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Abstract 

After cardiac arrest (CA) and successful resuscitation, many patients suffer from severe hypoxic-

ischemic encephalopathy (HIE). Prognostication of long-term neurological outcome is therefore 

an important step in deciding on therapeutic goals. Brain computed tomography (CT) is 

recommended by guidelines as part of a multimodal diagnostic pathway including serum 

biomarkers, clinical and electrophysiologic tests. The Gray-White-Matter Ratio (GWR) derived 

from CT quantifies global brain edema in patients with hypoxic-ischemic encephalopathy (HIE). 

Most studies report on GWR determined by a (neuro-)radiologist, a potential source of inter-

rater variability.  

We evaluated brain CT as a prognostic tool in three separate studies: (I) We retrospectively 

examined the relationship between CT timing and GWR to identify the optimal timepoint and 

threshold with the best prognostic performance. (II) We developed a method to automatically 

quantify regional radiodensity changes by co-registration of individual head CT images with a 

brain atlas, identified the regions with best prognostic performance in a derivation cohort and 

validated the results in a validation cohort. (III) We histopathologically examined postmortem 

brain autopsies to assess if exams and cutoffs used for prognostication accurately reflect the 

underlying pathologies. Neurologic outcome was evaluated using the Cerebral Performance 

Scale (CPC) at ICU/hospital discharge, dichotomized in good (CPC 1-3) and poor (CPC 4-5) 

outcome.  

Results: Among 195 patients in the first study, no patient with good outcome patient had a 

(manually determined) GWR <1.10. Sensitivity for poor outcome prediction (unresponsive 

wakefulness syndrome or death) by GWR increased from 12% within the first 6 hours to 48% 

using CTs obtained later than 24 hours after CA. For automated assessment we evaluated 516 

CTs from two cohorts with a total of 433 patients. In all gray matter regions radiodensity (in 

Hounsfield Units; HU) was significantly lower in poor outcome patients. Automated GWR at 

the basal ganglia level (GWR_si) had the best prognostic performance of all examined 

parameters. Consistently, sensitivity increased within the first 72 hours after CA. Autopsy 

revealed severe histopathological HIE in all patients with a GWR <1.10 and some patients with 

normal GWR values.  

Conclusion: Outcome prediction using brain CTs is most accurate using CTs performed later 

than 24 hours after CA. Automated assessment of GWR is a promising new tool for quantifying 

changes after CA. A cut-off <1.10 in both manually and automatically determined GWR 

predicted poor outcome with high specificity and low-to-moderate sensitivity and correlated 

highly with histopathological severe HIE in brain autopsy.   
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Abstrakt 

Die neurologische Prognoseabschätzung nach kardiopulmonaler Reanimation ist ein 

medizinisch und ethisch herausfordernder Schritt in der Therapieplanung von Patienten nach 

Herzstillstand. Als Teil eines multimodalen diagnostischen Konzepts wird die zerebrale 

Bildgebung, insbesondere die Computertomographie empfohlen, wobei der ideale Zeitpunkt für 

die Durchführung dieser bisher unklar ist. Ein bereits etablierter Parameter zur Quantifizierung 

des globalen Hirnödems als Zeichen für hypoxisch-ischämische Enzephalopathie (HIE) ist die 

„Gray-White-Matter Ratio“ (GWR). Sie wird üblicherweise manuell von einem (Neuro)-

Radiologen bestimmt, was das Problem der Inter-Rater-Variabilität mit sich bringt. Wir 

untersuchten zunächst an einer Registerkohorte den Zusammenhang zwischen Zeit und GWR-

Veränderungen um den Zeitpunkt und Grenzwert mit der besten prognostischen Aussagekraft 

der Bildgebung zu identifizieren.  

Daraufhin entwickelten wir für eine zweite Studie eine Methode, um die radiologischen 

Veränderungen in CTs automatisiert zu erfassen, verwendeten diese, um daraus den 

aussagekräftigsten prognostischen Parameter zu eruieren und validierten diesen an einer 

weiteren Kohorte.  

In einer multizentrischen Studie untersuchten wir schließlich retrospektiv in den 

histopathologisch aufgearbeiteten Gehirnen verstorbener Patienten den Schweregrad des 

hypoxischen Hirnschadens unter einem bestimmen GWR-Grenzwert. 

Wir erfassten das neurologische Outcome mit der Cerebral Performance Category (CPC) Skala 

bei Entlassung von der Intensivstation bzw. aus dem Krankenhaus, dichotomisiert in gutes (CPC 

1-3) und schlechtes Outcome (CPC 4-5).  

Ergebnisse: Aus den in der ersten Studie eingeschlossenen 195 Patienten hatten kein Patient mit 

gutem Outcome eine (manuell bestimmte) GWR < 1.10. Die Sensitivität zur Vorhersage eines 

schlechten neurologischen Outcomes stieg von 12% bei CTs aus den ersten 6 Stunden nach 

Herzstillstand auf 48% für CTs, die später als 24 Stunden durchgeführt wurden. In die 

automatisierte Auswertung wurden 516 CTs von 433 Patienten eingeschlossen. In allen 

Regionen der grauen Substanz, insbesondere den Basalganglien war die Röntgendichte (in 

Hounsfield Units HU) bei Patienten mit schlechtem Outcome signifikant niedriger, in der weißen 

Substanz zeigte sich dies nicht. Die beste Vorhersagekraft hatte eine automatisierte GWR auf 

Ebene der Basalganglien (GWR_si). Auch hier stieg die Sensitivität innerhalb der ersten 72 

Stunden deutlich an. Unter dem Grenzwert <1.10 für die automatisierte GWR_si fand sich auch 

in der Validationskohorte kein Patient mit gutem neurologischem Outcome. 
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In der Autopsiestudie hatten alle Patienten mit einer (manuellen) GWR <1.10 histopathologisch 

eine schwere hypoxische Enzephalopathie. Auch einige Patienten mit normalen GWR-Werten 

hatten Zeichen eines hypoxischen Hirnschadens.  

Schlussfolgerung: Zur Prognose nach Reanimation sind CTs am aussagekräftigsten, wenn sie 

später als 24 Stunden nach Herzstillstand gemacht werden. Die automatisierte Analyse von CTs 

ist eine neue, Rater-unabhängige Methode, um die GWR zu bestimmen. Ein Cut-off von <1.10 

war in der manuellen und automatisierten Auswertung sowie histopathologisch ein robuster 

Parameter für ein schlechtes neurologisches Outcome (Tod oder minimaler 

Bewusstseinszustand).  
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1. Introduction 

 
Cardiac arrest (CA) is one of the major causes of death worldwide (Berdowski et al., 2010, 

Virani et al., 2020). In Germany, cardiopulmonary resuscitation (CPR) in out-of-hospital CA 

(OHCA) was performed in 62.6 per 100,000 inhabitants in 2019 (Fischer et al., 2020). 

Although the rate of bystander-CPR and the quality and accessibility of ICU treatment 

increases, OHCA survival rates are still relatively low such as 4.9% - 10.4% in a recent 

French report (Luc et al., 2018). Survivors of CA often develop hypoxic-ischemic 

encephalopathy (HIE) causing permanent disabling symptoms from cognitive and 

movement disorders to severe impairments of consciousness, most frequently unresponsive 

wakefulness syndrome (UWS) (Neumar et al., 2008, Grasner et al., 2016). If treatment is 

continued, patients may survive in UWS for many years. In Germany and many other 

countries, any treatment requires consent by the patient. If a patient cannot consent, treating 

physicians are obliged to determine the patients will. Frequently, patients have written 

advanced directives or authorized persons who decide on their behalf. In case of severe 

permanent brain injury, directives and representatives of the patient frequently express their 

will to withdraw intensive care. 

Prognostication of neurological outcome is therefore essential and requires multimodal 

diagnostics at different time points after CA as clinical examination alone is not accurate 

enough.  Physicians performing neuroprognostication might be in a quandary because the 

level of certainty needed for withdrawal of life sustaining therapy (WLST) has not been 

agreed upon. Although physicians have expressed a need for false-positive rates less than 

0.1% in prediction of poor neurological outcome in a recent survey, no diagnostic test or a 

combination of multiple tests has shown such an accuracy so far (Steinberg et al., 2019). In 

clinical reality on the other hand, WLST is frequently performed as early as within the first 

72h after cardiac arrest (Elmer et al., 2016). At that point, acute therapy such as targeted 

temperature management (TTM) and cardiac recompensation might not even be completed 

and sedatives might still be in effect. This sequence might lead to a self-fulfilling prophecy, 

a bias affecting previous neuroprognostication studies upon which current clinical practice 

and guidelines are based.  

Currently, a combination of repeated clinical examination, electroencephalography (EEG), 

serum neuron-specific enolase (NSE), somatosensory evoked potentials (SSEP) and brain 

imaging (computed tomography [CT] or magnetic resonance imaging [MRI]) is 

recommended (Nolan et al., 2021).  
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Brain CT has been shown to predict poor outcome when the differentiation of gray and white 

matter is diminished and brain edema is present (Lopez Soto et al., 2019). Optimal timing 

for CT imaging is unclear. Some authors suggest early imaging within hours (Yanagawa et 

al., 2005), others within days after cardiac arrest (Moseby-Knappe et al., 2017). To quantify 

changes after CA in brain CT, the Gray-White matter ratio (GWR) can be calculated (Na et 

al., 2018) by manually measuring the radiodensity in different regions-of-interest (ROI). 

Both qualitative interpretation and ROI placement are susceptible to inter-rater variability, 

which can lead to misjudgement (Caraganis et al., 2020). Automated analysis of brain CTs 

is a rater-independent alternative and different approaches such as atlas analysis, region 

growing and machine learning have been demonstrated in other neurological diseases such 

as stroke (Gillebert et al., 2014, Nagel et al., 2019) and intracerebral hemorrhage (Sharrock 

et al., 2021). Few studies with a limited number of patients have shown promising results 

using semi-automated/automated CT analysis in CA patients (Hanning et al., 2016, Wu et 

al., 2011), but included mostly CTs obtained within the first hours after CA.  

In this thesis, I evaluated different aspects of brain CT in neuroprognostication after cardiac 

arrest. The main study of the thesis was on automated determination of the gray-white matter 

ratio. I contributed to two further studies, the first one evaluating the effect of timing of brain 

CT on the prognostic performance of manually determined GWR and the second one 

evaluating (among many other aspects) the relationship between GWR and severity of 

histopathological brain damage in post-mortem human brain tissue. 
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2. Methods 

2.1 Patients 

Approval for our studies was given by the local ethics committee. Patients were 

retrospectively identified from our prospectively maintained cardiac arrest database at the 

Berlin Circulatory Arrest Center from 2010 to 2016 (study 1) and December 2005 to July 

2019 (study 2). For study 2, we used patients until October 2016 as derivation cohort, 

followed by a validation cohort from 2016 to July 2019.  

Patients were treated with targeted temperature management (TTM) according to current 

guidelines at 33° for 24 hours (Nolan et al., 2021, Nolan et al., 2015). We used the Cerebral 

Performance Category Scale (CPC) (Phelps et al., 2013) at ICU discharge (study 1 and 3) 

and hospital discharge (study 2), respectively. The scale ranges from CPC 1 (good cerebral 

performance) to CPC 5 (death/brain death) and includes UWS (CPC 4), a frequent outcome 

in CA patients as separate category. Dichotomization in “good” (CPC 1-3) and “poor” (CPC 

4-5) outcome included CPC 3 (severe cerebral disability) in the first category because of the 

potential for further improvement in rehabilitation.   

Neuroprognostication was assessed using a multimodal diagnostic approach (Leithner et al., 

2012, Nolan et al., 2021) including repeated clinical examination, electroencephalography 

(EEG), neuron-specific enolase (NSE) serum concentration, somatosensory evoked 

potentials (SSEP) and imaging. Only if results of prognostic test were congruent, poor 

prognosis was assumed; a prognostic statement was never made before the third day after 

CA and considerably later in most cases. 

2.2 Brain Autopsy and HIE 

To investigate the extent of histopathological brain damage in study 3, we retrospectively 

identified patients from three Charité hospitals in Berlin (Germany), Århus University 

Hospital (Denmark) and Skåne University Hospital Lund (Sweden) between 2003 and 2015 

with brain CTs after CA who underwent postmortem brain autopsies. Formaldehyde-fixed 

and hematoxylin-eosin-stained regional brain slices (neocortex, hippocampus, cerebellum, 

mesecephalon, medulla oblongata, pons) were microscopically rated using the selective 

eosinophilic neuronal death (SEND) classification (Bjorklund et al., 2014). Other than 

necrosis, which involves all cell types, SEND appears after reperfusion as result of 

successful resuscitation and underlying selective ischemic vulnerability. If neuronal death 
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was more than 30 % (SEND >1) in any region, we dichotomized patients as “severe HIE”, 

otherwise as “no/mild HIE”.  

2.3 CT Acquisition  

CTs were mostly requested by treating physicians to exclude intracranial causes for CA or 

to assess consequential brain damage. The majority of CT scans were acquired on Scanners 

manufactured by GE Healthcare (Little Chalfont, UK), some on scanners Toshiba Medical 

(Ōtawara, Japan), Philips Medical Systems (Eindhoven, Netherlands) and Siemens Medical 

Solutions (Erlangen, Germany) with a a peak kilovoltage (kVp) of 120. Axial 5mm slice 

reconstructions of non-contrast CTs were used. Results were checked for inter-scanner-

variability (supplement of study 2).   

2.4 Manual GWR Calculation 

In study 1 and 3, GWR was determined manually by neurologists with experience in post-

CA imaging using 16 circular 0.1cm2 regions-of-interest (ROIs) as previously established 

(Scheel et al., 2013). Raters were blinded to clinical information.  

2.5 Automated Deconstruction of CTs/Automated GWR Determination 

In study 2, images were gantry tilt-corrected and converted from DICOM into the NIfTI-

Format using the dcm2niix script (Li et al., 2016). Images were linearly and non-linearly 

registered to a freely available CT-template in MNI-152 standard space (Rorden et al., 2012) 

using FLIRT and FNIRT from the FMRIB Software Library (FSL Version 5.0.9, Analysis 

Group, FMRIB, Oxford, UK) (Jenkinson et al., 2012). Images were excluded if they had 

confounding factors for automated analysis (intracerebral hemorrhage, hydrocephalus and 

shunt artifacts, severe motion artifacts, large old ischemic lesions, postcontrast images, 

calcification of the basal ganglia or acquisition with peak kilovoltage 100 kVP). 

We used gray matter maps from the Harvard-Oxford subcortical structural atlas (Desikan 

et al., 2006) thresholded at 60% tissue probability and binary white matter region maps from 

the ICBM-DTI-81 white-matter labels atlas (Mori et al., 2008). We checked success of co-

registration prior to data analysis and blinded to clinical information.  

Brain segmentation was performed by using the inverse non-linear transformation-fields to 

transform the specific brain component maps from standard space into the individual CT-

spaces (Kemmling et al., 2012). Mean HU were calculated using FSL per region and 

weighted by tissue probability. Three different GWRs were calculated: GWR_cort (cortical) 
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 and 

GWR_si (simple) = -0$,1%5
-89!

 (PLIC – Posterior limb of the internal capsule, ALIC – Anterior 

limb of the internal capsule, RLIC – Retrolenticular limb of the internal capsule).  

2.6 Statistical Analysis 

For statistical analysis, we used RStudio (Version 1.0.136, RStudio, Inc., Boston, MA), for 

data visualization the ggplot2 (Wickham, 2009) and ggpubr packages and for ROC 

calculation the pROC package (Robin et al., 2011). For the description of clinical baseline 

data, we used numbers and percentages or medians and interquartile ranges (IQR) as 

appropriate. HUs and GWRs were compared using a Mann-Whitney-U (MWU)-test 

between patients with good and poor outcome and using a Wilcoxon-Test between early and 

late CTs in patients with follow-up CTs. Sensitivities and specificities of outcome prediction 

were calculated with 95% confidence intervals (CI) using the Wilson-Score method. 
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3. Results 

3.1 Timing of CT after CA 

In study 1 (Streitberger et al., 2019), we investigated manually determined GWR (16 ROIs) 

in 245 CTs of 195 CA patients. In poor outcome patients, GWR_man decreased significantly 

over time. Sensitivity for poor outcome prediction at 100% Specificity and a cutoff of <1.10 

was 17% for CTs within 6 hours after CA and increased to 39% for CTs taken later than 24h. 

Mean GWR_man was higher in patients with OHCA (79% of the study population) than in-

hospital cardiac arrest (IHCA). The time to achieve return of spontaneous circulation 

(tROSC) did not significantly influence GWR values. 

3.2 Automated Assessment of Brain CTs and Clinical Outcome 

In study 2 (Kenda et al., 2021), 516 CTs of 433 patients (eighty-nine percent of available 

CTs) were eligible for automated analysis. In both cohorts (derivation [n=309] and validation 

[n=207]), most patients were male and suffered an OHCA. Leading causes for CA were 

cardiac in 46% and respiratory in 28%. At hospital discharge, 151 (35%) of patients had a 

good (CPC 1–3) and 282 (65%) a poor neurologic outcome (CPC 4-5). Poor outcome 

patients less commonly had a shockable rhythm, median tROSC was longer.  

We first investigated images of the derivation cohort (309 CTs of 262 CA survivors) for 

regional variations in radiodensity (HU). Poor outcome patients had significantly lower 

radiodensities in the whole brain and all gray matter regions (Cortex, Putamen, Pallidum, 

Thalamus, Caudate) whereas no difference was observed in white matter regions. Therefore, 

GWRs were lower in poor outcome patients and outcome prediction was possible using gray 

matter HUs and GWRs. The area under the curve (AUC) of the receiver operating 

characteristics (ROC) curve for these parameters steadily increased over the first 120 hours 

after CA up to 0.86 (95%-CI; 0.80-0.93).  

Sensitivity for poor outcome prediction at 100% specificity was best using automated 

GWR_si (Putamen/PLIC). For a >1.10 cutoff, sensitivity increased from 20% for CTs 

obtained within the first 24 hours after CA to 49% for CTs taken later than 24 hours after 

CA. Using this threshold on the validation cohort (209 CTs of 171 CA survivors), 

performance was similar: At 100% specificity, sensitivity increased from 13% to 39%. The 

lowest measured automated GWR_si in a good outcome survivor in this study was 1.11.  

In a subgroup of patients with two consecutive CTs (both early and late, n=83), we found 

highly significant decreases of radiodensity over time in patients with poor outcome in 
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almost all investigated brain regions, including white matter regions. There were no 

significant changes in radiodensity over time in good outcome patients. 

3.3 Histopathological Severity of HIE and GWR 

In study 3 (Endisch et al., 2020), we investigated one hundred and twenty-two patients from 

three centers with CTs and postmortem brain autopsies after CA. Severe HIE was present in 

60%, no/mild HIE in 40%. The extend of HIE increased with decreasing GWR values. All 

patients with a (manually determined) GWR <1.10 had severe HIE, the majority even near-

total cortical and hippocampal neuronal death. Few patients with a GWR >1.3 had severe 

HIE. The lowest measured GWR for a patient with no/mild HIE was 1.13.  
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4. Discussion 

 
The main findings of this thesis are:  

1) Patients with poor neurologic outcome after cardiac arrest have significantly lower 

radiodensity in gray matter regions, especially basal ganglia. This effect increases 

over time.  

2) Automated Gray-White Matter ratio at the basal ganglia level is a promising and 

rater-independent tool for prediction of poor neurological outcome after cardiac 

arrest. 

3) Prognostic performance and sensitivity are considerably higher for brain CTs 

performed later than 24 hours and may be best at 72–120 hours after CA.  

4) A cut-off <1.10 in both manually and automatically determined GWR at the basal 

ganglia level predicted poor outcome with high specificity and low to moderate 

sensitivity. 

5) Postmortem brain tissue demonstrated severe histopathological neuronal damage in 

patients with GWR <1.10. 

4.1 Brain Radiodensity After CA 

In a single-center derivation/validation-cohort study, we analyzed the largest number of CTs 

(n=533) after cardiac arrest so far (study 2). Poor outcome patients exhibited significantly 

lower radiodensities in gray matter areas than good outcome patients, as previously observed 

(Wu et al., 2011). Radiodensity measured by CT changes linearly with the fraction of tissue 

water content (Broocks et al., 2018). Selective water uptake in hypoxia-vulnerable neurons 

after neuronal injury and consequent tissue edema leading to neuronal death is a likely 

explanation suggested by various imaging and animal studies (Selip et al., 2012, Luigetti et 

al., 2012, Hogler et al., 2010). We observed the largest differences of radiodensity between 

good and poor outcome patients in basal ganglia areas such as putamen and caudate nucleus. 

The cortical changes we measured were less extensive in contrast to previous MRI- and 

autopsy studies showing similar selective vulnerability, especially in neocortical areas (Horn 

and Schlote, 1992). Automated determination of cortical radiodensity might underestimate 

these changes due to partial volume effects, errors in co-registration and artifacts in voxels 

close to the skull. Future studies could try to increase CT acquisition quality as well as the 

co-registration algorithm, especially for cortical brain areas. 
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We studied 83 patients with follow-up CTs (one early CT within 24 hours and one late CT 

later than 24 hours after CA) and also detected radiodensity changes in white matter regions 

of patients with poor outcome. These changes were considerably smaller than the changes 

in gray matter areas. Delayed structural changes in the white matter due to axonal damage 

have been suggested in advanced diffusion imaging MRI studies and might account for our 

observations (van der Eerden et al., 2014, Velly et al., 2018). As good outcome patients had 

no changes of radiodensity in follow-up CTs in any brain region, our data indicates that a 

short transient global brain hypoxia with no or very limited neuronal damage and general 

ICU therapy per se do not relevantly affect brain radiodensity.  

In conclusion, radiodensity decreases predominantly, but not exclusively, in gray matter 

regions in patients with poor neurological outcome (severe hypoxic-ischemic 

encephalopathy) after cardiac arrest. Determined by automated co-registration with a brain 

atlas, the changes are largest in basal ganglia structures. Water uptake /edema following 

neuronal death is the likely explanation. The changes increase over time after CA, are more 

pronounced later than 24 hours as compared to within 24 hours after CA and are not observed 

in good outcome patients (with no or only mild hypoxic-ischemic encephalopathy).  

4.2 GWR for Prediction of Poor Neurological Outcome in CA Patients 

GWRs can be obtained using a variety of ROIs from superficial and deep brain structures 

(Lopez Soto et al., 2019). In study 1, we used 16 manually placed ROIs in 8 regions (Scheel 

et al., 2013). Another study by our group compared this approach to a simplified version 

using only 4 ROIs in 2 regions (Putamen and PLIC) and found a non-inferior prognostic 

performance (Gentsch et al., 2015).  

For our automated study, we used different combinations of regions to find the GWR with 

the best prognostic ability. In contrast to standard-sized circular and binary ROIs in manually 

determined GWR, the ROIs used here were derived from brain atlases, probabilistic – 

meaning that the HU of individual voxels were weighted by tissue probability – and varied 

in size and shape (examples in Figure 1, Kenda et al. 2021). Because HU in PLIC were stable 

across outcome and timing and changed the most in basal ganglia, performance was best for 

both GWRs at the basal ganglia level: GWR_bg and GWR_si. The latter exceeded in 

specificity, likely because it only used two central regions instead of seven, some of which 

closer to the (hypodense) ventricles, affecting measurements more if ROIs are misaligned.  

Automated GWR_si predicted poor outcome with an AUC of 0.79/0.86 

(derivation/validation) for early and 0.86/0.81 for late CTs. Sensitivity (49% derivation/38% 
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validation) was comparable to other modalities used for prognostication, such as SSEP, EEG 

or NSE (Westhall et al., 2016, Streitberger et al., 2017, Endisch et al., 2015). Our results 

confirm the results of previous, manual ROI studies (Na et al., 2018) indicating a consistent 

underlying pathophysiology.  

4.3 Timing of CTs 

Most CT studies so far have focused on early CTs (within 6 or 24 hours after CA) and found 

heterogeneous results with low to moderate sensitivity and mixed prognostic performance 

leading some authors even to the conclusion that CT cannot be used for outcome prediction 

(Hong et al., 2019, Sandroni et al., 2020). A large international prospective study using 

qualitative assessment by an expert neuroradiologist noticed an increase in sensitivity for 

poor outcome prediction from 14% to 57% within 24h for patients with radiologically 

diagnosed “generalized brain edema” (Moseby-Knappe et al., 2017). The increase in 

sensitivity in both our manual and automated study was comparable. However, in another 

study, interobserver agreement on CTs findings in qualitative assessment (i.e. absence or 

presence of HIE) was poor to moderate and varied widely between physicians, specialties 

and centers. Using first a manual and then an automated quantitative approach, we aimed to 

minimize this variability.  

In our studies, as mentioned above, radiodensity for gray matter regions decreased in poor 

outcome patients, so did GWR. This difference became more pronounced over time, 

especially within the first 24 hours suggesting an ongoing effect within hours and days after 

CA. Our subgroup analysis in study 2 (n=70) suggests CTs might have the best prognostic 

capability between 72–120 hours after CA (supplementary material of Kenda et al. 2021). 

Even after 120 hours up until 240 hours after CA, prognostic performance stayed at a high 

level, indicating lasting effects on brain tissue as seen in ischemic stroke (Schwamm et al., 

1998, Broocks et al., 2018).  

Future studies should further evaluate post-CA CTs at later time points, repeated CTs and 

comment on reversible CT changes in CA survivors of patients with neurologic recovery. 

Serial CTs would also allow for quantification of water uptake, which could better establish 

thresholds for reversibility of brain damage due to edema as already demonstrated in stroke 

patients (Minnerup et al., 2016).  
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4.4 Cutoffs and Pitfalls using GWR 

In none of our studies, we saw good outcome patients (CPC 1-3) with a GWR <1.10. Severe 

histopathological HIE was not only found in all patients under this cutoff, but also a relevant 

proportion of patients within the reference range, implying relevant neuronal damage 

undetectable by GWR. Severe HIE was rarely found in patients with GWR >1.3, indicating 

a possible upper cutoff for the detection of HIE and a role in good outcome prediction, 

respectively. As CPC 5 (death) partially includes death by causes other than HIE (i.e. sepsis, 

multiorgan failure, re-arrest), we find several patients with GWR >1.3 in our CT studies. 

Thus, using a multiparameter approach for prognostication is even more relevant.  

If GWR is used in the clinical routine, the way of its acquisition and calculation should be 

taken into consideration. A previous pilot study that automatically assessed GWR in 84 

patients with early CTs using masks of the whole white and gray matter found a similarly 

high ROC-performance but low sensitivity and non-maximal specificity at a cutoff different 

from ours (<1.04) (Hanning et al., 2016). Other studies - mainly retrospective single-center 

- used different combinations of ROIs and reported cut-offs between 1.10 and 1.24 (Na et 

al., 2018). This underlines the importance of method-specific, arguably even center-specific 

cutoffs until a standardized protocol has been established.  

There have been reports of patients with selective bilateral basal ganglia lesions following 

whole brain hypoxia having good long-term outcome despite movement disorders (Wallays 

et al., 1995, Scheibe et al., 2020). The exact frequency of this phenomenon is currently 

unknown and seems more prominent in MRI (Ghasemi et al., 2018). Selective basal ganglia 

lesions without changes in the cortex should be considered when assessing GWR.  

4.5 Limitations  

Outcome assessment was performed at hospital or ICU discharge, respectively. Thus, 

subsequent neurological recovery is possible. We included CPC 3 patients in the good 

outcome group to avoid overly pessimistic prognosis based on our cohorts. Furthermore, 

selection bias must be considered because CT was not acquired in all CA patients.  

Even though automated assessment minimizes rater-depended variability, there are rater-

independent factors affecting quantification such as scanners, acquisition parameters, 

postprocessing protocols and artefacts. To exclude CTs with apparent artefacts that bias 

quantification, some degree of expertise is still needed (graphical examples given in 

supplement of study 2, Kenda et al. 2021). We tried to harmonize CT acquisition but used 
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different scanners by various manufacturers due to the multi-site structure of our ER, ICU 

and radiology department. Generally, CT provides a more standardized protocol than MRI 

as HU are always calibrated to the radiodensity of water (HU=0). Even though significant 

inter-scanner variability has been described in a small study of CA patients, GWR seemed 

to equalize most of it (Oh et al., 2019). In our study, Hounsfield Units were evenly distributed 

with a tendency to lower mean Hounsfield Units for two scanners (Supplementary material 

of study 2, Kenda et al. 2021). Future studies should standardize every aspect of CT 

acquisition and postprocessing and systematically investigate inter-scanner variability in 

diseased patients and healthy controls.  

As mentioned in the introduction, early WLST and self-fulfilling prophecy due to presumed 

poor neurological outcome is an omnipresent and relevant problem in the field that cannot 

be fully excluded in our study. Nevertheless, in a long-term follow-up study, we did not find 

a single patient with neurological improvement who was discharged in a minimally 

conscious state (after a median ICU time of 27 days) and poor prognostic parameters 

(Petzinka et al., 2018). Furthermore, study 3 also illustrates a high correlation of the other 

diagnostics used for outcome prediction and histopathological HIE, further supporting the 

current guidelines. Due to religious and ethical beliefs, social conventions and different 

healthcare systems or laws, WLST is performed at different rates across countries and 

regions (Steinberg et al., 2021, Mohiuddin et al., 2020, El Jawiche et al., 2020). A recent 

Italian prospective multicentre study without WLST confirmed 100% (95%-CI; 97-100%) 

specificity for poor outcome prediction with the multimodal diagnostic approach including 

GWR (Scarpino et al., 2019). Further studying prognostication algorithms in cohorts where 

WLST is infrequently done is ethically and financially challenging but essential for 

advancing the field.  
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5. Conclusion 

Automated assessment of Gray-White Matter Ratio from brain CTs is a novel and promising, 

rater independent tool for quantifying changes in brain CTs after CA. Outcome prediction is 

most accurate using imaging obtained later than 24 hours after cardiac arrest and might be 

best between 72-120 hours. A GWR threshold of <1.10 in both manually and automatically 

determined GWR at the basal ganglia level predicted poor outcome with high specificity and 

moderate sensitivity and correlated with histopathological severity HIE in brain autopsy. 

Performance was not unlike other diagnostic tools used in the field. Cut-offs used for 

prediction should be method- and scanner-specific until a standardized protocol for CT 

quantification has been established. To minimize the risk of falsely predicting poor outcome 

and self-fulfilling prophecy, a multiparameter approach should always be used before 

deciding on continuation or withdrawal of life sustaining therapy.  
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