
Discrete & Computational Geometry (2022) 67:1147–1173
https://doi.org/10.1007/s00454-021-00344-x

A New Face Iterator for Polyhedra and for More General
Finite Locally Branched Lattices

Jonathan Kliem1 · Christian Stump2

Received: 6 May 2020 / Revised: 6 April 2021 / Accepted: 16 April 2021 /
Published online: 18 March 2022
© The Author(s) 2022

Abstract
We discuss a new memory-efficient depth-first algorithm and its implementation that
iterates over all elements of a finite locally branched lattice. This algorithm can be
applied to face lattices of polyhedra and to various generalizations such as finite
polyhedral complexes and subdivisions of manifolds, extended tight spans and closed
sets of matroids. Its practical implementation is very fast compared to state-of-the-
art implementations of previously considered algorithms. Based on recent work of
Bruns, García-Sánchez, O’Neill, andWilburne, we apply this algorithm to proveWilf’s
conjecture for all numerical semigroups of multiplicity 19 by iterating through the
faces of the Kunz cone and identifying the possible bad faces and then checking that
these do not yield counterexamples to Wilf’s conjecture.

Keywords Wilf’s conjecture · Numerical Semigroup · Polyhedron · Face lattice ·
Face iterator · Enumeration · f -Vector

Mathematics Subject Classification 52B05 · 06A07 · 68Q25 · 05A15 · 05B35

Editor in Charge: Kenneth Clarkson

J.K. receives funding by the Deutsche Forschungsgemeinschaft DFG under Germany’s Excellence
Strategy - The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).
C.S. is supported by the DFG Heisenberg grant STU 563/{4-6}-1 “Noncrossing phenomena in Algebra
and Geometry”.

Jonathan Kliem
jonathan.kliem@fu-berlin.de

Christian Stump
christian.stump@rub.de

1 Institut für Mathematik, Freie Universität Berlin, Arnimallee 2, 14195 Berlin, Germany

2 Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-021-00344-x&domain=pdf
http://orcid.org/0000-0002-8362-4171
https://orcid.org/0000-0002-9271-8436

1148 Discrete & Computational Geometry (2022) 67:1147–1173

1 Introduction

We call a finite lattice (P,≤) locally branched if all intervals of length two contain
at least four elements. We show that such lattices are atomic and coatomic and refer
to Sect. 2 for details.

This paper describes a depth-first algorithm to iterate through the elements in a finite
locally branched lattice given its coatoms, see Sect. 3. It moreover describes variants
of this algorithm allowing the iteration over slightly more general posets. Examples
of such locally branched lattices (or its mild generalizations) include face posets of

– polytopes and unbounded polyhedra,
– finite polytopal or polyhedral complexes,
– finite polyhedral subdivisions of manifolds,
– extended tight spans, and
– closed sets of matroids.

Onemay in addition compute all cover relations as discussed in Sect. 4.1. The provided
theoretical runtime (without variants) is the same as of the algorithm discussed by
Kaibel and Pfetsch in [7], see Sect. 4.

In practice the chosen data structures and implementation details make the imple-
mentation1 very fast for the iteration and still fast for cover relations in the graded case
compared to state-of-the-art implementations of previously considered algorithms, see
Sect. 5.

In Sect. 6, we apply the presented algorithm to affirmatively settle Wilf’s conjecture
for all numerical semigroups ofmultiplicity 19 by iterating, up to a certain symmetry of
order 18, through all faces of theKunz cone (which is a certain unbounded polyhedron),
identifying the bad faces which possibly yield counterexamples to Wilf’s conjecture,
and then checking that these do indeed not yield such counterexamples. This is based
on recent work of Brunscet et al. [2] who developed this approach to the conjecture
and were able to settle it up to multiplicity 18.

In Appendix A, we finally collect detailed runtime comparisons between the imple-
mentation of the presented algorithm with the state-of-the-art implementations in
polymake and in normaliz.

2 Formal Framework

Let (P,≤) be a finite poset and denote by ≺ its cover relation2. We usually writeP
for (P,≤) and write Pop for the opposite poset (Pop,≤op) with b ≤op a if a ≤ b.
For a, b ∈ P with a ≤ b we denote the interval as [a, b] = {p ∈ P | a ≤ p ≤ b}.
IfP has a lower bound 0̂, its atoms are the upper covers of the lower bound,

AtomsP = {p ∈ P | 0̂ ≺ p}

1 See https://trac.sagemath.org/ticket/26887, merged into SageMath version sage-8.9.
2 a ≺ b whenever a < b and there does not exist c satisfying a < c < b

123

https://trac.sagemath.org/ticket/26887

Discrete & Computational Geometry (2022) 67:1147–1173 1149

and, for p ∈ P , we write Atoms p = {a ∈ AtomsP | p ≥ a} for the atoms below p.
Analogously, ifP has an upper bound 1̂, its coatoms are the lower covers of the upper
bound, coAtomsP = {p ∈ P | p ≺ 1̂}. P is called graded if it admits a rank
function r : P → Z with p ≺ q ⇒ r(p) + 1 = r(q).

Definition 2.1 P is locally branched if for every chain a ≺ b ≺ c there exists an
element d �= b with a < d < c. If this element is unique, then P is said to have the
diamond property.

The diamond property is a well-known property of face lattices of polytopes, see
[10, Thm. 2.7 (iii)]. The property of being locally branched has also appeared in the
literature in contexts different from the present one, under the name 2-thick lattices,
see for example [1] and the references therein.

An obvious example of a locally branched lattice is the Boolean lattice Bn given
by all subsets of {1, . . . , n} ordered by containment. We will later see that all locally
branched lattices with n atoms are isomorphic to meet semi-sublattices of Bn .

In the following, we assume P to be a finite lattice with meet operation ∧, join
operation ∨, lower bound 0̂, and upper bound 1̂. We say that

– P is atomic if all elements are joins of atoms,
– P is coatomic if all elements are meets of coatoms,
– p ∈ P is join-irreducible if p has a unique lower cover q ≺ p,
– p ∈ P is meet-irreducible if p has a unique upper cover p ≺ q.

Atoms are join-irreducible and coatoms are meet-irreducible. The following classifi-
cation of atomic and coatomic lattices is a well-known folklore.

Lemma 2.2 We have that

(i) P is atomic if and only if the only join-irreducible elements are the atoms,
(ii) P is coatomic if and only if the only meet-irreducible elements are the coatoms.

Proof First observe that for all p, q ∈ P we have p ≥ q ⇒ Atoms p ⊇ Atoms q
and p ≥ ∨

Atoms p. Moreover, P is atomic if and only if p = ∨
Atoms p for all

p ∈ P .
Assume that P is atomic and let q ∈ P be join-irreducible and p ≺ q. Because

we have Atoms p �= Atoms q, it follows that p = 0̂. Next assume thatP is not atomic
and let p ∈ P be minimal such that p >

∨
Atoms p. If q < p then, by minimality,

q = ∨
Atoms q. It follows that q ≤ ∨

Atoms p and p is join-irreducible. The second
equivalence is the first applied to Pop. �

Example 2.3 The face lattice of a polytope has the diamond property, it is atomic and
coatomic, and every interval is again the face lattice of a polytope. The face lattice
of an (unbounded) polyhedron might neither be atomic nor coatomic as witnessed by
the face lattice of the nonnegative orthant in R

2 with five faces. Example 2.11 will
explain how to deal with this.

123

1150 Discrete & Computational Geometry (2022) 67:1147–1173

Fig. 1 A non-graded locally branched lattice and an atomic, coatomic, not locally branched lattice

The reason to introduce locally branched posets is the following relation to atomic
and coatomic lattices, which has, to the best of our knowledge, not appeared in the
literature.

Proposition 2.4 The following statements are equivalent:

(i) P is locally branched,
(ii) every interval of P is atomic,
(iii) every interval of P is coatomic.

Proof P is locally branched if and only ifPop is locally branched. Also,P is atomic
if and only ifPop is coatomic. Hence, it suffices to show(i)⇔ (ii). SupposeP is not
locally branched. Then, there exist p ≺ x ≺ q such that the interval [p, q] contains
exactly those three elements. Clearly, [p, q] is not atomic. Now suppose [p, q] ⊆ P
is not atomic. Lemma 2.2 implies that there is join-irreducible x with unique lower
cover y with p < y ≺ x . There exists z ∈ [p, q] with z ≺ y and the interval [z, x]
contains exactly those three elements. �
Example 2.5 Figure 1 left gives an example of a non-graded locally branched lattice.
On the right it gives an example of an atomic, coatomic lattice, which is not locally
branched as the interval between the two larger red elements contains only three
elements.

Let P be a finite locally branched poset with atoms {1, . . . , n}. We have seen
that P is atomic and thus p = ∨

Atoms p for all p ∈ P . The following propo-
sition underlines the importance of subset checks and of computing intersections to
understanding finite locally branched lattices.

Proposition 2.6 In a finite locally branched lattice it holds that

(i) p ≤ q ⇔ Atoms p ⊆ Atoms q;
(ii) p ∧ q = ∨

(Atoms p ∩ Atoms q).

Proof (i) If p ≤ q then clearly Atoms p ⊆ Atoms q. On the other hand, if Atoms p ⊆
Atoms q, then p = ∨

Atoms p ≤ ∨
Atoms q = q, as

∨
Atoms q is in particular an

upper bound for Atoms p.

(ii) By (i) it holds that
∨

(Atoms p ∩ Atoms q) is a lower bound of p and q. Also,
Atoms (p ∧ q) ⊆ Atoms p,Atoms q and we obtain

Atoms (p ∧ q) ⊆ Atoms p ∩ Atoms q. �

123

Discrete & Computational Geometry (2022) 67:1147–1173 1151

This proposition provides the following meet semi-lattice3 embedding4 of any finite
locally branched lattice into a Boolean lattice.

Corollary 2.7 Let P be a finite locally branched lattice with AtomsP = {1, . . . , n}.
The map p �→ Atoms p is a meet semi-lattice embedding of P into the Boolean
lattice Bn.

Example 2.8 The above embedding does not need to be a join semi-sublattice embed-
ding as witnessed by the face lattice of a square in R

2.

Remark 2.9 Proposition 2.6 shows that checking whether the relation p ≤ q holds
in P is algorithmically a subset check Atoms p ⊆ Atoms q, while computing the
meet is given by computing the intersection Atoms p ∩ Atoms q.

Justified by Corollary 2.7, we restrict our attention in this paper to meet semi-
sublattices of the Boolean lattice.

2.1 Variants of this Framework and Examples

Before presenting in Sect. 3 the algorithm to iterate over the elements of a finite locally
branched lattice together with variants to avoid any element above certain atoms and
to avoid any element below certain coatoms (or other elements of Bn), we give the
following main use cases for such an iterator.

Example 2.10 (polytope) The face lattice of a polytope P has the diamond property
and is thus locally branched.

Example 2.11 (polyhedron) A polyhedron P can be projected onto the orthogonal
complement of its linear subspace. The face lattices of those polyhedra are canonically
isomorphic. Thus,we can assume that P does not contain an affine line. It iswell known
(see e.g. [10, Exer. 2.19]) that we may add an extra facet F to obtain a polytope P .
The faces of P are exactly the faces of P not contained in F (together with the empty
face). Thus, the iterator visits all non-empty faces of P by visiting all faces of P not
contained in F .

Example 2.12 (polytopal subdivision of manifold) The face poset of a finite polytopal
subdivision of a closed manifold (compact manifold without boundary). Adding an
artificial upper bound 1̂, this is a finite locally branched lattice.

Example 2.13 (extended tight spans) We consider extended tight spans as defined in
[6, Sect. 3] as follows: Let P ⊂ R

d be a finite point configuration, and let � be a
polytopal complex with vertices P , which covers the convex hull of P . We call the
maximal cells of � facets. We can embed � into a closed d-manifold M : We can add
a vertex at infinity and for each face F on the boundary of � a face F ∪ {∞}. In many
cases, just adding one facet containing all vertices on the boundary will work as well.

3 A poset with meet operation.
4 A poset-embedding preserving meets.

123

1152 Discrete & Computational Geometry (2022) 67:1147–1173

Given a collection Γ of boundary faces of�, we can iterate over all elements of�,
which are not contained in Γ : Iterate over all faces of M , which are not contained in
Γ ∪ (M \ �).

In the case when Γ is the collection of all boundary faces and � is therefore the
tight span of the polytopal subdivision, and if � permits to add a single facet F to
obtain a closed d-manifold M , we can just iterate over all faces of M not contained
in F .

Example 2.14 (closed sets of a matroid) The MacLane–Steinitz exchange property
(see e.g. [9, Lem. 1.4.2]) ensures that the closed sets of a matroid form a locally
branched finite lattice.

Example 2.15 (locally branched lattices with non-trivial intersection) LetP1, . . . ,Pk

be finite locally branched meet semi-sublattices of Bn such that for p ∈ Pi and
q ∈ P j with Atoms p ⊆ Atoms q it follows that p ∈ P j . Then the iterator may
iterate through all elements of their union by first iterating throughP1, then through
all elements in P2 not contained inP1 and so on.

Example 2.16 (polyhedral complexes) Using the iteration as in the previous example
allows to iterate through polytopal or polyhedral complexes.

3 The Algorithm

LetP be a finite locally branched lattice given as ameet semi-sublattice of theBoolean
lattice Bn . We assume AtomsP = {1, . . . , n} and we may identify an element p with
Atoms p. The following algorithm is a recursively defined depth-first iterator through
the elements ofP . Given p ∈ P and its lower covers x1, . . . , xk , the iterator yields p
and then computes, one after the other, the lower covers of x1, . . . , xk , taking into
account those to be ignored, and then recursively proceeds. Being an iterator means
that the algorithm starts with only assigning the input to the respective variables and
then waits in its current state.Whenever an output is requested, it starts from its current
state and runs to the point OUTPUT, outputs the given output, and again waits.

1 DECLARATIONS
2 • c, r , v, x – sets of integers
3 • C , Cnew, V , Vnew– duplicate-free lists (of sets of integers)
4 • D, E – lists (of sets of integers), possibly with duplicates
5

6 Algorithm FaceIterator
7

8 INPUT
9 • C – all coatoms ofP not contained in any of V

10 • V – list of subsets of {1, . . . , n}
11 • r – subset of {1, . . . , n}
12

13 OUTPUT: Each c ∈ P with c �= 1̂ ∧ c ∩ r = ∅ ∧ ∀ v ∈ V : c � v.
14

15 PROCEDURE
16 if C �= []:
17 c := an_element(C)

123

Discrete & Computational Geometry (2022) 67:1147–1173 1153

18 if c ∩ r = ∅:
19 OUTPUT c # continue from here
20

21 D = [c ∩ x : x ∈ C, x �= c]
22 E = [x ∈ D : ∀ v ∈ V : x � v]
23 Cnew = inclusion_maximals(E)

24 Vnew = [v : v ∈ V]
25

26 # Apply algorithm for sublattice [0, c]
27 FaceIterator(Cnew, Vnew, r)

28

29 V = V + [c ∪ r] # append V
30 C = [x ∈ C : x � c ∪ r] # update C accordingly
31 FaceIterator(C, V , r)

The recursive function calls in lines 27 and 31 can be executed in parallel: r can be
declared constant. The lists C and V will be modified, but not their elements.

One should think of V as a list of inclusion maximal elements of those already
visited.

The algorithm does not visit 1̂. However, we will still assume that this is the case
whenever suitable. This would have to be done, before calling the algorithm.

For polyhedra, a technically elaborated version of this algorithm is implemented
in SageMath1. Before proving the correctness of the algorithm, we provide several
detailed examples. In the examples, we do not ignore any atoms and set r = ∅. Also
V will be empty if not specified.

Example 3.1 We apply the algorithm to visit faces of a square.

– INPUT: C = [{1, 2}, {1, 4}, {2, 3}, {3, 4}]
– c = {1, 2}, OUTPUT: {1, 2}
– Cnew = [{1}, {2}]
– Apply FaceIterator to sublattice [0̂, {1, 2}]

– INPUT: C = [{1}, {2}]
– c = {1}, OUTPUT: {1}
– Cnew = [∅]
– Apply FaceIterator to sublattice [0̂, {1}]

• INPUT: C = [∅]
• c = ∅, OUTPUT: ∅
• (Cnew is empty)
• Apply FaceIterator to sublattice [0̂, 0̂] without output
• Add ∅ to V (to the copy in this call of FaceIterator)
• Reapply FaceIterator to sublattice [0̂, {1}]
• INPUT: C = [], V = [∅]

– V = [{1}]
– Reapply FaceIterator to sublattice [0̂, {1, 2}]
– INPUT: C = [{2}], V = [{1}]
– c = {2}, OUTPUT: {2}
– Apply FaceIterator to sublattice [0̂, {2}]

123

1154 Discrete & Computational Geometry (2022) 67:1147–1173

1 2 3

1

2

3

4 5

6

Fig. 2 Minimal triangulation of RP
2 with vertices 1, . . . , 6

• INPUT: C = [], V = [{1}]
– V = [{1}, {2}]
– Reapply FaceIterator to sublattice [0̂, {1, 2}]
– INPUT: C = [], V = [{1}, {2}]

– V = [{1, 2}]
– Reapply FaceIterator to entire lattice
– INPUT: C = [{1, 4}, {2, 3}, {3, 4}], V = [{1, 2}]
– c = {1, 4}, OUTPUT: {1, 4}
– Apply FaceIterator to sublattice [0̂, {1, 4}]

– INPUT: C = [{4}], V = [{1, 2}]
– c = {4}, OUTPUT: {4}
– Apply FaceIterator to sublattice [0̂, {4}] without output

– V = [{1, 2}, {1, 4}]
– . . . further outputs: {2, 3}, {3}, {3, 4}

Example 3.2 We apply the algorithm to the minimal triangulation of RP
2 given in

Fig. 2.

– INPUT: C = [{1, 2, 4}, . . . , {4, 5, 6}]
– c = {1, 2, 4}, OUTPUT: {1, 2, 4}, {1, 2}, {1}, ∅, {2}, {1, 4}, {4}, {2, 4}
– c = {1, 2, 6}, OUTPUT: {1, 2, 6}, {1, 6}, {6}, {2, 6}
– c = {1, 3, 4}, OUTPUT: {1, 3, 4}, {1, 3}, {3}, {3, 4}
– c = {1, 3, 5}, OUTPUT: {1, 3, 5}, {1, 5}, {5}, {3, 5}
– c = {1, 5, 6}, OUTPUT: {1, 5, 6}, {5, 6}
– c = {2, 3, 5}, OUTPUT: {2, 3, 5}, {2, 3}, {2, 5}
– c = {2, 3, 6}, OUTPUT: {2, 3, 6}, {3, 6}
– c = {2, 4, 5}, OUTPUT: {2, 4, 5}, {4, 5}
– c = {3, 4, 6}, OUTPUT: {3, 4, 6}, {4, 6}
– c = {4, 5, 6}, OUTPUT: {4, 5, 6}

Example 3.3 We apply the algorithm to the tight span given in Fig. 3.

– INPUT: C = [{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 3, 6}, {2, 4, 5}], V = [{3, 4, 5, 6}]

123

Discrete & Computational Geometry (2022) 67:1147–1173 1155

3 4

56

1 2

Fig. 3 Tight span on vertices 1, . . . , 6 with interior vertices 1 and 2

O
W E

N

S

Fig. 4 Polyhedra complex consisting of three quadrants of the plane with south-west quadrant removed

– c = {1, 2, 3, 4}, OUTPUT: {1, 2, 3, 4}, {1, 2}, {1}, {2}, {1, 3}, {2, 4}
– c = {1, 2, 5, 6}, OUTPUT: {1, 2, 5, 6}, {1, 6}, {2, 5}
– c = {1, 3, 6}, OUTPUT: {1, 3, 6}
– c = {2, 4, 5}, OUTPUT: {2, 4, 5}

Example 3.4 Visit all faces of the polyhedral complex given in Fig. 4.

– Incorrect application by applying to the polyhedra as if they were facets.

– INPUT: C = [{W , N , 0}, {N , E, 0}, {S, E, 0}]
– c = {W , N , 0}, OUTPUT: {W , N , 0}
– Cnew = [{N , 0}], OUTPUT: {N , 0}
– V = [{W , N , 0}]
– c = {N , E, 0}, OUTPUT: {N , E, 0}
– Cnew = [{E, 0}], OUTPUT: {E, 0}
– V = [{W , N , 0}, {N , E, 0}]
– c = {S, E, 0}, OUTPUT: {S, E, 0}
– Cnew = []

– Correct application by applying successively to all faces of all polyhedra:

– Before applying FaceIterator to {W , N , 0}: OUTPUT: {W , N , 0}
– Apply algorithm to {W , N , 0}:

• INPUT: C = [{W , 0}, {N , 0}], V = [{W , N }]
• OUTPUT: {W , 0}, {0}, {N , 0}

– Before applying FaceIterator to {N , E, 0}: OUTPUT: {N , E, 0}

123

1156 Discrete & Computational Geometry (2022) 67:1147–1173

– Apply algorithm to {N , E, 0}:
• INPUT: C = [{E, 0}], V = [{W , N , 0}, {N , E}]
• OUTPUT: {E, 0}

– Before applying FaceIterator to {S, E, 0}: OUTPUT: {S, E, 0}
– Apply algorithm to {S, E, 0}:

• INPUT: C = [{S, 0}], V = [{W , N , 0}, {N , E, 0}, {S, E}]
• OUTPUT: {S, 0}

3.1 Correctness of the Algorithm

Asassumed, letP be a locally branchedmeet semi-sublattice of theBoolean lattice Bn .
In the following, we see that the algorithm visits each element p ∈ P not contained
in any of V and not containing any of r exactly once. We remark that we could relax
the condition on Bn : It suffices for the interval [p, 1̂] to be locally branched for p to
be visited exactly once under those conditions.

Proposition 3.5 The algorithm FaceIterator is well defined in the following sense:
Let C be the list of coatoms of P that are not contained in any of V .

(i) Then the call ofFaceIterator in line 27 calls the algorithm for the sublattice [0̂, c]
with Cnew being the list of coatoms of [0̂, c] that are not contained in any of V .

(ii) The call of FaceIterator in line 31 calls the algorithm for P , but with c ∪ r
appended to V . The updated C contains all coatoms of P that are not contained
in any of V .

Proof (i) Cnew is a sublist of E , which is a sublist of D. By construction all elements
in D and thus in Cnew are strictly below c. Now, let d ≺ c ≺ 1̂ in P and let d not be
contained in any of V . Since P is locally branched there is an element x �= c with
d < x ≺ 1̂, implying d = c ∩ x . If d is not contained in any of V , then the same must
hold for x as d < x . This implies that x is in C and thus d is contained in D.

Assume that d is contained in D. It is contained in E exactly if it is not contained
in any of V by construction of E in line 22. It remains to show that d in E is contained
in Cnew exactly if d ≺ c. As any element in E is strictly below c, d ≺ c implies that d
is inclusion maximal. On the other hand, if d is not inclusion maximal, it lies below a
coatom of [0̂, c]. As d is in E , it cannot be contained in any of V and the same holds
for this coatom. Thus, d is not inclusion maximal in E .

(ii) Line 30 removes exactly those elements in C that are contained in c ∪ r . �
Theorem 3.6 The algorithmFaceIterator iterates exactly once over all elements inP
that are not contained in any of V and do not contain any element in r .

Proof We argue by induction on the cardinality of C . First note that the cardinalities
of Cnew and C in the two subsequent calls of FaceIterator in lines 27 and 31 are both
strictly smaller than the cardinality of C . If C = [], then all elements of P \ 1̂ are
contained in elements of V , and the algorithm correctly does not output any element.
Suppose that C is not empty and let c be the element assigned in line 17. Let p ∈ P .
If p is contained in an element of V , then it is not contained in the initial C . By

123

Discrete & Computational Geometry (2022) 67:1147–1173 1157

Proposition 3.5 it will never be contained in C in any recursive call and thus cannot
be output. On the other hand, if p contains an element in r , then it cannot be output
by line 18. Otherwise,

– if p = c, then the algorithm outputs p correctly in line 19,
– if p < c, then p is contained in [0̂, c] and is output by FaceIterator in line 27 by
induction,

– if p � c, then p � c ∪ r and p is output in the call of FaceIterator in line 31 by
induction, as it is not contained in any of V + [c ∪ r]. �

3.2 Variants of the Algorithm

We finish this section with a dualization property followed by explicitly stating the
result when applying the algorithm for the variants discussed in Sect. 2.1.

Let P be a locally branched lattice and V be a list of coatoms, and r be a list of
atoms. Instead of directly applying Theorem 3.6 one can considerPop, V op, and rop.
V op is now a list of atoms of Pop (given as indices). rop is a list of coatoms of Pop

(each given as list of atoms of Pop).

Corollary 3.7 The algorithm can be applied to visit all elements of Pop, which are
not contained in any of rop, and do not contain any element in V op. This is the same
as visiting all elements of P that are not contained in any of V and do not contain
any element in r , but that each element is now given as coatom-incidences instead of
atom-incidences.

We later see in Theorem 4.1 that consideringPop instead ofP might be faster as the
runtime depends on the number of coatoms. For example, in Example 3.2 one could
apply the algorithm to Pop to improve runtime as there are ten facets but only six
vertices.

Corollary 3.8 (i) Let P be a polytope and let P be its face lattice with coatoms C
given as vertex/atom incidences. The algorithm then outputs every face of P as
a list of vertices it contains.

(ii) Let P be an unbounded polyhedron with trivial linear subspace and let P be a
projectively equivalent polytope with marked face. Provided V , a list containing
just the marked face of P, and C, the remaining facets, all are given as vertex
incidences. The algorithm then outputs all faces of P as vertex/ray incidences.

(iii) Let P be a finite polytopal subdivision of a closed manifold. Let C be the maximal
faces given as vertex incidences. The algorithm then outputs the faces of P as
vertex incidences.

(iv) Let � be an extended tight span in R
d as described in Example 2.13. Let Γ be a

subset of boundary faces of �. As explained in Example 2.13 we can embed �

into a (triangulated) manifold M. Given the maximal faces of M \ � and Γ as
V and the remaining maximal faces as C all as vertex incidences, the algorithm
outputs the faces of � not contained in any of Γ as vertex incidences.

(v) Let P be a polyhedral complex. Given the atom incidences of the facets of each
maximal face. The algorithm can be iteratively applied to output all faces of P:
Let F be a maximal face. Given the atom incidences of the facets of F (and

123

1158 Discrete & Computational Geometry (2022) 67:1147–1173

possibly the marked far face). As described in (i) and (ii), the algorithm outputs
all faces of F. Let F1, . . . , Fn be some other maximal faces. Append F1, . . . , Fn

(as atom/ray incidences) to V and remove all elements of C contained in any of
F1, . . . , Fn. Then, the algorithm outputs all faces of F not contained in any of
F1, . . . , Fn.

4 Data Structures, Memory Usage, and Theoretical Runtime

Theoperations used in the algorithmareintersection,is_subset, andunion.
It will turn out that the crucial operation for the runtime is the subset check.

For the theoretical runtime we consider representation as (sparse) sorted-lists-of-
atoms. However, in the implementation we use (dense) atom-incidence-bit-vectors.
This is theoretically slightly slower, but the crucial operations can all be done using bit-
wise operations. The improved implementation only considers the significant chunks,
which has optimal theoretic runtime again. A chunk contains 64/128/256 bits depend-
ing on the architecture. We store for each set, which chunk has set bits. To check
whether A is a subset of B, it suffices to loop through the significant chunks of A.
Experiments suggest that for many atoms RoaringBitmap described in [8] per-
forms even better.5

Observe that a sorted-lists-of-atoms needs as muchmemory as there are incidences.
Consider two sets A and B (of integers) of lengths a and b, respectively, and a (possibly
unsorted) list C of m sets C1, . . . , Cm with α = |C1| + · · · + |Cm |. Using standard
implementations, we assume in the runtime analysis that

– intersection A ∩ B and union A ∪ B have runtime in O(a + b) = O(max(a, b))

and the results can be guaranteed to be sorted,
– a subset check A ⊆ B or A � B has runtime in O(b), and
– to check whether A is a subset of any element in C has runtime in O(α).

Let d + 1 be the number of elements in a longest chain in P , let m = |C |, n =
|AtomsP|, and let

α =
∑

a∈C∪V

|a ∪ r |.

(In the case that V and r are both empty, the sum of cardinalities of C1, . . . , Cm is α.
Otherwise it is bounded by α). Let ϕ be the number of elements in P that are not
contained in any of V . If r is empty, this is the cardinality of the output.

Theorem 4.1 The algorithm has memory consumptionO(α·d)and runtimeO(α·m·ϕ).

Remark 4.2 We assume constant size of integers as in [7]. To drop this assumption,
one needs to multiply our runtime and memory usage by log(max(n, m)) and likewise
for [7].

5 RoaringBitmap performs better for computing the f -vector of the d-dimensional associahedron for
d ≥ 11. See discussion on https://github.com/Ezibenroc/PyRoaringBitMap/pull/59.

123

https://github.com/Ezibenroc/PyRoaringBitMap/pull/59

Discrete & Computational Geometry (2022) 67:1147–1173 1159

Proof Wewill assume that recursive calls are not made, when C resp. Cnew are empty.
To checkwhether a list is empty can be performed in constant time. Then, the number of
recursive calls is bounded by ϕ: Any element assigned to c is an element fromP . Any
element inP is assigned at most once. This follows from the proof of Theorem 3.6. (It
follows directly, if r is empty as then every element assigned to c is also output.) Note
that for each recursive call of FaceIterator the number of elements in C is bounded
by m. The sum of the cardinalities of C , D, E , and V is bounded by α. So is the
cardinality of r .

To prove the claimed runtime, it suffices to show that each call of FaceIterator
not considering recursive calls has runtime in O(m · α). With above assumptions,
this follows: The check preceding the output in line 18 can be performed in O(α).
Obtaining D in line 21 can be done in O(n · m) (each size is bounded by n and there
are at most m intersections to perform). n ≤ α as every atom must be contained at
least once in a coatom of C , in an element of V or in r . To check, whether an element
is contained in any of V can be done in O(α). Again there are at most m elements,
so the claim holds for line 22. To check whether an element is contained in any of E
can be done in O(α) and the claim holds for 23. Note that we can perform a strict
subset check for larger indices and a non-strict subset check for smaller indices to
remove duplicates as well. Clearly, we can copy V to Vnew in this time and append V
in line 29. The individual subset check for each of at most m sets in line 30 is done in
O(α). This proves the claimed runtime.

A single call of FaceIterator hasmemory usage at most c ·α for a global constant c,
not taking into account the recursive calls. The call in line 31 does not need extra
memory as all old variables can be discarded. The longest chain of the lattice [0, c]
is at most of length d − 1. By induction the call of FaceIterator in line 27 has total
memory consumption at most (d − 1) · c · α. The claimed bound follows. �

Remark 4.3 When searching elements with certain properties, we might observe from
c that all of [0̂, c] is not of interest. After assigning c we can skip everything until
line 27. This will result in not visiting any further element of [0̂, c] (some might have
been visited earlier).

If r is empty and the check whether to skip [0̂, c] can be performed in time
O(m · |c|), the runtime will reduce linear to the number of elements output: Append-
ing V in line 29 and updating C in line 30 can both be performed in time O(m · |c|).
This runtime can be accounted for by an upper cover of c, which wemust have visited:
The sum of the cardinalities of the lower covers of an element is bounded by α. Thus
the runtime of skipping elements accounts for runtime inO(m ·α) per element visited.
If we skip some of the [0̂, c] in this way, the runtime will therefore be inO(α · m ·ψ),
where ψ is the cardinality of the output.

4.1 Computing All Cover Relations

Applying the algorithm to a graded locally branched meet semi-sublattice of Bn while
keeping track of the recursion depth allows an a posteriori sorting of the output by
the level sets of the grading. The recursion depth is the number of iterative calls using

123

1160 Discrete & Computational Geometry (2022) 67:1147–1173

line 27. We obtain the same bound for generating all cover relations as Kaibel and
Pfetsch [7]. For a list L of (sorted) subsets of {1, . . . , n} we additionally assume that

– two sets of cardinality a and b resp. can be lexicographically compared in time
O(min(a, b)),

– L can be sorted in time O(n · |L| · log |L|), and
– if L is sorted, we can look up, whether L contains some set of cardinality a in time
O(a · log |L|).

Proposition 4.4 Let P be a graded meet semi-sublattice of Bn. Assume each level
set of P to be given as sorted-lists-of-atoms, one can generate all cover relations in
time O(α ·min(m, n) ·ϕ) with quantities as defined above using the above algorithm.

Observe that in the situation of this proposition, V and r are both empty and in
particular α is the total length of the coatoms. As before, ϕ is the number of elements
inP . The level sets are not assumed to be sorted.

Proof First, we sort all level-sets. As each element inP appears exactly once in each
level set, all level sets can be sorted in time O(n · ϕ · logϕ). Then, we intersect each
element with each coatom, obtaining its lower covers and possibly other elements.
We look up each intersection to determine the lower covers. All such intersections are
obtained in time O(ϕ · m · n). For a fixed element the total length of its intersections
with all coatoms is bounded by α. Hence, all lookups are done in timeO(ϕ ·α · logϕ).
Finally, we note that m, n ≤ α and that logϕ ≤ min(m, n). �
In the ungraded case, one first sorts all elements in P , and then intersects each ele-
ment pwith all coatoms.The inclusionmaximal elements among those strictly below p
are lower covers of p. They can be looked up in the list of sorted elements to obtain
an index. Observe that all this is done time O(α · m · ϕ).

4.2 Theoretic Comparison

We first compare our approach with the one from Kaibel and Pfetsch [7]. They have
written their algorithm in terms of closure operators starting from the vertices. Using
the terminology of our paper (applying their algorithm to the dual case), there are
some differences:

(i) To translate from coatom representation toatom representation the corresponding
coatoms are intersected. Likewise they translate from atom representation to
coatom representation.

(ii) They store the coatom representation of c.
(iii) As a first step, they obtain the atom representation of c.
(iv) To obtain a list containing all lower covers, they intersect c with all coatoms not

containing c.
(v) For checking which of the sets is inclusion maximal, they transform them back

to coatom representation. The subset check is then trivial.
(vi) They do not store visited faces.

123

Discrete & Computational Geometry (2022) 67:1147–1173 1161

Our runtime is the same as in their approach. They require memory in O(ϕ · m).
In [7, Sect. 3.3] however, they mention that one could use lexicographic ordering to
avoid storing all the faces and achieve similar memory usage as our approach. To our
knowledge, this memory efficient approach has not been implemented.

Advantages of our algorithm to the lexicographic approach are:

(i) The order of output is somewhat flexible. We are free to choose any element c
from C (in any recursion step) in line 17 of the algorithm.

(ii) Our order relates to the lattice: By Remark 4.3 we could skip some [0̂, c] and
effectively reduce runtime. E.g. we could use the iterator to only visit faces of a
polytope that are not a simplex, in runtime linear to the output.

(iii) Let G be the automorphism group ofP . If we sort the elements lexicographically
by their coatom representation, any first element representative of an orbit, is
contained in a first representative of a coatom-orbit. To visit all orbits, it suffices
to visit only the first representatives of the facet-orbits and then append each facet
in the orbit to V . This will efficiently reduce runtime.

The other algorithm we compare our approach to was described by Bruns et al. in [2]
and was independently developed to our algorithm. It also stores each element in atom
representation. In each step of the algorithm, the atom representation is computed.
Then, each element c is intersected with all coatoms and the inclusion maximal ele-
ments are computed just like in our approach via subset checks. Finally the inclusion
maximal elements are transformed to atom representation and, after a lookup, the
new ones are stored. Although there is no theoretic analysis of runtime and memory
consumption, it appears that the runtime agrees with [7] (although the implementation
by dense bit-vectors does not achieve this) and the memory usage is O(ϕ · n). They
introduced usage of the automorphism group of the atom-coatom-incidences and have
first developed a variation that visits the first representative.

5 Performance of the Algorithm Implemented in SageMath

We present running times for several computations. An implementation is available
through sage-8.9 and later. This uses dense bit-vectors and has runtimeO(n ·m ·ϕ).

The presented algorithm can be parallelized easily as the recursive calls in lines 27
and 31 do not depend on each other. The implementation using bitwise opera-
tions allows to use advanced CPU-instructions such as Advanced Vector Extensions.
Furthermore, bit-vectors can be enhanced to account for sparse vectors, obtaining
asymptotically optimal runtime. All these improvements are available in sage-9.4.

The benchmarks are performed on an Intel� CoreTM i7-7700 CPU @ 3.60GHz
x86_64-processor with four cores and 30GB of RAM. The computations are done
either using

– polymake 3.3 [5], or
– normaliz 3.7.2 [3], or
– the presented algorithm in sage-8.9, or
– the presented algorithm in sage-8.9 with additional parallelization, intrinsics,
and subsequent improvements as explained above.

123

1162 Discrete & Computational Geometry (2022) 67:1147–1173

10−1 101 103 105

10−1

101

103

105

co
v
er

re
la
ti
o
n
s,

f-
v
ec
to
r,
im

p
ro
v
ed

f-
v
ec
to
r

10−1 101 103 105

10−1

101

103

105

Fig. 5 Runtime comparison. Every dot represents one best-of-five computation, and every shifted diagonal
is a factor-10 faster runtime. Dots on the boundary represent memory overflows. The left diagram compares
polymake to three implementations: SageMath computing all cover relations (black), SageMath com-
puting the f -vector (red) and SageMath with aforementioned improvements (blue). The right diagram
compares normaliz to SageMath (without and with improvements) computing the f -vector. e.g. the fat
blue dot in the right diagram has coordinates slightly bigger than (103, 10) and represents computing the
f -vector of the Kunz cone with parameter m = 15. It took 2622 seconds with normaliz and 21 seconds
with SageMath with improvements

Remark 5.1 It appears that there is no difference in performance regarding the f -
vector for polymake 3.3 and polymake 4.1. Likewise for normaliz 3.7.2
and normaliz 3.8.9 (a computation goal DualFVector was added, but we
already applied normaliz to the dual problem, whenever suitable).

We computed:

(1) cover relations and f -vector in polymake (x-axis in the left diagram of Fig. 5),
(2) f -vector in normaliz with parallelization, (x-axis in the right diagram of

Fig. 5),
(3) all cover relations with the presented implementation in SageMath,
(4) f -vector with the presented implementation in SageMath,
(5) f -vector with the presented implementation in SageMath with parallelization,

intrinsics, and additional improvements.

Remark 5.2 – The computation of the f -vector in (1) also calculates all cover rela-
tions.

– polymake also provides a different algorithm to compute the f -vector from the
h-vector for simplicial/simple polytopes (providing this additional information
sometimes improves the performance in polymake).

– normaliz does not provide an algorithm to compute the cover relations.

For every algorithm we record the best-of-five computation6 on

6 Benchmarks were taken on a desktop computer. Best-of-five was chosen to account for other processes
causing temporary slowdown. All implementations are completely deterministic without randomness.

123

Discrete & Computational Geometry (2022) 67:1147–1173 1163

– the simplex of dimension n,
– several instances of the cyclic polytope of dimension 10 and 20,
– the associahedron of dimension n,
– the permutahedron of dimension n embedded in dimension n + 1,
– a 20-dimensional counterexample to the Hirsch conjecture,
– the cross-polytope of dimension n,
– the Birkhoff polytope of dimension (n − 1)2,
– joins of such polytopes with their duals,
– Lawrence polytopes of such polytopes,
– Kunz cone in dimension n − 1 defined in Definition 6.3.

Figure 5 confirms that the implementations behave about the same asymptotically.
For computing the cover relations, the implementation in sage-8.9 is as fast or up
to 100 times faster than the implementation in polymake. For computing only the f -
vector, the implementation in sage-8.9 is about 1000 times faster than polymake
and a bit faster than normaliz. However,normaliz used four physical cores (eight
threads) for those results, while sage-8.9 only needed one.With parallelization and
other improvements one can gain a factor of about 10 using four physical cores.

5.1 Possible Reasons for the Performance Difference

In [2, Rem. 5.5] it was mentioned that for one example about 6% of the computation
time is needed for converting from coatom representation to atom representation and
back and for computing the intersections. Another 4% are required for computing
which elements in C are inclusion-maximal. 40% are observed by checking which
elements were seen before. The rest are other operations such as system operations.

Contrary to this, in sage-8.9 other operations are almost negligible. About 90%
of the time is spent doing subset checks. About 10% of the time is spent computing the
intersections. Note, that these timesmay vary depending on the application. There is no
need to do the expensive translation from coatom representation toatom representation
and back. It seems that our algorithm allowed to avoid those 90% that normaliz
spends with lookups and other operations.

As parallelization is trivial, there is very little overhead even with as much as 40
threads: The overhead is due to the fact that we perform a depth-first search. When
the function is called, we can almost immediately dispatch the call at line 31. In this
way, there are trivially independent jobs (one per coatom) that can be parallelized
without overhead. However, the workload is shared badly. In the extreme example of
the Boolean lattice, half of the elements visited will be subject to the first job in that
way and we should expect this to take half of the time.

Our approach is to have one job per coatom of the coatoms (parallelization at
codimension 2). The jobs are assigned monotonic dynamically. Each thread has inde-
pendent data structure and recomputes the first Cnew if necessary. This still has almost
no overhead. However, when computing the bad orbits of the Kunz cone with 40
threads, one of them took about a day longer to finish than the others. Experiments
suggest that parallelizing at codimension 3 has still reasonable overhead and will pay

123

1164 Discrete & Computational Geometry (2022) 67:1147–1173

off with enough threads (depending on the lattice). At level 4 the overhead seems
unreasonable.

As for polymake the comparison is of course unfair. Their implementation tries
to compute all cover relations in decent time and asymptotically optimal. Of course,
one can be much faster, when not storing all cover relations. The implementation in
sage-8.9 to compute the cover relations is usually faster. We refer to Appendix A
for detailed runtimes, which were plotted in Fig. 5.

6 Application of the Algorithm toWilf’s Conjecture

Bruns et al. provided an algorithm that verifies Wilf’s conjecture for a given fixed
multiplicity [2]. We give a brief overview of their approach:

Definition 6.1 A numerical semigroup is a set S ⊂ Z≥0 containing 0 that is closed
under addition and has finite complement.

– Its conductor c(S) is the smallest integer c such that c + Z≥0 ⊆ S.
– Its sporadic elements are the elements a ∈ S with a < c(S) and let n(S) be the
number of sporadic elements.

– The embedding dimension e(S) = |S \ (S + S)| is the number of elements that
cannot be written as sum of two elements.

– The multiplicity m(S) is the minimal nonzero element in S.

Conjecture 6.2 (Wilf) For any numerical semigroup S,

c(S) ≤ e(S)n(S).

For fixed multiplicity m one can analyze certain polyhedra to verify this conjecture.

Definition 6.3 [2, Defn. 3.3] Fix an integer m ≥ 3. The relaxed Kunz polyhedron is
the set P ′

m of rational points (x1, . . . , xm−1) ∈ R
m−1 satisfying

xi + x j ≥ xi+ j , 1 ≤ i ≤ j ≤ m − 1, i + j < m,

xi + x j + 1 ≥ xi+ j , 1 ≤ i ≤ j ≤ m − 1, i + j > m,

The Kunz cone is the set Cm of points (x1, . . . , xm−1) ∈ R
m−1 satisfying

xi + x j ≥ xi+ j , 1 ≤ i ≤ j ≤ m − 1, i + j �= m.

(All indices in this definition are taken modulo m.)

Remark 6.4 Every numerical semigroup S of multiplicity m corresponds to a lattice
point in the relaxed Kunz polyhedron (not vice versa, thus relaxed): xi is the smallest
integer such that i + mxi ∈ S. The inequalities correspond to j + mx j ∈ S implying
that i + j + m(xi + x j) ∈ S.

123

Discrete & Computational Geometry (2022) 67:1147–1173 1165

Definition 6.5 Let F be a face of P ′
m orCm . Denote by e(F)−1 and t(F) the number of

variables not appearing on the right and left hand sides resp. of any defining equations
of F .

The Kunz cone is a translation of the relaxed Kunz polyhedron. e(F) and t(F) are
invariants of this translation.

Every numerical semigroup S of multiplicity m corresponds to an (all-)positive
lattice point in P ′

m . If the point corresponding to S lies in the relative interior of some
face F ⊆ P ′

m , then e(F) = e(S) and t(F) = t(S), see [2, Thm. 3.10 & Cor. 3.11].
The following proposition summarizes the approach by which we can check for bad
faces:

Proposition 6.6 [2] There exists a numerical semigroup S with multiplicity m that
violates Wilf’s conjecture if and only if there exists a face F of P ′

m with positive
integer point (x1, . . . , xm−1) ∈ F◦ and f ∈ [1, m − 1] such that

mxi + i ≤ mx f + f for every i �= f , and

mx f + f − m + 1 > e(F) · (mx f + f − m − (x1 + · · · + xm−1) + 1).

A face F of P ′
m is Wilf if no interior point corresponds to a violation of Wilf’s conjec-

ture. A face F of Cm is Wilf, if the corresponding face in P ′
m is Wilf.

Proposition 6.7 [2, p. 9] Let F be a face of P ′
m or Cm.

– If e(F) > t(F), then F is Wilf.
– If 2e(F) ≥ m, then F is Wilf.

Checking Wilf’s conjecture for fixed multiplicity m can be done as follows:

1. For each face F in Cm check if Proposition 6.7 holds.
2. If Proposition 6.7 does not hold, check with Proposition 6.6 if the translated face

in P ′
m contains a point corresponding to a counterexample of Wilf’s conjecture.

We say that a face F of Cm is bad if Proposition 6.7 does not hold. The group of units
(Z/mZ)× acts on R

m−1 by multiplying indices. The advantage of the Kunz cone over
the (relaxed) Kunz polyhedron is that it is symmetric with respect to this action. Even
more, e(F) and t(F) are invariant under this action. Thus in order to determine the
bad faces, it suffices to determine for one representative of its orbit, if it is bad. We
say that an orbit is bad, if all its faces are bad.

While [2] uses a modified algorithm of normaliz to determine all bad orbits, we
replace this by the presented algorithm. We can also apply the symmetry of Cm . As
described in Sect. 4.2, we can sort the elements by lexicographic comparison by the
coatom representation. It suffices to visit the first facet of each orbit to see the first
element of each orbit (and possibly more). The concrete implementation is available
as a branch of SageMath7. This implementation worked well enough to apply the
presented algorithm to Wilf’s conjecture. In Table 1 we compare the runtimes of
computing the bad orbits.

7 See https://git.sagemath.org/sage.git/tree/?h=u/gh-kliem/KunzConeWriteBadFaces.

123

https://git.sagemath.org/sage.git/tree/?h=u/gh-kliem/KunzConeWriteBadFaces

1166 Discrete & Computational Geometry (2022) 67:1147–1173

Table 1 Runtime comparison for determining the bad orbits

m # Bad orbits normaliz SageMath

15 180,464 3:33m 7s

16 399,380 54:39m 1:14m

17 3,186,147 19:35h 16:55m

18 17,345,725 27:13d 16:22h

19 100,904,233 14:22d

Table 2 Number of bad orbits to check and time it took to verify Wilf’s conjecture for them

m # Orbits Time

15 193 1s

16 5669 11s

17 7316 31s

18 17,233 1:54m

19 285,684 2:22h

These are performed on an Intel� XeonTM CPU E7-4830 @ 2.20GHz with a total
of 1TB of RAM and 40 cores. We used 40 threads and about 200GB of RAM. The
timings in [2] used only 32 threads and a slightly slower machine.

While testing all bad faces takes a significant amount of time, a recent work by
Eliahou has simplified this task.

Theorem 6.8 [4, Thm. 1.1] Let S be a numerical semigroup with multiplicity m. If
3e(S) ≥ m then S satisfies Wilf’s conjecture.

Checking the remaining orbits can be done quickly (we used an Intel� CoreTM i7-
7700 CPU@ 3.60GHz x86_64-processor with four cores). For each of the orbits with
3e < m, we have checked whether the corresponding region is empty analogously
to the computation in [2]. See Table 2 for the runtimes. This computation yields the
following proposition.

Proposition 6.9 Wilf’s conjecture holds for m = 19.

Acknowledgements We thank Winfried Bruns and Michael Joswig for valuable discussions and for pro-
viding multiple relevant references. We further thank Jean-Philippe Labbé for pointing [2] to us and all
participants of the trac ticket in SageMath1 for stimulating discussions.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Discrete & Computational Geometry (2022) 67:1147–1173 1167

Appendix A: Detailed Runtimes

We give, for each of the five computations, an example of how it is executed for the
2-simplex.

1 Compute cover relations and f -vector in polymake from vertex-facet inci-
dences. To our knowledge, this applies the algorithm in [7].

polytope> new Polytope(VERTICES_IN_FACETS=>
[[0,1],[0,2],[1,2]])->F_VECTOR;

2 Compute the f -vector with normaliz (via pynormaliz, optional package
of SageMath). This is the algorithm described in [2].

sage: P = polytopes.simplex(2, backend=’normaliz’)
sage: P._nmz_result(P._normaliz_cone, ’FVector’)

3 Compute cover relations in SageMath. This is the algorithm FaceIterator
with Proposition 4.4.

sage: C = CombinatorialPolyhedron([[0,1],[0,2],[1,2]])
sage: C._compute_face_lattice_incidences() # non-public

4 & 5 Compute f -vector in SageMath using FaceIterator.

sage: C = CombinatorialPolyhedron([[0,1],[0,2],[1,2]])
sage: C.f_vector()

For displaying the runtimes, we use the following notations:

– Δd for the d-dimensional simplex,
– Cd,n for the d-dimensional cyclic polytope with n vertices,
– Ad for the d-dimensional associahedron,
– Pd for the d-dimensional permutahedron,
– H for the 20-dimensional counterexample to the Hirsch conjecture,
– �d for the d-cube,
– Bn for the (n − 1)2-dimensional Birkhoff polytope,
– Pop for the polar dual of a polytope P ,
– L(P) for the Lawrence polytope of P ,
– Kn the Kunz cone in ambient dimension n − 1, treated as a inhomogenous poly-
hedron of dimension n − 2.

The runtimes of the five best-of-five computations on the various examples are as
given in Table 3.

123

1168 Discrete & Computational Geometry (2022) 67:1147–1173

Ta
bl
e
3

R
un

tim
e
co
m
pa
ri
so
n
fo
ro

bt
ai
ni
ng

th
e

f-
ve
ct
or

in
p
o
l
y
m
a
k
e
(1
)a
nd

n
o
r
m
a
l
i
z
(2
)t
o
ru
nt
im

e
in
S
a
g
e
M
a
t
h
fo
ra
ll
co
ve
rr
el
at
io
ns

(3
),

f-
ve
ct
or

(4
),
an
d
im

pr
ov
ed

al
go

ri
th
m

fo
r
th
e

f-
ve
ct
or

(5
).
Ta
bl
e
co
ns
is
ts
of

be
st
-o
f-
fiv

e
tim

in
gs

ro
un

de
d
to

w
ho

le
se
co
nd

s
an
d
th
e
nu

m
be
r
of

at
om

s
an
d
co
at
om

s,
th
e
di
m
en
si
on

an
d
th
e
nu

m
be
r
of

el
em

en
ts
.“
M
O
F”

in
di
ca
te
s
th
at
th
e
pr
oc
es
s
w
as

ki
lle
d
du
e
to

m
em

or
y
ov
er
flo

w
,a
nd

a
da
sh

in
di
ca
te
s
a
ru
nt
im

e
of

le
ss

th
an

ha
lf
a
se
co
nd

T
im

e
in

s

(1
)

(2
)

(3
)

(4
)

(5
)

m
in

(n
,
m

)
m
ax

(n
,
m

)
d

|ϕ|
�
5
�
�
op 5

3
–

3
–

–
42

42
11

59
,5
36

�
6
�
�
op 6

11
9

2
12

0
–

–
76

76
13

53
2,
90

0

�
7
�
�
op 7

47
71

31
4,
74

4
1

–
14

2
14

2
15

4,
78

7,
34

4

�
8
�
�
op 8

M
O
F

47
8

M
O
F

18
11

27
2

27
2

17
43

,0
59

,8
44

A
4
�
A

op 4
3

—
1

–
–

56
56

9
39

,2
04

A
5
�
A

op 5
53

7
2

61
–

–
15

2
15

2
11

81
7,
21

6

A
6
�
A

op 6
18

6,
00

0
61

53
35

15
16

45
6

45
6

13
18

,3
18

,4
00

A
7

1
–

–
–

–
35

14
30

7
20

,7
94

A
8

21
–

2
–

–
44

48
62

8
10

3,
05

0

A
9

58
9

2
39

1
–

54
16

,7
96

9
51

8,
86

0

A
10

28
,2
26

16
82

6
10

–
65

58
,7
86

10
2,
64

6,
72

4

A
11

M
O
F

23
7

M
O
F

19
6

5
77

20
8,
01

2
11

13
,6
48

,8
70

B
5

22
8

9
99

–
–

25
12

0
16

6,
09

2,
72

2

B
6

M
O
F

M
O
F

M
O
F

27
10

31
0

36
72

0
25

19
,9
89

,1
71

,0
34

�
10

3
–

–
–

–
20

10
24

10
59

,0
50

�
11

19
–

2
–

–
22

20
48

11
17

7,
14

8

�
12

12
2

1
8

–
–

24
40

96
12

53
1,
44

2

�
13

89
3

2
37

1
–

26
81

92
13

1,
59

4,
32

4

123

Discrete & Computational Geometry (2022) 67:1147–1173 1169

Ta
bl
e
3

co
nt
in
ue
d

T
im

e
in

s

�
14

95
58

9
19

5
3

–
28

16
,3
84

14
4,
78

2,
97

0

�
15

M
O
F

32
M
O
F

18
1

30
32

,7
68

15
14

,3
48

,9
08

�
16

M
O
F

15
4

M
O
F

11
1

3
32

65
,5
36

16
43

,0
46

,7
22

�
17

M
O
F

93
8

M
O
F

69
3

20
34

13
1,
07

2
17

12
9,
14

0,
16

4

�
18

M
O
F

M
O
F

M
O
F

44
10

13
2

36
26

2,
14

4
18

38
7,
42

0,
49

0

C
10

,2
0

33
–

2
–

–
20

40
04

10
17

1,
65

0

C
10

,2
1

65
–

4
–

–
21

57
33

10
23

8,
91

2

C
10

,2
2

12
8

1
6

–
–

22
80

08
10

32
5,
95

4

C
10

,2
3

26
0

1
10

–
–

23
10

,9
48

10
43

6,
86

4

C
10

,2
4

58
6

1
18

1
–

24
14

,6
88

10
57

6,
25

8

C
10

,2
5

13
10

2
30

1
–

25
19

,3
80

10
74

9,
31

2

C
10

,2
6

26
47

2
51

2
–

26
25

,1
94

10
96

1,
79

4

C
10

,2
7

50
39

3
88

3
–

27
32

,3
19

10
1,
22

0,
09

6

C
10

,2
8

91
28

5
14

0
5

–
28

40
,9
64

10
1,
53

1,
26

6

C
10

,2
9

15
,6
24

7
23

0
7

–
29

51
,3
59

10
1,
90

3,
04

0

C
10

,3
0

26
,1
23

10
36

5
12

–
30

63
,7
56

10
2,
34

3,
87

4

C
10

,3
1

41
,9
03

14
56

8
19

1
31

78
,4
30

10
2,
86

2,
97

6

C
10

,3
2

65
,6
55

20
M
O
F

29
1

32
95

,6
80

10
3,
47

0,
33

8

C
10

,3
3

10
0,
30

7
29

44
1

33
11

5,
83

0
10

4,
17

6,
76

8

C
10

,3
4

15
0,
24

1
40

66
2

34
13

9,
23

0
10

4,
99

3,
92

2

C
10

,3
5

22
2,
34

0
57

98
3

35
16

6,
25

7
10

5,
93

4,
33

6

C
10

,3
6

80
16

1
5

36
19

7,
31

6
10

7,
01

1,
45

8

C
10

,3
7

11
0

23
1

7
37

23
2,
84

1
10

8,
23

9,
68

0

123

1170 Discrete & Computational Geometry (2022) 67:1147–1173

Ta
bl
e
3

co
nt
in
ue
d T

im
e
in

s

C
10

,3
8

15
2

32
9

10
38

27
3,
29

6
10

9,
63

4,
37

0

C
10

,3
9

20
9

46
3

16
39

31
9,
17

6
10

11
,2
11

,9
04

C
10

,3
0

28
7

64
2

25
40

37
1,
00

8
10

12
,9
89

,6
98

C
10

,4
1

38
5

88
9

40
41

42
9,
35

2
10

14
,9
86

,2
40

C
10

,4
2

M
O
F

12
16

67
42

49
4,
80

2
10

17
,2
21

,1
22

H
M
O
F

M
O
F

45
3

40
36

,4
25

20
35

3,
73

1,
26

6

P
6

8
1

3
–

–
62

72
0

5
4,
68

4

P
7

21
79

17
42

8
6

–
12

6
50

40
6

47
,2
94

Δ
16

2
–

1
–

–
17

17
16

13
1,
07

2

Δ
17

5
–

2
–

–
18

18
17

26
2,
14

4

Δ
18

10
1

5
–

–
19

19
18

52
4,
28

8

Δ
19

22
1

10
–

–
20

20
19

1,
04

8,
57

6

Δ
20

50
3

23
–

–
21

21
20

2,
09

7,
15

2

Δ
21

11
3

5
52

–
–

22
22

21
4,
19

4,
30

4

Δ
22

25
2

11
11

5
–

–
23

23
22

8,
38

8,
60

8

Δ
23

54
8

21
25

3
1

–
24

24
23

16
,7
77

,2
16

Δ
24

M
O
F

44
55

3
2

–
25

25
24

33
,5
54

,4
32

Δ
25

M
O
F

91
3

–
26

26
25

67
,1
08

,8
64

Δ
26

M
O
F

18
9

6
1

27
27

26
13

4,
21

7,
72

8

Δ
27

M
O
F

M
O
F

13
2

28
28

27
26

8,
43

5,
45

6

(1
)

(2
)

(3
)

(4
)

(5
)

m
in

(n
,
m

)
m
ax

(n
,
m

)
d

ϕ

C
20

,2
1

48
3

29
7

–
–

21
21

20
2,
09

7,
15

2

123

Discrete & Computational Geometry (2022) 67:1147–1173 1171

Ta
bl
e
3

co
nt
in
ue
d

T
im

e
in

s

C
20

,2
2

26
0

6
M
O
F

–
–

22
12

1
20

4,
19

0,
21

0

C
20

,2
3

M
O
F

12
M
O
F

1
–

23
50

6
20

8,
34

1,
50

4

C
20

,2
4

M
O
F

26
M
O
F

2
–

24
17

16
20

16
,4
74

,1
14

C
20

,2
5

44
6

1
25

50
05

20
32

,1
20

,8
32

C
20

,2
6

11
0

24
3

26
13

,0
13

20
61

,5
54

,6
90

C
20

,2
7

26
9

10
7

9
27

30
,8
88

20
11

5,
54

6,
11

2

C
20

,2
8

81
1

43
1

28
28

68
,0
68

20
21

2,
00

4,
86

6

C
20

,2
9

M
O
F

17
90

98
29

14
0,
99

8
20

37
9,
83

8,
46

4

L
(A

3
)

62
5

17
20

9
1

–
28

41
6

17
10

,4
35

,6
64

L
(C

4,
8
)

1
–

–
–

–
16

14
8

12
50

,7
46

L
(C

4,
9
)

5
–

1
–

–
18

26
1

13
16

7,
09

8

L
(C

4,
10

)
23

1
6

–
–

20
43

0
14

52
4,
80

0

L
(C

4,
11

)
10

2
2

21
–

–
22

67
1

15
1,
58

2,
33

2

L
(C

4,
12

)
41

2
7

73
–

–
24

10
02

16
4,
60

6,
87

6

L
(C

4,
13

)
16

96
21

24
9

1
–

26
14

43
17

13
,0
15

,5
00

L
(C

4,
14

)
M
O
F

70
80

3
5

1
28

20
16

18
35

,8
29

,6
22

L
(C

5,
8
)

2
–

–
–

–
16

12
0

13
61

,4
56

L
(C

5,
9
)

9
–

2
–

–
18

26
1

14
22

4,
33

0

L
(C

5,
10

)
50

1
8

–
–

20
51

4
15

78
2,
59

6

L
(C

5,
11

)
26

3
5

36
–

–
22

93
5

16
2,
61

4,
02

0

L
(C

5,
12

)
13

39
16

14
6

1
–

24
15

96
17

8,
39

0,
65

6

L
(C

5,
13

)
M
O
F

50
55

4
4

1
26

25
87

18
25

,9
90

,0
44

123

1172 Discrete & Computational Geometry (2022) 67:1147–1173

Ta
bl
e
3

co
nt
in
ue
d

T
im

e
in

s

L
(C

5,
14

)
M
O
F

14
4

M
O
F

14
2

28
40

18
19

77
,9
99

,4
64

L
(C

op 4,
6
)

2
–

1
–

–
18

57
13

12
1,
89

4

L
(C

op 4,
7
)

M
O
F

53
51

0
2

–
28

67
2

18
24

,2
33

,9
12

L
(C

op 4,
8
)

M
O
F

M
O
F

M
O
F

12
70

15
9

40
42

08
24

7,
18

8,
01

5,
35

6

L
(C

op 5,
7
)

15
6

8
67

–
–

24
11

0
17

4,
57

7,
86

6

L
(C

op 5,
8
)

M
O
F

M
O
F

M
O
F

35
63

43
4

40
5,
92

8
25

17
,3
64

,2
62

,1
96

L
(�

op 5
)

12
1

5
–

–
20

84
15

47
9,
56

6

L
(�

op 6
)

23
9

10
94

–
–

24
15

2
18

5,
90

9,
08

6

L
(�

op 7
)

M
O
F

12
4

15
52

5
1

28
28

4
21

72
,0
97

,6
78

L
(�

op 8
)

M
O
F

M
O
F

M
O
F

65
10

32
54

4
24

87
3,
86

9,
95

0

L
(�

4
)

M
O
F

25
5

35
25

10
1

32
29

6
20

13
0,
85

1,
04

6

K
12

2
–

60
18

64
10

66
9,
79

4

K
13

16
–

72
70

05
11

4,
38

9,
23

4

K
14

13
7

1
84

15
,5
85

12
21

,0
38

,0
16

K
15

2,
62

2
21

98
67

,2
62

13
13

7,
67

2,
47

4

K
16

M
O
F

24
1

11
2

18
4,
02

5
14

75
1,
49

7,
18

8

123

Discrete & Computational Geometry (2022) 67:1147–1173 1173

References

1. Bayer, M.M., Hetyei, G.: Generalizations of Eulerian partially ordered sets, flag numbers, and the
Möbius function. Discrete Math. 256(3), 577–593 (2002)

2. Bruns, W., García-Sánchez, P., O’Neill, C., Wilburne, D.: Wilf’s conjecture in fixed multiplicity. Int.
J. Algebra Comput. 30(4), 861–882 (2020)

3. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, Ch.: Normaliz. Algorithms for rational cones and
affine monoids. https://www.normaliz.uni-osnabrueck.de

4. Eliahou, S.: A graph-theoretic approach to Wilf’s conjecture. Electron. J. Comb. 27(2), # P2.15 (2020)
5. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In: Polytopes—

Combinatorics and Computation (Oberwolfach 1997). DMV Sem., vol. 29, pp. 43–73. Birkhäuser,
Basel (2000)

6. Hampe, S., Joswig, M., Schröter, B.: Algorithms for tight spans and tropical linear spaces. J. Symb.
Comput. 91, 116–128 (2019)

7. Kaibel, V., Pfetsch, M.E.: Computing the face lattice of a polytope from its vertex-facet incidences.
Comput. Geom. 23(3), 281–290 (2002)

8. Lemire, D., Kaser, O., Kurz, N., Deri, L., O’Hara, C., Saint-Jacques, F., Ssi-Yan-Kai, G.: Roaring
bitmaps: implementation of an optimized software library. Software 48(4), 867–895 (2018)

9. Oxley, J.G.: Matroid Theory. Oxford Science Publications. Oxford University Press, New York (1992)
10. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York

(1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.normaliz.uni-osnabrueck.de

	A New Face Iterator for Polyhedra and for More General Finite Locally Branched Lattices
	Abstract
	1 Introduction
	2 Formal Framework
	2.1 Variants of this Framework and Examples

	3 The Algorithm
	3.1 Correctness of the Algorithm
	3.2 Variants of the Algorithm

	4 Data Structures, Memory Usage, and Theoretical Runtime
	4.1 Computing All Cover Relations
	4.2 Theoretic Comparison

	5 Performance of the Algorithm Implemented in SageMath
	5.1 Possible Reasons for the Performance Difference

	6 Application of the Algorithm to Wilf's Conjecture
	Acknowledgements
	Appendix A: Detailed Runtimes
	References

