Chapter 2

Theoretical Background

In this chapter we provide a concise introduction to the two pillars of annotated align-
ments: the concept of profiles for representing and searching transcription factor binding
sites (TFBSs) and the concept of alignments for extracting conserved regions. Indeed, we
view annotated alignments simply as alignments with parts assigned to putative conserved
TFBSs. Section deals with the first aspect wherein we formalize the path from experi-
mental data to position-specific scoring matrices (PSSMs) and describe their applicability
for searching putative TFBSs (Section[2.1.3). In Section we review standard alignment
concepts including algorithms and choice of scoring schemes. At the onset though, we begin
with notations that will be used throughout the thesis.

Terms and notations  Let X be a finite alphabet, in our context consisting of the DNA
nucleotides A, C, G, and T. Hence, |X| = 4. A string u of length p from this alphabet is
represented as u = (ujuz ... up) where each u; € ¥. A substring u;; = (u; ... u;) denotes
the contiguous string of letters from ¢ to j of u, where 1 < i < j < p. Hence for i = 1,
the resulting substring is u;; consisting of the first j letters of u and referred to as the gth
prefiz of u.

We describe a background probability distribution on ¥ given by the row vector m =
m(j), j € ¥, with non-negative entries that sum to one. This distribution represents the ge-
nomic properties, like GC-content, of the sequences under consideration. Unless otherwise
stated it is simply the uniform distribution with 7(j) = 0.25 for all j.

For the sake of simplicity, we restrict the upcoming discussions on profiles to one transcrip-
tion factor F, assumed to bind DNA segments of length [.

2.1 Binding site profiles

In Section we mentioned that a profile is a probabilistic model for representing a
collection of binding sites. In the following, we formally address the two objectives of a
binding site model:

1. to sufficiently represent the properties of the experimentally verified sites for both
comparative and generative purposes and,

2. to be straightforwardly applicable in predictive methods.
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Chapter 2 Theoretical Background

Starting with the estimation of TFBS profiles using experimental sites, we proceed then to
a discussion on the first objective. Following that we describe the construction of scores
from probabilities and use them to address the second objective. Much of what follows is
on the lines of well-established methods and we refer the interested reader to articles by
Staden [I85], McLachlan [129], Tatusov et al. [192], Hertz and Stormo [80] and Rahmann et
al. [158] for details.

2.1.1 From sites to probabilities

The experimental sites of the factor F can be aligned to generate counts of observed nu-
cleotides at each position. These are used to formulate a position-specific count matrix
PSCM, with entries PSCM;; (¢ = 1,...,l;j € X) representing the number of occurrences of
nucleotide j at position 4 in the alignment. To prevent rejecting the possibility of observ-
ing a previously un-observed nucleotide at a position, the count matrix is regularized: a
pseudocount is added to each entry. This also prevents singularities in the scores calculated
later.

The probability of observing a nucleotide j at position ¢ is then estimated by taking the
ratio of the regularized PSCVM;; to the total number of experimental sites, modified according
to the regularization. This gives rise to the signal profile P with P?(j) being the probability
of observing nucleotide j at position ¢. To maintain consistency in notation, we name the
matrix composed of these probabilities as the position-specific probability matriz PSPM with
PSPM;; = P(j).

Generative Use Equipped with a probabilistic description of the binding sites, it is
now possible to sample new instances. A random instance of the signal profile can thus
be generated simply by sampling letters at each position i using P?. For a string u, the
probability that it is generated by the signal profile P is:

l
Pp(u) = [ [P (w) (2.1)
=1

Note the underlying assumption here that each position is independent of the others. That
is, observing a nucleotide at one position does not influence the probability of observing one
at another position yielding the product in Equation. For computational tractability
where precision is often a limiting criterion, usually it is preferable to work with integral
scores instead of this product of probabilities. This leads us to the concept of position-
specific scoring matriz (PSSM) or position-specific weight matriz (PWM).

2.1.2 From probabilities to scores

Our goal is to decide whether a window W of length [ is a site (ie. sampled from P) or
a non-site. To this end, a background model is required for the specification of “non-site”
properties. Although Markov models from zero to third order have been employed for
background modeling, the uniform distribution defined in Section [2] suffices for our purpose
here. We represent the background profile by Il = (II;) = «, (i = 1,...,[); a non-site is
assumed to be sampled from this profile.
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2.1 Binding site profiles
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Figure 2.1: Formulation of the
scoring matric. a) An exam-
ple position-specific count matrix re-
trieved from TRANSFAC (Identifier
(Id) M00142). The experimentally
verified sites are aligned to retrieve
the frequency or count matrix de-
picted on left. b) Regularized
position-specific probability matrix or
profile for the above given count ma-
trix. The regularization techniques
to remove zero entries follow Rah-
mann et al. [I58]. c) Finally, the
position-specific scoring matrix for
the same profile. Care is taken to
round and scale the scores to yield
integral entries. Note the difference
between the initial counts and the
final scores is the consideration of
a background distribution. d) Se-
quence logo of the consensus motif
for this profile. Vertical height of the
individual letters represent the infor-
mation content, while horizontal axis
corresponds to the position in a motif.
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Chapter 2 Theoretical Background

The score of a string u is calculated as a scaled log-odds ratio of the probabilities of
observing u under the signal profile P and the background profile II:

-Em(E) e

where c is the scaling constant. This implies that comparing the probabilities of observing
a nucleotide j at a position ¢ under both the models gives rise to the elements of the
scoring matrix, or PSSM;; = clog(P%(5))/(w(j)). In this way, each nucleotide in the string
is scored yielding the Equation A string with a strongly positive score is assumed to
be an instance of the signal profile. This can be seen from Equation which then implies
that the probability that the string is a signal instance is higher. Figure illustrates the
process of arriving at a position specific score matrix from the experimental data using an
example.

Pp(u
(

Score(u) = clog <PH u;

We are now in a position to address the usability of the above-derived PSSM in predictive
applications. In the following, a TFBS hit is a window that is predicted as a putative
binding site. Consider a sequence of length n + 1 — 1 with n overlapping windows of length
[ each. Our objective is to identify putative binding sites of the factor on this sequence.

Predictive Use Using the PSSM as a scoring tool, each [-length window in the sequence
is scored to check for putative hits. More formally, we can define the binding site searching
problem as:

Using a given PSSM, find all positions j in a sequence where a starting
window W (j) of length | scores greater than a pre-defined threshold t.

The choice of the threshold is crucial: it should be high enough to limit false predictions
(background sites that score higher than ¢) and still not too high to be attainable by true
sites. Thus, a derivation of ¢ that a) takes background sequence composition into account,
and b) is independent of the considered TFBS profile, is required. To this end, it is preferred
to use a desired p-value or power setting to calculate the score cutoff. Although numerous
other techniques for threshold derivation have been proposed, using a p-value or power
cutoff is by far the most statistically well-founded ([158, O8], etc.).

For use of profiles for predictive purposes, we therefore need to describe how we arrive at
a score threshold. We outline the procedure to derive the cutoff in a testing framework
and use it to re-phrase the binding site search problem. Again for computational ease, we
assume that all calculations take place in the integer set. To this end, original PSSM scores
are assumed to be appropriately scaled and rounded to obtain an integer range. For further
insight into issues involved in regularization, scaling and rounding as well as for details in
the upcoming discussion, we refer the reader to the work of Rahmann et al. [158)].

2.1.3 Searching for binding sites - a statistical testing framework
Let X = Score(W), the score of a window W, be a discrete random variable which takes

values from a finite set of integers I'. Let Pp and Py represent the two probability distribu-
tions associated with X. The former gives the probability that the window W is generated
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2.1 Binding site profiles

] background Figure 2.2: An example of score distri-
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the binding site profile of the factor
HOXA3 (TRANSFAC ID M00395). The
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ing type | and type Il errors measured.
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by the signal profile P and the latter the probability that W is generated by the background
profile II. We wish to distinguish between the two using statistical inference.

Let Hy be the null hypothesis that W is generated by the background profile. That is,
X is distributed according to II. The alternative hypothesis Hp is that it is generated by
the signal profile, implying X is distributed according to P. Taking the likelihood ratio
LLRp (W) of observing W under both the models as the test statistic, Hy is rejected iff
LLRp (W) > t, for a pre-determined threshold ¢. That is,

LLRp (W) := log <§EE$;) = zljlog (i?&?/?))) > ¢

=1

Two types of errors are possible here. If Hy is rejected when it is true, then it gives rise
to a type I error or a false positive (FP). This implies a background window that scores
greater than ¢t and hence is wrongly predicted as signal window. On the other hand, if Hy
is accepted when it is false, then we have a type II error or false negative (FN). This is the
case when a known site scores below the threshold and is missed. Correct predictions in
each case are referred to as true positives (TP) and true negatives (TN), respectively. In
Fig we show two overlapping distributions, presumably representing the background
and the signal. It can be seen that the above-defined terms correspond to different areas
under the curves depending on the threshold, as highlighted.

For our problem of searching for putative binding sites in a sequence of length n + 1 — 1,
this test is performed for n overlapping windows. Since the windows are not independent,
calculating the exact type I and type II errors for the whole sequence is not trivial; approxi-
mations are required. In their work, Rahmann et al [I58] provide recipes to calculate these
sequence level errors using independence assumptions. We present their results next.

Adopting the notations of the authors we call:

e «a(t): as the type I window error probability. It represents the probability of observing
a score of at least ¢, given that a window is generated by the background model:

a(t) = Pp(X > t) (2.3)

In other words, the area under the background distribution curve where the scores
exceed the threshold t.
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Chapter 2 Theoretical Background

e ay,(t): as the type I sequence error probability. It is the probability that at least one
out of n consecutive overlapping windows scores greater than a pre-defined threshold
t, given that the sequence is generated by the background model. If X (i) is the
random variable describing the score of the i window W (i), this means:

ap(t) :=Pr(max X (i) > t) (2.4)
i€[1,n]

There are two points worth mentioning here. First, a sequence of n windows has a
higher probability of error than a single window, and so «,(t) is much higher than
a(t). And second, the type I sequence error probability is the same as the sequence p-
value, the likelihood of exceeding the threshold on a background generated sequence.
Hence, if a desired p-value level « is given, it should be possible to calculate the score
cutoff ¢ such that a,(t) < a.

e (3(t): as the type II window error probability. This is the probability that a score
below ¢ is observed given that a window is generated by the signal model:

B(t) := Pp(X < t) (2.5)

That is, the area under the signal distribution curve where the scores are below the
threshold ¢.

e [(t): as the m-instance type II error probability. It is impractical to say that
the whole sequence is generated by the same signal profile. Hence, we consider m
independent signal instances and [,,(t) represents the probability that at least one
out of m instances scores less than ¢, given that all are generated by the signal model.
That is,

Bm(t) :=Pp(X (i) < t for at least one 1) (2.6)

Note that the power of the m-instance test is then defined as 1— 3,,(t), the probability
of recovering all instances given that they are generated by the signal model. Again,
given a desired type II error level 3 the score cutoff ¢ should be such that 3,,(t) < S.

By assuming that consecutive windows are independent of each other, the sequence level
type I error can be calculated using the window level type I error and is simply given by:

an(t) ~1—(1—at)"
~ 1 — exp(—na(t)) (2.7)

Similarly, assuming that each of the true instances are independent of the others, 3,,(t) can
be calculated as:

Bm(t) =1 —(1=p()"
~ 1 —exp(—mpg(t)) (2.8)
~ mp(t), it mp(t) <1

Hence, both the sequence level errors can be approximately calculated using their window
level counterparts. Each of the window errors themselves can be calculated using the score
distributions under the respective models. Therefore, if the score distributions are known
then it is possible to calculate the score cutoff that corresponds to the desired error levels.
The choices are the ones corresponding to a fixed type I error level (type I cutoff), a fixed
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2.1 Binding site profiles

type II error level (type II cutoff) and when both errors are equal (balanced cutoff )([158]).
Sometimes, minimizing the sum of the type I and type II errors is also considered ([98]).

At this stage, it is now essential to address the issue of efficiently calculating the score
distributions under both the models. Initial works of McLachlan [129], Staden [I85] and
Tatusov et al. [192] describe methods to compute recursively the probability of observing
a score given a model. Wu et al. [220], Rahmann et al. [158], Beckstette et al. [16] and
Malde et al. [T18] have since then presented variations of the basic recursive approach to
calculate exact or approximate score distributions. As in our other expositions, we stick to
the method prescribed by Rahmann et al. [I58] who describe an approach for calculating
exact distributions in O(I|T'||X]) time. We restrain from providing detailed formalism (and
refer the interested reader to the article [158]), instead after a succinct overview of the idea,
we use a simple hypothetical example to walk through the procedure.

For the following, we assume that the scores are properly discretized with the integral range
of scores given by I' and that the score distribution is being calculated for the signal profile
P (though also valid for the background profile II). Let us again use the random variable
X = Score(W) for the score of a window. The random variable X; represents the score at
the i*" position and X represents the score till the it" position in the window.

Calculation of Score distributions  To start with, there are a few observations about the
above-defined scores that should be highlighted here. First, since the positions in a window
W are assumed independent, the total score of the window is the sum of the scores at the
individual positions X;. Second, using the position-specific nucleotide distribution given by
P, it is straightforward to calculate the probability of observing a score at a position i:

P(Xj=2)= Y Pia) V zel (2.10)
a€l,
PSSM;q=x

Using P, the probabilities for possible scores at the first position (f!(z)) can be calculated,
leading to the initialization step. Hence, it is possible to calculate the probability of ob-
serving a score till the position (i + 1) recursively by combining the accumulated values
till the *" position and the value at the position (i 4+ 1). In other words, by taking the
convolution of the two values. If we denote f**!(z) as the probability to observe a score x
till the position (i 4 1), then this means:

f@) =Y PX' =a) - P(Xi1 =z — )

z'el’
S fE) Y P (2.11)
z'el’ aes

PSSM; 1 1 g =2—a"

Finally, the score distribution for the window length is simply f!(z). Hence, the basic idea
involves two main steps: consider all scores that can be generated using the PSSM and use
the profile (background or signal) to find the probability of observing the scores under the
respective model as described above. This can be viewed as tracing all possible paths in the
scoring matrix. The probability of a score depends solely on the probabilities of observing
the nucleotides that contribute that score, irrespective of the nucleotides themselves. In
Figure a simple hypothetical example is presented to elucidate the method.
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Figure 2.3: FEzample. For the score distribution calculation under the signal profile given by
a) with the scoring matrix shown in b). Each column of circles in c) represents a position
in the scoring matrix, the values inside the circles representing the scores of observing each
nucleotide at this position in the profile. The values on top of the circle correspond to the
probability of observing the corresponding nucleotide at the position (A, C, G and T from top
to bottom). Each arrow has an associated score (above) that is calculated as the sum of the
scores of nucleotide at position ¢ to another at position j and an associated probability (below)

obtained as a product of the individual probabilities.
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2.2 Standard pairwise alignments

2.2 Standard pairwise alignments

In Section (Chapter [1)) we broadly discussed sequence comparison strategies, focusing
on dynamic programming based alignment approaches. We provided a succinct description
of the alignment model and associated scoring scheme which forms the basis of the present
work. In this section, we narrow our focus to formally discuss the ingredients of standard
alignments — the dynamic programming algorithm and the standard parameter choice. In
Section we introduce three probabilistic models for modeling evolutionary processes
such as nucleotide substitutions. It is through such models that the values of the scores
introduced in the first half of the section are calculated.

2.2.1 Dynamic Programming Algorithm

The dynamic programming approach consists of three elements: recursion rule with proper
initialization conditions, tabular computation and finally a traceback procedure to generate
the alignment. The idea is to break a bigger problem into several smaller component
problems and use the results of a predecessor problem for successive calculations. For
alignments, this involves calculating the best alignment up to a certain point in the two
sequences and extending it to get the overall optimal. An intuitive way of representing an
alignment is as a path through an (m + 1) x (n 4+ 1) dynamic programming matrix M with
the row and column indices given by x and y. From each point in the matrix three kinds of
edges can be drawn — a diagonal edge implying an aligned pair, a horizontal edge a deletion
in z and a vertical edge an insertion in . The matrix is initialized here as following:

M(i,0) =M(0,5) =0, V0 <i<m,0<j<n (2.12)

Linear Gap Costs At every point (7,j), the algorithm chooses the optimal alignment
between the substrings xz1; = (21...2;) and y1; = (y1...y;). There are three possible
scenarios for the optimal alignment ending at x;, y;:

e cither x; is aligned to y;, that is the alignment ends with a substitution. Here, the
substitution score s(z;,y;) needs to be added to the optimal score M(i — 1,5 — 1) to
get the new score at (3, j).

e or, z; is aligned to a gap in y (a deletion), in which case a gap cost is subtracted from
M(i — 1,7) to yield the score at (i, j).

e or y; is aligned to a gap in z (an insertion) which is symmetric to the previous case.

Comparing between the three possibilities gives rise to the recursion rule for global align-
ments (in the NW algorithm, dynamic programming matrix shown in Figure . Extend-
ing to local alignments requires allowing the additional possibility to take the value 0 if the
maximum score less than 0, which leads to:

0,
< M(i_17]_1)+s(xl7y])7
M(z,7) = max i 2.13
(6.4) M(i—1,7) — g, (2:13)
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Figure 2.4: Dynamic Programming Matriz. In the left figure, the standard dynamic pro-
gramming matrix M for global alignment algorithm for the two sequences considered in the
example of Figure is shown. At each point in the matrix, the scores of three predecessor
points are compared (right). A diagonal arrow corresponds to a substitution, a vertical arrow
to a deletion and the horizontal arrow to an insertion. Note, that the recursion in the Smith-
Waterman local alignment algorithm still compares the three predecessor points and zero to
give alignments that need not cover the whole length of the sequences.

That is, M(7, j) is the maximum of 0 or the best score of an alignment ending at z; and y;.
If M(4, j) is derived from (i—1, 7 —1), then it is called a substitution (S). If it is derived from
(1,7 — 1), then it is called an insertion (I) and it is a deletion (D), if M(¢, j) is derived from
(1 —1,7). Also, whenever the value 0 is taken, a new alignment is started. Thus, the score
of a grid point can be calculated using the scores of three predecessor points (Fig. .

Finally, the alignment is found by tracing back from the point (i,j) with the maximum
score M(i, j) = Mmax, where Mpax = maxy  M(k,1), VO <k <m,0<1<n.

One way to compute the optimal alignment is to store back-pointers at each step during the
tabular computation. This implies storing the whole matrix leading to a space requirement
of O(n?) for a pair of sequences of length n each. Again, at each step constant number of
operations need to be performed yielding an O(n?) time complexity too.

Affine Gap Costs  In our discussion about scoring schemes in Section [I.4.2] we mentioned
that in reality it is less likely that each gap is a separate mutational event. Usually gaps are
introduced in spurts, and hence a gap cost system that considers longer gaps and penalizes
them less severely as compared to the linear gap cost presented before, is required. For
global alignments, a first effort in this direction was made by Waterman et al. [213]. They
considered multiple contiguous indel events and introduced a general gap cost function v(k)
dependent on the length k of the gap. Now a prefix in one sequence can be aligned to an
extended gap in the second, and hence all possible prefixes need to be compared to extend
the optimal alignment at a certain point:

M(i—1,7 —1) + s(i,y5),

M(i,7) = max{ M(i —k,j) —v(k) k
M(i,7 — k) — v(k) k

0,...,(i—1) (2.14)
0,...,(j—1)

As is usual, allowing flexibility increases complezity. Since at each step we have to look at
(i+47+1) positions, the complexity now increases to O(n?), making the approach infeasible
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2.2 Standard pairwise alignments

for realistic computations. A compromise between biological reality and computational
feasibility was reached when Gotoh [70] proposed an O(n?) algorithm for a special case of
the above-mentioned general gap cost system, namely the affine gaps.

The affine gap case considers two gap costs: a gap open cost g, that penalizes opening a
gap and is generally high, and a gap extension cost g, which penalizes extending an already
existing gap by a constant value which is usually lower than g,. A gap of length k is
penalized as:

Stotal = Zo T k x Le (2-15)

Hence, in the affine gap case the algorithm is encouraged to find continuous stretches of
matches and avoids opening a gap often. Once the gap is opened though, it is easier to
extend it rather than start a new one. This also prevents the algorithm from generating
an unrealistic alignment with all possible “align-able” pairs aligned with small gaps filled
in-between.

The local alignment version of the algorithm presented by Gotoh [70] is as follows. Instead
of calculating the two maxima directly in M, two new matrices D and I which store the
scores of the best alignments ending with a gap in either sequence, are introduced. Finally,
the three possibilities are compared to 0 to stop an alignment when the score is less than
0. The modified recursion rules are:

0,
M(z,7) = max . . 2.16
( ]) D(l—l,]—l)—FS(fL'i,yj), ( )
where the D and I entries are calculated as:

. M(i_laj)_goa
D(¢,7) = ma . . 2.17
R e e (2.17)

.. M(i, 5 — 1) — go,
1(7,j) = max S 2.18
(.9) {Iu,y—l)—ge (2.18)

Finally, analogous to the linear case, the alignment is found by tracing back from the
point (7,7) with the maximum score at maxy; M(k,l). For details on variations of the
basic dynamic programming algorithm, gap cost functions and other issues involved in
sequence comparisons, the reader is referred to introductory textbooks by Waterman [210]
and Durbin et al. [52].

2.2.2 Choice of Score Parameters

The quality of an alignment hinges on the appropriate choice of score parameters. As men-
tioned previously (Section , a useful scoring scheme is one that brings the biologically
correct alignment to the forefront by scoring it extremally. In the following, we will de-
scribe how substitution scores are usually derived and their interpretation in terms of the
underlying evolutionary model. We will also describe issues involved in choosing the correct
gap penalties and the common scoring matrix-gap penalty combinations used in standard
applications.
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Substitution Scoring Matrix  The choice of the substitution scores should allow one to
distinguish between nucleotide pairs that arise just by chance in an alignment and those
that are truly related. Let ¢ = (¢(u,v)), u,v € ¥, be a matrix giving the probability that an
aligned pair (u, v) is related. If we have at our disposal a set of pairs of homologous sequences
whose true alignments are known, then ¢ can be derived empirically by considering the
frequencies of observing (u,v) as an aligned pair in the true alignments (as is done in
the famous BLOSUM matrices [78]). The other (and older) approach is to approximate
evolutionary rates and probabilities of particular amino acid mutations to yield ¢ (as is
the case with the original PAM matrices [47]). Simply put, the idea is to relate ¢ to an
evolutionary process via a suitable probabilistic model and then compare it to a background
model, which we define next.

The background model corresponds to the other possibility that (u,v) are at an aligned
position only by chance — an independent observation of u and v in the respective sequences.
Using the background distribution introduced in Section [2| this yields the value 7(u)7(v)
as the probability of their being observed as an aligned pair.

The substitution scores are now interpreted simply as log-likelihood ratios comparing the
two possibilities. Keeping all score calculations in the set of integers, the substitution
scoring matrix s can be defined as:

s(u0) = calog (4000 (2.19)

The scaling constant cs is chosen to ensure sufficient precision of the log-odds ratios. It
is to be emphasized here that both the substitution scores and the gap costs (as well as
any new score parameters considered) should be treated consistently with respect to this
scaling.

The estimation of ¢ as well as 7 is not straightforward. Many evolutionary models ([90,
1011, 62, [76], [193]) have been proposed that model the dependencies between two sequences
and provide an estimate for ¢. This of course is advantageous since the scores then are
directly connected to a possible evolutionary substitution process. We will discuss three
such models in Section 2.2.3

As a side note, it should be pointed out here that given an arbitrary substitution matrix,
it is possible to retrace the path to the evolutionary probabilities given by ¢. This can be
seen from the equation which on re-writing yields:

d(u,v) = 7(u)mw(v)esWv)/c (2.20)

and since ¢ is a probability distribution, therefore:

> plu,v) =1 (2.21)

uU,VEY

Thus, given s and a background distribution , it is possible to retrieve cs and the sub-
stitution probabilities of the underlying evolutionary model. Indeed, in their works Karlin
and Altschul ([95, [5, ©4]) showed that any arbitrary substitution scoring matrix can be
rewritten as a log-odds matrix, with a proportionality constant, that describes the “target”
distribution ¢.
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Commonly used substitution matrices include the PAM (Accepted Point Mutation) family
of matrices [47] and the BLOSUM (BLOcks SUbstitution Matrices) family of matrices [78§].
For human-mouse comparisons the HOXD70 matrix [42] has been shown to be effective for
DNA sequences and is used as the standard scoring matrix for the BLASTZ program [176].

Gap Costs  While the derivation of the substitution scores is more or less concrete, the es-
timation of an appropriate gap cost poses considerable challenge. Analogous to substitution
scores, gap costs also need to reflect the evolutionary distance between a pair of sequences;
the closer the sequences, the higher the gap costs. In their review article, Vingron and Wa-
terman [203] present the influence of the gap cost choice on alignment scores. They showed
that alignment scores have a phase transition from linear to logarithmic regime as the gap
costs increase. Linear phase is uninteresting since it corresponds to additional gaps being
inserted (lower gap costs) to align more matches. This yields alignments which are long
purely because of more but scattered matches. To retrieve biologically relevant alignments,
hence the gap costs should yield alignment scores in the logarithmic phase.

Despite the immense research [95], [136], 203, (152 153), [160] there is still no strict prescription
for the selection of gap penalties. In an empirical study on protein sequences, Reese and
Pearson [160] showed that while the gap opening cost changes as a function of the divergence
between two sequences, the gap extension cost does not. Hence, usually the gap opening
cost is chosen taking evolutionary distance, alignment algorithm and substitution scores
into account and the gap extension cost is taken as 10% of the gap opening costs.

In practice, most applications for sequence alignment provide the user a selection of sub-
stitution matrix-gap cost combinations. For example, the BLASTZ alignment program by
default uses the HOXD70 scoring matrix with gap costs of —400 and —30, respectively. The
emboss suite of alignment programs has the default scoring matrix for DNA with match,
mismatch and gap costs given by 5, —4, 10 and 0.5, respectively. For extracting short highly
conserved regions in human and mouse, Dieterich et al. [50] derived a substitution scoring
matrix based on a Kimura model [I01] normalized to a distance of 1 PAM and propose gap
cost settings of 2189 and 99.5, respectively.

2.2.3 Evolutionary Models

Through alignments, we wish to decide whether a pair of sequences from different organisms
evolved from a common ancestral sequence. At each position in the ancestral sequence, an
evolutionary process consisting of mutational events like substitutions, insertions, deletions,
etc. occurs. The intuition is that during the passage of time, an ancestral sequence accu-
mulated such changes to yield non-identical but similar sequences whose common elements
reflect conservation. Evolutionary models are a way to model this process of evolutionary
change probabilistically. In the following, we first provide a brief overview of the basic
concepts and then describe three evolutionary models of interest to us. Although sophisti-
cated approaches that model indels have been proposed [193], our focus here is restricted
to modeling substitutions only.

Basics We begin with the assumption that the evolutionary process at each site (note the
difference to multiple-base binding sites of Section [2.1]) can be modeled independent of the
others using a first order Markov chain. The DNA nucleotides A, C, G and T constitute the
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state space of this chain. Let p(u,v,t) denote the probability of transition from nucleotide
u to v in time interval t. These can be used to formulate the transition probability matrix
P(t) = p(u,v,t), u,v € ¥ with >, p(u,v) =1, p(u,v) > 0 for a given time interval ¢.

The Markov process is assumed to have the following properties:

e time homogeneity: transition probabilities in a time interval remain same irrespective
of the starting time point. In matrix notations, this leads to:

Pit+t)=P(t) -P(t)

e stationarity: the probability distribution over the nucleotides remains same over time.
Assuming that each nucleotide can mutate to any other, this implies that the over-
all nucleotide distribution 7 remains same despite evolutionary change. Hence, the
process is assumed to be in equilibrium with 7 being the equilibrium (stationary)
distribution.

e reversibility: the overall probability of change from u to v in time ¢ is equal to that
from v to u in the same time. That is, 7(u)p(u,v) = w(v)p(v,u) for all u,v € ¥ and
time t.

For infinitesimally small time increment A > 0, the time homogeneity property yields:
P(t+h) =P)P(h)

which on subtracting P(¢) from both sides, dividing by h and taking limit A — 0, yields
the rate of change:

aP(1) . PUP() - P()
dt hlb
—p(o i P(0+ h) — P(0)

The second equality above follows from the observation that there is no change when no
time elapsed, P(0) = I, the identity matrix. Thus,

P'(t) = P(t)P'(0) (2.22)
Denoting P’(0) by Q , the instantaneous rate matriz, leads to:
P'(t)=P()-Q (2.23)

The instantaneous rate matrix Q gives the instantaneous rate of transition q(i,7) from
nucleotide i to j. The diagonal entries q(i, 7) are negative and off-diagonal entries q(¢, j), j #
i positive to ensure each row sums to zero. Using the initial condition P(0) = I, since at
initial time we start from a constant state, solving the above differential equation results
in:

P(t) = ¥ (2.24)

Thus, given an instantaneous rate matrix, it is possible to calculate the transition probabil-
ities as a function of time. It is in the formulation of this matrix Q that most evolutionary
models differ.
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2.2 Standard pairwise alignments

A C G T | A C G T
Al = p/d op/4 p/d Al = pm(C) pm(G)  pm(T)
Clu4d - p/d p/4 C|lupr(A) = pm(G) pm(T)
Glp4 p/4 - p/d G| pm(A) pm(C) - pm(T)
T | w4 w4 p/4d — T | pm(A) pm(C) pm(G) =

(a) JC model (b) F81 model

Figure 2.5: Fvolutionary Models. The instantaneous rate matrices for the Jukes-Cantor
model (left) and the Felsenstein 1981 (right) model are shown. p represents the mean instan-
taneous rate and (i) represent the background frequencies.

Given the transition probabilities and time span ¢, we can then calculate the probability of
observing a letter pair u, v in an alignment of two sequences diverged ¢ time ago.

d(u,v) = 7(u) - p(u,v,t) (2.25)

The substitution score matrices described in Section are usually formulated as log-
odds ratios using the above derived probabilities. In the following, we use the notation ¢,
instead of ¢(u,v) for simplicity.

Thus, most evolutionary models present an instantaneous rate matrix, whose product with
time ¢ is then exponentiated to yield the transition probability matrix. For a more detailed
discourse on the concepts presented here and detailed discussion on existing evolutionary
models, we refer the reader to introductory textbooks by Ewens et al. [59] and Hillis et
al. [81]. An excellent review article is presented by Li6 and Goldman [110].

Next, we present the commonly used Jukes-Cantor [90] model for modeling DNA substi-
tution. Following this, we present two additional models that are relevant to this work for
their applicability in modeling position-specific evolution.

Jukes-Cantor Model  According to the Jukes-Cantor [90] model proposed in 1969, each
substitution is equally likely, leading to uniform background frequencies, m; = 0.25. The
instantaneous rate matrix Q¢ looks as depicted in Fig [2.5(a)| and the probabilities are
given as:

bun(t) =1/4—1/de™ ™ ¥V wu#w (2.26)
Guu(t) = 1/4 4+ 3/4e M otherwise (2.27)

where p is the mean instantaneous substitution rate and ¢ the time interval.

Felsenstein 1981 model = According to the Felsenstein model introduced in 1981 [62],
the probability that a nucleotide is substituted by another is proportional to the stationary
distribution of the incoming nucleotide. Hence, the difference to the Jukes-Cantor model
introduced before is simply the possibility of unequal base frequencies. The instantaneous
rate matrix Qpg; is of the form shown in Fig. where 7 is not necessarily uniform.
The probabilities are then calculated as:

bun(t) = e M6 (u,v) + (1 — e "7 (v) YV ooi,j (2.28)
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Through such a model, Felsenstein introduced the concept of an evolutionary steady state
that respects the initial base composition. Note that here it is possible that some substi-
tutions are not even observable. We will see later (Chapter [4) how the F81 model can be
used to model binding site evolution.

Halpern-Bruno Model Introduced initially for modeling position-specific evolution in
protein coding sequences, the Halpern-Bruno model (HB) [74] has also been used to model
binding site evolution [133].

In this model, a site-invariant mutation rate is combined with a site-specific fixation rate
to yield position-specific mutation rates q*(u,v). The former is taken to be the background
evolutionary model given by qg(u,v). The latter is calculated using the position-specific
letter distribution f*(u),u € ¥ and the background mutation rates. For a position i, the
mutation rate is then given as the following proportionality:

Inzx

X =y (2.29)

qi(u7 U) X 9B (u7 U)

where ,
_ Fw)aav,w)
fi(u)as(u,v)

T

For background evolution, any of the existing evolutionary models can be used. When
fi(v)ag(v,u) = fi(u)gg(u,v), then the rate is equal to the background mutation rate
gg(u,v). The position-specific transition probabilities for a time interval ¢ are then cal-
culated by exponentiating the product of the rate matrix Qgp formed with the above
entries and time t. Note that the above values are for the off-diagonal entries, the diagonal
entries are simply calculated such that the sum of the row entries is zero.
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