

It remains to show that the union
⊔
I∈T [ ) Cone(I) is disjoint. Suppose z 6= 0,

z ∈ Cone(I), and z ∈ Cone(I ′) for two intervals I = [S,S], I ′ = [S′,S′] of T [ ).
Then there is a unique face of the simplicial complex T = conv(v1, . . . , vn) ⊆ S ∩S

′

such that z =
∑n
i=1 λi(vi, 1), where λi ∈ R>0 for all i ∈ [n]. As z is contained in

Cone(I) and Cone(I ′), S ⊆ T ⊆ S and S′ ⊆ T ⊆ S
′. Thus T is contained in two

intervals in the half-open decomposition, and they must be the same.

Definition 1.1.6. Let P ⊆ Rd be a lattice polytope, and let I = [S,S] be an
interval in a half-open decomposition T [ ) of P . The half-open fundamental par-
allelepiped of the interval I, denoted Π[ )

I , is the set of points x ∈ Rd+1 such
that:

x =
∑

vi∈S
λi(vi, 1) +

∑
vj∈S\S

µj(vj , 1), where λi ∈ (0, 1] and µj ∈ [0, 1).

For in an interval I of a half-open decomposition, Box(I) is defined to be the set
of lattice points in the half-open fundamental parallelepiped Π[ )

I :

Box(I) = Π[ )
I ∩Zd+1.

Throughout, we use Box(I)k to denote the set of lattice points in the half-open
fundamental parallelepiped of I at height k, i.e. with last coordinate equal to k.

Proposition 1.1.7. Let P be a lattice polytope with half-open decomposition T [ ).
Every lattice point x ∈ Cone(P ) can be expressed uniquely as x = w + z for
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some w =
∑

vi∈S λi(vi, 1), with λi ∈ Z≥0 and z ∈ Box(I) for some interval
I = [S,S] ∈ T [ ).

Proof. Let x ∈ Cone(P ). Then by Proposition 1.1.5, x ∈ Cone(I) for a unique
interval I = [S,S] of T [ ), and

x =
∑

vi∈S
λi(vi, 1) +

∑
vj∈S\S

µj(vj , 1), where λi ∈ R>0 and µj ∈ R≥0,

=
∑

vi∈S

(
dλie − 1 + λi − (dλie − 1)

)
(vi, 1) +

∑
vj∈S\S

(bµc+ (µ− bµc)) (vj , 1)

=

∑
vi∈S

(dλie − 1) (vi, 1) +
∑

vj∈S\S

bµc(vj , 1)


+

∑
vi∈S

(1− dλie+ λi) (vi, 1) +
∑

vj∈S\S

(µj − bµjc) (vj , 1)

 .

Definition 1.1.8. Let P be a lattice polytope invariant under the action of a
group G. A half-open decomposition T [ ) of P is called G-invariant if

1. Simplices are sent to simplices (the triangulation is G-invariant).

2. The action of G induces an automorphism of the face poset of T [ ) such that
intervals of T [ ) are sent to intervals.

In broad strokes, another way to create half-open decompositions of (the cone over)
a triangulated polytope is to use a generic vector in the interior of one simplex and
take the “sunny-side” of each face; one asks if it is possible to remain in a face of the
triangulation when walking in the direction of the vector, see [13, Secton 5.3]. This
creates a shelling of the simplicial complex, which is a stronger notion than that of a
partition. As we show in the next example, this method can fail to create symmetric
half-open decompositions in the case of non-regular triangulations. For equivariant
Ehrhart theory this matters, as we may like to exploit the symmetry that can appear
in non-regular triangulations to make the computations of the equivariant Ehrhart
series easier.

Example 1.1.9. In Figure 5, the top image shows a famously non-regular triangula-
tion of a 2-dimensional simplex, sometimes called the “Mother of all Examples” [44].
One can check that no sunny-side decomposition will yield a G-invariant half-open
decomposition. This triangulation is nevertheless invariant under a rotation by 120◦
about the center. Figure 5 also shows two different Z/3Z-invariant partitions of the
face poset of the triangulation. The first relates to a shelling that is not obtainable
using “sunny-side” decompositions. The second does not correspond to a shelling,
but it still produces an invariant half-open decomposition.
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a

b
c

d

e

f

∅

a b c d ef

ab ac ad ae bcbe bf cd cf df de ef

abc acd ade cdfbcfbef def

∅

a b cde f

abacadae bc bebf cd cf dfdeef

abcacdade cdfbcf bef def

Figure 5: A non-regular, symmetric triangulation of a triangle and two Z/3Z-invariant par-
titions of the face lattice shown via Hasse diagram

1.1.1 Representation Theory of Finite Groups

For a nice introduction to representation theory of finite groups, see Sagan’s book [90]
or Serre’s book [93]. Let V be an n-dimensional vector space over a field K of charac-
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teristic 0. A representation ρ of a group G on V is a group homomorphism from G

to the group of invertible K-linear transformations of V , ρ : G→ GL(V ). The vector
space V is also referred to as a G-module. AG-module isomorphism f : V →W

between two G-modules is a vector space isomorphism such that g(f(v)) = f(g(v))

for all g ∈ G and v ∈ V . If V is a finite, n-dimensional vector space, choosing a
basis for V allows us to equivalently write ρ as a group homomorphism from G to
the group of invertible (n× n)-matrices with entries in K, ρ : G → GLn(V ). This
is called a matrix representation of G on V . We always consider G to be a finite
group, and work interchangeably with representations and matrix representations.
We usually take K = C, and take V to be a finite-dimensional vector space unless
otherwise stated.
A subspaceW ⊆ V is called G-invariant ifW = G(W ) as a set. A representation

is irreducible if there are no nontrivial, proper invariant subspaces of V under the
action of G. There are notions of both addition and multiplication on representations.
Given G-modules V andW with corresponding representations ρ and ψ respectively,
the sum ρ+ψ is a representation on V

⊕
W and the product ρ⊗ψ is a representation

on V
⊗
W , see, for example, [90, Chapter 1.11]. The ring spanned by all formal

sums and products of representations of a group G is called the representation
ring and denoted R[G]. A finite group G always has a one-dimensional irreducible
representation, the trivial representation. The trivial representation sends each group
element to the matrix [1]. If the group G is the symmetric group Sn, with n > 1,
then there is an additional one-dimensional representation, the sign representation.
The sign representation sends each group element σ ∈ Sn to the matrix [sign(σ)].

Let ρ : G→ GLn(V ) be a representation of G. The character of ρ, written χρ, is
the function G→ C such that χρ(g) := trace(ρ(g)); the trace of a matrix is the sum
of its diagonal entries. The characters of irreducible representations are referred to as
irreducible characters. For a group G, the characters of the trivial representation
and sign representation are denoted by χtriv and χsign throughout.
Characters are class functions, functions from the group to the complex num-

bers that take the same value on every conjugacy class. In fact, a class function is a
character of a representation if and only if it can be written as a nonnegative inte-
gral linear combination of the irreducible characters of G [93, Chapter 9]. Following
the notation of [93, Chapter 9], we write R+(G) for the set of the class functions
that are characters and refer to them as effective characters. The group generated
by R+(G) is denoted R(G) and called the character ring; it consists of all class
functions that can be written as linear integral combinations of the irreducible char-
acters. Elements of R(G) are referred to as virtual characters. As the product
of two characters is the character of the tensor product of the corresponding G-
modules, R(G) is really a ring, as its name suggests. It is a subring of the C-vector
space FC(G) of class functions on G with values in C, called the ring of class func-
tions. There is an inner product on FC(G) such that for two class functions φ,χ of
G, 〈φ,χ〉 = 1

|G|
∑
g∈G φ(g)χ(g), where · denotes the complex conjugate. The char-

acters of the irreducible representations form an orthonormal basis for FC(G) with
respect to this inner product. The dimension of FC(G) (and therefore the number
of irreducible representations G) is equal to the number of conjugacy classes of G.
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Let k be the number of conjugacy classes of G, and let {χ1, . . . ,χk} be the irre-
ducible characters of G in some order. The character table of G is a k× k matrix
T such that [Tij ] is the value of the character of the i-th irreducible representation
of G at the j-th conjugacy class. Let G act by permutation on a finite (ordered) set
S. The permutation representation of G on S is the group homomorphism that
sends every element of G to its permutation matrix.
We work with the tensor powers of V and the related symmetric and exterior

powers. The k-th tensor power of V is denoted
⊗k(V ). For intuition and helpful

exercises, see [93, Sections 1.5 and 2.1, Exercise 9.3]. We omit definitions of tensor
powers here, but recall some details of the symmetric and exterior powers. The
following definitions are from [56, Appendix B].

Definition 1.1.10. The k-th symmetric power, Symk(V ) of a vector space V is
the quotient of the tensor product

⊗k(V ) by the subspace generated by all tensor
elements v1⊗ · · ·⊗vk−vσ(1)⊗ · · ·⊗vσ(k), for σ ∈ Sk. We denote the simple tensors
in the quotient space by v1 � · · · � vk.

Definition 1.1.11. The k-th exterior power, Λk(V ) of a vector space V is the
quotient of

⊗k(V ) by the subspace generated by all v1 ⊗ · · · ⊗ vk such that two
of the vectors are equal. We denote the simple tensors in the quotient space by
v1 ∧ · · · ∧ vk.

Let {e1, . . . , en} be a basis for V . The set {ei1 � · · · � eik | i` ≤ i`+1} is a basis
for Symk(V ). A basis for Λk(V ) is the set {ei1 ∧ · · · ∧ eik | i` < i`+1}. If ρ is a
representation of G on V , then G also acts (diagonally) on

⊗k V by

g(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk.

The group G acts diagonally on Symk(V ) and Λk(V ) in the same manner.
It is useful to look at the characters of these actions. For g ∈ G, let {e1, . . . , en}

be an orthonormal eigenbasis of the action of g on V , with eigenvalues {λ1, . . . ,λn}.
This is possible as ρ(g) can be written as a unitary matrix, see [93, Chapter 1]. Then

g(ei1 � ei2 � · · · � eik) = λi1λi2 · · ·λikei1 � ei2 � · · · � eik ,

where i1 ≤ i2 ≤ · · · ≤ ik. This shows that an eigenvector of Symk(V ) has an
eigenvalue that is a monomial in the eigenvalues of ρ(g) of degree k. So the sum of
the eigenvalues of g acting on Symk(V ) is the sum of all monomials in the eigenvalues
of degree k. With respect to the eigenbasis of the action of g on V ,

det(I − tρ(g)) = det




1− tλ1
. . .

1− tλn


 = Πn

i=1(1− tλi).

In fact, det(I − tρ(g)) is independent of the choice of basis to express ρ since

det
(
B−1(I − tρ(g))B

)
= det (I − tρ(g)) ,
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for a change of basis matrix B, and

B−1 (I − tρ(g))B =
(
B−1IB

)
− t

(
B−1ρ(g)B

)
= I − t

(
B−1ρ(g)B

)
.

Thus the generating function of the series of characters of the symmetric powers has
the rational form: ∑

k≥0
χSymk(V )t

k =
1

det(I − t · ρ) . (3)

For the k-th exterior power, g(ei1 ∧ ei2 ∧ · · · ∧ eik) = λi1λi2 . . . λikei1 ∧ ei2 ∧ · · · ∧ eik ,
where i1 < i2 < · · · < ik. The character of the k-th exterior product evaluated at g
is the sum of all square-free homogeneous monomials in λi of degree k. As such, we
can rewrite

det(I − t · ρ) =
n∑
i=0

(−1)iχΛi(V )t
i. (4)

We have now recovered Lemma 3.1 in [99], which states:

Lemma 1.1.12 ([99, Lemma 3.1]). Let G be a finite group and let V be an r-
dimensional representation. Then

∑
m≥0

Symm V tm =
1

1− V t+ Λ2V t2 − · · ·+ (−1)rΛrV tr
. (5)

Moreover, if an element g ∈ G acts on V via a matrix A, and if I denotes the
identity r× r matrix, then both sides equal 1

det(I−tA) when the associated characters
are evaluated at g.

Remark 1.1.13. Stapledon works interchangeably with characters and their repre-
sentations in [99]. For example, Stapledon writes R(G) both for the representation
ring of G and the character ring. Both (5) and its character analogue are said to be
elements of R(G)[[t]]. The author has kept the notions separate here.

1.2 setup and quasipolynomiality

For a Z-module M , we write MR for M ⊗Z R and MC for M ⊗Z C. We use the
following setup throughout the chapter.

Setup 1.2.1. Let G be a finite group acting linearly on a lattice M ′ ∼= M ×Z of
rank d+ 1 such that the Z-coordinate of the lattice points in M ′ is preserved under
the action of G. Let P ⊆M ′R be a d-dimensional G-invariant polytope with vertices
in M × {1}, where G-invariant means that as a set, G(P ) = P .

We assume M = Zd when convenient. Let idG denote the identity element of the
group G. The exponent of a finite group G is the smallest positive integer N such
that gN = idG for all g ∈ G. For any g ∈ G, the subset of P fixed by G, denoted P g
and called the fixed subpolytope, is the convex hull of the barycenters of orbits
of vertices of P [99, Lemma 5.4].
This implies that any fixed subpolytope of P for g ∈ G is a rational polytope with

denominator dividing N . Let χmP be the character of the complex permutation
representation induced by the action of G on the lattice points in mP ∩M ′.
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Definition 1.2.2 (Equivariant Ehrhart Series). The equivariant Ehrhart series,
EE(P ; t), is the formal power series in R(G)[[t]], such that the coefficient of tm
for m ∈ Z≥0 is the character χmP :

EE(P ; t) =
∑
m≥0

χmP t
m.

Evaluating the equivariant Ehrhart series at g ∈ G, EE(P ; t)[g], gives the Ehrhart
series of P g.

Theorem 1.2.3 ([99, Theorem 5.7]). Let P be a lattice d-polytope invariant under
the action of a group G as in the Setup 1.2.1 with k conjugacy classes and exponent
N ≥ 1. There exist polynomials fj,0m0 + fj,1m

1 + · · · + fj,dm
d ∈ FC(G)[m] for

j ∈ N , such that
χmP = fj,0m

0 + fj,1m
1 + · · ·+ fj,dm

d,

when m ≡ j mod N . Thus, viewing χmP as a function on m, we call χmP a
quasipolynomial.

Proof. Evaluating the equivariant Ehrhart series at g ∈ G yields the Ehrhart series
of the fixed subpolytope P g. Furthermore, for all g ∈ G, ehr(P g; t) can be expressed
as a quasipolynomial of period N and degree equal to dim(P g) ≤ d. Therefore,

EE(P ; t)[g] =
∑
m≥0

χmP [g]t
m =

∑
a≥0

N−1∑
j=0

χ(aN+j)P [g]t
aN+j

=
∑
a≥0

N−1∑
j=0

ehr(P g; aN + j)taN+j

=
∑
a≥0

N−1∑
j=0

(
d∑
i=0

cgj,i(aN + j)i
)
taN+j ,

where cgj,i ∈ Q is the coefficient of the degree i term in the j-th constituent of the
Ehrhart quasipolynomial of P g. Let {g1, . . . , gk} be conjugacy class representatives
of G. Define class functions fj,i[g`] := cg`j,i for all j ∈ [N ], ` ∈ [k], and i ∈ {0, 1, . . . , d}.
Then for j ∈ N , and m ≡ j mod N , χmP = fj,0m

0 + . . . fj,dm
d.

Corollary 1.2.4. Let {χ1,χ2, . . . ,χk} be the irreducible characters of G. There exist
polynomials λj,i(m) ∈ Q[m] for each j ∈ N and i ∈ [k] of degree ≤ d such that

χmP =
k∑
i=1

λj,i(m)χi,

for m ≡ j mod N .
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Proof. Continuing from the proof of Theorem 1.2.3, as each fj,i is a class function,
it may be written as a C-linear combination of irreducible characters. For m ≡ j

mod N , we have

χmP = fj,0m
0 + fj,1m

1 + · · ·+ fj,dm
d

=
d∑
`=0

(
k∑
i=1

z`,iχi

)
m`,

where a priori z`,i ∈ C for all ` ∈ {0, . . . , d} and i ∈ {1, . . . , k}. As χmP is an
effective character, for fixed m we also have χmP =

∑k
i=1 µm,iχi, where µm,i ∈ Z≥0.

Combining and comparing coefficients of χi yields equations of the form

µm,i =
d∑
`=0

z`,im
`,

for each m ∈ Z≥0 such that m ≡ j mod N . This implies that the z`,is are rational
(for example through use of the Vandermonde-matrix).

Corollary 1.2.5. Let P be a rational polytope with denominator S ∈ Z>0 such
that P is invariant under the linear action of a group G. Then χmP is quasipolyno-
mial in m with period dividing SN .

Theorem 1.2.6. Let P be a G-invariant lattice polytope of dimension d as in the
Setup 1.2.1, where G has exponent N and irreducible characters {χ1, . . . ,χk}. The
equivariant Ehrhart series has the following rational expression:

EE(P ; t) =
∑
m≥0

χmP t
m =

H̃(P ; t)
(1− tN )d+1 ,

where H̃(P ; t) is a polynomial with coefficients in R(G)⊗Z Q of degree ≤ N(d+ 1)− 1.

Proof. By Corollary 1.2.4, there exists polynomials λj,i(m) ∈ Q[m] for each j ∈
{0, . . . ,N − 1} and i ∈ [k] of degree ≤ d such that for m ≡ j mod N , χmP =∑k
i=1 λj,i(m)χi. Therefore,

EE(P ; t) =
∑
a≥0

N−1∑
j=0

k∑
i=1

λj,i(aN + j)χit
aN+j

=
N−1∑
j=0

tj
k∑
i=1

χi
∑
a≥0

λj,i(aN + j)taN ,

where λj,i(aN + j) is a polynomial in a of degree dj,i ≤ d for all i ∈ {1, . . . , k} and
j ∈ {0, . . . ,N − 1}. Then,

EE(P ; t) =
N−1∑
j=0

tj
k∑
i=1

χi
gj,i(tN )

(1− tN )dj,i+1 ,
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where gj,i(t) ∈ Q[t] is a polynomial of degree ≤ dj,i ≤ d for all i ∈ {1, . . . , k} and
j ∈ {0, . . . ,N}. Thus,

EE(P ; t) =
∑N−1
j=0 tj

∑k
i=1 χi(1− tN )d−dj,igj,i(tN )

(1− tN )d+1 .

Stapledon considers a different denominator for the equivariant Ehrhart series. We
can rewrite EE(P ; t) =

∑
m≥0 χmP t

m = H∗(P ;t)
det(I−t·ρ) , where H∗(P ; t) is a priori a power

series in t with coefficients in R(G). The denominator, det(I − t · ρ), is a polynomial
in t of degree d+ 1 with coefficients in the character ring, see Equation (4). Here, ρ
is the matrix representation of G on the ambient vector space, and t · ρ(g) is the
matrix representation of g with each entry multiplied by t.

Corollary 1.2.7. The H∗-series can be represented as a rational function in t with
coefficients in R(G).

Proof. By Theorem 1.2.6, the equivariant Ehrhart series has a rational generating
function in t with coefficients in R(G)⊗Z Q. Likewise, by Equation (4), det(I − t · ρ)
is a polynomial in t with coefficients in R(G). The product

H∗(P ; t) = det(I − t · ρ) H̃(P ; t)
(1− tN )d+1

is also a rational function in t with coefficients in R(G)⊗Z Q. As (1− tN )d+1 H∗(P ; t)
is an element of R(G)[t], det(1− t · ρ)H̃(P ; t) ∈ R(G)[t].

Recall that the H∗-series is effective if the coefficient of ti is an effective char-
acter, i.e., it decomposes as a nonnegative integral combination of the irreducible
characters.

Lemma 1.2.8. If the H∗-series is effective, then it is polynomial.

Proof. The H∗-series is a priori an infinite formal sum: H∗(P ; t) =
∑
i≥0 H∗i ti. On

the level of series, we have:

H∗(P ; t)[idG]
det(I − t · ρ(idG))

= EE(P ; t)[idG] = Ehr(P ; t) = h∗(P ; t)
(1− t)d+1 .

As det(I − t · ρ[idG]) = (1− t)d+1, H∗(P ; t)[idG] = h∗(P ; t). Let {χ1, . . . ,χk} be
the irreducible characters of G. Since H∗(P ; t) is effective, H∗i =

∑k
j=1 zi,jχj , with

zi,j ∈ Z≥0 for all i, j. Since χj [idG] > 0 for all j, no cancellation can occur and
H∗(P ; t) must be polynomial.

It is an open question to determine if H∗(P ; t) is effective if and only if it is
polynomial [99, Conjecture 12.1]. At the time of writing, the equivariant Ehrhart
series of only a few families of polytopes has been completely described, including
centrally symmetric polytopes under a Z/2Z action [99, Section 11], hypercubes
under symmetric group actions [99, Section 9], reflexive polytopes [99, Section 8], and
permutahedra under symmetric group actions [3]. The open-source implementation
of code for calculating the H∗-series discussed next may be helpful in answering the
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effectiveness question and describing the equivariant Ehrhart series of more families
of polytopes.

1.2.1 Implementation of H∗(P ; t) in Sagemath

The author has implemented methods in Sagemath for the computation of the
H∗-series, see https://trac.sagemath.org/ticket/27637. The code is open-source and
available for public use with current Sagemath versions. It works via the following
algorithm:

Algorithm 1.2.9 (Computing H∗(P ; t)).
input: A rational polytope P and a group G that acts as in the Setup 1.2.1.
Output: The H∗-series: a rational function in t with coefficients in R(G).

1: Fix conjugacy class representatives {g1, . . . , gk} of G and the corresponding char-
acter table T of G.

2: For each representative gi compute:

• Ai = the Ehrhart series of the fixed subpolytope,

• Bi = det(I − t · ρ(gi)).

3: Solve the system of equations xT = [AiBi, . . . ,AkBk], for x.
4: Output the rational function x1χ1 + · · ·+ xkχk.

Some explanation is needed for the input of Algorithm 1.2.9. The usage of the
code is demonstrated in the coming examples. The polytope must have backend
normaliz. The acting group must be obtained as a subgroup of the polytope’s
restricted_automorphism_group, which is a method of polytopes in Sagemath.
The restricted automorphism group is the group of linear transformations mapping
the polytope to itself and such that d-dimensional faces are mapped to d-dimensional
faces. Furthermore, the output of the restricted_automorphism_group must be set
to permutation. This means that every group element is expressed as a permuta-
tion of the vertices of the polytope. The restricted automorphism group also has
the option to represent group elements as matrices. Full-dimensional polytopes are
lifted to height 1 for this representation, and for lower-dimensional polytopes, the
matrices act as the identity on the orthogonal space to the affine span of polytope.
The trickiest part about using the Hstar_function is creating the acting group one
is interested in as a subgroup of the restricted automorphism group. To compute
the Ehrhart series of the fixed subpolytopes in Step 2 of Algorithm 1.2.9, we imple-
mented the method fixed_subpolytopes which returns the fixed subpolytope for
each conjugacy class representative, and may be useful to some researchers in its
own right.

Example 1.2.10. The H∗-polynomial of the 2-dimensional permutahedron Π3 =

conv{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} in R3 is invariant under
the action of the symmetric group S3 permuting the standard basis vectors of R3.
Actually, S3 acts linearly on the lattice{

x ∈ Z3 :
3∑
i=1

xi = 0
}
× (2, 2, 2)Z,
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and Π3 is an invariant lattice polytope of height one with respect to this sublat-
tice of Z3. As shown in [3], the H∗-series of Π3 under the action of S3, where
χtriv,χsign,χ∆ denote the irreducible representations, is

H∗(Π3; t) = χtriv + (χtriv + χsign + χ∆) t+ χtrivt
2.

We now make this computation in Sagemath. To do so, we first create the permuta-
hedron P3 and is restricted automorphism group G.

sage: P3 = polytopes . permutahedron (3, backend ='normaliz ')
sage: G = P3. restricted_automorphism_group ( output ='

permutation ')
sage: G.gens ()
[(1 ,2) (3 ,4) , (0 ,1) (2 ,3) (4 ,5) , (0 ,5) (1 ,3) (2 ,4)]
sage: P3. vertices ()
(A vertex at (1, 2, 3),

A vertex at (1, 3, 2),
A vertex at (2, 1, 3),
A vertex at (2, 3, 1),
A vertex at (3, 1, 2),
A vertex at (3, 2, 1))

Inspection shows that the generator (0, 1)(2, 3)(4, 5) of G corresponds to the reflec-
tion across the (x1 = x2)-hyperplane, and the generator (0, 5)(1, 3)(2, 4) corresponds
to reflection across the (x1 = x3)-hyperplane. Together, these two elements gener-
ate S3. We now create S3 as a subgroup of G and then use the Hstar_function to
compute H∗(P3; t). We set the output to complete for a more verbose output.

sage: H = G. subgroup (gens =[G.gens ()[1], G.gens () [2]]); H
Subgroup generated by [(0 ,1) (2 ,3) (4 ,5) , (0 ,5) (1 ,3) (2 ,4)] of
( Permutation Group with generators
[(1 ,2) (3 ,4) , (0 ,1) (2 ,3) (4 ,5) , (0 ,5) (1 ,3) (2 ,4) ])
sage: H.order ()
6
sage: P3. Hstar_function ( acting_group =H, output ='complete ')
{'Hstar ': chi_0*t^2 + (chi_0 + chi_1 + chi_2)*t + chi_0 ,

'Hstar_as_lin_comb ': (t^2 + t + 1, t, t),
'conjugacy_class_reps ': [() , (0 ,1) (2 ,3) (4 ,5) , (0 ,3 ,4)

(1 ,5 ,2)],
'character_table ': [ 1 1 1]
[ 1 -1 1]
[ 2 0 -1],
'is_effective ': True}

The permutahedron Π3 is also invariant under the action of the cyclic group Z/3Z

permuting the standard basis vectors. We can likewise compute this H∗-series, where χ0
is the trivial representation, and χ1,χ2 are the other one-dimensional irreducible
characters of Z/3Z. We again create a subgroup of the restricted automorphism
group G, this time to obtain a Z/3Z action.

sage: g = G[1]; g
(0 ,4 ,3) (1 ,2 ,5)
sage: H = G. subgroup (gens =[g]); H
Subgroup generated by [(0 ,4 ,3) (1 ,2 ,5)] of ( Permutation

Group
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with generators [(1 ,2) (3 ,4) , (0 ,1) (2 ,3) (4 ,5) , (0 ,5) (1 ,3)
(2 ,4) ])

sage: P3. Hstar_function ( acting_group =H)
chi_0*t^2 + (2* chi_0 + chi_1 + chi_2)*t + chi_0

The representation of Z/3Z is a restriction of the representation of S3 on Π3. Al-
though knowing the quasipolynomial χmP for the symmetric group action implicitly
determines the quasipolynomial for the cyclic group action, there is in general no easy
way to transfer between the expressions in terms of irreducible characters without
using the inner product on characters. This is because an irreducible representa-
tion of a group G does not necessarily restrict to an irreducible representation of a
subgroup.
Example 1.2.11 ([99, Example 7.6]). This example shows that H∗(P ; t) is not al-
ways a polynomial. Let P be the polytope with vertices±(0, 0, 1),±(1, 0, 1),±(0, 1, 1),
±(1, 1, 1) and let G = Z/2Z act on P as follows:

sage: P = Polyhedron ( vertices
=[[0 ,0 ,1] ,[0 ,0 , -1] ,[1 ,0 ,1] ,[ -1 ,0 , -1] ,[0 ,1 ,1] ,

[0,-1,-1],[1,1,1],[-1,-1,-1]], backend ='normaliz ')
sage: K = P. restricted_automorphism_group ( output ='

permutation ')
sage: G = K. subgroup (gens =[K[6]]); G
Subgroup generated by [(0 ,2) (1 ,3) (4 ,6) (5 ,7)] of (

Permutation Group with generators [(2 ,4) (3 ,5) , (1 ,2)
(5 ,6) , (0 ,1) (2 ,3) (4 ,5) (6 ,7) , (0 ,7) (1 ,3) (2 ,5) (4 ,6) ])

To check what matrix the vertex permutation (0, 2)(1, 3)(4, 6)(5, 7) corresponds to,
we use the match_permutations_to_matrices function. This function requires the
conjugacy class representatives of G as an input. The result agrees with the matrix
given in [99, Example 7.6].

sage: conj_reps = G. conjugacy_classes_representatives ()
sage: Dict = P. match_permutations_to_matrices (conj_reps ,

acting_group = G)
sage: list(Dict.keys ())[0]
(0 ,2) (1 ,3) (4 ,6) (5 ,7)
sage: list(Dict. values ())[0]
[-1 0 1 0]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 1]
sage: len(G)
2
sage: G. character_table ()
[ 1 1]
[ 1 -1]

Then we calculate the rational function H∗(P ; t):
sage: Hst = P. Hstar_function (G); Hst
(chi_0*t^4 + (3* chi_0 + 3* chi_1)*t^3 + (8* chi_0 + 2* chi_1)*

t^2 + (3* chi_0 + 3* chi_1)*t + chi_0)/(t + 1)

We can format the output as Hstar_as_lin_comb to see it written exactly as in
[99, Example 7.6]. The first coordinate is the coefficient of the trivial character; the
second is the coefficient of the sign character:



1.3 simplices 27

sage: P. Hstar_function (G, output ='Hstar_as_lin_comb ')
((t^4 + 3*t^3 + 8*t^2 + 3*t + 1)/(t + 1),
(3*t^3 + 2*t^2 + 3*t)/(t + 1))

To see the documentation of the Hstar_function, or of the related supporting meth-
ods, fixed_subpolytopes, permutations_to_matrices, or indeed of any function
in Sagemath, one can type ? after the function:

sage: P = polytopes .cube( backend ='normaliz ')
sage: P. fixed_subpolytopes ?

To see the both source code and the documentation simultaneously, type ?? after
the function:

sage: P = polytopes .cube( backend ='normaliz ')
sage: P. Hstar_function ??

1.3 simplices

In this section we recall some results of Stapledon [99, Secton 6] on the equivariant
Ehrhart series of simplices and elaborate on the proofs. Of particular focus is [99,
Proposition 6.1] which gives an expression for the H∗-series of a G-invariant simplex
by counting fixed lattice points in the fundamental parallelepiped. These proof ideas
are generalized in Theorem 1.4.1 to obtain a similar theorem for general polytopes.
As in the Setup 1.2.1, let M ′ = M ⊕Z be a (d+ 1)-dimensional lattice. Let S

be a d-dimensional G-invariant simplex with vertices {v0, v1, . . . , vd} ∈ M × {1}.
Since S is a simplex, we can choose to have a single interval [∅,S] in our half-open
decomposition, see Section 1.1 for clarification. Then, Box([∅,S]) is the set of lattice
points in the half-open parallelepiped spanned by the vertices of S:

Box([∅,S]) =
{

v ∈M ′ | v =
d∑
i=0

aivi with 0 ≤ ai < 1 for all i ∈ {0, . . . , d}
}

.

Furthermore Box([∅,S])k denotes the set of lattice points in the half-open paral-
lelepiped of S at height k, i.e. with Z-coordinate equal to k. Recall that for an
action of a group G on a set X, Xg denotes the subset of X fixed by the element
g ∈ G. Recall also, that the equivariant Ehrhart series has the generating function

H∗(P ;t)
det(I−t·ρ) . If H∗(P ; t) is polynomial in t, then we denote the coefficient of ti in R(G)
by H∗i .

Proposition 1.3.1 ([99, Proposition 6.1]). If S is a G-invariant lattice simplex as in
the Setup 1.2.1 with vertices {v0, v1, . . .vd} in M ×{1}, then H∗i is the permutation
representation induced by the action of G on Box([∅,S])i. In particular,

∑
m≥0

ehr(Sg;m)tm =

∑d
i=0 |Box([∅,S])gi | ti

det(I − t · ρ(g)) .
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Proof. We consider 2 infinite-dimensional vector spaces over C and 1 finite-dimensional
vector space over C, all described by their respective bases:

C [Cone(S) ∩M ′] with basis:
{
x ∈ Cone(S) ∩M ′

}
C [Z≥0 vert(S)] with basis:

{
x =

d∑
i=0

zivi
∣∣∣zi ∈ Z≥0 for all i ∈ {0, . . . , d}

}
C [Box([∅,S])] with basis: {x ∈ Box([∅,S])} .

We first show that there is an isomorphism of graded G-modules:

C[Cone(S) ∩M ′] =̃C[Z≥0 vert(S)]
⊗

C C[Box([∅,S])].

The basis of C[Cone(S)∩M ′] is the set of all lattice points in the cone over the sim-
plex. The basis of C[Z≥0 vert(S)]

⊗
C C[Box([∅,S])] is the set of all simple tensors

w⊗ z where w ∈ Z≥0 vert(S) and z ∈ Box([∅,S]). Every lattice point x in Cone(S)
has a unique expression x = w + z where w ∈ Z≥0 vert(S) and z ∈ Box([∅,S]).
The map sending x 7→ w⊗ z is then a bijection between bases. The action of G pre-
serves the height of lattice points in the cone by assumption, and the isomorphism
is also a G-module isomorphism by linearity and the diagonality of the action. We
now identify C[Z≥0 vert(S)] with the C-vector space

∑
m≥0 Symm(M ′

⊗
Z C), where

the symmetric product is taken over C. These two vector spaces are isomorphic as
graded G-modules, so they have the same characters. Let Zm

≥0 vert(S) be the set:
{

x =
d∑
i=0

zivi
∣∣∣ zi ∈ Z≥0 for all i ∈ {0, . . . , d} and

d∑
i=0

zi = m

}
.

Then,
χC[Zm≥0 vert(S)] = χSymm(M ′

⊗
C) for all m ≥ 0.

When a group acts on a tensor product of vector spaces, the characters multiply:

∑
m≥0

χmSt
m =

∑
j≥0

χSymj(M ′⊗C)t
j

d∑
i=0

χBox([∅,S])it
i

=

∑d
i=0 χBox([∅,S])it

i

det(I − t · ρ) ,

where the last equality holds by Equation (3). Evaluating at a specific g ∈ G yields

∑
m≥0

ehr(Sg;m)tm =

∑d
i=0 |Box([∅,S])gi | ti

det(I − t · ρ(g)) .

Corollary 1.3.2 ([99, Proposition 6.1]). The multiplicity of the trivial representa-
tion in H∗k equals the number of G-orbits of points in Box([∅,S])k.

Proof. The vector space C[Box([∅,S])k] is a G-module; it carries the induced per-
mutation representation of G acting on the lattice points in Box([∅,S])k. Call the
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character of this representation Φ. To find the multiplicity of the trivial representa-
tion, we take the inner product of Φ with χtriv.

〈Φ,χtriv〉 =
1
|G|

∑
g∈G

Φ(g)χtriv(g)

=
1
|G|

∑
g∈G
|Box([∅,S])gk|.

By the Cauchy–Frobenius Lemma, this is exactly the number of orbits of lattice
points in Box([∅,S])k.

The next corollary is in the same spirit, and uses Frobenius reciprocity, see [90,
Chapter 1]. We write IndGH ρ for the induced representation of G from the represen-
tation ρ of a subgroup H ⊆ G. We write ResGH ρ for the restricted representation on
a subgroup H ⊆ G from the representation ρ of G. Given a representation ρ of G, we
can construct a new irreducible, one-dimensional representation (and class function),
det(ρ(g)), which sends every element of G to the determinant of its corresponding
matrix.

Corollary 1.3.3 ([99, Proposition 6.1]). Let S be a G-invariant simplex as in Propo-
sition 1.3.1. The multiplicity of det(ρ) in H∗k is equal to the number of orbits O of
points in Box([∅,S])k such that for any x ∈ O, det(ρ(h)) = 1 for all h ∈ Stab(x).

Proof. Let O be an orbit of points in Box([∅,S])k, and let x ∈ O. Let H be the
isotropy subgroup of x in G, i.e. H = {g ∈ G | gx = x}. Let 1 be the trivial
representation of H on the one-dimensional vector space C[x].

Claim 1.3.4. IndGH 1 is G-module isomorphic to H∗k
∣∣∣
O
.

Proof of Claim. Let {ai | i = 1, . . . ,m} be a set of coset representatives of H in G.
Then the vector space VInd of the induced representation is an m-dimensional vector
space over C with one basis vector aix for each coset representative: VInd = C[{aix}].
In an induced representation, the action of H on VInd is ai · (ajx) := (ak)x, where
aiaj ∈ akH for a coset representative ak. The action of G on VInd is then given
as follows. Let g ∈ G so that g = ai · h for some coset representative ai and some
element h ∈ H. Then g · ajx = (ai · h) · ajx = (ai · h · aj) · x = akx, for some coset
representative ak. The action of G on VInd is then given through linear extension of
its action on the basis. The G-module isomorphism easily follows.

By Claim 1.3.4 and Frobenius reciprocity, 〈H∗k
∣∣∣
O

, det(ρ) 〉 = 〈 IndGH 1, det(ρ) 〉 =
〈1, ResGH det(ρ) 〉. As both 1 and the restriction of det(ρ) are irreducible representa-
tions, 〈1, ResGH det(ρ) 〉 is either equal to one or zero, and it is equal to one exactly
if the determinant of each element in H is 1.

1.4 polytopes with symmetric half-open decompositions

In this section, we give two new methods for computing the equivariant Ehrhart
series of a polytope using symmetric half-open decompositions. The first method is



30 equivariant ehrhart theory through symmetric triangulations

presented in Theorem 1.4.1 and generalizes Stapledon’s proposition on the equivari-
ant Ehrhart series for simplices (Proposition 1.3.1) to lattice polytopes that admit
symmetric half-open decompositions and satisfy a cardinality condition on orbits.
In this case, the H∗-series is polynomial and effective (Corollary 1.4.2). The second
method is given in Theorem 1.4.6 and allows us to compute a rational generating
function for the equivariant Ehrhart series with the denominator (1 − t)dim(P )+1.
This theorem also uses G-invariant half-open decompositions, and further requires
a condition on the box points in the intervals. In this case, χmP is polynomial as a
function in m.
The criteria of these theorems may appear restrictive, but the upshot is that the

equivariant Ehrhart theory is especially well-behaved and has a geometric interpre-
tation, as we illustrate in the examples following each theorem.
As in the Setup 1.2.1, let P be a lattice polytope with vertices in M × 1, invariant

under the linear action of a finite group G. For a half-open decomposition T [ ) of P ,
let Box(T [ ))i denote the union of lattice points with Z-coordinate equal to i in
the half-open parallelepipeds of the intervals of T [ ) (see Section 1.1 for details on
half-open decompositions).

Theorem 1.4.1. Let T [ ) be a G-invariant half-open decomposition of a d-dimensional
polytope P as in the Setupt 1.2.1 such that dim(S) = d for all intervals [S,S] of
T [ ) and such that all orbits of intervals of T [ ) have order |G| except for a unique
G-invariant interval. Then the H∗-polynomial is the permutation representation on
the union of box points in T [ ), graded by height:

H∗(P ; t) =
d∑
i=0

χBox(T [ ))
i

ti.

Proof. Let n be the number of orbits of intervals of T [ ). There necessarily exists a G-
invariant simplex S0 contained in an interval [S0,S0] of T [ ) that contains the G-fixed
barycenter of the vertices of P . Label its vertices by {v0,0, . . . , v0,d} and label the
orbit of the interval [S0,S0] by O0. Order the other orbits O1, . . . ,On−1 of intervals
of T [ ). For each i ∈ [n− 1], label representative simplices Si and Si contained in
an interval [Si,Si] of Oi and label the vertices of Si as vi,0, . . . , vi,d. As in the proof
of Theorem 1.3.1, identify the G-module C[Z≥0 vert(S0)] with the polynomial ring
and graded G-module, C[X0, . . . ,Xd] where g(Xi) := Xj if g(v0,i) = v0,j . Viewing
g ∈ G as a permutation on {0, 1, . . . , d}, we write, g(Xc0

0 · · ·X
cd
d ) = Xc0

g(0) · · ·X
d
g(d).

We define a map f from

C [X0, . . . ,Xd]
⊗

C

C
[
Box

([
S0,S0

])] ⊕
i:|Oi|=|G|
g∈G

C
[
Box

([
gSi, gSi

])] (6)
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to C[Cone(P ) ∩M ′] by defining f on a basis and extending bilinearly. To shorten
notation, for a lattice point z0 in Box([S0,S0]) or gzi in Box([gSi, gSi]), we denote
the corresponding basis vector ofC

[
Box

([
S0,S0

])] ⊕
i:|Oi|=|G|
g∈G

C
[
Box

([
gSi, gSi

])] (7)

as z0 or gzi respectively. The direct sum (7) is also a graded G-module. A basis for
the tensor product (6) is the set

(Xc0
0 · · ·X

cd
d )⊗ z0 : {c0, . . . , cd} ∈ Z≥0, z0 ∈ Box

([
S0,S0

])
,

g(Xc0
0 · · ·X

cd
d )⊗ gzi : {c0, . . . , cd} ∈ Z≥0, zi ∈ Box

([
Si,Si

])
, g ∈ G, |Oi| = |G|

 .

Define

f(g(Xc0
0 · · ·X

cd
d )⊗ gzi) = f((Xc0

g(0) · · ·X
cd
g(d))⊗ gzi) :=

d∑
j=0

cjg(vi,j) + gzi.

Suppose gz0 = w0 for box points z0 and w0 in Box([S0,S0]) and therefore

Xc0
g(0) · · ·X

cd
g(d) ⊗ gz0 = X

cg−1(0)
0 · · ·X

cg−1(d)
d ⊗w0.

To check f is well-defined, we compute:

f
(
Xc0
g(0) · · ·X

cd
g(d) ⊗ gz0

)
=

d∑
j=0

cjg(vi,j) + g(z0)

=
d∑
j=0

cjvi,g(j) + w0

=
d∑

γ=0
cg−1(γ)vi,γ + w0

= f(X
cg−1(0)
0 · · ·X

cg−1(d)
d ⊗w0).

The map f is a G-module isomorphism, as we verify on the basis. For h ∈ G,

f (h (g(Xc0
0 · · ·X

cd
d )⊗ gzi)) = f

(
(Xc0

hg(0) · · ·X
cd
hg(d))⊗ hgzi

)
=
∑
j

cjhg(vi,j) + hgzi

= h

∑
j

cjg(vi,j) + gzi


= h(f(g(Xc0

0 · · ·X
cd
d )⊗ gzi)).
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TheG-module isomorphism also respects the grading and yields an equality among
characters.

∑
m≥0

χmP t
m = χC[Z≥0 vert(S0)]

d∑
i=0

χBox(T [ ))i
ti

=
1

det(I − t · ρ)

d∑
i=0

χBox(T [ ))i
ti,

where the second equality holds through the identification of C[Z≥0 vert(S0)] and∑
m≥0 Symm(M ′

⊗
Z C) as G-modules.

Stapledon conjectured [99, Conjecture 12.2] that if H∗(P ; t) is effective, then H∗(1)
is a permutation representation.

Corollary 1.4.2. The H∗-series is polynomial, effective, and a permutation rep-
resentation. Thus H∗(P ; 1) is also a permutation representation, and Stapledon’s
Conjecture 12.2 in [99] is satisfied.

The next corollaries are proved analogously to Corollary 1.3.2 and Corollary 1.3.3.

Corollary 1.4.3. The multiplicity of the trivial representation in H∗k equals the
number of G-orbits in Box(T [ ))k.

Corollary 1.4.4. The multiplicity of det(ρ) in H∗k is equal to the number of orbits O
of points in Box(T [ ))k such that for any x ∈ O, det(ρ(h)) = 1 for all h ∈ Stab(x).

Example 1.4.5. [Examples 1.1.2 and 1.2.10 continued] The two-dimensional per-
mutahedron Π3 ⊆ R3 under the action of the group Z/3Z cyclically permuting
the standard basis vectors admits a G-invariant half-open decomposition as dictated
by Theorem 1.4.1. This half-open decomposition is described in Figure 3 through
a triangulation T of Π3 and a partition of the face poset of T into intervals. In
this partition, each maximal simplex in an interval is a triangle and every orbit of
triangles has order 1 or 3. With this half-open decomposition, the lattice points in
the union of the fundamental parallelepipeds are

{(0, 0, 0)} at height 0,
{(1, 2, 3), (2, 3, 1), (3, 1, 2), (2, 2, 2)} at height 1,
{(4, 4, 4)} at height 2.

At height 0 and 2, there is a unique Z/3Z-invariant box point, each giving a copy
of the trivial representation. At height 1, the character of the permutation repre-
sentation on the 4 lattice points evaluates to 4 at the identity element, and 1 at
the other two group elements. Taking the inner product to express this representa-
tion in the basis of irreducible representations for Z/3Z: χtriv,χζ ,χζ2 , yields the
H∗-polynomial

H∗(Π3; t) = χtriv + (2χtriv + χζ + χζ2)t+ χtrivt
2.

This calculation agrees with the Sagemath computation from Example 1.2.10.



1.4 polytopes with symmetric half-open decompositions 33

The next theorem introduces a second way to compute the equivariant Ehrhart
series using G-invariant half-open decompositions. The conditions required by the
theorem ensure that the quasipolynomial χmP is actually polynomial in m. For a
G-invariant half-open decomposition T [ ) of a polytope, let O denote an orbit of
intervals of T [ ), dim(O) := dim(S) for any interval I = [S,S] ∈ O, and Box(O)i :=⋃
I∈O Box(I)i. Let χBox(O)i denote the permutation character on the lattice points

in Box(O)i.

Theorem 1.4.6. Let P be a G-invariant d-polytope as in the Setup 1.2.1 with a G-
invariant half-open decomposition T [ ) such that no d-face of the triangulation forms
an interval. Furthermore, suppose that for each interval I = [S,S] of T [ ) and each
g ∈ G, if a box point z ∈ Box(I) is fixed by g, then the simplex S is fixed by g.
The equivariant Ehrhart series has the following rational generating function:

∑
m≥0

χmP t
m =

∑
O∈T [ )(1− t)d−dim(O)∑dim(O)

i=0 χBox(O)it
i

(1− t)d+1 .

In this case, χmP is a polynomial in m with coefficients in R(G).

Proof. We break Cone(P ) into orbits and describe the permutation representation
on each piece. Let O be an orbit of intervals of T [ ), and let g ∈ G. Furthermore, let
Cone(O) :=

⋃
I∈O Cone(I).

Claim 1.4.7. ∑
u∈Cone(O)g∩Zd+1

tu =
∑

I=[S,S]∈O

∑
m∈Box(I)g t

m

Πs∈S(1− ts)
(8)

Proof of Claim. We first show that the left hand side of Equation (8) is a subset
of the right in terms of the lattice points appearing in the exponents of the series
expansions. Suppose u ∈ Cone(Og) ∩Zd+1. By Proposition 1.1.5, there exists a
unique interval I = [S,S] ∈ O such that u ∈ Cone(I). Let {s1, . . . , sn+1} be the
vertices of S. Then we may write u uniquely as u =

∑n+1
i=1 (cisi) + z, with ci ∈ Z≥0

for all i ∈ [n+ 1], and z ∈ Box(I) by Proposition 1.1.7. As the expression of u is
unique, u = g(u) =

∑n+1
i=1 (cig(si)) + g(z) implies that z = g(z). This implies that

the coefficient of tu in the series expansion of the right side of Equation (8) is 1.
We now show the right hand side of Equation (8) is a subset of the left. By

Proposition 1.1.7, every lattice point u in the series expansion of the right side of
Equation (8) as tu has coefficient one. Furthermore, there exists a unique interval
I = [S,S] ∈ O with vert(S) = {s1, . . . sn+1} such that u =

∑n+1
i=1 (cisi) + z, with

ci ∈ Z≥0 for all i ∈ [n+ 1] and z ∈ Box(I)g. Then,

g

(
n+1∑
i=1

cisi + z
)
=

n+1∑
i=1

(cig(si)) + g(z)

=
n+1∑
i=1

(cig(si)) + z

=
n+1∑
i=1

(cisi) + z (by assumption).
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Thus u ∈ (Cone(O)g) and Equation (8) holds.

Homogenize, sending t→ (1, td+1). Let n = dim(O). Then Equation (8) becomes

∑
m≥0

∣∣∣Cone(O)g ∩ (Zd,m)
∣∣∣ tm =

∑n
k=0

∣∣Box(O)gk∣∣ tk
(1− t)n+1 .

In terms of characters this is:

∑
m≥0

χOmt
m =

∑n
k=0 χBox(O)kt

k

(1− t)n+1 ,

where χOm denotes the permutation representation on Cone(O) ∩ (Zd,m). Summing
over all the orbits yields,

∑
m≥0

χmP t
m =

∑
O∈T [ )

∑dim(O)
k=0 χBox(O)kt

k

(1− t)dim(O)+1

=

∑
O∈T [ )(1− t)d−dim(O)χBox(O)kt

k

(1− t)d+1 .

Remark 1.4.8. Allowing triangulations into simplices with rational vertices should
allow one to generalize Theorem 1.4.6 so that it works for many more G-invariant
lattice polytopes as in the setup. The denominator would have to change, and χmP
would no longer necessarily be polynomial.

Example 1.4.9 (Example 1.1.3 continued). Let P be the unit 0/1-square lifted to
height 1 in R3 (i.e. with last coordinate 1), and let Z/2Z act on P by reflection
across the hyperplane x1 = x2. Let T [ ) be the half-open decomposition of P given
in Example 1.1.3. Then T [ ) is a G-invariant half-open decomposition of P . We have
the following box points:

Box([∅, bc]) = {(0, 0, 0)} Box([a, abc]) = {(0, 1, 1)} Box([d, bcd]) = {(1, 0, 1)}

The half-open decomposition T [ ) satisfies the additional property that for all inter-
vals I = [S,S] ∈ T [ ) and all g ∈ G, if there exists a g-fixed box point z ∈ Box(I),
then g(s) = s for all vertices s ∈ vert(S). Under the action of Z/2Z, Box([∅, bc])
forms an orbit, and Box([a, abc]) ∪ Box([d, bcd]) forms an orbit. Denote the corre-
sponding characters of permutation representations on the orbits by χ� and χ≷.
Applying Theorem 1.4.6 yields:

∑
m≥0

χmP t
m =

(1− t)(χ�) + (χ≷)t

(1− t)d+1 .

We can rewrite χ� and χ≷ in the basis of irreducible characters of Z/2Z. Let e
be the identity element and g be the non-identity element of Z/2Z. The group’s
character table is as follows.
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Z/2Z e g

χtriv 1 1
χsign 1 -1

As the box point (0, 0, 0) ∈ Box([∅, bc]) is Z/2Z-fixed, χ� = χtriv. For χ≷, we have

〈χ≷,χtriv〉 =
1

|Z/2Z|
∑

h∈Z/2Z

χ≷(h)χtriv(h)

=
1
2 (2 + 0) = 1.

In the same fashion, we compute 〈χ≷,χsign〉 = 1. This allows us to rewrite the
equivariant Ehrhart series as

∑
m≥0

χmP t
m =

(1− t)χtriv + (χtriv + χsign)t

(1− t)3 =
χtriv + χsignt

(1− t)3 .

Evaluating at e and g yields:

∑
m≥0

χmP [e]t
m =

χtriv[e] + χsign[e]t

(1− t)3 =
1 + t

(1− t)3 ,

∑
m≥0

χmP [g]t
m =

χtriv[g] + χsign[g]t

(1− t)3 =
1

(1− t)2 .

These are the Ehrhart series of P and the fixed line segment [(0, 0, 1), (1, 1, 1)] re-
spectively. We compute the polynomial χmP using the usual transformation from
the h∗-polynomial to the Ehrhart polynomial, see Equation (1) in Section 2:

χmP = χtriv

(
t+ 2

2

)
+ χsign

(
t+ 1

2

)

=
1
2 (χtriv + χsign)t

2 +
1
2 (3χtriv + χsign)t+ χtriv

Evaluating at the identity and non-identity elements yields the Ehrhart polynomials
(1 + t)2 and 1 + t respectively.

Example 1.4.10 (Example 1.4.5 continued). Again consider the two dimensional
permutahedron Π3 ⊆ R3 under the action of Z/3Z cyclically permuting the stan-
dard basis vectors. It is necessary to use a different half-open decomposition from
that in Example 1.4.5 to compute the equivariant Ehrhart series.
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a=(1,2,3)

c=(1,3,2)b=(2,1,3)

e=(3,1,2) d=(2,3,1)

f=(3,2,1)

g = (2,2,2)

Figure 6: A triangulation of the permutahedron Π3 into six triangles.

As shown in Figure 6, we triangulate Π3 using a barycentric subdivision. The
intervals we use for a G-invariant half-open decomposition are:

[∅, g], [a, abg], [b, beg], [c, acg], [d, cdg], [e, efg], [f , dfg].

The only lattice points that can be box points must have a coordinate sum that is
a multiple of 6. The box points for each of the respective intervals are:

{(0, 0, 0)}, {(1, 2, 3)}, {(2, 1, 3)}, {(1, 3, 2)}, {(2, 3, 1)}, {(3, 1, 2)}, {(3, 2, 1)}

There are 3 orbits of box points. The character table of Z/3Z is as follows, with ζ
a cube root of unity.

Z/3Z id g g2

χtriv 1 1 1
χg 1 ζ ζ2

χg2 1 ζ2 ζ

We calculate the following rational generating function for the equivariant Ehrhart
series: ∑

m≥0
χmΠ3t

m =
χtriv + 2(χg + χg2)t+ χtrivt

2

(1− t)3

Evaluating at the group elements yields the Ehrhart series of the fixed subpolytopes.
Transforming to χmP using the usual transformation gives:

χmΠ3 = χtriv

(
t+ 2

2

)
+ 2(χg + χg2)

(
t+ 1

2

)
+ χtriv

(
t

2

)
= (χtriv + χg + χg2)t2 + (χtriv + χg + χg2)t+ χtriv.

Evaluating at the identity and g yields the Ehrhart polynomials of the fixed sub-
polytopes, 3t2 + 3t+ 1 and 1 respectively.

Theorem 1.4.6 cannot be applied to Π3 under the action of S3 permuting the
standard basis vectors, because a S3-invariant half-open decomposition satisfying
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the requirements of the theorem cannot be found. Studying the equivariant Ehrhart
theory of the permutahedron lead to the following questions.

Question 1.4.11. For which n is there a G-invariant triangulation as in Theorem
1.4.1 or Theorem 1.4.6 of the permutahedron Πn ∈ Rn under the cyclic group action
permuting the standard basis vectors? Can Theorem 1.4.6 be extended to compute
equivariant Ehrhart theory using symmetric zonotopal tilings?

1.5 restricted representations

Let P be a polytope invariant under the action of G as in the Setup 1.2.1, and let H
be a subgroup of G. The action of G on P induces an action of H on P by restriction.
Let H∗G(P ; t) and H∗H(P ; t) be their respective equivariant H∗-series.

Lemma 1.5.1. If there exists a G-invariant non-degenerate hypersurface, then the
same hypersurface is a non-degenerate H-invariant hypersurface.

Proof. Let
∑

v∈P∩Zd a(v)xv = 0 be a G-invariant non-degenerate hypersurface. Ev-
ery H-orbit of lattice points in P is contained in a G-orbit of lattice points. Thus
a(v) = a(w) for all v, w in an orbit of H, and the hypersurface is H-invariant. The
non-degeneracy condition is independent of the group.

Lemma 1.5.2. If H∗G(P ; t) is effective, then H∗H(P ; t) is effective.

Proof. Each coefficient of ti in H∗G(P ; t) is a nonnegative integral linear combination
of irreducible characters of G. Thus, for each ti there exists a vector space which
is a direct sum of irreducible representations of G. Restricting to the action of H
decomposes each summand further into a finite number of irreducible representations
of H.

Lemma 1.5.3. If H∗G(P ; t) is polynomial, then H∗H(P ; t) is polynomial.

Proof. Let {χ1, . . . ,χm} be the irreducible representations of G, and let {µ1, . . . ,µk}
be the irreducible representations of H. H∗G(P ; t) can be seen as a linear function
in R(G) with coefficients in the field of rational functions in t. Suppose H∗G(P ; t)
is polynomial so that ci,0t0 + ci,1t

1 + · · ·+ ci,nt
n is the coefficient of χi and ci,j ∈ C

for all j ∈ {0, . . . ,n}, and i ∈ [m]. Then the coefficient of µk in H∗H(P ; t) is

m∑
i=0

(ci,0t
0 + · · ·+ ci,nt

n)〈χi|H,µk〉H,

where 〈Φ, Ψ〉H ∈ C denotes the inner product between characters Φ, Ψ of H, and
χi|H is the representation χi restricted to H.

Example 1.5.4. The cyclic group Z/nZ ⊆ Sn acting on the permutahedron
gives an interesting example of the failure of the converse of Lemma 1.5.3. Namely,
H∗Sn(Πn; t) is not polynomial for n ≥ 4, but H∗Z/nZ(Πn; t) is polynomial for all n,
see Corollary 1.6.1. Here we show how the rational function collapses to a polynomial
for the case n = 4.
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For the S4 action on Π4,

H∗S4(Π4; t) = (χ2 + χ3 + χ4)t4

t+ 1 +
(χ0 + 5χ1 + 6χ2 + 9χ3 + 6χ4)t3

t+ 1

+
(χ0 + 7χ1 + 8χ2 + 14χ3 + 9χ4)t2

t+ 1 +
(χ0 + 3χ1 + 3χ2 + 5χ3 + 4χ4)t

t+ 1
+

χ4
t+ 1 ,

where the character tables are as follows.

S4 ( ) (12) (12)(34) (123) (1234)

χ0 1 -1 1 1 -1
χ1 3 -1 -1 0 1
χ2 2 0 2 -1 0
χ3 3 1 -1 0 -1
χ4 1 1 1 1 1

Z/4Z ( ) (1234) (12)(34) (1432)

µ0 1 1 1 1
µ1 1 -1 1 -1
µ2 1 i -1 -i
µ3 1 -i -1 i

We compute 〈χi|H,µj〉H for all i, j. The following table summarizes these products.

〈χ,µ〉H µ0 µ1 µ2 µ3

χ0 0 1 0 0
χ1 1 0 1 1
χ2 1 1 0 0
χ3 0 1 1 1
χ4 1 0 0 0

Restricting H∗S4(Π4; t) to H∗Z/4Z(Π4; t) yields the rational function:

(2µ0 + 2µ1 + µ2 + µ3)t4 + (17µ0 + 16µ1 + 14µ2 + 14µ3)t3

1 + t

+
(24µ0 + 23µ1 + 21µ2 + 21µ3)t2

1 + t
+

(10µ0 + 9µ1 + 8µ2 + 8µ3)t

1 + t
+

µ0
1 + t

The numerator is divisible by (1+t), and the resulting polynomial is

H∗Z/4Z(Π4; t) = (2µ0 + 2µ1 + µ2 + µ3) t
3 + (15µ0 + 14µ1 + 13µ2 + 13µ3) t

2

+ (9µ0 + 9µ1 + 8µ2 + 8µ3) t+ µ0.

The H∗-series of Π4 with respect to the cyclic group action can be verified in
Sagemath as follows.

sage: P4 = polytopes . permutahedron (4, backend ='normaliz ')
sage: G = P4. restricted_automorphism_group ( output ='

permutation ')
sage: G[41]
(0 ,9 ,16 ,18) (1 ,11 ,22 ,12) (2 ,15 ,10 ,19) (3 ,17 ,20 ,6) (4 ,21 ,8 ,13)

(5 ,23 ,14 ,7)
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sage: verts = P4. vertices_list ()
sage: print(verts [0], verts [9], verts [16] , verts [18])
[1, 2, 3, 4] [2, 3, 4, 1] [3, 4, 1, 2] [4, 1, 2, 3]
sage: Z4 = G. subgroup (gens= [G [41]])
sage: P4. Hstar_function ( acting_group =Z4 , output ='complete ')
{'Hstar ': (2* chi_0 + 2* chi_1 + chi_2 + chi_3)*t^3 + (15*

chi_0 + 14* chi_1 + 13* chi_2 + 13* chi_3)*t^2 + (9* chi_0 +
9* chi_1 + 8* chi_2 + 8* chi_3)*t + chi_0 ,

'Hstar_as_lin_comb ': (2*t^3 + 15*t^2 + 9*t + 1, 2*t^3 + 14*
t^2 + 9*t, t^3 + 13*t^2 + 8*t, t^3 + 13*t^2 + 8*t),

'conjugacy_class_reps ': [() ,
(0 ,9 ,16 ,18) (1 ,11 ,22 ,12) (2 ,15 ,10 ,19) (3 ,17 ,20 ,6) (4 ,21 ,8 ,13)

(5 ,23 ,14 ,7) ,
(0 ,16) (1 ,22) (2 ,10) (3 ,20) (4 ,8) (5 ,14) (6 ,17) (7 ,23) (9 ,18)

(11 ,12) (13 ,21) (15 ,19) ,
(0 ,18 ,16 ,9) (1 ,12 ,22 ,11) (2 ,19 ,10 ,15) (3 ,6 ,20 ,17) (4 ,13 ,8 ,21)

(5 ,7 ,14 ,23)],
'character_table ': [ 1 1 1 1]
[ 1 -1 1 -1]
[ 1 -zeta4 -1 zeta4]
[ 1 zeta4 -1 -zeta4],
'is_effective ': True}

1.6 permutahedra under cyclic group actions

In [3], Ardila, Supina, and Vindas-Meléndez describe the equivariant Ehrhart theory
of the permutahedron under the action of the symmetric group. The symmetric group
Sn acts by permuting the standard basis vectors of Rn, and the (n− 1)-dimensional
permutahedron Πn is invariant with respect to this action. As discussed in Section
1.5, the equivariant Ehrhart theory can change significantly when restricting to sub-
representations. For example, Example 1.5.4 shows how H∗(Π4; t) is not polynomial
for the action of Sn but is polynomial for the action of Z/4Z also given by permut-
ing the standard basis vectors. Because of this subtlety, in this section, we study the
equivariant Ehrhart theory of the standard permutahedra under the action of the
cyclic group.

Corollary 1.6.1. The H∗-series of the permutahedron Πn under the action of Z/nZ

permuting the standard basis vectors is polynomial.

Proof. By Lemma 5.2 of [3], for σ ∈ Sn with cycle type λ = (`1, . . . , `m), H∗(Πn; t)[σ]
is polynomial if and only if the number of even parts in λ is 0, m, or m− 1. For
any element σ of Z/nZ, all cycles of σ have the same length, so H∗(Πn; t)[σ] is
polynomial, and thus H∗(Πn; t) itself is polynomial.

We consider the case where Z/pZ acts on Πp for some prime p. First, we show a
general result on the usual h∗-polynomial of Πp.

Theorem 1.6.2. The h∗-polynomial of the permutahedron Πp for prime p has coef-
ficients equivalent to 1 modulo p.
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Proof. If p = 2, h∗(Π2; t) = 1. Let p > 2. Let I be the set of all nonempty linearly
independent subsets of {ej − ek : 1 ≤ j < k ≤ p}, and let S be a linearly independent
subset in I. The elements of I correspond to forests on p labeled vertices (excluding
the graph with no edges) [12, Lemma 9.6]. Associate to each S the half-open par-
allelepiped given by the Minkowski sum

∑
ej−ek∈S (0, ej − ek]. As discussed in [12,

Chapter 9], the (p− 1)-dimensional permutahedron Πp is equal to the disjoint union
of translates of the parallelotopes:

Πp = {0} ∪
⋃
S∈I

 ∑
ej−ek∈S

(0, ej − ek]

 .

Let g = (1, 2, . . . , p) be a generator of Z/pZ. The group Z/pZ acts on the indepen-
dent sets I by cyclically permuting the forest vertex labels. Each orbit has size p, as
follows. For 1 ≤ k < p, suppose for contradiction gkS = S for some S ∈ I. Then for
each edge (i, j) in the forest corresponding to S, the edge (|i+ k|p, |j + k|p) is also
in the forest. As k is coprime to p, the forest thus contains p edges and therefore a
cycle, which is a contradiction. Thus gk does not fix any S ∈ I, and |Z/pZS| = p.
Let T ⊂ I be a transversal containing one representative from each orbit in I. Each
half-open parallelepiped in an orbit has the same Ehrhart series, and is translated
by an integral vector. Thus,

Ehr(Πp; t) =
1

1− t + p
∑
S∈T

Ehr(S; t)

=
(1− t)p−1

(1− t)p +
∑
S∈T

p · h∗(S; t) · (1− t)p−|S|−1

(1− t)p .

Claim 1.6.3. The coefficients of (1− t)p−1 are equivalent to one mod p.

Proof of Claim. The coefficient of ti is (p−1
i )(−1)i, and(

p− 1
i

)
=

(p− 1) · · · (p− i)
i!

≡ (−1) · · · (−i)
i!

mod p

≡ (−1)ii!
i!

mod p ≡ (−1)i mod p.

The coefficient of ti in the sum (1− t)p−1 +
∑
S∈T p · h∗(S; t) · (1− t)p−|S|−1 is then

equivalent to one mod p.

Example 1.6.4. For the permutahedron Π3, a transversal of the orbits of linearly
independent subsets of {ej − ek | 1 ≤ j < k ≤ 3} under the action of Z/3Z is
T = {{e1 − e2}, {e1 − e2, e2 − e3}}. Thus

EhrΠ3(t) =
1− 2t+ t2

(1− t)3 +
3t(1− t)
(1− t)3 +

3(t+ t2)

(1− t)3 =
1 + 4t+ t2

(1− t)3 .
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For prime p, we can explicitly construct the H∗-series of Πp under the cyclic group
action Z/pZ.

Theorem 1.6.5. For a prime number p 6= 2, the H∗-series of Πp under the action
of Z/pZ is

H∗(Πp; t) =
p−1∑
i=0

χ0 +
h∗i −1
p

p−1∑
j=0

χj

 ti,
where h∗i is the coefficient of ti in the h∗-polynomial of Πp.

Proof. It is enough to show that our formula for H∗(Πp; t) specializes to the fixed
Ehrhart series for each conjugacy class. Let ζ be an n-th root of unity. Then

n−1∑
i=0

ζi =
1− ζn

1− ζ =

n if ζ =1 (L’Hospitals) ,

0 else.

For the identity element, we have

H∗(Πp; t)[id] =
p−1∑
i=0

(
1 + h∗i −1

p
p

)
ti =

n−1∑
i=0

h∗i ti.

For g 6= id, our formula gives H∗(Πp; t)[g] =
∑p−1
i=0 (1 + 0)ti. Combining this with

det(I − t · ρ(g)) = (1− tp) gives

H∗(Πp; t)[g]
det(I − t · ρ(g))

=
1 + t+ · · ·+ tp−1

1− tp =
1

1− t .

Corollary 1.6.6. Let p be prime. For the action of Z/pZ on Πp, the H∗-series is
effective.

Proof. By Theorem 1.6.2, h∗i is equivalent to one mod p for all i. Thus, h∗i −1
p is a

nonnegative integer, and by Theorem 1.6.5, the coefficient of ti in the polynomial
H∗(Πp; t) is an effective character.

Theorem 1.6.5 generalizes to any polytope under a Z/nZ action with the property
that only one lattice point is fixed for any non-trivial group element.

Corollary 1.6.7. Let P ⊆ Rn be a (n− 1)-dimensional lattice polytope invariant
under the action of the cyclic group Z/nZ permuting the coordinates of Rn as in
the Setup 1.2.1. Furthermore, suppose that for each non-identity element ζ ∈ Z/nZ,
P ζ is a single lattice point. Then,

H∗(P ; t) =
n−1∑
i=0

χ0 +
h∗i −1
n

n−1∑
j=0

χj

 ti,
where h∗i is the coefficient of zi in the h∗-polynomial of P , and {χ0, . . . ,χn−1} are
the irreducible representations of Z/nZ.

Proof. The proof is analogous to the proof of Theorem 1.6.5.





2
RATIONAL EHRHART THEORY THROUGH GENERATING
FUNCTIONS

Let P ⊆ Rd be a rational d-dimensional polytope with denominator k, i.e., k is the
smallest positive integer such that kP is a lattice polytope. Recall from the Back-
ground Section on page 7, that in this case, ehr(P ;n) is a quasipolynomial, i.e., of
the form ehr(P ;n) = cd(n)n

d + · · ·+ c1(n)n+ c0(n) where c0(n), c1(n), . . . , cd(n)
are periodic functions. The least common period of c0(n), c1(n), . . . , cd(n) is the pe-
riod of ehr(P ;n); this period divides the denominator k of P ; again this goes back
to Ehrhart [51]. Equivalently,

Ehr(P ; t) := 1 +
∑

n∈Z>0

ehr(P ;n) tn =
h∗(P ; t)

(1− tk)d+1 , (9)

where h∗(P ; t) ∈ Z[t] has degree < k (d+ 1).
Because polytopes can be described by a system of linear equalities and inequal-

ities, they appear in a wealth of areas; likewise Ehrhart quasipolynomials have ap-
plications in number theory, combinatorics, computational geometry, commutative
algebra, representation theory, and many other areas, see, e.g., [12].
This chapter studies Ehrhart counting functions with rational and real dilation

parameters. We define the rational Ehrhart counting function

rehr(P ;λ) :=
∣∣∣λP ∩Zd

∣∣∣ ,

where λ ∈ Q, and the real Ehrhart counting function

r̄ehr(P ;λ) :=
∣∣∣λP ∩Zd

∣∣∣ ,
for λ ∈ R. Naturally, we have r̄ehr(P ;λ) = rehr(P ;λ) when λ ∈ Q, and so strictly
speaking there is no need for separate notations. However, as P is a rational polytope,
it suffices to compute rehr(P ;λ) at certain rational arguments to fully understand
r̄ehr(P ;λ); we quantify and make this statement precise shortly. To the best of our
knowledge, Linke [77] initiated the study of r̄ehr(P ;λ) from the Ehrhart viewpoint.
She proved several fundamental results starting with the fact that r̄ehr(P ;λ) is a
quasipolynomial in the real variable λ, that is,

r̄ehr(P ;λ) = cd(λ) λ
d + cd−1(λ) λ

d−1 + · · ·+ c0(λ)

43
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where c0(λ), c1(λ), . . . , cd(λ) are periodic functions from R to R. Here is a first
example, which we will revisit below:

r̄ehr([1, 2];λ) = b2λc − dλe+ 1

=


n+ 1 if λ = n for some n ∈ Z>0 ,

n if n < λ < n+ 1
2 for some n ∈ Z>0 ,

n+ 1 if n+ 1
2 ≤ λ < n+ 1 for some n ∈ Z>0 .

Linke views the coefficient functions as piecewise-defined polynomials, which allows
her, among many other things, to establish differential equations relating the coef-
ficient functions. Essentially concurrently, Baldoni–Berline–Köppe–Vergne [5] devel-
oped an algorithmic theory of intermediate sums for polyhedra, which includes
r̄ehr(P ;λ) as a special case.
Our main contribution is to add a generating-function viewpoint to the study of

rational and real Ehrhart theory presented in [5] and [77]. To set it up, we need the
following definition. Suppose the rational polytope P is given by the irredundant
halfspace description

P =
{

x ∈ Rd : A x ≤ b
}

, (10)

where A ∈ Zn×d and b ∈ Zn such that the greatest common divisor of bi and the
entries in the ith row of A equals 1, for every i ∈ [n]. We define the codenominator
r of P to be the least common multiple of the nonzero entries of b:

r := lcm(b1, b2, . . . , bn).

As we assume that P is full dimensional, the codenominator is well-defined. Our
nomenclature arises from determining r using duality, as follows. Let P ◦ denote the
relative interior of P , and let (Rd)∨ be the dual vector space. If P ⊆ Rd is a rational
polytope such that 0 ∈ P ◦, the polar dual polytope is

P∨ := {x ∈ (Rd)∨ : 〈x, y〉 ≥ −1 for all y ∈ P},

and r = min{q ∈ Z>0 : q P∨ is a lattice polytope}.
We will see in Section 2.1 that r̄ehr(P ;λ) is fully determined by evaluations at ra-

tional numbers with denominator 2r (see Corollary 2.1.6 below for details); if 0 ∈ P
then we actually need to know only evaluations at rational numbers with denomi-
nator r. Thus we associate two generating series to the rational Ehrhart counting
function, the rational Ehrhart series, to a full-dimensional rational polytope P
with codenominator r:

REhr(P ; t) := 1 +
∑

n∈Z>0

rehr
(
P ; n

r

)
t
n
r , (11)

and the refined rational Ehrhart series

RREhr(P ; t) := 1 +
∑

n∈Z>0

rehr
(
P ; n2r

)
t
n
2r .
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Continuing our comment above, we typically study REhr(P ; t) for polytopes such
that 0 ∈ P , and RREhr(P ; t) for polytopes such that 0 /∈ P .
Section 2.1 also contains, as a first set of main results, structural theorems about

these generating functions: rationality and its consequences for the quasipolynomial
r̄ehr(P ;λ) (Theorem 2.1.7 and Theorem 2.1.13), nonnegativity theorems (Lemma
2.1.12), connections to the h∗-polynomial (Corollary 2.1.15), and combinatorial reci-
procity theorems (Corollary 2.1.17 and Corollary 2.1.18).
One can find a precursor of sorts to our generating functions REhr(P ; t) and

RREhr(P ; t) in work by Stapledon [100], and in fact this work was our initial moti-
vation to look for and study rational Ehrhart generating functions. We explain the
connection of [100] to our work in Section 2.2. In particular, we deduce that in the
case 0 ∈ P ◦ the generating function REhr(P ; t) exhibits additional symmetry.
A d-dimensional, pointed, rational cone C ⊆ Rd is called Gorenstein if there

exists a point p ∈ C ∩Zd such that C◦ ∩Zd = p +C ∩Zd (see, e.g., [9, 94]). The
point p is called the Gorenstein point of the cone. Recall that the cone over a
polytope, Cone(P ), of a rational polytope P = {x ∈ Rd : A x ≤ b} is the following
set of points in Rd+1:

Cone(P ) :=
{
(x0, x) ∈ Rd+1 : Ax ≤ x0b , x0 ≥ 0

}
.

For a cone C ⊆ Rd, the dual cone C∨ ⊆ (Rd)∨ is

C∨ := {y ∈ (Rd)∨ : 〈y, x〉 ≥ 0 for all x ∈ C}.

A lattice polytope P ⊂ Rd is Gorenstein if Cone(P ) is Gorenstein; in the spe-
cial case where the Gorenstein point of that cone is (1, q) for some q ∈ Zd, we
call P reflexive [8, 66]. Reflexive polytopes can alternatively be characterized as
those lattice polytopes (containing the origin) whose polar duals are also lattice
polytopes, i.e., they have codenominator 1. This definition has a natural extension
to rational polytopes [54]. Gorenstein and reflexive polytopes play an important
role in Ehrhart theory, as they have palindromic h∗-polynomials. In Section 2.3,
we define γ-rational Gorenstein polytopes and show that they satisfy many of
the characterizing properties of lattice Gorenstein polytopes, such as having sym-
metric numerators of their generating functions. Furthermore, the definition does
not depend on the existence of a polar dual polytope. Interestingly, there are many
r-rational Gorenstein polytopes; any rational polytope containing the origin in its
interior is r-rational Gorenstein, see Corollary 2.3.2.

We mention the recent notion of an l-reflexive polytope P (“reflexive of higher
index”) [74]. A lattice point x ∈ Zd is primitive if the gcd of its coordinates is equal
to one. The l-reflexive polytopes are precisely the lattice polytopes of the form (10)
with b = (l, l, . . . , l) and primitive vertices; this means P has codenominator l and
1
lP has denominator l.
We conclude with two short sections further connecting our work to the existing lit-

erature. Section 2.4 exhibits how one can deduce a theorem of Betke–McMullen [15]
(and also its rational analogue given in [10]) from rational Ehrhart theory.

Ehrhart’s theorem gives an upper bound for the period of the quasipolynomial
ehr(P ;n), namely, the denominator of P . When the period of ehr(P ;n) is smaller
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than the denominator of P , we speak of period collapse. One can witness this
phenomenon most easily in the Ehrhart series, as period collapse means that the
rational function (9) factors in such a way that there are no kth roots of unity
that are poles. It is an interesting question whether or how much period collapse
happens in rational Ehrhart theory, and how it compares to the classical scenario.
In Section 2.5, we offer data points that show that each of the four combinations for
whether a polytope’s rational and classical Ehrhart quasipolynomials exhibit period
collapse occur.
This chapter is joint work with Matthias Beck and Sophie Rehberg [11].

2.1 rational ehrhart dilations

We call a d-dimensional polytope in Rn a d-polytope, and we assume throughout
this chapter that all polytopes are full dimensional. Consequently, we could write
the rational generating function Ehr(P ; t) with denominator (1− t)(1− tk)d; in other
words, h∗(P ; t) always has a factor (1 + t+ · · ·+ tk−1).

Example 2.1.1. We feature the following intervals as running examples.

• P1 :=
[
−1, 2

3

]
, codenominator r = 2

r̄ehr(P1;λ) = dλe+
⌈

2
3λ
⌉
+ 1

=



5
3n+ 1 if n ≤ λ < n+ 1

2 for some n ∈ 3Z>0,
5
3n+ 1 if n+ 1

2 ≤ λ < n+ 1 for some n ∈ 3Z>0,
5
3n+ 2 if n+ 1 ≤ λ < n+ 3

2 for some n ∈ 3Z>0,
5
3n+ 3 if n+ 3

2 ≤ λ < n+ 2 for some n ∈ 3Z>0,
5
3n+ 4 if n+ 2 ≤ λ < n+ 5

2 for some n ∈ 3Z>0,
5
3n+ 4 if n+ 5

2 ≤ λ < n+ 3 for some n ∈ 3Z>0.

• P2 :=
[
0, 2

3

]
, codenominator r = 2

r̄ehr(P2;λ) =
⌊

2
3λ
⌋
+ 1

= 2
3n+ 1 if n ≤ λ < n+ 3

2 for some n ∈ 3
2Z>0.

• P3 := [1, 2], codenominator r = 2

r̄ehr(P3;λ) = b2λc − dλe+ 1

=


n+ 1 if λ = n for some n ∈ Z>0 ,

n if n < λ < n+ 1
2 for some n ∈ Z>0 ,

n+ 1 if n+ 1
2 ≤ λ < n+ 1 for some n ∈ Z>0 .
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The real Ehrhart counting function r̄ehr(P3;λ) is not monotone. For example,
r̄ehr(P3; 0) = 1, r̄ehr(P3; 1

4 ) = 0, and r̄ehr(P3; 1
2 ) = 1.

• P4 := 2P3 = [2, 4], codenominator r = 4.

r̄ehr(P4;λ) = b4λc − d2λe+ 1

=


2n+ 1 if λ = n for some n ∈ 1

2Z>0,

2n if n < λ < n+ 1
4 for some n ∈ 1

2Z>0,

2n+ 1 if n+ 1
4 ≤ λ < n+ 1

2 for some n ∈ 1
2Z>0.

We can see in these examples (and prove below in general terms) that r̄ehr(P ;λ) is
a quasipolynomial in the real variable λ.

Remark 2.1.2. If P is a lattice polytope, then the denominator of 1
rP divides r.

However, the denominator of 1
rP need not equal r, as in the case of P4 above.

Remark 2.1.3. If 1
rP is a lattice polytope, its Ehrhart polynomial is invariant under

lattice translations. Unfortunately, this does not clearly translate to invariance of
rehr(P ;λ). Consider the line segment [−1, 1] and its translation P4 = [2, 4]. For
any λ ∈ (0, 1

4 ), rehr([−1, 1],λ) = 1 and rehr(P4,λ) = 0. This observation raises two
related questions: 1) Is there an example of a polytope and a translate with the same
codenominator? We expect not in dimension one. 2) Given a rational polytope P ,
for which r and P̃ could P = 1

r P̃?

Lemma 2.1.4. Let P ⊆ Rd be rational d-polytope. If 0 ∈ P , then rehr(λ) is mono-
tone for λ ∈ Q≥0.

Proof. Let λ < ω be positive rationals. Suppose x ∈ Rd and x ∈ λP . Then x satisfies
all n facet-defining inequalities of λP : 〈ai, x〉 ≤ λbi for all i ∈ [n]. If bi = 0, then
〈ai, x〉 ≤ λ · 0 = ω · 0. Otherwise, bi > 0, and 〈ai, x〉 ≤ λbi < ωbi. So x ∈ ωP .

Proposition 2.1.5. Let P ⊆ Rd be a rational d-polytope with codenominator r.

(i) The number of lattice points in λP is constant for λ ∈ (nr , n+1
r ), n ∈ Z≥0.

(ii) If 0 ∈ P , then the number of lattice points in λP is constant for λ ∈ [nr , n+1
r ),

n ∈ Z≥0.

Proof. (i). Suppose there exist two rationals λ and ω such that n
r < λ < ω < n+1

r ,
and rehr(λ) 6= rehr(ω). Then there exists x ∈ Zd such that either (x ∈ ωP and x /∈
λP ) or (x ∈ λP and x /∈ ωP ). Suppose (x ∈ ωP and x /∈ λP ). Then there exists a
facet F with integral, reduced inequality 〈a, v〉 ≤ b of P such that

〈a, x〉 ≤ ωb, 〈a, x〉 > λb, and 〈a, x〉 ∈ Z.

As λ < ω, this implies b > 0. We have,

b
n

r
< λb < 〈a, x〉 ≤ ωb < n+ 1

r
b.
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As r = bk, with k ∈ Z>0, this is equivalent to

n < λr < k〈a, x〉 ≤ ωr < n+ 1.

This is a contradiction because k〈a, x〉 is an integer. The second case is proved
analogously: Assume (x /∈ ωP and x ∈ λP ). Then there exists again a facet F with
integral, reduced inequality 〈a, v〉 ≤ b of P such that

〈a, x〉 > ωb, 〈a, x〉 ≤ λb, and 〈a, x〉 ∈ Z.

As λ < ω, this implies b < 0. We have,

n+ 1
r
|b| > ω|b| > −〈a, x〉 ≥ λ|b| > n

r
|b| .

As r
|b| ∈ Z>0, this is equivalent to

n+ 1 > ωr > − r

|b|
〈a, x〉 ≥ λr > n . (12)

This leads to the same contradiction.
(ii) If 0 ∈ P we know that b ≥ 0. So in the proof above only the first case applies.

(This can also be seen as a consequence of Lemma 2.1.4.) Allowing n
r ≤ λ leads, with

the same computations, to the following weakened version of (2.1):

n ≤ λr < k〈a, x〉 ≤ ωr < n+ 1 ,

which is still strong enough for the contradiction. This is not the case in (12).

It follows that we can compute the real Ehrhart function r̄ehr from the rational
Ehrhart function:

Corollary 2.1.6. Let P ⊆ Rd be a rational d-polytope with codenominator r. Then

r̄ehr(P ;λ) =

rehr(P ;λ) if λ ∈ 1
rZ≥0 ,

rehr(P ; bλe) if λ /∈ 1
rZ≥0 ,

(13)

where
bλe :=

2j + 1
2r for

∣∣∣∣λ− 2j + 1
2r

∣∣∣∣ < 1
2r and j ∈ Z .

In words, bλe is the element in 1
2rZ with odd numerator that has the smallest Eu-

clidean distance to λ on the real line. Furthermore, if 0 ∈ P , then

r̄ehr(P ;λ) = rehr
(
P ; brλc

r

)
.
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Theorem 2.1.7. If P ⊆ Rd is a rational d-polytope with codenominator r, and
m ∈ Z>0 such that m

r P is a lattice polytope, then

REhr(P ; t) :=
∑

n∈Z≥0

rehr
(
P ; n

r

)
t
n
r =

rh∗(P ; t)(
1− t

m
r

)d+1 ,

where rh∗(P ; t) is a polynomial in Z[t
1
r ] with nonnegative integral coefficients. Con-

sequently, rehr(P ;λ) and r̄ehr(P ;λ) are quasipolynomials.

Remark 2.1.8. Our implicit definition of rh∗(P ; t) depends on m. We will some-
times use the notation rh∗m(P ; t) to make this dependency explicit. Naturally, one
often tries to choose m minimal, which gives a canonical definition of rh∗(P ; t), but
sometimes it pays to be flexible.

Remark 2.1.9. By usual generating function theory the degree of rh∗m(P ; t) is less
than or equal to m(d+ 1)− 1 as a polynomial in t

1
r .

Proof of Theorem 2.1.7. Our conditions imply that 1
rP is a rational polytope with

denominator dividing m. Thus by standard Ehrhart theory,

REhr(P ; t) = Ehr
(

1
rP ; t

1
r

)
=

h∗
(

1
rP ; t

1
r

)
(
1− t

m
r

)d+1 ,

and h∗( 1
rP ; t) has nonnegative integral coefficients.

Corollary 2.1.10. The period of the quasipolynomial rehr(P ;λ) divides m
r , i.e., this

period is of the form j
r with j | m.

Corollary 2.1.11. The period of the quasipolynomial ehr(P ;λ) divides m
gcd(m,r) .

Proof. Viewed as a function of the integer parameter n, the function rehr(P ; nr ) has
period dividing m. Thus ehr(P ;n) = rehr(P ;n) has period dividing m

gcd(m,r) .

Corollary 2.1.12.

REhr(P ; t) =
rh∗r(P ; t)
(1− t)d+1 ,

where rh∗r(P ; t) is a polynomial in Z[t
1
r ] with nonnegative coefficients.

For polytopes that don’t contain the origin, the following variant of Theorem 2.1.7
is useful.

Theorem 2.1.13. If P ⊆ Rd is a rational d-polytope with codenominator r, and
m ∈ Z>0 such that m

2rP is a lattice polytope, then

RREhr(P ; t) := 1 +
∑

n∈Z>0

rehr
(
P ; n2r

)
t
n
2r =

rrh∗(P ; t)(
1− t

m
2r
)d+1 ,

where rrh∗(P ; t) is a polynomial in Z[t
1

2r ] with nonnegative coefficients.
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The proof of Theorem 2.1.13 is virtually identical to that of Theorem 2.1.7. Many
of the following assertions come in two versions, one for REhr and one for RREhr.
We typically write an explicit proof for only one version, as the other is analogous.

Corollary 2.1.14. Let P ⊆ Rd be a lattice d-polytope with codenominator r. The
real and rational Ehrhart functions, r̄ehr(P ,λ) and rehr(P ,λ), are given by quasipoly-
nomials of period 1.

Corollary 2.1.15. If mr (resp. m
2r ) in Theorem 2.1.7 (resp. Theorem 2.1.13) is inte-

gral we can retrieve the h∗-polynomial from the rh∗-polynomial (resp. rrh∗-polynomial)
by applying the operator Int that extracts from a polynomial in Z[t

1
r ] the terms with

integer powers of t: h∗(P ; t) = Int(rh∗(P ; t)) (resp. h∗(P ; t) = Int(rrh∗(P ; t))).

Example 2.1.16 (Example 2.1.1 continued). Here are the (refined) rational Ehrhart
series of the running examples. Recall that the rational Ehrhart series of P in the
variable t can be computed as the Ehrhart series of 1

rP in the variable t
1
r (resp. the

refined rational Ehrhart as the Ehrhart series of 1
2rP in the variable t

1
2r ).

• P1 := [−1, 2
3 ], r = 2, m = 6

REhr(P1; t) = 1 + t
1
2 + t+ t

3
2 + t2

(1− t)
(
1− t

3
2
)

=
1 + t

1
2 + 2t+ 3t

3
2 + 4t2 + 4t

5
2 + 4t3 + 4t

7
2 + 3t4 + 2t

9
2 + t5 + t

11
2

(1− t3)2

• P2 := [0, 2
3 ], r = 2, m = 3

REhr(P2; t) = 1(
1− t

1
2
) (

1− t
3
2
) =

1 + t
1
2 + t(

1− t
3
2
)2

• P3 := [1, 2], r = 2. 1
4P3 = [ 1

4 , 1
2 ] and m = 4, so m

2r = 1. See Figure 7.

RREhr(P3, t) =
1 + t

1
2 + t

3
4 + t

5
4

(1− t)2 =

(
1 + t

3
4
) (

1 + t
1
2
)

(1− t)2

• P4 := [2, 4], r = 4. Then 1
8P4 = [ 1

4 , 1
2 ] and m = 4, so m

2r =
1
2 . See Figure 8.

RREhr(P4; t) = 1 + t
1
4 + t

3
8 + 2t

1
2 + t

5
8 + 2t

3
4 + 2t

7
8 + t+ 2t

9
8 + t

5
4 + t

11
8 + t

13
8

(1− t)2

=
1 + t

1
4 + t

3
8 + t

5
8

(1− t
1
2 )2

Choosing m to be minimal means rrh∗4(P4; t) = (1 + t
3
8 )(1 + t

1
4 ) = 1 + t

1
4 +

t
3
8 + t

5
8 = rrh∗4(P3; t

1
2 ) The real Ehrhart quasipolynomial r̄ehr has period 1

2 .
The rational Ehrhart counting function agrees with a quasipolynomial for
λ ∈ 1

2rZ.
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Figure 7: The cone Cone(P3) over P3 = [1, 2]. The lattice points in the fundamental paral-
lelepiped with respect to the lattice 1

4 Z×Z are (0, 0), ( 1
2 , 1), ( 3

4 , 1), ( 5
4 , 2).
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Figure 8: The cone Cone(P4) over P4 = [2, 4]. The lattice points in the fundamental paral-
lelepiped with respect to the lattice 1

8 Z×Z are shown in the figure.

From the (refined) rational Ehrhart series of these examples, we can recompute the
quasipolynomials found earlier. For example, for P3:

RREhr(P3, t) =
1 + t

1
2 + t

3
4 + t

5
4

(1− t)2

=
(
1 + t

1
2 + t

3
4 + t

5
4
)∑
j≥0

(j + 1) tj

=
∑
j≥0

(j + 1) tj +
∑
j≥0

(j + 1) tj+
1
2 +

∑
j≥0

(j + 1) tj+
3
4 +

∑
j≥0

(j + 1) tj+
5
4

With a changes of variables we compute for λ ∈ 1
4Z

rehr(λ) =



λ+ 1 if λ ∈ Z,

λ− 1
4 if λ ≡ 1

4 mod 1,

λ+ 1
2 if λ ≡ 1

2 mod 1,

λ+ 1
4 if λ ≡ 3

4 mod 1.

We recover the reciprocity result for the rational Ehrhart function of rational
polytopes proved by Linke [77, Corollary 1.5].
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Corollary 2.1.17. Let P ⊆ Rd be a rational d-polytope. Then (−1)d r̄ehr(P ;−λ)
equals the number of interior lattice points in λP , for any λ > 0.

Proof. Let P ⊆ Rd be a rational d-polytope with codenominator r. The fact that
both rehr(P ;λ) and r̄ehr(P ;λ) are quasipolynomials allows us to extend (13) to the
negative (and therefore all) real numbers via

r̄ehr(P ;λ) =

rehr(P ;λ) if λ ∈ 1
rZ ,

rehr(P ; bλe) if λ /∈ 1
rZ .

By standard Ehrhart–Macdonald Reciprocity, (−1)d rehr(P ;− n
2r ) = ehr( 1

2rP ;−n)
equals the number of lattice points in the interior of n

2rP . The result now follows
from b−λe = −bλe.

Let P ⊆ Rd be a rational d-polytope, and let rehr(P ◦;λ) := |λP ◦ ∩Zd|. We define
the (refined) rational Ehrhart series of the interior of a polytope as follows:

REhr(P ◦; t) :=
∑

λ∈ 1
r

Z>0

rehr(P ◦;λ)tλ

RREhr(P ◦; t) :=
∑

λ∈ 1
2rZ>0

rehr(P ◦;λ)tλ ,

where r as usual denotes the codenominator of P .

Corollary 2.1.18. Let P ⊆ Rd be a rational d-polytope.

(i) The (refined) rational Ehrhart series of the open polytope P ◦ have the rational
expressions

REhr(P ◦; t) = rh∗m(P ◦; t)(
1− t

m
r

)d+1 and RREhr(P ◦; t) = rrh∗m(P ◦; t)(
1− t

m
2r
)d+1 ,

where rh∗m(P ◦; t) and rrh∗m(P ◦; t) are polynomials in Z[t
1
r ] and Z[t

1
2r ], respec-

tively.

(ii) The (refined) rational Ehrhart series fulfill the reciprocity relations

REhr(P ◦; t) = (−1)d+1 REhr
(
P ; 1

t

)
,

RREhr(P ◦; t) = (−1)d+1 RREhr
(
P ; 1

t

)
.

(iii) The rh∗- and rrh∗-polynomials of the polytope P and its interior P ◦ are related
by

rh∗m(P ◦; t) =
(
t
m
r

)d+1
rh∗m

(
P ; 1

t

)
,

rrh∗m(P ◦; t) =
(
t
m
2r
)d+1

rrh∗m
(
P ; 1

t

)
.
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Proof. Identity (i) follows from Ehrhart-Macdonald reciprocity (see, e.g., [12, Theo-
rem 4.4]) and Remark 2.1.9:

REhr(P ◦; t) =
∑

λ∈ 1
r

Z>0

rehr(P ◦;λ)tλ =
∑

n∈Z>0

ehr
(1
r
P ◦;n

)
t
n
r

= Ehr
(1
r
P ◦; t

1
r

)
= (−1)d+1 Ehr

(1
r
P ; t−

1
r

)

= (−1)d+1 h∗
(

1
rP ; t−

1
r

)
(
1− t−

m
r

)d+1 =

(
t
m
r

)d+1
h∗
(

1
rP ; t−

1
r

)
(
1− t

m
r

)d+1 .

For identities (ii) and (iii) we again apply Ehrhart-Macdonald reciprocity:(
t
m
r

)d+1
rh∗m

(
P ; 1

t

)
(
1− t

m
r

)d+1 =
(−1)d+1 rh∗m

(
P ; 1

t

)
(

1−
(

1
t

)m
r

)d+1 = (−1)d+1 REhr
(
P ; 1

t

)

= (−1)d+1 Ehr
(1
r
P ; 1

t
1
r

)
= Ehr

(1
r
P ◦; t

1
r

)
=

∑
λ∈Z>0

ehr
(1
r
P ◦;λ

)
t
λ
r =

∑
λ∈ 1

r
Z>0

rehr
(
P ◦; λ

r

)
t
λ
r

= REhr (P ◦; t) = rh∗m(P ◦; t)(
1− t

m
r

)d+1 .

2.2 how to count lattice points using the boundary

We recall the setup from [100]. Let P ⊆ Rd be a lattice d-polytope with codenomi-
nator r and 0 ∈ P . Let ∂6=0(P ) denote the union of facets of P that do not contain
the origin. In order to study all rational dilates of the boundary of P , Stapledon
introduces the generating function

WEhr(P ; t) := 1 +
∑

λ∈Q>0

∣∣∣∂ 6=0(λP ) ∩Zd
∣∣∣ tλ =

h̃(P ; t)
(1− t)d

, (14)

where h̃(P ; t) is a polynomial in Z[t
1
r ] with fractional exponents. The generating

function WEhr is closely related to the (rational) Ehrhart series: the truncated sum
1 +

∑ω
λ∈Q>0 |∂6=0(λP ) ∩Zd| equals the number of lattice points in ωP . Proposition

2.1.5 allows us to discretize this sum:

Corollary 2.2.1. Let P ⊆ Rd be a lattice d-polytope with codenominator r and
0 ∈ P . The number of lattice points in λP equals 1+

∑
ω∈ 1

r
Z>0,ω<λ |∂ 6=0(ωP )∩Zd|.

Proof. As 0 ∈ P , every nonzero lattice point in λP occurs in ∂ 6=0(ωP ) for some
unique ω ∈ Q where 0 < ω ≤ λ. Using Lemma 2.1.4, we have λP ∩Zd = 0 ∪⊔λ
ω∈Q>0(∂ 6=0(ωP ) ∩Zd). By Proposition 2.1.5, the union

⊔λ
ω∈Q>0(∂ 6=0(ωP ) ∩Zd) is

discrete and disjoint.
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Similarly, h̃(P ; t) is related to h∗( 1
rP ; t

1
r ) and to rh∗m(P ; t), as we show in Lemma

2.2.2 and Corollary 2.2.5. Recall that we use rh∗m(P ; t) to keep track of the denomi-
nator of REhr(P ; t) = rh∗m(P ;t)

(1−t
m
r )d+1 .

Lemma 2.2.2. Let P ⊆ Rd be a lattice d-polytope with codenominator r such that
0 ∈ P , and let k be the denominator of 1

rP . Then

h∗
(1
r
P ; t

1
r

)
=

(
1− t

k
r

)d+1(
1− t

1
r

)
(1− t)d

h̃(P ; t) .

Proof. Applying classical Ehrhart theory and Proposition 2.1.5 we compute

h∗
(

1
rP ; t

1
r

)
(
1− t

k
r

)d+1 = Ehr
(1
r
P ; t

1
r

)

= 1 +
∑

n∈Z>0

ehr
(1
r
P ;n

)
t
n
r

=
Cor. 2.2.1

1 +
∑

n∈Z>0

1 +
n∑
j=1

∣∣∣∣∂ 6=0

(
j

r
P

)
∩Zd

∣∣∣∣
 tnr

= 1 +
∑

n∈Z>0

t
n
r +

∑
j>0

∑
n≥j

∣∣∣∣∂ 6=0

(
j

r
P

)
∩Zd

∣∣∣∣ tnr
= 1 + t

1
r

1− t
1
r

+
∑
j>0

∣∣∣∣∂6=0

(
j

r
P

)
∩Zd

∣∣∣∣∑
n≥j

t
n
r

=
1− t

1
r + t

1
r +

∑
j>0

∣∣∣∂ 6=0
(
j
rP
)
∩Zd

∣∣∣ t jr
1− t

1
r

=
WEhr(P ; t)

1− t
1
r

=
h̃(P ; t)(

1− t
1
r

)
(1− t)d

.

Remark 2.2.3. The factor multiplying h̃(P ; t) in Lemma 2.2.2 can be rewritten in
terms of finite geometric series. Let the codenominator r = ks for some s ∈ Z≥1.
Rewriting yields(

1− t
k
r

)d+1(
1− t

1
r

)
(1− t)d

=

(
1− t

k
r

)
(
1− t

1
r

) ·

(
1− t

k
r

)
(1− t)

d =
(
1− t

1
s

)
(
1− t

1
ks

) ·( 1
1 + t

1
s + · · ·+ t

s−1
s

)d

=
1 + t

1
r + · · ·+ t

k−1
r(

1 + t
1
s + · · ·+ t

s−1
s

)d .

If k = r, this simplifies to (1 + t
1
r + · · ·+ t

r−1
r ).
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Remark 2.2.4. Lemma 2.2.2 corrects [100, Remark 3], which was missing the factor
between h∗( 1

rP ; t
1
r ) and h̃(P ; t).

Corollary 2.2.5. Let P ⊆ Rd be a lattice d-polytope with codenominator r such
that 0 ∈ P . Let k be the denominator of 1

rP . Then

rh∗k(P ; t) = h∗
(

1
rP ; t

1
r

)
=

(
1− t

k
r

)d+1(
1− t

1
r

)
(1− t)d

h̃(P , t) .

Remark 2.2.6. In [98, Equation (14)] and [100, Equation (6)], Stapledon shows that
h∗(P ; t) = Ψ(h̃(P ; t)), where Ψ :

⋃
r∈Z>0 R[t

1
r ]→ R[t] is defined by Ψ(tλ) = tdλe. In

the case of a lattice polytope with m
r ∈ Z we give a different construction to recover

the h∗-polynomial from the rrh∗- and rh∗-polynomial by applying the operator Int
(see Corollary 2.1.15). Corollary 2.2.5 shows that, after a bit of computation, these
two constructions are equivalent.

Remark 2.2.7. For a lattice d-polytope P ⊆ Rd with codenominator r, 0 ∈ P , and
denominator of 1

2rP = k, we can relate rrh∗(P ; t) and h∗( 1
2rP ; t

1
2r ) in a similar way.

We again write rrh∗k(P ; t) to emphasize that it is the numerator of rrh∗k(P ;t)

(1−t
k
2r )d+1

. Then

rrh∗k(P ; t) = h∗
( 1

2rP ; t
1

2r

)
=

(
1− t

k
2r
)d+1(

1− t
1

2r
)
(1− t)d

h̃(P ; t) .

Corollary 2.2.8. Let P ⊆ Rd be a lattice d-polytope with 0 ∈ P ◦. Let r be the
codenominator of P and k be the denominator of 1

rP . Then rh∗k(P ; t) is palindromic.

Proof. From [98, Corollary 2.12] we know that h̃(P ; t) is palindromic if 0 ∈ P ◦. We
compute using Corollary 2.2.5.

rh∗k
(
P ; t−1

)
=

(
1− t

−k
r

)d+1(
1− t

−1
r

)
(1− t−1)d

h̃
(
P ; t−1

)

=
t
−(d+1)k

r

t
−1
r

(
1− t

k
r

)d+1(
1− t

1
r

)
(1− t)d

h̃(P ; t)

=
1

t
k(d+1)−1

r

rh∗k(P ; t)

This implies, since the constant term of rh∗k(P ; t) is 1, that the degree of rh∗(P ; t)
(measured as a polynomial in t

1
r ) equals k(d+ 1)− 1.

This suggests that there is a 3-step hierarchy for rational dilations: 0 ∈ P ◦

comes with extra symmetry, 0 ∈ P comes with Proposition 2.1.5(ii) and so we
“only” have to compute rh∗(P ; t) ∈ Z[t

1
r ], and 0 /∈ P means we have to compute

rrh∗(P ; t) ∈ Z[t
1

2r ]. Corollary 2.2.8 is related to Gorenstein properties of rational
polytopes, which we consider in the next section.
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2.3 gorenstein musings

Our main goal in this section is to extend the notion of Gorenstein polytopes to the
rational case. A rational d-polytope P ⊆ Rd is γ-rational Gorenstein if Cone( 1

γP )

is a Gorenstein cone. In this paper we explore this definition for parameters γ = r

and γ = 2r, other parameters are still to be investigated. The archetypal r-rational
Gorenstein polytope is a rational polytope that contains the origin in its interior,
see Corollary 2.3.2. The definition of γ-rational Gorenstein does not require that the
origin is contained in the polytope, hence, it does not require the existence of a polar
dual. A lattice polytope P is 1-rational Gorenstein if and only if it is a Gorenstein
polytope in the classical sense.
Analogous to the lattice case, the following theorem shows that a polytope con-

taining the origin is r-rational Gorenstein if and only if it has a palindromic rh∗-
polynomial. Let P = {x ∈ Rd : A x ≤ b} be a rational d-polytope. We may assume
that for some index i ∈ [n], bj = 0 for j = 1, . . . , i and bj 6= 0 for j = i+ 1, . . . ,n;
thus we can write P as follows:

P =

{
x ∈ Rd : 〈aj , x〉 ≤ 0 for j = 1, . . . , i

〈aj , x〉 ≤ bj for j = i+ 1, . . . ,n

}
, (15)

where aj are the rows of A.

Theorem 2.3.1. Let P = {x ∈ Rd : A x ≤ b} be a rational d-polytope with
codenominator r and 0 ∈ P , as in (10) and (15). Then the following are equivalent
for g,m ∈ Z≥1 and m

r P a lattice polytope:

(i) P is r-rational Gorenstein with Gorenstein point (g, y) ∈ Cone( 1
rP ).

(ii) There exists a (necessarily unique) integer solution (g, y)

−〈aj , y〉 = 1 for j = 1, . . . , i
bj g− r 〈aj , y〉 = bj for j = i+ 1, . . . ,n .

(iii) rh∗(P ; t) is palindromic:

t(d+1)m
r
− g
r rh∗m

(
P ; 1

t

)
= rh∗m(P ; t) .

(iv) (−1)d+1t
g
r REhr(P ; t) = REhr(P ; 1

t ).

(v) rehr(P ; nr ) = rehr(P ◦; n+gr ) for all n ∈ Z≥0.

(vi) Cone( 1
rP )

∨ is the cone over a lattice polytope, i.e., there exists a lattice point
(g, y) ∈ Cone( 1

rP )
◦ ∩Zd+1 such that for every primitive ray generator (v0, v)

of Cone( 1
rP )

∨.
〈(g, y) , (v0, v)〉 = 1 .

The equivalence of (i) and (vi) is well known (see, e.g., [7, Definition 1.8] or [23,
Exercises 2.13, 2.14]); for the sake of completeness we include a proof below.
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Corollary 2.3.2. Let P ⊆ Rd be a rational d-polytope with codenominator r. If
0 ∈ P ◦, then P is r-rational Gorenstein with Gorenstein point (1, 0, . . . , 0) and
rh∗(P ; t) is palindromic.

Example 2.3.3 (continued). We check the Gorenstein criterion for the running
examples such that 0 ∈ P .

• Let P1 :=
[
−1, 2

3

]
so that r = 2. Let m = 6. Then,

rh∗6(P1; t) = 1 + t
1
2 + 2t+ 3t

3
2 + 4t2 + 4t

5
2 + 4t3 + 4t

7
2 + 3t4 + 2t

9
2 + t5 + t

11
2 .

The polynomial rh∗6(P1; t) is palindromic and therefore (by Theorem 2.3.1), P1
is 2-rational Gorenstein. This is to be expected; as 0 ∈ P ◦, Lemma 2.2.2 shows
that rh∗(P1; t) must be palindromic.

• Let P2 :=
[
0, 2

3

]
so that r = 2. Let m = 3. Then,

rh∗3(P2; t) = 1 + t
1
2 + t.

The polynomial rh∗3(P2; t) is palindromic and P2 is 2-rational Gorenstein with
Gorenstein point (g, y) = (4, 1) ∈ Cone( 1

2P2).

Example 2.3.4 (Haasenlieblingsdreieck). The triangle ∆ := conv{(0, 0), (2, 0), (0, 2)}
is not Gorenstein in the classic (integral) setting, but it is 2-rational Gorenstein: we
compute

REhr(P , t) =
1(

1− t
1
2
)3 =

1 + 3t
1
2 + 3t+ t

3
2

(1− t)3 .

Example 2.3.5. The triangle ∇ := conv{(0, 0), (0, 1), (3, 1)} has codenominator 1.
It is not 1-rational Gorenstein as |∇◦ ∩Z2| = 0 and |(2∇)◦ ∩Z2| = 2.

Proof of Theorem 2.3.1. (iii) ⇔ (iv) ⇔ (v) We compute using reciprocity (Corol-
lary 2.1.18)

1 +
∑

λ∈1
rZ>0

rehr(P ;λ)tλ =
rh∗m(P ; t)(

1− t
m
r

)(d+1) =
t(d+1)m

r
− g
r rh∗m

(
P ; 1

t

)
(
1− t

m
r

)(d+1)

= t−
g
r

rh∗m(P ◦; t)(
1− t

m
r

)(d+1) = t−
g
r

∑
λ∈1

rZ>0

rehr(P ◦;λ)tλ .

That is equivalent to

t
g
r REhr(P , t) = t

g
r

1 +
∑

λ∈1
rZ>0

rehr(P ;λ)tλ

 =
∑

λ∈1
rZ>0

rehr(P ◦;λ)tλ

= REhr(P ◦, t) = (−1)d+1 REhr
(
P , 1

t

)
.
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Comparing coefficients gives the third equivalence:

rehr
(
P ; n

r

)
= rehr

(
P ; n+ g

r

)
for n ∈ Z≥0 .

(v) ⇒ (i) Since

rehr
(
P ; n

r

)
= rehr

(
P ; n+ g

r

)
for n ∈ Z≥0

it suffices to show one inclusion:

Cone
(1
r
P

)◦
∩Zd+1 ⊇

(
(g, y) + Cone

(1
r
P

))
∩Zd+1 ,

where y is the unique interior lattice point in g
rP
◦. Indeed, since (g, y) ∈

Cone( 1
rP )

◦ ∩Zd+1, (g, y)+z ∈ Cone( 1
rP )

◦∩Zd+1 for all z ∈ Cone( 1
rP ) ∩Zd+1.

(i) ⇒ (iii) By the definition of P being r-rational Gorenstein we have

Cone
(1
r
P

)◦
∩Zd+1 = (g, y) + Cone

(1
r
P

)
∩Zd+1.

Computing integer point transforms gives:

σCone( 1
r
P)
◦ (z) = z(g,y)σCone( 1

r
P) (z) .

Applying reciprocity (see, e.g., [12, Theorem 4.3]) yields

σCone( 1
r
P)
◦ (z) = (−1)d+1 σCone( 1

r
P)

(1
z

)
= z(g,y)σCone( 1

r
P) (z) . (16)

By specializing z = (t
1
r , 1, . . . , 1) in (16) we obtain the following relation be-

tween Ehrhart series for 1
rP in the variable t

1
r and t−

1
r :

(−1)d+1 Ehr
(1
r
P , 1

t
1
r

)
= t

g
r Ehr

(1
r
P , t

1
r

)
. (17)

From (the proof of) Theorem 2.1.7 we know that

Ehr
(1
r
P , t

1
r

)
= REhr(P , t) = rh∗m(P ; t)(

1− t
m
r

)d+1 ,

where m is an integer such that 1
rP is a lattice polytope. Substituting this into

(17) yields

(
t
m
r

)d+1 rh∗m
(
P ; 1

t

)
(
1− t

m
r

)d+1 = (−1)d+1 rh∗m
(
P ; 1

t

)
(
1− 1

t
m
r

)d+1 = t
g
r

rh∗m(P ; t)(
1− t

m
r

)d+1
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and therefore
t
(d+1)m

r
− g
r rh∗m

(
P ; 1

t

)
= rh∗m(P ; t) .

(ii) ⇔ (vi) The primitive ray generators of Cone( 1
rP )

∨ are the primitive facet
normals of Cone( 1

rP ), that is,

(0,−aj) for j = 1, . . . , i and
(

1,− r
bj

aj

)
for j = i+ 1, . . . ,n .

Since 0 ∈ P , bj ≥ 0 for all j = 1, . . . ,n. The statement follows.

(vi) ⇒ (i) Since (g, y) ∈ Cone( 1
rP )

◦∩Zd+1 is an interior point, (g, y)+Cone( 1
rP ) ⊆

Cone( 1
rP )

◦ follows directly. Let (x0, x) ∈ Cone( 1
rP )

◦, then for any primi-
tive ray generator (v0, v) of Cone( 1

rP )
∨ (being the primitive facet normals

of Cone( 1
rP )) we have

〈(x0, x)− (g, y) , (v0, v)〉 = 〈(x0, x) , (v0, v)〉︸ ︷︷ ︸
>0

−〈(g, y) , (v0, v)〉︸ ︷︷ ︸
=1

≥ 0 .

Hence, (x0, x)− (g, y) ∈ Cone( 1
rP ) and (x0, x) ∈ (g, y) + Cone( 1

rP ).

(i) ⇒ (vi) From the definition of Gorenstein point we know that (g, y) ∈ Cone( 1
rP )

◦

and hence
〈(g, y) , (v0, v)〉 > 0

for all primitive facet normals (v0, v) of Cone( 1
rP ). Since the facet normals

(v0, v) are primitive, i.e., gcd((v0, v)) = 1, there exists an integer point in the
shifted hyperplane H defined by

H =
{
(x0, x) ∈ Rd+1 : 〈(v0, v), (x0, x)〉 = 1

}
,

and hence H contains a d-dimensional sublattice. As H ∩Cone( 1
rP )

◦ contains
a pointed cone (e.g., the shifted recession cone), it contains a lattice point
(z0, z) ∈ Cone( 1

rP )
◦.

So, for any facet of Cone
(

1
rP
)
there exists a lattice point (z0, z) in the interior

of Cone( 1
rP ) at lattice distance one from the facet. Since (g, y) +Cone( 1

rP ) =

Cone( 1
rP )

◦, there exists a point (r0, r) ∈ Cone( 1
rP ) such that

(g, y) + (r0, r) = (z0, z) .

Then,

1 = 〈(z0, z) , (v0, v)〉 = 〈(g, y) , (v0, v)〉︸ ︷︷ ︸
>0

+ 〈(r0, r) , (v0, v)〉︸ ︷︷ ︸
≥0

and 〈(g, y) , (v0, v)〉 = 1.
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As usual we state a version of Theorem 2.3.1 for the refined rational Ehrhart series
and the rrh∗-polynomial. Here, the polytopes under consideration are not required to
contain the origin. This means that in the description (15) of the polytope the vector
b ∈ Zn might have negative entries and we use absolute values when multiplying
inequalities or facet normals with entries of b. Except for this small difference, the
proof is the same as that of Theorem 2.3.1 so we omit it.

Theorem 2.3.6. Let P = {x ∈ Rd : A x ≤ b} be a rational d-polytope with
codenominator r, as in (10) and (15). Then the following are equivalent for g,m ∈
Z≥1 and m

2rP a lattice polytope:

(i) P is 2r-rational Gorenstein with Gorenstein point (g, y) ∈ Cone( 1
2rP ).

(ii) There exists a (necessarily unique) integer solution (g, y)

−〈aj , y〉 = 1 for j = 1, . . . , i
bj g− 2r 〈aj , y〉 = |bj | for j = i+ 1, . . . ,n .

(18)

(iii) rrh∗(P ; t) is palindromic:

t(d+1)m2r−
g

2r rrh∗m
(
P ; 1

t

)
= rrh∗m(P ; t) .

(iv) (−1)d+1t
g

2r RREhr(P ; t) = RREhr(P ; 1
t ).

(v) rehr(P ; n2r ) = rehr(P ◦; n+g2r ) for all n ∈ Z≥0.

(vi) Cone( 1
2rP )

∨ is the cone over a lattice polytope, i.e., there exists a lattice point
(g, y) ∈ Cone( 1

2rP )
◦ ∩Zd+1 such that for every primitive ray generator (v0, v)

of Cone( 1
2rP )

∨.
〈(g, y) , (v0, v)〉 = 1 .

Theorem 2.3.6 could be generalized to `r-rational Gorenstein polytopes for ` ∈
Z>0. However it’s not clear that computationally this would provide any new insights
to the (rational) Ehrhart theory of the polytopes.

Corollary 2.3.7.

(i) If 0 ∈ P ◦, then P is also 2r-rational Gorenstein with the same Gorenstein
point (1, 0 . . . , 0) (see Corollary 2.3.2).

(ii) If 0 ∈ P and P is r-rational Gorenstein, then P is also 2r-rational Gorenstein.

(iii) If P is 2r-rational Gorenstein and the first coordinate g of the Gorenstein point
(g, y) is even, then P is also r-rational Gorenstein.
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Figure 9: The cone Cone( 1
4P3) = Cone( 1

8P4) with Gorenstein
point (3, 1) highlighted in orange. The other lattice
points Cone( 1

4P3)◦ ∩ Z2 are marked in black. Ob-
serve that (3, 1) + Cone( 1

4P3) ∩Z2 = Cone( 1
4P3)◦ ∩

Z2.

Proof of (ii). Since 0 ∈ P we know that rehr is constant on [nr , n+1
r ) and we compute

RREhr(P ; t) = 1 +
∑

n∈Z>0

rehr
(
P ; n2r

)
t
n
2r

= 1 + rehr
(
P , 1

2r

)
t

1
2r +

∑
n∈Z>0

 rehr
(
P ; 2n

2r

)
t

2n
2r + rehr

(
P ; 2n+ 1

2r

)
︸ ︷︷ ︸

=rehr(P ;n
r )

t
2n+1

2r



= 1 + t
1

2r +
∑

n∈Z>0

rehr
(
P ; n

r

)
t
n
r

(
1 + t

1
2r
)

=
(
1 + t

1
2r
)

REhr(P ; t) ,

where we also use that rehr(P , 0) = rehr
(
P , 1

2r

)
= 1.

Example 2.3.8. (continued) We check the Gorenstein criterion for the running
examples such that 0 /∈ P .

• Let P3 := [1, 2] so that r = 2. Let m = 4. Then, rrh∗4(P3; t) = 1 + t
2
4 + t

3
4 + t

5
4 .

• Let P4 := [2, 4] so that r = 4. Let m = 4. Then, rrh∗4(P4; t) = 1 + t
1
4 + t

3
8 + t

5
8 .

Both polynomials rrh∗4(P4; t) and rrh∗4(P3; t) are palindromic and therefore P3 is
4-rational Gorenstein and P4 is 8-rational Gorenstein. In fact, 1

4P3 = 1
8P4 and so

Cone( 1
4P3) = Cone( 1

8P4). The Gorenstein point is (g, y) = (3, 1). See Figure 9.

Example 2.3.9 (A polytope that is not 2r-rational Gorenstein). Let P5 = [1, 4].
Then r = 4 and 2r = 8, so 1

2rP5 = [ 1
8 , 1

2 ]. The first lattice point in the interior of
Cone( 1

8P5) is (g, y) = (3, 1). However, (3, 1) does not satisfy Condition (ii) from
Theorem 2.3.1; it is at lattice distance 5 from one of the facets of Cone( 1

8P5).

Remark 2.3.10. The codegree of a lattice polytope is defined as dim(P ) + 1−
deg(h∗(t)). Analogously, in the rational case, one can define the rational codegree
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of rh∗m(P ; t) to be m
r (dim(P )+ 1)−deg(rh∗m(P ; t)), where the degree of rh∗m(P ; t) is

its (possibly fractional) degree as a polynomial in t. Likewise, the rational codegree
of rrh∗m(t) is defined as m

2r (dim(P ) + 1)−deg(rrh∗m(P ; t)). It holds that the rational
codegree of rh∗(P ; t) is the smallest integral dilate of 1

rP containing interior lattice
points. The proof requires no new insights and we omit it here.

2.4 symmetric decompositions

We now use the stipulations of the last section to give a new proof of the following
theorem. As we will see, our proof will also yield a rational version (Theorem 2.4.3
below).

Theorem 2.4.1 (Betke–McMullen [15]). Let P ⊆ Rd be a lattice d-polytope that
contains a lattice point in its interior. Then there exist polynomials a(t) and b(t)

with nonnegative coefficients such that

h∗(P ; t) = a (t) + t b (t) , td a
(

1
t

)
= a (t) , td−1 b

(
1
t

)
= b (t) .

Proof. Suppose P is a lattice d-polytope with codenominator r. If P contains a
lattice point in its interior, we may assume it is the origin as the h∗-polynomial is
invariant under lattice translations. Corollary 2.3.2 says

td+1− 1
r rh∗r

(
P ; 1

t

)
= rh∗r(P ; t) . (19)

On the other hand, as we noted in the beginning of Section 2.1, the h∗-polynomial
of a rational d-polytope always has a factor, that carries over (by the proof of The-
orem 2.1.7) to

rh∗r(P ; t) =
(
1 + t

1
r + · · ·+ t

r−1
r

)
h̃(P ; t)

for some h̃(P ; t) ∈ Z[t1/r] (which is, of course, very much related to Section 2.2).
Moreover, by (19) this polynomial satisfies td h̃(P ; 1

t ) = h̃(P ; t). Note that

REhr(P ; t) =

(
1 + t

1
r + · · ·+ t

r−1
r

)
h̃(P ; t)

(1− t)d+1 =
h̃(P ; t)(

1− t
1
r

)
(1− t)d

(20)

and the Gorenstein property of 1
rP imply that h̃(P ; t) equals the h∗-polynomial (in

the variable t
1
r ) of the boundary of 1

rP . Indeed, the rational Ehrhart series of ∂P is

REhr(P ; t)−REhr(P ◦; t) = rh∗r(P ; t)
(1− t)d+1 −

td+1 rh∗r
(
P ; 1

t

)
(1− t)d+1 =

rh∗r(P ; t)
(1− t)d+1 −

t
1
r rh∗r(P ; t)
(1− t)d+1

(21)

=
(1− t

1
r ) rh∗r(P ; t)

(1− t)d+1 =
h̃(P ; t)
(1− t)d

. (22)
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The (triangulated) boundary of a polytope is shellable [108, Chapter 8], and this
shelling gives a half-open decomposition of the boundary, which yields nonnegativity
of the h∗-vector. Hence, h̃(P ; t) has nonnegative coefficients.
Let Int be the operator that extracts from a polynomial in Z[t

1
r ] the terms with

integer powers of t. Thus
a(t) := Int

(
h̃(P ; t)

)
is a polynomial in Z[t] with nonnegative coefficients satisfying td a( 1

t ) = a(t). The
polynomial a(t) can be interpreted as the h∗-polynomial of the boundary of P .
With (20), we compute

h∗(P ; t) = Int
((

1 + t
1
r + · · ·+ t

r−1
r

)
h̃(P ; t)

)
= a(t) + Int

((
t

1
r + t

2
r + · · ·+ t

r−1
r

)
h̃(P ; t)

)
.

Since β(t) :=
(
t

1
r + t

2
r + · · ·+ t

r−1
r

)
h̃(P ; t) satisfies td+1 β

(
1
t

)
= β(t), the polyno-

mial
b(t) :=

1
t

Int
((
t

1
r + t

2
r + · · ·+ t

r−1
r

)
h̃(P ; t)

)
satisfies td−1 b

(
1
t

)
= b(t), and h∗(P ; t) = a(t) + t b(t) by construction.

Remark 2.4.2. We could have started this proof with (14) and then used Staple-
don’s results [100] that h̃(P ; t) is palindromic and nonnegative.

The rational version of this theorem is a special case of [10, Theorem 4.7].

Theorem 2.4.3. Let Q ⊆ Rd be a rational d-polytope with denominator k that
contains a lattice point in its interior. Then there exist polynomials a(t) and b(t)

with nonnegative coefficients such that

h∗(Q; t) = a(t) + t b(t) , tk(d+1)−1 a
(

1
t

)
= a (t) , tk(d+1)−2 b

(
1
t

)
= b(t) .

Proof. We repeat our proof of Theorem 2.4.1 for P := k Q, except that instead of
the operator Int, we use the operator Ratk which extracts the terms with powers
that are multiples of 1

k . So now a(t) := Ratk(h̃(P ; t)),

b(t) :=
1
t

1
k

Ratk
((
t

1
r + t

2
r + · · ·+ t

r−1
r

)
h̃(P ; t)

)
and h∗(P ; t) = a(tk) + t b(tk).

2.5 period collapse

One of the classic instances of period collapse in integral Ehrhart theory is the
triangle

∆ := conv{(0, 0), (1, p−1
p ), (p, 0)} (23)
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where p ≥ 2 is an integer. Here

Ehr(∆; t) =
1 + (p− 2) t
(1− t)3 ,

and so, while the denominator of ∆ equals p, the period of ehr(∆;n) collapses to 1:
the quasipolynomial ehr(∆;n) = p−1

2 n2 + p+1
2 n+ 1 is a polynomial.

As mentioned in the Introduction, we offer data points towards the question of
whether or how much period collapse happens in rational Ehrhart theory, and how
it compares to the classical scenario.

Example 2.5.1. We consider the triangle ∆ defined in (23) with p = 3. Both the
denominator and the codenominator of ∆ equal 3. We compute

REhr(∆; t) =
1 + t

5
3(

1− t
1
3
)2

(1− t3)
.

The accompanying rational Ehrhart quasipolynomial ehr(P ;λ) thus has period 3.
We can retrieve the integral Ehrhart series from the rational by rewriting

REhr(∆; t) =

(
1 + t

5
3
) (

1 + t
1
3 + t

2
3
)2

(1− t)2 (1− t3)
=

(
1 + t

5
3
) (

1 + 2t
1
3 + 3t

2
3 + 2t+ t

4
3
)

(1− t)2 (1− t3)

and then disregarding the fractional powers in the numerator, which gives

Ehr(∆; t) =
1 + 2t+ 2t2 + t3

(1− t)2 (1− t3)
=

1 + t

(1− t)3 .

Hence the classical Ehrhart quasipolynomial exhibits period collapse while the ra-
tional does not.

Example 2.5.2. The recent paper [52] describes certain families of polytopes arising
from graphs, which exhibit period collapse. One example is the pyramid

P := conv
{
(0, 0, 0) ,

(
1
2 , 0, 0

)
,
(
0, 1

2 , 0
)

,
(

1
2 , 1

2 , 0
)

,
(

1
4 , 1

4 , 1
2

)}
.

which has denominator 4 and codenominator 1. In particular, its rational Ehrhart
series equals the standard Ehrhart series, and

REhr(P ; t) = Ehr(P ; t) =
1 + t3

(1− t) (1− t2)3

shows that ehr(P ;n) and ehr(P ;λ) both have period 2, i.e., they both exhibit period
collapse.
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Example 2.5.3. Recall the running examples P1 = [−1, 2
3 ] and P2 = [0, 2

3 ]. Restrict-
ing the real Ehrhart quasipolynomial from page 46 to positive integers we retrieve
the Ehrhart quasipolynomials:

ehr(P1;n) =


5
3n+ 1 if n ≡ 0 mod 3,
5
3n+

1
3 if n ≡ 1 mod 3,

5
3n+

2
3 if n ≡ 2 mod 3,

ehr(P2;n) =


2
3n+ 1 if n ≡ 0 mod 3,
2
3n+

1
3 if n ≡ 1 mod 3,

2
3n+

2
3 if n ≡ 2 mod 3.

We can observe the period 3 here. Recall the rational Ehrhart series from page 50:

REhr(P1; t) = 1 + t
1
2 + t+ t

3
2 + t2

(1− t)
(
1− t

3
2
) , REhr(P2; t) = 1(

1− t
1
2
) (

1− t
3
2
) =

1 + t
1
2 + t(

1− t
3
2
)2 .

We can read off from the series that 3
2 is a rational period of both rehr(P1;λ) and

rehr(P2;λ). Hence these are examples of polytopes with period collapse in their ra-
tional Ehrhart quasipolynomials but not in their integral Ehrhart quasipolynomials.

Example 2.5.4. Consider the line segment P6 := [0, 1
2 ]. We easily compute the

Ehrhart quasipolynomial:

ehr(P6,n) =


n
2 + 1 if n ≡ 0 mod 2,
n
2 + 1

2 if n ≡ 1 mod 2,

with period 2. As the codenominator r of P6 is 1, the rational Ehrhart series equals
the classical Ehrhart series, which we compute as

REhr(P6; t) = Ehr(P6, t) = 1
(1− t)(1− t2) =

1 + t

(1− t2)2 .

In this case neither the rational Ehrhart quasipolynomial nor the integral Ehrhart
quasipolynomial exhibit period collapse.

The question about possible period collapse of an Ehrhart quasipolynomial is
only one of many one can ask for a given rational polytope. To mention just one
further example, there are many interesting questions and conjectures on when the
h∗-polynomial is unimodal. One can, naturally, extend any such question to rational
Ehrhart series.





3
MULTIVARIATE EHRHART THEORY OF POLYTROPES

Polytropes are a fundamental class of polytopes, which masquerade in the literature
as alcoved polytopes of type A [75], [76]. They include order polytopes, some associa-
hedra and matroid polytopes, hypersimplices, and Lipschitz polytopes. Polytropes
are tropical polytopes which are classically convex [71]. They are closely related
to the notion of Kleene stars and the problem of finding shortest paths in weighted
graphs [102], [72]. Polytropes also arise in a range of algorithmic applications to other
fields, including phylogenetics [105], mechanism design [30], and building theory [73].
It is well known that computing and approximating the volume of a polytope is

“difficult” [6]. More specifically, there is no polynomial-time algorithm for the exact
computation of the volume of a polytope [49], even when restricting to the class of
polytopes defined by a totally unimodular matrix. However, viewing polytropes as
the “building blocks” of tropical polytopes, understanding their volumes is a step
towards understanding the volume of tropical polytopes. Determining whether the
volume of such a tropical polytope is zero is equivalent to deciding whether a mean
payoff game is winning [2]. The volume of a tropical polytope can hence serve as a
measurement of how far a game is from being winning [58].
Unimodular triangulations of polytropes were studied in the language of affine

Coxeter arrangements in [75], producing a volume formula and non-negativity of
the h-vector corresponding to the triangulation. Motivated by a novel possibility for
combining algebraic methods with enumerative results from tropical geometry, we
continue to study the volume of polytropes, both continuously and discretely. A mea-
sure of discrete volume for a polytope is the number of lattice points it contains. The
Ehrhart counting function encodes the discrete volume by counting the number of
lattice points in any positive integral dilate of a polytope. For lattice polytopes, this
counting function is given by a univariate polynomial, the Ehrhart polynomial, with
leading term equal to the Euclidean volume of the polytope. Rewriting the Ehrhart
polynomial in the basis of binomial coefficients determines the h∗-polynomial and
reveals additional beautiful connections between the coefficients and the geometry of
the polytope. It is an area of active research to determine the relations between the
h∗-coefficients of alcoved polytopes [92, Question 1]; for example, it is conjectured
that the h∗-vectors of alcoved polytopes of type A are unimodal.
In recent work, Loho and Schymura [79] developed a separate notion of volume for

tropical polytopes driven by a tropical version of dilation, which yields an Ehrhart
theory for a new class of tropical lattices. This notion of volume is intrinsically
tropical and exhibits many natural properties of a volume measure, such as being
monotonic and rotation-invariant. Nevertheless, the discrete and classical volume can
be more relevant for certain applications; for example, the irreducible components
of a Mustafin variety correspond to the lattice points of a certain tropical polytope
[25], [107].

67
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We pass from univariate polynomials to multivariate polynomials to push the
connections between the combinatorics of the polynomials and the geometry even
further. Combinatorial types of polytropes have been classified up to dimension 4
[102], [72]. Each polytrope of the same type has the same normal fan. Given a normal
fan, we create multivariate polynomial functions in terms of the rays that yield the
(discrete) volume and h∗-evaluation for any polytrope of that type.

We first use algebraic methods to compute the multivariate volume polynomials,
following the algorithm in [43]. We then transform these polynomials into multi-
variate Ehrhart polynomials, which are highly related to vector partition functions,
using the Todd operator. Finally we perform the change of basis to recover the
h∗-polynomials.

Result 3.0.1. We compute the multivariate volume, Ehrhart, and h∗-polynomials
for all types of polytropes of dimension ≤ 4.

Furthermore, these methods could be extended to higher dimensions with in-
creased computation power. Our code and the resulting polynomials are publicly
available on a Github repository1.
Each combinatorial type of polytrope of dimension n− 1 corresponds to a certain

triangulation of the fundamental polytope FPn, the polytope with vertices ei− ej
for i, j ∈ [n] [72]. Our computations show that the volume polynomials of polytropes
of dimension 3 have integer coefficients with a strong combinatorial meaning:

Theorem 3.0.2. The coefficients of the volume polynomials of maximal 3-dimensional
polytropes reflect the combinatorics of the corresponding regular central subdivision
of FP3.

For example, each coefficient of a monomial of the form aijaklast is either 6 or 0.
This reflects whether the the vertices ei − ej , ek − el and es − et form a face in
the triangulation of FP4 or not. Similarly, the coefficient of the monomial a2

ijakl
is −3 if the vertex ek − el is incident to a triangulating edge of a square facet of
FP3 and 0 otherwise. These intriguing observations naturally lead to a question of
generalization.

Question 3.0.3. How do the coefficients of the volume polynomials of maximal
(n−1)-dimensional polytropes reflect the combinatorics of the corresponding regular
central subdivision of FPn?

To emphasize this question, we show that our data of volume polynomials of
dimension 4 is highly structured:

Theorem 3.0.4. In the 8855-dimensional space of homogeneous polynomials of de-
gree 4, the 27248 normalized volume polynomials of 4-dimensional polytropes span a
70-dimensional affine subspace.

Finally, we present a partial characterization of the coefficients of these polynomi-
als. For example, the coefficient of a monomial of the form aijaik is always either 0
or 6, and the sum of all coefficients of this form is always 300, in each of the 27248
polynomials.

1 https://github.com/mariebrandenburg/polynomials-of-polytropes

https://github.com/mariebrandenburg/polynomials-of-polytropes
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Overview

In this chapter we describe methods for computing the multivariate volume, Ehrhart,
and h∗-polynomials for all polytropes. We begin by describing the Ehrhart theory,
tropical geometry, and algebraic geometry necessary for these methods in 3.1. In 3.2,
we describe our methods and apply them to 2-dimensional polytropes. In Section
3.3, we apply these methods to compute the volume, Ehrhart, and h∗-polynomials of
polytropes of dimension 3 and 4. We give a complete description of the coefficients
of volume polynomials of 3-dimensional polytropes in terms of regular central sub-
divisions of the fundamental polytope, and give a partial characterization of these
coefficients in dimension 4.

This chapter is joint work with Marie-Charlotte Brandenburg and Leon Zhang
[20].

3.1 background on polytropes and toric geometry

In this section we give a brief overview of the background material we use for our
results. Note that throughout this chapter, we assume that P is a lattice polytope
unless stated otherwise.
For a lattice polytope P = {x ∈ Rn : Ax ≤ b} with A ∈ Zm×n, b ∈ Zm, the

multivariate Ehrhart counting function of P , ehrP (a) : Zm → Z, gives the
number of lattice points in the vector dilated polytope:

ehrP (a) = |{x ∈ Zn : Ax ≤ a}|.

This counting function is closely related to vector partition functions, which can be
used to show that ehrP (a) is piecewise-polynomial [40]. Vector partition functions
and the related Ehrhart theory have been widely studied, see, for example [101],[65].

3.1.1 Tropical convexity

In this subsection we review some basics of tropical arithmetic and tropical convexity.
We refer readers to [47] or [70] for a more detailed exposition.

Over the min-plus tropical semiring T = (R∪ {∞},⊕,�) we define for a, b ∈
T the operations of addition a⊕ b and multiplication a� b by

a⊕ b = min(a, b), a� b = a+ b.

We can similarly define vector addition and scalar multiplication: for any scalars
a, b ∈ T and for any vectors v = (v1, . . . , vn), w = (w1, . . . ,wn) ∈ Tn, we define

a� v = (a+ v1, a+ v2, . . . , a+ vn),

a� v⊕ b�w = (min(a+ v1, b+w1), . . . , min(a+ vn, b+wn)).
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Let V = {v1, . . . , vr} ⊆ Rn be a finite set of points. The tropical convex hull
of V is given by the set of all tropical linear combinations

tconv(V ) = {a1 � v1 ⊕ · · · ⊕ ar � vr| a1, . . . , ar ∈ R}.

A tropically convex set in Rn is closed under tropical scalar multiplication. As a
consequence, we can identify a tropically convex set P contained in Rn with its
image in the tropical projective torus TPn−1 = Rn/(R� (1, . . . , 1)). A tropical
polytope is the tropical convex hull of a finite set V in TPn−1. A tropical lattice
polytope is a tropical polytope whose spanning points are all contained in Zn. Let
P = tconv(V ) ⊆ TPn−1 be a tropical polytope. The (tropical) type of a point
x in TPn−1 with respect to V is the collection of sets S = (S1, . . . ,Sn), where an
index i is contained in Sj if

(vi)j − xj = min((vi)1 − x1, . . . , (vi)n − xn).

Geometrically, we can view the type of x as follows: amax-tropical hyperplane
Ha ⊆ TPn−1 with apex at a ∈ TPn−1 is the set of points y ∈ TPn−1 such that
the maximum of {ai + yi : i ∈ [n]} is attained at least twice. The max-tropical
hyperplane H0 induces a complete polyhedral fan F0 in TPn−1. For each i ∈ [r], let
Hi be a max-tropical hyperplane with apex vi. Each of these hyperplanes determines
a translate FHi of F0. Two points x, y ∈ TPn−1 lie in the same face of FHi if and only
if vi−x and vi−y achieve their minima in the same set of coordinates. For a point
x ∈ TPn−1 with type S = (S1, . . . ,Sn), the set Sj records for which hyperplanes
Hi the point x lies in a face of FHi such that vi − x is minimal in coordinate j. 10
shows when i is contained in Sj based on the position of x in TP2.

vi

i ∈ S3
i ∈ S1

i ∈ S2

i ∈ S2 ∩ S3

Figure 10: The max-tropical hyperplane Hi ⊆ TP2 in the chart where the third coordinate
is 0, with faces labeled for type identification.

The tropical polytope P consists of all points x whose type S = (S1, . . . ,Sn)
has all Si nonempty. These are precisely the bounded regions of the subdivision of
TPn−1 induced by the max-tropical hyperplanes H1, . . . Hr , as illustrated in 11.
Each collection of points with the same type is called a cell. Each cell with all Si
nonempty is a polytrope: a tropical polytope that is classically convex [71]. In this
way all tropical polytopes have a decomposition into polytropes. A tropical polytope
P has a unique minimal set of points V such that P = tconv(V ) [47, Prop. 21]. If P
is itself a polytrope, then there is a unique maximal cell whose type with respect to
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V is said to be the type of the polytrope P , a labeled refinement of the unlabeled
combinatorial type of P as a polytope.

(4, 0, 0)

(0, 1, 0)

(2, 2, 0)

(5, 4, 0)

4

1

2

3

{1}, {2, 4}, {3}

{1, 2}, {4}, {3}

{1}, {2}, {3, 4}

Figure 11: A 2-dimensional tropical polytope in TP2 spanned by four vertices, pictured
in the chart where the last coordinate is 0, and its decomposition into three
polytropes, labeled with their types.

3.1.2 Polytropes

We now delve deeper into a discussion of polytropes, reviewing certain results of
[102] and [72].
Let c be a vector in Rn2−n. We can identify c with an n× n matrix having zeros

along the diagonal. Under this identification, c describes weights on the edges of a
complete directed graph with n vertices. The entry cij represents the weight of the
edge going from vertex vi to vertex vj .

Example 3.1.1. Let n = 3 and consider the vector c = (3, 2, 3, 4, 5, 6) ∈ R6. We
view c as the 3× 3 matrix

c =


0 3 2
3 0 4
5 6 0

 ,

where each off-diagonal entry represents the weight of an edge in a complete directed
graph on 3 vertices.

We define Rn ⊆ Rn2−n to be the set of all vectors c with no negative cycles in the
corresponding weighted graph. The Kleene star c∗ ∈ Rn×n of c is the matrix such
that c∗ij is the weight of the lowest-weight path from i to j. It can be computed as
the (n− 1)th tropical power c�(n−1). Since c has no negative cycles, c∗ is zero along
the diagonal, and we can again identify c∗ with a vector in Rn2−n. The polytrope
region Poln ⊆ Rn ⊆ Rn2−n is the closed cone given by

Poln = {c ∈ Rn : c = c∗}.
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v1

v2v3

3
2 3

4

5

6

(−5,−6, 0) (−3,−6, 0)

(2,−1, 0)

(2, 4, 0)(1, 4, 0)

(−5,−2, 0)

y1 − y3 ≤ 2

y1 − y2 ≤ 3y3 − y1 ≤ 5

y2 − y1 ≤ 3

Figure 12: The complete directed graph and polytrope Q corresponding to the Kleene star
c = (3, 2, 3, 4, 5, 6). The polytrope Q is pictured in the chart where the last
coordinate is zero.

Points in the polytrope region correspond to weighted graphs whose edges satisfy
the triangle inequality. As the name suggests, the polytrope region parametrizes the
set of all polytropes:

Proposition 3.1.2 ([84, Th. 1], [102, Prop. 13]). Let P ⊆ TPn−1 be a non-empty
set. The following statements are equivalent:

1. P is a polytrope.

2. There is a matrix c ∈ Poln such that P = tconv(c), where the columns of the
matrix c are taken as a set of n points in TPn−1.

3. There is a matrix c ∈ Poln such that

P = {y ∈ Rn | yi − yj ≤ cij , yn = 0}.

Furthermore, the c’s in the last two statements are equal, and are uniquely deter-
mined by P .

Note in particular that polytropes in TPn−1 are tropical simplices, i.e. the tropical
convex hull of exactly n points. A polytrope of dimension n− 1 is maximal if it
has (2n−2

n−1 ) vertices as an ordinary polytope. To see why this is indeed the maximal
number of classical vertices, we note that a polytrope is dual to a regular subdivision
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of the product of simplices ∆n−1×∆n−1. The normalized volume of this polytope is
(2n−2
n−1 ), bounding the number of maximal cells in the regular subdivision and hence

the number of vertices of the polytrope. This bound is attained in every dimension
[47, Proposition 19].
Let R be the polynomial ring R = R[xij | (i, j) ∈ [n]2, i 6= j]. Given a vector

v = (v12, . . . , vn(n−1)) contained in Nn2−n, we write xv for the monomial
∏
x
vij
ij . A

vector c ∈ Rn2−n determines a partial ordering >c on the monomials of R, where
monomials are compared using the dot product of their exponent vector with c, i.e.
xu>cxv if u · c > v · c. Given a polynomial f =

∑
v αvxv, some of its monomial

terms will be maximal with respect to this partial ordering. We define the initial term
inc(f) to be the sum of all such maximal terms of f . The initial ideal inc(I) of an
ideal I ⊆ R is generated by all initial terms inc(f) for f ∈ I. In general, a generating
set {fi} for the ideal I need not satisfy 〈inc(fi)〉 = inc(I). If 〈inc(fi)〉 = inc(I) does
hold, we call the generating set {fi} aGröbner basis of I with respect to the weight
vector c. For a more detailed introduction to Gröbner bases, see [28].

We consider the toric ideal

I = 〈xijxji − 1,xijxjk − xik | i, j, k ∈ [n] pairwise distinct〉,

which appears in [102] as the toric ideal associated with the all-pairs shortest path
program. Let c ∈ Rn2−n. The Gröbner cone Cc(I) is given by

Cc(I) = {c′ ∈ Rn2−n : inc′(I) = inc(I)}.

This is a closed, convex polyhedral cone. The collection of all such cones is a poly-
hedral fan, the Gröbner fan GFn of the ideal I. Let GFn|Poln be the restriction of
the Gröbner fan of I to the polytrope region Poln. This polyhedral fan captures the
tropical types of polytropes:

Theorem 3.1.3 ([102, Th. 17 - 18]). Cones of GFn|Poln are in bijection with tropical
types of polytropes in TPn−1. Open cones of GFn|Poln are in bijection with types of
maximal polytropes in TPn−1.

Up to the action of the symmetric group S3 on the labels of the vertices, in dimen-
sion 2 there is precisely one maximal tropical type of polytrope, namely the hexagon.
In dimension 3 there are 6 distinct maximal tropical types up to symmetry, see [71]
or [69]. Using 3.1.3, [102] showed that in dimension 4 there are 27248 distinct types
up to the symmetric group action. In higher dimensions, this number is unknown.
These tropical type counts were independently confirmed in [72] using the following
identification:

Proposition 3.1.4 ([47, Theorem 1, Lemma 7]). Let V = {v1, . . . , vr} ⊆ TPn−1.
There is a piecewise-linear isomorphism between the tropical polytope tconv(V ) and
the polyhedral complex of bounded faces of the unbounded polyhedron

PV = {(y, z) ∈ Rr+n/(1, . . . , 1,−1, . . . ,−1) | yi + zi ≤ vij for all i ∈ [r], j ∈ [n]}.

The boundary complex of PV is polar to the regular subdivision of the products of
simplices ∆r−1 × ∆n−1 defined by the weights vij.
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In particular, the bounded faces of PV are dual to the interior faces of the regular
subdivision of ∆r−1×∆n−1, i.e. the faces not completely contained in the boundary
of ∆r−1 × ∆n−1. If tconv(V ) is a polytrope, then 3.1.2 implies that r = n. Even
more, tconv(V ) is a polytrope if and only if the bounded region of PV consists of a
single bounded face [47, Th. 15], and hence all maximal cells in the dual subdivision
of ∆n−1 × ∆n−1 share some vertex.

By the Cayley trick [68], this is identical to studying mixed subdivisions of the
dilated simplex n · ∆n−1. Regular subdivisions of products of simplices can thus
be related to certain regular subdivisions of the fundamental polytope FPn, a
subpolytope of n ·∆n−1 introduced by Vershik [104] and further studied by Delucchi
and Hoessly [45]:

FPn = conv{ei − ej | i 6= j ∈ [n]}.

The fundamental polytope FP4 is pictured in 13. A regular central subdivision

e

e3-e2

e4-e2

Figure 13: The fundamental polytope FP4 with unique interior lattice point 0, whose regular
central subdivisions correspond to tropical types of 3-dimensional polytropes.

of FPn is a regular subdivision in which the unique relative interior lattice point 0
of FPn is lifted to height 0 and is a vertex of each maximal cell. The number of
tropical types can be enumerated using the following theorem:

Theorem 3.1.5 ([72, Th. 22]). The tropical types of full-dimensional polytropes in
TPn−1 are in bijection with the regular central subdivisions of FPn.

We connect our computational results to regular central subdivisions of the fun-
damental polytope in 3.3.3, 3.3.4.

3.1.3 Toric geometry

In order to compute multivariate volume polynomials of polytropes we use methods
from toric geometry. We now give a brief summary of the toric geometry needed in
our computation. For further details, the reader may consult [29, Ch. 12.4, 13.4] or
[55, Ch. 5.3].
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Let P be a lattice polytope with m facets, so that P is given by

P = {x ∈ Rn | 〈x, ui〉+ ci ≥ 0 for i ∈ [m]},

where ui is the primitive facet normal of the facet Fi. We denote by Σ the normal
fan of P , and by X the toric variety defined by the fan Σ. We assume that X is
smooth, so Σ is a simplicial fan and P a simple polytope.
Let d = dim(X). A torus-invariant prime divisor Di of X is a subvariety of X of

codimension 1, which is in bijection with a ray of Σ and hence also with a facet Fi
of P . Given the polytope P , we can define the divisor DP as the linear combination
DP =

∑m
i=1 ciDi. At the same time, as Di is an irreducible subvariety of X of

codimension 1, it gives rise to a cohomology class [Di] ∈ H2(X, Q) and [DP ] =

[
∑m
i=1 ciDi] =

∑m
i=1 ci[Di] ∈ H2(X, Q).

Given irreducible subvarieties V ,W ⊆ X with dim(V ) = k1, dim(W ) = k2, we
can consider the cup product [V ] ^ [W ] ∈ H2(k1+k2)(X, Q). If k1 + k2 = d, then
by Poincare-duality [V ] ^ [W ] ∈ H2d(X, Q) ∼= H0(X, Q) ∼= Q and thus we can
define the integral (or intersection product)

∫
X([V ] ^ [W ]) ∈ Q. We use [V ]2

as shorthand notation for ([V ]^ [V ]).

Theorem 3.1.6 ([29, Theorem 13.4.1]). The normalized volume of P is given by

Vol(P ) =
∫
X

[
m∑
i=1

ciDi

]d
.

In order to be able to compute these polynomials systematically, we make use of
an identification of the cohomology ring as a polynomial ring. Let K be a field of
characteristic 0 and S be a simplicial complex on m vertices. The Stanley-Reisner
ideal M in the polynomial ring R = K[x1, . . . ,xm] is the ideal generated by the
(inclsuion-minimal) non-faces of S, i.e.

M = 〈xi1 · · ·xik | {i1, . . . , ik} is not a face of S 〉.

Let B be a basis of Zn. Since Σ is simplicial, we can consider the Stanley-Reisner
idealM of Σ, i.e. the Stanley-Reisner ideal of the boundary complex ∂P ◦ of the polar
of P . The cohomology ring H∗(X, Q) is isomorphic to the quotient ring R/(L+M),
where L is the ideal

L =

〈
m∑
i=1
〈b, ui〉xi

∣∣∣∣∣b ∈ B
〉

.

The variable xi in R/(L +M ) corresponds to [Di], the cohomology class of a
torus-invariant prime-divisor, and hence to a facet of P . Therefore, the expression
in 3.1.6 translates to a polynomial(

m∑
i=1

cixi

)d
∈ R/(L+M).

The top cohomology group is a one-dimensional vector space. A canonical choice of
a basis vector in R/(L+M) is any square-free monomial xα which indexes a vertex
of P . The expression (

∑m
i=1 cixi)

dim(X) has a representation δ · xα in R/(L+M).
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The volume of P will be given by the coefficient δ, up to a correcting factor that
solely depends on the choice of the basis xα [43, Algorithm 1].

Replacing the values c1, . . . , cm defining the facets of P by indeterminates a1, . . . , am
we obtain a polynomial which gives the volume Vol(P ) of the polytope P when eval-
uated at c1, . . . , cm. We hence refer to such a polynomial as a volume polynomial
of P . This polynomial depends only on the normal fan of P , and so polytopes with
the same normal fan determine the same volume polynomial. 3.2.4 describes how to
compute the integral of a cohomology class of X.

3.2 computing multivariate polynomials

In this section we introduce our multivariate polynomials of interest and describe
methods for computing these functions for polytropes, motivated by the methods in
[102] and [43].

3.2.1 Computing multivariate volume polynomials

We seek to compute a multivariate volume polynomial for each tropical type of
polytrope as discussed in 3.1.3: that is, a polynomial in variables aij for each tropical
type which evaluates to the volume of a polytrope P (c) of the appropriate type when
given the respective Kleene star c. For each tropical type, our computation of such
a polynomial will depend on a fixed Kleene star c of the appropriate type.
Consider the “indeterminate polytrope”

P (a) = {y ∈ Rn | yi − yj ≤ aij , yn = 0},

defined by indeterminates aij . By 3.1.2, aij is the weight of the shortest path in a
weighted complete digraph. As P (a) is contained in the linear space given by yn = 0,
we can project onto the first n− 1 coordinates, which yields

P (a) = {y ∈ Rn−1 | By ≤ a}

for a suitable matrix B ∈ Z(n2−n)×(n−1) with rows Bij indexed by ij ∈ [n]2, i 6= j.
This is a representation of P (a) given by n2 − n inequalities Bijy ≤ aij and y =

(y1, . . . , yn−1), as in 3.2.1 below. Note that for each j ∈ [n− 1] there is an inequality
−yj ≤ anj . We introduce a nonnegative slack-variable yij for each inequality and
replace the inequality by the equation yi− yj + yij = aij . This gives a representation
as (B | Idn)y = a with y = (y1, . . . , yn−1, y12, . . . , yn−1,n).
In particular, we have the equation −yj + ynj = anj . We can thus substitute the

variable yj , j ∈ [n − 1] by ynj − anj , which leaves us with a system of equations of
the form

yij + yni − ynj = aij + ani − anj (1)
yjn + ynj = ajn + anj . (2)
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Adding these equations gives yij + yni + yjn = aij + ani + ajn (1’). The set of solu-
tions to the system with equations (1) and (2) is equal to the set of solutions to the
system with (1’) and (2), yielding a matrix A such that

P (a) = {y ∈ Rn2−n
≥0 | Ay = Aa}

and ker(A) ∩Rn2−n
≥0 = 0, thus fulfilling the general assumptions in [43]. The ex-

pressions aij + ani + ajn and ain + ani have a nice interpretation in terms shortest
paths of the complete digraph: these are the weights of the shortest cycle passing
through i and n and the shortest directed cycle passing through i, j and n respec-
tively. A matrix is called totally unimodular if every minor equals −1, 0, or 1.
A full-dimensional lattice polytope in Rn is called unimodular if each of its ver-
tex cones is generated by a basis of Zn. This condition is sometimes referred to
as smooth or Delzant. It is well-known that our constraint matrix A is totally
unimodular [102, Section 2.3.3], and that maximal polytropes are unimodular and
simple [60, Section 7.3].

Example 3.2.1. Any 2-dimensional polytrope P (a) has an H-description as

P (a) =


y1

y2

 ∈ R2

∣∣∣∣∣∣∣∣
y1 − y2 ≤ a12, y2 − y1 ≤ a21

y1 ≤ a13, y2 ≤ a23

y1 ≥ −a31, y2 ≥ −a32

 ,

when a is contained in the polytrope region Pol3. We want to compute the constraint
matrix A by turning the above description of a polytrope into one involving only
equalities. We begin by translating the above to a matrix description of P (a):

1 −1
1 0
−1 1
0 1
−1 0
0 −1



y1

y2

 ≤



a12

a13

a21

a23

a31

a32


Introducing slack variables yij , we get the representation



1 −1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
−1 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0
−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1





y1

y2

y12

y13

y21

y23

y31

y32



=



a12

a13

a21

a23

a31

a32





78 multivariate ehrhart theory of polytropes

Substituting y1 = y31− a31, y2 = y32− a32 and deleting zero-columns and zero-rows
gives us


1 0 0 0 1 −1
0 1 0 0 1 0
0 0 1 0 −1 1
0 0 0 1 0 1





y12

y13

y21

y23

y31

y32


=


a12 + a31 − a32

a13 + a31

a21 − a31 + a32

a23 + a32



This is equivalent to

Ay =


1 0 0 1 1 0
0 1 0 0 1 0
0 1 1 0 0 1
0 0 0 1 0 1





y12

y13

y21

y23

y31

y32


=


a12 + a23 + a31

a13 + a31

a21 + a13 + a32

a23 + a32

 = Aa.

This gives us the desired representation P (a) = {y ∈ Rn2−n
≥0 | Ay = Aa}.

Let K = Q(aij | (i, j) ∈ [n]2, i 6= j), for aij indeterminate variables, and consider
the polynomial ring R = K[xij | (i, j) ∈ [n]2, i 6= j]. Following [43], we consider the
toric ideal seen previously in 3.1.2:

I = 〈xr−1 | r is a row of A〉 = 〈xinxni−1,xijxjnxni−1〉 = 〈xijxji−1,xijxjk−xik〉,

where (i, j, k) ∈ [n]3 are pairwise distinct.
Fix a tropical type and Kleene star c corresponding to a polytrope P (c) of that

type. We write M = inc(I) for the initial ideal of I with respect to the weight
vector c.

Proposition 3.2.2 ([43, Prop. 2.3]). The initial idealM is the Stanley-Reisner ideal
of the normal fan Σ of the simple polytope P (c).

In order to compute the volume polynomial, we need to know the minimal primes
of M .

Proposition 3.2.3 ([19, Lemmas 5 and 6], [43]). The facets of P (c) are in bijection
with variables xij. The vertices of P (c) are in bijection with minimal primes of M .

In the above bijection, the facet Fij given by the inequality yi − yj = cij is iden-
tified with the variable xij . A vertex v of the polytrope can be identified with the
minimal prime 〈xij | ij 6∈ Iv〉, where Iv = {ij | Fij contains v}. Thus, a minimal
prime is generated by variables which correspond to facets that do not contain a
given vertex v.

Let X be the smooth toric variety defined by the normal fan Σ of the unimodular
polytope P (c). Let uij denote the primitive ray generators of the normal fan of
P (c), i.e. uij = ej − ei for i 6= j ∈ [n− 1] × [n− 1] and uni = ei, uin = −ei
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for i ∈ [n− 1]. Let further B be a basis for Zn. Recall that the cohomology ring
H∗(X, Q) is isomorphic to the quotient ring R/(L+M), where M is the initial
ideal from above and L is the ideal

L =

〈 ∑
ij∈[n]×[n]

i 6=j

〈b, uij〉xij

∣∣∣∣∣∣∣∣∣b ∈ B
〉

.

Choosing B to be the standard basis for Zn, for a given vector b = ek we get∑
ij∈[n]×[n]

i 6=j

〈ek, uij〉xij =
∑
j∈[n]

xkj −
∑
j∈[n]

xjk

and so the ideal is equal to

L =

〈∑
j∈[n]

xkj −
∑
j∈[n]

xjk

∣∣∣∣∣∣ k ∈ [n]

〉
.

Considering the complete directed graph Kn on n vertices, this ideal can be viewed
as generated by the cuts of Kn that isolate a single vertex.

Let D be the divisor on X corresponding to the polytrope P (a) given by the
indeterminates aij , i.e. P (a) = {y ∈ Rn | yi − yj ≤ aij , yn = 0}. We can write D as

D =
∑

ij∈[n]×[n]
i 6=j

aijDij ,

where Dij is the prime divisor corresponding to the ray of Σ spanned by uij . Let

q =
∑

ij∈[n]×[n]
i 6=j

aijxij

be the polynomial in R representing the divisor D.
In the following we present an algorithm to compute the integral of a top coho-

mology class of X. As the dimension of a polytrope P (c) defined by a Kleene star
c ∈ GF|Poln is n− 1, we can compute the volume polynomial restricted to an open
maximal cone of GF|Poln by

VolP (a)(a) =
∫
X
[D]n−1.

Note that the integral
∫
X [D]n−1 is a constant in R and thus a polynomial with

variables aij , as discussed in 3.1.3. If the input of 3.2.4 is given by the polynomial
p = qn−1, the output is a multivariate volume polynomial.

Algorithm 3.2.4 (Computing the integral of a cohomology class of X [43, Alg. 1]).

input: A polynomial p(x) with coefficients in a field k ⊃ Q.
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Output: The integral
∫
X p of the corresponding cohomology class on X.

1: Compute a Gröbner basis G for the ideal M + L.
2: Find a minimal prime 〈xj | xj 6∈ Iv〉 of M , and compute the normal form of∏

i∈Iv xi modulo the Gröbner basis G. It looks like γ · xα, where γ is a non-zero
element of k and xα is the unique standard monomial of degree n− 1.

3: Compute the normal form of p modulo G and let δ ∈ k be the coefficient of xα

in that normal form.
4: Output the scalar δ/γ ∈ k.

Recall that GFn|Poln is the restriction of the Gröbner fan of I to the polytrope
region Poln. By 3.1.3, open cones of GFn|Poln are in bijection with types of maximal
polytropes. Since 3.2.4 only depends on inc(I) and not the choice of c itself, the
multivariate volume polynomial is constant along an open cone of GFn|Poln . This
reflects the fact that polytropes of the same tropical type have the same normal fan.
Therefore, maximal polytropes of the same type have the same multivariate volume
polynomial, and it suffices to compute the polynomial for only one representative c
for each maximal cone. Furthermore, the polynomials agree on the intersection of
the closure of two of these cones [101]. Thus, given a Kleene star c corresponding
to a non-maximal polytrope P (c), we can choose any of the maximal closed cones
that contain c and evaluate the corresponding multivariate volume polynomial at c
to compute the volume of P (c).

Example 3.2.5. We apply the above discussion to compute the multivariate vol-
ume polynomial for 2-dimensional polytropes. Note that the volume, Ehrhart- and
h∗-polynomial of the hexagon can be derived by more elementary methods as, for
example, counting unimodular simplices in an alcoved triangulation and Pick’s for-
mula. However, as the presentation is less clear in dimensions 3 and 4, we showcase
the algebraic machinery on this example. The toric ideal I is

I = 〈x12x23x31 − 1, x13x31 − 1, x21x13x32 − 1, x23x32 − 1〉.

We also have L as

L = 〈x12 + x13 − x21 − x31, x21 + x23 − x12 − x32, x31 + x32 − x13 − x23〉.

Let c = (3, 2, 3, 4, 5, 6). Then the corresponding polytrope Q(c) is the hexagon
displayed in 14, with facets labeled according to 3.2.3.
The initial ideal M of I with respect to the weight vector c is

M = 〈x12x21, x13x21, x12x23, x12x31, x13x31, x23x31, x13x32, x21x32, x23x32〉.

A Gröbner basis for M + L is given by

G = 〈x31 − x12 + x21 − x13, x13x21, x12x13 + x2
13, x32 − x23 + x12 − x21,

x13x23 + x2
13, x2

21 − x2
13, x12x21, x2

12 − x2
13, x3

13, x21x23 + x2
13, x12x23, x2

23 − x2
13〉.

Any vertex gives us a minimal prime. We choose the vertex v incident to the facets la-
beled by x31 and x32, giving us the minimal prime 〈xij | ij 6∈ Iv〉 = 〈x12,x13,x21,x23〉
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x32

x12

x13

x23

x21

x31

Figure 14: The polytrope Q corresponding to the vector c = (3, 2, 3, 4, 5, 6).

and the monomial
∏
ij∈Iv xij = x31x32. Modulo the Gröbner basis G, this gives us

γ · xα = (−1)x2
13, so γ = −1 and xα = x2

13.
Let q =

∑
ij∈[n]×[n]

i 6=j
aijxij . This is the polynomial in R/(L+M) corresponding to

the divisor described in 3.2.1. We want to compute the volume of the polytrope Q(c).
This can be done by applying 3.2.4 to p = q2.

The polynomial q2 modulo G is

(a2
12 − 2a12a13 + a2

13 + a2
21 − 2a13a23 − 2a21a23

+a2
23 − 2a21a31 + a2

31 − 2a12a32 − 2a31a32 + a2
32)x

2
13,

so the coefficient δ of xα gives us the volume polynomial for the normalized volume

VolQ(a)(a) =
δ

γ
= −(a2

12 − 2a12a13 + a2
13 + a2

21 − 2a13a23 − 2a21a23

+a2
23 − 2a21a31 + a2

31 − 2a12a32 − 2a31a32 + a2
32).

Evaluating at the original vector c gives 79, which is the normalized volume of the
original polytope. The volume polynomial volQ(a)(a) for the Euclidean volume of
Q(a) is given as

volQ(a)(a) =
1
2 VolQ(a)(a).

Remark 3.2.6. Polytropes have also appeared in the literature as alcoved poly-
topes of type A. The volumes of alcoved polytopes of type A were studied in [75,
Theorem 3.2] and extended to general root systems in [76, Theorem 8.2], where the
normalized volume of an alcoved polytope is described as a sum of discrete volumes
of related alcoved subpolytopes. More specifically, given a fixed alcoved polytope of
type A, the normalized volume of the respective polytope P can be computed as

Vol(P ) =
∑

ω∈Sn−1

∣∣∣Pω ∩Zn−1
∣∣∣ ,
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where Pω = {x ∈ Rn−1 | x + ∆ω ⊆ P} and ∆ω = {y ∈ Rn−1 | 0 ≤ yω(1) ≤ · · · ≤
yω(n−1) ≤ 1}. While this is a formula that yields a value for the normalized volume
for polytropes of any dimension, it does not allow a parametrized approach resulting
in multivariate polynomials.

3.2.2 Computing multivariate Ehrhart polynomials

We use the Todd operator to pass from the multivariate volume polynomials to
the multivariate Ehrhart polynomials of polytropes. We begin by defining single
and multivariate versions of the Todd operator and then explain the method we
used for computations. Finally, we compute the multivariate and univariate Ehrhart
polynomials of our running example. For more thorough background information on
the Todd operator, see [12, Chapter 12] and [29, Chapter 13.5].
The Todd operator is related to the Bernoulli numbers, a sequence of rational

numbers Bk for k ∈ Z≥0 whose first few terms are 1,−1
2 , 1

6 , 0,− 1
30 , 0. They are

defined through the following generating function:

z

exp(z)− 1 =
∑
k≥0

Bk
k!
zk.

Definition 3.2.7. The Todd operator is the differential operator

Toddh = 1 +
∑
k≥1

(−1)kBk
k!

(
d

dh

)k
.

Note that for a polynomial f(h) of degree d, the function Toddh(f) is a polynomial:
since ( dfdh )

k = 0 for any k > d, we get the finite expression

Toddh(f) = 1 +
d∑

k=1
(−1)kBk

k!

(
df

dh

)k
.

The Todd operator can be succinctly expressed in shorthand as

Toddh =
d
dh

1− exp
(
− d
dh

) .

In order to compute the multivariate Ehrhart polynomials, we use a multivariate
version of the Todd operator. For h = (h1,h2, . . . ,hm), we write

Toddh =
m∏
j=1

( ∂
∂hj

1− exp(− ∂
∂hj

)

)
.

The Todd operator allows one to pass from a continuous measure of volume on a
polytope to a discrete measure: a lattice point count. Let P = {x ∈ Rn : Ax ≤ b},
b ∈ Rm. For h ∈ Rm, the shifted polytope Ph is defined as

Ph = {x ∈ Rn : Ax ≤ b + h}.
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Theorem 3.2.8 (Khovanskii-Pukhlikov, [12, Ch. 12.4]). Let P ⊆ Rn be a unimod-
ular d-polytope. Then

#(P ∩Zn) = Toddh vol(Ph)|h=0.

In words, the number of lattice points of P equals the evaluation of the Todd operator
at h = 0 on the relative Euclidean volume of the shifted polytope Ph.

In 3.2.8, one applies the Todd operator to the volume of a shifted version Ph of the
polytope P . In our setting of multivariate volume polynomials that are constant on
fixed cones of the polytrope region in the Gröbner fan, a nice simplification occurs
that allows us to ignore this shift. As discussed in Section 3.1.2, a polytrope P can
be described as

P = {x ∈ Rn−1 : xi − xj ≤ cij , −cni ≤ xi ≤ cin},

where i, j ∈ [n− 1], i 6= j, for some c ∈ Rn2−n. Its volume is given by evaluating
the multivariate volume polynomial volP (a) at c. The shifted polytrope Ph has the
description

Ph =
{

x ∈ Rn−1 : xi − xj ≤ cij + hij , −(cni + hni) ≤ xi ≤ cin + hin
}

,

for any h ∈ Rn2−n. As long as h is small enough, the shifted polytrope remains in
the same cone and its volume polynomial is given by evaluating the multivariate
volume polynomial volP (a + h) at c. As volP (a) is a polynomial, ∏

i 6=j∈[n]

∂

∂hij

 volP (a + h)
∣∣∣
h=0

=

 ∏
i 6=j∈[n]

∂

∂aij

 volP (a).

Example 3.2.9. We now apply the Todd operator to the multivariate volume poly-
nomial of the tropical hexagon Q(a) in our running example. As in the previous
example, this 2-dimensional example can be computed with more elementary meth-
ods, such as Pick’s formula. However, this example generalizes to higher dimensions,
and we use it to present our methods in a managable size. Recall from 3.2.5 that the
volume polynomial is

volQ(a)(a) =
∑

i 6=j∈[3]
−1

2a
2
ij +

∑
i 6=j 6=k∈[3]

(aijaik + ajiaki).
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Evaluating the polynomial at a specific Kleene star c returns the volume of the
corresponding polytrope. Applying the multivariate Todd operator to this volume

polynomial, we compute that Toddh volQ(a)(a + h)
∣∣∣∣∣
h=0

is:

(
∂

∂h32
1−exp(− ∂

∂h32
)

)
. . .

(
∂

∂h13
1−exp(− ∂

∂h13
)

)(
1 +

∑
k≥1

(−1)kBk
k!

( ∂

∂h12

)k)
volQ(a)(a + h)

∣∣∣∣∣
h=0

=

(
∂

∂a32
1−exp(− ∂

∂a32
)

)
. . .

(
∂

∂a13
1−exp(− ∂

∂a13
)

)(
1 +

∑
k≥1

(−1)kBk
k!

( ∂

∂a12

)k)
volQ(a)(a)

=

(
∂

∂a32
1−exp(− ∂

∂a32
)

)
. . .

(
∂

∂a13
1−exp(− ∂

∂a13
)

)(
volQ(a)(a) +

1
2 [−a12 + a13 + a32]−

1
12

)

= −1
2a

2
12 + a12a13 −

1
2a

2
13 −

1
2a

2
21 + a13a23 + a21a23 −

1
2a

2
23 + a21a31 −

1
2a

2
31

+ a12a32 + a31a32 −
1
2a

2
32 +

1
2a12 +

1
2a13 +

1
2a21 +

1
2a23 +

1
2a31 +

1
2a32 + 1

= volQ(a)(a) +
∑

i 6=j∈[3]

aij
2 + 1.

Hence, for integral Kleene stars c ∈ Z6 (i.e. whenever Q(c) is unimodular), we get
that

#(Q(c) ∩Z2) = volQ(c)(c) +
∑

i 6=j∈[3]

cij
2 + 1.

Note that this implies that
∑
i 6=j∈[3]

cij
2 is the number of lattice points on the bound-

ary of Q(c). Evaluating this polynomial at the weight vector c = (3, 2, 3, 4, 5, 6)
gives 52, which is the number of lattice points in the polytrope. Evaluating at
tc = (3t, 2t, 3t, 4t, 5t, 6t) gives the univariate Ehrhart polynomial of the polytrope
Q(c):

ehrQ(c)(t) =
79
2 t

2 +
23
2 t+ 1.

3.2.3 Computing multivariate h∗-polynomials

Finally, we can also compute a multivariate h∗-polynomial from the multivariate
Ehrhart polynomial corresponding to each tropical type. We explain the method
here. The interested reader can also consult [12] for further details.
As discussed in 2, the coefficients {h∗i } of the h∗-polynomial h∗(t) = h∗ 0 + h∗1 t+
· · · + h∗d td are the coefficients of the Ehrhart polynomial expressed in the basis{
(t+d−id ) | i ∈ {0, 1, . . . , d}

}
of the vector space of polynomials in t of degree at most

d. To transform the Ehrhart polynomial to the h∗-polynomial, we perform a change
of basis. The Eulerian polynomials play a central role in this transformation.
The Eulerian polynomials Ad(t) are defined through the generating function:

∑
j≥0

jdtj =
Ad(t)

(1− t)d+1 .
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Explicitly, we can write the Eulerian polynomials as

Ad(t) =
d∑

m=1
A(d,m− 1)tm,

where A(d,m) is the Eulerian number that counts the number of permutations of [d]
with exactly m ascents. The first few Eulerian polynomials are A0(t) = 1,A1(t) = t,
and A2(t) = t2 + t. Recall the Ehrhart series of a d-dimensional polytope:

EhrP (t) =
∑
k≥0

ehrP (k)tk =
∑
k≥0

(λ0 + λ1k+ · · ·+ λdk
d)tk =

d∑
i=0

λiAi(t)

(1− t)i+1 .

On the other hand, we have

EhrP (t) =
h∗P (t)

(1− t)d+1 .

Comparing yields an expression for the h∗-polynomial in terms of the coefficients of
the Ehrhart polynomial:

h∗P (t) =
d∑
i=0

λiAi(t)(1− t)d−i.

To compute the multivariate h∗-polynomials, we collect the terms of each degree in
the Ehrhart polynomials and apply the transformation.

Example 3.2.10. We compute the multivariate h∗-polynomial of the hexagon Q(a)
from the Ehrhart polynomial ehrQ(a)(ta) = λ2t

2 + λ1t+ 1 from 3.2.9. With these
coefficients we can compute

λ2A2(t)(1− t)0 =

( ∑
i 6=j∈[3]

−1
2a

2
ij +

∑
i 6=j 6=k∈[3]

[aijaik + ajiaki]

)
(t2 + t)

λ1A1(t)(1− t)1 =
( ∑
i 6=j∈[3]

1
2aij

)
(−t2 + t)

λ0A0(t)(1− t)2 =t2 − 2t+ 1.

The sum of these three polynomials gives the multivariate h∗-polynomial of the
hexagon:

h∗Q(a)(a, t) =
( ∑
i 6=j∈[3]

−1
2 [a

2
ij + aij ] +

∑
i 6=j 6=k∈[3]

[aijaik + ajiaki] + 1
)
t2

+

( ∑
i 6=j∈[3]

1
2 [aij − a

2
ij ] +

∑
i 6=j 6=k∈[3]

[aijaik + ajiaki]− 2
)
t+ 1.
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Evaluating h∗Q(a)(a, t) at (c, t) = (3, 2, 3, 4, 5, 6, t) yields the univariate h∗-polynomial
of the hexagon Q(c) from 3.2.5:

h∗Q(c)(c, t) = 29t2 + 49t+ 1.

The coefficients of h∗Q(c)(c, t) sum to 79, which equals the normalized volume of
Q(c) observed previously in 3.2.1.

3.3 experiments and observations

In this section we describe the results of our application of Section 3.2 for maxi-
mal polytropes of dimension at most 4. Since the Ehrhart and h∗-polynomials are
computed from the volume polynomials, we mainly focus our investigation on the
volume polynomials. All scripts and results of our computations can be found at

https://github.com/mariebrandenburg/polynomials-of-polytropes

and will be made accessible in Polymake through the polytope database

https://polydb.org.

3.3.1 Data and computation

In the computation that is described in this section, we used data from [72] containing
the vertices of one polytrope for each maximal tropical type of dimension 3 and 4 up
to the action of the symmetric group. The vertices of each polytrope were arranged
to form a Kleene star and corresponding weight vector c. The methods described
in Section 3.2 were then applied to obtain multivariate volume, Ehrhart, and h∗-
polynomials for the corresponding tropical type. Our computations were performed
on a desktop computer with a 3.6 GHz quad-core processor. On average, the running
time was about 5 minutes for each 4-dimensional volume polynomial, 0.15 seconds for
each Ehrhart polynomial, and 0.73 seconds for each h∗-polynomial. Parallelization
is possible as the computations are independent for each tropical type.
In order to verify our computational results, we independently computed the uni-

variate volume and Ehrhart polynomials with respect to our input data and com-
pared them with our multivariate results, as explained in 3.2.5, 3.2.9, 3.2.10. To
check the h∗-polynomial of a representative polytrope, we attempted to compute its
h∗-polynomial by computing its Ehrhart series with Normaliz and compared this
with our multivariate h∗-polynomial evaluated at the corresponding weight vector.
We attempted to perform this check on a cluster, capping the Normaliz computa-
tion of each polytrope’s Ehrhart series at 10 minutes. We checked 1459 polytropes.
For 670 of them, the Normaliz computation finished in under 10 minutes, and the
h∗-polynomials matched. Checking the Normaliz computation for individual poly-
tropes revealed that the Ehrhart series computation could take as long as 12 hours,
in comparison to the 5 minutes required by our methods.

https://github.com/mariebrandenburg/polynomials-of-polytropes
https://polydb.org
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3.3.2 2-dimensional polytropes

First we consider 2-dimensional polytropes. As noted in 3.1.2, there is a unique class
of maximal polytropes up to permutation of vertex labels. The volume, Ehrhart, and
h∗-polynomials are computed in Examples 3.2.5, 3.2.9, and 3.2.10 respectively. We
note that the volume, Ehrhart, and h∗-polynomials are all symmetric with respect
to the S3 action, as expected.

3.3.3 3-dimensional polytropes

In the case of maximal 3-dimensional polytropes, up to the symmetric group action
there are 6 types of maximal polytropes. We applied the algorithms in 3.2 to nonneg-
ative points in maximal cones corresponding to these 6 types, yielding the volume,
Ehrhart, and h∗-polynomials of their corresponding tropical types.
Example 3.3.1. One of the six volume polynomials is

2a3
12 − 3a2

12a13 + a3
13 − 3a2

12a14 + 6a12a13a14 − 3a2
13a14 + a3

21 − 3a2
13a23 + 6a13a14a23 − 3a2

14a23

− 3a14a2
23 − 3a21a2

23 + a3
23 − 3a2

21a24 + 6a14a23a24 + 6a21a23a24 − 3a14a2
24 − 3a23a2

24 + a3
24

− 3a2
21a31 + 6a21a24a31 − 3a2

24a31 − 3a24a2
31 + a3

31 − 3a2
12a32 + 6a12a14a32 − 3a2

14a32 − 3a2
31a32

− 3a14a2
32 + 6a14a24a34 + 6a24a31a34 + 6a14a32a34 + 6a31a32a34 − 3a14a2

34 − 3a24a2
34 − 3a31a2

34

− 3a32a2
34 + 2a3

34 + 6a21a31a41 − 3a2
31a41 + 6a31a32a41 − 3a2

32a41 − 3a21a2
41 − 3a32a2

41 + a3
41

− 3a2
12a42 + 6a12a13a42 − 3a2

13a42 + 6a12a32a42 + 6a32a41a42 − 3a13a2
42 − 3a32a2

42 − 3a41a2
42

+ a3
42 − 3a2

21a43 + 6a13a23a43 + 6a21a23a43 − 3a2
23a43 + 6a21a41a43 − 3a2

41a43 + 6a13a42a43

+ 6a41a42a43 − 3a13a2
43 − 3a21a2

43 − 3a42a2
43 + a3

43.

We devote the remainder of this subsection to an analysis of the coefficients of the
normalized volume polynomials, which we write as follows:

Vol({x ∈ R4 | xi − xj ≤ aij ,x4 = 0}) =
∑

v
αvav,

where v ∈N12 has coordinates summing to 3. Note that there is a natural decompo-
sition of the set of all possible exponent vectors v into three different disjoint subsets
T111,T21, and T3, one for each partition of 3.

Recall that the 6 types of maximal 3-dimensional polytropes correspond to differ-
ent regular central triangulations of the fundamental polytope FP4, as discussed in
3.1.2. A regular central triangulation is determined by a choice of triangulating edge
in each of the six square facets of FP4. The coefficients of the volume polynomials
encode the data of these six facet triangulations as follows:

• Let v ∈ T111, so that the monomial av is aijaklast for some i 6= j, k 6= l, s 6= t

and (i, j) 6= (k, l) 6= (s, t). The coefficients αv in this case are determined
directly by the triangulation of FP4:

αv =


6 if ei − ej , ek − el, es − et form a 2-dimensional simplex in the

corresponding regular central triangulation,

0 otherwise.
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• Let v ∈ T21, so that the monomial av is a2
ijakl for some i 6= j, k 6= l, and

(i, j) 6= (k, l). The coefficient αv is nonzero only if ei − ej and ek − el are
adjacent vertices of FP4. In that case, it is determined by the square facet S
of FP4 containing ei − ej and ek − el:

αv =

−3 if ek − el incident to triangulating edge of S

0 otherwise.

• Let v ∈ T3, so that the monomial av is a3
ij for some i 6= j. The coefficient αv

is given by
αv = 7− deg(ei − ej),

where deg(ei− ej) is the number of edges incident to the vertex ei− ej in the
regular central subdivision of FP4.

We note that the above descriptions of the coefficients of the volume polynomial
imply that the sums of coefficients corresponding to each partition of 3 are the same
for all six volume polynomials:∑

v∈T3

αv = 12,
∑

v∈T21

αv = −108,
∑

v∈T111

αv = 120.

Example 3.3.2. Consider the polytrope P with facet coefficients cij given by the
matrix 

0 11 20 29
21 0 19 20
20 29 0 11
19 20 21 0

 .

Assigning the weight cij to the vertex ei− ej of the fundamental polytope FP4, and
weight 0 to the central vertex at the origin, produces the regular central triangulation
in 15. The volume polynomial corresponding to this polytrope is the polynomial dis-
played in 3.3.1. We see that the coefficients corresponding to a3

12, a2
12a14, a2

32a42, and
a31a32a41 are equal to 2,−3, 0, and 6 respectively, as summarized by the discussion
above.

3.3.4 4-dimensional polytropes

Finally we consider 4-dimensional polytropes. In this case, up to the action of the
symmetric group S5 there are 27248 types of maximal polytropes. We applied the
methods of 3.2 to obtain multivariate volume, Ehrhart, and h∗-polynomials for these
polytropes.
We can embed the 27248 normalized volume polynomials using the canonical

basis in the vector space of homogeneous polynomials of degree 4, having dimension
(23

4 ) = 8855. The affine span of these volume polynomials has dimension 70, implying
that there is much structure in their coefficients. We note that this equals the number
of facets in a regular central triangulation of FP5.
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Figure 15: The regular central triangulation of FP4 corresponding to the polytrope in 3.3.2,
with triangulating edges of square facets of FP4 colored red.

We were able to experimentally verify the facts collected in 1. For example, all
coefficients for monomials corresponding to the partition 2 + 2 = 4 lie in the set
{0, 6}, and the sum of all such coefficients is 300. Furthermore, the S5-orbit of the
monomials a12a13a14a15 and a21a31a41a51 always appears in the volume polynomial
with coefficient 24. Finally, the coefficient −4 always appears exactly twice as often
as the coefficient 12.

Partition Example monomial Possible coefficients Coefficient sum

4 a4
12 −6,−3,−2,−1, 0, 1, 2, 3 −20

3 + 1 a3
12a13 −4, 0, 4, 8 320

2 + 2 a2
12a

2
13 0, 6 300

2+1+1 a12a13a
2
14 −12, 0, 12 −2160

1+1+1+1 a12a13a14a15 0, 24 1680

Table 1: Summary statistics for coefficients of 4-dimensional volume polynomials.

As in the 3-dimensional case, a monomial corresponding to the partition 1 + 1 +
1+ 1 = 4 had coefficient 24 if and only if it appeared as a face in the corresponding
triangulation. Beyond these observations, we were unable to detail the exact rela-
tionship between the volume polynomials and their corresponding regular central
triangulations.

Question 3.3.3. How do the coefficients of the volume polynomials of maximal
(n−1)-dimensional polytropes reflect the combinatorics of the corresponding regular
central subdivision of FPn?
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A natural first step would be to prove that, for v with partition 1+ 1+ · · ·+ 1 =

n− 1, the coefficient αv is nonzero if and only if it corresponds to a face in the
regular central triangulation.



Part II

S I M P L I C I A L H Y P E R P L A N E A R R A N G E M E N T S

O the grey dull day! It seemed a limbo of painless patient consciousness
through which souls of mathematicians might wander, projecting long
slender fabrics from plane to plane of ever rarer and paler twilight,
radiating swift eddies to the last verges of a universe ever vaster,

farther and more impalpable.

- James Joyce, A Portrait of the Artist as a Young Man





The first part of this dissertation focuses on the bounded, convex regions, i.e. poly-
topes, determined by a finite set of real hyperplanes. We have seen what happens
to the discrete volumes of these polytopes when we shift the hyperplanes, either
uniformly by a rational or real factor in Chapter 2, or independently in Chapter 3.
Now, we zoom out and study the entire hyperplane arrangement instead of a specific
bounded region. In order to facilitate our study, we choose to look at central, simpli-
cial arrangements, which were introduced by Melchior in 1940, [80]. The systematic
study of simplicial hyperplane arrangements began with one of the great geometers
of the 20th century, Branko Grünbaum, who enumerated them along with regular
polytopes, tilings, and patterns. His catalogue [61] of simplicial arrangements of
rank 3 (arrangements of 2-dimensional planes in 3-dimensional space), appeared in
1971. It included three infinite families and 90 sporadic arrangements.

∞

Figure 16: Arrangements from the three infinite families of simplicial arrangements of rank
3 drawn in the projective plane

Since then, the list has grown to include 95 sporadic arrangements (see [62], [34]),
and it is still open to determine if the list is complete, or indeed, whether there is
a finite list at all. In order to answer these questions, it is natural to search for geo-
metric, combinatorial, and algebraic structures lurking behind the list. Luckily, this
search has a history, and there are already many tools at our disposal for studying
hyperplane arrangements.
Tools from Combinatorics: One method for extracting combinatorial information

from a hyperplane arrangement is to associate to it a partially ordered set, or poset.
For example, this was done with great success by Zaslavsky in his doctoral disser-
tation in 1974 [106]; he used the intersection poset of a hyperplane arrangement
and Möbius inversion to show that the number of regions of an arrangement A is
(−1)nχA(−1), where χA is the characteristic polynomial of the arrangement. Skip-
ping ahead to 1984, Paul Edelman introduced a different partial order on hyperplane
arrangements called the poset of regions and gave an expression for its Möbius func-
tion [50]. Björner, Edelman, and Ziegler showed in 1990 that if the poset of regions
is a lattice, then the base region must be simplicial, but the converse does not hold
in general [17]. They also showed that the poset of regions of any simplicial arrange-
ment is a lattice. Nathan Reading later showed that simpliciality can be weakened to
tightness—which is a connectivity condition on facets of regions—in order to obtain
lattices [88, Chapter 9]. Today, posets continue to be useful tools for gaining new
insights on hyperplane arrangements. In [46], Dermenjian, Hohlweg, and Pilaud in-
troduce the facial weak order and show that if the poset of regions is a lattice, then
the facial weak order is a lattice. One of their definitions for the facial weak order
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depends on another useful combinatorial object associated to a hyperplane arrange-
ment, its oriented matroid. In Chapter 4, we continue to use posets of regions and
oriented matroids to study simplicial hyperplane arrangements.
Tools from Algebra: It turns out that finite Weyl groupoids provide an algebraic

justification for around half of the sporadic arrangements from Grünbaum’s list of
rank 3 simplicial arrangements. Finite Weyl groupoids are algebraic structures gen-
eralizing Weyl groups that were introduced by Heckenberger in 2005 [63] to better
understand the symmetries of Nichols algebras and related Hopf algebras. They
were further studied by Heckenberger and Volkmar Welker [64] and classified by
Heckenberger and Michael Cuntz in the 2000s-2010s [35–37]. Each Weyl groupoid
originates from the data of a “Cartan graph”, leading to a so-called “root system”. In
turn, these root systems generalize the usual notion of root system of a Weyl group.
Notably, they form the set of normals of certain simplicial hyperplane arrangements.
Finite Weyl groupoids of rank 3 account for 53 simplicial arrangements [31]. Cuntz
also proved that the list is complete for arrangements with up to 27 lines [32] and
found a new arrangement with 35 hyperplanes in 2020 using a greedy algorithm [33].
In Chapter 4, we show that the simplicial arrangements coming from finite Weyl
groupoids have a nice combinatorial property: their posets of regions are always con-
gruence normal. It is possible that this theorem could lead to new algebraic insights
on Weyl groupoids and classification results for simplicial hyperplane arrangements.
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4
CONGRUENCE NORMALITY OF S IMPL IC IAL HYPERPLANE
ARRANGEMENTS

In this chapter, we continue to search for combinatorial structure regulating the
known list of simplicial hyperplane arrangements of rank 3. Simplicial arrangements
through their lattices of regions provide generalizations of the weak order of finite
Coxeter groups. Unlike in the Coxeter case, a simplicial arrangement may lead to sev-
eral non-isomorphic lattices of regions. Apart from being lattices, much less is known
about the poset of regions of simplicial arrangements. We investigate which posets
of regions of simplicial arrangements possess the property of congruence normality.
Our motivation for looking at congruence normality stems from the study of lat-

tice congruences. Lattice congruences of the weak order of Coxeter arrangements
generate several objects of interest. For example, the permutahedron is perhaps the
most studied example of a simple zonotope, that comes from the braid arrangement,
or Coxeter arrangement of type A. The corresponding poset of regions is the weak or-
der of the symmetric group and is a lattice. Moreover, Tamari and Cambrian lattices,
generalized permutahedra, and associahedra are all related to lattice congruences of
the weak order [67, 83, 87]. In particular, in type A and B, every lattice congruence
leads to a polytope [81, 82]. To which extent do these constructions extend to general
simplicial arrangements? We focus here on two important properties used to study
lattice congruences and shard polytopes: congruence normality and congruence uni-
formity. Coxeter arrangements are congruence normal and uniform [26]. Congruence
uniform lattices admit a bijection between their join-irreducible elements and the
join-irreducible elements in the lattice of lattice congruences. Congruence uniform
lattices are thus particularly nice lattices as they allow one to more easily study
the lattice of congruences. Reading characterized congruence uniformity of posets of
regions using tightness and shards (i.e. pieces of hyperplanes) [88, Corollary 9-7.22].
Reading also showed that supersolvable hyperplane arrangements have congruence
uniform posets of regions for some canonical choice of base region [85]. Congruence
uniform lattices admit a combinatorial construction whose geometric aspects in this
context have yet to be explored in detail.
In this chapter, we determine congruence uniformity and normality of posets of

regions of simplicial hyperplane arrangements of rank 3 and draw several conclusions.
To do so, we approach posets of regions through the oriented matroids naturally
associated to the normals of the hyperplane arrangements. We use covectors and
the intersection operation as our main tools to elevate Reading’s characterization
of congruence uniformity to the level of oriented matroids (see Theorem 4.2.18 and
Corollary 4.2.19). Namely, we introduce shard covectors—which are covectors with
some “∗” entries—and show they are in bijection with shards (see Theorem 4.2.12).
This approach led to the following results. The posets of regions of hyperplane

arrangements coming from finite Weyl groupoids are always congruence normal and
congruence uniform (see Theorem 4.3.2). This result provides a new proof that finite
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Coxeter arrangements are obtainable through a finite sequence of interval doublings
(i.e. congruence uniform) [26, Theorem 6]. We further classify the known rank-3
simplicial arrangements according to whether their posets of regions are always or
sometimes or never congruence normal depending on the base region (see Table 2).
The approach through covectors gives a way to determine congruence normality of
posets of regions without the data of the poset or resorting to polyhedral objects
(i.e. shards). Notably, this classification could not have been carried out through the
computation of the posets of regions due to their large size. Hence, this framework
provides an oriented matroid approach to study congruence normality and unifor-
mity for large posets of regions. As an interesting outcome of this classification, five
arrangements have exceptional behavior. Two of the five arrangements are always
congruence normal: the non-crystallographic arrangement corresponding to the Cox-
eter group H3 and its point-line dual arrangement which has 31 hyperplanes. The
three other arrangements are never congruence normal: they have yet to show any
connection to other known structures. Furthermore, we provide instructive examples
which give deeper insight into congruence uniformity for posets of regions. We verified
that within supersolvable simplicial arrangements (by [38, Theorem 1.2] these are the
arrangements in 2 of the 3 infinite families) only four are always congruence normal
and all others are only sometimes congruence normal, see Theorems 4.3.5 and 4.3.6.
The algorithms used to carry out the verifications and the data to construct known
simplicial hyperplane arrangements are available as a Sagemath-package [27]. The
construction of this package is another contribution of this chapter, as it allows the
mathematical community to easily access the current known list of simplicial hyper-
plane arrangements of rank 3 in a form that that is ready to use for computations.
This chapter is part of the published article [34] which also includes a list of normal
vectors to the known simplicial arrangements of rank 3 along with invariants and
wiring diagrams. The gathering of this list of normals and the computation of the
invariants and wiring diagrams is the work of Michael Cuntz. For the sake of brevity
the lists of normal, invariants, and wiring diagrams are not included in this chapter
as the data comprises many pages.
The chapter is structured as follows. In Section 4.1, we present the necessary back-

ground notions of congruence normality and uniformity and the theory of shards. In
Section 4.2, we recast shards and the forcing relation using covectors. In Section 4.3,
we present the result of the application of the approach of Section 4.2 to the known
rank-3 simplicial hyperplane arrangements.

This chapter is part of joint work with Jean-Philippe Labbé and Michael Cuntz
published in Annals of Combinatorics [34].

4.1 preliminaries on lattices and their congruences

In Section 4.1.1, we review the notion of a lattice congruence. In Section 4.1.2, we
define hyperplane arrangements and posets of regions. In Sections 4.1.3 and 4.1.4, we
discuss the notions of congruence normality and uniformity. Finally, in Section 4.1.5,
we describe Reading’s characterization of congruence uniformity for tight hyperplane
arrangements using shards. The material presented in this section is mostly based
on material treated in the book chapter [88, Chapter 9].
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4.1.1 Lattice congruences

For ease of reading, in this chapter, the relative interior of a subset P of Rd is denoted
by int(P). Let L = (P ;∧,∨) be a finite lattice, where P is a poset (P ,≤). An element
j ∈ L is join-irreducible if j covers a unique element j• ∈ L. Similarly, an element
m ∈ L is meet-irreducible if m is covered by a unique element m• ∈ L. We denote
the subposet of join-irreducible elements of a lattice L by L∨ and the subposet of
meet-irreducible elements by L∧. An order ideal of a poset P is a subposet Q ⊆ P
that satisfies x ∈ Q and y ≤ x⇒ y ∈ Q. The order ideals of a poset P can be ordered
by containment to get the poset of order ideals denoted O(P ). When L is self-
dual, join- and meet-irreducible elements are canonically in bijection. The dual map
therefore allows one to refine statements involving L and its irreducible elements.
Join-irreducible elements (and dually meet-irreducible elements) and posets of order
ideals are very useful to understand finite distributive lattices.

Lemma 4.1.1 ([16, Theorem 17.3]). Let L be a lattice, L∨ be its subposet of join-
irreducible elements, and O(L∨) be the poset of order ideals of L∨. If L is finite and
distributive, then L is isomorphic to O(L∨).

Recall that cosets of a normal subgroup N E G determine a congruence relation,
and lead to a quotient group G/N , which is the image of the map sending an element
to its coset. Analogously, in lattice theory, intervals play the role of cosets, and under
certain conditions, they form a quotient lattice. In this case, the equivalence relation
is called a lattice congruence. For a thorough discussion on congruences and quotient
lattices, we refer the reader to [88, Chapter 9-5 and 9-10] and the references therein.

Definition 4.1.2 (Lattice congruence). An equivalence relation≡ on the elements of
a lattice L is a lattice congruence if x1 ≡ x2 and y1 ≡ y2 implies x1 ∧ y1 ≡ x2 ∧ y2
and x1 ∨ y1 ≡ x2 ∨ y2 for any elements x1,x2, y1, y2 ∈ L.

Lemma 4.1.3 (see e.g. [88, Proposition 9-5.2]). An equivalence relation on a lattice
is a lattice congruence if and only if the following three conditions are satisfied:

1. Every equivalence class is an interval.

2. The map π↓ sending each element to the minimal element in its equivalence
class is order-preserving.

3. The map π↑ sending each element to the maximal element in its equivalence
class is order-preserving.

Given a lattice congruence, the images of π↓ and π↑ are sublattices, i.e. the join and
meet operations are preserved on the equivalence classes, and they are referred to as
quotient lattices.

Our main motivation for studying the property of congruence normality comes
from the study of lattice congruences. Lattice congruences of a lattice can be numer-
ous and the relations between them may be challenging to describe. In spite of that,
the set of lattice congruences on a lattice L may be partially ordered by refinement.
The equivalence relation with singleton classes is the smallest lattice congruence
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and its associated quotient lattice is the lattice itself. Furthermore, the equivalence
relation with a unique class is the coarsest lattice congruence whose associated quo-
tient lattice has exactly one element. It turns out that under this partial order by
refinement, the set of lattice congruences forms a distributive lattice which is called
the lattice of congruences and is denoted by Con(L) [57]. The lattices of congru-
ences we consider here are finite and therefore complete. Consequently, given any
set of relations, there is a smallest lattice congruence which contains these relations
[88, Proposition 9-5.13]. This makes it possible to define two important congruences
related to join- and meet-irreducible elements. Consider a join-irreducible element
j ∈ L∨, then there is a smallest lattice congruence con∨(j) such that j and j•
are equivalent. Similarly, for a meet-irreducible element m, there is a smallest lat-
tice congruence con∧(m) such that m and the unique element m• that covers it are
equivalent. In this case, we say that the congruence con∨ contracts j, and that con∧
contracts m. As Con(L) is finite and distributive, we may use Lemma 4.1.1 to obtain
that Con(L) is isomorphic to O(Con(L)∨). A congruence is determined by an order
ideal of join-irreducible congruences, i.e., by the join-irreducibles it contracts [88,
Corollary 9-5.15].

Definition 4.1.4. Let con∨ : L∨ → Con(L) be the map that sends a join-irreducible
element j ∈ L∨ to the smallest lattice congruence in Con(L) such that j ≡ j•. Dually,
the map con∧ is similarly defined for meet-irreducible elements.

The image of the map con∨ is Con(L)∨, i.e., the congruence con∨(j) is join-
irreducible in Con(L) and for every join-irreducible congruence α in Con(L), there
exists a join-irreducible j ∈ L∨ such that con∨(j) = α [88, Proposition 9-5.14]. It
may happen that two distinct join-irreducibles give rise to the same congruence,
i.e. that con∨ is not injective, leading to an equivalence relation on join-irreducible
elements in L∨. Through the map con∨, these equivalence classes of join-irreducible
elements in L are in bijection with join-irreducible congruences of L.

4.1.2 Poset of regions of a real hyperplane arrangement

Let A be a real, finite, central hyperplane arrangement. We denote the hyperplanes
in A by H1, . . . ,Hm and often reuse their indices to refer to objects canonically
related to them. The rank of A is the dimension of the linear span of the normal
vectors of the hyperplanes in A. The complement of the arrangement in the ambient
space (Rd \

⋃
i∈[m]Hi) is disconnected, and the closures of the connected components

are the regions of the arrangement. The set of regions of A is denoted by R(A).
A region is called simplicial if the normal vectors of its facet-defining hyperplanes
are linearly independent. A hyperplane arrangement is simplicial if every region in
its complement is simplicial. Throughout, we use the notation A(m, r)i to denote
the i-th simplicial hyperplane arrangement with m hyperplanes and r regions from
our catalogue of simplicial arrangements, which is given in its totality in [34]. Ad-
ditionally, we denote by Fi(m) the arrangement in the i-th infinite family with m

hyperplanes, see Section 4.3.3.
To proceed further, a base region B of A is chosen. For each hyperplane Hi ∈A,

we fix a normal vector ni ∈ Rd such that ni · x < 0, for all x ∈ B. Given a region R
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of A, the separating set SepB(R) of R is the set of hyperplanes Hi ∈A such that
ni ·x > 0, for all x ∈ R. The separating set of a region is the set of hyperplanes that
separate it from the base region B.

Definition 4.1.5 (Poset of regions, PB(A)). Let A be a hyperplane arrangement
with base region B. The poset of regions PB(A) of A with base region B is the
partially ordered set (R(A),≤) such that

R1 ≤ R2 if and only if SepB(R1) ⊆ SepB(R2),

for all R1,R2 ∈ R(A).

An upper facet of a region R ∈ R(A) is a facet of R which corresponds to a cover
relation of R in PB(A). A hyperplane arrangement is tight with respect to B when
the upper facets of every region intersect pairwise along a codimension-2 face, i.e.
they are neighbors in the facet-adjacency graph. When a hyperplane arrangement A
is tight with respect to every base region, we say that A is tight. For convenience,
when a hyperplane arrangement is tight, we also call the corresponding posets of
regions tight. The usual definition of tightness also requires the dual statement to
hold. As posets of regions are self-dual, we have restricted the statement to upper
facets. The following lemma is a refinement of [17, Theorem 3.4].

Lemma 4.1.6. Let A be a finite, central hyperplane arrangement with base re-
gion B.

1. If A is tight with respect to B, then PB(A) is a lattice. [88, Theorem 9-3.2]

2. If A is simplicial, then A is tight. [88, Proposition 9-3.3]

Reading developed an approach to study congruences of lattices of regions that is
thoroughly described in [88, Chapter 9]. In particular, for posets of regions, tightness
is equivalent to semidistributivity [88, Theorem 9-3.8] (see Section 4.1.4 for the defi-
nition of semidistributivity). Furthermore, in order to describe the interplay between
join-irreducible elements, the combinatorial notion of “polygonality” of a lattice is
used; in the case of posets of regions, this notion is equivalent to the notion of tight-
ness [88, Theorem 9-6.10]. Using the polygonality property, it is possible to describe
which join-irreducibles force other ones to be contracted. This forcing relation can
then be read off from the hyperplane arrangement using pieces of hyperplanes called
shards (see Definition 4.1.15 in Section 4.1.5). The interest in the notion of tight-
ness lies in the fact that being tight and having acyclicity on shards characterizes
congruence uniformity, see Theorem 4.1.19 in Section 4.1.5.
Throughout this chapter, we restrict our study to finite, central, and tight hyper-

plane arrangements, so that the posets of regions are guaranteed to be complete
lattices regardless of the choice of base regions. We refer the reader to [88, Chap-
ter 9-3, 9–6] for further details on tightness and polygonality.
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4.1.3 Congruence normality

Definition 4.1.7 (Congruence normality, [42, Section 1, p.400]). Let L be a lattice,
L∨ ⊆ L be the subposet of join-irreducible elements of L, and L∧ be the subposet
of meet-irreducible elements of L. The lattice L is congruence normal if

j ≤ m implies con∨(j) 6= con∧(m),

for all j ∈ L∨, and m ∈ L∧. A hyperplane arrangement is called congruence
normal if its lattices of regions are congruence normal for every choice of base
region.

Equivalently, finite congruence normal lattices are exactly the lattices obtained
from a one-element lattice by a sequence of doublings of convex sets [42, Section 3],
see also [1, Theorem 3-2.39] and [59]. The following example illustrates a local con-
dition showing how a lattice may fail to be congruence normal.

Example 4.1.8. Consider the lattice L3 with the Hasse diagram illustrated in Fig-
ure 17. The element c is join-irreducible, and the smallest congruence con∨(c) such
that b ≡ c is illustrated on the right-hand side.

L3

0

a b

c
d e

1

=⇒

0

a b

c
d e

1

Figure 17: The Hasse diagram of the lattice L3 which is not congruence normal and the
equivalence classes of con∨(c) = con∧(c).

Following Definition 4.1.2, setting b ≡ c forces the lattice to project onto a three-
element chain. By order-reversing symmetry, the smallest congruence such that c ≡
d is the same as the smallest congruence such that b ≡ c. Since c is also meet-
irreducible, we get con∧(c) = con∨(c). Since c ≤ c, the lattice L3 is not congruence
normal.

This example complements Reading’s example of forcing of polygons nicely, see
e.g. [88, Example 9-6.6] and the exercise on congruence normality of polygonal lat-
tices [88, Exercice 9.55]. The intervals [0, d] and [b, 1] intersect on more than one
cover and removing c from L3 makes it congruence normal. Unfortunately, such lo-
cal obstructions may not be used on lattices of regions of a hyperplane arrangement.
The corresponding Hasse diagrams are isomorphic to the 1-skeleta of the associated
zonotopes, and two polygons as in the example may not intersect along more than
one cover relation for convexity reasons. As we shall see in Example 4.1.13, there
are non-congruence normal lattices of regions.
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4.1.4 Congruence uniformity

A lattice is join-semidistributive if for x, y, z ∈ L,

x∨ y = x∨ z implies x∨ (y ∧ z) = x∨ y.

It is meet-semidistributive if

x∧ y = x∧ z implies x∧ (y ∨ z) = x∧ y.

A lattice that is both join-semidistributive and meet-semidistributive is called semidis-
tributive.

Definition 4.1.9 (Congruence uniformity, [41, Definition 4.1]). Let L be a finite
lattice. If the maps con∨ and con∧ are injective, then L is called congruence uni-
form.

Congruence uniformity describes the lattice of congruences of the involved lattice
through the map con∨. If L is a finite congruence uniform lattice, then the map
con∨ gives a order-preserving bijection between L∨ and Con(L)∨. Lemma 4.1.1 then
permits one to study the whole of Con(L). Congruence uniformity is a stronger con-
dition than congruence normality in that it should be obtained from a one-element
lattice by a sequence of doublings of intervals [41, Theorem 5.1].

Theorem 4.1.10 ([42, Section 2]). A finite lattice is congruence uniform if and only
if it is both congruence normal and semidistributive.

Corollary 4.1.11. A tight poset of regions PB(A) is congruence normal if and only
if it is congruence uniform.

Proof. By Lemma 4.1.6, the poset of regions PB(A) of a A is a finite lattice, inde-
pendent of the choice of base region B. Furthermore, A is tight with respect to B
if and only if PB(A) is semidistributive [88, Theorem 9-3.8].

Remark 4.1.12.

1. Since lattices of regions are self-dual, it suffices to verify the injectivity of con∨
to determine whether they are congruence uniform.

2. Semidistributivity can be described using sublattice avoidance [1, Theorem 3-
1.4]. The six sublattices obstructing semidistributivity are illustrated in Fig-
ure 17 and 18. Four out of the six non-semidistributive lattices are not congru-
ence normal (L3, L4, L5, and M3) and share the property that two polygons
share more than 1 cover. Nevertheless, semidistributivity is neither necessary
nor sufficient to obtain congruence normality: L1 and L2 are congruence nor-
mal but not semidistributive and Example 4.1.13 gives a poset of regions which
is semidistributive but not congruence normal.
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L2
L5L1

L4 M3

Figure 18: Five of the six sublattices that obstruct semidistributivity, the sixth is L3 illus-
trated in Figure 17

3. While considering two polygons in a polygonal lattice, and verifying congruence
normality as in Example 4.1.8, one realizes that M3, L3, L4, and L5 should
be avoided. For poset of regions, this comes as no surprise as polygonality,
tightness and semidistributivity are equivalent [88, Theorem 9-3.8 and 9-6.10].
In general, one might be tempted to ask, what is the relationship between
polygonal and semidistributive lattices?

Example 4.1.13 ([85, Figure 5] and [88, Exercise 9.69]). Figure 19 illustrates the
stereographic projection of the simplicial hyperplane arrangement A(10, 60)3 in R3

with 10 hyperplanes through the intersection of 5 hyperplanes which are mapped to
lines. This arrangement is A(10, 1) in Grünbaum’s list [62, p.2-3], see Section 4.3.

Figure 19: The simplicial hyperplane arrangement A(10, 60)3 = F2(10) whose lattice of
regions with the marked base region is not congruence normal

The lattice of regions with respect to the base region marked by a black dot is
semidistributive as the arrangement is simplicial. In Example 4.1.20, we use shards
to demonstrate that this arrangement is not congruence normal, hence not uniform
by Corollary 4.1.11. It is the smallest known simplicial hyperplane arrangement of
rank three with that property.

Examples 4.1.8 and 4.1.13 illustrate failures to be congruence normal. Exam-
ple 4.1.13 is particularly interesting in that it does not fail to be congruence normal
because of forbidden sublattices blocking semidistributivity.
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4.1.5 Congruence normality of simplicial hyperplane arrangements through shards

Reading characterized congruence uniformity of posets of regions via two conditions,
the first one is tightness and the second is phrased using pieces of hyperplanes called
shards. When the arrangement is central, these pieces are polyhedral cones defined
through certain subarrangements.

Definition 4.1.14 (Rank-2 subarrangements and their basic hyperplanes, see [88,
Definition 9-7.1]). Let A be a hyperplane arrangement with base region B, and let
1 ≤ i < j ≤ m. The set

A|i,j := {H ∈A : H ⊃ (Hi ∩Hj)}

is called a rank-2 subarrangement of A. The two facet-defining hyperplanes of
the region of A|i,j that contains B are called the basic hyperplanes of A|i,j .

Definition 4.1.15 (Shards, see [88, Definition 9-7.2]). Let Hi ∈A and set

pre(Hi) := {Hk ∈A : Hk is basic in A|i,k and Hi is not basic in A|i,k} .

The intersection of the hyperplanes in pre(Hi) with the hyperplane Hi breaks Hi

into closed regions called shards. We denote shards by capital Greek letters such
as Σ, Θ, Υ, etc. The hyperplane of A that contains a shard Σ is denoted by HΣ. We
write Σi to indicate that it is contained in Hi. Hyperplanes in pre(Hi) are said to
cut the hyperplane Hi.

Example 4.1.16 (Example 4.1.13 continued). Figure 20 illustrates the 29 shards
obtained from the base region marked with a dot.

H1

H2

H3H4

H5

H6

H7

H8

H9

H10

Σ

Σ

Σ′

Σ′′

Figure 20: The shards of the simplicial hyperplane arrangement A(10, 60)3 = F2(10) with
respect to the dotted region

On one hand, due to the particular choice of projection, it is necessary to distinguish
whether two unbounded straight line-segments lying on a common line form 1 or 2
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shards. For example, the unbounded line-segments on the line labeled H3 form one
shard Σ, and H4 is basic and therefore is one shard itself. The unbounded line-
segments on the line labeled H6 form 2 distinct shards Σ′ and Σ′′. Similarly, the
hyperplanes H7 and H8 also split like H6. On the other hand, it is possible to solve
this by changing the projection to obtain only circles, though simultaneously losing
symmetry.

The following directed graph records the cutting relation among hyperplanes.

Definition 4.1.17 (Directed graph HB(A) [86, Section 3]). Let HB(A) be the
directed graph whose vertices are the hyperplanes of the arrangement A, and whose
oriented edges are such that

Hi → Hj if and only if Hi ∈ pre(Hj).

The following directed graph keeps track of the cutting relation along with the
“geometric proximity” between shards.

Definition 4.1.18 (Shard digraph, see [86, Section 3][88, Definition 9.7.16]). Let
ShB(A) be the directed graph on the shards of A such that

Σi → Σj if and only if
• HΣi → HΣj in HB(A) and

• Σi ∩ Σj has dimension d− 2.

The following theorem gives a characterization of congruence uniformity in terms
of the directed graph on shards.

Theorem 4.1.19 ([88, Corollary 9-7.22]). Let A be a hyperplane arrangement with
a base region B. The poset of regions PB(A) is a congruence uniform lattice if and
only if A is tight with respect to B and ShB(A) is acyclic. In this case, ShB(A)

is isomorphic to the Hasse diagram of Con(PB(A))∨.

By Corollary 4.1.11, the theorem implies that acyclicity of the directed graph on
shards ShB(A) characterizes the normality and uniformity of tight posets of regions
PB(A).

Example 4.1.20 (Example 4.1.16 continued). Let Σ6, Θ10, Υ8, and Ξ9 be the shards
illustrated in Figure 21. The directed graph on shards contains the cycle Σ6 →
Θ10 → Υ8 → Ξ9 → Σ6. Thus, for this choice of base region, the lattice of regions is
not congruence normal.

Σ6

Ξ9

Θ10

Υ8

Figure 21: A cycle in the shards of the simplicial hyperplane arrangement from Exam-
ple 4.1.13.
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4.2 congruence normality through restricted covectors

In this section, we recast shards as certain restricted covectors—which we call shard
covectors—in the point configuration dual to the arrangement A. We then describe
how to detect cycles in ShB(A) using shard covectors. This reduces the verification
of congruence normality for tight posets of regions to its simplest combinatorial
expression, one that does not require the entire poset nor the usage of polyhedral
objects. Furthermore, it is possible to express an obstruction to congruence normality
for tight hyperplane arrangements.
In Section 4.2.1, we introduce restricted covectors and the intersection operation.

In Section 4.2.2, we define affine point configurations and their lines. In Section 4.2.3,
we interpret shards as covectors. In Section 4.2.4, we translate the forcing relation on
shards into the language of covectors. Finally, in Section 4.2.5 we describe examples
of obstructions to congruence normality in terms of restricted covectors.

4.2.1 Restricted covectors and the intersection operation

For standard references on covectors and oriented matroids, we refer the reader to
the books [18, 44].

Definition 4.2.1 (Covector and restricted covector). Let P = {pi}i∈[m] be an
ordered set of vectors in Rd. A covector on P is a vector of signs (ci)i∈[m] ∈
{0,+,−}m defined as

c := (sign(c · pi + a))i∈[m],

where c ∈ Rd and a ∈ R. Given a subset U ⊆ P and a covector c on P, the
restricted covector c|U with respect to U is equal to c on the entries {j : pj ∈ U}
and contains a “∗” symbol in every other entry.

Intuitively, a restricted covector “forgets” about certain hyperplanes while keeping
them encoded. Similarly, reversing the roles of c and pi above, covectors may be
thought of as sign evaluations of a certain vector x with respect to a set of vectors:

Definition 4.2.2 (Sign evaluation of a vector). Let P = {pi}i∈[m] be an ordered
set of vectors in Rd and x ∈ Rd. The sign evaluation of x with respect to P is the
covector

cP(x) := (sign(pi · x))i∈[m] .

Inspired by the composition operation on vectors (i.e. affine dependences) of ori-
ented matroids [18, Chapter 3], we define an intersection operation on restricted
covectors.

Definition 4.2.3 (Intersection of restricted covectors). The commutative intersec-
tion operation ∩ from {0,+,−, ∗} × {0,+,−, ∗} to {0,+,−, ∗} is defined as

+ ∩+ := +, + ∩− = −∩+ := 0, −∩− := −,

0∩ ε = ε∩ 0 := 0, ∗ ∩ ε = ε∩ ∗ := ε,

where ε ∈ {0,+,−, ∗}. Let c, d ∈ {0,+,−, ∗}m be two restricted covectors, then
their intersection c ∩ d is the vector of signs (ci ∩ di)i∈[m].
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The vector of signs (ci ∩ di)i∈[m] is not necessarily a covector, though it never-
theless records the information of the sign evaluation of points in an intersection.
It is possible to interpret this intersection operation using subsets of the real num-
bers. That is, if one replaces the four symbols 0,+,−, ∗ respectively by the sets
{0}, R≥0, R≤0, R, and consider their intersections, we get exactly the same results.
The associativity of this operation then follows easily.

4.2.2 Affine point configurations and lines

We use duality to pass from a hyperplane arrangement A in Rd with a base region B
to an acyclic point configurationA∗B, see [18, Section 1.2] for more detail. Indeed, the
normals {ni}i∈[m] are oriented so that the linear hyperplane orthogonal to vB ∈ B◦
separates them from the base region B, i.e. vB · ni < 0, for all i ∈ [m], making the
set {ni}i∈[m] acyclic.
Definition 4.2.4 (Affine point configuration relative to a base region). Let A be a
hyperplane arrangement in Rd, B ∈ R(A), and vB ∈ int(B). Let

AB :=
{

x ∈ Rd : vB · x = −1
}

,

and associate the point pi := − 1
vB ·ni ·ni ∈AB ⊂ Rd to the normal ni. The ordered

set of vectors {pi}i∈[m] is the affine point configuration of A relative to the
base region B and is denoted A∗B.
Choosing a different normal vector vB ∈ int(B) yields an affine point configuration

which is projectively equivalent to A∗B. Hence, up to projective transformation, this
construction does not depend on the choice of vB.
Definition 4.2.5 (Lines of a point configuration, L(P)). Let P = {pi}i∈[m] be an
ordered set of vectors in Rd . A subset of P consisting of all the points that lie on
the affine hull of two distinct points of P is called a line. The set of lines of P is
denoted by L(P).
Lemma 4.2.6. Let A be a hyperplane arrangement in Rd with base region B,
` ∈ L(A∗B), and pi and pj be the two vertices of the segment conv(`).

i) The lines in L(A∗B) are in bijection with the rank-2 subarrangements of A.

ii) The hyperplanes Hi and Hj are the basic hyperplanes of the rank-2 subarrange-
ment corresponding to `.

Proof. i) Let A′ := {Hi : i ∈ I}, for some I ⊆ [m]. The subarrangement A′ is a
rank-2 subarrangement if and only if

dim
(⋂
i∈I

Hi

)
= d− 2 and dim

 ⋂
i∈I∪{j}

Hi

 < d− 2, for every j /∈ I.

Equivalently,

dim (span(ni : i ∈ I)) = 2 and
dim (span({nj} ∪ {ni : i ∈ I})) > 2, for every j /∈ I.
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By passing to the affine point configuration in the affine space AB, the above state-
ment is equivalent to {pi : i ∈ I} ∈ L(A∗B). Thus the map sending a rank-2
subarrangement A′ to the line {pi : i ∈ I} is a bijection.
ii) Let B|i,j be the region of A|i,j that contains B:

B|i,j =
{

x ∈ Rd : pk · x ≤ 0, for all pk ∈ `
}

,

by part i). Let pk be the normal of a facet F of B|i,j and x be contained in the
relative interior of F so that pk · x = 0. Since pi and pj are the vertices of conv(`),
we have pk = λkpi + (1− λk)pj , for some 0 ≤ λk ≤ 1. Then

0 = x · pk = λk(x · pi) + (1− λk)(x · pj).

As pi ·x ≤ 0 and pj ·x ≤ 0, the above equality implies that pk must be pi or pj .

4.2.3 Shards as restricted covectors

Let A be a tight hyperplane arrangement with respect to a base region B and A∗B
be its associated affine point configuration. Every shard Σ of A has a corresponding
unique join-irreducible region JΣ [88, Proposition 9-7.8]. In the lattice of regions, JΣ

is the meet of all regions R such that

HΣ ∈ Sep(R) and R ∩ Σ has dimension d− 1.

The next lemma shows how pre(HΣ) and Sep(JΣ) yield a description of the shard
as the intersection of half-spaces. It is originally stated for simplicial arrangements,
though the same holds true for tight hyperplane arrangements.

Lemma 4.2.7 (see [86, Lemma 3.7]). A shard Σ has the following description:

Σ =

{
x ∈ HΣ

∣∣∣∣∣ ni · x ≥ 0 if Hi ∈ pre(HΣ) ∩ Sep(JΣ)

ni · x ≤ 0 if Hi ∈ pre(HΣ) \ Sep(JΣ)

}
.

To interpret shards on a hyperplane Hi as covectors, we focus on a certain sub-
configuration containing pi.

Definition 4.2.8 (Subconfiguration localized at a point). Let pi ∈ A∗B. The sub-
configuration A∗B,i of A∗B localized at pi contains pi and the vertices of the
convex hulls of lines of A∗B that contain pi in their interior.

Lemma 4.2.6 ii) and Definition 4.1.17 imply the following lemma.

Lemma 4.2.9. The subconfiguration A∗B,i satisfies

A∗B,i = {pi} ∪ {pj : Hj ∈ pre(Hi)}.

Definition 4.2.10 (Shard covectors of a point). Let pi ∈ A∗B. A shard covector
of pi is a restricted covector σi = c|A∗B,i

with respect to A∗B,i such that

• σij = ∗ if and only if pj 6∈A∗B,i, and
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• the restriction of σi to the subconfiguration A∗B,i is a covector with exactly
one zero in position “i”.

Example 4.2.11. In Figure 22, the left image illustrates the affine point configu-
ration A(6, 24)∗ for the rank-3 braid arrangement with 6 hyperplanes. The right
image illustrates the subconfiguration of A(6, 24)∗ localized at p6, A(6, 24)∗6.

p1

p2

p3

p4 p5

p6
p1 p3

p4 p5

p6

Figure 22: The point configuration A(6, 24)∗ for the rank-3 braid arrangement and the
subconfiguration A(6, 24)∗6 localized at p6

There are two pairs of oppositely signed shard covectors of p6:

σ6,+ = (+, ∗,+,−,−, 0), θ6,+ = (+, ∗,−,+,−, 0),
σ6,− = (−, ∗,−,+,+, 0), θ6,− = (−, ∗,+,−,+, 0).

It is possible to obtain these shard covectors by drawing a line through p6 inA(6, 24)∗6,
and choosing a positive and a negative side. Rotating the line about p6 in all possible
directions, and recording the sign evaluations of the points in A(6, 24)∗6 relative to
the line exhausts all possibilities.

We now associate a restricted covector to each shard using the sign evaluation of
vectors. Let Σi be a shard contained in hyperplane Hi, and let x ∈ int(Σi). Using
Lemma 4.2.7 and 4.2.9, we get

cA∗B,i
(x) :=

cA∗B,i
(x)j =


0 if j = i,

+ if Hj ∈ pre(Hi) ∩ Sep(JΣ)

− if Hj ∈ pre(Hi) \ Sep(JΣ)


j∈[m] and pj∈A∗B,i

.

Completing this sign evaluation to the configuration A∗B, we get the restricted cov-
ector

σi :=

σij =
cA∗B,i

(x)j if Hj ∈ pre(Hi) ∪ {Hi}

∗ if Hj /∈ pre(Hi) ∪ {Hi}


j∈[m]

.

This restricted covector is independent of the choice of vector x ∈ int(Σi), thanks
to Lemma 4.2.7, and only depends on the choice of base region B.

Theorem 4.2.12. Let A be a tight hyperplane arrangement with respect to a base
region B. The map sending a shard Σi to the shard covector σi gives a bijection
between the shards of A with base region B and the shard covectors of A∗B.
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Proof. Injectivity. Suppose σi = θi for two shards Σi and Θi, for some i ∈ [m].
By the definition of σi and θi, the shard covectors are obtained from some points
x ∈ int(Σi) and y ∈ int(Θi) and

sign(nj · x) = sign(nj · y) for every j such that Hj ∈ pre(Hi) ∪ {Hi}.

By Lemma 4.2.7, an H-description of the shard is given by the sign evaluation of
any of its points in the relative interior with respect to the hyperplanes in pre(Hi).
Because Σi and Θi are both shards on hyperplane Hi, and the sign evaluation of x
and y agree on all normals in pre(Hi), Σi and Θi must be the same.
Surjectivity. Let c be a shard covector with a unique zero at position i ∈ [m].

Considered as a sign evaluation, there is an x ∈ Rd such that c = cA∗B (x)|A∗B,i
.

The linear hyperplane with normal x separates the normal vectors in pre(Hi) as c

dictates. Thus x is a point in the relative interior of a shard Σi of Hi such that
σi = c.

By Theorem 4.2.12, there is a unique shard covector associated to every shard.
We therefore use lowercase Greek letters σi to denote the unique shard covector
corresponding to a shard Σi.

Example 4.2.13. Consider the Coxeter arrangement A2 with three hyperplanes
H1,H2,H3, and choose a base region B between H1 and H2, as in Figure 23. Hyper-
planes H1 and H2 are basic, giving shards Σ1 and Υ2, and hyperplane H3 splits into
two shards Γ3 and Θ3. The affine point configuration A∗B has three points on a line
p1, p3, p2, and admits exactly four shard covectors. The table shows the bijection
between shards and shard covectors using the map of Theorem 4.2.12.

Σ1 Υ2

Θ3Γ3

H1H2

H3 p1 p2p3

1 2 3
σ1 0 ∗ ∗
υ2 ∗ 0 ∗
γ3 + - 0
θ3 - + 0

Figure 23: The shards of the Coxeter arrangement A2, and their corresponding shard covec-
tors.

4.2.4 Forcing relation on covectors

In this section, we use Theorem 4.2.12 and interpret the shard digraph ShB(A)

using shard covectors of A∗B. In Definition 4.1.18, the first condition to get an edge
Σi → Σj translates to the shard covectors of pj having a + or − at position “i”. The
second condition requires one to interpret the dimension of intersection of two shards
using shard covectors. To do so, we define line covectors of two hyperplanes.
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Definition 4.2.14 (Line covector). Let ` ∈ L(A∗B). A line covector of ` is a
covector h` on A∗B such that

h`k = 0 if and only if pk ∈ `.

Line covectors record possible sign evaluations of non-zero points in the intersec-
tion of two hyperplanes with respect to A∗B. They come in oppositely signed pairs
which we denote by h`,+ and h`,−. In the case of rank-3 hyperplane arrangements,
these covectors are actually cocircuits of the oriented matroid. For higher-rank hy-
perplane arrangements, the set of 0-indices of a line covector gives a flat of rank 2
in the underlying matroid.

Example 4.2.15 (Example 4.2.11 continued). Let ` = {p1, p5, p6}. Since AB has
dimension 2, the line ` has exactly two line covectors. From Figure 22, we deduce
that the line covectors of ` are:

h`,+ = (0,+,−,+, 0, 0),
h`,− = (0,−,+,−, 0, 0).

Lemma 4.2.16. Let A∗B = {pi}i∈[m] be an affine point configuration, 1 ≤ i < j ≤ m,
` be the line spanned by pi and pj, and h` be a line covector of `. The set{

x ∈ (Hi ∩Hj) : cA∗B (x) = h`
}

has dimension d− 2.

Proof. Let x ∈ Hi ∩Hj with cA∗B (x) = h`. For any v ∈ span(ni, nj)⊥ and ε > 0,
the k-th entry of cA∗B (x + εv) is equal to

cA∗B (x + εv)k = sign (x · nk + ε(v · nk))

=

0 if k ∈ {i, j},

sign(x · nk + ε(v · nk)) if k /∈ {i, j}.

When ε is chosen small enough, then

cA∗B (x + εv)k = cA∗B (x)k = h`k.

Thus dim({x ∈ (Hi ∩Hj) : cA∗B (x) = h`}) = dim(span(ni, nj)⊥) = d− 2.

Example 4.2.17 (Example 4.2.11 continued). Figure 24 shows a stereographic pro-
jection of A(6, 24) broken into shards. The shards Θ6,+ and Σ1 = H1 are thickened
and one sees that H1 cuts H6. The shards Σ1 and Θ6,+ intersect at a point so there
is an oriented edge Σ1 → Θ6,+ in the shard digraph.
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H1 = Σ1

H2

H3

H4

H5
H6

Θ6,+

Figure 24: The shards of the arrangement A(6, 24) shown via stereographic projection

This fact translates to a property of the corresponding shards covectors σ1 =

(0, ∗, ∗, ∗, ∗, ∗) and θ6,+ = (+, ∗,−,+,−, 0). Consider the line ` = {p1, p5, p6} and
the line covector h`,+ = (0,+,−,+, 0, 0). Then h`,+ ∩ θ6,+ ∩ σ1 = (0,+,−,+, 0, 0).
In comparison, h`,− = (0,−,+,−, 0, 0), and h`,− ∩ θ6,+ ∩ σ1 = (0,−, 0, 0, 0, 0) 6= h`,−.
Figure 25 illustrates the affine point configuration A(6, 24)∗ along with the three
oriented lines describing the involved covectors.

p1

p2

p3

p4
p5

p6

−+

+ − +

−

h`,+
θ6,+

σ1

Figure 25: The point configuration A(6, 24)∗ and hyperplanes describing the covectors σ1,
θ6,+, and h`,+, where ` = {p1, p5, p6}

It is possible to interpret the fact that the two shards intersect at a point as follows.
Apply a clockwise rotation to the line labeled θ6,+ about the point p6 until it collides
with the line corresponding to h`,+. During the rotation, the line did not cross any
points in A∗B,6. Similarly, applying the same with the line labeled σ1 about p1 does
not cross any points in A∗B,1 = ∅.

The theorem below shows that the above equality is exactly the necessary and
sufficient condition for the two involved shards to have an intersection of dimen-
sion d− 2.

Theorem 4.2.18. Let A∗B = {pi}i∈[m] be an affine point configuration, 1 ≤ i <

j ≤ m, and let ` be the line spanned by pi and pj. Furthermore, let Σi ⊆ Hi and
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Θj ⊆ Hj be two shards. The intersection Σi ∩Θj has dimension d− 2 if and only if
there exists a line covector h` such that h` ∩ σi ∩ θj = h`.

Proof. Assume dim(Σi ∩Θj) = d− 2. Hence there exists x ∈ Σi ∩Θj such that the
sign evaluation cA∗B (x)k equals zero if and only if pk ∈ `. Therefore cA∗B (x) is a line
covector of `. If x is in the boundary of Σi, then for z ∈ int(Σi), pk ∈ A∗B,i, either
sign(x ·pk) = sign(z ·pk) or sign(x ·pk) = 0. As cA∗B (x)k equals zero if and only if
pk ∈ `, σik = cA∗B (x)k for all k such that pk ∈ (A∗B,i \ `). Likewise, θ

j
k = cA∗B (x)k

for all k such that pk ∈ (A∗B,j \ `). Thus,

cA∗B (x) ∩ σ
i ∩ θj = cA∗B (x).

Assume now that there exists a line covector h` such that h` ∩ σi ∩ θj = h`. Let
S = {x ∈ (Hi ∩ Hj) : cA∗B (x) = h`}. By Lemma 4.2.16, dim(S) = d− 2. Let x ∈ S,
y ∈ int(Σi), and z ∈ int(Θj). As h` ∩ σi = h`, sign(x · pk) = sign(y · pk) for all
pk ∈A∗B,i \ `. For pk ∈ `, we have x ·pk = 0. For 0 ≤ λ ≤ 1, let mλ = (1−λ)y+λx.
Then cA∗B,i

(mλ)k = sign(y · pk) for all k such that pk ∈ A∗B,i, and λ ∈ [0, 1). This
shows that mλ ∈ Σi for all λ ∈ [0, 1), and thus x is contained in Σi. A similar
argument with z shows that x is in Θj .

Corollary 4.2.19. There is a directed arrow Σi → Θj in ShB(A) if and only if
θji ∈ {−,+} and there exists a line covector h` such that h` ∩ σi ∩ θj = h`.

4.2.5 Examples of obstruction to congruence normality

Example 4.2.20 (Example 4.1.13 continued). The normal vectors {ni}i∈[10] for
this configuration can be chosen as follows. Let τ = 1+

√
5

2 and n1 = (0, 1, 0), n2 =

(1, 0, 0), n3 = (1, 1, 0), n4 = (1, 1, 1), n5 = (τ + 1, τ , τ ), n6 = (τ + 1, τ + 1, 1), n7 =

(τ + 1, τ + 1, τ ), n8 = (2τ , 2τ , τ ), n9 = (2τ + 1, 2τ , τ ), n10 = (2τ + 2, 2τ + 1, τ + 1).
Let B be the base region containing the vector v = (−1,−1,−2). Figure 26 illus-
trates A(10, 60)∗3,B along with four lines describing the shard covectors

σ6 = (+, ∗,−,+, ∗, 0, ∗, ∗,−, ∗), θ8 = (−, ∗,−,+, ∗, ∗, ∗, 0, ∗,+),
υ9 = (∗,−,−, ∗,+, ∗, ∗,+, 0, ∗), ξ10 = (∗,−, ∗,+,+,−,+, ∗,−, 0).
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+

σ6

+

υ9

+

ξ10

+
θ8

p2 p1
p3

p4

p5

p7

p9 p6

p10 p8

Figure 26: The point configuration A(10, 60)∗3,B

Let `1 = {p2, p8, p9}, `2 = {p1, p6, p9}, `3 = {p5, p6, p10}, and `4 = {p1, p8, p10}
and consider the four line covectors

h`1 = (−, 0,−,+,+,−,+, 0, 0,+), h`2 = (0,−,−,+,+, 0,+,+, 0,+),
h`3 = (+,−,−,+, 0, 0,+,+,−, 0), h`4 = (0,−,−,+,+,−,+, 0,−, 0).

As υ9 has a “+” in position 8, H8 cuts H9. Furthermore, one computes that h`1 ∩
θ8 ∩ υ9 = h`1 . By Corollary 4.2.19, there is a directed arrow Θ9 → Υ9 in ShB(A).
Similar computations reveal that θ8 → υ9 → σ6 → ξ10 → θ8 is a cycle in ShB(A).
Thus, the poset of regions of A(10, 60)3 with respect to the base region B is not
congruence normal.

Example 4.2.21. Removing the hyperplane H4 from the arrangement A(10, 60)3
and taking the base region that contains the vector v = (−1,−1, 2), one obtains a
non-simplicial, tight (hence semidistributive) poset of regions with 52 regions that
is not congruence normal as the cycle θ8 → υ9 → σ6 → ξ10 → θ8 still occurs in the
shard digraph. Figure 27 illustrates the resulting affine point configuration. Is there
a tight poset of regions which is not congruence normal with at most 8 hyperplanes?
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p2

p1

p3

p5

p7
p9

p6

p10

p8

Figure 27: An affine point configuration leading to a tight, non-congruence normal hyper-
plane arrangement

Example 4.2.22. It is possible to have cycles in HB(A) while ShB(A) is acyclic,
settling the question raised in [85, p. 203]. Figure 28 shows the affine point configu-
ration of arrangement A(14, 116) with respect to the base region that contains the
vector ≈ (0.38, 2.85,−7.85). There is a cycle H1 → H4 → H7 → H1 in HB(A).
However, this cycle does not lead to any cycle among shards included in these three
hyperplanes as ShB(A) was computed to be acyclic in this case. This can be seen
geometrically as follows. Apply a rotation to the line spanned by the points 1 and 2
about the point 4 until it collides with the line spanned by the points 4 and 14.
During the rotation (be it clockwise or counter-clockwise) the line crossed points
in A∗B,4. This means that a shard on hyperplane 4 intersecting with a shard on hy-
perplane 1 along a face of dimension d− 2 can not have an intersection with a shard
on hyperplane 7 that has dimension d− 2.

1

2

3

4

5

6 7

8
9

10

11

12

13

14

Figure 28: The point configuration of arrangement A(14, 116) with respect to the base re-
gion containing ≈ (0.38, 2.85,−7.85)
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4.3 congruence normality classification of simplicial arrange-
ments

As the number of regions of a rank-three hyperplane arrangement grows quadrati-
cally with the number of hyperplanes, its poset of regions becomes costly to construct
in practice when the number of hyperplanes gets large. Consequently, checking if a
given poset of regions is obtainable through doublings of convex sets becomes im-
practical. If one uses shards as geometric objects to determine congruence normality,
then one needs to determine polyhedral cones contained in each hyperplane and the
dimensions of intersection for pairs of shards. In contrast, the combinatorial methods
developed in Section 4.2 make the determination of congruence normality for posets
of regions of rank-3 hyperplane arrangements tractable and could be extended to
higher dimensions given a method for determining the covectors of the oriented ma-
troid. Additionally, the oriented matroid approach makes it possible and natural to
check congruence normality for non-realizable oriented matroids.
One of the motivations for studying congruence normality is to better understand

simplicial hyperplane arrangements. In rank 3, the number of simplicial hyperplane
arrangements is unknown [33, 62]. So far, three infinite families and 95 sporadic
arrangements have been found. It is conjectured that there are only finitely many
sporadic arrangements. The largest sporadic arrangement found so far has 37 hy-
perplanes. In this section, we apply our reformulation of shards as shard covectors
to classify which of the known simplicial hyperplane arrangements of rank 3 are
congruence normal. This verification was carried out using Sage [91]. The computa-
tions took around 18 hours on 8 Intel Cores (i7-7700 @3.60Hz). The verification for
each poset of regions was computed independently, for example the cocircuits were
recomputed for each reorientation of the set of normals, but the computations of
intersections on covectors were cached. The computation could be further improved
by applying the reorientation on cocircuits directly in order to avoid recomputing
them.
Our results are summarized in Table 2. We use the following notation: A(m, r)i

denotes the i-th hyperplane arrangement with m hyperplanes and r regions. The
hyperplane arrangement in the i-th infinite family with m hyperplanes is denoted
Fi(m), see Section 4.3.3. We refer to congruence normality using the acronym CN
and use NCN for non-congruence normality. The normals of the 119 arrangements
from the known sporadic arrangements and two of the infinite families as well as the
corresponding wiring diagrams are listed in Appendix of [34]. The list includes the
sporadic arrangements and the arrangements from the infinite families with at most
37 hyperplanes.
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PB(A) always CN PB(A) sometimes CN PB(A) never CN

Rank-3 Finite Weyl Groupoids F2(m) (m ≥ 10) A(22, 288)
(including F2(m) (m ≤ 8) F3(m) (m ≥ 17) A(25, 360)
and F3(m) (m ≤ 13)) 41 arrangements A(35, 680)

A(15, 120)
A(31, 480)
F1(m)

55 arrangements 61 arrangements 3 arrangements
see Section 4.3.1 see Sections 4.3.2 and 4.3.3 see Section 4.3.4
and Table 3 and Table 4 and Table 5

Table 2: Classification of rank-3 simplicial hyperplane arrangements with at most 37 hyper-
planes according to the congruence normality of their posets of regions

Table 2 provides material to check the veracity of [81, Conjecture 145], which
postulates the existence of certain “shard” polytopes for tight congruence normal
arrangements. Section 4.3.1 looks at the arrangements that are always CN, Sec-
tion 4.3.2 at the arrangements that are sometimes CN, and Section 4.3.4 at the
arrangements that are never CN. In Section 4.3.5 we finish by discussing these
results and compiling related questions.

4.3.1 Always CN simplicial arrangements

Fifty-five of the 119 arrangements are congruence normal, that is, for any choice of
base region, the poset of regions is congruence normal, see Table 3.

Finite Weyl Groupoids

F2(6) = A(6, 24)
A(7, 32)

F2(8) = A(8, 40)
F3(9) = A(9, 48)

A(10, 60)1

A(10, 60)2

A(11, 72)
A(12, 84)1

A(12, 84)2

F3(13) = A(13, 96)1

A(13, 96)2

A(13, 96)3

A(14, 112)1

A(15, 128)1

A(16, 144)1

A(16, 144)2

A(17, 160)1

A(17, 160)2

A(17, 160)3

A(18, 180)1

A(18, 180)2

A(19, 192)1

A(19, 192)2

A(19, 200)1

A(19, 200)2

A(19, 200)3

A(20, 216)
A(20, 220)1

A(20, 220)2

A(21, 240)1

A(21, 240)2

A(21, 240)3

A(22, 264)1

A(25, 336)1

A(25, 336)2

A(25, 336)3

A(25, 336)4

A(26, 364)1

A(26, 364)2

A(27, 392)1

A(27, 392)2

A(27, 392)3

A(28, 420)1

A(28, 420)2

A(28, 420)3

A(29, 448)1

A(29, 448)2

A(29, 448)3

A(30, 476)
A(31, 504)1

A(31, 504)2

A(34, 612)1

A(37, 720)1

Others

H3 = A(15, 120) H∗3 = A(31, 480)

Table 3: List of congruence normal rank-3 simplicial arrangements

Fifty-three of these arrangements come from finite Weyl groupoids of rank 3 [35].
Finite Weyl groupoids correspond to (generalized) crystallographic root systems.
In the present context, affine point configurations A∗B play the role of these root
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systems. A root system is crystallographic if there exists a choice of normals
{ni}i∈[m] for the hyperplanes such that for any base region, all normals are integral
linear combinations of normals to the basic hyperplanes [31, Section 1]. Given a base
region B, denote the set of rays of span+(A∗B) by ∆ and call the elements of A∗B
the positive roots. A positive root pi ∈A∗B is constructible if

ni ∈ ∆ or ni = nα + nβ,

where α,β ∈A∗B. We call A∗B additive if every positive root in A∗B is constructible.
If A∗B is additive, then it is possible to define the root poset (A∗B,≤) by

pi ≤ pj ⇐⇒ nj − ni ∈N∆.

The following is a fundamental result about finite Weyl groupoids.

Theorem 4.3.1 ([31, Corollary 5.6] and [35, Theorem 2.10]). A simplicial arrange-
ment A corresponds to a finite Weyl groupoid if and only if A∗B is additive for every
choice of base region B.

Theorem 4.3.1 leads directly to the following theorem, which provides a new proof
that finite Coxeter arrangements are congruence normal [26, Theorem 6].

Theorem 4.3.2. Let A be the hyperplane arrangement of a finite Weyl groupoid W.
For any choice of base region B, the lattice of regions PB(A) is congruence normal.

Proof. Via the contrapositive statement, having a cycle in the graph HB(A) is a
necessary condition for PB(A) not to be congruence normal. By Corollary 2.5 in [35],
such a cycle between hyperplanes yields a cycle in the order defining the root poset
of A∗B. Hence, when PB(A) is not congruence normal, the positive roots A∗B do not
lead to a root poset. Thus A∗B can not be additive.

Remark 4.3.3. There are arrangements such that A∗B is additive, but there is no
relation between pj and pi in the root poset for two positive roots pj and pi with
Hi ∈ pre(Hj). The additional assumptions that the arrangement is simplicial and
A∗B is additive with respect to every base region ensure the relation exists.

There are two additional CN arrangements that do not stem from finite Weyl
groupoids. Arrangement A(15, 120) is the Coxeter arrangement for the Coxeter
group H3 and arrangement A(31, 480) is its point-line dual. As discussed in [39],
there is a root poset for H3 supporting the fact that its arrangement is always con-
gruence normal. The dual arrangement A(31, 480) is also always congruence normal,
as we verified directly. Is there a proof of congruence normality for A(31, 480) using
duality with H3?

4.3.2 Simplicial arrangements that are sometimes congruence normal

Sixty-one of the 119 arrangements are congruence normal for some base regions and
not congruence normal for others, see Table 4. Among them is the arrangement
A(10, 60)3 which appeared in Example 4.1.13.
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Name CN NCN

F2(10) = A(10, 60)3 40 20
F2(12) = A(12, 84)3 36 48

A(13, 104) 24 80
F2(14) = A(14, 112)2 28 84

A(14, 112)3 72 40
A(14, 116) 40 76
A(15, 128)2 72 56
A(15, 132)1 60 72
A(15, 132)2 48 84
A(16, 140) 120 20

F2(16) = A(16, 144)3 32 112
A(16, 144)4 84 60
A(16, 144)5 108 36
A(16, 148) 52 96

F3(17) = A(17, 160)4 96 64
A(17, 160)5 120 40
A(17, 164) 76 88
A(17, 168)1 48 120
A(17, 168)2 48 120

F2(18) = A(18, 180)3 36 144
A(18, 180)4 84 96

Name CN NCN

A(18, 180)5 120 60
A(18, 180)6 120 60
A(18, 184)1 100 84
A(18, 184)2 72 112
A(19, 200)4 120 80
A(19, 204) 72 132

F2(20) = A(20, 220)3 40 180
A(20, 220)4 120 100

F3(21) = A(21, 240)4 80 160
A(21, 240)5 120 120
A(21, 248) 88 160
A(21, 252) 36 216

F2(22) = A(22, 264)2 44 220
A(22, 264)3 168 96
A(22, 276) 60 216
A(23, 296) 112 184
A(23, 304) 8 296
A(24, 304) 112 192

F2(24) = A(24, 312) 48 264
A(24, 316) 184 132

Name CN NCN

A(24, 320) 24 296
A(25, 320) 288 32

F3(25) = A(25, 336)5 48 288
A(25, 336)6 48 288

F2(26) = A(26, 364)3 52 312
A(26, 380) 20 360
A(27, 400) 48 352

F2(28) = A(28, 420)4 56 364
A(28, 420)5 84 336
A(28, 420)6 84 336
A(29, 440) 136 304

F3(29) = A(29, 448)4 56 392
A(30, 460) 240 220

F2(30) = A(30, 480) 60 420
F2(32) = A(32, 544) 64 480
F3(33) = A(33, 576) 64 512
F2(34) = A(34, 612)2 68 544
F2(36) = A(36, 684) 72 612
F3(37) = A(37, 720)2 72 648

A(37, 720)3 96 624

Table 4: Simplicial arrangements that are sometimes congruence normal

Reading proved that the poset of regions of a supersolvable hyperplane arrange-
ments is congruence normal with respect to a canonical base region [85, Theorem 1].
In rank 3, the infinite families are exactly the irreducible supersolvable ones [38,
Theorem 1.2]. However, we show below that F2(m) with m ≥ 10 and F3(m) with
m ≥ 17 always have a base region for which the associated lattice of regions is not
congruence normal. For F2(m) with m ≤ 8 and F3(m) with m ≤ 13, the posets of
regions are always congruence normal, see Section 4.3.1.

4.3.3 Congruence normality for the infinite families

There are three infinite families of rank-3 simplicial hyperplane arrangements [61].
The first family, F1(m) with m ≥ 3 is the family of near-pencils in the projective
plane with m hyperplanes. The second family, F2(m), for even m ≥ 6 consists of
the hyperplanes defined by the edges of the regular m

2 -gon and each of its m
2 lines

of symmetry. The third family, F3(m), for m = 4k + 1, k ≥ 2, is obtained from
F2(m− 1) by adding the line at infinity. Examples of these families are illustrated
in Figure 29.
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F1(6) F2(10) = A(10, 60)3

∞

F3(9) = A(9, 48)

Figure 29: Arrangements from the three infinite families of simplicial arrangements of rank
3 drawn in the projective plane

Theorem 4.3.4. The near-pencil arrangements of F1(m) are congruence normal.

Proof. There is exactly one rank-2 subarrangement with at least three hyperplanes.
Thus, for any choice of base region, the length of any path in the directed graph on
shards is at most one, so there are no cycles.

Theorem 4.3.5. The second family F2(m) is sometimes congruence normal for
m ≥ 10.

Proof. In rank 3, the infinite families are exactly the irreducible supersolvable ones,
thus there exists a canonical choice of base region such that the poset of regions
is congruence normal [38, Theorem 1.2]. On the other hand, with respect to a cer-
tain choice of base region, there is a guaranteed four-cycle in the shards as demon-
strated in Figure 30. The figure shows the arrangement on two projective planes and
how some of the hyperplanes intersect at infinity. To represent the central, three-
dimensional hyperplane arrangement, we intersect it with the unit sphere at the
origin, and use two centrally symmetric planar charts, giving the left and the right
sides of the image, which are glued together in the middle by the hyperplane (a
dotted line in this case) at infinity. Let the base region be bounded by e1, e2, and
r2. At point 1, the hyperplane e5 is cut by r5. At point 2, the hyperplane r6 is cut
by e5. At point 3, the hyperplane e4 is cut by r6. At point 4, the hyperplane r5 is
cut by e4. Thus there is a cycle in the shard digraph. Adapting this procedure when
m ≥ 14 similarly provides a 4-cycle for every member of F2(m).



120 congruence normality of simplicial hyperplane arrangements

e1

r5

r6

e4

r4e6r3e3r2e5r1e2

1

2 3

4

∞

Figure 30: The simplicial hyperplane arrangement A(12, 84)3 from F2 whose lattice of re-
gions with the marked base region is not congruence normal

Theorem 4.3.6. The third family F3(m) is sometimes congruence normal form ≥ 17.

Proof. The proof is similar to that of Theorem 4.3.5. For m ≥ 17, a four-cycle
among shards still occurs, and its location relative to the base region is illustrated
in Figure 31 for m = 17. The line at infinity is included in these arrangements, and
one of the intersection points in the cycle occurs in a rank-2 subarrangement that
includes the hyperplane at infinity. Relative to the plane graph, the cycle involves
the same description as a embedded cycle for the family F2.

r8

r7

r6

r5r4r3r2r1

e1

e2

e3e4

e5

e6

e7e8

1

2

3

4

∞

Figure 31: The simplicial hyperplane arrangement A(17, 160)4 from F3 whose lattice of
regions with the marked base region is not congruence normal

4.3.4 Never CN simplicial arrangements

Three of the known simplicial arrangements of rank 3 are never congruence normal,
see Table 5. That is, there is no choice of base region such that the lattice of regions
is congruence normal. The first arrangement is an arrangement with 22 hyperplanes
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with normals related to
√

5, see Figure 32. The second arrangement has 25 hyper-
planes with normals related to

√
5 and is shown in Figure 33. The third arrangement

is the new sporadic arrangement found in [33]. It is the only known arrangement
with 35 hyperplanes and is illustrated in Figure 34. We are not aware of any geomet-
ric explanation for the provenance of these arrangements and why they are never
congruence normal.

Table 5: Simplicial arrangements that are never congruence normal

Figure 32: The point configuration A(22, 288)∗. Three points are not shown and can be
obtained by continuing the line segments.
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Figure 33: The point configuration A(25, 360)∗. Three points are not shown and can be
obtained by continuing the line segments.

Figure 34: The point configuration A(35, 680)∗. Three points are not shown and can be
obtained by continuing the line segments.

4.3.5 Observations and consequences

We make a few remarks on the verification and its implications. The number of
shards do not depend on the choice of base region: indeed, [81, Lemma 146] says
that in a simplicial arrangement, the number of shards is the number of rays in
the arrangement minus the dimension. So, computing the number of shards leads
to the number of facets of the corresponding simple zonotope. For rank-3 simplicial
arrangements, the number of shards is one less than half the number of regions. For
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example, the arrangements A(30, 480) and A(31, 480) have different numbers of
hyperplanes but the same number of shards and regions.
Finally, we end with questions that arose from this investigation.

question 1 What is the relationship between polygonal and semidistributive lat-
tices?

question 2 Is there a hyperplane arrangement with at most 8 hyperplanes that
yields a tight poset of regions which is not congruence normal?

question 3 Is there a proof of congruence normality for A(31, 480) using dualty
with H3?

question 4 Is there a geometric explanation for the provenance of the three ar-
rangements that are never congruence normal? Are the posets of regions all
isomorphic?

question 5 Reading used “signed subsets” to describe when an edge occurs be-
tween two shards in type A and B [86]. Can shard covectors be used in con-
junction with positive roots to describe forcing on shards?

question 6 Apart from being dual to 2-neighborly, what can be said about the
combinatorial types of the regions in a tight hyperplane arrangement?
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