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The recent rapid experimental advancement in the engineering of quantum many-body systems opens the
avenue to controlled studies of fundamental physics problems via digital or analog quantum simulations. Here,
we systematically analyze the capability of analog ion traps to explore relativistic meson spectra on current
devices. We focus on the E8 quantum field theory regime, which arises due to longitudinal perturbations at the
critical point of the transverse-field Ising model. As we show through exact numerics, for sufficiently strong
long-range suppression in experimentally accessible spin chain models, absorption spectroscopy allows for the
identification of the low-lying meson excitations with a good degree of accuracy even for small system sizes.
Our proposal thus opens a way for probing salient features of quantum many-body systems reminiscent of meson
properties in high-energy physics.
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I. INTRODUCTION

Emergent phenomena of quantum many-body (QMB) sys-
tems play a major role in condensed matter and particle
physics [1–3]. The recent progress of quantum simulation
technologies [4–6] in controllable platforms such as ion traps
[7–10] has opened the prospect of treating fundamental effects
and systems beyond the capability of classical computers.
Various trapped-ion experiments have already unveiled static
and dynamical properties of quantum matter [11–23] as well
as lattice gauge theories [24,25].

In this work, we are interested in using trapped-ion de-
vices to study mesons, which are nonperturbative bound
states consisting of two subparticles or charges. They appear
prominently in quantum chromodynamics (QCD), the theory
of strong interactions within the standard model of particle
physics, where a quark-antiquark pair is confined by a flux
tube. Their properties and phenomenology is of key impor-
tance for the understanding of heavy-ion collisions, which
provide an experimental way of studying far-from equilib-
rium dynamics relevant to the physics of the early universe
[26]. Beyond particle physics, mesons exist also in condensed
matter systems, in particular Ising spin chain models, where
symmetry breaking longitudinal fields [27] or long-range in-
teractions [28,29] can confine domain walls into mesons. The
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existence of mesons in the spectrum has severe consequences
for both static and dynamical properties of the QMB system at
zero and finite temperature. Some of the diverse implications
for entanglement, correlations, and thermalization are theoret-
ically studied in [30–39]. In long-range models, the existence
or absence of meson states has also profound implications
on the emergence of anomalous cusps in dynamical quantum
phase transitions [40–44].

Analog quantum simulations can implement such spin
Hamiltonians and therefore provide access to meson features.
Experimental evidence of dynamically induced magnetic do-
main wall confinement was first provided in [45] and [46] by
analyzing the meson impact on correlation and entanglement
spreading after quantum quenches. Recently, the authors of
[47] proposed a protocol to measure fluctuations and dissipa-
tions in quantum simulators (see also [48]), and illustrated a
way of obtaining spectral information of the meson system
from their relations. An improved error mitigation technique
for the extraction of meson masses on quantum simulators
was discussed in [49]. While these systems are currently
most developed in (1+1)-dimensional simulations, their phe-
nomenology can provide important insights that are relevant
across dimensions. For example, the recent papers [50–52]
explored the capabilities of quantum simulations for real-time
string breaking and meson scattering [53]. All these studies
focused on parameter regimes where either a semiclassical
interpretation of mesons in terms of domain walls is possible
or a formulation as a simple gauge theory is amenable [54].

Alternatively, meson states can occur also far away from
semiclassical regimes, e.g., close to quantum critical points
(QCPs), where an effective (i.e., relativistic) quantum field
theory (QFT) description is available. Zamolodchikov’s E8

model [55] is such an example of an interacting QFT that
emerges through longitudinal perturbations at the Ising critical
point. The theoretically predicted E8 meson spectrum was first
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experimentally observed in [56] and found recently renewed
interest in [57–59]. These experiments were based on neutron
scattering measurements and spectroscopic methods in solid-
state crystals.

Here, we instead propose controlled measurements of the
E8 meson spectrum on an ion-trap quantum simulator using
absorption spectroscopy [14,16]. For that purpose, we nu-
merically explore the capabilities of experimentally realizable
small Ising spin systems to identify the lowest E8 meson
states. We show that for sufficiently strong long-range sup-
pression in Ising models, the energy absorption spectrum,
which is accessible in the linear response framework, is in
close correspondence with the analytical expectation of the
E8 QFT. We corroborate these findings by a fidelity analysis,
which suggests that small systems retain the nature of the first
meson across all interaction ranges considered, while the ther-
modynamic limit may have a transition at a spatial power-law
interaction ∼1/r. Due to the promising experimental [24,25]
and theoretical [60–66] efforts to implement and study gauge
theories with ion-trap quantum simulations, we see, as an
implication of our study, the potential to probe meson physics
also in relativistic gauge theories with these technologies.

II. ISING MODELS AND QFTs

The transverse field Ising model is a famous example of
a many-body system exhibiting a quantum phase transition
[67]. An additional longitudinal field can break the integrabil-
ity of the system and introduces interesting new features, in
particular mesons, appearing as nonperturbative bound states
in the spectrum of the model. The prototype is the nearest-
neighbor (NN) Ising model, defined in terms of Pauli matrices
σ x,z

j by the Hamiltonian

HNN = −J

(
N−1∑
j=1

σ z
j σ

z
j+1 + h

N∑
j=1

σ x
j + g

N∑
j=1

σ z
j

)
, (1)

where the overall energy scale is set by the unit J . The trans-
verse and longitudinal fields are quantified by the parameters
h and g, respectively. The Hamiltonian (1) is written for N
spins at positions j assuming open boundary conditions (obc).
Analogously, one can assume periodic boundary conditions
(pbc), defined by σN+1 = σ1 for a system on a circle, by
adding the interaction term −Jσ z

Nσ z
1 .

In a proper continuum limit, the IR regime of HNN is
described by a Majorana fermion QFT with Hamiltonian [68]

HIR =
∫ ∞

−∞
dx

{
i

4π
(ψ∂xψ − ψ̄∂xψ̄ )

− iMh

2π
ψ̄ψ + CM15/8

g σ

}
. (2)

Here, C ≈ 0.062 is a numerical constant, and Mh ≡ 2J|1 − h|
and Mg ≡ DJ |g|8/15 with D ≈ 5.416 are mass scales in the
transverse and longitudinal direction [68,69]. The QCP at
{J = h = 1, g = 0} translates into Mh = Mg = 0, in which
case the IR is governed by the Ising CFT with central charge
c = 1/2 and scalar primary operators ε = iψ̄ψ and σ of di-
mensions �ε = 1 and �σ = 1/8. For longitudinal relevant
perturbations of the Ising CFT, i.e., Mh = 0, Mg �= 0, it is a

remarkable prediction of Zamolodchikov that the resulting
interacting E8 QFT is also integrable and governed by the
exceptional simple Lie algebra of rank 8 [55]. This QFT con-
tains eight stable mesons—fermionic nonperturbative bound
states—whose masses are known as tabulated in Table I in
units of the lightest meson mass M1 ≡ Mg.

On ion-trap quantum simulators, it is experimentally pos-
sible to implement a long-range (LR) Ising model, defined by
the Hamiltonian [12,13,15]

HLR = −J

(
N∑

i< j

1

|i − j|α σ z
i σ z

j + h
N∑

j=1

σ x
j + g

N∑
j=1

σ z
j

)
, (3)

where the coefficient α quantifies the LR interaction of two
spins at position i and j [70]. Similarly to the NN model, one
can consider the system for obc and pbc, where in the latter
case we assume that two spins at positions i and j interact
along their minimal distance on the ring. For α → ∞, one
recovers the NN Hamiltonian (1). While experimentally the
range 0 � α � 3 is in principle accessible [71,72], it was
observed, e.g., in [73] that already for α ≈ 3, the physics of
the system can resemble closely the NN model.

III. ENERGY AND ABSORPTION SPECTRA

In what follows, we compare the ideal NN model with the
LR model based on numerical diagonalization, to characterize
in how far the E8 meson spectrum survives in the presence of
power-law interactions and for the relatively small systems of
a few dozen sites to which current experiments on trapped
ions are restricted [9,10]. The basis for the observability in
small systems is that the longitudinal field is chosen large
enough such that the associated length scale of the first meson
L ∼ 1/M1 ∼ |g|−8/15 is sufficiently small to be captured by
the finite size chain. As already observed in [74] for a realistic
model of a solid state crystal, even relatively large longitudinal
field values are able to reproduce the E8 spectrum, indicating
the strong impact of the QFT regime on the physics of the
model.

A. Energy levels

In Fig. 1, the mass gaps mn/m1 for the lowest n =
1, . . . , 400 excited eigenstates, normalized to the lowest ex-
cited numerical state, are shown for a chain of N = 12 spins
with an exemplary longitudinal field g = 3 in the NN (a) and
LR (b) Ising model [75]. In the finite size system, energy
levels appear as bands in the spectrum. In the ideal NN model,
pbc (shown as orange triangles) allow for a clean identification
of the first 6 meson levels. Apart from an underestimation
of the fourth level, the mass ratios agree well with the E8

theory (shown as grey dashed lines). The first n = 1, . . . , N
eigenvalues can be associated to the the first meson level and
follow the momentum dispersion relation in the first Brillouin
zone. In contrast, while obc (blue circles) match particularly
some of the higher meson levels, they do not satisfy the ratio
of the first E8 masses. We therefore focus in the following on
a finite system with pbc on a ring and compare the results to
the E8 theory on an infinite line (cf. Table I), i.e., we neglect
finite volume corrections given by Lüscher’s formula [76].
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TABLE I. Ratios of meson masses for the integrable interacting E8 QFT [55], which provides an effective description of the nearest-
neighbor Ising model along longitudinal perturbations at its critical point.

M2/M1 M3/M1 M4/M1 M5/M1 M6/M1 M7/M1 M8/M1

Analytical 2 cos π

5 2 cos π

30 4 cos 7π

30 cos π

5 4 cos 2π

15 cos π

5 4 cos π

30 cos π

5 8 cos2 π

5 cos 7π

30 8 cos2 π

5 cos 2π

15
Numerical 1.6180 1.9890 2.4049 2.9563 3.2183 3.8912 4.7834

At energies above 2M1, multiparticle states exist and form
a continuum. Although we do not have a continuum in a finite
system, we can nevertheless identify the mass sum M1 + M2

(shown as the lowest grey dotted line). Higher order mass
sums are very close to some of the analytical E8 mass ratios.
The LR results for α = 3 (right panel) resemble the NN profile
nearly identically for pbc and are slightly smeared out for obc,
and therefore similarly allow one to identify the analytical
meson mass ratios.

B. Absorption spectra

In recent years, methods have been developed to reveal
spectra of interacting spin systems in trapped ions akin to
neutron scattering in the solid state [14,16]. Such experimen-
tally measurable absorption spectra can be computed within
the framework of linear response theory [77]. Specifically,
the mean energy absorption rate Q = 〈∂H/∂t〉 is proportional
to the imaginary (dissipative) part χ ′′(ω) ≡ χ ′′

AA(ω) of the
susceptibility, which is given in general in the Lehmann rep-
resentation by

χ ′′
OA(ω) = π

2N −1∑
n,m=0

〈n|A|m〉〈m|O|n〉(pn − pm)

× δ[ω − (Em − En)]. (4)

Here, the double sum is taken over all eigenstates |n〉 and |m〉
of the system, A is an operator that perturbs the Hamiltonian
in the time domain, and O is an operator whose response in the
system is considered. The delta function in Eq. (4) expresses
the fact that there is only a contribution to the result when
the perturbation frequency ω equals the energy differences
Em − En. For general thermal states, the population factors
take the form pn = e−βEn/Z , where Z = ∑

n e−βEn is the finite
temperature partition function. For our studies, we are inter-
ested in the zero temperature case where absorption energies
are measured with respect to the ground state |0〉 with energy
E0, and p0 = 1 and pn = 0 for n > 0.

In the following, we find that the salient features of the
spectrum become accessible with the following straightfor-
wardly measurable operator:

O = A =
N∑

i=1

σ z
i cos(kri ), (5)

where k ∈ [−π, π ] is the quasimomentum and ri = ai ≡ i the
lattice position for unit lattice spacing. For the special case of
k = 0, the imaginary part dynamic susceptibility simplifies (in
dimensionless units) to

χ ′′(ω, k = 0) = πJ
2N −1∑
n=0

N∑
i=1

|〈0|σ z
i |n〉|2{δ[ω − (En − E0)]

− δ[ω + (En − E0)]}. (6)

FIG. 1. Numerical energy spectra for the NN (a) and LR (b) Ising model with obc (blue circles) and pbc (orange triangles). The normalized
mass gaps mn/m1 of the lowest excited states with level n ∈ N are shown for the longitudinal field strength g = 3 in a chain of N = 12 sites.
The transverse field strength is fixed to the critical value h = 1 throughout this work. Grey dashed lines represent the analytical E8 meson
mass ratios Mn/M1 (cf. Table I). The continuum threshold is at 2M1. Grey dotted lines correspond to multiparticle states with masses M1 + M2,
M1 + M3, and 2M2 (in ascending order). While for obc some deviations from the ideal result appear, for pbc even such a small system
reproduces well the expected low-lying mass spectrum, for NN as well as for algebraic interactions.

022616-3



JOHANNES KNAUTE AND PHILIPP HAUKE PHYSICAL REVIEW A 105, 022616 (2022)

FIG. 2. Energy absorption spectrum of the LR model with pbc in
dependence on the power-law coefficient α. The data are scaled to the
maximum of the spectrum. Black dashed lines represent the analyti-
cal E8 meson mass ratios (cf. Table I). Grey dotted lines correspond
to multiparticle states with masses M1 + M2 and M1 + M3. For the
entire range of α, a strong peak appears at the lowest meson mass.
With increasing α, more features become discernible that agree with
the analytic E8 meson spectrum of the QFT at the critical point of the
NN Ising model. Numerical parameters: N = 18 (pbc), 
/J = 0.1,
g = 3.

In a realistic situation, the energy resolution is restricted by
the accessible experimental observation time tobs. According
to the Wiener-Khintchine theorem [78,79], the delta function
is then approximated by a Lorentzian

δ[ω − (En − E0)] ≈ 


[ω − (En − E0)]2 + 
2
, (7)

with width 
 = 1/tobs.
We numerically calculate the energy absorption spectrum

according to Eqs. (6) and (7) for the realistic value 
/J = 0.1
(see Sec. VI) on a chain of N = 18 sites, which is the largest
system size that we can achieve by iterative eigensolvers for
sparse matrices, while keeping a large portion of the spectrum
[80]. Figure 2 shows the energy absorption spectrum in the
LR model as a function of the frequency in dependence of
the coefficient α. For low α, only the first meson mass can
unequivocally be discerned. As α is increased, peaks at the
analytical E8 meson mass ratios are formed, whereby the
first meson retains the largest spectral density. The continuum
threshold at 2M1 overlaps with the third meson peak. Above,
also the mass sum M1 + M2 is identifiable while the fifth
meson peak overlaps with the mass sum M1 + M3.

In Fig. 3, the energy absorption spectrum in the LR model
with α = 3 (green dash-dotted curve) is compared to the NN
model (orange solid curve) for one selected value of the lon-
gitudinal field. The analogon of this spectral density in the
E8 QFT is the dynamical structure function, which has been
calculated recently in [81]. The corresponding spectrum is
shown as the blue dotted curve for a similar frequency broad-
ening. In the Ising model data, the first five meson states and
the mass sum M1 + M2 are visible as peaks with (apart from
the fourth level) good quantitative agreement to the analytical

FIG. 3. Comparison of the energy absorption spectrum in the NN
and LR models with the analytical E8 dynamical structure function
from [81]. The data are scaled to the maximum of the spectrum.
Grey dashed lines represent the analytical E8 meson mass ratios
(cf. Table I). Grey dotted lines correspond to multiparticle states
with masses M1 + M2 and M1 + M3. From the numerical absorption
spectra, meson peaks can be identified very close to their expected
analytical ratios. The LR model allows one to resolve the quantitative
ratio of the first to the second meson peak height of the QFT pre-
diction with nearly the same precision as the NN model. Numerical
parameters: N = 18 (pbc), 
/J = 0.1, g = 3, α = 3.

mass ratios. While in the exact E8 spectrum the meson peak
heights are continuously decreasing, the finite size data are not
able to reproduce this feature above the continuum threshold.
However, the ratio of the first to the second meson peak height
is even in good quantitative agreement with the analytical
prediction.

IV. FIDELITY ANALYSIS

The existence of a clear band structure in the energy spec-
trum of the LR Ising model (cf. Fig. 1) as well as peaks in
the absorption spectrum (cf. Fig. 2) even for small values
of α raises the question of whether the underlying quantum
states still can be interpreted as mesons and whether they
resemble their counterparts in the E8 regime of the NN Ising
model (corresponding to α = ∞) for finite values of α even on
the deeper level of quantum information measures. Regarding
the first point, it is well known [28,29] that LR interactions
confine domain walls in the Ising model. It is therefore in
principle justified to interpret the existence of discrete band
structures as meson states. In the present case, we have addi-
tionally also the effect of the longitudinal field. We address
the resemblance with the E8 regime of the NN model for
this case using the fidelity F (α) and fidelity susceptibility
χF (α). These quantities have been used previously for ground
[82,83] and excited states [84,85] as a theoretical framework
to identify and characterize quantum phase transitions. Here,
we use them to detect if there is a fundamental change in the
meson structure as the LR coefficient α is varied.
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FIG. 4. Dependence of the fidelity (a), defined in (8), and fidelity susceptibility (b), defined in (9), on the LR coefficient α. (a) In finite-size
systems (colored solid lines, increasing N from top to bottom), the first meson state retains a large overlap to the one of the NN model (α = ∞).
An extrapolation to N → ∞ (black dashed line) indicates a transition in the nature of the meson state in the thermodynamic limit, occurring
at some value of α � 1.5. (b) In agreement with this finding, the fidelity susceptibility shows a peak that becomes sharper with system size
(colored solid lines, increasing N from bottom to top). Assuming a scaling with N−1, we obtain a peak position of αmax ≈ 1.07 ± 0.02 in the
thermodynamic limit.

We consider the system with pbc, in which the first meson
band consists of the first n = 1, . . . , N excited eigenstates of
the Hamiltonian. Since they have different degeneracies in the
LR and NN model, the overlap of some of these states is not
well defined and hence numerically not unique. In fact, only
the first excited state (n = 1) is nondegenerate in all cases and
allows us to define the fidelity as

F (α) = |〈φ1(α)|φ1(α = ∞)〉|, (8)

where φ1 denotes the first excited state in the LR and NN
model, respectively. Furthermore, following [82,83] the fi-
delity susceptibility is defined as

χF (α) = −∂2F (α, δα)

∂ (δα)2

∣∣∣∣
δα=0

= lim
δα→0

−2 ln F (α, δα)

(δα)2
, (9)

where F (α, δα) = |〈φ1(α)|φ1(α + δα)〉|. In our numerics, we
use the second relation with the numerical value δα = 0.01
and probe the range 0 � α � 3.

The results for the fidelity per site f (α) ≡ F (α)1/N and the
fidelity susceptibility χF (α) are shown in Fig. 4 for several
chain lengths at the longitudinal field value g = 3. For all
finite system sizes under consideration (colored solid curves),
which are within experimental scope, for α � 2, f (α) lies
close to the maximal value of 1, and even at all-to-all LR
interactions (α = 0, lowest solid curve) the fidelity per site
decreases at most by 1%. These findings indicate that the
quantum nature of the first excited state in the LR model
resembles very closely its counterpart in the NN case, at least
for finite system sizes.

In addition to the finite-size results, we extrapolate the data
to the thermodynamic limit N → ∞ by making the scaling
ansatz f (α) = f∞(α) + c(α)N−b(α). We leave the exponent
b(α) together with c(α) and f∞(α) as free fit parameter. The
result for f∞(α), representing the prediction for the thermo-
dynamic limit, is shown as the black dashed curve in the left
panel of Fig. 4. While it shows fast convergence for large α,

it decreases rapidly for α � 1.5, indicating a transition in the
nature of the meson state for large system sizes. Similarly, the
fidelity susceptibility, shown in the right panel, exhibits a peak
at small values of α and then decreases towards 0 for strong
LR suppression. Such a peak is suggestive of a transition in
the first excited meson state occurring at some intermediate
value of α. As the system size increases, the peak position
αmax moves towards larger values of α. Assuming a scaling
with N−1, we can extract the value αmax ≈ 1.07 ± 0.02 for
N → ∞ in the thermodynamic limit. This range seems to
agree with the rapid decrease of the fidelity in the left panel.

Thus, while finite size systems retain the same physics
across all considered values of α, the scaling analysis suggest
the appearance of interesting new physics for the first meson
state in the LR versus NN model, which would be worthwhile
to study on its own. This finding agrees with the fact that the
Ising model with variable-range interactions in a transverse
field shows a transition in its quench dynamics at α = 1
[73,86]. Besides hinting at interesting physics in the excited
states, this result suggests that the mesons for at least α � 1
remain smoothly connected to the NN meson even at large
system sizes.

V. MESON MASS IDENTIFICATIONS

For the previous discussions, one specific longitudinal field
value was chosen. In this section, we extract the meson masses
from the energy absorption spectrum in dependence of g [87].
The results are presented in Fig. 5. Individual meson masses
M̃n are obtained from a Gaussian fit to each peak in units of the
mass gap m1 of the first excited state with an uncertainty cor-
responding to its full width at half maximum [shown in (a)].
Since the individual energy of an eigenstate is experimentally
not accessible, we additionally express the results with respect
to the extracted mass M̃1 of the first meson by propagating
its uncertainty [shown in (b)]. With increasing value of g, the
uncertainty of the meson mass decreases, allowing for a more
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FIG. 5. Extracted meson mass ratios M̃n/m1 and M̃n/M̃1 from the
energy absorption spectra in dependence of the longitudinal field
g. The results are expressed in units of the mass gap m1 (a) and
the first extracted meson mass M̃1 (b). The level n = 1, 2, . . . , 5
increases from bottom to top. Solid error bars are for the NN model,
dotted ones for the LR model (shown slightly displaced for graphical
purposes). Grey dashed lines represent the the analytical E8 meson
mass ratios Mn/M1 (cf. Table I). Numerical parameters: N = 18
(pbc), 
/J = 0.1, α = 3. Once g is sufficiently large, the meson mass
ratios can be reliably extracted even in small systems.

precise identification of the analytical E8 mass ratios Mn/M1

up to the fifth level for both the NN (solid error bars) and the
LR model (dotted error bars). The fourth meson is constantly
underestimated except for the largest considered longitudinal
field strength. Overall, the numerical data of the finite size
system are closest to the E8 QFT in the range 3 � g � 4,
with an even smaller uncertainty for the LR model. Moreover,
one can observe that the measurable ratio in panel (b) even
allows for a slightly better consistency with the analytical E8

mass ratios. The resulting uncertainties (peak widths) follow
as a property of the spectrum in combination with the chosen
inverse observation time 
/J = 0.1.

VI. QUANTUM SIMULATION IN TRAPPED IONS

In trapped-ion quantum simulators, effective magnetic
models are routinely realized by encoding the basis states | ↑〉
and | ↓〉 of spins 1/2 in two long-lived hyperfine states and in-
ducing effective spin–spin interactions ∼J through a phonon
bus, e.g., using a Mølmer-Sørensen-type laser or microwave
beam [88]. Effective magnetic fields ∼h, g can be realized by
a detuning of the Mølmer-Sørensen beams [13,15,16,89,90] or
by additional lasers that are tuned off-resonantly to the carrier
transition [17,23].

An experimental protocol to measure the E8 spectrum in
such a system is as follows. First, the effective spins are
prepared in the electronic ground state, corresponding to the
fully polarized state | ↑, . . . ,↑〉, the ground state at g = ∞.
By slowly decreasing g and turning on J and h, the system
is adiabatically transferred to the ground state at the desired
parameter values. Such a procedure can produce considerable
excitations when crossing a quantum phase transition [13]. In
the present scenario, instead, even though we are interested
in the QFT regime emanating from the critical point, we find
the final value of the transverse field g can be large, ensuring
a large many-body gap on the order of Mg ≡ DJ |g|8/15. For
g = 3, we have Mg = 9.7J and thus the initial state prepa-
ration can occur adiabatically in times much shorter than
h̄/J , which in turn are much shorter than typical coherence
times. Alternatively, ground states in trapped-ion quantum
computers can be prepared to good precision using variational
algorithms [25].

After initialization, the system is perturbed with a time-
dependent magnetic field, which again can be realized
by periodically modulating the detuning of the Mølmer–
Sørensen beams or by a time-modulated ac-Stark shift. Using
single-site addressing, site dependent ac-Stark shifts with
switching times much faster than the timescales of the internal
dynamics (on the order of h̄/J) have already been demon-
strated experimentally [17,23]. It is thus possible to perturb
the effective spin system with an operator of the type defined
in Eq. (5).

Two spectroscopy protocols are thinkable: The pertur-
bation is turned on abruptly, e.g., as a step function and
the subsequent time evolution of the same observable is
tracked, which for local observables of the type O can be
done by standard fluorescence measurements [9,10,91]. A
Fourier transform then yields the desired imaginary part of
the dynamic susceptibility, χ ′′(ω), defined in Eq. (6) [92].
Alternatively, the perturbation can be modulated temporally
with a cos(ωt ). By tracking the absorbed energy per unit
time, which amounts to the measurement of few-body correla-
tors and which has already been demonstrated experimentally
[25], again χ ′′(ω) is obtained.

Typical trapped-ion experiments on many-body spin sys-
tems generate long-range interactions [12–16]. In linear
chains with open boundary conditions, for not too large sys-
tems these approximate a spatial power-law decay to good
precision [72,93], and any deviations from the desired power-
law interactions can be mitigated by the shaping of the
interactions, e.g., by additional laser beams [63,90,94], pe-
riodic driving [95,96], or trap-shaping techniques [61,97–
99]. It is nowadays also possible to prepare ions in ring
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FIG. 6. Comparison of the energy absorption spectra for adia-
batically prepared ground states with different time durations tramp

of a linear ramp (colored dashed curves) to the exact ground state
case in the LR model (black solid curve). Background lines are as in
Fig. 3. Even for a relatively fast ramp of trampJ = 1, the qualitative
agreement of the spectrum with the exact case is very good and
allows for the identification of E8 meson mass ratios.

conformations, thus enabling the realization of periodic
boundary conditions [100–102]. While the theoretical range
of power-law decay exponents is 0 � α � 3 [71], the ex-
perimentally most favorable power-law decays are at α = 0
when working with the axial center-of-mass mode or in an
intermediate range when interactions are transmitted by the
radial phonon modes. For example, in [15] the range 0.75 �
α � 1.75 has been accessed, which, as the spectra and fidelity
analysis reported in the previous sections show, enables access
to meson spectra that closely approach the physics of the ideal
NN model.

The robustness of the adiabatic ground state preparation
and subsequent spectroscopic analysis is explicitly demon-
strated in Fig. 6 for the LR model. Here, we consider the
previously discussed parameters α = g = 3 for a small chain
of N = 12 sites. Starting from the fully polarized state, the
ground state in the E8 regime is adiabatically prepared by
increasing the transverse field from h = 0 up to h = 1 using a
linear ramp profile of duration tramp. We assume Jdt = 0.01,
from which dh follows through the relation dh/dt = 1/tramp.
The figure shows the resulting absorption spectra for several
values of tramp � Mg (colored dashed curves) in compari-
son to the case when the exact ground state is calculated
and employed in Eq. (6) (black solid curve). The curves for
trampJ = {4, 8} are nearly coinciding with the exact result.
Only for a fast ramp with trampJ = 1 the peak heights are
marginally overestimated but still allow for a precise meson
identification.

VII. SUMMARY AND OUTLOOK

In this article, we have demonstrated that the relativistic
E8 QFT can be identified experimentally on ion-trap quantum
simulators. Surprisingly small systems of only 12 to 18 sites
with pbc, which implement the LR quantum Ising model at

the experimentally largest possible LR suppression, resemble
the NN Ising model closely and allow for the identification of
E8 meson states. For longer-ranged interactions, while most
meson states disappear from the spectrum, the lowest meson
remains a strong feature. We have calculated the energy ab-
sorption spectrum based on linear response theory and showed
that it shares qualitative and quantitative features with its QFT
counterpart. Single and multiparticle meson states appear as
peaks in the energy absorption spectrum, which allow for a
precise extraction of analytically predicted E8 meson mass
ratios even for large longitudinal field values. As a fidelity
analysis shows, for small systems the nature of the first meson
changes only insignificantly across all values of α considered,
while we find indications for a transition in the meson state
in the thermodynamic limit at a critical value around αc ≈ 1.
We have also discussed a protocol adapted to existing trapped-
ion technologies to experimentally access the meson spectra.
While we have focused on the zero momentum case, this pro-
cedure can be extended to derive also relativistic dispersion
relations at finite momenta, which would enable us, e.g., to
extract the meson dispersion relation.

We have focused in our study on the E8 regime, which
appears in a parameter region of the simple Ising model
(longitudinal perturbations at the QCP) and has been exper-
imentally verified previously in solid state crystals. Using
ion-trap based quantum simulation technologies opens, how-
ever, a new avenue to address relativistic meson physics also
in more complicated gauge theories; see, e.g., [103] for an
overview of recent progress in the field. Furthermore, ion-trap
quantum simulations allow for studies of finite-temperature
systems [104,105], which offers, for example, the possibility
to study the rich physics of meson melting [106], a process
for which currently no complete microscopic understanding
is available [107].

FIG. 7. Numerical energy spectra (normalized mass gaps of ex-
cited states) for the NN (a),(b) and LR (c),(d) Ising model with
obc (blue circles) and pbc (orange triangles). The left column is
for a chain of size N = 12, the right for N = 18. Grey dashed lines
represent the the analytical E8 meson mass ratios (cf. Table I). Grey
dotted lines correspond to multiparticle states with masses M1 + M2,
M1 + M3, and 2M2 (in ascending order).
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FIG. 8. Comparison of the energy absorption spectrum in the NN
(a) and LR Ising model (b) for different chain sizes N . The data are
scaled to the maximum of the spectrum. Grey dashed lines represent
the the analytical E8 meson mass ratios (cf. Table I). Grey dotted
lines correspond to multiparticle states with masses M1 + M2 and
M1 + M3.
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FIG. 9. Effect of the LR coefficient α on the numerical energy
spectrum (normalized mass gaps of excited states) with obc (blue
circles) and pbc (orange triangles). Background lines are as in Fig. 7.

FIG. 10. Comparison of the absorption spectrum in the NN
(a) and LR Ising model (b). In the LR model, the coefficient α is
varied over the whole experimentally accessible range of values.
Background lines are as in Fig. 8.
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FIG. 11. Effect of the longitudinal field value g on the numerical
energy spectrum (normalized mass gaps of excited states) in the LR
model with obc (blue circles) and pbc (orange triangles). Background
lines are as in Fig. 7.

APPENDIX A: FINITE SIZE EFFECTS

In this Appendix we elaborate on some further details
about the finite size dependence of the results presented in
the main text.

In Fig. 7, the normalized mass gaps of a chain of size
N = 12 [left column (a),(c) as in Fig. 1 of the main text] are
compared to a chain with N = 18 sites [right column (b),(d)].
The longitudinal field g = 3 and the largest experimentally
accessible decay parameter α = 3 are considered. Due to the
exponential difference in the total number of eigenstates, dif-
ferent portions of the spectrum are available for a comparable
number of excited states. For both obc and pbc, the effect of
the finite size difference seems to be very mild in the energy
spectrum. Observe also that for obc, higher bands in the LR
model seem to resemble a continuous branch. There are only
mild differences between the NN model [top row (a),(b)] and
the LR model at α = 3 [bottom row (c),(d)].

The underlying eigenstates give rise to the energy absorp-
tion spectra shown in Fig. 8. There are nearly no visible
differences for the first two meson peaks. Only above the
continuum threshold, differences in multiparticle states occur.
We therefore conclude that the quantitative agreement with
the analytical E8 result for the dynamical structure function,
which is described in the main text, is a stable feature for both
the NN and LR model.

APPENDIX B: LONG-RANGE DEPENDENCE

In this Appendix, we analyze the effect of the LR coeffi-
cient α on the physics discussed in the main text.

Figure 9 displays the energy spectrum as a function of
α. We vary the parameter in the range α = 0 (all-to-all LR

FIG. 12. Energy absorption spectrum of the NN (a),(c) and LR model (b),(d) with pbc in dependence on the longitudinal field value g. In
(a),(b) the data are scaled to the maximum of the spectrum, in (c),(d) in absolute units. Dashed lines represent the analytical E8 meson mass
ratios (cf. Table I), dotted lines correspond to multiparticle states with masses M1 + M2 and M1 + M3. Numerical parameters: N = 18 (pbc),

/J = 0.1, α = 3.
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interactions) up to the previously used α = 3 (strong LR sup-
pression). At α = 0, three identical degenerate branches are
visible within the considered portion of the spectrum, for obc
and pbc. For increasing values of α, semicontinuous branches
in the obc spectrum are more and more split into discrete
bands and new bands appear in the case of pbc. Already for
α � 2, the bands in the pbc spectrum resemble the E8 lines.

The resulting energy absorption spectra are shown in
Fig. 10(b) in absolute units for a quantitative comparison to
the NN model (a). As α is increased, the intensities of the in-
dividual peaks are increased and the peak positions resemble
the E8 mass ratios. Observe that there is only a very small
difference in the absolute height of the first peak for the NN
versus the LR model at α = 3.

APPENDIX C: LONGITUDINAL FIELD DEPENDENCE

In this Appendix we provide further details about the lon-
gitudinal field dependence of the absorption spectra.

Figure 11 shows the energy spectra of the LR model at
α = 3 for several longitudinal field values. With increasing
field strength, it becomes visible that a large semicontinuous
band breaks apart into several discrete bands, which flatten out
at the expected analytical E8 mass ratios for pbc.

The resulting energy absorption spectra are compared to
the NN model in Fig. 12. For a better visual presentation,
we show both the scaled spectra in the top panels (a),(b)
as well in absolute units in the bottom panels (c),(d) for a
quantitative comparison. With increasing longitudinal field,
the peaks get narrower and allow for the identification of
the proper meson mass ratios and sums. For the system size
under consideration, N = 18, one can infer that a longitudinal
field g � 2 is necessary to capture all associated of the low-
lying meson length scales in the system. The NN spectrum
differs qualitatively from the LR model only at the small-
est depicted field value g = 1 (red curves). At larger values,
the quantitative differences in the absolute scale are very
small.
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