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Abstract
During cancer development, malignant tumours accumulate genetic and epigenetic alterations that cause
dysregulation of gene expression and cellular processes. Since the regulation of gene expression controls
many cellular processes, understanding the transcriptome of malignant tumours provides insights into
the biology of cancer. Key technology for the molecular analysis of whole cancer transcriptomes is next-
generation sequencing (NGS) of RNA (RNA-seq) from bulk tumours. However, to derive information about
cancer transcriptomes from RNA-seq data, a variety of computational tools and analyses are needed.
The following work presents two cancer transcriptome studies addressing the computational analysis of
RNA-seq data from colorectal carcinomas (CRC) and medulloblastomas (MB) by applying statistical and
machine learning (ML) methods.

CRC is a clinically challenging disease because only a fraction of tumours responds to available chemo-
and targeted therapies. Functional loss of the tumour suppressor APC has been suggested to represent the
initial mutation, activating Wnt signalling. Additional events include mutually exclusive mutations in the
RAS/RAF proto-oncogenes as well as in the TGF�, PI3K, and TP53 pathways. Routinely used biomarkers of
resistance to the EGFR inhibitor cetuximab are RAS/RAF mutations that activate signalling downstream of
EGFR. Still, a fraction of wild-type CRCs is resistant to cetuximab treatment. Addressing the need for a better
molecular understanding of CRC in precision oncology, the OncoTrack consortium (Innovative Medicine
Initiative) designed a multi-omics strategy integrating the establishment of a pre-clinical platform for
CRC organoid and animal models. In the study presented below, we focused on the integrative analysis of
gene expression and drug response data obtained from patient-derived xenografts (PDXs) treated with
cetuximab. Applying statistical methods, we identified a signature of 241 genes associated with response
to cetuximab, which allowed us to dissect the expression profiles of responding and non-responding CRC.
We used a support vector machine (SVM), a supervised ML algorithm, to obtain a gene-expression-based
classifier predictive of response to cetuximab. Here, we selected 16 highly predictive genes using multiple
SVM recursive feature elimination. The built classifier outperformed RAS/RAF mutations as a predictor of
cetuximab response and performed well in RAS/RAF-wild-type CRC that currently lacks biomarkers of
cetuximab treatment outcome in clinical practice.

The second study addressed the molecular analysis of MB. MB, a tumour of the cerebellum, is the
most common malignant brain tumour in children. Transcriptome profiling of MB using microarrays
had revealed four tumour subgroups, namely WNT, SHH, Group 3 and Group 4, each related to distinct
genetic alterations, molecular profiles, and clinical features. Recurrent mutations mainly cause pathway
activation in WNT and SHH MB, respectively, whereas in Group 3 and Group 4 MB, gross chromosomal
alterations are more prevalent and tumours express a specific cell-type- rather than a pathway-related
gene signature. Additional molecular complexity has been identified within these four main subgroups,
which could be dissected further into subtypes. However, the gene regulatory networks that contribute
to the molecular heterogeneity in MB are only partially known, and the role of long non-coding (lnc)
genes remains poorly addressed in this disease. To gain further insights into the molecular biology of
MB, the PedBrain project was founded within the ICGC framework. As a contribution to this project,
we sequenced and computationally analysed 164 MB RNA-seq samples. Addressing the heterogeneity
of MB, we identified and validated molecular subclusters within the four main subgroups. Subgroup-
and subcluster-specific gene expression profiles were analysed by functional enrichments and gene
regulatory networks (GRNs) inferred from gene expression data. These GRNs revealed communalities
and differences in gene regulation among subclusters and subgroups. By estimating the impact of TFs,
we could unravel master regulators of subcluster-specific gene expression in a systematic fashion for the
first time and highlight unknown regulators of Group 4 MB. Furthermore, we characterised lnc genes
that were differentially expressed in MB. Among these genes, we identified 20 lnc genes that show brain-
development-associated expression patterns, which is of interest due to the embryonic origin of MB.
We identified a co-expression cluster that accumulates known cancer-related lnc genes and associates
these genes with cancer-promoting protein biogenesis. Survival analyses revealed the lnc gene MEG3
as a prognostic marker in SHH and Group 4 subcluster, potentially acting as a tumour suppressor that
negatively regulates cell cycle and TGF� receptor expression.
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1 Introduction

Scientific research and medical description of cancer stretch back many thousands of years [1]. Written
in Egypt on papyrus, the first medical record of cancer dates back to 3000 BC. Back then, the writer
of this ancient text already recognised the examined tumour, a breast cancer, as a severe disease [2].
The first path-breaking scientific description of cancer was published by Johannes Müller in 1838.
In a treatise about microscopic studies of tumour tissues, he was the first to describe that a tumour
consists of a group of abnormal cells. This milestone paved the way for understanding cancer as a
disease of cells. Müller also associated cancer with ageing, which is well approved today [1, 3]. With
a more and more extended life expectancy, the risk of developing cancer is increasing dramatically
[1]. Thus, cancer has become a leading cause of death together with cardiovascular diseases in the
Western world [4].

The central aspect of current cancer research is the molecular analysis of tumours. Molecular studies
are essential to understand this disease since all cellular processes are implemented in networks of
molecule interactions involving DNA, RNA, and proteins. Gene expression, for instance, is regulated
by such networks, while the regulation of gene expression controls most cellular processes [5]. Cancer
develops due to dysregulation of gene expression and cellular programs caused by various mechanisms
altering homeostasis in an initially normal cell [4].

High-throughput omics technologies and the computational analysis of omics data have been
key to molecular studies of cancer [6]. Omics technologies allow the generation of molecular data
on a large scale, such as the whole transcriptome of tumours. Next-generation sequencing is an
important platform to investigate the whole transcriptome of cells by sequencing RNA (RNA-seq),
which enables the measurement of gene expression levels. Therefore, RNA-seq is an important tool
to study which cellular processes are dysregulated in cancer cells due to abnormal gene expression.
However, large scale omics data require computational analyses to derive meaningful information
[6]. These computational analyses mainly involve the application of statistical and machine learning
methods. Especially machine learning can solve complex data analysis tasks and, therefore, has
become an important tool. Even though the application of omics technologies and computational
analyses has provided many new insights for cancer research, their introduction has led to even more
molecular biological and clinical questions in cancer research.

1.1 Thesis outline
The primary scope of this thesis is the computational analysis of cancer transcriptomes, investigating
two cancer types, colorectal cancer (CRC) and medulloblastoma (MB).

The first part of this thesis (Chapter 2) gives an overview of the molecular biology of cancer and
surveys omics tools widely used in mole cancer research. An introduction of the hallmarks of cancer
summarises the capabilities that are acquired by a tumour during cancer development. Additionally,
long non-coding (lnc) genes and their lncRNA products are introduced as important regulators of
cellular and cancer-associated processes.

The first part of this thesis (Chapter 2) gives an overview of the molecular biology of cancer and
omics tools widely used in mole cancer research. The process of cancer development will be explained
by introducing (1) cancer as a malignant disease, (2) gene expression and its regulation in the cell,
and (3) mechanisms that lead to the cancer-causing dysregulation of gene expression in tumours. An
introduction of the hallmarks of cancer summarises the capabilities that are acquired by a tumour
during cancer development. Additionally, long non-coding (lnc) genes and their lncRNA products
are introduced as important regulators of cellular and cancer-associated processes. The first part
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1 Introduction

closes with an overview of omics technologies focusing on RNA-seq and advances that were gained
in cancer research by applying these technologies. These advances include the discovery of the
molecular heterogeneity within a single cancer type and the identification of prognostic and predictive
biomarkers.

The second part of this thesis (Chapter 3) provides an introduction to the computational analysis
methods used in this thesis including an outline of machine learning and supervised learning. Besides
standard analyses in cancer research, three analysis tasks and their solutions via machine learning
and statistical methods are introduced. The first task is the construction of a gene-expression-based
classifier that predicts the response to therapy. Here, support vector machines (SVMs), a supervised
machine learning method, offer a solution for this task. The second task comprises the inference of
gene regulatory networks (GRNs) from gene expression data. GRNs depict the interactions between
transcription factors (TFs), which function as regulators in the network, and other genes. Such a GRN
can be obtained by applying the algorithm GENIE3 that is based on a random forest of regression
trees (an ensemble machine learning method). The last task is the computational characterisation of
lnc genes using two approaches. The first approach is the classification of lnc genes based on their
position relative to protein-coding genes in the genome. The second approach comprises the analysis
of expression profiles of lnc genes to infer their putative function.

The third part of this thesis (Chapter 4) presents a transcriptome study of CRC. Since only a fraction
of CRCs respond to available chemo- and targeted therapies, this study aims to construct a classifier
that predicts therapy outcome. In clinical practice, RAS/RAF mutations are used as biomarkers to
predict the resistance of CRC to EGFR-targeting therapy. However, non-mutant tumours still show
a wide range of treatment outcomes for EGFR-targeting therapy, highlighting the need for novel
biomarkers. Addressing this question within the OncoTrack project, an SVM was used to build a
gene-expression-based classifier that predicts response to anti-EGFR therapy.

The fourth part (Chapter 5) presents a cancer transcriptome study of MB. This study focuses on a
deeper analysis of the molecular heterogeneity in MB by interfering GRNs underlying the heterogeneity
of MB. Additionally, a computation characterisation of lnc genes that are related to the molecular
heterogeneity of MB is performed since implications of lnc genes in MB are mostly unknown.

The last part of this thesis (Chapter 6) summarises the results and gained insights of the carried out
studies in the light of current literature.
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2 Cancer and gene expression

The following chapter will introduce cancer as a malignant disease, the genome and gene expression,
cancer development via the dysregulation of gene expression, and omics technologies for the molecular
analysis of tumours with an emphasis on RNA-seq.

2.1 Cancer - malignant neoplasm
The human body is a highly complex system of cells that develops from one single fertilised egg cell
called a zygote [7]. The development from a single zygote to a complete human organism (as in other
vertebrates) is determined by two essential processes. The first process is cell proliferation, which
describes the cyclically repeated process (called cell cycle) of cell growth and cell division into two
daughter cells leading to a multiplication of the cell number. The second process is cell differentiation,
which is the sequential development from the undifferentiated zygote towards fully differentiated
(functionally specialised) cell types that form the tissues and organs of the body. Even though both
processes partially happen quite rapidly during development, they are always tightly regulated because
the number of cells and cell types is comparable between individuals at a certain developmental stage
[7, 8]. Proceeding cell differentiation is accompanied by a reduction in proliferation rate. Therefore,
cells of the embryo usually show a higher proliferation rate than cells of the adult human body [8].
Overall, the number of cells is kept constant in the adult body — a state of homeostasis — via a
careful balance between cell proliferation and loss of cells due to programmed cell death (apoptosis) or
injuries [8, 9], illustrating cell proliferation control of as an essential aspect to sustain a healthy human
body.

Cancer is a malignant neoplastic disease [4, 10] that evades the essential control of cell proliferation.
Neoplasia describes an abnormal growth of cells resulting in a cell aggregation called a neoplasm
or tumour [11, 12]. Based on the aggressiveness of growth, tumours are classified into benign or
malignant. Benign tumours grow locally and do not invade surrounding normal tissue [12]. The more
aggressive malignant tumours invade adjacent tissue, spread out, and form colonies of tumour cells
at secondary sites distant and physically not connected to the primary tumour. These secondary
sites are called metastases [12, 13]. This aggressive growth leads to damage of the invaded tissue by
primary tumours or metastases [14]. Cancer always relates to malignant tumours, and the formation
of metastases causes approximately 90% of cancer-related deaths [12].

The adult body consists of over 200 cell types [15], and cancer can develop from many different (pre-
and postnatal) cell types. Thus, the term cancer comprises a vast collection of malignant neoplastic
diseases. Most malignant tumours can be classified into four broad cancer categories based on
the cell type of origin. (1) Carcinomas are tumours originating from epithelial cells and account
for the majority of tumours, including breast and colon cancer. (2) Tumours that derive from cells
types forming connective tissue are called sarcoma. (3) Leukaemia and lymphomas develop from
haematopoietic (blood) cell types; leukaemia cells move freely in the bloodstream and do not form
solid tumours. (4) Tumours originating from different parts of the nervous system belong to the
category of neuroectodermal tumours, e.g. glioma and medulloblastoma. There are also tumour types
which are not fitting into broad categories like melanomas. These derive from melanocytes, pigment
cells of the skin and eye with a developmental origin close to neuroectodermal cells [12].

The central question is, which mechanisms can cause the transformation of normal cells into a
malignant tumour in such a vast amount of cell types.
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2 Cancer and gene expression

2.2 The genome and gene expression regulation
All biological processes that simultaneously happen in an organism and during its development are
implemented in molecular biological networks defined by a system of molecule interactions. These
networks describe the flow of matter and energy (metabolism) or information (signalling, regulation)
[5]. The flow of genetic information is a central aspect in regulating the cells biological processes [5,
16].

Each cell carries deoxyribonucleic acid (DNA) that comprises the heritable genetic information. The
DNA carries the genetic information and passes this information to the next generation due to its
unique structure. The DNA is a macromolecule consisting of linear connected nucleotides (polymer).
Each nucleotide is composed of a sugar (deoxyribose), a phosphate group, and a base. The phosphate
group and sugar form the backbone of the DNA, where the phosphate group links the sugars of two
nucleotides. Here, the phosphate group is linked to the 5’ carbon atom of the first sugar and the 3’
carbon atom of the second sugar. This linkage defines the direction of the DNA from 5’ to 3’. The
base, the third component, is linked to the sugar. There are four different bases: adenine (A), guanine
(G), cytosine (C), and thymine (T). Among others, these bases are important for the structure of the
DNA. The DNA is present as a double-stranded molecule that forms a double helix (duplex) in the cell.
These two strands are held together by hydrogen bonds formed between the base pairs A-T and G-C
(Watson-Crick base pairing), where each base pair is split between strands. The two strands are reverse
(opposite direction of strands) and complementary. This double-stranded complementary structure
allows the generation of two identical copies of the DNA during DNA replication, where one strand is
used as a template to synthesis the reverse strand. The DNA is replicated during cell proliferation, and
each of the daughter cells receives one copy of the DNA to pass the genetic information to the next
cell generation. Therefore, all successors of a zygote carry the same DNA/genetic information. The
human DNA comprises approximately 3 billion base pairs organised in 23 pairs of macromolecules
called chromosomes that comprise 22 autosomal and two sex chromosomes. The double (diploid)
chromosome set arises from the inheritance of genetic information from both parents. The collection
of all chromosomes defines the human genome that is located within the cell nucleus [16].

The bases facilitate not only the double-helix structure of the DNA. Unique linear combinations of
the four bases along the DNA strands form sequence information that store the genetic information,
each strand carrying differing information. The sequence information on the DNA is transcribed into
ribonucleic acid (RNA) sequences, and the RNA is translated into protein sequences. The sequence
information on the DNA carries templates for the functional molecules, proteins that fulfil almost all
biological processes within a cell. The process of sequence transcription and translation represents the
flow of genetic/sequence information in a cell. The two key steps in this process are called transcription
and translation due to different building blocks of DNA, RNA, and protein sequences. RNA is similar to
DNA despite few differences: RNA has ribose sugar, the base T is substituted by the base uracil (U),
and RNA is single-stranded. Due to the similarity between DNA and RNA, the transfer of sequence
information from DNA to RNA is a simple sequence transcription (rewriting). An RNA molecule is also
called a transcript [16]. Proteins are macromolecules consisting of an amino acid chain that folds into a
three-dimensional structure. The folding is essential for the molecular function of a protein. There are
20 different kinds of amino acids, and unique amino acid sequences relate to distinct proteins. Due to
the higher number of amino acids compared to nucleotides (20 vs. 4), each amino acid is encoded by a
nucleotide triplet called a codon. The codon facilitates the translation of nucleotide-based information
(RNA) to amino acid-based information. A sequence of codons that encodes a protein is termed an
open reading frame (ORF). RNA that carries protein information is referred to as messenger RNA
(mRNA). Ribosomes (organelles of the cell) synthesise proteins by translating mRNA to proteins. These
organelles are located in the cell cytoplasm, the space between the nucleus and cell membrane. [17].

However, only a fraction of the DNA relates to sequences that are transcribed and protein-coding.
These protein-coding and transcribed DNA sequences are organised in single units (loci) scattered
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along the genome. These loci relate to protein-coding genes. Protein-coding genes have a certain
structure defined by alternating nucleotide blocks of exons and introns, where exons carry the protein-
coding sequence. Both exons and introns are transcribed into RNA, but only exons remain in the
mature mRNA because introns are removed from the RNA molecule by splicing. A mature mRNA
consists of the (1) ORF, (2) untranslated regions (UTR) at the 5’ and 3’ end, (3) a 5’ cap that protects
the mRNA from degradation, and (4) a tail of adenosine monophosphate nucleotides (poly-A tail)
that is important for mRNA stability and translation [16, 17]. Besides protein-coding genes, there are
also non-coding genes: transcribed DNA loci that contain only RNA sequence information as an end
product. Genes that transcribe into long non-coding (lnc) RNAs — a species of non-coding RNAs
defined by a length of > 200 nucleotides — have a gene structure of exons/introns and are spliced
like protein-coding genes. Non-coding RNAs also have various functions in biological processes, but
especially lncRNAs and their genes are less well studied than proteins because the role of lncRNA has
just been revealed recently [18].

A general definition of a gene is a DNA locus that is transcribed and carries sequence information
for a functional product (RNA molecule or protein) [19]. The human genome contains over 20,000
protein-coding genes and an estimated number of ~60,000 lnc genes [20]. There are many known
genes that carry sequence information for functional lncRNAs. However, the extent of how many genes
that transcribe lncRNAs also produce a functional lncRNA is unknown because it is assumed that the
transcription process itself and not the lncRNA can have a functional aspect [20]. Even though the
mentioned definition of a gene includes that a gene carries sequence information for a functional
product, all transcribed DNA loci that produce lncRNA are considered as a "lnc gene" in this thesis.
Since human cells are diploid, a cell carries two copies of a gene — termed as two alleles — while each
allele is paternally or maternally inherited.

The flow of genetic information from a gene to a functional molecule is called gene expression [21].
The regulation of gene expression is a central mechanism coordinating the biological processes of
the cell [5, 16]. Here, the number of RNA or protein molecules that derived from a gene within a cell
reflects the expression level of the gene. Changes in gene expression directly impact the transcriptome
(the collection of transcripts existing within a cell) and proteome (the collection of proteins existing
within a cell). Therefore, the regulation of gene expression controls which functional molecules are
present within a cell and how many of them.

The most important determinant of gene expression is gene transcription, which is controlled by
different mechanisms. One mechanism relates to the interaction between regulatory DNA sequences
and transcription factors (TFs), a specialised type of proteins binding to these DNA sequences. TFs
recognise and bind to regulatory sequences and form complexes with co-factor proteins or other TFs
in order to control the initiation and activity of transcription that is performed by the RNA polymerase
(RNApol) enzyme. Here, TFs initiate transcription by guiding RNApol to the transcription start site
(TSS) of a gene. However, besides transcriptional activation, TFs can also function as transcriptional
repressors. There are different families of TFs, and each family binds to a specific sequence motif, which
allows the regulation of individual genes by different TFs [8]. Since TFs usually regulate the expression
of genes located on a different chromosome than the gene encoding the TF, transcriptional control by
TFs is referred to as regulation in trans. There are two main types of DNA regions that contain regulatory
sequences bound by TFs: promoters and enhancers. These DNA regions control RNApol-conducted
transcription in cis (on the same chromosome). Promoters are essential for transcription initiation and
are generally located in DNA regions upstream and at the TSS of a gene, where a promoter can extend
up to several kilo-bases upstream of the TSS [8, 22]. Each gene has at least one promoter and one
TSS. In contrast to promoters, enhancers are distant from a TSS. Due to the formation of DNA loops,
TFs bound to an enhancer can form contact and interact with TFs/co-factors bound to a promoter
to increase (enhance) transcription. Enhancers are frequently involved in cell-type-specific gene
expression and can regulate the expression of more than one gene because of a dynamic formation of
DNA loops and [8].
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An additional mechanism of transcriptional regulation relates to epigenetics, involving the bio-
chemical modification of DNA [8, 23]. DNA methylation represents the modification of the DNA by
adding a methyl group to position five of a cytosine at CG dinucleotides (also CpG).DNA methylation
at promoters and enhancers is generally associated with repressed transcription. However, more
complex processes participate in epigenetic regulation. For example, DNA methylation at TF binding
sites (TFBS) can block the binding for a subset of TFs, whereas other TFs are still capable of binding to
methylated DNA. Additionally, DNA methylation is not necessarily the cause of the transcriptional re-
pression and could just be associated with the repressive state [23]. The complex relationship between
DNA methylation and transcription goes beyond the scope of this thesis and, therefore, is not further
discussed (for further reading, please see [23]).

The spatial organisation of the DNA within the nucleus also strongly influences gene transcription.
DNA does not exist as a long outstretch molecule inside the nucleus but in a spatially condensed form
called chromatin, which is a complex of proteins and DNA. The smallest structural unit of chromatin
is the nucleosome. A nucleosome consists of an octamer of the four core histones H2A, H2B, H3,
and H4 as well as DNA wrapped around the histone octamer. In a next condensation step, several
nucleosomes form a chromatin fibre. Further packing of the fibres results in highly condensed chro-
matin [8]. The compact organisation of DNA as chromatin restricts the access of TFs to the DNA.
Therefore, regulatory DNA sequences that are accessible for TFs are located in nucleosome-free regions.
The dynamic change of the DNA packing and accessibility modulates transcriptional regulation [24].
Additionally, specific transcriptional states are associated with specific biochemical modifications
of histone proteins. For example, active transcription at promoter or enhancer regions is marked by
H3K27ac (H3 - histone 3, K - amino acid lysine, 27 - position of K in the amino acid chain of H3, ac
- acetylation of K) [25]. Biochemical modifications of the DNA (methylation) and histones that do
not change the genome sequence and can be inherited define the epigenome. The constitution of
the epigenome is different between cell types, unlike the genome sequence which is identical [26].
Proteins that can write, erase, or read epigenetic modifications are important transcription regulators
besides TFs [25]. The organisation of chromatin into separated domains influences transcription as
well. These topologically associating domains (TADs) are chromatin loops that are wider and not
dynamic in contrast to chromatin loops between enhancers and promoters. TADs are one determinant
of transcription because enhancer-promoter interactions generally happen only within a TAD and not
across TAD boundaries [27].

Taken together, one central mechanism for the regulation of gene expression — the flow of ge-
netic information — is the control of transcription via the binding of TFs to regulatory sequences in
promoter and enhancer regions. The regulation of gene expression is a major aspect of controlling
biological processes. Gene expression regulation also explains [28, 29] how the successor cells of a
single zygote can differentiate and manifest certain traits (phenotypes) in terms of cell types (cell
phenotypes) even though all cells carry the same genome (genotype) (a phenotype can also relate to the
physical properties of an organism). Therefore, individual cell types relate to a specific gene expression
profile/signature controlled by an underlying gene regulatory network (GRN) [29]. GRNs describe the
interaction networks between TFs and their target genes via the binding to the promoters/enhancers
of the target [5]. In humans, the number of different GRNs is at least the number of the over 200 cell
types [15] highlighting the complexity of GRNs.

Protein-protein interactions in the nucleus, in the cytosol, or within the membrane define a large
fraction of cellular activities. These protein-protein interactions relate to the flow of matter and energy,
and information in terms of signals, which comprise intra- and extra-cellular signals. [5]. One aspect of
the flow of signals is the transduction of extracellular signals. Here, extracellular signal molecules are
recognised by transmembrane receptor proteins that propagate the signal into the cell by activating
transducer or effector proteins. In the case of transducer activation, the transducer activates the ef-
fector. The effector protein leads to the final response to the signal. This cascade of signal propagation
via protein-protein interaction is termed a signalling pathway. For example, the activation of a pathway
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can result in the expression of genes that are positive regulators of cell proliferation, which is especially
important during development. These pathways play an essential role in cell-to-cell communication
and allow the coordination of processes between cells [17].

2.3 Genetic and epigenetic alterations in tumours
Regulation of gene expression and signalling operates within a pre-defined genetic program that
ensures normal development and homeostasis of the adult body. Cancer is characterised by the
dysregulation of this program — breaking the normal cell differentiation and proliferation — due to
genetic and epigenetic alterations (changes of the genome and epigenome that can be inherited).
Direct or cascade effects of these alterations dysregulate gene expression or other cellular processes.
Cancer development is considered a multistep process where a tumour accumulates alterations. It is
generally assumed that at least two alterations (hits) are necessary to develop cancer. In the classical
view, a tumour arises from a single cell hit by a genetic or epigenetic tumour-initiating alteration. This
initiating alteration provides the first trigger and a context for a cell to become a tumour. Cancer
development involves clonal expansion where the initial alteration is passed to the following (tumour)
cell generation [4]. During tumour promotion/progression, the tumour cell population expands and
acquires additional alterations. Furthermore, tumour promotion/progression involves an evolutionary
selection of tumour cells based on acquired tumour-driving alterations that have a selective advantage
defined by alteration effects increasing the capability of proliferation, survival, invasion, or metastasis
[4, 8]. The process of clonal evolution can lead to a heterogeneous collection of clonal populations
within a tumour that is referred to as intratumour heterogeneity.

Cancer-causing alterations directly change the expression or the activity/functionality of a gene
product. The potential effects of genetic alteration have been mostly described for protein-coding
genes, as summarised in the following paragraph. Genetic alterations may consist of (1) point muta-
tions (exchange of a single base - single nucleotide variants (SNVs), (2) insertions or deletions of few
nucleotides (indel), (3) copy number variations (CNVs) (loss/deletion or gain/amplification of gene
copy numbers), and (4) chromosomal aberrations/rearrangement (translocation, insertion, duplic-
ation, deletion, inversion of chromosome segments; includes CNVs) [4]. Here, the term mutation is
mostly used for SNVs and indels. There are three possible consequences on the translated amino acid
sequence when an SNV hits the ORF of a protein-coding gene: (1) missense (the encoded amino acid of
a codon is changed), (2) nonsense (a stop codon is introduced resulting in a truncated protein), and (3)
synonymous (the base substitution does not change the amino acid sequence)[12]. The consequence
of indels is more complex. If the number of nucleotides of an indel is not evenly divisible by three (the
codon length), the indel will introduce a frame-shift of the original ORF and change all amino acids
following the indel [30]. Indels can also preserve the frame but introduce instead a small deletion or
insertion which alter the protein structure and activity. Missense SNVs, nonsense SNVs, and indels can
cause a change of protein activity/functionally. These changes can result either in a loss-of-function
(loss of activity) or gain-of-function (change or enhancement of activity) of the corresponding gene
protein product, where downstream effects dysregulate gene expression and cellular programs [4].
Outside of coding regions, mutations can also affect the activity of promoters and enhancers by
modifying TFBSs for instance [12]. CNVs have a direct influence on gene expression. Copy number
gain/amplification can lead to an elevated gene expression, whereas deletion of one allele (hemizygous
deletion) can cause a reduction of gene expression which might lead to a haploinsufficiency (gene
products of one allele are not sufficient to fulfil the original function of a gene). Deletion of both
alleles of a gene (homozygous deletion) leads to the complete loss of a gene. Epigenetic alteration
comprises, among others, the hypermethylation of promoters resulting in the inhibition (silencing) of
transcription [4].

Tumour-initiating genetic alterations mainly relate to SNVs, indels, rearrangements, deletions,
or amplifications that hit a gene. Broader chromosomal alterations occur more frequently later in
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tumour development due to an increasing genetic/chromosomal instability during tumour progression.
Cancer initiating alterations are generally somatic, meaning that they have occurred spontaneously in
somatic cells (any cell excluding germ cells ,egg and sperm)). More rarely, cancer initiating mutation
can be inherited (germline mutation). Germline mutations represent a predisposing factor for specific
cancer types. Somatic mutations can be caused either by exposure to exogenous carcinogens including
environmental agents damaging the genome/epigenome like UV light, cigarette smoke, radiations and
industrial pollution or endogenous factors from inside an organism/cell. Endogenous factors include
oxygen radicals that are produced by normal metabolism and errors in DNA replication. Since these
endogenous factors are part of daily cell life, mechanisms like DNA repair are normally in place to
protect the cell from these factors so that failure to repair DNA insults might lead to cancer [4].

However, the probability that a tumour-initiating mutation has hit a cell increases with lifetime due to
the constant metabolism of the organism and cell renewal in many tissues involving DNA replication.
Additionally, since at least two and most of the time several genetic/chromosomal mutations are
necessary to develop cancer, the time between the first event and the fully developed cancer can span
years up to several decades. Therefore, cancer is often an age-related disease. The average age of
patients diagnosed with cancer is 65 years [4]. Nevertheless, cancer can also occur in infants and
children (paediatric cancers). There is evidence that several paediatric cancers arise from embryonic or
early postnatal cells. In general, tumour cells display some features of embryonic cells, including a less
differentiated phenotype, high proliferation rate, and the capacity to invade other tissues. Therefore, a
shorter development time is associated with tumours of embryonic/early postnatal origin because
the cell-of-origin is already closer to a cancerous phenotype than most highly differentiated cells of
the adult body [31]. A more extended time-lapse in the development of adult cancer is reflected by a
higher number of genetic mutations compared to paediatric cancers [32].

Tumour-initiating/-driving genetic alterations generally hit two types of genes. These types include
(1) proto-oncogenes, which become an oncogene and promote tumourigenesis after activation by
an alteration, or (2) tumour suppressor genes, which are deactivated [4]. The positive regulation of
proliferation or survival is a frequent function of proto-oncogenes in a normal cell. The change of
proto-oncogenes to oncogenes by an activating alteration causes only an enhancement of the normal
protein function. Therefore, oncogene proteins frequently promote the uncontrolled proliferation of
tumour cells but can also cause abnormal differentiation or prevent apoptosis. Most oncogene proteins
are part of a signalling pathway and different pathway components: growth factors (extracellular signal
proteins), growth factor receptors, intracellular proteins of the signalling cascade (e.g. transducer,
effectors), and TFs. The response to oncogenic pathway activation is the dysregulation of gene
expression and cellular processes. Activation of oncogene proteins might be triggered by an increased
expression of the gene (e.g. CNV amplification) or part of the gene containing the activated domain
(e.g. case of gene fusions), or a change of the amino acid sequence (e.g. SNV, indel). In contrast
to proto-oncogenes, tumour suppressor genes are negative regulators of proliferation and survival.
Tumour suppressors function as inhibitors of pathways involving proto-oncogenes or as a regulator
of cell cycle progression and apoptosis [8]. Inactivation of tumour suppressors can be caused, for
example, by homozygous and hemizygous deletions, SNVs, indels, and promoter hypermethylation [8,
12].

2.4 Hallmarks of cancer
The model of tumour initiation and promotion/progression can be extended by the capabilities
acquired by a malignant tumour during cancer development, as proposed by Hanahan and Weinberg
[10]. These capabilities include eight "hallmarks of cancer":

• sustaining proliferation signalling,
• evading growth suppressors,
• avoiding immune-induced destruction (immune cells can recognise and destroy tumour cells),
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• enabling replicative immortality (the number of replications is limited in somatic, differentiated
cells),

• invasion and metastasis formation,
• inducing angiogenesis (inducing growth of blood vessels to supply the tumour with nutrients

and oxygen),
• resisting cell death, and
• reprogramming energy metabolism (uncontrolled proliferation demands an adjustment of

energy metabolism).

These hallmarks illustrate that cancer development is more than a tumour-cell-intrinsic process. It
also involves interactions with the microenvironment defined by the system of tumour-surrounding,
non-cancerous cells (such as immune cells) and tissue. Some of these hallmarks are outlined below.

The hallmark "sustaining proliferation signalling" involves the alterations of tumour suppressor
genes and proto-oncogenes. Here, tumour suppressor genes and proto-oncogenes are part of different
pathways that positively regulate proliferation or other cell behaviour [10]. Among these tumour
suppressor genes are adenomatous polyposis coli (APC) and patched 1 PTCH1. APC is a negative
regulator of the Wnt (Wingless and Int-1) signalling pathway by promoting the degradation of Catenin
Beta 1 (CTNNB1), the downstream target of the Wnt pathway. CTNNB1 forms a complex with transcrip-
tion factors to regulate gene expression and promote proliferation. PTCH1 is a receptor protein and
negative regulator of Shh (Sonic Hedgehog) signalling by binding the receptor protein Smoothened
(SMO). SMO propagates Shh signalling into the cell leading to cell proliferation via transcriptional
regulation [12]. Mutated proto-oncogenes that sustain proliferation comprise, among others, RAS and
RAF genes (like KRAS, NRAS, and BRAF) that propagate intracellular signalling downstream of receptor
tyrosine kinases, a family of transmembrane receptors [12].

The hallmark "enabling replicative immortality" refers to the removal of DNA replication limits in
tumour cells. These limits are defined by a limited number of replications in a normal cell. Here, the
number of replications is controlled via telomeres that protect the ends of chromosomes. Telomeres
are DNA sequences composed of specific tandem repeats and shorten over DNA replications. The
erosion of telomeres triggers apoptosis or cellular senescence (a state where a cell stops proliferating
but remains viable). However, the telomeric DNA can be elongated and maintained via the telomerase
complex. Expression of the telomerase subunit protein Telomerase Reverse Transcriptase (TERT)
leads to maintenance of telomeric DNA in cancer, creating immortalised tumour cells. Under normal
conditions, TERT is expressed in embryonic cells and somatic cells of renewing tissues [10, 33].

Malignant tumours cells acquire the capability of "invasion and metastasis formation" by undergoing
Epithelial-to-Mesenchymal Transition (EMT). Here, epithelial cells undergo a phenotypic change
and acquire characteristics of mesenchymal cells. Epithelial cells form adherent junctions and are
restricted in motility, whereas mesenchymal cells show high motility. EMT usually takes place during
embryogenesis and wound healing. The phenotypic change of EMT is regulated by TFs, such as
TWIST1, that regulate the migration of cells during embryogenesis. The dysregulation of these TFs
promotes EMT in cancer, resulting in tumour cell invasion and metastasis formation [10].

Alterations of the tumour suppressor gene tumor protein p53 (TP53) relates to the hallmarks "resist-
ing cell death" and "avoiding growth suppressors". TP53 responds to certain signals within a cell. These
signals include DNA damage or suboptimal conditions of nucleotide pool levels, growth-promoting
signals, glucose, and oxygen concentration. In response to these signals, TP53 induces a cell cycle
arrest, which allows the cell to repair DNA damage or normalise suboptimal conditions, or activates
apoptosis. A central role of TP53 as a tumour suppressor gene is underlined by frequent alteration of
the gene across many different cancer types [10, 12].

In summary, the hallmarks of cancer represent properties acquired by the tumour, which collectively
drive the evolutionary development of cancer. Additional aspects of the hallmarks of cancer discussed
in the original publication of Hanahan and Weinberg are beyond the scope of the presented thesis.
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2.5 Long non-coding genes: Functions and roles in cancer

Studying the effects of genetic and chromosomal alterations as well as gene expression dysregulation on
protein-coding genes in cancer has been the primary source for understanding this disease. However,
lnc genes have emerged as a widespread regulator of biological processes, including processes involved
in cancer development in the past couple of years [34]. Lnc genes and their RNA products (lncRNA)
are less well understood and less studied than coding genes and proteins. There are several reasons for
this, as the lncRNA research is relatively young and a lower number of tools is available for studying
molecular functions and mechanisms of lnc genes/-RNA [35]. Nevertheless, many aspects of lnc genes
and lncRNA have been revealed by now.

The lower sequence conservation of lnc genes across species is a characteristic difference between lnc
and protein-coding genes. However, the low sequence conversation of lnc genes does not automatically
imply lacking functions. Lnc genes are conserved on the level of syntenic regions (conserved co-
localisation of genes within a genomic region), short sequences, or secondary structure of the lncRNA
product. Especially the conservation of the secondary structure of lncRNAs appears to be critical. Here,
the structure is less dependent on the sequence conversation when compared to protein-coding genes
(due to the missing step of translation in lncRNA biogenesis). Since protein sequences are encoded
via codons, the ORF of a protein-coding gene needs to be conserved during evolution to maintain a
protein’s sequence, expression, and function [35].

Like proteins, lncRNAs fulfil their functions via interacting with other molecules including protein,
RNA, and DNA/chromatin. Here, lncRNAs regulate processes on transcriptional, post-transcriptional,
translational, or signalling levels [34, 38]. For example, lncRNAs act as competing endogenous RNA
(ceRNA) by functioning as a "sponge" for a type of small RNA called a microRNA (miRNA) [34]. MiRNAs
negatively regulate mRNA expression on the post-transcriptional level via binding to the 3’ UTR of
mRNAs and inducing mRNA degradation [39]. By sponging miRNAs, ceRNAs act as an antagonist
of miRNA-induced negative regulation of mRNA expression. Apart from the indirect regulation of
mRNA expression, lncRNA can stabilise mRNA on a post-transcriptional level or regulate translation
efficiency via direct lncRNA-mRNA interactions [34]. Through lncRNA-protein interactions, lncRNA
can also stabilise protein expression on a post-translational level [40].

LncRNAs can directly interact with double-stranded DNA by forming an RNA:DNA:DNA triple helix
(triplex) (Figure 2.1.a) [36, 37]. The triplex formation is facilitated by forming Hoogsteen hydrogen
bonds between bases of the third nucleotide strand (RNA/DNA) and the DNA duplex. Here, only one
strand of the duplex interacts with the third strand. The Hoogsteen hydrogen bonds are determined by
steric constraints and available hydrogen donor and acceptor groups. These determinants limit triplex
formation to certain base pairs (Figure 2.1.b) and three sequence motifs on the third nucleotide strand
(Figure 2.1.c). Both base pairing and motifs depend on the orientation of the third strand relative to
the duplex. Parallel and antiparallel orientations refer to forward and reverse Hoogsteen base pairing,
respectively. While purine (G and A) and pyrimidine bases (U and C for RNA; T and C for DNA) of
the third nucleotide strand can form hydrogen bonds with the duplex, only purine bases of the DNA
duplex are involved in the base pairing. In the case of RNA-DNA:DNA triplexes (as shown in Figure
2.1.b), forward Hoogsteen base pairing includes the nucleotide triads C+-GC, U-AT, and G-GC, and
reverse Hoogsteen base pairing includes the triads A-AT, U-AT and, G-GC. The triad C+-GC is only
formed when the cytosine of the RNA strand is protonated, which requires an acid condition. Due to
this special condition, it is unclear whether the C+-GC triad exists under physiological conditions. The
Hoogsteen base pairs build triplexes via three RNA sequence motifs:

• pyrimidine/UC motif (rich of U and C, only forward Hoogsteen base pairing),
• purine/GA motif (rich of G and A, only reverse Hoogsteen base pairing), and
• purine-pyrimidine/GU motif (rich of G and U, forward or reverse configuration).
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Figure 2.1 (preceding page): Triplex formation between RNA and DNA. a) Schematic illustration of an
RNA:DNA:DNA triple helix (triplex). b) Forward and reverse Hoogsteen
base pairing between single-stranded RNA and DNA duplex. Hydrogen
bonds between nucleotide triads of RNA and DNA duplex are shown.
Colours indicate the different DNA and RNA backbone as shown in the
caption. The plus sign indicates protonation of a cytosine of the RNA
strand. Arrows indicate 5’ to 3’ direction. c) RNA strand-related (third
strand-related) sequence motifs that form a triplex with the duplex DNA.
Left) forward Hoogsteen base pairing. Right) reverse Hoogsteen base
pairing. [36, 37]. Created with BioRender.com.

RNA (third strand) nucleotides involved in a triplex are termed as triplex-forming oligonucleotides
(TFO). A triplex target site (TTS) refers to polypurine DNA (duplex) regions that can form Hoogsteen
hydrogen bonds with TFOs [36, 37].

These TTSs are enriched in promoters and enhancers [37]. Thus, the sequence-specific binding to
DNA allows lncRNA to regulate transcription via guiding and recruiting TFs or chromatin-modifying
proteins to cis-regulatory elements. Triplex-forming lnc genes frequently interact with the polycomb
repressive complex 2 (PRC2), a chromatin-modifying protein complex that is involved in repressing
gene expression, to regulate chromatin modification and transcription. Here, lncRNAs can regulate
transcriptional in cis by regulating neighbouring genes or in trans. Another class of lncRNA is directly
transcribed from enhancers. These enhancer-associated lncRNAs act mainly in cis by promoting
enhancer-promoter loops or histone modifications at the promoter site when the lncRNA is brought
into the vicinity via chromatin loops [40].

During the last years, an increasing number of oncogenic and tumour suppressive lnc genes that
are dysregulated in cancer has been discovered [34, 41]. The functions of these lnc genes and their
products relate to several cancer hallmarks, including proliferation signalling, growth suppressor
regulation, replicative immortality, invasion and metastasis, and angiogenesis [34]. The reason for
the dysregulation of lnc gene expression in cancer includes, among others, DNA methylation and
copy number changes [41]. An interesting feature of lnc genes is the stronger cell/tissue type-specific
expression compared to protein-coding genes [34]. This feature is also valid for cancer. Yan et al. [41]
compared the expression between tumour cells and tissue-related normal cells for seven different
cancer types. Among the lnc genes showing altered expression in tumours, ~60% of these lnc genes
were specifically dysregulated in one cancer type.

Even though lnc genes are rarely studied, there are several lnc genes that have been well investigated
in the context of cancer. The lnc gene Maternally Expressed 3 (MEG3; alias: GTL2) is one of the
most studied non-coding tumour suppressors [42]. The MEG3 RNA is located in the cellular nuclear
compartment [43–45]. MEG3 is expressed in numerous normal human tissues, such as different
brain regions, including the cerebellum [46, 47]. Single-cell RNA-seq and ISH experiments in mice
demonstrated that Meg3 is a neuronal cell marker [44, 45, 48]. MEG3 was found downregulated in
various cancer types. Here, low expression of MEG3 is associated with poor prognosis. Induced
overexpression of MEG3 in tumour cells impairs proliferation due to forced growth arrest that is caused
by downregulation of cell cycle regulating factors like CDK1 and CCNB1 [49, 50].

MEG3 acts as a non-coding tumour suppressor via different mechanisms, including miRNA sponging,
protein interactions, and DNA binding [51, 52]. MEG3 functions as a tumour suppressor in breast
cancer through RNA:DNA:DNA triplex formation and interaction with PRC2 resulting in negative
regulation of the TGF� pathway via targeting genes such as TGFB2, TGFBR1, and TGFBR2 [43]. Here,
Mondal et al. have shown that MEG3 regulates TGFBR1 through binding to an enhancer region that
is located 131 kb upstream of TGFBR1 [43]. The authors sequenced DNA fragments bound by MEG3
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via performing chromatin oligo affinity precipitation (ChOP). In ChOP, DNA fragments bound by the
target RNA are pulled down using biotin-labelled probes of DNA oligonucleotides that are a reverse
complement to sequences of the targeted RNA [43].

MEG3 is also involved in the regulation of the p53 pathway. High MEG3 expression leads to an
accumulation of p53 protein and enhanced p53-mediated transcription in several cancer types [51–53].
Zhou et al. reported that induced MEG3 expression suppresses MDM2 expression in adenocarcinoma
and osteosarcoma cell lines. This suppression of MDM2 by MEG3 is relevant for tumour suppression
because MDM2 mediates p53 protein degradation [53]. Additionally, previous studies demonstrated
that MEG3 acts as a co-regulator and co-activator of p53-mediated transcription [53, 54]. Via binding
to promoters, MEG3 can also regulate gene expression of p53 targets such as GDF15 (a growth factor
that inhibits proliferation) leading to upregulation of GDF15 [53]. Furthermore, p53 directly binds to
MEG3 RNA via its DNA binding domain [54]. In this context, it was proposed that MEG3 promotes the
tetramerisation of p53, which is essential for its transcription factor activity. It was further suggested
that the p53-MEG3 complex is recruited to target genes where MEG3 dissociates, and p53 regulates the
expression of the target [54].

MEG3 is located on chromosome 14q32.2 and part of the parentally imprinted DLK1-MEG3 locus
(alias: DLK1-GTL2, DLK1-DIO3 locus) [55, 56]. This locus is conserved among several mammalian
species including mice [55, 57]. Additionally to the imprinted locus, also the first ~900 nucleotides
and certain secondary structures of MEG3 are conserved among several mammalian species [47].
Due to the imprinting, the genes at the DLK1-MEG3 locus are allele-specifically expressed depending
on different epigenetic modifications (e.g. allele-specific DNA methylation on the maternal and
paternal allele). MEG3 belongs to the genes that are maternally expressed. In this locus, an intergenic
differentially methylated region (IG-DMR) was identified that is located ~14kb upstream of MEG3.
This IG-DMR serves as an imprinting control region and regulates allele-specific expression at this
locus. The IG-DMR is unmethylated and methylated on the maternal and paternal allele, respectively.
A second DMR, the MEG3-DMR, overlaps with the MEG3 promoter and its first exon and regulates
the allele-specific expression of MEG3. The MEG3-DMR is methylated on the paternal allele like the
IG-DMR silencing MEG3 expression on this allele [58]. A link between hypermethylation of the IG- and
MEG3-DMR and associated with MEG3 downregulation has been described in several cancer types (e.g.
neuroblastoma, phaeochromocytoma) [59–61]. The hypermethylation of the IG- and MEG3-DMR is
thought to be one mechanism that causes downregulation of tumour suppressor MEG3 in cancer. The
methylation status of the IG- and MEG3-DMR is associated with the grade in meningiomas and overall
survival in acute myeloid leukaemia [59]. However, in meningioma, a direct correlation between DMR
methylation level and MEG3 expression could not be found, suggesting that additional mechanisms
probably contribute to the regulation of MEG3 expression [62].

The assumed widespread role of lncRNAs as regulators and the specific expression patterns of lnc
genes on the one hand, and a majority of unstudied lnc genes on the other hand, make lnc genes an
interesting and growing research field, including for cancer research.

2.6 Omics technologies in cancer research
Omics technologies have been providing the basis for the breakthroughs in cancer research of the last
decades and have become standard tools in cancer research. These tools describe high-throughput
technologies that allow molecular analysis across the whole proteome (proteomics), transcriptome
(transcriptomics), genome (genomics), and DNA methylome (DNA methylomics) or other classes of
molecules or molecule modifications such as epigenetic modifications [63].

The array technology provided the first omics tools and facilitated, among others, genome-wide
analysis of DNA methylation, single nucleotide polymorphisms (SNP, natural position-related base
variations that occur in minimum %1 of a population), and gene expression on transcription level. The
mentioned type of arrays are DNA chips. Such a chip is a glass slide that carries a two-dimensional
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array of single-stranded oligonucleotide (DNA) probes on the surface. These probes are spotted
(printed) on the slide at pre-defined positions and designed to detect a collection of desired nucleotide
sequences. After extracting DNA (DNA is specially treated for analysis of DNA methylation) or RNA that
is reverse transcribed into complementary DNA (cDNA), the extracted nucleotide sequences hybridise
to complementary probes. Fluorescence signals are used to measure the qualitative or quantitative
presents of nucleotide sequence (e.g. fragments of transcripts). Hence, measured expression levels
relate to signal intensities in the case of arrays. Due to the pre-defined positions of the probes, each
fluorescence signal can be related to different probes. Arrays that measure gene expression are called
microarrays (even though all arrays are microarrays) or expression arrays. However, due to the need
for pre-designing probes, microarrays are restricted to the pre-defined set of genes/sequences for
analyses [64].

Next-generation sequencing (NGS) technologies overcome several limitations of arrays in the ana-
lysis of nucleotide sequences because NGS comprises the direct sequencing (reading) of nucleotide
sequences at single-base resolution. In cancer research, frequent applications of NGS include whole
genome sequencing (WGS), whole exome sequencing (WES, only DNA sequences at exon positions
of protein-coding genes are sequenced), and RNA sequencing (RNA-seq, transcriptome sequencing).
WGS and WES facilitate the detection of genetic and chromosomal alterations (SNVs, indels, CNVs,
and chromosomal rearrangements). RNA-seq enables the quantification of gene expression on tran-
scription level as well as the expression level quantification of transcribed genetic mutations and gene
fusion due to chromosomal rearrangements [63].

Independently of the array or NGS platforms, the application of omics technologies has revealed
that a single cancer type most often comprises a heterogeneous collection of molecular subgroups
(also termed as subtypes). These subgroups are defined by a subgroup-specific molecular makeup
comprising gene expression profiles and alterations. Differences between these subgroups are not
limited to the molecular makeup and include clinical features such as overall survival (OS, time of
survival of patients after diagnosis) or responsiveness to treatment [6, 63]. Understanding associations
between certain molecular profiles and clinical features accelerated the discovery of prognostic and
predictive molecular biomarkers. For example, these biomarkers can be mutations or expression levels
of a single/collection of gene(s). Prognostic biomarkers allow assessing the future course of a disease
in a patient and adjusting the extent of treatment to the risk of relapse or progression after treatment.
Predictive markers indicate the chance of response or resistance to a certain therapy and support
decision making regarding therapy options. The process of treatment adjustment based on molecular
data is also called precision medicine or precision oncology in the case of cancer treatment. Precision
medicine and oncology are substantially enabled by omics technologies [6].

Generally speaking, the molecular analysis of the cancer transcriptome by high-throughput techno-
logies has been important to understand the characteristics and the biology of individual tumours,
cancer subgroups, and cancer types. Here, RNA-seq has been a key technology that outperforms
microarrays due to the independence of probe set and higher dynamic range of RNA-seq [65] for the
molecular analysis of gene expression in tumours.

2.6.1 Next-generation RNA sequencing
NGS platforms of the second generation, including RNA-seq, are based on the sequencing of short
sequences called reads. Among these platforms, the technology — initially developed by the company
Solexa and is owned by Illumina now — has become the standard platform for NGS of short reads [66]
and will be summarised for the application of RNA-seq by the following paragraphs.

The preparation of an RNA library is prior to the RNA sequencing and involves several steps starting
with the extraction of RNA from a tissue sample. There are two extraction principles for RNA, disreg-
arding small RNAs such as miRNA. The first principle is the purification for RNAs that carry a poly-A
tail. Here, the aim is to extract mRNA that is generally polyadenylated. A considerable portion of
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lncRNAs is also polyadenylated. The second principle was designed to extract the total RNA (inde-
pendent of polyadenylation). This principle includes the depletion of ribosomal RNA (rRNA) that are
the major subunits of ribosomes and account for more than 90% of the RNA within a cell. Besides
RNA extraction, library preparation includes RNA fragmentation, reverse transcription into cDNA,
ligation of pre-defined sequences (5’ and 3’ adapters and barcodes) being necessary for sequencing and
processing step, size selection of fragments (generally a few hundred nucleotides), and amplification
of cDNA fragments using polymerase chain reaction (PCR). The PCR step is designed to maintain
strand-specific information, essential due to the occasional positional overlaps between genes on
opposite strands [67].

After library preparation, a glass slide called flow cell is loaded with the single-stranded cDNA library.
Adapter oligonucleotide sequences that are complementary to adapter sequences of the cDNA are
attached to the surface of the flow cell. The adapter sequences of the cDNA hybridise with the slide-
attached oligonucleotide adapters. Next, a second strand synthesis by polymerase starts from the
slide-attached adapters. As a result, the second strand of a cDNA is attached to the flow cell via the
oligonucleotide adapter. The double-stranded cDNA is denatured, and only the attached reverse strand
of the cDNA remains. The next step is called bridge amplification. Here, the free end of the attached,
single-stranded cDNA hybridises with the second type of slide-attached oligonucleotides; via this
process, the cDNA folds into a bridge-like shape.The second strand synthesis and denaturation of the
double-stranded cDNA follows; however, this time, both strands are attached. This bridge amplification
is being repeated several times, leading to a local cluster of cDNAs that originally belonged to one cDNA
template. Ultimately, a flow cell comprises millions of these clusters, each belonging to a different
cDNA template of the library [66].

The sequencing process itself is referred to as "sequencing by synthesis" [66]. Fluorophore-labelled
nucleotides that are blocked at the 3’ end are used for this process. Due to the 3’ blocking, these
nucleotides can form a bond with a second nucleotide only at the 5’end. Depending on the base, a
nucleotide is labelled with one of four different fluorophores, each emitting light in a different colour.
The labelled nucleotides hybridise to the complementary base of a cDNA strand. The flow cell is
imaged with different laser channels. Via the fluorophores’ emitted light colour, the corresponding
base at the sequenced position of a cDNA cluster can be determined. Next, the fluorophores are cleaved
from the hybridised nucleotides and washed away and the 3’ end is unblocked. The sequencing by
synthesis is repeated over several cycles in which each cycle represents one additional position that is
sequenced for an individual cDNA cluster. Here, only the end of the cDNAs is sequenced, and obtained
sequences represent reads. The read length depends on the number of cycles and ranges between 50
and 150 nucleotides for RNA-seq.

The described sequencing procedure also allows generating single-end and paired-end reads. In
the case of single-end reads, cDNA is sequenced only from one strand. Paired-end sequencing is
the sequencing of the forward and the reverse strand of the cDNA. Since cDNAs represent fragments
of the original RNA and reads are short, paired-end reads have the advantage of containing more
sequence information of original RNA fragments [66]. At least 100 million sequenced paired-end reads,
defining the sequencing depth, per RNA samples are recommended for a comprehensive expression
level quantification of genes, including low expressed ones [68].

The sequencing of nucleotide sequences (DNA or RNA) extracted from a tissue sample or a collection
of cells (e.g. cultured cells) is referred to as bulk sequencing, the opposition of single-cell sequencing.
A bulk tissue sample of a solid tumour comprises tumour cells and non-tumour cells of the tumour
microenvironment. The fraction of tumour cells within a tissue sample defines the tumour purity
that can strongly differ between tumour samples. The tumour purity depends on the biopsy itself as a
non-biological factor, the degree of tumour cell invasion, or the fraction of tumour-infiltrating immune
cells. Tumour samples are generally not 100% pure [69] and, therefore, RNA-seq of bulk tumour tissue
comprises a mixture of gene expression signals from tumour cells and cells of the microenvironment.
This aspect needs to be considered in the analysis and interpretation of bulk RNA-seq data.
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2 Cancer and gene expression

Overall, RNA-seq provides a powerful platform for the molecular analysis of cancer transcriptomes.
However, to obtain relevant information from RNA-seq data, the application of computational pro-
cessing and analyses using suited mathematical methods is necessary.
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3 Computational analysis of cancer
transcriptomes

The computational analysis of omics data includes data processing and subsequent data analyses
in terms of data science [70], while this thesis concentrates on data analyses. Data science aims for
the extraction of hidden and meaningful patterns from large data sets [71] and takes advantage of
many different but interconnected fields, including statistics, probability theory, machine learning,
data visualisation, databases, and computer science/high-throughput computing [71]. In this line, the
following chapter will provide an overview of the analysis of cancer transcriptomes using RNA-seq data
and suited computational and mathematical methods. After the Preliminaries (Section 3.1), a brief
outline of RNA-seq data processing (Section 3.2) and frequently applied analyses in cancer research is
given (Section 3.3). A more detailed description is provided for analyses and methods that will be the
main focus of this thesis comprising

• the construction of gene-expression-based predictive classifiers (Section 3.4),
• the inference of GRNs (Section 3.5), and
• computational characterisation of lnc genes (Section 3.6),

while the first two points relate to machine learning tasks.

3.1 Preliminaries
The preliminaries include basic notations used within this thesis (Section 3.1.1) and a general intro-
duction to machine learning (Section 3.1.2), focusing on supervised learning, resampling methods,
and performance evaluation metrics used in supervised machine learning.

3.1.1 Notations
Data is the plural of datum. A datum is an abstract description of a real-world object (an entity, also
termed as an instance in the field of machine learning). This abstract description comprises a number
of collected or measured features/variables — both terms are interchangeable — for each entity. There
are three different feature/variable types: numeric, nominal (categorical), and ordinal (categorical,
but categories have a rank order). Entities and their features are usually organised within a matrix of
N rows reflecting features and M columns reflecting entities. A data set can comprise one matrix or
several matrices that are in direct or indirect relation [71].

The just-introduced terms will be used as follows. An entity is a patient/case or a single tumour
tissue sample analysed via an omics platform. However, terms like sample size, sub-/resampling, and
bootstrap sample relate to the statistical meaning of sample defined by a collection of entities from a
bigger population. Features/variables of tumour samples comprise measured molecular data such as
expression values or copy numbers of a gene. Features/variables of patients include clinical data such
as OS, age, and responsiveness to treatments.

If not differently stated, an entity is a vector containing values of N features: x = x1, ..., xN or x 2RN ,
where each of the N feature values is a real number (R). The transpose of the vector x is given by xT. A
single element within a matrix of N features by M entities is donated by x j ,i relating to the j th row
(feature/variable) and i th column (entity/sample).

The copy number of a gene is indicated by 1N, 2N, 3N, and so on, where the number indicates the
number of detected gene copies.
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3.1.2 Machine learning and supervised learning
An important aspect in data analysis of big and high-dimensional data sets like omics data is the
application of machine learning to solve certain problems and tasks. These problems are solved by
applying an algorithm that learns a model from a data set (the input), while the learned model provides
an output related to the original task. Here, the learning is driven by gaining experience to improve the
knowledge or performance of the learned model. Models are learned by learning model parameters,
while the number of parameters depends on the applied algorithm and the individual learning task.
These model parameters should not be confused with hyperparameters, parameters of the model that
cannot be learned and, therefore, need to be optimised in an extra tuning step. An additional aspect of
the learning task is the selection of informative features that facilitate solving the task. The process of
obtaining a learned model is called model training or fitting. Hence, a data set used for fitting a model
is termed a training set. An independent data set used to evaluate the model’s performance is a test or
validation set [72].

The described concept of machine learning is used, among others, to solve unsupervised and super-
vised learning problems. Later presented data analyses within this thesis concentrate on supervised
learning. Therefore, unsupervised learning is only shortly explained. Unsupervised learning is used
for identifying hidden, meaningful structures (patterns) in the data. Clustering is one type of unsu-
pervised learning. Clustering of entities is the identification of groups (clusters) of entities within
a data set. (The same can be done for features.) Clustering methods find these clusters based on
similarity/dissimilarity between entities. Therefore, entities assigned to the same cluster are more
similar, and entities assigned to different clusters are more dissimilar to each other. Initially, these
clusters are non-descriptive labels. In the case of the clustering of entities, the identification of features
discriminating the found clusters can be used to gain information and knowledge about the found
clusters [72].

In contrast to unsupervised learning, supervised learning deals with labelled data, where a label
assigns an entity to a certain class. Here, a class relates to a collection of entities commonly sharing
a characteristic of interest. These labels allow the supervised learning task classification. The clas-
sification between two classes (binary classification) is a common task and one focus of this thesis.
Classification comprises the learning of a model — a classifier — that can map an entity based on its
features to a class [72]. Here, a model is learned via induction, which is the inference of a classification
model by the generalisation of seen training entities into general classification rules. Hence, the model
is inferred by generalisation. Due to the learning of a generalised model that ideally has a general
validity, a classifier allows the mapping of new, unseen entities to a class. Therefore, classifiers can
make predictions for unseen data. The prediction of a class for unseen data is an important property
of classifiers. In many real-world scenarios, the labelling of data is expensive and, therefore, not always
possible, while the data themselves are cheap. Using one training set with labelled data for classifier
training allows the identification of entities with a characteristic of interest in unseen data by class
prediction [72, 73].

For classification tasks, the overall aim is to train a classifier with the best possible performance.
Here, a minimal classification error defines the best performance; this error is the difference between
the actual and predicted class. The classifier’s performance is influenced by two major aspects that are
termed as over- or underfitting of a learned model. In the case of overfitting, a model is tightly fitted
to the training data, lacks generalisation, and depends on the training sets. Due to this dependency,
repeating model fitting using slightly changed training data sets would cause big variations across
learned models. Thus, overfitting is also termed as a high variance of a model. Overfitting is an issue
since every data set contains some degree of noise that can be incorporated into the learned model due
to overfitting. Underfitting relates to a model generalisation that misses an accurate representation of
the training set. For example, underfitting can be caused by choosing a too simple model for complex
classification problems. Underfitting is also termed as a high bias of a model. Model variance and
bias are inversely related; high-bias models have low variance and vice versa. Therefore, finding a
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trade-off between overfitting and underfitting, which corresponds to minimising the classification
error/optimising the performance, is described by the bias–variance dilemma. A typical example of
this dilemma is choosing the number of features. An increasing number of features makes it easier to
fit a classifier because more features are available to infer rules that assign an entity to a class. However,
an increasing number of features is attended by a higher chance of overfitting. A general rule is to avoid
a number of features higher than the number of training entities. By contrast, reducing the number
of features avoids overfitting, but underestimating the number of features leads to underfitting. A
trade-off between model overfitting/variance and underfitting/bias can be achieved only by choosing
an optimal number of features. The described example shows that features selection includes selecting
informative features and finding an optimal number of features [72].

The described bias-variance dilemma illustrates that classification tasks are not trivial because the
training of a model does not necessarily result in a classifier with low classification error. Thus, per-
formance evaluation is essential in supervised learning. A classical setting for performance evaluation
is using a test data set for evaluating hyperparameters of a model and an (external) validation set for
evaluating a learned model/classifier 1. Test and validation sets are hold-out/independent from the
training set to facilitate an evaluation of under- and overfitting. Still, the test set is part of the training
step since it is used to tune the hyperparameters that are part of the model, which makes it necessary
to use the validation set to evaluate the learned model [72].

However, a general issue of machine learning is a lack of individual data sets for training, testing,
and validation. A common strategy is to split an available data set into a training and test set for model
training to overcome this issue. This split is done several times to make full use of the available data set
and rule out random effects by the split that influence the training and testing results. Here, resampling
methods are used to obtain several data set splits, as summarised in the following section [72].

3.1.2.1 Resampling methods

Two resampling methods in supervised learning are commonly used to obtain data set splits into
training and test sets: k-fold cross-validation and bootstrapping [72, 74].

In K -fold cross-validation, a data set is split into K partitions of equal or nearly equal size. Over
k = 1, ...,K iterations, the entities of the kth partition are used as a test set and the remaining entities
of the data form the training set. A classifier is learned on the training set. Afterwards, the trained
classifier is used to predict the class of the entities in the test set. The performance is evaluated by
averaging the classification error across the test folds or by pooling the classifier predictions of all test
folds to calculate the classification error. The pooling version of K -fold cross-validation will be used in
this dissertation due to small data sets. A common value of K is 10. Thus, 90 % and 10% of the data are
used as a training and test set at each iteration, respectively. An advantage of K -fold cross-validation is
that each entity of the data set is used once for testing, whereas other resampling techniques are more
random and include entities for testing at different rates [72, 74].

Bootstrapping is a random and uniform resampling with replacement. Considering a data set with
N entities, a bootstrap sample has a sample size of N . Due to the uniform sampling with replacement,
each entity has a probability of p = (1°1/N )N for not being part of the bootstrap sample. Thus, a
bootstrap sample contains ~63.2% of the original entities on average and ~36.8% are hold-out, while
the hold-out (out-of-bag) entities form the test set. For accessing the performance of a classifier,
bootstrapping is repeated several times (e.g. 50-100) and the classification error is calculated by using
averaging or pooling across bootstrapping iterations. Bootstrapping has a lower variance of testing
results across resamplings than K -fold cross-validation, especially for small data sets [74, 75].

1Depending on the research field, the definition of a test and validation set can be interchanged.
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3.1.2.2 Stratified resampling for classes imbalance

A common issue in classification tasks is an unbalanced number of entities between classes in a data
set, termed class imbalance. The more and less frequent class is referred to as majority and minority
class, respectively. Class imbalance of a training set can negatively affect the performance of a classifier
when the imbalance was not considered during the training and evaluation [76]. Class imbalance is
also an issue for resampling since sampled data do not necessarily include the same proportion of
classes as the original data set. Stratified resampling addresses the issue of resampling unbalanced
data. Here, each class is independently resampled. In the case of a split into a training and test set,
the hold-out entities of each class are combined into the test set and the remaining entities form the
training set. This stratification ensures that the proportion of classes is constant in the training and
test set. The stratification can be applied for K -fold cross-validation and bootstrapping [74].

3.1.2.3 Performance metrics

After summarising supervised learning and testing strategies, this section introduced metrics for
measuring the performance of trained classifiers, concentrating on metrics appropriate for imbalanced
data.

In binary classification, the two classes are termed positive (+1) and negative (-1) class. Four different
counts evaluate the possible cases of binary classification outcomes, as summarised by the confusion
matrix in Table 3.1. True positive (TP) and true negative (TN) values summarise the number of correctly
predicted entities for the positive and negative class by the classifier, respectively. False positive (FP)
and false negative (FN) values summarise the number of incorrectly predicted entities. These four
values are the basis for many performance metrics [77].

Table 3.1: Confusion matrix. TP - True Positive. FP - False Positive. TN - True Negative. FN - False
Negative.
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Predicted class

Positive Negative

Positive TP FN

Negative FP TN

The introduced performance metrics are summarised in Table 3.2. The metrics sensitivity and
specificity indicate the fraction of correctly predicted positive and negative class entities, respectively.
The accuracy is the fraction of correctly predicted entities across both classes. However, in the case of
class imbalance, the majority class has more weight in the calculation of the accuracy leading to an
unbalanced performance measure. The balanced accuracy addresses this issue by equally considering
sensitivity and specificity and can be used for class-unbalanced data sets. The F1-score can also be
used for class-unbalanced data but puts an emphasis on the positive class. The F1-score can be useful
when the sensitivity of a classifier is more relevant than its specificity [77].
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Table 3.2: Performance metrics for binary classification [77].

Metric Formula

sensitivity T P
T P+F N

specificity T N
T N+F P

accuracy T N+T P
T P+F N+T N+F P

balanced accuracy
sensitivity+specificity

2

F1-score 2T P
2T P+F P+F N

3.2 Processing and normalisation of RNA sequencing data
The sequencing step transforms RNA sequences that are expressed within a cell into digital read
data. The sequenced RNA reads contain qualitative and quantitative information regarding which
gene/transcript is expressed and the expression level for these genes/transcripts, respectively. In order
to obtain this information, reads need to be mapped back to their original position in the genome. This
is done during the processing step of read mapping/read alignment using computation in combination
with suited read alignment methods. Since matured lncRNA and mRNA does not include introns,
mostly RNA reads map to exonic genome regions. The exclusion of introns in the matured RNA
introduces so-called split reads that stretch over neighbouring exons in the RNA but are split by an
intron on the genome. A read’s genomic position is matched to the coordinates of known genes and
their exons to annotate a read to the originally transcribed gene. Generally, only reads with unique
mapping positions are considered [78].

For gene expression level quantification, reads or fragments mapped to exon positions of a gene are
summed up, resulting in a read or fragment count per gene. Fragments are counted when paired-end
sequencing was performed to avoid that the same cDNA fragment is counted twice since a read pair
(not a single read) is available per fragment. The obtained counts can be used for further analyses.
However, in most cases, gene expression is quantified by Reads or Fragments Per Kilobase of exon
model per Million mapped reads (RPKM or FPKM, respectively):

RPKMg or FPMPg =
rg

lg

103
N

106

, (3.1)

where lg is the exonic length and rg is the read or fragments count of gene g , and N is the number of
mapped reads or fragments, depending on the calculation of RPKM or FPMP. The quantification via
RPKM/FPKM permits the comparison of expression levels between genes and samples because raw
read/fragments counts are biased by the length of the exonic sequence of a gene and the sequencing
depth. The length of the exonic sequence correlates with the length of the transcripts, and an increasing
transcript length correlates with an increasing number of fragments that can be generated from one
transcript. Therefore, genes with a longer exonic sequence accumulate more reads/fragments. The
term "reads/fragments per kilobase of exon model" relates to the correction for the length bias and
allows a comparison of expression values between genes. The sequencing depth of a sample can
be individually chosen; however, the sequencing depth naturally varies even when the same depth
is aimed for a collection of samples. The sequencing depth determines the pool of reads that is
available for expression quantification. A smaller read pool results in a lower number of mapped reads;
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although, when a gene expression level is constant across samples. The term "per million mapped
reads" accounts for the sequencing depth bias and permits a comparison of expression values between
samples [78, 79].

The calculation of RPKM/FPKM values does not correct all biases in RNA-seq-based gene expression
quantification. An additional bias source is a different RNA/transcript composition between sequenced
samples. Changes in the RNA composition refer to highly variable (such as unique expression of
individual genes) or extreme high gene expression (accumulation of millions of reads by few genes).
These changes introduce variations in the availability of reads from the original read pool. Such
variations result in different read counts for an expressed gene, even when the gene is evenly expressed
across samples. Robinson and Oshlack [80] proposed a correction for RNA composition effects by the
weighted trimmed mean of M values (TMM). The TMM is based on the assumption that most genes
have a similar expression level between samples. Here, the M-values relate to gene-wise log expression
ratios between two samples. This assumption arises from processes that are active in every cell and
carried out by so-called housekeeping genes. The TMM is used as a normalisation factor between a
reference and a non-reference sample and can be interoperated into the calculation of RPKM/FPKM
values. Detailed information on TMM calculation can be found in the publication of Robinson and
Oshlack [80].

3.3 Frequently applied data analyses of cancer
transcriptomes

After the processing, the obtained read counts and expression values per gene can be used for various
computational analyses. This section provides a brief overview of four frequently performed analyses
of cancer transcriptomes, while these analyses are connected and build on each other, starting with
molecular subtype identification.

3.3.1 Unsupervised clustering for molecular subtype identification
The discovery of molecular subgroups has been an essential step in understanding cancer (see Section
2.6). The identification of molecular subgroups within cancer types by analysing gene expression
data from tumours has become a standard task in cancer research [81–85]. These subgroups have
distinct gene expression profiles defined by subgroup-specific up- or downregulation of genes. Sev-
eral subgroup-specific factors can contribute to the distinct gene expression profiles of subgroups,
including [85]

• genetic, chromosomal, epigenetic alterations,
• epigenetic changes during cancer development,
• heterogeneity of the tumour microenvironment (e.g. a degree of immune cell infiltration), and
• the cell-of-origin (an organ associated with one cancer type normally consists of many cell

types).

The challenge of identifying molecular subgroups is that the subgroups are unknown at the be-
ginning. The process of subgroup identification is defined by finding unknown, hidden, meaningful
patterns within a gene expression data set of tumour samples. Therefore, finding subgroups is an
unsupervised machine learning/clustering task (see Section 3.1.2).

Like for every other machine learning task, the selection of features mainly influences the analysis
results. Additionally, since gene expression data are high-dimensional and contain many irrelevant
or noise genes, feature selection is necessary for this data type. Since the patterns within the data
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are unknown, relevant genes need to be selected in an unsupervised manner. The variance of gene
expression across tumour samples is frequently used as a measure to select relevant genes [86] because
subgroup-specific gene expression demands variation in gene expression.

Using the set of selected genes, a clustering algorithm is applied to identify clusters of tumours.
These clusters represent the molecular subgroups. Many different algorithms can be applied for
gene-expression-based tumour sample clustering [86, 87]. Commonly used algorithms are hierarchical
clustering [87], consensus clustering [88], and negative matrix factorisation (NMF) [89] (please see
related literature for information on the algorithms). After clustering, the found solution of clusters
can be evaluated by different metrics such as the silhouette score that measures how well a sample fits
its assigned cluster [86].

The obtained clusters of tumours are further analysed since the clustering does not necessarily
provide the information on which genes contributed to the clusters of tumours in terms of subgroup-
specific gene expression. Besides the molecular biological factors that contribute to the subgroups,
it is expected that clusters of tumours show specific gene expression because clustering algorithms
group tumours with similar expression profiles. The detection of subgroup-specific gene expression is
done via differential gene expression analysis.

3.3.2 Di�erential gene expression analysis
Differential gene expression analysis (DGEA) is a statistical analysis to identify genes that show signi-
ficant differences in expression between compared groups of samples, such as molecular subgroups.
In the case of RNA-seq data, read counts per gene across samples are directly used to perform a
parametric statistical analysis. Here, software tools such as "edgeR" [90] provide an implementation of
statistical methods that can be used for RNA-seq data. Since the statistical analysis is parametric, it is
necessary to know the underlying probability distribution of read counts. In edgeR, the read count Yg i

of gene g in sample i is modelled by a negative binomial distribution (NB):

Yg i ª NB(µg i ,¡g ), (3.2)

µg i = Niºg i , (3.3)

where µg i is the mean and¡g the dispersion of the gene reads count, Ni is the total number of mapped
reads, and ºg i is the fraction of reads that map to gene g in sample i . The testing for differential
expression is done by fitting a generalised linear model (GLM) and applying a likelihood ratio test
(LRT). The GLM is defined by

log µg i = xT
i Øg + log Ni , (3.4)

where xi is a vector of covariates (predictors), and Øg is a vector of regression coefficients indicating
the effects of a covariate on gene g , and log Ni is the intercept. Predictors of gene expression in the
GLM are normally group assignments for each sample. (These group assignments are represented
by dummy variables that have a value of 0 or 1.) Therefore, a fitted GLM is used for predicting gene
expression across samples using group assignments as predictors. However, the goodness of fit of a
GLM can differ since a fitted GLM only predicts gene expression well when the expression depends
on the groups. Generally, not all expressed genes have an expression profile following the groups. An
LRT is applied to test whether the goodness of fit of a GLM can be achieved just by chance. Here, the
LRT compares the goodness of fit between the full GLM and a null model, which is the intercept of the
GLM. The statistical value provided by the LRT can be used to calculate a p-value indicating whether
the expression of a gene significantly depends on the tested groups. Significance means differential
gene expression between groups. Since thousands of genes are tested in a DGEA, the p-values need to
be correct for multiple testing using correcting methods such as the Benjamini and Hochberg (BH)
procedure that is also termed as false discovery rate (FDR) [90, 91].
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3 Computational analysis of cancer transcriptomes

The FDR per gene (and fold-change between groups) can be used to select genes that are significantly
differentially expressed between subgroups. Further analyses of a particular subgroup generally integ-
rate the upregulated genes in this subgroup because these genes define the active biological processes.
The active biological processes can be determined via a functional overrepresentation/enrichment
analysis.

3.3.3 Functional overrepresentation analysis
An important element in functional overrepresentation analyses are databases that contain functional
annotations of genes. These annotations include information on whether a gene is part of a certain
pathway or assigned to a gene ontology (GO) term [92]. An ontology is a defined system of terms that
have a defined relationship that can be used to describe an object. GO terms provide such a system to
functionally describe genes and allow the functional characterisation of genes beyond pathways [93].

Such databases facilitate the functional characterisation of identified tumour subgroups via the set of
subgroup-specifically expressed genes. At first, the databases are used to annotate the known functions
of the subgroup-specifically expressed genes. Second, a statistical test is applied to test whether a cer-
tain gene function (e.g. DNA binding) is significantly overrepresented among the subgroup-specifically
expressed genes. Such a statistical test is based on the hypergeometric probability distribution [92, 94]:

P (x = k) =
° l

k

¢°m°l
n°k

¢
°m

n

¢ , (3.5)

where k is the number of subgroup-specifically expressed genes annotated for a certain function z,
l is the number of subgroup-specifically expressed genes, m is the number of expressed genes in
the data set, and n is the number of expressed genes that are annotated for function z. Significantly
overrepresented functions among upregulated genes can help to determine the dysregulated biological
processes and pathways that led to cancer formation within an identified molecular subgroup.

However, the characterisation of molecular subgroups within a cancer type is not limited to dif-
ferentially expressed genes. Subgroups are compared by the frequency of mutations/alterations in
individual tumour suppressors and proto-oncogenes and by the clinical outcome, such as the overall
survival of patients [84].

3.3.4 Survival data analysis
Survival data represent a special data type. These data represent the time to a particular event such as
death [95]. However, not all patients experience an event within a limited follow-up time. In such a
case, the event time data are right-censored. Analyses of these data normally relate to the function
S(t ) that is the probability of survival until time point t among the analysed group of patients. Several
statistical methods can handle this kind of data [95].

The Kaplan-Meier estimator is used to plot the survival curve within a limited follow-up for a group of
patients [95]. The Kaplan-Meier estimator can measure the fraction of patients that have survived until
a given time point t j [96]. The Kaplan-Meier curve obtained from the estimator is a right-continuous
step function, where each step represents uncensored events in patients within a given period [95].
The Kaplan-Meier estimator of S(t ) is given by

Ŝ(t ) =
Y

t j<t

n j °d j

n j
, (3.6)

where n j is the number of patients that did not die before t j , and d j is the number of patients that
died at t j [95, 96]. By applying the Kaplan-Meier estimator to each subgroup, the survival curves can
be plotted and compared. To determine differences between survival curves, the hazard ratio and the
log-rank test are used.
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The log-rank test tests for differences between survival curves between two groups, donated as group
1 and 2. Let t j be the j th time point, j = 1, ..., J . Let N1 j and N2 j the number of patients that survived
until time point t j in both groups, while N j = N1 j +N2 j . Let O1 j and )2 j the number of patients that
died at t j in both groups, while O j =O1 j +O2 j . The log-rank statistic is defined as

Z =
PJ

j=1(O1 j °E1 j )
qPJ

j=1 Vj

, where (3.7)

E1 j =O j
N1 j

N j
and (3.8)

Vj =
O j (N1 j /N j )(1°N1 j /N j )(N j °O j )

N j °1
. (3.9)

The p-value of the log-rank statistic Z can be obtained via the chi-square distribution. This p-value
indicates whether the survival curves of the two subgroups are significantly different [96].

The hazard function gives the probability that a patient dies within a given time period and is defined
as h(t ) = lim¢t!0

probability a patient dies between t and ¢t
¢t [96]. The hazard ratio (HR) is a ratio between two

hazard functions values of two patient groups: HR = h1(t )/h2(t ). The HR indicates how much likelier
it is that a patient dies in one or the other group [96]. For example, a HR= 2 would mean that group 1
has a two-times higher risk of dying than group 2 (in a comparison group 2 vs. group 1 the HR would
be 0.5).

These three statistical methods are frequently used to analyse survival data in cancer research
and to detect potential differences in clinical outcomes between cancer subgroups. However, these
statistical methods can also be used to detect prognostic biomarkers. In the case of gene expression as
a biomarker, a common strategy is to iterate over different cut-points of gene expression values, where
a cut-point is used to split a set of analysed tumours into two groups. A log-rank test is used at each
cut-point to find the cut-point with the lowest p-value, which is equivalent to the best separation of
survival curves. By repeating this procedure for each expressed gene, a set of putative prognostic genes
can be identified that need to be validated on an external cohort [97].

While the previous four sections outlined standard analysis methods in cancer research, these
methods leave many different aspects of cancer transcriptomes analysis uncovered.

3.4 Gene expression-based tumour sample classification
The classification of tumour samples is a typical supervised machine learning task in cancer research.
Learning tasks include the classification of tumours regarding (1) the likelihood of disease progres-
sion/relapse after treatment (prognostic) or (2) the chance of response or resistance to a therapy
(predictive). This thesis focuses on predictive classifiers.

The identification of predictive biomarkers is essential to make treatment-related outcome predic-
tions for tumours [98]. Such biomarkers are observable/measurable molecular features of tumours
and include mutations/alterations (CNVs, SNV/indels), methylation levels of CpGs, and expression
levels of genes. For example, the simplest biomarker would be a specific gene mutation that predicts
the resistance of tumours to a certain therapy; as a consequence, only wild-type tumours would be
treated with this therapy. Besides mutations, gene expression is a commonly used molecular data
type for outcome prediction. Such predictions would be based on the expression level of a single gene
or set of genes [98, 99]. Since this work concentrates on the analysis of cancer transcriptomes, gene
expression data will be used for treatment outcome classification.

Several supervised machine learning algorithms can be used for treatment outcome classification.
Among these algorithms is the SVM that was developed by Vapnik and colleagues [100, 101]. Two
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publications by Statnikov et al. [102, 103] have shown that SVMs perform better than other super-
vised learning algorithms when applied to gene expression data. Here, the comparison included
SVM, random forests (an ensemble of decision trees), K -nearest neighbours, and probabilistic neural
networks. Due to the better performance on gene expression data, SVMs will be applied to solve the
later-presented classification of treatment outcome.

3.4.1 Binary classification and support vector machines
This section introduces the four basic concepts behind the SVM using mathematical and non-mathematical
descriptions. These concepts include linear classifiers, SVMs as a maximum-margin classifier, kernels,
and soft-margin SVMs. Additionally, an adaptation of the soft-margin SVM will be described that can
be used to learn from class-unbalanced data.

A binary classification problem can be mathematically formulated as follows, considering a training
data set that contains two classes of entities. This training data set is defined by S = { (xi , yi ) | 1 ∑ i ∑
M , xi 2X, yi 2Y }, where xi is a vector of N features describing an entity and yi is the class label of
entity xi . The input space that includes all entities of the training set is defined by X. The binary label
space of the positive and negative class is defined by Y = { °1,+1 }. A binary classification task can be
solved by learning a function f (x) :X!Y, where the function f (x) maps the entity x from the input
space X to the label space Y [72].

The first basic concept of an SVM is to find a linear decision boundary that separates two classes
of entities within an N -dimensional space (assuming that the classes are linearly separable). Such a
decision boundary can be defined by a linear discriminant function called a perceptron [104, 105]:

sg n( f (x)) = sg n(w Tx +b) =

8
>><
>>:

+1 if f (x) > 0,

0 if f (x) = 0,

°1 if f (x) < 0,

(3.10)

where w 2RN is a feature weight vector defining the orientation of the boundary, b 2R is a bias term
moving the boundary parallel to its orientation, and b and w control the function f (x). The case
w Tx +b = 0 defines a discriminant plane — a hyperplane — that separates both classes (Figure 3.1).

However, there are many solutions for a hyperplane to linearly separate two classes. It remains the
question of the best separating hyperplane. An intuitive choice would be to place the hyperplane in
the middle between both classes. This choice reflects a solution with a good generalisation of the
classification task because this solution is robust to variations in unseen data. Such a generalising
hyperplane can be found by maximising the margin between both classes of entities (Figure 3.1).
Therefore, the maximisation of a class-separating margin is the second basic concept of an SVM[104,
105].

Combining both concepts, an SVM is a classifier that finds the maximal margin hyperplane. The
width of the margin is given by 2/||w ||2, where ||w ||2 is the euclidean norm (or L2-norm) (Figure
3.1). Hence, the margin can be maximised by minimising ||w ||2. Entities that are the nearest to the
generalising hyperplane are called support vectors. The function f (x) of these support vectors define
the margin boundaries (supporting planes) related to w Tx+b =+1 and w Tx+b =°1 (Figure 3.1) [104].
Therefore, an SVM tries to find w and b such that the two inequalities [101]

w Txi +b ∏ 1 if yi =+1 and (3.11)

w Txi +b ∑°1 if yi =°1 (3.12)

are true for all entities of the training data set, while minimising ||w ||2. Both inequalities can be
rewritten in the form

yi (w Txi +b) ∏ 1. (3.13)
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3.4 Gene expression-based tumour sample classification

Considering this, the optimisation problem to find the maximal margin hyperplane consists of an
objective function and a constraint:

minimise ||w ||22 by optimising w and b,

subjected to yi (w Txi +b) ∏ 1,

i = 1, ..., M ,

(3.14)

assuming both classes are linearly separable.
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Figure 3.1: SVM is a maximum-margin classifier [104]. Grey, dashed arrows illustrate geometric inter-
pretation of the values of b and 2

||||||w ||||||2 defined by the length of the arrows.

However, optimisation problems like this are difficult to solve due to their constraints. Therefore, the
optimisation problem is reformulated from a primal to a dual optimisation problem that is easier to
solve. The following paragraph will summarise the advantages of the dual representation (for a more
detailed description and derivation of the dual representation see [105]).

Until now, it was assumed that the two classes of entities are linearly separable in input space.
However, this is not the case for many real-world classification tasks. In order to solve tasks like
that, the input space is mapped into a more complex or higher dimensional feature space F using
a mapping function ¡(x) so F = {¡(x) : x 2X}. In this new feature space, the classes are linearly
separable. A drawback is that mapping the input into the features space using a mapping function
brings several problems. However, kernel functions or just kernels facilitate the mapping of data into
the features space and the training of a classifier in this features space even without knowing the
mapping function. The term kernel trick relates to this special characteristic of kernels. A kernel can
be seen as a function that measures the similarity between entities, for example, by calculating the
inner product between pairs of entities. Therefore, when a kernel is applied, a classification function
f (x) depends only on similarity measurements (dot products) between entities. Going back to the
SVM, adding the unknown mapping function ¡(x) to f (x) and bringing f (x) in the dual representation
is a kernelisation of f (x) (Equation 3.16) [105]. The dual representation involves that w is formulated
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as a function:

w =
MX

i=1
yiÆi¡(xi ), (3.15)

f (x) =
MX

i=1
yiÆi¡(xi )•¡(x)+b) (3.16)

=
MX

i=1
yiÆi K (xi , x)+b,

where ¡(xi )•¡(x) is the dot product, and K (xi , x) is the kernel function. An additional aspect of the
dual representation is Æi , which defines the influence of each xi (entity) for the final solution. Only
entities that are support vectors have a non-zero value of Æi . This means only support vectors remain
relevant for the solution of the dual representation. Intuitively, this appears to be correct considering
the graphical representation of an SVM (Figure 3.1) [105]. Overall, the dual representation of an SVM
provides a solvable optimisation problem, and the kernelisation provides a linear decision boundary
in the feature space for classes of entities that are not linearly separable in the input space. Therefore,
the application of kernels to solve initially non-linear decision boundaries is the third basic concept of
an SVM. There are different types of kernel functions that are applied for SVMs. The simplest form of
these kernels, a linear kernel, is the dot product between entities. Such a linear kernel will be used in
the later presented study.

The so-far-presented description of an SVM relates to a so-called hard-margin SVM. The term derives
from the fact that an entity can lie either on the border of the margin as a support vector or outside of
the margin, which is a classification without errors. This means hard-margin SVMs presume non-noisy
data, the absence of outliers, as well as non-overlapping classes at class boundaries (independent
of input and feature space). However, this does not reflect most real-world data sets. Addressing
this issue, the so-called soft-margin SVM was developed that relaxes these constraints. The primal
representation of the optimisation problem of a soft-margin SVM includes two additional variables,
the constant C and the a so-called slack variable ªi :

minimise ||w ||22 +C
MX

i=1
ªi by optimising w and b ,

subjected to yi (w Txi +b) ∏ 1°ªi , i = 1, ..., M ,

ªi ∏ 0, i = 1, ..., M .

(3.17)

The slack variable ªi is an error due to misclassification. An entity is misclassified when it lies within the
margin or crosses the hyperplane falling on the side of the opposite class. The hinge loss describes this
classification error: max (0,1° yi (w Txi +b). The hinge loss is zero for correctly classified entities and
increases with the degree of misclassification. As shown in Equation 3.17, the soft-margin optimisation
problem minimises not only ||w ||22 to maximise the margin but also minimises the classification
error. Additionally, the subject constraint is relaxed by subtracting ªi from the bound, which allows
misclassification. The constant C is a factor of ªi and controls the influence of classification errors
in the minimising problem. Hence, C is termed as a cost parameter since it controls the cost of
classification errors. Additionally, this parameter can control the bias-variance trade-off of an SVM.
A low value of C relates to a wide margin and a high bias (low variance) because classification errors
have a low cost. A high C value corresponds to a narrow margin and high variance (low bias) because
classification errors have a high cost. Thus, a high C increases the risk for overfitting. C itself is a
hyperparameter because it is not predefined nor can be directly calculated. The tuning of C is done via
a grid search where the performance of different C values is systematically evaluated by repeatedly
splitting the data into training and test sets using resampling techniques (see Section 3.1.2.1) [105]. The
optimisation problem of a soft-margin is also solved by using the dual representation of the problem.
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However, this representation is not further described since the main aspects of the dual representation
explained for the hard-margin SVM remain valid for the soft-margin SVM (please see [105] for more
details). Taken together, the fourth basic concept of an SVM is the maximisation of a class-separating
margin while minimising classification errors. Due to this concept, an SVM can generalise a learning
task well in the presence of noisy data.

The soft-margin SVM is the generally-used version of an SVM. SVMs are relatively robust to over-
fitting also when the number of features exceeds the number of training entities. The reason for this
property becomes obvious when looking at the objective function of the soft-margin SVM (Equation
3.17) and function f (x) = w Tx +b [106]. A common source of overfitting by linear functions such
as f (x) are the optimised values (coefficients) of the feature weight vector w . This optimised vector
contains higher weights for features facilitating the solution of f (x) compared to non-informative
features. Here, there is a risk that the optimised feature weight vector highly depends on the training
data leading to a lack of generalisation and overfitting. This problem is solved by adding additional
constraints that keep weights small on average. This approach is termed shrinkage and is a regularisa-
tion technique. Regularisation is a concept that prevents overfitting in learning tasks [72]. The term
||w ||22 is a regulariser since the objective function 3.17 is minimised, which is leading to a shrinkage of
the feature weights of w [106]. Regularisers are used in the L1-norm or squared L2-norm (as for SVM)
of the feature weight vector, where the norm of a vector is ||w ||p := (

PM
j |w j |p )1/p . The L-norm of the

regulariser affects the shrinkage of the feature weights. The squared L2-norm provides small, non-zero
weights, and assigns similar weights among correlated features, called a grouping effect. Due to the
small weights, L2-norm regularisation is capable of handling many features before overfitting. The
L1-norm regularisation shrinks most weights towards zero resulting in a selection of features. However,
correlated features are an issue for L1-norm regularisation. It will arbitrarily choose only one among
several correlated features [107]. The squared L2-norm of w (||w ||22) is originally used for the SVM [106]
and will be applied in a later-presented study. In this study, L1- and L2-norm regularisation for SVMs
will be further discussed.

The last aspect of SVMs, which is addressed in this section, is the application of SVM to unbalanced
data. SVM are affected by class imbalance, where the majority class has more influence in the SVM
training. This is leading to a higher misclassification of the minority class. However, the objective
function of the soft-margin SVM can be easily extended in a way that it can handle unbalanced data
[108]:

minimise ||w ||22 +C+(
X

i :yi=+1
ªi )+C°(

X

i :yi=°1
ªi ) by optimising w and b ,

subjected to yi (w Txi +b) ∏ 1°ªi , i = 1, ..., M ,

ªi ∏ 0, i = 1, ..., M ,

(3.18)

where C+ and C° are cost parameters of the positive and negative class, respectively. By adding a cost
parameter and an error term for each class (+ and -), classification errors per class can be independently
weighted by tuning C+ and C°. By giving the minority class a higher C value than the majority class, an
adjustment for class imbalance can be embedded in the SVM learning algorithm. Due to the different
weighting of classes, this kind of SVM is also called (class) weighted SVM. Class-imbalance-aware
learning is termed cost-sensitive learning. In this case, it is a cost-sensitive SVM. The ratio between the
hyperparameters C+ and C° is not necessarily similar to the ratio between the number of entities per
class[108, 109]. Therefore, value combinations of C+ and C° need to be tuned via grid search by using
resampling and performance metrics that are suited for class-unbalanced data (see Section 3.1.2.2,
3.1.2.3).

As explained above in the context of machine learning, besides the learning algorithm, feature
selection also has a major impact on the performance of the learned classifier. The next section
introduces how SVMs can be used to select relevant features.
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3.4.2 Feature selection and support vector machines
In classification, feature selection is the identification of features that discriminate between classes and
service to solve the learning task. In the case of continuous numeric values such as gene expression
values, features can discriminate between classes by differences in value range/distribution between
the classes. Especially for high dimensional data such as omics data, feature selection is essential,
considering the general rule that the number of features should be less than the number of training
entities to avoid overfitting of a classifier. For example, gene expression data sets comprise around
20.000 measured coding genes, but 100 or fewer training entities are available. It leaves a big gap
between the number of features and training entities [110].

Feature selection can be done via wrapper, filter, or embedded methods. The following paragraphs
concentrate on the last two. Filter methods are applied as a pre-processing step prior to classifier
training. Here, features are filtered using statistical methods such as correlation, t-test, and linear
models. These methods test or measure the association between class labels and features. Coefficients
and p-values derived from the statistical analysis function as filter criteria using ranking schemes
or hard cutoffs. Filter methods work independently of the later applied learning algorithm, so the
performance of the features for the actual classification task is unknown. This is a drawback of filter
methods in terms of supervised learning. Nevertheless, filter methods facilitate the selection of relevant
features that also help to understand the analysed data [110].

In contrast to filter methods, embedded methods incorporate feature selection in the classifier
training and relate to the applied learning algorithm [110]. Guyon et al. [111] have published an
SVM-embedded feature selection method that was tested for gene-expression-based tumour sample
classification. The method is called SVM Recursive Feature Elimination (SVM-RFE). This method
uses the weights (coefficients) of the feature vector w of a trained linear kernel SVM to rank and
select features. Here, the squared feature weight (w j )2 is used as a ranking criterion of the j th feature.
Important features have a high ranking criterion. The squaring is important to rank features by the
magnitude of the weights independent of the sign of a weight, which indicates whether a feature is
important for the positive or negative class. SVM-RFE works as follows:

1) Set U of selected features contains all j = 1, ..., M features; set R of ranked features is empty;
2) tune hyperparameters and train an SVM using features in U ;
3) rank features by the criterion (w j )2;
4) eliminate feature j with the smallest ranking criterion from U ;
5) add feature j to R;
6) repeat step 2)-5) until all features are ranked in R.

Features that are added to R at the end have the highest ranking/importance. Features are eliminated
backwards (starting with all features), motivated by the idea that the feature with the smallest weight
has the smallest relevance in the trained model. Eliminating this feature introduces the smallest
change in the objective function. Due to the small changes, it is easier to find an optimal solution to
the objective function [111].

After the feature ranking, the set R of ranked features is used to find the minimal number of features
with the best performance to reduce the features preventing overfitting. Hyperparameter C is tuned,
and an SVM is trained starting with the feature of the highest rank in R followed by a performance
evaluation of the learned classifier. This procedure is step-wise repeated by using the j = 1, ..., M
highest-ranked features. The j highest-ranked features with the best classification performance are
chosen to train the final classifier [111].

Like other embedded feature selection methods, SVM-RFE has the advantage that it involves the
evaluation of features in the context of the classification task that is to be solved. In combination
with SVM as a classifier, SVM-RFE is among the best performing feature selection methods for cancer
sample classification, as shown by Haury et al. [112]. However, Duan et al. [113] have published
an extended version of SVM-RFE called Multiple SVM-RFE (MSVM-RFE) that reduces the chance of
overfitting.
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3.4.2.1 Multiple support vector machine recursive feature elimination

The difference between MSVM-RFE and SVM-RFE lies within the calculation of the feature ranking
criterion. In SVM-RFE, the criterion (w j )2 is obtained by training the SMV on the whole data set one
time after hyperparameter tuning. Duan et al. argued, even though SVMs integrate regularisation, there
is a chance of overfitting for SVM-RFE because the whole data are presented to the SVM. Therefore,
the authors decided to calculate the ranking criterion based on r = 1, ...,R (R = 100) SVMs trained on
resampled data for each elimination step. Here, the ranking criterion c j for feature j is defined by the
signal-to-noise across the feature weights (w j r )2 obtained from R trained SVMs:

w 0
j r =

w j r

||wr ||
, (3.19)

µ j =
1
R

RX

r=1
(w 0

j r )2, (3.20)

æ j =

sPR
r=1(w 0

j r °µ j )

R °1
, (3.21)

c j =
µ j

æ j
, (3.22)

Equation 3.19 normalises weights to make them comparable across trained SVMs. Hyperparameter C
is tuned per elimination step and used for all resamples [113].

The use of the signal-to-noise ratio of feature weights across trained SVMs derives from the idea
to stabilise the estimation of the ranking criterion by being less dependent on the training data set.
Applying MSVM-RFE for gene-expression-based tumour sample classification, the authors showed
that MSVM-RFE could find solutions that have comparable or better solutions than SVM-RFE [113].
This justifies the usage of MSVM-RFE instead of SVM-RFE for the later-shown feature selection task.

Taken together, the classification of tumours (e.g. for predicting drug response) is a common
machine learning task in cancer research and oncology. Gene expression data of tumours present a
commonly used molecular data type for finding biomarkers and training predictive classifiers, while
SVMs perform well on this data type. The introduced basic concepts of SVMs illustrate how this
supervised learning algorithm solves classification tasks. Further, the application of SVMs is not
limited to this learning task since SVMs can also be used as an embedded feature selection method (as
described for SVM-RFE and MSVM-RFE). Additional to the embedded selection, filter methods based
on statistical analyses are another option to select features. However, feature selection itself can be
seen as a machine learning task. The following section elaborates on a specific application in which
feature selection is the central learning task for obtaining GRNs.

3.5 Inference of gene regulatory networks from gene
expression data

In biological terms, a GRN illustrates the interaction networks between TF and their target genes.
This interaction is defined by the binding of TFs to the promoter or enhancer regions of a target gene.
Via binding to these regions, TFs can regulate the gene expression of the target genes. Changes in a
GRN lead to changes in gene expression levels. Therefore, GRNs depict the complex gene regulatory
system that controls the cellular processes such as cell differentiation, molecule synthesis, energy
transduction, or proliferation [114]. The fundamental role of GRNs in controlling the cellular process
is also reflected by the fact that GRNs of cancer cells are different compared to normal cells. These
cancer GRNs relate to numerous cancer cell types and disease-associated processes [15].

In cancer research, understanding the state of a GRN in a cancer cell provides direct insights into the
gene regulatory system producing the gene expression profile leading to a malignant tumour. Here,
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each state corresponds to a different GRN [29]. The studying of GRNs in cancer research refers to the
approach of understanding cancer as a biological system defined by complex molecular interactions
(the field of cancer systems biology). Here, the application of NGS technologies and the computational
analyses of NGS data are essential to derive GRNs [15, 115].

Two NGS technologies are mainly used to obtain GRNs: chromatin immunoprecipitation sequencing
(ChIP-seq) and RNA-seq. ChIP-seq comprises the pull-down of chromatin regions that are bound by
TFs and DNA sequencing of the pull-down chromatin regions. However, a single ChIP-seq experiment
is generally limited to one TF. This characteristic does not easily allow obtaining a genome-wide GRN
[114, 116]. Because TF-DNA interactions are directly analysed via ChIP-seq, this technology is often
used to validate GRNs that are inferred with other approaches [117]. Additionally, DNA sequences
derived from ChIP-seq data can be used to identify the DNA motif bound by a certain TF. To obtain such
a motif, a position weight matrix (PWM) is constructed containing the frequency of the four bases at
each position of the motif. Once a PWM is constructed, it can be used to predict TF binding sites (TFBS)
in DNA sequences without performing ChIP-seq. Therefore, databases containing experimentally
obtained TF binding motifs (PWMs) are an important resource for GRN contraction or GRN validation
[118].

Contrary to ChIP-seq, high-throughput technologies measuring gene expression such as RNA-seq
allow obtaining genome-wide GRNs. Here, a GRN is inferred from gene expression data by analysing
expression dependencies between genes. This approach is called reverse engineering of GRNs [114,
116]. Due to the genome-wide range, GRN inference from gene expression data is an attractive
approach to construct GRNs. However, constructing a GRN from gene expression is a challenging
task in the field of system biology [116]. Because of the complexity of this task, numerous network
inference methods have been published. These methods were evaluated by the Dialogue on Reverse
Engineering Assessment and Methods (DREAM) project in so-called DREAM challenges [119]. In
several DREAM challenges [119, 120], an algorithm developed by Huynh-Thu (called Gene Network
Inference with Ensemble of trees – GENIE3) et al. [120] turned out to be the best or among the best
performing methods. This algorithm is introduced in the following section.

3.5.1 Gene Network Inference with Ensemble of trees - GENIE3
In order to understand how network inference methods can reverse engineer GRNs, it is necessary to
know the mathematical representation of a GRN. In mathematical terms, a GRN is a sparse, directed
graph. In this graph, nodes represent genes, and edges indicate a regulatory relationship between two
genes. Nodes in such a graph are only sparsely connected because of the biological nature of gene
regulation, where a TF regulates a limited number of genes. A graph/GRN can be represented by a
sparse, square matrix G , where the number of rows and columns is equal to the number of genes in
the network. Each matrix element G j i is an edge between two genes indicating the effect of gene j on
gene i . Therefore, effects between genes are directed, and gene j is the regulator (TF) of gene i (target).
Besides being directed, a relationship between gene j and i can be signed (or unsigned) and weighted
(or unweighted). The sign represents the nature of the regulatory relationship. This relationship can
be repressive (negative sign) or activating (positive sign). Thus, a regulator gene j can be a repressor
or an activator of gene expression. The weight (the absolute value of the weight for signed values)
indicates the strength of a regulatory relationship. Due to the sparsity of matrix G , most weights are
zero indicating no relationship between gene j and i [114, 121]. Such a graph can be learned from
a (learning) data set L = {xk |k = 1, ..., M }, where xk 2 RN is a vector of expression values for N genes
measured in the kth entity: xk = (xk,1, ..., xk,N )T.

The authors of GENIE3 developed an algorithm that infers a GRN from gene expression data for a
directed and unsigned graph with N nodes (genes). The general concept is as follows: the algorithm
infers a GRN by exploiting directed expression dependencies between gene j and i to assign an
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interaction weight to G j i ∏ 0, where j , i = 1, ..., N and large weight values relate to putatively true
regulatory links. Besides the general concept, the algorithm is based on several ideas and assumptions
to obtain the interaction weights of the graph [120].

The task of learning a graph including N genes is split into N subproblems. Each subproblem is
an independent task of identifying the regulators of one given (target) gene by exploiting directed
expression dependencies between the given target gene and the remaining input genes. A gene is
selected as a regulator when its expression is predictive of (directly influencing) the target gene’s
expression. The just-described subproblem corresponds to a feature selection problem in supervised
machine learning. In order to solve the feature selection problem, the authors assumed that the
expression of gene i is given by a function fi of the remaining input genes’ expression, comparable to
a multiple regression problem (more than one predictor). However, fi itself is unknown [120].

To solve this unknown function, the authors decided to apply a random forest of regression trees, a
supervised ensemble machine learning method [120]. Regression trees are applied for solving multiple
regression problems [122]. A tree represents a learned model that predicts a target variable. Such a tree
consists of several tree nodes (not to be confused with nodes of a graph) connected via branches in
a tree-like structure. The tree starts with the root node and ends with terminal nodes, the so-called
leaves; the remaining tree nodes are internal nodes. A tree node is a binary test that splits the analysed
target variable based on a certain criterion. The main concept of a regression tree is to recursively split
a target variable at each tree node based on a cut-point of a predictor variable in such a way that the
overall variance of the target variable is minimised across the splits. Minimising the variance relates to
the concept of finding the least-squares (as in linear regression models) [122].

In the case of GENIE3, a target variable is a vector of expression values of gene i measured across
M samples, xi = (xk,i |k = 1, ..., M), and a predictor variable is the expression vector of gene j , x j , j 6=i

[120]. The multiple regression problem for xi is solved as follows. Starting at the root node, vector xi is
binary split into xi1 and xi2 by finding a predictor gene j and a cut-point s of x j , so

xi1 =(xk,i |k : xk, j < s) and (3.23)

xi2 =(xk,i |k : xk, j ∏ s), (3.24)

such that the overall variance is minimised across the two splits,
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where |xi1 | and |xi2 | are the number of entities (cardinality) in each split, and xi1 and xi2 are the average
in each split. Taken together, it is sought to find a value of j and s minimising Equation 3.25. The splits
derived from the root node represent two new tree nodes. Each of the new nodes split xiz again by
finding the best j and s. This procedure is repeated until xiz contains only one entity defining a leaf. At
each tree node, j and s can be different [122].

However, for GENIE3, not only one but an ensemble of regression trees was trained to solve the
regression problem. In ensemble learning, multiple, diverse predictive models are trained on the input
data. The diversity of the models is obtained by resampling the input data (entities or features, or
both). Each model on its own is weak in making predictions, but combining the predictions of all
models provides a strong predictive ensemble model. Random forest is such an ensemble method
[72]. In a random forest of regression trees, each tree is trained on a different bootstrap sample of the
target variable xi (bootstrapping of entities) and at each tree node, R potential predictor variables
are randomly selected and evaluated to find the best split. For GENIE3, the default parameters are
R =

p
(N ) (N =all input genes) and 1000 trees per random forest, which are standard values of these two

parameters for random forest. One random forest solves fi corresponding to one subproblem i [120].
The authors of GENIE3 used regression trees because this method solves the function fi without

knowing the function’s nature and can deal with non-linear relationships. Additionally, regression
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trees allow a ranking of genes used as a predictor. Here, genes are ranked by their importance I to
predict the expression of the target gene i in the learned model. Assuming gene j was used for the
split of xiz into xiz+1 and xiz+2 at tree node N , then the importance measure would be

I j (N ) = |xiz |Var(xiz )° |xiz+1 |Var(xiz+1 )° |xiz+2 |Var(xiz+2 ). (3.26)

This equation means that the importance of a predictor gene is evaluated by the variance reduction
due to the split at node N . To calculate the importance of gene j for a single tree, I is summed across
all tree nodes at which gene j was used for the split. The importance measure of gene j as a predictor
of gene i can be extended to the ensemble of regression trees. Here, the importance measures per tree
for gene j are averaged across all trees. The important measure that was obtained across the ensemble
is equivalent to the interaction weight G j i in the graph of the GRN. By calculating the importance
measure for each gene j that was used to split a node in the ensemble of trees, a ranking of potential
regulators of gene i can be achieved from all interaction weights G j i | j = 1, ..., N [120].

Although GENIE3 provides a ranking of potential regulators for each gene based on interaction
weights, the algorithm does not provide the final selection of regulators. To obtain such a final selection,
a threshold value for the interaction weights is necessary. However, this threshold value needs to be
chosen manually. This choice has to be done with caution because the threshold decides about the
number of false positive (wrong edges) and false negative (missing edges) regulatory links within the
final GRN. Additionally, even though all input genes are considered to be potential regulators when
applying GENIE3, not all of these genes are TFs (a point that will be discussed in detail within a later
presented study). A potential approach is to use databases of gene function annotations such as GO
terms to identify TFs among the input genes and obtain the final GRN, as proposed by Cahan et al.
[123].

Overall, GENIE3 is a useful algorithm to infer GRNs from gene expression data. Once a GRN and the
related graph are obtained, several downstream analyses can be applied to gain more information out
of the GRN.

3.5.2 Downstream analysis of gene regulatory networks
Biological networks such as GRNs generally have a modular structure defined by communities of
genes. In a network, each community is a group of genes that are highly connected but less/rarely
connect with genes outside of the group. These communities are also called modules or subnetworks.
The community structure has a biological reason since gene products involved in the same process
have many interactions and need to be expressed simultaneously. Otherwise, components of this
process would be missing. Thus, genes associated with a common process are co-regulated by one
or several potentially cooperating TFs. Due to the association of gene communities in GRNs with
biological processes, the detection of such subnetworks can help to understand the biological functions
of a GRN in the cell [124]. In terms of cancer biology, communities can relate to certain tumour
subtypes or specific disease-related processes. Special algorithms detect such communities. One of
these algorithms is a method called "map equation" published by Rosvall and Bergstrom [125]. This
algorithm uses the flow of random walk in a network to identify communities. This method is not
limited to biological networks and can generally be used to detect communities in networks.

Another important aspect of GRN analysis is determining the contribution of single regulatory genes
(nodes) to the network. This contribution is frequently determined by the number of connections
of a gene to other genes within the network. The number of connections is the degree of a node in
a network. In directed graphs such as GRNs, the out-degree of a node is the number of target genes
regulated by a TF node, and the in-degree of a node is the number of TFs regulating a gene. TFs
with high out-degree are important regulators that influence the expression of many genes within the
network [124, 126].
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Cahan et al. proposed an approach called Network Influence Score (NIS) that extends the out-degree
to determine the contribution of a TF to the network [123]. The authors used gene expression data
comprising a wide collection of different cell/tissue types to infer GRNs. The NIS was applied to
identify TFs with the strongest impact on cell-/tissue type-specific gene expression. The NIS integrates
the out-degree of a TF and the level of expression change of the TF and target genes in a particular
cell/tissue type. The level of expression change adds more information because the out-degree only
indicates the number of targets but not in which range a TF can change the expression of a target
gene. The authors estimated the level of expression change by scaling expression values gene-wise
applying z-score normalisation across the sample collection of different cell/tissue types. Due to the
z-score normalisation, the expression of a gene in any cell/tissue type is positioned to the expression
distribution across the collected data set.

Taken together, GRNs depict the complex gene regulatory system that controls the cellular processes,
while distinct GRNs define cancer cells. By applying GENIE3 — which is based on an ensemble machine
learning algorithm — a weighted, unsigned, directed graph of a GRN can be inferred from expression
data. The interaction weights provided by GENIE3 allow a ranking of the potential regulators of a gene.
This facilitates the selection of putative regulators by manually choosing a weight threshold. To annot-
ate TFs among the input genes, functional annotation databases can be used. Downstream analyses
can extract information such as community structures of a GRN and the influence of individual TF
within the network.

Introducing SVMs and GENIE3 illustrated how machine learning methods can solve specific tasks
for the computational analysis of gene expression data. However, computational analyses of mo-
lecular data cannot always be solved by applying a single machine learning algorithm and require
several methods and the integration of different data resources. An example of such an analysis is the
computational characterisation of lcn genes.

3.6 Computational characterisation of lnc genes
Even though there is clear proof that lnc genes and their lncRNA products can have tumour promoting
and suppressing functions by regulating cancer-relevant processes, the extent of lnc genes’ involvement
in cancer formation or suppression is still an open question. The main reason is that the function of
most lnc genes is unknown due to a challenging functional characterisation and annotation of lnc genes.
These challenges arise because lnc genes and lncRNA have specific features distinct from protein-
coding genes and their product (see Section 2.5). One of these features is the low sequence conservation
of lnc genes compared to protein-coding genes. This low conservation prevents a classification based
on sequence-related functional domains as done for protein. Lnc genes are lower conserved because
lncRNAs rather form structure-related (secondary and tertiary structures) functional domains than
sequence-related domains [127, 128]. These two and additional attributes challenge the experimental
characterisation of lnc genes [129]. Therefore, computational characterisation of lnc genes has been
an important factor in analysing lnc genes. Additionally, computational high-throughput methods
appear appropriate for this task because a higher number of lnc genes can be analysed in parallel
[20, 130]. There are many approaches regarding how computational analyses can be used for lnc
gene characterisation [130, 131]. However, applying all of them is not feasible. The following section
introduces two approaches that will be applied within this thesis.

3.6.1 Characterisation lnc genes based on their genomic organisation
with coding genes

One approach of lnc gene characterisation is the classification of lnc genes into certain types based on
their genomic position relative to coding genes. These types include sense overlapping, sense intronic,
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antisense, divergent, and intergenic (Table 3.6.1) [131, 132]. This thesis concentrates on the last three
types (since sense overlapping and intronic lnc genes can be difficult to analyse due to the overlap with
coding genes on the same strand). Additionally, via this characterisation, a coding gene in positional
relationship to a lnc gene can be assigned as a coding partner to this lnc gene (e.g. the coding gene in
divergent orientation to the lnc gene), defining the direct coding gene neighbourhood of lnc genes.

Table 3.3: Types of lnc genes based on the genomic position relative to coding genes [131, 132].

Type Description

sense overlapping a lnc and coding gene overlap on the same strand by at least one exon
sense intronic exons of a lnc gene overlap with introns of a coding gene on the same strand
antisense a lnc gene locus overlaps with a coding genes locus on the opposite strand
divergent a lnc and coding gene are on opposite strands and the TSSs of both genes are

in proximity; termed as diverged/bidirectional transcription
intergenic a lnc falls between two coding genes independent of the strand

The positional classification of lnc genes arises from the knowledge that the organisation of the
genome is not random [131]. Indeed, several publications have shown that divergent, antisense, and
intergenic lnc genes have specific features [133–136]. For example, the direct coding gene neighbour-
hood of divergent and intergenic lnc genes is enriched for different functions than the neighbourhood
of antisense lnc genes [135]. Additionally, divergent lnc genes have unique properties. The TSS of lnc
genes is located in the same nucleosome-free region or promoter as the TSS of the coding gene partner
[136].

A published work by Hon et al. focused on improving the positional classification of lnc genes by
completing the annotation of 5’ ends of lnc genes. The motivation behind this work was to obtain more
complete gene models for lnc genes. Gene models for lnc genes are frequently incomplete because of
lower expression and higher exosome sensitivity of lnc genes compared to coding genes [133]. The
authors used cap analysis of gene expression (CAGE) data. CAGE relates to a protocol where only
the 5’ end of RNAs is sequenced, allowing expression quantification of individual transcription start
sites (TSS) and genes by pooling start sides of one gene [133, 137]. The obtained lnc gene models and
annotations of the lnc gene types divergent, antisense, and intergenic were published under the name
FANTOM CAT (FANTOM CAGE-associated transcriptome), which was done within the framework of
FANTOM (Functional ANnoTation Of the Mammalian genome) [133].

The positional classification of lnc genes allows annotation of known, type-related properties to a
lnc gene (like a shared nucleosome-free region for divergent genes). However, this classification is
always limited to the genomic locus of a gene. Another approach takes advantage of gene expression
data to infer putative lnc gene functions.

3.6.2 Inference of putative lnc gene functions from gene expression
profiles

As introduced above, the control of gene expression is essential to orchestrate the biological processes
within a cell. Therefore, gene expression is non-random, and the analysis of gene expression profiles
can provide much information about genes. A fact that is frequently used for the computational
characterisation of lnc genes [130].

The information in which tissue a lnc gene is expressed can imply potential gene functions since
tissues fulfil different tasks in the human body. Gene expression data from different tissues can be
used to identify tissue-specific expression of lnc genes by performing DGEA across the tissues [130].
Additionally, by comparing tumours against normal, matching tissue, it can be determined whether a
lnc gene’s expression is altered in cancer, which could indicate cancer-associated functions [41].
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Co-regulation is often observed for genes that are involved in the same biological process. This co-
regulation and the extensive functional annotation of coding genes can be used for the computational
characterisation of lnc genes by performing a co-expression analysis integrating lnc and coding genes
[130, 138]. There are two common ways to perform this analysis: co-expression clustering and gene-
centred co-expression analysis [41, 130, 138, 139].

Co-expression clustering — an unsupervised machine learning task — is the identification of gene
clusters. Each cluster is a group of strongly expression-correlated genes due to co-regulation, whereas
the expression correlation across clusters is weak. For lnc characterisation, the co-expression clus-
tering step includes coding and lnc genes. After obtaining the co-expression clusters, a functional
overrepresentation analysis is performed per gene cluster. This analysis is possible because of the
extensive functional annotations of coding genes in databases. Putative functional associations of
a lnc gene can be inferred from the enriched biological processes of the co-expression cluster that
is assigned to this lnc gene. This type of functional inference is called guilty-by-association since a
putative function is determined by finding associations in terms of co-expression with functionally
annotated genes [130, 138].

Co-expression clustering is practical for capturing positive expression correlations but not for neg-
ative correlations [138, 140]. However, a gene-centred co-expression analysis can capture positive
and negative expression correlations between genes. Here, a single lnc gene is compared to all ex-
pressed coding genes to identify correlated genes using statistical measures like Pearson and Spearman
correlation. The obtained correlation values can be used to perform a rank-based functional gene
set enrichment analysis [139] or by selecting the significant or strongest negatively and positively
correlated coding genes. In the second version, the overrepresentation analysis is separately applied to
the selected negatively and positively correlated coding genes.

There is also an analysis method that is partially linked to co-expression. This characterisation
method refers to the identification of the DNA binding site of lnc genes that regulate gene expression
via triplex formation. There are two different ways to identify lnc gene binding sites. The first option is
the conduction of ChIP-seq-like experiments [43]. The second option is a computational method that
uses only sequence information and the Hoogsteen base-pairing model to identify binding sites of lnc
genes [36]. However, the ChIP-seq-like experiments can also be used to obtain a PWM of the lnc gene
binding motif. By predicting or experimental obtaining lnc gene binding sites, putative targets of lnc
genes can be identified and functional enrichments among targets indicate the processes regulated by
the lnc gene.

The expression data of lnc genes can also be overlaid with clinical and other tumour-related molecu-
lar data. An overlay of gene expression and copy number data of lnc genes can be used to evaluate
whether a gene is dysregulated due to genomic alterations in cancer. A copy-number-dependent ex-
pression of lnc genes can indicate cancer-associated functions. The detection of associations between
lnc gene expression and clinical outcome, such as patient survival, can also point to lnc genes with
putative cancer-associated functions [41].

Taken together, lnc genes have specific features that complicate their functional characterisation.
Computational analyses provide several approaches for lnc gene characterisation including a classific-
ation based on the genomic position relative to coding genes, the analysis of gene expression profiles
and co-expression, and the overlay of gene expression with tumour-related molecular and clinical
data.

3.7 Summary and outlook
The last two chapters summarised molecular biological aspects of cancer development and the compu-
tational analysis of cancer transcriptome. Introduced molecular biological aspects of cancer included:

• the process of cancer development that is defined by the dysregulation of gene expression,
• hallmarks of cancers summarising capabilities obtained by malignant tumours,
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• the implication of lnc genes in cancer besides protein-coding genes, and
• the application of omics technologies for the molecular analysis of tumours with an emphasis

on RNA-seq.

The introduction of the computational analysis of cancer comprised:
• processing of RNA-seq data to determine gene expression values,
• an outline of frequently applied cancer transcriptome analysis,
• the supervised machine learning algorithm SVM that can be used for classification and embed-

ded feature selection via MSVM-RFE,
• the algorithm GENIE3 that infers GRNs from gene expression data, and
• the computational characterisation of lnc genes.

Each of the following two chapters presents a cancer transcriptome study that focuses on the applica-
tion of the just-introduced computational analysis methods. The first study (Chapter 4) presents the
application of SVM and MSVM-RFE for the construction of a gene-expression-based classifier that
can predict the treatment outcomes of a targeted therapy in colorectal cancer patients. The second
study (Chapter 5) presents the dissection of molecular heterogeneity in medulloblastoma, the analysis
of GRNs related to this heterogeneity, and the computational characterisation of lnc genes that are
differentially expressed between distinct molecular groups of medulloblastoma.
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5 Medulloblastoma study

Medulloblastoma (MB), a tumour of the cerebellum, is the most common malignant brain tumour
among children [193]. The PedBrain Tumour Research Project was founded as part of the International
Cancer Genome Consortium (ICGC) to gain further insights into the molecular biology of MB and
other paediatric brain tumours. The ICGC PedBrain Project consists of a research consortium (co-
ordinator: Prof. Dr. Peter Lichter) with several involved institutions (German Cancer Research Center,
European Molecular Biology Laboratory, National Center for Tumor Diseases, Düsseldorf University,
Heidelberg University, Heidelberg University Hospital, Max Planck Institute for Molecular Genetics,
The Hospital for Sick Children in Toronto, and Arthur and Sonia Labatt Brain Tumour Research Center).
As a consortium partner, we, the research group “Gene Regulation & System Biology of Cancer” located
at the Max Planck Institute for Molecular Genetics, performed RNA sequencing of 164 MB samples
and downstream analysis of the RNA-seq data.

The following chapter comprises the second study within this dissertation covering a comprehensive
analysis of the MB transcriptome by using the MB RNA-seq cohort of ICGC PedBrain.

5.1 Biological and theoretical background of
medulloblastoma and lnc gene MEG3

5.1.1 Medulloblastoma: Tumour of the cerebellum
Medulloblastomas represent malignant lesions of the cerebellum. Medulloblastoma has an embryonic
origin and arises from progenitor cell populations [193]. MB accounts for most cases among malignant
brain tumours during childhood but can occur into adulthood; however, MB is more likely to occur at
an earlier age. Currently, the most common therapy options include safe resection, chemotherapy,
and craniospinal radiation (radiation along the head-spine axis). Approximately 30% of the medullo-
blastoma patients die from this disease [83, 193]. Most survivors experience long-term side effects due
to the treatment, including developmental, neurological, neuroendocrine, and psychosocial deficits
[83]. In order to better understand the origins of MB, the following section will summarise the histology
and development of the cerebellum.

5.1.2 Development and structure of the cerebellum
In humans, the cerebellum is the largest part of the hindbrain. It is located underneath the cerebrum
lying dorsal (rear side) to the pons and medulla and is joint to the brainstem (Figure 5.1.a) [194]. The
cerebellum is involved in sensory-motor processing and non-motor functions (e.g. emotional and
cognitive processes) containing over half of the terminally differentiated neurons in the adult brain
[195, 196]. The matured cerebellum is composed of the cerebellar nucleus, white matter, and three
outer layers, each layer containing different cell types (Figure 5.1.b) [196]. The outermost layer is
called the molecular layer and contains stellate and basket cells. Purkinje cells, candelabrum cells, and
Bergmann glia are located in the Purkinje cell layer, which lies between the molecular and granular
layer. The granular layer contains granule cells, Golgi cells, unipolar brush cells, and Lugaro cells [195,
197]. Based on their released neurotransmitters, the neuronal cell types can be grouped into either
inhibitory gamma-butyric acid (GABAergic) or excitatory glutamatergic neurons. Purkinje, stellate,
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basket, Lugaro, and Golgi cells are inhibitory GABAergic neurons. Granular and unipolar brush cells
are excitatory glutamatergic neurons [195]. Bergmann glia are non-neural glial cells. The major cell
types are Purkinje cells, granule cells, and Bergmann glia in the cerebellum [198].

Purkinje cell layer

Cerebellar nucleusWhite matter

External granuale layer

Midbrain

a)

Post-mitotic zone

d)c)

b)

Granular layer

Molecular layer

Nuclear transitory zone

Upper rhombic lip

Ventricular zone
Figure 5.1: Anatomy, histology, and development of the cerebellum. a) Human adult brain. Reprint

(public domain) from Henry Gray (1918) Anatomy of the Human Body [199]. Source:
www.bartleby.com; Gray’s Anatomy; FIG. 677. b) Mouse adult cerebellum sagittal (age:
P56). ISH of the Purkinje cell marker Calb1 [200]. Image credit for ISH: Allen Institute [201].
Labels were added to the image. c) Schematic illustration of the developing cerebellum in
mice around E13.5 [196] [195]. d) Mouse cerebellum sagittal E13.5. ISH of Tubb3 marking
post-mitotic cells [202]. Image credit for ISH: Allen Institute [201]. Labels were added to the
image.

The layered structure of the cerebellum arises from a complex cascade of cell migration during
development. This developmental process will be explained using mice as a model organism. Around
embryonic day (E)8, the cerebellar anlage (also called cerebellar primordium) emerges close to the
midbrain-hindbrain boundary, called the isthmus [195, 196]. On a molecular level, the genes Otx2,
Gbx1, Fgf8, En1, En2, Wnt1, and Pax2 play an important role in the formation of the cerebellar anlage
[195].

Atoh1-positive (alias Math1) precursors of glutamatergic neurons (granule and unipolar brush cells)
arise from the upper rhombic lip. Around E13, these precursors start to migrate into the external
granular layer (EGL) and the nuclear transitory zone (NTZ) (Figure 5.1.c), which will later form the
cerebellar nucleus [195]. Ptf1a-positive precursors in the ventricular zone (VZ) give rise to GABAergic
neurons of the cerebellum (Purkinje, stellate, basket, Lugaro, and Golgi cells) (Figure 5.1.c). Bergmann
glia also arise from the VZ [195]. Purkinje cells emerge around E10–E13 [195]. After E13, post-mitotic
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Purkinje cells start to migrate from the VZ into the direction of the EGL toward the middle of the
cerebellar anlage forming a several-cells-thick Purkinje cell cluster in the post-mitotic zone (Figure
5.1.c-d) [195]. Around E18.5, Purkinje cells start to secret Shh protein that serves as (neuro-)trophic
factor by promoting the proliferation of granule precursors in the EGL (transit amplification). Here, the
proliferation of granule precursors depends not only on Shh-signalling but also on Atoh1 expression
[195, 196]. Atoh1 keeps granule precursors in a proliferative state responsive to Shh signalling by
suppressing differentiation [196, 203]. Cell proliferation is initiated by the binding of the Shh protein
to its receptor Patched 1 (Ptch1) that causes the release of the G-coupled receptor Smoothened (Smo)
from Ptch1 suppression. Activated Smo inhibits Suppressor of Fused (SUFU) that binds and suppresses
Gli-family transcription factors. Released Gli transcription factors translocate into the nucleus and
transcriptionally activate proliferation-promoting target genes [204]. During transit amplification, the
EGL can be separated into an outer EGL comprising proliferating granule precursors and an inner
EGL containing post-mitotic differentiating granule cells [195]. The post-mitotic cells of the inner EGL
migrate inward across the Purkinje cell cluster to form the inner granular layer (IGL) that later will
maturate into the granular layer. The proliferation of granule precursors, cell migration, and formation
of the granular layer continues during the first weeks after birth — the EGL will disappear at the end
of this time. The Purkinje cell cluster starts to form a mono-cell layer after birth due to Reelin (Reln)
secretion by granule cells and precursors [195]. Stellate, basket and Golgi cells are derived postnatally,
in which stellate and basket cells migrate from the cerebellar nucleus across the granule and Purkinje
cell layer into the molecular layer [195, 205].

The cellular-heterogeneity of the cerebellum partially reflects the heterogeneity of MB because the
cell of origin, including cell type and differentiation stage, is thought to be different or only partly
overlapping between four MB consensus molecular subgroups [193]. However, numerous additional
aspects contribute to the MB subgroups, which will be introduced in the following section.

5.1.3 Subgroups in medulloblastoma
Four different histological types are described for MB, based on histo-pathological patterns observed
in H&E-stained tissue sections (hematoxylin and eosin): classic, desmoplastic (or nodular), large
cell/anaplastic (LCA), and MB with extensive nodularity (MBEN) [206]. The classic histology type is
the most common. Patients with LCA have a poor prognosis when this phenotype is not restricted to a
small part of the tumour. Tumours with MBEN histology mainly occur in infants and have an excellent
prognosis.

High-throughput cDNA microarray technologies have allowed the characterisation of medullo-
blastoma beyond histology. During these first attempts to define molecular subgroups in MB based on
gene expression profiling using microarrays, researchers reported four, five or six molecular subgroups
[82, 207–209]. Based on these studies, an international joint venture of researchers defined a consensus
of four subgroups: WNT, SHH, Group 3, and Group 4 [210]. These four subgroups show distinct clinical
and molecular features including CNVs, chromosomal rearrangements, mutations, DNA methylation,
and gene expression (Table 5.1, 5.2) [83, 193].

WNT subgroup. 10% of medulloblastomas belong to the WNT subgroup, the rarest MB subgroup.
WNT MBs have an excellent outcome with a five-year survival > 95% in paediatric cases. Progenitor
cells in the lower rhombic lip of the developing brainstem are supposed to be the origin of WNT
tumours. The �-catenin encoding proto-oncogene CTNNB1 is mutated in 90% of WNT MBs, which
causes activation of the Wnt pathway as reflected by the gene expression profile of this subgroup. The
Wnt pathway transcriptionally activates downstream targets that promote the proliferation of the
tumour cells. Additional recurrent mutations are far less frequent (DDX3X (36%), SMARCA4 (19%),
TP53 (14%), CSNK2B (14%), PIK3CA (11%), and EPHA7 (8%). Chromosomal aberrations in WNT MBs
are typically limited to monosomy 6 in 80%–85% of cases [83, 193].
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Table 5.1: Clinical features of medulloblastoma subgroups.

Subgroups WNT SHH Group 3 Group 4
% of cases 10 30 25 35

Age at diagnosis Children, adults Infants, children,
adults

infants, children infants, children

Histology Classic, rarely
LCA

Classic >
desmoplastic >

LCA > MBEN

Classic, LCA Classic, rarely
LCA

Metastasis at
diagnosis (%)

5-10 15-20 40-45 35-40

Prognosis Very good Infants good,
others

intermediate

Poor intermediate

Note: Infant: 0-3 years. Children: 4-17 years. Adults: > 17 years. Table adapted from Juraschka et al. [193].
Histology information added from [83].

SHH subgroup. The SHH subgroup accounts for approximately 30% of all MBs and occurs mostly
in infants and adults. The outcome in this subgroup depends on several factors. One factor is the
patient’s age. Younger patients show a worse prognosis compared to adults. Additional factors of poor
prognosis are metastasis at diagnosis, amplification of proto-oncogene MYCN, and mutations of the
tumour suppressor TP53. Granule cell precursors of the EGL are thought to be the cell of origin for this
subgroup [193]. SHH MBs typically carry germline mutations, somatic mutations, or copy number
alterations that activate tumour-driving Shh signalling and, therefore, express a strong Shh signalling
signature. The activated Shh signalling promotes the proliferation of SHH tumours [83, 193]. This Shh
signature includes the upregulation of several TFs such as Shh-signalling-involved GLI1/GLI2 [82],
the Shh-signalling-associated ATOH1 [203], and the Shh-target SOX2 [211]. Germline mutated genes
include PTCH1, SUFU, and SMO. Two recurrently deleted or mutated negative regulators of the Shh
pathway are PTCH1 (43%) and SUFU (10%). Additionally, the Shh pathway and target genes are hit
by activating mutations (SMO - 9%) or amplification (GLI1 or GLI2 - 9%; MYCN - 7%). Amplification
of the MYCN paralog MYCL is rarely detected in SHH tumours. Alterations in TP53 and PI3K-AKT
pathway occur in 9.4% and 10% of SHH MBs, respectively, which are also involved in tumorigenesis
of this subgroup [193]. The activation of the PI3K-AKT is predominantly observed among adult
SHH cases [212]. The promoter of telomerase reverse transcriptase (TERT) is mutated in 39% of all
SHH MB cases. Loss of chromosome 9q (including PTCH1) and 10q (including SUFU) are the most
recurrent cytogenetic events in the SHH subgroup [83, 193, 213]. Additionally, SHH tumours show
differences that are related to age groups (infants, children, and adults) and associated with distinct
gene expression and genomic profiles as well as clinical features [212, 214].

Group 3 subgroup. Group 3 tumours account for 25% of all MB cases. This subgroup is associated
with the worst prognosis among all MB subgroups (five-year survival ∑ 60%) and frequent metastasis
at diagnosis (40%–45%). Group 3 tumours are thought to derive from neural stem cells. Group 3 and
Group 4 are less defined by a specific activated pathway that drives the tumourigenesis such as in the
subgroups WNT and SHH. However, MYC amplifications are recurrent in Group 3 MBs (17%) and are
frequently associated with PVT1-MYC fusions [193]. The PVT1-MYC fusion causes an auto-activation
of MYC through an MYC binding site in the PVT1 promoter [213]. The subset of MYC-driven tumours
shows the worst survival in MB and a distinct expression profile among Group 3 MB [208]. Besides
an MYC signature, Group 3 MBs express a photoreceptor signature that is potentially induced via the
upregulation of the TFs NRL and CRX [83, 207]; both TFs are involved in photoreceptor differentiation
[215]. Recurrent SNVs can be found only in 5% of the Group 3 tumours comprising single or multiple
mutations among SMARCA4, KBTBD4, CTDNEP1, and KMT2D. MYCN and OTX2 amplification are
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Table 5.2: Molecular features of medulloblastoma subgroups.

Subgroups WNT SHH Group 3 Group 4
Proposed cell of

origin
Progenitor cells

in the lower
rhombic lip

Granule
precursors of the
external granule

layer

neural stem cells Unknown

Recurrent gene
amplification

- MYCN, GLI1 or
GLI2

MYC, MYCN,
OTX2

SNCAIP, MYCN,
OTX2, CDK6

Recurrent SNVs CTNNB1, DDX3X,
SMARCA4,TP53

PTCH1, TERT,
SUFU, SMO,

TP53

SMARCA4,
KBTBD4,

CTDNEP1,
KMT2D

KDM6A, ZMYM3,
KMT2C, KBTBD4

Cytogenetic
events (Gain)

- 3q, 9p 1q, 7, 18 7, 18q

Cytogenetic
events (Loss)

6 9q, 10q, 17q 8, 10q, 11, 16q 8, 11p, X

Cytogenetic
events (others)

- - i17q i17q

Other recurrent
events

- - GFI1 and GFI1B
enhancer
hijacking

PRDM6 GFI1,
and GFI1B
enhancer
hijacking

Expression
signature

Wnt-signalling Shh-signalling MYC and
photoreceptor

signature

Neuronal
signature

Note: Table adapted from Juraschka et al. [193]. Expression signature information derived from [83].

identified in only 5% and 3% of cases, respectively. More frequent than SNVs is the upregulation
of the oncogenes GFI1 and GFI1B through enhancer hijacking in Group 3 tumours (15%–20%) and
also a potential driver event. In Group 3 and Group 4 tumours, chromosomal rearrangements are
far more frequent compared to WNT and SHH tumours. In Group 3, chromosomal changes include
isochromosome 17q and loss of chromosomes 8, 10q, and 16q and gain of 1q, 7, and 18 [83, 193].

Group 4 subgroup. 35%-40% of medulloblastoma are classified as Group 4 and mainly diagnosed
during childhood and adolescence. This subgroup shows an intermediate outcome with frequent meta-
stasis at diagnosis (35%–40%) [193]. Overall, Group 4 MBs express a neuronal/neuronal-developmental
profile. The cell of origin for Group 4 MB is not clear. Somatic mutations are rare events in Group
4, whereby KDM6A, ZMYM3, KMT2C, and KBTBD4 are the most recurrent mutated genes (6%-9%
of Group 4 cases). GFI1 and GFI1B overexpression due to enhancer hijacking as well as MYCN and
OTX2 amplification are recurrent events that drive tumorigenesis in Group 4 and in Group 3 MB.
Additionally, CDK6 amplification (6%) and enhancer hijacking-induced PRDM6 overexpression (17%)
can frequently be found in this subgroup [193]. The gain of chromosomes 7 and 18q, isochromosome
17q, and loss of 8q, 8p, 11p, and X are common cytogenetic events in this subgroup[83, 193].

The four subgroups of medulloblastoma are accepted consensus clinical groups and recognised
in the 2016 WHO classification of tumours of the central nervous system [193, 210]. Currently, gene
expression and DNA methylation data are applied for subgroup classification in MB [193, 216, 217].
Besides the genetic, molecular, and clinical characteristics of the four subgroups, the implication of
enhancers in the regulation of subgroup-specific gene expression was also studied in MB.
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5.1.4 Enhancer-mediated gene regulation in medulloblastoma
Enhancers are cis-regulatory elements that are essential for tissue-/cell-specific expression. Enhancers
regulate gene transcription via interaction with nearby promoters facilitated by DNA loops (see Section
2.2). In the framework of ICGC PedBrain, Lin et al. inferred enhancer-mediated GRNs to gain insights
into MB subgroup-specific transcription [218].

Lin et al. analysed RNA-seq and H3K27ac ChIP-Seq data of 28 primary MB tumours. Here, we
provided the RNA-seq data. H3K27ac histone marks were used to define active enhancer regions in MB,
while excluding H3K27ac peaks close to transcription start sites ( ±1 kb around the TSS). The H3K27ac
signals in the enhancer regions were then used to define subgroup-specific active enhancers as well as
common ones across subgroups. RNA-seq data were utilised to calculate gene expression values and
to identify subgroup-specifically expressed genes. The sets of subgroup-specifically active enhancers
and expressed genes were matched to infer putative enhancer targets. When gene and enhancer were
located in the same TAD and when enhancer activity and gene expression were significantly positively
correlated, a gene was assigned to an enhancer as a target, leading to infer a enhancer-mediated gene
regulatory network. These inferred GRN contained subgroup-specifically expressed TFs as regulators
and their putative target coding genes. Assignments between TFs and putative target genes were
created using enhancers as mediators. When an enhancer showed enrichment of binding sites for a
certain TF, the target genes of the enhancer were defined as targets of the TF. The regulatory impact
of a TF was estimated based on the outdegree (the number of targets). These data were also used to
identify TFs that showed binding site enrichment in WNT-, SHH-, Group 3-, Group 4-, WNT-SHH-,
or Group3-Group4-specific enhancers [218]. Chromatin interactions were validated by 4C-seq for a
subset of enhancer-gene assignments (a sequencing protocol that allows identification of chromatin
interactions of a targeted genome region) [218, 219]. Herby, the authors confirmed the interaction of a
Group 3-specific enhancer with the promoter of TGFBR1 [218].

Furthermore, Lin et al. defined subgroup-specific super-enhancer. Super-enhancers are broad
regions of spatially co-localised enhancer domains that have been shown to regulate genes involved in
oncogenesis, maintenance of tumour cell identity, and cell-type-specific functions [218]. Overall, 92
TFs were associated with subgroup-specific super-enhancers. Among the super-enhancer associated
TFs was also LMX1A that regulates the cell-fate of cells in the upper rhombic lip and is involved in the
development of the cerebellum [218]. Additionally, Lmx1a is expressed in the NTZ of the cerebellum
during mouse development. Lin et al. reported that LMX1A is specifically upregulated in Group 4 and,
therefore, emphasised that LMX1A is a master regulator in Group 4 tumours and that cells of the upper
rhombic lip and the NTZ could be the cell-of-origin of Group 4 tumours [218].

5.1.5 Kinase activity profiles in medulloblastoma
Most MB studies concentrated on the characterisation and profiling of mutations, cytogenetics, gene
expression, and DNA methylation. However, the activity of kinases in MB was also studied. Zomerman
et al. [220] profiled the kinase activity in MB using PamChips (peptide microarrays that allow profiling
of tyrosine and serine/threonine kinases activity). The authors identified two major protein-signalling
clusters in 50 MB samples including 13 SHH, 16 Group 3, and 19 Group 4 tumours (this paper did
not include WNT MBs). Cluster-1 was associated with an MYC-like kinase activity profile similar
to a kinase activity in hTERT immortalized retinal pigmented epithelial (RPE-1) cells when MYC or
MYCN was overexpressed. Cluster 1 was active in all SHH samples without exception, in most Group 3,
and in a small fraction of Group 4 tumours. Cluster-2 was associated with a neuronal differentiation
expression signature and active in most Group 4 and in a minority of Group 3 MBs. Additional to the
PamChips, the authors applied expression arrays for 48 MB samples of their cohort and identified two
gene signatures that underlie protein-signalling cluster-1 and -2, respectively. Gene set enrichment
analyses revealed that genes upregulated in cluster-1 vs. -2 samples were functionally associated with
protein synthesis.
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The so-far summarised aspects of MB concentrated on the four subgroups of MB. However, research-
ers started to investigate MB’s molecular heterogeneity that goes beyond the four subgroups.

5.1.6 Subtypes within the four main MB subgroups
Three more recent publications by Cavalli et al., Northcott et al., and Schwalbe et al. addressed
molecular subtypes of medulloblastoma beyond the four consensus subgroups by using different
molecular data types and clustering approaches [221–223]. To avoid confusion between terms, from
here on, the term subgroup always refers to the four main consensus subgroups (WNT, SHH, Group
3, and Group 4), whereas the term subtype addresses molecular subsets of MB within consensus
subgroups [221–223].

Schwalbe et al. used the most variable 450K DNA methylation array probes across 428 MB samples
and non-negative matrix factorisation (NMF is described in [89]) for sample clustering. The authors
identified six subtypes that split each of the subgroups SHH, Group 3, and Group 4 into two subtypes,
whereas the WNT subgroup remained integer as one group [223].

Since the heterogeneity of the SHH subgroup reflected by different age groups was already described,
Northcott et al. concentrated on the identification of subtypes within Group 3 and Group 4 tumours
(n=740) using 450K DNA methylation arrays. The clustering was done based on the most variable
methylation array probes that were reduced to a 2D space using t-SNE. The algorithm DBSCAN
(Density-Based Spatial Clustering of Applications with Noise, [224]) was applied to the reduced feature
space to cluster the samples. Eight subtypes were identified: four subtypes mostly represented Group
4 MBs, three subtypes related to Group 3 MBs, and one subtype included both Group 3 and Group 4
MBs with high proportions [222]. Thus, Northcott et al. identified a higher number of subtypes for
Group 4 MBs than Schwalbe et al..

Cavalli et al. used a different approach compared to Schwalbe et al. and Northcott et al. to define
subtypes in a cohort of 763 MB samples [221]. The authors integrated both DNA methylation and gene
expression data from microarrays, and each subgroup was independently clustered. The clustering
was done by applying the Similar Network Fusion algorithm to calculate a similarity matrix between
samples, followed by spectral clustering (see Wang et al. for further information about the Similar
Network Fusion algorithm and subsequent spectral clustering [225]). Cavalli and colleagues identified
two subtypes in WNT, four subtypes in SHH, three subtypes in Group 3, and three subtypes in Group
4 tumours. Interestingly, the authors reported that DNA methylation and gene expression provided
complementary information for the identification of the subtypes. The analysis of the expression
profiles of these subtypes was based on the most variable genes and not differential gene expression
[221].

The subtypes of Cavalli et al. will be introduced in more detail below, since they provide the most
comprehensive analysis. Schwalbe et al. did not provide data allowing a direct comparison of external
data with their reported subtypes, and Northcott et al. did not include SHH MB in the subtype analysis
[222, 223].

Cavalli et al. identified two WNT subtypes. The subtype WNT↵ that was characterized by monosomy
6 in 98% of the tumours was found more frequently in younger patients, whereas WNT� also occurred
in adults (Table 5.3) [193, 221].

The SHH subgroup was split into four subtypes (Table 5.3). As mentioned above, SHH tumours show
different molecular characteristics among the age groups infants, children, and adults. The four SHH
subtypes reflect this age distribution. However, infant cases were split into the subtypes SHH� and
SHH�, both associated with a neural-development expression signature. In comparison to SHH�,
SHH� tumours are more metastatic, have a worse prognosis, and show frequent focal deletion of
tumour suppressor PTEN (25%). The subtype SHH↵ occurs in children and shows recurrent TP53
mutations as well as MYCN and GLI2 amplifications. Subtype SHH� represents adult SHH cases and is
associated with TERT promoter mutations and Shh signalling [193, 221].
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Table 5.3: Summary of molecular subtype in MB defined by Cavalli et la. [221].
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Subgroup Group 3 was subdivided into three subtypes (Table 5.3). Group 3↵ tumours occur in
infants and children. These tumours are associated with recurrent chromosome 8, 10, and 11 loss,
chromosome 7 gain, and express a stronger photoreceptor signature compared to the remaining Group
3 subtypes. This subtype shows the highest frequency of metastasis (43.3%) but the best prognosis
among Group 3 subtypes (66.2%). The Group 3� subtype appears in children and is associated
with GFI1/GFI1B overexpression, DDX31 loss, OTX2 gain, and a neuronal differentiation expression
signature. Group 3� tumours occur in infants and children, are frequently metastatic, and show the
worst 5 years survival (41.9%) among MB subtypes. Here, frequent MYC amplification is probably the
reason for the bad outcome [193, 221].

Three Group 4 subtypes have been defined. They occur in infants and children and have a similar
outcome (Table 5.3). Subtype Group 4↵ shows MYCN and CDK6 amplification and a neuronal devel-
opment expression signature. Subtype Group 4� associates with SNCAIP duplications and a MAPK
and FGF signalling signature. Group 4� tumours show frequent CDK6 amplification and expression
signatures related to neuronal development, photoreceptors, and the PI3K pathway [193, 221].

In summary, different clustering approaches and data types have been used to identify molecular
subtypes in MB [221–223] . Among these publications, Cavalli et al. identified distinct subtypes within
each of the subgroups using arrays-based data associated with specific genomic aberrations and
expression signatures.

5.2 Study: Gene regulatory networks and characterisation
of lnc genes in medulloblastoma

5.2.1 Motivation

The consensus is that MB represents a heterogeneous collection of four distinct molecular tumour
subgroups WNT, SHH, Group 3, and Group 4. The underlying genomic landscape of the subgroups is
well studied. However, the current state of research of the MB transcriptome still leaves some aspects
unstudied and, thus, has to be further refined. MB bulk transcriptome studies have been mainly based
on the microarray technology and, therefore, are bound to the limitations of this technology. Also, the
MB transcriptome was mostly studied based on differentially expressed coding genes since lnc genes
are poorly covered on microarrays [82, 207, 208, 212, 214]. Transcription factors (TFs) that mainly
contribute to subgroup-specific expression signatures are known for WNT and SHH tumours, due to
associations of TFs with the activated pathways, and partially for Group 3 MBs. The TFs for Group 3
include MYC and potentially CRX and NRL. However, TFs like CRX and NRL are not functionally studied
in MB leaving their regulatory impact unanswered. The regulation of Group 4-specific expression
signature is not known. The enhancer-mediated GRN that was studied in MB covers only one aspect of
gene regulation and disregards promoter-mediated gene regulation. Despite the consensus of the four
main MB subgroups, the different number of reported potential subgroups before the consensus and
the described intra-subgroup heterogeneity of SHH and Group 3 tumours indicate that the subgroups
probably do not cover the whole complexity of MB. Molecular complexity that exceeds the subgroups
has been studied by the identification of subtypes within the main subgroups. However, the analyses
of these subtypes based mostly on microarrays. Additionally, the sets of subtype-specifically expressed
genes and the GRNs underlying this subtype-specific expression remain to be investigated.

A transcriptome-centred study that uses deep RNA-seq data from a sufficiently large, informative
MB cohort would shed light on the MB transcriptome.
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5.2.2 Overview and research scope
We set out to perform a comprehensive analysis of the medulloblastoma transcriptome using RNA-seq
data. The data foundation is an RNA-seq cohort comprising 164 MB and eight normal cerebellum
samples that were generated and analysed within the framework of ICGC PedBrain in the laboratory
of "Gene Regulation & System Biology of Cancer" located at the Max Planck Institute for Molecular
Genetics.

In order to gain a deeper understanding of the medulloblastoma transcriptome, three aspects will
be considered. The first aspect covers the dissection of the transcriptional heterogeneity beyond the
known the four main MB subgroups since a subdivision of subgroups into molecular subclusters is
expected to provide further insights into MB biology. (Subsets of MB within the four main subgroups
identified by us will be called subclusters to distinguish our work from already published subtypes
by using different terms.) This aspect is addressed via identifying molecular subclusters within each
subgroup (intra-subgroup) by applying an unsupervised consensus clustering approach. Further, the
subgroups and newly identified subclusters are characterised by differentially expressed coding as
well as lnc genes, annotated for functional attributes (including biological processes and pathways)
inferred by overrepresentation analysis.

The second aspect studied here focuses on the analysis of the transcriptional regulation networks
that contribute to the subgroups and subclusters. Here, GRNs underlying the subgroups and sub-
clusters are directly inferred from gene expression data. These GRNs are used to identify transcription
factors that mainly contribute to subgroup- and subcluster-specific gene expression depicting the
landscape of putative key regulatory genes in MB. The machine learning algorithm GENIE3 (see Section
3.5.1) is applied here to infer GRNs since GENIE3 learns regulatory links between TFs and putative
targets directly from deep gene expression data, which provides an excellent basis for the inference of
GRNs. The impact of individual TFs on gene expression is evaluated using the inferred GRNs and the
previously proposed NIS (see Section 3.5.2).

The third aspect described in this thesis addresses the characterisation of lnc genes that are differen-
tially expressed between MB subgroups and subclusters to better understand the implication of lnc
genes in MB. Since the function of the majority of lnc genes is unknown and lnc genes have been rarely
studied in MB (see Section 2.5 and 2.5), differentially expressed lnc genes are characterised in more
details by integrating information streaming from several data resources, including the classification
of lnc genes into the different lncRNAs categories, namely divergent, antisense, and intergenic as well
as the annotation of tissue-specific expression patterns in brain and cerebellum. The tissue-related
expression pattern may provide insights into potential developmental functions of lnc genes, which
is of interest with regards to the embryonic origin of MB. The evaluation of expression correlation
between divergent, antisense, and intergenic lnc genes and nearby coding genes informs on either
the independent or co-regulation of lnc genes and their neighbouring coding genes. Following the
guilty-by-association principle, this is used to infer potential functions of lnc genes from functional
annotations of matched protein coding genes. Additionally, survival analyses will be performed to
identify lnc genes whose expression is prognostic of OS in MB.
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5.3 Results
The results of the conducted MB study are presented in three parts. The first part (Section 5.3.1)
summarises the analysed cohort, the assignment of the MB samples to the four main subgroups, and
the identification of the subclusters within the main subgroups. In the second part, the expression
profiles of the main subgroups and identified subclusters as well as the inferred GRNs are described
(Section 5.3.2). The characterisation of the differentially expressed lnc genes in MB is presented in the
third part (Section 5.3.3).

5.3.1 Subgroup classification and subcluster identification
5.3.1.1 Medulloblastoma cohort overview and main subgroup classification

The RNA-seq (ICGC PedBrain) cohort comprised 164 MB samples and eight controls of the cerebellum
(three postnatal and five prenatal samples; Figure 5.2.a). The cohort included 15 WNT, 47 SHH, 39
Group 3, and 63 Group 4 tumours. Here, the frequency of the four subgroups and the age distribution
of the patients followed the expected clinical patterns (Figure 5.2.a-b, Section 5.1.3).
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Figure 5.2: ICGC PedBrain MB RNA-seq cohort summary. a) Pie chart visualises the number of MB
samples per subgroup and pre- (pren.) and postnatal (postn.) cerebellum (CB) controls. b)
Bar plots show the age group distribution in subgroups.

The assignments of the four subgroups were derived from DNA methylation-based classification
and provided by collaboration partners of the ICGC PedBrain project [222]. The DNA methylation-
based classification was initially used to analyse the subgroups since this type of classification was
chosen as the standard approach in the PedBrain project design. However, DNA methylation- and
RNA-seq-based MB classification were compared to assess whether both data types were equally
powerful for identifying the four MB subgroups. Using the RNA-seq data and assuming four clusters,
we clustered the 164 MB samples (unsupervised) by considering the 6436 most variable coding genes
and applying the algorithm NMF (Method Section 5.4.4.1). The consensus matrix of the NMF-based
clustering indicated high stability of subgroup assignment for the clustered samples (Figure 5.3.a). The
RNA-seq- and DNA methylation-based classification showed overall a high agreement (Figure 5.3.b).
Few samples of Group 3 and Group 4 were interchanged in the RNA-seq-based clustering. However,
some cases from these two subgroups are sometimes difficult to classify, as mentioned above (Section
5.1.6). Taken together, these results indicated that DNA methylation-based and RNA-seq-seq give
similar classification results, which justifies using DNA methylation for subgroup classification.
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Figure 5.3: Comparison of RNA-seq-based unsupervised clustering and DNA methylation-based clas-
sification of the PedBrain MB cohort. a) Consensus matrix of the NMF clustering on
RNA-seq-derived coding genes expression values. Heatmap shows the frequency of two
MB samples falling into the same cluster over 60 NMF iterations. b) Sankey plot visualises
the agreement between RNA-seq-based NMF clustering (panel a) and methylation-based
classification.

5.3.1.2 Evaluation of the identified intra-subgroup subcluster

We identified subclusters within subgroups by analysing each subgroup independently. The clustering
of the MB samples into subclusters included two steps (Method section 5.4.4.2). In the first step, we
performed unsupervised consensus-based clustering using the most variable gene per subgroup. The
consensus clustering was based on a consensus distance matrix derived from the mean pair-wise
correlation between samples across subsamples of the most variable genes. Via this approach, we
identified three subclusters in each of the main MB subgroups SHH, Group 3 and 4 (Figure 5.4.a-c).
The small sample size of the WNT subgroup (15 cases) did not allow subcluster identification. Five
samples of Group 4 could not be placed into a subcluster at this step, as indicated by the dendrogram
(Figure 5.4.c). In the second step, we identified genes that showed differential expression between
the subclusters of one subgroup by analysing each subgroup independently (results of the DEGA are
summarised the following Section 5.3.2.1). These genes were used for hierarchical clustering of the
samples to identify subclusters within a subgroup (semi-supervised clustering). Six tumour samples
changed the cluster between the unsupervised and semi-supervised clustering, namely three SHH and
three Group 4 samples (Figure 5.4.d-f). Measuring the goodness of the clustering for these samples
by calculating the silhouette scores of the semi-supervised clustering showed that three samples had
a negative silhouette score (MB179, MB236, and MB91) and two samples a low silhouette score <0.1
(MB265 and MB246) (a score of +1 would indicate a perfect assignment to a cluster). The negative
and low silhouette scores indicated a difficult clustering of these samples. Therefore, these samples
changed the cluster assignment between unsupervised and semi-supervised clustering. Additionally,
five Group 4 samples without cluster assignment in the unsupervised clustering could be related to
one cluster in the semi-supervised clustering showing a silhouette score between 0.07 and 0.29 (Figure
5.4.d-f). The expression profile of Group 4 sample MB177 did not match one of the three clusters and
remained in the cluster that was assigned by the unsupervised clustering (Figure 5.4.f).

The three subclusters in each of the subgroups SHH, Group 3 and Group 4 were respectively called
c1, c2 and c3 (Figure 5.5.a). SHH-c1 was a subset of SSH-c3 (Figure 5.5.a, 5.4.d). Here, genes upreg-
ulated in SHH-c3 compared to SHH-c2 were also upregulated in SHH-c1, but SHH-c1 MBs showed
a distinct gene expression pattern compared to SHH-c2 and SHH-c3 (Figure 5.4.d). To put it briefly,

66



5.3 Results

Semi-supervised final clusteringUnsupervised consensus clustering

Pre-
clustering

Final
clustering

c)

* *****

b)

a)

**** * *

Pre-
clustering

Final
clustering

Pre-
clustering

Final
clustering

Pre-
clustering

Pre-
clustering

Pre-
clustering

f)

e)

d)

Grp3�c1 Grp3�c2 Grp3�c3

Grp4�c1 Grp4�c2 Grp4�c3

SHH�c1 SHH�c2 SHH�c3

Figure 5.4: Identification of subclusters within subgroups in the PedBrain MB cohort. Consensus
clustering was performed using coding genes. a, b, c) Heatmaps show that most variable
genes that were used for consensus-based pre-clustering per subgroup: a) 3288 genes ,b)
4193 genes, c) 2633 genes. Clustering results are indicated above as colour code. d, e, f )
Heatmaps show subcluster-specifically upregulated genes within each subgroup: d) 1075
genes , e) 981 genes, f) 431 genes). Final clustering and pre-clustering results are indicated
above the heatmap. a, d) SHH tumours. a, d) Group 3 tumours. a, d) Group 4 tumours.
Grey-marked samples did not fit into the pre-clusters. Asterisk-marked MB samples that
changed the subclusters between pre- and final clustering.
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the expression profile of the subclusters SHH-c2 and SHH-c1 was different to subcluster SHH-c3,
but the expression of subcluster SHH-c1 was different compared to subcluster SHH-c2 and SHH-c2.
Here, SHH-c1 and SHH-c3 represented non-adult cases, whereas SHH-c2 represented adult SHH MB
samples (Figure 5.5.b). Among the Group 3 subclusters, Grp3-c3 showed the highest fraction of infant
cases; Grp3-c1 and Grp3-c2 were more frequent in children (Figure 5.5.c). The age groups were evenly
distributed across Group 4 subclusters (Figure 5.5.d).

The RNA-seq-based MB subclusters that we identified were compared to intra-subgroup subtypes
published by Northcott et al. and Cavalli et al. (Figure 5.6) [221, 222]. To compare to Northcott et al.,
the ICGC PedBrain cohort was used. The comparison to Cavalli et al. was done using the microarray
cohort from Cavalli et al.. This cohort was used in order to take advantage of the larger sample size and
evaluate the stability of the identified subclusters on an external cohort.

We performed semi-supervised clustering to classify samples of the Cavalli et al. cohort into our RNA-
seq-based subclusters, which was applied in as subgroup-wise way: subcluster-specifically expressed
genes that we identified were mapped to the microarray expression probes, and NMF was performed
to classify samples into three subclusters per main MB subgroup SHH, Group 3, and Group 4 (see
Methods section 5.4.4.2).

Performing a Chi-squared test showed a significant overall agreement between our RNA-seq-based
subclusters and the published subtypes (p < 2e °15 , Figure 5.6). Nevertheless, as shown in the Sankey
diagrams in Figure 5.6, our RNA-seq-based subclusters showed a higher agreement with Cavalli et
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Figure 5.5: Identified subclusters in SHH, Group 3, Group 4 MBs. a) Trees show RNA-seq-based de
novo identified subclusters on the PedBrain MB cohort. b-d)Age distribution in subclusters.
Bars show the percentage of MB samples that belong to one of the three age groups per
subcluster. b) SHH subclusters. c) Group 3 subclusters. d) Group 4 subclusters. Age groups
relate to infant, child, and adult, as indicated by the caption. Numbers above the bars show
the percentage (%) and absolute number (n) of samples.
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al. than with the Northcott study (Figure 5.6). Compared to Northcott et al., the subcluster Grp3-c2,
identified by us, did not match with any of the reported subtypes. The subcluster Grp3-c3 split into the
published subtypes III and IV, and the subcluster Grp4-c2 split into the published subtypes V and VI as
defined by Northcott et al. (Figure 5.6.a). Northcott et al. have shown that their subtypes III and IV
as well as V and VI are neighbouring subtypes indicating that these subtypes could be a subset of the
Grp3-c3 and Grp4-c2 subcluster that we identified, respectively [222].

Subtypes published by Cavalli et al. within the main subgroups Group 3 and Group 4 showed overall
a high concordance with our RNA-seq-based subclusters. The subcluster Grp3-c3 showed the highest
frequency of infants among subclusters within the main subgroup Group 3. The subcluster Grp3-c3
matched with the published subtype Group 3↵ that was also frequently found in infant cases [221].
Cavalli et al. reported frequent MYC amplifications in subtype Group 3� [221]. We found frequent
MYC amplifications also in subcluster Grp3-c3 that matched with the published subtype Group 3�
(Figure 5.6.b and 5.7.c). Frequent CDK6 amplifications that were reported for the subtypes Group
4� and Group 4� were also present in the matching subclusters Grp4-c1 and Grp4-c3, respectively.
We could observe MYCN copy number gains that were reported for the published subtype Group 4↵
also in our identified subcluster Grp4-c2 that matched this subtype (Figure 5.6.b and 5.7.d-e) [221].
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Figure 5.6: Comparison of identified intra-subgroup subclusters to previously published subtype defin-
ition. a) Sankey plot shows the comparison between RNA-seq-based de novo subclusters
and published subtypes of Group 3 and 4 on the PedBrain MB cohort. Subtype assignments
were taken from Northcott et al. [222]. b) Sankey plot shows the comparison between
RNA-seq-based de novo subclusters and published subtypes of SHH, Group 3, and Group
4 on the Cavalli et al. cohort. Subtype assignments were taken from Cavalli et al. [221].
Subcluster assignments were achieved via semi-supervised clustering (see Methods section
5.4.4.2). The selection of subtype characteristics, as summarised above (Section 5.1.6), are
shown in brackets. The number of samples is indicated in brackets.
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Compared to the subclusters of the main subgroups Group 3 and Group 4, a higher discordance was
observed between our subclusters and Cavalli’s subtypes within the main subgroup SHH (Figure 5.6.b).
The two published subtypes SHH↵ and SHH�, which comprised infant SHH tumours, of the Cavalli
study merged mainly into the subcluster SHH-c1 that we identified (Figure 5.6). Since subcluster
SHH-c1 showed the highest fraction of infant cases compared to the remaining two SHH subclusters
(Figure 5.5.b), the age distribution agreed between subcluster SHH-c1 and the matching published
subtypes SHH↵ and SHH�. The low number of ten SHH-c1 cases suggested that the sample size of our
RNA-seq cohort was probably too small to identify more fine-grain molecular clusters among SHH-c1
cases. The adulthood-related subtype SHH� and the childhood-related subtype SHH↵ by Cavalli et al.
matched with our identified subcluster SSH-c2 and SSH-c3, respectively. Here, the age distributions
of both subclusters agreed with their matching published subtypes (Figure 5.6.b and 5.5.b). Cavalli
et al. reported that amplifications of MYCN and GLI2 were more frequent in SHH↵ compared to the
remaining subtypes within the main subgroup SHH [221]. We found a similar pattern for subcluster
SHH-c3 that matched with the subtype SHH↵ (Figure 5.6.b and 5.7.a-b).

The high agreement between the RNA-seq-based subclusters that we identified and subtypes of
Cavalli et al. showed that RNA-seq and the applied consensus clustering method could be used to
identify subclusters within the main subgroups in MB. Additionally, the comparison suggests that
the subclusters that we identified and the subtypes of the Cavalli study probably describe the same
molecular subsets within the main MB subgroups, considering that Cavalli et al. identified two
subtypes for infant SHH MBs. In contrast, we identified one subcluster for infant SHH MBs. The
four main subgroups and the identified subclusters were the basis for further analyses of the MB
transcriptome that we performed.
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Figure 5.7: CNVs in subclusters. Box plots show distribution of gene copy numbers in subclusters. Axis
is on log2-scale.

5.3.2 Gene expression profiles and gene regulatory networks in
medulloblastoma

5.3.2.1 Summary of di�erential gene expression in subgroups and subclusters

We performed a differential gene expression analysis based on fitting a GLM assuming an NB distribu-
tion and using a log-likelihood ratio test (Method Section 5.4.4.3, see Section 3.3.2). This procedure
allows the detection of differential gene expression between several groups similar to an analysis of
variance (ANOVA). Four independent DGEAs were performed. Three DGEAs related to the subgroup-
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wise comparison between the subclusters within the main subgroups SHH, Group 3 and Group 4. One
DEGA related to the comparison between the four MB subgroups. The DEGAs sought to identify genes
that were specifically up- or downregulated in one subgroup or one subcluster among the subclusters
of the same subgroup. The differential gene expression analysis between the four subgroups resulted
in 1790 up- and 931 downregulated coding genes and 239 up- and 59 downregulated lnc genes (Figure
5.8.a; FDR ∑ 0.001, |log2(FC)| ∏ 1). Subclusters were defined by 1937 up and 775 downregulated coding
genes, and 221 up- and 68 downregulated lnc genes (Figure 5.8.a; FDR ∑ 0.01, |log2(FC)| ∏ 1). Notably,
1192 coding and 163 lnc genes showed only among subclusters significant differential expression
with the chosen cutoffs (Figure 5.8.b-c), indicating that the subclusters provide information about the
transcriptional landscape in MB in addition to the subgroups.
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Figure 5.8: Identified differentially expressed genes in MB subgroups and subclusters. a) Bar plots
show the number of differentially expressed genes between subgroups and subclusters of
one subgroup. Left: subgroup and -cluster specifically upregulated genes. Right: subgroup
and -cluster specifically downregulated genes. Lnc and coding genes are separately shown.
b) Venn diagram shows the set of lnc genes that were differentially expressed in subgroups
and subclusters or exclusively. c) Venn diagram shows the set of coding genes that were
differentially expressed in subgroups and subclusters or exclusively.

The just-presented sets of differentially expressed coding and lnc genes formed the basis for dis-
secting the transcriptional heterogeneity associated with subclusters and subgroups in MB. Thus, the
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following presented analyses and results mainly relate to these differentially expressed genes. Due to
the limited functional annotation of lnc genes, functional enrichments were based on coding genes.
The identification of GRNs was among these analyses.

5.3.2.2 Inference and evaluation of the gene regulatory networks

We inferred four co-expression-based gene regulatory networks. These four GRNs represent TF-gene
interactions among genes and TFs that were differentially expressed between the main subgroups
or between subclusters within the subgroups SHH, Group 3, or Group 4. The introduced algorithm
GENIE3 (Section 5.4.5) was applied to infer these GRNs from RNA-seq-based gene expression. Lnc and
coding genes were considered as putative targets in the inferred GRNs of subgroups and subclusters.
To select only strong and potentially meaningful associations between TFs and genes, we determined
a strict cutoff for the GENIE3-provided weights of TF-gene interactions. The cutoff selection was based
on a GRN fitting score, which was defined by the ratio between the enrichment of TFBS in promoters
of predicted TF targets and the network density, which is the inverse of the sparsity (Method section
5.4.5). This score was chosen in order to obtain a GRN that shows a high TFBS enrichment over a high
sparsity, as exemplarily shown for the GRN in the subgroup (Figure 5.9.a-c). The 0.997475, 0.984, 0.99,
and 0.986 percentile of GENIE3 interaction weights were chosen as cutoff for the GRN of the MB main
subgroups and of the subclusters within SHH, Group 3 and Group 4 MBs, respectively.
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Figure 5.9: Cutoff evaluation for interaction weights of the GRN of MB subgroups. Line graphs show
network evaluation values over the cutoff percentile of GENIE3 derived interaction weights.
a) Network density. b) Average TFBS enrichment across TFs. c) Final GRN fitting score for
cutoff evaluation (Method section 5.4.5). Chosen cutoff percentile is highlighted in bold.
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Figure 5.10: Cutoff evaluation for interaction weights of the GRN of MB subclusters. a-c) Line graphs
show GRN fitting score for over the cutoff percentile of GENIE3 derived interaction weights
(Method section 5.4.5). Chosen cutoff percentile is highlighted in bold.

Considering the four inferred GRNs collectively, we 7898 inferred putative interactions between 339
TFs as regulators and 3247 target genes comprising 2906 coding and 341 lnc genes. Here, putative in-
teractions could be inferred for 78.7% (2906/3691 genes) and 75.7% (339/448 genes) of all differentially
expressed coding and lnc genes, respectively. We evaluated the 7898 inferred TF-gene interactions
integrating previously published ChIP-seq data of HLX, LHX2 and LMX1A in primary MB samples
as well as ChIP-seq data of OTX2 and NEUROD1 in MB cell lines (Method Section 5.4.5.7) [218, 226].
Here, TF ChIP-seq peaks in promoter or enhancer regions of putative targets were used to validate
TF-gene interactions. Assignments between enhancer and putative enhancer target genes in MB were
taken from Lin et al. [218]. We performed a hypergeometric test to evaluate if the number of inferred
TF targets that are associated with a TF ChIP-seq peak could be obtained by chance, considering the
number of expressed genes as background. 67/84 predicted OTX2 targets (p=3.7e-14), 36/48 predicted
NEUROD1 targets (p=0.03), 56/75 predicted HLX targets (p=0.041), 20/20 predicted LHX2 targets
(p=0.002) and 41/43 predicted LMX1A targets (p=6.8e-08) overlap with ChIP-seq peaks in promoter or
enhancer regions. Overall, 81% (220/270 interactions) of inferred TF-gene interactions were validated
by ChIP-seq peaks for these five TFs. These results exemplify the robustness of the inferred GRNs and
suggest that the later shown GRNs in MB subgroups and subclusters allow insights into regulatory
mechanisms in MB.

In the following sections, the four inferred gene regulatory networks were visualised and utilised to
determine the TFs that showed the strongest regulatory influence on gene expression in a particular
subgroup or subcluster. Here, only positive regulation between TFs and targets was considered. The
regulatory influence of TFs within the GRNs was measured by the NIS (see Section 3.5.2) and by the
out-degree of TF nodes in the visualised GRN. The NIS integrates the number of putative TF target
genes (out-degree) and the degree of dysregulation of the targets and the TF in a particular subgroup
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or subcluster (Methods Section 5.4.5.5). Two versions of NIS plots will be presented. The first version
shows TFs that were specifically upregulated in one subgroup or subcluster. The second version con-
tains TFs specifically downregulated in one of the subgroups or subclusters. However, the NIS for these
TFs was shown for the subgroups or subclusters that do not show downregulation since only positive
regulation was considered, and TFs that were downregulated in one subgroup/subcluster could still
influence the expression in the remaining subgroups/subclusters. The NIS is shown additionally to
visualised GRN since the score allows a more straightforward interpretation of the impact of TFs on
the regulatory network than the out-degree of TF nodes visualised by the node size. The visualisation
of the GRNs allows the depiction of the network topology.

5.3.2.3 Medulloblastoma subgroups

Among the coding genes that were subgroup-specifically upregulated in WNT, SHH, Group 3 or Group
4 tumours, we detected functional enrichments that agreed with previously published data (see Section
5.1.3) (Figure 5.11.a) [83]. However, the WNT subgroup showed an enrichment for FGF signalling
(Genomatix: p = 3.02e-9; Genomatix: p = 3.02e-9;) including the developmental gene FGF8, which was
not described for this subgroup. FGF8 is expressed during development in the isthmic organiser at
the mid-/hindbrain boundary and is required to form this boundary and for cerebellum development
[196].

The GRN that we inferred for the main subgroups contained 212 TFs as regulators, 1603 target
genes (1391 coding genes and 183 lnc genes), and overall 3691 TF-gene interactions (Figure 5.11.b). A
TF-gene interaction was predicted for 55.7% (1391/2499) and 64.4% (183/284) of subgroup-specifically
expressed coding and lnc genes, respectively. The network showed six bigger subnetworks. Four
subnetworks represented subgroup-specific upregulation of TFs and genes in one of the four main
subgroups SHH, WNT, Group 3, or Group 4. Two subnetworks related to subgroup-specific downregu-
lation in SHH or WNT MBs. TFs and genes downregulated in Group 3 or Group 4 did not form clear
subnetworks. The TFs with the highest NI-scores in the subgroups WNT and SHH were associated
with the activated Wnt and Shh pathway, respectively (Figure 5.11.c). In the WNT subgroup, these TFs
included the Wnt-signalling targets RUNX2, SP5 and MSX2 ,[234–236]. In SHH MBs, Shh-signalling
associated TFs comprised the direct Shh targets GLI1 and GLI2, and the Shh-signalling collaborating
TF ATOH1, whose protein product is stabilised by Shh-signalling in MB and granule neuron progen-
itors, showed a high NIS [203, 237]. We found SOX2 in the fourth position, a TF that is known to be
Shh-dependent expressed and required for the tumour cell proliferation in SHH MB [211].

One of the subnetworks related to 117 genes/TFs that were downregulated in WNT MBs (Figure
5.11.b). This subnetwork contained the heat shock factor HSF2 [238, 239] that can be a suppressor or
promoter of cancer progression, the proto-oncogene DEK [240], and the histone deacetylase HDAC2
[241], whose knockdown decrease tumour growth in SHH MB mouse models. We evaluated the NI-
scores of these three TFs in the remaining three subgroups SHH, Group 3 and Group 4 because of the
upregulation in these subgroups compared to WNT MB, and only positive-directed gene regulation
was considered in our study. HSF2 ranked in SHH, Group 3 and Group 4, DEK ranked in SHH, and
HDAC2 ranked in SHH and Group 3 MBs among the top TFs that were downregulated in another
subgroup (Figure A.2). Interestingly, each of the three TFs was expressed at a similar level in SHH,
Group 3, and Group 4 MB and showed upregulation compared to human cerebellum controls and
WNT MB. DEK displayed the strongest upregulation (Figure A.3).

Via the performed TF ranking, we could show that the photoreceptor-differentiation-involved TFs
NRL, CRX, and RAX2 have the highest NI-scores in Group 3 MB [215, 242, 243], which agrees with the
expressed photoreceptor signature in this subgroup (5.11) [83]. These three TFs cooperatively regulate
gene expression in photoreceptors [242]. Our data suggested that this cooperation was apparently
conserved in Group 3 MB, as indicated by the close position of these three TFs in the network due
to a high number of shared targets (Figure 5.11.b, Figure 5.12). In our RNA-seq data, NRL and CRX
were clearly expressed in all Group 3 tumours, whereas RAX2 was virtually not expressed in a subset
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Figure 5.11 (preceding page): Functional enrichments and GRNs in MB subgroups. a) Enriched gene
sets in subgroup-specifically upregulated coding genes per subgroup.
The asterisk indicates enrichments that are known from the literature
[82, 83, 207, 208, 214]. Superscript 1-5 indicates the original source of
the gene sets that show an enrichment:1 KEGG, 2 Reactome, 3 WikiPath-
ways, 4 Genomatix, 5 GO Terms. FDR ∑ 0.05. b) Inferred directed GRN
in MB subgroups. Enlarged nodes represent TFs. The size of a TF node
relates to the out-degree of a TF node. Target genes comprise coding and
lnc genes and are shown as small nodes. Colours of the nodes indicate
subgroup-specific expression. Filled nodes relate to subgroup-specific
upregulation. Unfilled nodes relate to subgroup-specific downregula-
tion. c) Bee swarm plot illustrates the ranking of TFs by their impact on
subgroup-dependent gene regulation in GRN shown in panel a). The
impact on gene regulation was measured by the NIS. Top-ten-ranked
TFs per subgroup are shown. TFs that have not been mentioned as an
important transcriptional regulator in the respective MB subgroup are
highlighted by a dashed, coloured frame [82, 207–209, 218, 227–233].
b-c) Gene symbols are not written in italic to improve legibility.

of Group 3 samples, indicating that a contribution of RAX2 is not essential for the regulation of the
photoreceptor signature in Group 3 (Figure A.5, A.5). NRL and CRX have been previously mentioned to
be higher expressed in Group 3 and potentially associated with the expressed photoreceptor signature
in Group 3 MBs; RAX2 was not mentioned in this context [207]. Lin et al. have reported a binding site
enrichment for RAX2 in active enhancers of Group 3 and 4 MB without further details [218]. The top-
ranked TFs in Group 3 MB also included MYC and HLX. These TFs were higher expressed in Grp3-c1
vs. the remaining two subclusters within the main subgroup Group 3 (Figure A.4) and, therefore, will
be discussed in the context of Group 3 subclusters in section 5.3.2.5.

Genes and TFs, including OTX2, NEUROG1, TBR1 and RREB1, downregulated in SHH MBs formed
a subnetwork closely located to the Group 3 subnetwork. Among all specifically downregulated TFs
across the subgroups, OTX2, NEUROG1, TBR1, and RREB1 showed the highest NIS in at least two
non-SHH subgroups indicating a noteworthy influence of these TFs on gene expression in non-SHH
MBs (Figure A.2.a). Our current results are supported by our previous work in Lin et al., where a
binding site enrichment for OTX2 and RREB1 in subgroup-specific enhancers of non-SHH MB was
reported [218]. In our RNA-seq cohort, although all four TFs were downregulated in SHH tumours, they
showed different expression patterns (Figure A.6). OTX2 and NEUROG1 did not show big differences in
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Figure 5.12: Overlap of putative targets between the photoreceptor signature defining TFs CRX, NRL
and RAX2.
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non-SHH subgroups, whereas RREB1 and TBR1 showed strong upregulation in Group 3 and Group 4
compared to WNT MB. The NIS ranking also reflected these expression patterns, where RREB1 did
not rank among the top TFs in the WNT subgroup. RREB1 is expressed in the cerebellar nuclei and
Purkinje cells layer of adult mice (Figure A.7) and was reported to be highly evolutionary conserved
[244]. Overexpression of RREB1 has been described, among other tumour types, in prostate cancer. In
this tumour type, RREB1 positively regulates expression of the lnc gene AGAP2-AS1, which promotes
prostate cancer proliferation and migration via transcriptional repression of tumour- and metastasis-
suppressing genes [245]. In our analysed RNA-seq MB cohort, AGAP2-AS1 was differentially expressed
between MB subgroups. However, we could not identify an obvious expression association between
these two genes as indicated by the dissimilar expression patterns of AGAP2-AS1 and RREB1 in our data
set (Figure A.8 and A.6). OTX2 showed a high NIS in Group 3 (Figure A.2) and was closely positioned to
NRL, CRX, and RAX2 in the GRN (Figure 5.11.b) due to shared targets. OTX2 has been previously shown
to be a regulator of the photoreceptor expression signature and promoter of proliferation in MB [246].
NEUROG1 is known to define non-SHH MBs and is expressed during brain development, particularly
in Purkinje cell progenitors in the ventricular and intermediate zone of the developing cerebellum in
the embryonic and postnatal stage [247–250]. TBR1 is frequently mutated in Group 4 MB and known
to be upregulated in Group 3 and Group 4 [251]. TBR1 is expressed in the NTZ by cells that migrated
from the rhombic lip into the NTZ [252]. Taken together, all four TFs are expressed in cell types of the
cerebellum or associated with cerebellar development, while RREB1 is not well known in MB.

Our performed DGEA and inferred GRN of the main subgroups could reveal TFs that were unknown
to be specifically upregulated in Group 4 MBs or so far unknown to be an important regulator of
gene expression in Group 4 MBs (Figure 5.11.b-c). The TFs NEUROD2 and ZBTB18, which are in-
volved in the development and differentiation of cerebellar neurons [253, 254], showed the highest
NI-scores for Group 4 MBs in our TF ranking (Figure 5.11.c). Despite the upregulation in Group 4
samples, we observed that both TFs showed a slightly different expression profile across subgroups.
ZBTB18 was well expressed in all MB samples and subgroups, whereas NEUROD2 was ubiquitously
expressed only in WNT and Group 4 MBs (Figure A.9). Additionally, expression levels of NEUROD2
were similar between Group 4 MBs and pre-/postnatal human cerebellum controls, whereas ZBTB18
was upregulated around two-fold in Group 4 MB compared to the controls. However, considering
the functions of NEUROD2 and ZBTB18 in cerebellar development and their potential high impact
on gene expression in Group 4 MBs, NEUROD2 and ZBTB18 could play a decisive role in regulating
the neuron-developmental signature in Group 4 MB. The third-ranked TF ZBTB8B has been recently
mentioned to be upregulated in Group 4 MB without indicating a potential regulatory role [218];
however, this gene is poorly studied independently of a medulloblastoma context. Our data revealed
that the TF CHD5 was upregulated in Group 4 with a medium NIS in Group 4 (Figure 5.11.b-c). CHD5
was reported to be a tumour-suppressor and chromatin-remodelling protein that is a transcriptional
repressor or activator and necessary for neurogenesis [255]. The TF LMX1A did not rank among the top
TFs in our performed analysis suggesting that this TF has a weaker impact on gene expression in Group
4, which is contrary to our previous work in Lin et al. [218]. In the currently analysed RNA-seq cohort,
NEUROD2 and ZBTB18 showed a clear upregulation in all Group 4 samples, whereas LMX1A was low
expressed in several Group 4 samples. This might explain why our estimation by the NIS suggests that
LMX1A has a low impact on gene expression in Group 4 tumours compared to NEUROD2 and ZBTB18
(Figure A.9). The 8th-ranked TF MYT1L has been shown to play a regulatory role in Group 4 MB by
Lastowska et al. [229].

Taken together, the functional enrichments and GRN in MB subgroups that we show above were
supported in several aspects by the literature, which provides additional evidence to the ChIP-seq-
based validation that our data and inferred GRN allow conclusions about regulatory mechanisms in
MB. However, our presented results reveal activation of FGF signalling in WNT, RAX2 as an additional
regulator of the photoreceptor signature in Group 3, and NEUROD2 and ZBTB18 as a potential regulator
of the neuronal-developmental signature in Group 4.
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5.3.2.4 Subclusters within SHH medulloblastoma

The GRN that we inferred for the subclusters within the SHH subgroups split into two subnetworks
relating to adult (SHH-c2) and non-adult (SHH-c1 and SHH-c3) SHH MBs (Figure 5.13a). The inter-
mingled GRN of SHH-c1 and SHH-c3 probably arises from the hierarchical relationship between the
two subclusters, where genes upregulated in subcluster SHH-c2 were also upregulated in subcluster
SHH-c1, as summarised above (Figure 5.4).

The TF ZNF540 that was top-ranked for SHH-c1 MBs in our analysis is poorly studied (Figure 5.13)
(Figure 5.13b). Our data showed that ZNF540 was higher expressed in Group 3, Group 4, and SHH-c1
MBs compared to WNT and remaining SHH samples (Figure A.11, A.13). NEUROD2 and MYT1L, which
ranked among the top Group 4 TFs (Figure 5.11), showed the second and fourth highest NIS for SHH-c1
MBs, respectively. However, both TFs were lower expressed in SHH-c1 compared to Group 4 MB
(Figure A.11). Myt1l was reported to be a neuron-specifically-expressed TF that ensures the cell fate of
neurons by repressing non-neural programs and promotes neuronal differentiation in neural stem
cells [257]. Taken together, our results show an overlap of TFs that were top-ranked in both SHH-c1
and Group 4 MBs (Figure A.11). These TFs might contribute to the enriched neuronal-developmental
signature that we detected among the genes upregulated in subcluster SHH-c1 (5.14). This enrichment
was previously described for the matching published subtypes SHH� and SHH� of the Cavalli study
[221].

The TFs NFATC1 and GLI1 showed the highest NIS in subcluster SHH-c2 (Figure 5.13b). Both genes
ranked among the top ten TFs for the whole SHH subgroup (Figure 5.11). As introduced above, GLI1 is
an Shh-signalling target. NFATC1 plays an important role in endothelial and osteoclast differentiation
and is upregulated via Shh-signalling [258, 259]. The upregulation of NFATC1 in adult SHH MBs was
previously reported [256]. Our data showed that the TFs downregulated in SHH-c1 integrated into
the subnetwork of SHH-c2 including the TFs ATOH1 and SOX2 that were top-scored for the SHH
subgroup. In general, Shh-signalling-associated TFs in SHH-c2 were upregulated against non-adult
subcluster SHH-c1 (infant) and SHH-c3 (children) or downregulated in SHH-c1 against SHH-c2 and
SHH-c3. Here, the expression profiles followed the trend that Shh-signalling-associated genes were
the lowest, intermediately, and the highest expressed in SHH-c1, SHH-c3, and SHH-c2, respectively
(Figure A.11, A.14). At fourth position ranked SOX9 (Figure 5.13b). SOX9 showed an expression pattern
among SHH subclusters that was similar to other Shh-signalling-associated TFs (Figure A.15, A.14).
Like SOX2 and ATOH1, SOX9 was reported to be upregulated by Shh-signalling and is important for
maintaining neuronal progenitors [237, 260, 261]. All three TFs could contribute to the functional
enrichment of negative regulation of cell differentiation that we detected among genes upregulated
in SHH-c2 MBs (Figure 5.14) since SOX2 and ATOH1 integrated into the subnetwork of SHH-c2 MBs
(Figure 5.13a). Overall the GRN in SHH-c2 and its most influencing TFs supported the enrichment of
active Shh-signalling that we observed among genes upregulated in SHH-c2 MBs (Figure 5.14). This
enrichment was also reported for the matching subtype SHH� by Cavalli et al. [221].

In subcluster SHH-c3, we detected an enriched TP53 signature (Figure 5.14); the matching published
subtype SHH↵ is frequently TP53-mutated [221]. In subcluster SHH-c3, upregulated genes were
enriched for angiogenic functions including ETS1 and the angiogenesis-mediating receptor tyrosine
kinases FLT1 (VEGFR1), KDR (VEGFR2), and TEK (TIE2) (Figure A.12) [262, 263].

In subcluster SHH-c3, the three top-ranked TFs NEUROD6, MYT1, and NEUROD1 are involved in
neuronal differentiation [264–266]. NEUROD6 has been reported to be upregulated in non-adult SHH
[214]. As shown above, genes that showed upregulation in the subcluster SHH-c3 (children) compared
to SHH-c2 (adults) were also upregulated in SHH-c1 MBs (infant) (Figure 5.4). The expression of the
three TFs NEUROD6, MYT1, and NEUROD1 followed a common pattern. Their expression was the
highest, intermediate, and the lowest in SHH-c1, SHH-c3, and SHH-c2, respectively. This expression
pattern was opposite to the expression of Shh-signalling-associated TFs in SHH-c2. NEUROD1 showed
the strongest upregulation in SHH-c1 and SHH-c3 compared to SHH-c2, followed by NEUROD6 and
MYT1 (Figure A.11, A.16, A.17, A.18). MYT1 showed a bimodal distribution in SHH-c2, where MYT1-
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Figure 5.13 (preceding page): GRN of SHH subclusters. a) Inferred GRN of SHH subclusters. Enlarged
nodes represent TFs. The size of a TF node relates to the out-degree
of a TF node. Target genes comprise coding and lnc genes and are
shown as small nodes. The colours of the nodes indicate subcluster-
specific expression. Filled nodes relate to subcluster-specific upregula-
tion. Unfilled nodes relate to subcluster-specific downregulation. b) Bee
swarm plot illustrates the ranking of TFs by their impact on subcluster-
dependent gene regulation in GRN shown in panel a). The impact on
gene regulation was measured by the NIS. Top-eight-ranked TFs per
subcluster are shown. TFs that have not been previously reported to be
differentially expressed between SHH subclusters are highlighted by a
dashed, coloured frame [207, 214, 221, 256]. a-b) Gene symbols are not
written in italic to improve legibility.

high-expressing cases showed an expression level that was comparable to SHH-c1 and SHH-c3 cases
(Figures A.17). Due to the function of these three TFs, SHH-c3 and SHH-c1 MBs (non-adult) could
resemble a more differentiated cell type than SHH-c2 MBs (adult) with a potential higher differentiation
in SHH-c1 vs. SHH-c3.

SHH-c2
Sonic hedgehog signalling *,4

Negative regulation of cell differentiation 5 

SHH-c1 Neuronal, developmental signature *,2,5

SHH-c3

Angiogenesis 3,4,5

VEGF & VEGFR signalling 2,4,6 

TEK signalling 4 

TP53 network *1,3,6

Cell differentiation *5

Nervous system development *5

Figure 5.14: Functional enrichments in SHH subclusters. Enriched gene sets per SHH subcluster relate
to subcluster-specifically upregulated coding genes. The asterisk indicates enrichments
that are known from the literature [212, 221]. Superscript 1-5 indicates the original source
of the gene sets that show an enrichment:1 KEGG, 2 Reactome, 3 WikiPathways, 4 Geno-
matix, 5 GO Terms. FDR ∑ 0.05.

5.3.2.5 Subclusters within Group 3 medulloblastoma

Genes and TFs that were specifically upregulated among the Group 3 subclusters formed three distinct
subnetworks in the GRN (Figure 5.15a). Genes and TFs downregulated in Grp3-c1 formed a subnetwork
but shared edges with the Grp3-c2 or Grp3-c3 subnetwork. Genes downregulated in Grp3-c3 MB
integrated for the most part into the Grp3-c2 subnetwork.

In Grp3-c1 MB, the two top-ranked TFs were MYC and HLX, which are located on chromosome 8 and
1, respectively (Figure 5.15b). Grp3-c1 samples showed frequent and strong copy number gain of MYC
resulting in a pronounced upregulation in Grp3-c1 tumours (Figure 5.7). The upregulation of MYC
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Figure 5.15 (preceding page): GRN of Group 3 subclusters. a) Inferred GRN of Group 3 subclusters.
Enlarged nodes represent TFs. The size of a TF node relates to the out-
degree of a TF node. Target genes comprise coding and lnc genes and
are shown as small nodes. Colours of the nodes indicate subcluster-
specific expression. Filled nodes relate to subcluster-specific upregula-
tion. Unfilled nodes relate to subcluster-specific downregulation. b) Bee
swarm plot illustrates the ranking of TFs by their impact on subcluster-
dependent gene regulation in GRN shown in panel a). The impact on
gene regulation was measured by the NIS. Top-eight-ranked TFs per
subcluster are shown. TFs that have not been previously reported to be
differentially expressed between Group 3 subclusters are highlighted by
a dashed, coloured frame [207, 208, 221, 267, 268]. a-b) Gene symbols
are not written in italic to improve legibility.

was also reflected by an enrichment for MYC targets that we detected among genes upregulated in
subcluster Grp3-c1 (Figure 5.16), a feature that has been described for the matching published subtype
Group3� [221]. However, in our RNA-seq data, the remaining two Group 3 subclusters displayed as
well MYC upregulation compared to SHH and Group 4 MBs. In WNT MB, MYC was reported to be
upregulated due to Wnt signalling [269]. MYC is known as an oncogene in MB, especially in a subset of
Group 3 MBs where MYC is activated due to copy number gain [269]. Grp3-c1 tumours probably reflect
this subset of Group 3 MB. HLX, which showed the highest rank, is involved in multiple developmental
processes including CNS development and haematopoiesis [270–272]. In our MB cohort, HLX was
well expressed in Grp3-c1 cases only, whereas MYC was clearly expressed in almost all MB samples
(Figure A.19). An expression correlation between HLX and MYC was only present in Group 3 MB but
not in non-Group 3 MB (Figure A.20.a-c). Lin et al. have reported a regulatory role of HLX in general
for Group 3 MBs via binding to enhancer regions, but not in the context of Group 3 subclusters [218].
However, HLX upregulation in MYC-amplified Group 3 cases, equivalent to Grp3-c1 cases, has been
previously reported [208]. Overall, the data that we presented suggest that HLX has a specific role in
Grp3-c1 tumours associated with MYC.

Grp3-c2 Neuronal, developmental signature *,5

Grp3-c1 c-MYC targets *,6

Grp3-c3 Visual transduction & photoreceptor *,1,2,4,5,6

Figure 5.16: Functional enrichments in Group 3 subclusters. Enriched gene sets per Group 3 subcluster
relate to subcluster-specifically upregulated coding genes. The asterisk indicates enrich-
ments that are known from the literature [221]. Superscript 1-5 indicates the source of the
gene sets that show an enrichment:1 KEGG, 2 Reactome, 3 WikiPathways, 4 Genomatix, 5

GO Terms. FDR ∑ 0.05.

Five of the top-ranked TFs in Grp3-c2 MB overlapped with TFs that were among the highest-ranked
TFs in Group 4 MBs comprising ZBTB18, ST18, SIX6, CHD5 and MYT1L (Figure 5.15b, A.11, 5.11).
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NEUROD2, which was also highly ranked among the Group 4 TFs and downregulated in Grp3-c3,
was incorporated into the Grp3-c2 GRN (Figure A.11, 5.11). These six Group 4-relevant TFs showed
expression levels in Grp3-c2 MBs that were similar to Group 4 MBs (Figure A.11, A.9). Additionally,
genes upregulated in subcluster Grp3-c2 (249 genes) showed significant overlap (96 genes, p = 2.27e-
117, hypergeometric test) with genes upregulated in subgroup Group 4 (323 genes). Genes upregulated
in subcluster Grp3-c2 were enriched for a neuronal-developmental signature (Figure 5.16), as reported
for the matching subtype Group 3� by Cavalli et al. [221], like in subgroup Group 4. However, Group 3
relevant TFs were still upregulated in Grp3-c2 MBs compared to the remaining three subgroups (Figure
A.11). The expression pattern of Group 3 and Group 4 relevant TFs indicated that Grp3-c2 represents a
mixed phenotype of Group 3 and Group 4 MB.

NRL, CRX, and RAX2 showed a strong influence on gene expression in the photoreceptor-signature-
expressing subcluster Grp3-c3. As shown above, these three TFs were highly ranked for the whole
subgroup Group 3 potentially regulating the photoreceptor signature of this subgroup (Section 5.3.2.3,
Figure 5.11.c). All three TFs were upregulated in Group 3 MBs vs. the remaining subgroups but
subcluster Grp3-c3 additionally showed significantly higher expression among Group 3 subclusters
(Figure A.11, A.21, A.22, A.23). It explains why NRL, CRX, and RAX2 can significantly impact expression
in the whole subgroup Group 3 and additionally in subcluster Grp3-c3 that was also enriched for a
photoreceptor signature (Figure 5.16). This enrichment was also reported for the matching subtype
Group 3 ↵ by Cavalli et al. [221]. In our analysis, IRX6, which is not well described in MB, ranked fourth
with a slightly lower NI-score than CRX. In mice, it was reported that Irx6 is required for terminal
differentiation of specific retinal bipolar interneuron subtypes [273]. Bipolar interneurons transfer
transduced signals from rods and cones into deeper cell layers of the retina [274]. In humans, it was
reported that IRX6 has a rod-enriched expression pattern [275]. IRX6 indicates that potentially more
TFs than NRL, CRX, and RAX2 might contribute to the photoreceptor signature in MB.

5.3.2.6 Subclusters within Group 4 medulloblastoma

Subcluster-specifically upregulated genes were enriched for (1) a neuronal-developmental signature
in all subclusters of Group 4 MBs, (2) FGF signalling in Grp4-c1, and (3) a photoreceptor signature and
PI3K-AKT signalling in Grp4-c3 (Figure 5.17), as previously reported for related subtypes [221].

Grp4-c1 FGF signalling *,4

Neruonal, developmental signature *,5

Grp4-c2 Neruonal, developmental signature *,5

PI3K-AKT signalling 1,3

Grp4-c3
Visual transduction & photoreceptor *,1,2,4,5,6

PI3K-AKT signalling *,1,3

Neruonal, developmental signature *,5

Figure 5.17: Functional enrichments in Group 4 subclusters. Enriched gene sets per Group 4 subcluster
relate to subcluster-specifically upregulated coding genes. The asterisk indicates enrich-
ments that are known from the literature [221]. Superscript 1-5 indicates the original
source of the gene sets that show an enrichment:1 KEGG, 2 Reactome, 3 WikiPathways, 4

Genomatix, 5 GO Terms. FDR ∑ 0.05.

Genes and TFs upregulated in one of the three subclusters of Group 4 MBs formed three distinct
subnetworks in GRN that we inferred (Figure 5.18a). The TF EBF1, which is expressed in pre- and
postnatal mouse cerebellum [276], had the highest NIS in Grp4-c1 MB and ranked among the top
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ten TFs of Group 4 MB (Figure 5.18b, 5.11). EBF1 was well expressed in all MBs but clearly showed
the highest expression in Grp4-c1 MB compared to the remaining subgroups and subclusters (Figure
A.24); WNT and Grp3-c3 MBs showed the lowest expression; SHH, Grp4-c2, Grp4-c3, Grp3-c1 and
Grp3-c2 MBs showed a similar medium expression level. These results indicate that the upregulation
expression of EBF1 is rather specific to Grp4-c1 tumours than a feature of the whole subgroup Group 4,
highlighting a potential role of EBF1 as TF in Grp4-c1 MBs. EBF1 was reported known to be upregulated
in Group 4, and Cavalli et al. has reported differential expression between Group 4 subtypes [221,
229]. A potential regulatory role of EBF1 in Group 4 subclusters has not been described [218, 277]. TF
ZNF521 ranked at the eighth position, a gene that promotes proliferation in a SHH MB cell line [267].
In addition, ZNF521 ranked among the top eight TFs of the Group 4-like subcluster Grp3-c2 and was
upregulated in SHH-c1 among SHH subclusters (Figure 5.15).

Highly-ranked TFs in Grp4-c2 MB showed a distinct pattern because these TFs reached top NI-scores
only in subcluster Grp4-c2. In the remaining Group 3 and Group 4 subclusters, at least one top-ranked
TF overlapped with a top-ranked TFs of another subcluster or subgroup (Figure A.11). The second-
ranked TF TBR1 was already mentioned above among the TFs that were downregulated in the main
subgroups SHH (Section 5.3.2.3). Interestingly, our data showed that several TFs/genes upregulated in
subcluster Grp4-c2 have been linked with EMT, neuronal stem/progenitor cells, or stem-like cancer
cells. Among these TFs was TWIST1 that showed the highest NIS in Grp4-c2 tumours (Figure 5.18b).
TWIST1 has been reported in various cancer types, where TWIST1 has different implications, including
EMT and stemness [278]. Upregulation of TWIST1 has been reported in WNT MB [279]. In our data,
TWIST1 was highly expressed in all Grp-c2 MBs on a level similar to TWIST1-high-expressing WNT MBs.
Across all subgroups and subclusters, constant upregulation of TWIST1 was only present in Grp4-c2
MBs (Figure A.25.a). Kahn et al. have shown that TWIST1 is upregulated in metastases of Group 3
MB compared to primary tumours of this subgroup. The authors reported that TWIST1 promotes
metastasis in Group 3 tumours through transactivation of BMI1, a mediator of TWIST1-induced EMT
[280, 281]. We could detect a significant expression correlation between TWIST1 and BMI1 ionlyn
Group 3 MB, but not in Group 4 MB (Figure A.25.c, A.25.b). The TF SOX11 was in fourth position.
Only Grp4-c2 MBs showed a specific upregulation of SOX11 compared to the remaining subclusters
and subgroups (Figure A.26). SOX11 has been described to be involved in cerebellar development
(pre- and postnatal stages) in mice and to be expressed in neuronal progenitors/immature neurons,
mesenchymal stem cells, and cancer stem-like cells [282–284]. Our DGEA showed that Grp4-c2
tumours expressed NES and SOX9 at a significantly higher level compared to the subcluster Grp4-c1
and Grp4-c3 (Figure A.27). Both genes have been reported to be associated with neural stem/progenitor
cells, stem-like cancer cells, and EMT in cancer [285–289]. In our RNA-seq MB cohort, SOX9 was higher
expressed in SHH MB (where the gene is upregulated via SHH signalling [290]) compared to Grp4-c2
MBs. Across subgroups and subclusters, NES showed the highest expression in Grp4-c2 and WNT MBs
(NES is a target of the WNT pathway [291]). Moreover, NES expression could be associated with the
enrichment for PI3K-AKT signalling in Grp4-c2 MBs. Previous reports have shown that Nes expression is
required for the activation of Pi3k-Akt signalling in cortical neural progenitor cells by phosphorylation
of Akt [292]. We checked the expression of genes of the AKT and PIK3 family in our data. These
genes were well expressed in all MB samples (exemplarily shown for AKT1 and PIK3CA in Figure A.28).
Moreover, we found that the PI3K-AKT pathway was enriched among gene upregulated in subcluster
Grp4-c2. The PI3K-AKT pathway was reported to play a role in the maintenance of pluripotency
(stem-like features) and EMT [293, 294], which is consistent with the mentioned functions of TWIST1,
SOX11, SOX9, and NES.

The photoreceptor signature defining TFs NRL, CRX and RAX2 showed the highest NIS in Grp4-c3,
which was in agreement with the observed gene set enrichment for this subcluster (Figure 5.18b, Figure
5.17). The TF LHX4 ranked in the fourth position closely to CRX. LHX4 was higher expressed in Group
3 and Group 4 MB than in WNT and SHH MB but Grp4-c3 tumours displayed the strongest and most
specific upregulation, except for two outliers, supporting a regulatory role in Grp4-c3 MB (Figure A.29).
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Figure 5.18 (preceding page): GRN of Group 4 subclusters. a) Inferred GRN of Group 4 subclusters.
Enlarged nodes represent TFs. The size of a TF node relates to the out-
degree of a TF node. Target genes comprise coding and lnc genes and
are shown as small nodes. The colours of the nodes indicate subcluster-
specific expression. Filled nodes relate to subcluster-specific upregula-
tion. Unfilled nodes relate to subcluster-specific downregulation. b) Bee
swarm plot illustrates the ranking of TFs by their impact on subcluster-
dependent gene regulation in GRN shown in panel a). The impact on
gene regulation was measured by the NIS. Top-eight-ranked TFs per
subcluster are shown. TFs that have not been previously reported to be
differentially expressed between Group 4 subclusters are highlighted by
a dashed, coloured frame [208, 221, 233, 268]. a-b) Gene symbols are not
written in italic to improve legibility.

LHX4 was reported to be involved in many developmental processes including in cone photoreceptors
and retinal bipolar interneurons and, therefore, could contribute to the photoreceptor signature in
subcluster Grp4-c3 [295–297].

5.3.2.7 Impact of copy number variations on transcription factor expression

Copy number variations are one mechanism that leads to dysregulation of gene expression in cancer
(see Section 2.3). To evaluate the influence of CNVs on the above presented GRNs in MB, the following
section will concentrate on the impact of CNVs on TF expression.

As presented above, 121 genes and TFs that were downregulated in WNT MB formed a network
module (Section 5.3.2.3, 5.4.5.4). Here, 82/121 genes, which included 15/29 TFs, were located on
chromosome 6 that is frequently monoallelically deleted in WNT MBs [251]. Thompson et al. already
reported that a high fraction of genes downregulated in WNT MB are located on chromosome 6 and
concluded a relation between chromosome 6 monosomy and gene expression [209]. For example
in our data, the TFs DEK and HSF2 showed a highly frequent copy number loss in WNT MB and
copy number gains in non-WNT MBs (Figure 5.19a,d). 1N tumours showed a strong expression drop,
whereas copy number gain did not influence gene expression, as previously reported for DEK in
retinoblastoma (Figure 5.19b-c,e-f) [240]. The expression fold change comparing non-WNT vs. WNT
MBs was 2.8 for HSF2 and 2.6 for DEK, which is higher than the expected fold change of 2. However,
373 genes located on chromosome 6 and significantly downregulated in WNT tumours (FDR <0.001,
subgroups pair-wise compared) displayed on average a fold change of 2. These data indicate that TFs
and genes located on chromosome 6 are downregulated in WNT MB due to monosomy, but additional
mechanisms also influence expression levels of these genes/TFs explaining the bigger fold change of
HSF2 and DEK.

Within the GRN of the subgroups, 184 genes that were specifically upregulated in Group 4 MB
(including 20 TFs) formed a subnetwork, as shown above (Section 5.3.2.3, 5.4.5.4). Among these 184
Group 4-specific genes, 29/184 (15.7%) genes, including 6/20 (30%) TFs, were located on chromosome
17q that is known to be frequently gained in Group 3 and Group 4 [222]. Applying a hypergeometric
test showed that it was significant (p = 0.0208) to find six TFs located on chromosome 17q among 20
TFs considering the 184 Group 4-specific genes as background. These six TFs located on chromosome
17q comprised NEUROD2, which showed the second-highest NIS (Figure A.30) and high expression
in Group 4 (Figure 5.20.a). Lo et al. emphasised an association between copy number gain and
upregulation of NEUROD2 in MB [298]. This report of Lo et al. was evaluated using the analysed
RNA-seq MB cohort. Comparing NEUROD2 expression between 2N and >2N cases across the cohort
showed an association between upregulation and copy number gain (Figure 5.20.c), where Group
3 and Group 4 tumours frequently showed a gain of NEUROD2 (Figure 5.20.b). However, among
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Figure 5.19: Copy number and expression of TFs downregulated in WNT MB. a-c) HSF2. d-f ) DEK.
a, d) Bar plots show the percentage of MB samples that showed a copy number loss or
gain. b-c, e-f ) Box plots compare the gene expression between samples with different copy
numbers (1N, 2N, >2N). The numbers of samples are shown in brackets. Copy-number-
based groups were tested for differential expression using Wilcoxon rank-sum test, and
p-values are placed above the box plot.

Group 3 or Group 4 samples only, NEUROD2 did not show a clear association between copy number
gain and upregulation (Figure 5.20.d-e). Additionally, NEUROD2 was lowly expressed in subcluster
Grp3-c3 compared to the remaining Group 3 and Group 4 MB samples (Figure 5.20.a), even though
the frequency of copy number gain was similar between Group 3 subclusters (Figure 5.20.b-c). Overall,
the presented results emphasise that chromosome 17q copy number gain impacts the expression of
TFs and the transcriptional regulation in Group 4 MBs. However, the expression profile of NEUROD2
indicates that copy number and expression are not necessarily linear associated. Therefore, additional
factors than copy number gain also influence the expression of NEUROD2.
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Figure 5.20: Copy number and expression of NEUROD2. a) Violin plot shows expression destitution of
NEUROD2. 25% , 50% and 75% quantile are indicated by horizontal lines. Individual MB
samples are shown as bee swarm plots. b) Bar plots show the percentage of samples that
showed a copy number loss or gain. c-e) Box plots compare the gene expression between
samples with different copy numbers ( 2N, >2N, 3N, >3N). The numbers of samples are
shown in brackets. Copy-number-based groups were tested for differential expression
using Wilcoxon rank-sum test, and p-values are placed above the box plot. c) Whole cohort.
d) Group 3 samples. e) Group 4 samples.

5.3.2.8 Overlay of gene regulatory networks in medulloblastoma subgroups and subclusters

In the previous sections, we described the GRNs and their most influencing TFs in MB subgroups and
subclusters (Figure A.11). In this section, we will focus on the comparison and rationalisation of the
GRNs in subgroups and subclusters. The gene regulatory network of the subgroups was compared to
the combined GRNs of the subclusters. Here, ~33% of the target genes, ~38% of the TFs, and 14% of the
inferred TF-target interactions were shared between the GRNs of subgroups and subclusters (Figure
5.21.a-c). Considering that ~44% of the subgroup-specifically expressed genes were also significantly
differentially expressed between subclusters, it would be expected that a maximum of 44% of targets
and TFs in the subgroup network are also part of the subcluster networks. Overlaying the target genes
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with published data showed that ~59% and ~52% of the target genes in the subgroup and subcluster
GRNs, respectively, overlapped with genes whose expression had been reported to be correlated with
the activity of nearby enhancers in MB (Figure 5.21.e-f) [218].

Enhancer targets Linet al.
(coding genes)

GRN subgroups TF targets
(coding genes)

2637

565

820

e)

GRN subclusters TF targets
(coding genes)

2704

691

753

Enhancer targets Linet al.
(coding genes)

f)a)

1057

511

GRN subclusters
target genes

GRN subgroups
target genes

1383

GRN subclusters
TFs

GRN subgroups
TFs

129

131

79

b)
GRN subcluster

TF-target interactions

GRN subgroups
TF-target interactions

4142

3263

542

c)

Figure 5.21: Comparison of subgroup and subcluster GRNs. a-c) Venn diagrams relate to a) target
genes, b) TFs, and, c) inferred TF-target interactions. d-e) Venn diagrams compare the set
of inferred TF targets and putative enhancer targets reported by Lin et al.. Both diagrams
are restricted to coding genes because Lin et al. only reported coding genes [218]. TF
targets in subgroup d) and subclusters e) are independently shown.

To further rationalise gene regulation in MB, the four GRNs of subgroups and subclusters were
merged into one aggregated GRN. The aggregated GRN was used to represent the whole gene regulatory
landscape in MB and to perform a TF-wise gene set overrepresentation analysis among TF targets.

We simplified the aggregated network to depict the whole gene regulatory landscape in MB and
extract the most relevant information. Here, the aggregated GRN was reduced to the TFs, and two
TFs were connected in the network when they shared a minimum of two targets. To visualise the
relationship between subgroups and subclusters on the aggregated GRN, the aggregated GRN was
plotted four times, and in each plot, the differentially expressed TFs of subgroups, SHH subclusters,
Group 3 subclusters or Group 4 subclusters were individually highlighted, respectively (Figure 5.22;
an enlarged version of this Figure is shown in Figure A.30, A.31, A.32, and A.33). TFs that were up- or
downregulated in the same subgroup showed a strong tendency to be grouped together marking the
subnetworks of WNT, SHH, Group 3 and Group 4 (Figure 5.22a). A dense subnetwork, including RAX2,
NRL and CRX, comprised most TFs upregulated in Group 3 MB. TFs of the photoreceptor subclusters
Grp3-c3 and Group4-c3 overlapped with Group 3 TFs. Most TFs of the subcluster Grp3-c1, including
HLX and MYC, formed a subnetwork that was mostly separated from the Group 3 subnetworks. TFs
upregulated in the adult SHH subcluster SHH-2 overlapped with TFs upregulated in the SHH subgroup.
The upregulated TFs of non-adult SHH subcluster SHH-c1 overlapped partially with Group 4 TFs,
whereas SHH-c3 TFs were placed between Group 3 and Group 4 TFs. Here, the GRN in subcluster
SHH-c1 and SHH-c3 stretched beyond the GRN defined by Group 3 and Group 4 MB. TFs of the Group
4-like subcluster Grp3-c2 strongly overlapped with Group 4 TFs and partially with SHH-c3 TFs. Grp4-c2
TFs were placed mostly separately to the Group 3 and Group 4 GRN. TFs of subcluster Grp4-c1 partially
overlapped with Group 4 TFs. In summary, the aggregated network depicted the commonalities and
dissimilarities of GRNs among subclusters and between subgroups and subclusters.

Taking the aggregated GRN again, TF-wise gene set overrepresentation analysis among TF targets
supported the aforementioned assumption that ZBTB18 and NEUROD2 are potential regulators of
the neuronal-developmental signature in Group 4 and Grp3-c2 (Figure 5.23). The overrepresentation
analysis also supported that RAX2 is a regulator of the photoreceptor signature in cooperation with
NRL and CRX in Group 3, Grp3-c3, and Grp4-c3 (Figure 5.23).

Overall, via the comparison and aggregation of the inferred GRNs, we could show that subgroup-
associated regulatory networks partially contribute to subcluster-specific gene expression. However,
the majority of the inferred TF-target interactions were specific for subgroups or subclusters. Here,
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Figure 5.22: Aggregated GRN of MB. The aggregated GRN was reduced to TFs, and an edge between
two TFs indicated at least two shared targets. The edge width indicates the number of
shared targets. a-d) Colours highlight TFs that were differentially expressed between a)
subgroups, b) SHH subclusters, c) Group 3 subclusters, d) Group 4 subclusters. Colour-
filled circles indicate upregulation of TFs among subgroups or subclusters. White-filled
circles indicate downregulation of TFs among subgroups or subclusters. Grey circles
indicate no differential expression of TFs among subgroups or subclusters. Gene symbols
are not written in italic to improve legibility.
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subclusters expand and highlight new aspects of the gene regulatory networks in MB. Detected gene
set enrichments among TF targets supported the identification TFs that contribute to the regulation of
subgroup-specific gene expression signatures that were also present in subclusters.
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Figure 5.23: Functional enrichments among targets of selected TF. Per TF, functional enrichments and
gene expression patterns in MB are shown. Left heatmap) P-values of functional enrich-
ments are shown in categories as indicated by the caption. All functional enrichments
showed an FDR < 0.05. The source of functional gene sets is indicated in brackets. Right
heatmap) The heatmap summarises the expression patterns of the TFs in MB subgroups
and subclusters. Significant up- or downregulation is indicated. Abbreviations: photor. -
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5.3.3 Lnc genes in medulloblastoma
Concentrating on lnc genes that are differentially expressed between subgroups or subclusters, in
the next sections, we will present (1) a formal characterisation of lnc genes based on the genomic
location relative to coding genes, (2) the annotation of brain-development-related expression patterns,
(3) a summary of lnc genes that are described in the literature, and (4) the implication of the lnc
tumour-suppressor MEG3 in MB.

5.3.3.1 Potential relevance of lnc genes in medulloblastoma

As a simple test of the hypothesis that lnc genes have an implication in MB subgroups and subclusters,
we evaluated whether lnc gene expression alone can recover MB subgroups and subclusters. Taking the
1643 most variable expressed lnc genes, MB samples were clustered by applying NMF and assuming
four clusters (Figure 5.24). The lnc-gene-based clustering agreed for SHH and WNT to 100% with
the methylation-based subgroup classification. 10/63 Group 4 and 3/39 Group 3 samples switched
between lnc gene-based clusters. Discordances between Group 3 and Group 4 clustering can probably
be explained by transcriptional similarities in a subsample of both subgroups [217], as reflected by the
subclusters Grp3-c2 and Grp4-c3 (Section 5.3.2.5 and 5.3.2.6).

Applying hierarchical clustering, differentially expressed lnc genes mostly recovered the tumour
subgroups and subclusters except for the subclusters SHH-c1 and SHH-c3 (Figure 5.25). A potential
reason could be the low number of thirteen specifically upregulated lnc genes in SHH-c3.

Overall, the expression pattern of lnc genes resembled MB subgroups and subclusters, supporting
the hypothesis that lnc genes have an implication in MB. The set of 448 identified differentially
expressed lnc genes, as presented above (Section 5.3.2.1, Figure 5.8), was used to characterise the lnc
gene landscape in MB.
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Figure 5.24: De novo identification of MB subgroups based on the expression profiles of the 1643 most
variable lnc genes. a) Consensus matrix of the NMF clustering on RNA-seq-derived lnc
genes expression values. Heatmap shows the frequency of two MB samples falling into
the same cluster over 60 NMF iterations. b) Sankey plot visualises the agreement between
RNA-seq-based NMF clustering (panel a)) and methylation-based classification.
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Figure 5.25: Comparison of hierarchical clustering based on specifically upregulated coding or lnc
genes Left column) Heatmaps show lnc genes. Right column) Heatmaps show coding
genes. The colours above the heatmaps indicate subgroup and subcluster assignments.

5.3.3.2 Characterisation of lnc genes: Divergent, antisense and intergenic

We integrated several resources to provide a systematic characterisation of the 448 differentially
expressed lnc genes in MB: FANTOM CAT (FANTOM5)[133], BrainSpan (Allen Brain Atlas) [299],
literature, and the here analysed MB RNA-seq data set. Using FANTOM CAT and Ensembl gene
annotations, lnc genes were assigned to three different types indicating their position relative to
coding and pseudogenes, as introduced in Section 3.6.1 (Method Section 5.4.6.2). We annotated 34%
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Figure 5.26: Lnc gene type annotation and coding neighbourhood. a) Bar plot shows the number of lnc
genes that were annotated as divergent, antisense or intergenic. The number of genes is
placed above each bar. b) Overrepresented gene ontology terms in 194, 55, 1397 expressed
coding genes that were part of the coding neighbourhood of divergent, antisense and
intergenic lnc genes, respectively (hypergeometric test). Colours of bars relate to lnc gene
type as shown in panel a). c) Violin plots show the distribution of expression specificity
scores across cell types for lnc and coding genes. Expression specificity score derived
from FANTOM CAT (Method Section 5.4.3.4). P-values indicate that lnc genes of the three
types show a significantly higher expression specificity score compared to their coding
neighbourhood (one-sided Wilcoxon rank-sum test). The number of genes is placed below
each violin plot.

(n=153), 13% (n=58) and 53% (n=236) of the differentially expressed lnc genes as divergent, antisense
and intergenic, respectively (Figure 5.26.a). In comparison to the genome-wide-annotated lnc genes,
divergent lnc genes were more frequent (MB: 34%; genome-wide: 22%), antisense lnc genes were
less frequent (MB: 13%; genome-wide: 24%), and intergenic lnc genes showed a similar frequency
(MB: 53%; genome-wide: 54%) among the detected differentially expressed lnc genes. Lnc and coding
genes that were in divergent or antisense orientation to each other were considered as lnc-coding gene
partners (Method Section 5.4.6.2). Four antisense lnc genes were in antisense orientation to two or
three coding genes. For 41 divergent lnc genes, coding genes in antisense orientation were considered
as a coding partner additional to the divergent coding partner. The majority of divergent lnc genes
was partnered with a coding gene; five lnc genes were divergent to a pseudogene. For intergenic lnc
genes, the definition of coding partners was less strict in terms of proximity. Coding and intergenic
lnc genes were assigned as partners when they shared a common TAD, and the distance between
the two genes was less than 500 kb (Method Section 5.4.6.2). Via this annotation, at least one coding
gene partner could be assigned to 215/236 intergenic lnc genes. The remaining 21 intergenic lnc
genes located within a TAD boundary or located in a TAD missing coding genes. We detected that
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Figure 5.27: Correlation between pairs of lnc genes and coding genes partners. a) Violin plots show the
distribution of the correlation coefficients between lnc-coding gene pairs for the three lnc
gene types (Spearman correlation). 25% and 75% as well as 50% quantile are indicated by
the lower and upper edge of the box and the point in the middle, respectively. The number
of lnc and coding genes that define the genes pairs relate to n and m, respectively. b) Bar
plots show the percentage of lnc genes that belong to one of the four correlation-based
categories per lnc gene type. The percentage and number of lnc genes is placed above the
bars.

194/209, 55/63, and 1397/1729 coding partners of divergent, antisense, and intergenic lnc genes were
expressed in MB, respectively. The expressed coding partner neighbourhood of the three lnc gene types
was characterised by performing a GO term overrepresentation analysis (5.26.b). The coding gene
neighbourhood of intergenic and divergent lnc genes was enriched for DNA-binding transcription
factor activity and for developmental processes, which is consistent with previous reports [134, 135].
However, in our analysis, the coding gene neighbourhood of these two lnc gene types enriched for
different developmental processes. Due to the observed transcription factor activity enrichment, we
checked how many lnc genes were partnered with TF. Here, 26/153 divergent and 73/236 intergenic
lnc genes were partnered with a differentially expressed TF (e.g. EBF1, NEUROD1, TWIST1, SOX9).
The coding gene neighbourhood of antisense lnc genes was enriched for cell membrane-associated
processes (5.26.b).

To provide an additional evaluation of the potential biological relevance of the differentially ex-
pressed lnc genes in MB, we compared published expression specificity scores between lnc-coding
partners per lnc gene type (Figure 5.26.c, Method Section 5.4.3.4). These expression specificity scores
were based on CAGE data across 69 facet cell types and obtained from the FANTOM5 project [133]. In
our comparison, all three lnc genes types showed a significantly higher expression specificity score
compared to the coding partners. A general higher expression specificity for lnc genes compared to
coding genes has been previously described [133]. Intergenic genes showed the highest expression
specificity, which is in line with previous reports by Hon et al. [133].

To understand the transcriptional relationship between lnc-coding partners, the expression correla-
tion between these partners was measured. This analysis included 145/153 divergent, 54/58 antisense
and 173/236 intergenic lnc genes that were assigned to 150, 58, 476 expressed coding genes, respect-
ively. We observed the general trend of positive correlation between lnc-coding partners and that
divergent lnc coding genes showed the strongest positive correlation among the three lnc gene types
(Figure 5.27.a). These results are in line with previous publications [135]. However, we also measured
considerable negative correlation coefficients (< -0.3, Method Section 5.4.1). To further subclassify the
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three lnc gene types, the expression correlation analysis was utilised to assign differentially expressed
lnc genes to four categories that indicate whether coding partners were positively correlated (rho ∏
0.3), negatively correlated (rho ∑ -0.3), non-correlated (-0.3 > rho < 0.3), or non-expressed (Figure
5.27.b). The category negative correlated and non-correlated implied that none of the coding partners
was positively correlated. For the categories negative correlated, non-correlated and not expressed, we
assured that the broader coding neighbourhood did not show positive expression correlation. Here, all
coding genes within ±100kb regardless of the strand orientation were additionally integrated to define
these three categories.

We evaluated whether a positive correlation between lnc genes and coding partners is associated
with similar expression levels between lnc and coding genes. As a basis for the comparison, we
calculated the average expression per gene among the 15 samples with the highest expression levels
because genes were mostly specifically upregulated in subsets of MB samples related to subgroups
and subclusters. Taking the average of expression values across the whole cohort would not be an
informative indicator of the actual expression level of a gene. Lnc genes of the most frequent categories
positive correlated and non-correlated were compared to their coding partners per lnc gene type
(Figure 5.28). Independent of the correlation category, lnc genes were lower expressed compared to
coding partners for all lnc types, and lnc genes showed a similar expression level across types and
categories. These data do not indicate associations between expression levels and positive correlation
of lnc genes with their coding partners.

The minority of 95 lnc genes belonging to the categories negative correlated, non-correlated and
non-expressed were of interest for further functional annotations. These lnc genes were transcribed
independent of the coding partner and, therefore, are also potentially independent in their function or
a potential negative regulator of the coding partner.

5.3.3.3 Impact of copy-number variations on lnc gene expression

The set of 95 lnc genes, which did not show a positive correlation with a coding partner or the coding
gene neighbourhood, was overlaid with copy number data to identify lnc genes whose expression is
influenced by copy number variations. Lnc genes that are influenced by CNVs could have relevant
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functions. To identify lnc genes that show a significant drop of expression associated with a copy
number loss or raise of expression associated with a copy number gain, expression values of tumour
samples with 2N were compared against 1N or >2N for a given lnc gene, respectively.
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Figure 5.29: RP1-234P15.4 expression is influenced by copy number variation. a) Bar plots show the
percent of MB samples that showed a copy number loss or gain. b-c) Box plots compare
the gene expression between samples with different copy numbers (1N, 2N, >2N). The
numbers of samples are shown in brackets. Copy-number-based groups were tested
for differential expression using the Wilcoxon rank-sum test. P-values are placed above
the box plot. d) Box plots illustrate the expression of RP1-234P15.4 over different copy
numbers. The numbers of samples per box plot are shown in brackets.

Several lnc genes showed significant upregulation comparing MB samples with 2N and >2N copy
numbers. However, for most lnc genes, overlaying gene expression values and discrete copy number
levels did not support a direct CNV-expression association rather than spurious correlations due to
subgroup-/subcluster-specific upregulation and copy number gain. We detected a convincing CNV-
expression association only for the lnc gene RP1-234P15.4 related to copy number loss (Figure 5.29.b).
RP1-234P15.4 is located on chromosome 6 and showed frequent copy number loss and downregulation
in WNT MBs (Figure 5.30, 5.29.b). RP1-234P15.4 followed CNV-expression patterns that were also
observed for other coding genes located on chromosome 6, as described above (Section 5.3.2.7),
and that related to frequent monoallelic deletion of chromosome 6 in WNT MBs. RP1-234P15.4 also
showed a significantly higher expression over copy number gain (Figure 5.29.d). However, the change
of expression was only weak, and expression levels were comparable between copy number levels
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3N-6N, indicating that copy number gain did not influence or only weakly influenced RP1-234P15.4
expression (Figure 5.29.d-e). RP1-234P15.4 expression in WNT MBs was similar to cerebellum controls
but higher in the remaining subgroups compared to the control and WNT MBs (Figure 5.30).
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Figure 5.30: Expression profile of RP1-234P15.4 in MB. Violin plots show expression density destitution.
25% , 50% and 75% quantiles are indicated by horizontal lines. Individual MB samples are
shown as bee swarm plots.

5.3.3.4 Lnc genes with brain-development-related expression patterns

Since medulloblastoma is an embryonic tumour of cerebellar tissue, lnc genes with expression patterns
related to the development of the cerebellum or brain could be from an interest in the context of this
disease. We utilised a gene expression data set of pre- and postnatal brain tissues from the BrainSpan
project to identify lnc genes with the sought expression patterns. These patterns comprised a) up- or
downregulation in the cerebellum in comparison to other brain tissues and b) differential expression
between pre- and postnatal tissues of the cerebellum or whole brain. Additionally, FANTOM CAT data
were integrated to annotate lnc genes that show enriched expression in embryonic or neural stem cells
(as described in Method Section 5.4.3.4). Here, only lnc genes that were not positively correlated with
the coding gene neighbourhood were considered for this analysis.

We detected 20 lnc genes that followed the mentioned expression patterns. Eight and two lnc
genes were annotated for enriched expression in ESC and NSC, respectively (Figure 5.31). The lnc
gene GLYCTK-AS1 that was specifically upregulated in subgroup Group 4 and its subclusters showed
upregulation in prenatal CB (data source: BrainSpan) and enriched expression in ESC (data source:
FANTOM CAT; Figure 5.31). Due to the unstranded RNA-seq of the BrainSpan data set, GLYCTK-AS1
and the coding antisense gene GLYCTK showed a strong correlation in expression (rho = 0.81, p = 1.39e-
114, n=487). However, via our stranded RNA-seq samples of CB, we validated that GLYCTK-AS1 was
exclusively expressed in prenatal CB and that GLYCTK-AS1 was independently expressed from GLYCTK
(Figure 5.32.a-b). The integrated FANTOM5 CAGE data also supported the observation that GLYCTK-
AS1 and GLYCTK were independently expressed (Figure 5.33.a). Besides ESCs, GLYCTK-AS1 was
annotated for enriched expression in several cell/tissue ontologies in FANTOM CAT: 14 neuronal/brain-
associated ontologies, sexual organs, and hindgut. Since GLYCTK-AS1 showed development-associated
expression patterns, we evaluated a potential expression correlation with the neural stem/progenitor
cell marker HES5 [300]. This analysis revealed a strong co-expression across prenatal human brain
tissues (BrainSpan) (rho=0.67, p = 1.21e-31, n=235, Figure 5.33.b). We repeated this analysis using CAGE
data (FANTOM5) showing that GLYCTK-AS1 and HES5 were either mutually exclusively expressed or
strongly co-expressed in different subsets of samples (Figure 5.33.c). Here, in samples that express
both genes, we could validate the strong expression correlation (rho = 0.66, p = 1.13e-28; n=215;

98



5.3 Results

up
r. 

in
 C

B
 (n

=1
)

do
w

nr
. i

n 
C

B
 (n

=1
)

up
r. 

in
 p

re
na

ta
l C

B
 (n

=5
)

up
r. 

in
 p

os
tn

at
al

 C
B

 (n
=1

)

up
r. 

in
 p

re
na

ta
l b

ra
in

 (n
=5

)
up

r. 
in

 p
os

tn
at

al
 b

ra
in

 (n
=3

)

E
S

C
 (n

=8
)

N
S

C
 (n

=2
)

W
N

T
S

H
H

G
ro

up
3

G
ro

up
4

S
H

H
-c

1
S

H
H

-c
2

S
H

H
-c

3

G
rp

3-
c1

G
rp

3-
c2

G
rp

3-
c3

G
rp

4-
c1

G
rp

4-
c2

G
rp

4-
c3

divergent

intergenic

antisense

Lnc gene type

�2 0 2
mean z-score

Color Key
+
*

signi. upregulated

signi. downregulated

RP11�157P1.4 +
RP11�946L20.2 + * +
AL450992.2 + +
PART1 +
RMST + *

RP11�354E11.2 + + * *

ZFAS1 + * +
RP1�34H18.1 +
LINC01122 +
GAS5 * +
AL592494.5 +
CTD�2554C21.2 *

LINC00665 +
CTC�338M12.9 *

AP001891.1 *

SNORD116�20 +
RP11�453F18__B.1 * *

RP11�541G9.1 ++
RP11�344E13.3 + *

GLYCTK�AS1 * +

Figure 5.31: Annotation of stem-cell-related as well as prenatal- and postnatal-brain-related expression
of 20 lnc genes. The gene RP11-453F18__ B.1 is also known as FIRRE. Genes are ordered by
similar annotations. Left) Lnc gene symbols and their lnc gene type. Middle) Cerebellum-,
brain-, prenatal-, postnatal-, and stem-cell-related expression patterns are split into eight
categories and annotated per lnc gene, as indicated by black rectangles. Cerebellum-
and brain-related expression patterns were identified using BrainSpan expression data
(Method Section 5.4.6.4). The annotation for enriched expression in ESC and NSC derived
from FANTOM CAT (Method Section 5.4.6.4). The number n of lnc genes that were annot-
ated for one of the eight categories is indicated in brackets below. Right) The heatmap
summarises the expression patterns of the lnc genes in MB subgroups and subclusters.
Significant up- or downregulation is indicated. Abbreviations: ESC - Embryonic stem cells;
NSC - neural stem cells; CB - cerebellum; upr. - upregulated; downr. - downregulated;
signi. - significant.
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Figure 5.33.d). In our MB cohort, GLYCTK-AS1 and HES5 showed significant but weak correlation in
non-SHH MBs (rho = 0.31, p = 5.76e-4, n=117; Figure 5.33.e). Among the non-Group 4 subclusters,
only the subcluster SHH-c2, which represents adult SHH MBs, showed an expression of GLYCTK-AS1
comparable to subgroup Group 4 MB. The remaining non-Group 4 subclusters showed a wide range
of expression, and GLYCTK-AS1 was highly expressed only in a fraction of samples (Figure 5.32.a).
Taken together, these data suggest that GLYCTK-AS1 is associated with developmental processes of
neurons/cerebellum and could be expressed in neural progenitors.
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Figure 5.32: Expression profiles of GLYCTK-AS1 and GLYCTK in MB and CB controls. a) GLYCTK-AS1.
b) GLYCTK. Violin plots show expression destitution. 25% , 50% and 75% quantiles are
indicated by horizontal lines. Individual MB samples are shown as bee swarm plots.

Three out of four lnc genes (PART1, AL450992.2, RP11-946L20.2 and RP11-157P1.4) that showed
upregulation in postnatal CB or whole-brain were strongly expressed in the WNT subgroup (Figure
5.31). This pattern could be explained by the reported lasting activation of Wnt signalling in the
postnatal brain regulating synaptic functions [301].

Four (GAS5, LINC01122, ZFAS1 and RP11-354E11.2) out of seven lnc genes that were higher expressed
in prenatal CB or prenatal whole-brain showed significant upregulation in the MYC amplification-
associated subcluster Grp3-c1 (Figure 5.31). The observed expression pattern of these four lnc genes is
potentially similar to the expression pattern of MYC that shows higher expression in the developing
brain and cerebellum, as previously reported [302, 303]. Among these four genes was RP11-354E11.2,
which showed as the only gene seen in Figure 5.31 upregulation in CB in comparison to remaining
brain regions.

Additionally to the BrainSpan data, we checked the expression of these 20 lnc genes in the cerebellum
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Figure 5.33: a) Scatter plot of GLYCTK-AS1 and GLYCTK expression in FANTOM5 CAGE samples. b-e)
Scatter plots of GLYCTK-AS1 and HES5 gene expression in b) prenatal human brain tissues
from BrainSpan, c) all FANTOM5 CAGE samples, d) FANTOM5 CAGE samples that express
both genes, e) ICGC non-SHH MB RNA-seq samples. Colours indicate MB subgroup:
WNT=blue, Group 3 = yellow, Group 4 = green. Spearman correlation coefficient, related
p-value, and the number of samples n are displayed above each plot.

controls of our analysed stranded RNA-seq cohort. Here, 19/20 lnc genes showed clear expression in
stranded RNA-seq samples of pre- or postnatal CB or both. AP001891.1 was only detected in BrainSpan
data in prenatal and infant CB at a low expression level.
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5.3.3.5 Lnc genes described in the literature and their context in medulloblastoma
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Figure 5.34: Annotation of literature knowledge. Related literature is mentioned in the main text. Right
heatmap shows average expression in subgroups and subclusters. Significant up- and
downregulation is indicated. (1) SNHG16 has divergent and antisense coding partners and
shows a weak positive correlation with one antisense partner.

The so-far shown characterisation of the detected differential expressed lnc genes was driven by
data integration and external annotations. In the following part, we will focus on lnc genes that have
been previously described in the literature and the reassessment of their reported functions in the
context of MB.

In order to obtain an overview of how many of the 448 differentially expressed lnc genes have been
mentioned in publications, Ensembl gene identifiers were matched to the PubMed database (Methods
Section 5.4.6.5; database download February 20 2019). Ensembl (v70) identifiers of 194 lnc genes
could be mapped to Entrez gene identifiers. Here, 174 lnc genes mapped to a single and 20 lnc genes
corresponded to at least two Entrez identifiers. Among the 194 mapped lnc genes, 160 genes have been
mentioned in at least one publication (range 1-189 publications). The majority of lnc genes has been
mentioned in a few, up to three, publications (n=91, 57%). Among 48 lnc genes that were mentioned in
at least seven publications, twelve genes were selected for further investigations in the context of MB
using the RNA-seq cohort (Figure 5.34). These twelve lnc genes were selected because of their reported
functions or implications in cancer.

The lnc genes PVT1 and VPS9D1-AS1 have been described to be associated with MYC. As summarised
above (Section 5.1.5, 5.1.3), PVT1 is known to be co-amplified with the upstream-located MYC in MB
and upregulated in those cases, which is in line with the upregulation in Grp3-c1. However, in our
data, PVT1 was upregulated in both WNT and SHH vs Group 4 MBs, indicating a role of PVT1 that is
independent of Grp3-c1 tumours. Kawasaki et al. have shown that VPS9D1-AS1 (alias MYU) is a direct
target of MYC and stabilises the expression of the cell-cycle-promoting gene CDK6 in cooperation with
the RNA binding protein hnRNP-K (gene symbol HNRNPK ) in carcinoma [304]. However, we could
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not find any evidence for an expression correlation between VPS9D1-AS1 and CDK6 in the presence of
a ubiquitous expression of HNRNPK in MB (average subgroup expression between 39 and 50 RPKM)
(Figure A.35.c). In the MB RNA-seq cohort, MYC was generally higher expressed in Group 3 tumours
with additional elevated expression in subcluster Grp3-c1, but VPS9D1-AS1 was upregulated only in
Grp3-c1. Probably additional mechanisms prevent the expression of VPS9D1-AS1 in Grp3-c2 and
Grp3-c3 MBs (Figure A.34 and A.35.a-b).

Four lnc genes (LOXL1-AS1, DANCR, LINC-ROR, and RMST) that we selected based on literature
were upregulated in WNT MBs (Figure 5.34). Among these four lnc genes was LOXL1-AS1. Gao et al.
have reported LOXL1-AS1 overexpression in MB tumours without evaluating subtypes or subclusters.
The authors showed that LOXL1-AS1 promotes cell proliferation and the formation of metastasis in MB
via activation of the PI3K-AKT pathway [305]. Here, the authors knocked down LOXL1-AS1 in MB cell
lines D283 (Group 3/4-classified) and D341 (Group 3-classified) [305, 306]. Besides the upregulation
that we observed in WNT MBs, LOXL1-AS1 was consistently higher expressed in subcluster SHH-c2
and -c3, Grp3-c1 and -c3, and Grp4-c2 compared to normal cerebellum (Figure A.36).

The lnc gene DANCR was described as a bad prognosis factor in different cancer types [307–310].
DANCR is a direct target of MYC and a positive regulator of the Wnt/�-catenin signalling in glioma [309,
310]. Also, MYC is known to be a target of Wnt/�-catenin signalling [311]. The regulation of DANCR via
Wnt-signalling and MYC might explain the high expression DANCR that we found in WNT and Grp3-c1
MB (Figure A.37 and 5.34). However, we observed a significant expression correlation between DANCR
and MYC only in subcluster Grp3-c1 tumours. Additionally, expression patterns across subgroups
indicated regulation of DANCR that might be independent of MYC (Figure A.37.a-b). Overall, our data
suggested MYC as a potential regulator of DANCR in a subset of Group 3 MB excluding Grp3-c3 MB.

The lnc gene LINC-ROR functions as a microRNA sponge and, therefore, belongs to ceRNAs [312].
LINC-ROR is involved in the regulation of different pathways and processes including the TP53 path-
way, EMT, pluripotency and hypoxia, and has been described to act pro-oncogenic in several cancer
types. Only in glioma LINC-ROR has been described as a tumour suppressor [312]. In our MB cohort,
LINC-ROR was almost exclusively expressed in WNT MBs and absent in pre- and postnatal cerebellum
(Figure A.39 and 5.34). A link between upregulation of LINC-ROR and Wnt signalling is supported by
reports in ovarian cancer [313]. However, since we did not see LINC-ROR expression in the normal
cerebellum, the exclusive expression of LINC-ROR in WNT MB could be also linked to the cell-of-origin
of this MB subgroup that is assumed to be outside of the cerebellum in the lower rhombic lip and
developing brainstem, whereas the remaining MB subgroups most likely arise from cell types of the
developing cerebellum [279, 314].

The lnc gene RMST was described as a regulator of neurogenesis and responsive to WNT signalling
in developing forebrain, explaining the upregulation in WNT MBs [315, 316]. In our data, RMST was
highly expressed in WNT MBs. The remaining subtypes showed a high variation in expression (Figure
A.40).

The two divergent lnc genes FEZF1-AS1 and HOTAIRM1 did not show a common expression pattern
among MB subgroups and subclusters, but both genes are described as positive regulators in cis of
the nearby coding gene partner(s) (Figure 5.34). HOTAIRM1 is part of the HOXA gene cluster and is
located in a divergent and antisense position to HOXA1 and HOXA2, respectively. In the analysed
RNA-seq cohort, HOTAIRM1 and several other HOXA genes were upregulated in SHH MBs (Figure
5.34, 5.11). Adult SHH subcluster SHH-c2 showed the highest expression of HOTAIRM1, which is in
line with a previously reported upregulation of HOXA genes in adult SHH MB [214]. Li et al. have
reported that HOTAIRM1 positively regulates HOXA1 in glioblastoma via inhibiting repressive histone
marks and CpG modification in the HOXA1 promoter by binding to DNMT1, DNMT3A, DNMT3A and
EZH2. Here, HOTAIRM1-facilitated HOXA1 upregulation promotes cell proliferation [317]. Wang et
al. [318] reported several mechanisms of how HOTAIRM1 regulates the expression of HOXA genes. In
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the first mechanism, HOTAIRM1 is involved in the dissociation of a sub-TAD that probably facilitates
a silent state of HOXA1-HOXA7. Additionally, HOTAIRM1 is a positive regulator of HOXA1/HOXA2
and a repressive regulator for HOXA4/HOXA5/HOXA6 via modulation of histone modification in the
promoter regions. As emphasised by literature, we observed that HOTAIRM1 showed the strongest
correlation with HOXA1 and HOXA2 in comparison to the remaining HOXA genes in MB (Figure A.41).
HOTAIRM1 also showed a stronger correlation with HOXA3, but Wang et al. reported that HOTAIRM1
has no impact on HOXA3 expression [318]. Our data suggest that the positive regulation of HOXA1 and
HOXA2 by HOTAIRM1 is also valid in MB.

Chen et al. have reported FEZF1-AS1 as a pro-oncogenic factor that is a positive regulator of the
coding partner FEZF1 in carcinoma without describing potential regulatory mechanisms [319]. The
authors also reported that the knockdown of FEZF1-AS1 or FEZF inhibits CRC cell proliferation and
migration. Therefore, the authors speculated that the pro-oncogenic function of FEZF1-AS1 is par-
tially or fully carried out through FEZF1 [319]. In our RNA-seq cohort, the lnc gene FEZF1-AS1 was
upregulated in Group 4, Grp3-c2 and Grp3-c3 MBs (Figure 5.34). FEZF1-AS1 and the coding partner
FEZF were strongly correlated ( rho = 0.94 , p = 1.39e-79, n=164; Figure A.42). These results suggest that
FEZF1-AS1 regulates FEZF1 in cis also in MB. Liu and colleagues published that FEZF1-AS1 negatively
controls the expression of CDKN1A (P21), a regulator of the cell cycle. However, we could not detect a
relevant expression correlation between CDKN1A and FEZF1-AS1 in MB (Figure A.43).

The following four lnc genes, SNHG16, ZFAS1, GAS5 and MEG3, have been frequently described in
the context of cancer (Figure 5.34). In the analysed MB cohort, SNHG16, ZFAS1, and GAS5 were up-
regulated in WNT, SHH and Grp3-c1 tumours, whereas MEG3 displayed an almost reverse expression
profile associated with upregulation in Group 4 tumours.

Current literature suggests SNHG16 as an oncogene in different cancer types [320, 321]. In bladder
cancer, SNHG16 negatively regulates CDKN1A (P21) via binding to PRC2 subunit EZH2 and PRC2-
mediated epigenetically silencing of CDKN1A. In the analysed RNA-seq MB cohort, SNHG16 and
CDKN1A were not significantly correlated (rho = -0.12, p = 1.36e-01; n=164). In non-small cell lung
cancer, SNHG16 acts as ceRNA targeting miR-146a, a microRNA that inhibits proliferation in a lung
cancer cell line (A549) [321]. Moreover, SNHG16 is a transcriptional target of MYC, explaining the high
expression in WNT and Grp3-c1 tumours [322, 323].

We observed upregulation of ZFAS1 in most SHH and Grp3-c1 tumours in comparison to prenatal
cerebellum (Figure A.44). ZFAS1 is well described in the context of cancer; oncogenic functions in-
volve the EMT, NOTCH and p53 pathway [324]. ZFAS1 is a ceRNA targeting miR-150 to increase the
expression of ZEB1, a regulator of EMT [324]. It is also described that ZEB1 is a target of Shh-signalling
and upregulated in SHH MBs (Figure A.46) [325]. In the analysed MB cohort, ZFAS1 and ZEB1 showed
a moderate positive correlation (rho = 0.46, p = 1.01e-09, n=164; Figure A.45). Our data emphasised
that ZFAS1 might regulate ZEB1 expression in addition to Shh-signalling in MB. In gastric cancer, it
is reported that ZFAS1 interacts with EZH2 and LSD1 (alias KDM1A) to downregulate the tumour
suppressors NKD2 and KLF2 epigenetically [326]. In the analysed MB samples, ZFAS1 and NKD2
were moderately negatively correlated (rho = -0.43, p = 1.33e-08, n=164; Figure A.47), but the negative
correlation was more pronounced among non-WNT MBs (rho = -0.57, p < 2e-16, n=149; Figure A.48).
The upregulation of NKD2 in WNT MBs has been reported before (Figure A.49) [218]. NKD2 is induced
via Wnt signalling and acts as an antagonist of this pathway [327]. Potential tumour suppressive
roles of NKD2 in MB have not been studied. Since NKD2 antagonises WNT signalling via interactions
upstream of CTNNB1 and the Wnt pathways is activated via mutation in CTNNB1 in most WNT MB
cases, the antagonistic functions of NKD2 could be eluded in WNT MBs [328]. However, NKD2 might
play tumour suppressive roles in the remaining subgroups. Here, our shown data suggest that ZFAS1
could be a negative regulator of NKD2 in non-WNT MBs.

We observed upregulation of GAS5 in most WNT, SHH, and Grp3-c1 tumours in comparison to
prenatal cerebellum (Figure A.44). The lnc gene GAS5 is mostly described as a tumour suppressor,
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but some studies also reported oncogenic functions [329–332]. GAS5 features several functions in the
context of tumour suppression. For example, GAS5 can act as ceRNA targeting miR-21, a negative
regulator of the tumour suppressor PTEN and PDCD4 [329]. In the analysed MB cohort, GAS5 showed
a significant weak negative (rho = -0.33, p = 1.52e-05, n=164) and moderate positive (rho = 0.45, p =
2.73e-09, n=164) correlation with PTEN and PDCD4, respectively, indicating that GAS5 expression
might has a relevant influence on PDCD4 expression mediated by miR-21 in MB but no influence on
PTEN expression (Figure A.51, A.50). Previous reports also show that GAS5 interacts with and stabilises
YBX1 protein, a transactivator of CDKN1A (P21) [333]. However, we could find a relevant positive
correlation between GAS5 and CDKN1A while YBX1 was ubiquitously expressed in MB (rho = 0.21, p =
6.38e-03, n=164; Figure A.52 and A.53).

a)

b)

SHH-c1
SHH-c2
SHH-c3

Grp3-c1
Grp3-c2
Grp3-c3

WNT
SHH
Group 3
Group 4

Grp4-c1
Grp4-c2
Grp4-c3

Source Signature p-value FDR
Reactome Translation 1.84e-11 1.74e-08
PID Validated targetsof C-MYC transcriptional activation 5.04e-09 1.19e-06
Reactome Metabolismof nucleotides 4.00e-05 2.10e-03

SNHG16
ZFAS1

GAS5GAS5

DANCR

PVT1

Figure 5.35: Co-expression cluster containing ZFAS1, GAS5, DANCR, PVT1 and SNHG16. a) The heat-
map depicts the co-expression cluster comprising 609 coding genes, 50 lnc genes, and 573
pseudo-genes across 164 MB samples. Colours above the heatmap indicate the subgroup
and subcluster of a sample. b) Selection of processes that were enriched in the genes of
the co-expression cluster (hypergeometric test, Method Section 5.4.4.4).

Among the twelve just-described lnc genes, the five lnc genes PVT1, SNHG16, GAS5, ZFAS1, and
DANCR are probably the most studied ones in the context of cancer. In our MB cohort, these five
lnc genes showed a similar gene expression pattern defined by upregulation in WNT, SHH, and
Grp3-c1 MBs and were part of a common co-expression cluster (hereinafter called CLICK cluster
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Figure 5.36: Expression profile of MYC, MYCN, and MYCL in MB subgroups. Violin plots show expres-
sion destitution. 25% , 50% and 75% quantiles are indicated by horizontal lines. Individual
MB samples are shown as bee swarm plots.

1; acronym: Cc1), identified via the algorithm CLICK (Figure 5.34, 5.35.a; Method Section 5.4.6.6).
GAS5 and ZFAS1 showed the strongest pairwise correlation among these five lnc genes (rho=0.87, p <
2e-16, n=164; Figure A.54). Genes in Cc1 were functionally enriched for translation, metabolism of
nucleotides, and transcriptional c-MYC targets; translation showed the strongest enrichment (Figure
5.35.b). The hallmark gene sets from MSigDB supported an enrichment for transcriptional c-MYC
targets in Cc1 additionally (HALLMARK MYC TARGETS V1: FDR=1.43e-16; HALLMARK MYC TARGETS
V2: FDR=4.29e-16) [334]. Kool et al. described a functional enrichment for protein synthesis in WNT-,
SHH- and Group 3-matching MB subgroups, which agrees with the expression pattern of the co-
expression cluster Cc1.

The enrichment for c-MYC targets in Cc1 provided a strong link between Cc1 and MYC-dependent
gene regulation. As mentioned above, the lnc genes SNHG16, PVT1, and DANCR are MYC targets.
Additionally, MYC is a well-known regulator of translational processes [335] that were enriched in
Cc1. Surprisingly, MYC itself was not part of Cc1. However, it has been shown that members of the
MYC gene family share a high fraction of transcriptional targets [336]. Therefore, we assumed that
not only MYC but other family members could be additionally involved in the regulation of MYC
targets in Cc1. All three family members, MYC (alias c-MYC), MYCN and MYCL, have been described
to be involved in the formation of MB [269]. In our MB cohort, MYC was upregulated in WNT and
Group 3 MBs and showed a different expression pattern than MYCN and MYCL that were upregulated
in WNT and SHH MBs (Figure 5.36), which is in line with previous reports [269]. Overlaying gene
expression levels of MYC family members with the mean-pattern of Cc1 indicate that the expression
of all three TFs commonly contributed to the MYC target regulation in Cc1 (mean-pattern relate to
the average relative expression of Cc1 in tumour samples; see Methods Section 5.4.6.6). Subgroup-
specific upregulation of individual MYC family genes was correlated with upregulation of Cc1 in the
respective subgroup. However, none of the three MYC family genes alone showed a strong correlation
with the Cc1 mean-pattern across the whole cohort (Figure 5.37.a,d,g). Here, we observed a strong
correlation with the Cc1 mean-pattern for MYC across non-SHH MBs and for MYCN and MYCL across
non-Group 3 MBs, where MYCN showed a stronger correlation across non-Group 3 MBs compared
to MYCL (Figure 5.37.b,f,i). Interestingly, the summed scaled expression of the three members of the
MYC gene family displayed the strongest correlation with the Cc1 mean-pattern across the whole
MB cohort (Figure 5.38.c). Here, two- and three-genes combinations of MYC family genes showed
different strength of correlation with Cc1 mean-pattern in the following order: MYC+MYCN+MYCL
> MYC+MYCN> MYC+MYCL > MYCN+MYCL (Figure 5.38.a-d). The summed MYCN and MYCL
expression showed a considerable high correlation with Cc1 mean-pattern across the whole cohort,
but in fact, this correlation was limited to non-Group 3 MBs 5.38.d-e). Additionally, MYCN and MYCL
alone showed a weaker correlation with Cc1 mean-pattern in non-Group 3 MBs compared to the
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Figure 5.37: Comparison of Cc1 mean-pattern to MYC, MYCN, and MYCL expression in PedBrain MB
samples. a-c) MYC expression vs. Cc1 mean-pattern. d-f ) MYCN expression vs. Cc1 mean-
pattern. g-i) MYCL expression vs. Cc1 mean-pattern. a,d,g) whole MB cohort. b,e,h)
non-SHH MB samples. c,f,i) non-Group 3 MB samples. Colours indicate MB subgroups:
WNT=blue, SHH=red, Group 3 = yellow, Group 4 = green. Spearman correlation coefficient,
related p-value, and the number of samples n are displayed above each plot.

summed expression of both genes (Figure 5.37.f,i and 5.38.e).
Additionally to the common regulation of Cc1 by MYC family genes, Cc1 appeared to be linked to

certain protein-signalling in MB. As summarised above in Section 5.1.3, Zomerman et al. reported a
protein-signalling cluster (cluster-1) associated with an MYC-like kinase activity profile and protein
synthesis that was active in SHH and a fraction of Group 3 MBs [220]; this paper did not include WNT
MBs. The authors also provided an expression signature of 116 genes that were upregulated in MBs
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Figure 5.38: Comparison of Cc1 mean-pattern to the summed normalised expression of MYC, MYCN,
and MYCL in PedBrain MB samples. Expression values were gene-wise log-transformed
and scaled between 0 and 1. Normalised expression values for MYC family genes were
summed per patient. Summed expression of a) MYC and MYCL, b) MYC and MYCN,
c) MYC, MYCN, and MYCL, and d-e) MYCN and MYCL. a-d) whole PedBrain cohort. e)
non-Group 3 samples. Colours indicate MB subgroups: WNT=blue, SHH=red, Group
3 = yellow, Group 4 = green. Spearman correlation coefficient, related p-value, and the
number of samples n are displayed above each plot.

associated with protein-signalling cluster-1. We compared this signature to genes of Cc1. 92/116
genes mapped to the used Ensembl version, 78/92 genes were expressed in the ICGC MB cohort,
59/78 genes were part of the CLICK input (10132 genes), and 38/59 genes were part of Cc1. Applying
a hypergeometric test and considering the CLICK input genes as background revealed that Cc1 was
significantly enriched for genes upregulated in protein-signalling cluster-1 (p = 2.90e-22; Method
Section 5.4.4.4). Overall, our analysis indicates that high expression of Cc1 resembles MBs with active
cluster-1 protein-signalling as reported by Zomerman et al..

The shown data and related literature illustrated the various aspects of differential expressed lnc
genes in MB. These aspects range from development associated expression pattern, pathways asso-
ciations, and regulatory functions in cis and trans. Our co-expression analysis revealed the cluster
Cc1 that included, among others, the lnc genes PVT1, SNHG16, GAS5, ZFAS1, and DANCR, all of them
frequently described in cancer. Analyses showed that Cc1 is likely to be regulated by MYC family genes
and is associated with protein translation processes and a distinct protein-signalling cluster.

Nevertheless, among the lnc genes that are well studied in the context of cancer and that were
detected as differentially expressed in MB, was also the lnc tumour suppressor MEG3 (Figure 5.34) [52].
The next three sections present the impact of MEG3 in MB in detail.
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5.3.3.6 Non-coding tumour suppressor MEG3 as a prognostic biomarker in
medulloblastoma
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Figure 5.39: MEG3 expression in MB. Violin plots show expression destitution. 25% , 50% and 75%
quantiles are indicated by horizontal lines. Individual MB samples are shown as bee
swarm plots. Shown FDR values relate to the differential expression among subgroups,
subclusters of SHH MBs, and subclusters of Group 4 MBs.

Besides the biological role of lnc genes in MB, the evaluation of a correlation between lnc gene
expression and clinical outcome was also of interest to understand potential clinical implications of lnc
genes in MB. On the ICGC PedBrain discovery cohort, we performed systematic and gene-wise analyses
for associations between gene expression and overall survival (OS). Here, tumour samples were split
into low and high expression groups using an expression cutoff relating to an optimised separation
of survival between the two groups (p < 0.05, Method Section 5.4.6.7). Here, a subsampling-based
method was used to avoid overfitting (Method Section 5.4.6.7). We detected 82 lnc genes that showed
a significant association with OS. However, only eight were measured on an external microarray MB
cohort, published by Cavalli et al. [221], that we used for validation. (The Cavalli et al. cohort was
used for survival analyses and validation due to a large cohort size and a long patient follow up.)
The OS association could be validated on the external MB cohort for 2/8 lnc genes including the
intergenic MEG3 and the divergent BAIAP2-AS1. However, BAIAP2-AS1 showed a weaker association
with OS compared to MEG3. Additionally, BAIAP2-AS1 was also strongly correlated with its divergent
coding partner BAIAP2 (rho= 0.75), which would complicate an expression-based analysis without
functional experiments 1. For this reason and the well-described tumour-suppressive function of
MEG3, we investigated MEG3 expression as a prognostic marker of survival in MB and potential
biological mechanisms behind this association [52].

In our MB cohort, MEG3 was significantly differentially expressed between subgroups and among
subclusters of SHH and Group 4 tumours (Figure 5.39a). Group 4 and SHH MBs showed the highest
and second highest expression of MEG3 among main subgroups, respectively. Among subclusters
within the subgroups Group 4 and SHH, MEG3 was upregulated in SHH-c1 and Grp4-c1. MEG3 showed
the same expression pattern on the external validation cohort (Figure A.55). Additionally, MEG3 was
downregulated in MB compared to the normal cerebellum, as previously reported [337]. Only Grp4-c1
tumours showed MEG3 expression comparable to normal cerebellum (Figure 5.39a).

1MEG3 was annotated as an antisense lnc gene that is positively correlated with its coding partner. However, newer Ensembl
gene annotations (Ensembl v77 or higher) do not include this coding antisense gene that originally exactly overlapped
with two exons of MEG3 on the opposite strand, indicating this coding gene was annotated due to a technical artefact.
Therefore, MEG3 represents an intergenic lnc gene.
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Figure 5.40: MEG3 expression is prognostic of survival in MB. Kaplan-Meier curves show OS in MEG3-
low- and -high-expressing MBs. MB samples that showed an MEG3 expression ∏ 60th
percentile of the particular cohort were considered as high-expressing samples. a) ICGC
PedBrain MB cohort. b) External validation cohort published by Cavalli et al. [221]. Shown
p-value and hazard ratio relates to differences in survival between groups based on Cox
regression (Methods section 5.4.6.7). Hazard ratio (HR) indicates risk comparing low-
expressing vs. high-expressing samples. 95% confidence interval (CI) of HR is shown in
brackets.

On the RNA-seq discovery and external validation cohort, MEG3 expression was prognostic of OS in
MB, where high MEG3 expression was associated with a better outcome (Figure 5.40a-b). The robustly
optimised expression cutoff, which we determined for the association between survival and MEG3
expression using resampling, was around the 60th percentile of MEG3 expression in our discovery and
the external validation cohort. The top three cutoff solutions were the 60th, 59th and 58th percentile
in the discovery and the 62nd, 61st and 60th in the validation cohort. We used the 60th percentile of
MEG3 expression as an optimised cutoff for both cohorts since it was the only solution that overlapped
(equal to 4.48 RPKM in RNA-seq cohort). The external MB microarray cohort offered a more prolonged
follow-up that allowed an estimation of the hazard ratio and the 5-years OS between MEG3-high-
and low-expressing MBs (Figure 5.40b). The Kaplan-Meier curves showed an early separation, and
the hazard ratio indicated a 2.1 times higher risk for MEG3 low-expressing MBs to die of this disease
(Figure 5.40a-b).

The larger external validation cohort was used to evaluate correlations between MEG3 expression
and overall survival in individual MB subgroups and subclusters taking the same MEG3 expression
value as cutoff as for the whole cohort (60th percentile). MB samples of the external cohort were
classified into subclusters as described above (Section 5.3.1.2). The fractions of MEG3-high-expressing
samples in the different subgroups of the external cohort followed the observed expression patterns
of the discovery cohort (Figure 5.39). 91/172 samples in SHH, 130/164 samples in Group 4, 20/113
samples in Group 3, and 4/64 samples in WNT showed high MEG3 expression. MEG3 expression was
able to predict OS in Group 4 and SHH but not in WNT and Group 3 MBs (Figure 5.41). However, the
good outcome of WNT MBs with only 2/64 death cases did not provide data for meaningful survival
analyses.

The observed significant association between OS and MEG3 expression in the subgroups SHH and
Group 4 varied in strength between or did not hold up in their subclusters. Among the SHH subclusters,
only SHH-c1 showed a significant association. Here, MEG3 expression stratified SHH-c1 cases into two
groups displaying remarkably favourable in MEG3-high-expressing cases or miserable outcome with
rapid death within few years in MEG3-low-expressing cases (Figure 5.42). Since our defined SHH-c1
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Figure 5.41: Association between MEG3 expression overall survival in MB subgroups. Kaplan-Meier
curves show OS in MEG3-low- and -high-expressing MBs. The external cohort published
by Cavalli et al. is shown [221]. Shown p-value and hazard ratio relates to differences
in survival between groups based on Cox regression (Methods section 5.4.6.7). Hazard
ratio (HR) indicates risk comparing low-expressing vs. high-expressing samples. 95%
confidence interval (CI) of HR is shown in brackets. a) WNT. b) SHH. c) Group 3. d) Group
4.

subcluster matched to two SHH subtypes of Cavalli et al. (SHH � and SHH �), the sample stratification
based on MEG3 expression was repeated for the SHH subtypes of the Cavalli study. The Kaplan-Meier
curves of the SHH subtypes looked similar to their related subclusters, and MEG3 expression was
able to stratify OS in SHH � and SHH � MB independently and combined (Figure A.56). Among our
subclusters of Group 4 MBs, MEG3 expression was significantly associated with OS in Grp4-c2 and
Grp4-c3 tumours (Figure 5.43). MEG3-high-expressing Grp4-c3 cases had a remarkably favourable
outcome (Figure 5.43.c). MEG3-low-expressing Grp4-c2 cases showed the worst 5-years OS of 59%
among MEG3-low-expressing and -high-expressing tumours of the Group 4 subclusters (Figure 5.43.b).
Grp4-c2 MEG3-high-expressing samples had a 5-years OS that was similar to Grp4-c1 and Grp4-c3
MEG3-low-expressing samples at around 75%, which is the expected 5-years OS for Group 4 tumours
[83].

Interestingly, the subclusters of SHH and Group 4 MB (SHH-c1, Grp4-c2, and Grp4-c3) that could
be stratified via MEG3 expression showed a certain expression distribution. Here, a larger number
of the samples per subcluster was split between a MEG3 expression level that was within/close to
the normal cerebellum or below the expression range of the normal cerebellum (whole expression
range: 7.66-113.37 RPKM; median: 15.69 RPKM), respectively (Figure 5.39a). In contrast, tumours of
subgroups/subclusters that could not be stratified did show this clear split. Here, expression levels
were either mostly below (WNT, SHH-c2, SHH-c3, and Group 3 subclusters) or within (Grp4-c1)
the expression range of the normal cerebellum (Figure 5.39a). These results indicate that a wide
range of MEG3 expression that is split between normal expression and downregulation allows patient
stratification of certain MB subclusters.
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Taken together, our presented data showed that MEG3 expression is a prognostic marker in MB,
especially in SHH-c1 MBs, Grp4-c2, and Grp4-c3 MBs. MEG3-highly-expressing SHH-c1 and Grp4-c3
cases stood out due to a favourable prognosis. The shown results emphasise that MEG3 acts as a
non-coding tumour suppressor in MB. In order to understand the observed correlation between MEG3
expression and OS in MB, we investigated the impact of MEG3 expression on the tumour biology of
MB.
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Figure 5.42: MEG3 expression is prognostic of survival in SHH subclusters. Kaplan-Meier curves show
OS in MEG3-low- and -high-expressing MBs. The shown cohort is published by Cavalli
et al. [221]. Shown p-value and hazard ratio relates to differences in survival between
groups based on Cox regression (Methods section 5.4.6.7). Hazard ratio (HR) indicates risk
comparing low-expressing vs. high-expressing MB samples. 95% confidence interval (CI)
of HR is shown in brackets. a) SHH-c1. b) SHH-c2. c) SHH-c3.
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Figure 5.43: MEG3 expression is prognostic of survival in Group 4 subclusters. Kaplan-Meier curves
show OS in MEG3-low- and -high-expressing MBs. The shown cohort is published by
Cavalli et al. [221]. Shown p-value and hazard ratio relates to differences in survival
between groups based on Cox regression (Methods section 5.4.6.7). Hazard ratio (HR)
indicates risk comparing low-expressing vs. high-expressing MB samples. 95% confidence
interval (CI) of HR is shown in brackets. a) Grp4-c1. b) Grp4-c2. c) Grp4-c3.

5.3.3.7 Identifying genes correlated with MEG3 expression in medulloblastoma

As previously described and summarised above (Section 2.5), MEG3 acts as a tumour suppressor via
multiple mechanisms. It can regulate gene expression by binding to DNA via triplex formation and
cooperation with EZH2/PRC2 or as ceRNA (Section 2.5) [43, 51, 52, 338]. Therefore, we aimed for the
identification of biological processes that are associated with MEG3 expression in MB and potentially
explain potential tumour-suppressive functions of MEG3 in this disease. Here, we performed a gene
expression correlation analysis on the PedBrain MB cohort using Spearman correlation to identify
genes that were correlated with MEG3 expression (|rho| ∏ 0.3, FDR ∑ 0.01; Methods Section 5.4.6.9).
This analysis was performed on the whole cohort as well as subgroup-wise on SHH, Group 3 and
Group 4 MBs because of the subgroup-dependent association between MEG3 expression and OS. The
sample size of the WNT MBs (n=15) was too small to perform a robust expression correlation analysis.

Concentrating on results that were obtained from correlation analyses using the whole cohort,
manual inspections of the results revealed spurious correlations. Here, we assumed the MB subgroups
as a confounding factor, where spurious correlations were caused by subgroup-specific expression pro-
files that were shared between MEG3 and a second gene. In order to filter out the spurious correlations,
we applied a heuristic approach that was based on the assumption that non-spurious correlations
are stable in at least one subgroup alone or after leaving out one of the four subgroups (Methods
section 5.4.6.9). This heuristic approach was evaluated by comparing supposed spurious and non-
spurious expression correlations on the basis of Spearman correlation coefficient rho and the impact
of the subgroups on gene expression. Here, likelihood ratios (LRs), which derived from the differ-
ential gene expression analysis between subgroups (Section 5.3.2.1; Methods Section 5.4.4.3), were
taken as a gene-wise measure of subgroup-dependent expression. In the cohort-wide co-expression
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Figure 5.44: Evaluation of filtered spurious correlations in gene expression correlation analysis. a)
Boxplots show the distribution of the absolute Spearman’s rank correlation coefficient
rho of genes that are significantly correlated with MEG3 expression. b) Boxplots show the
distribution of gene-wise log-likelihood ratios (LR), indicating the strength of subgroup-
dependent expression. The grey dashed line indicates the LR value where an FDR of
0.05 was reached. a-b) The two boxplots show genes related to spurious or non-spurious
correlations. The shown p-values are based on a Wilcoxon rank-sum test.

analysis, 3798 coding genes were detected as significantly positively or negatively correlated with
MEG3 expression. A subset of 253 genes with supposed spurious correlations was identified showing
significantly lower correlation coefficients as well as significantly higher likelihood ratios compared to
genes with non-spurious correlations (Figure 5.44; Wilcoxon rank-sum test). The higher an LR value,
the more gene expression depends on the subgroups. The opposing relationship between correlation
coefficients and LRs suggested that the measured association of spurious correlations were mostly
explained by subgroup-dependent expression as a confounding factor. These results indicate that
the chosen heuristic approach identified potentially real spurious correlations that were caused by
subgroup-dependent expression.

Results that derived from subgroup-wise correlation analyses using SHH, Group 3 or Group 4 MBs
were not filtered for spurious correlations. Of course, also the subclusters could influence the correla-
tion analysis as a confounding factor. However, due to the smaller sample size of the subclusters,we
expected that spurious correlations were less frequent. Additionally, the chosen heuristic approach
has limitations in terms of sample size, as described in the methods part (Method Section 5.4.6.9).

Overall, 3546, 2312, 533 and 2142 genes were significantly correlated with MEG3 expression across
the whole cohort, SHH, Group 3 or Group 4 MBs, respectively. Based on these four correlation gene
sets, we identified biological processes and pathways that are associated with MEG3 expression in MB.

5.3.3.8 MEG3 as a regulator of proliferation and the TGF� pathway in medulloblastoma

We concentrated on genes, pathways and biological processes that were negatively correlated with
MEG3 expression to understand the potential tumour-suppressive function of MEG3 in MB. We chose
this focus since positively correlated genes showed a neuronal/developmental signature that was
similar to Group 4-specific genes (Table 5.4) and negatively correlated genes pointed into directions
that potentially explain tumour-suppressive functions of MEG3 in MB, as detailed described below.

We identified the lowest number of negatively correlated genes (n=144) in Group 3 MBs in compar-
ison to the whole cohort, and SHH and Group 4 MBs with 1938, 1459 and 1091 genes, respectively

114



5.3 Results

Table 5.4: Functional gene signatures positively associated with MEG3 expression. Genes positively
correlated with MEG3 expression (1607 genes) were tested for overrepresented gene signa-
tures applying a hypergeometric test. Co-expression analyses were performed using the
whole cohort (n=164). Methods section 5.4.6.9 and 5.4.6.10.

Source Signature p-value FDR
Reactome Neuronal System 7.81e-11 4.64e-09
Reactome Developmental Biology 9.96e-06 1.71e-05

(Figure 5.45.a). In order to identify putative direct transcriptional targets among the negatively correl-
ated genes, we integrated in silico predicted MEG3 DNA binding sites (BS) into the analysis. The PWM
of the binding motif was built on MEG3 ChOP-seq data published by Mondal et al. (Methods Section
5.4.6.8). We obtained a PWM that comprised a GA-rich 25-nucleotide DNA binding motif, which is in
line with previous publications [43, 339]. A gene was considered as a putative transcriptional target
when its promoter or a regulating enhancer carried a MEG3 binding site. Enhancer-gene pairs in MB
were taken from Lin et al. [218]. Among the negatively correlated genes, a minority was associated
with a MEG3 binding site and ranged from 31-336 genes per gene set (Figure 5.45a).

We performed an overrepresentation analysis to identify biological processes and pathways that
were enriched in the four sets of negatively correlated genes (whole cohort, SHH, Group 3, and Group
4) and their subsets of MEG3-BS-associated genes. The overrepresentation analysis was based on
a hypergeometric test using gene signatures from KEGG, Reactome, WikiPathway and PID, which
were downloaded from ConsensusPathDB (Methods Section 5.4.4.4) [340–344]. The reason for the
integration of multiple pathway databases was to prove the reliability of the detected enrichments. We
detected a strong enrichment for cell cycle processes among the genes that were negatively correlated
across the cohort, SHH MBs, and Group 4 MBs. Here, the strongest enrichment was detected for the
mitotic phase and the cell-cycle-related FOXM1 pathway [345, 346] (Figure 5.45.b). Cell-cycle-related
processes were weakly or non-enrichment in the Group 3 gene set. Among MEG3-BS-associated genes,
a similar enrichment pattern was seen for cell-cycle-related processes among the four gene sets (Figure
5.45.b). Enrichments for the TGF� pathway gained strength in MEG3-BS-associated genes and were
present in the cohort, SHH, and Group 4 gene set with Group 4 showing the strongest enrichment.

We compared the overlap between the sets of genes that were negatively correlated with MEG3
expression. This comparison showed that the fractions of genes exclusively detected within a set were
similar and ranged between 34-36% per gene set (Figure 5.45c). The Group 3 gene set showed a similar
frequency of overlapping genes compared to the remaining three gene sets. Twenty-three genes were
in common between all four gene sets, but 13/23 genes belonged to the family of histone genes (Figure
5.45c). The expression of many histone genes was reported to be cell-cycle-dependent and, therefore,
the genes that were detected in all four correlation gene sets probably relate to cell cycle processes
[347]. Among others, the correlation gene sets contained the genes CDK1, CCNB1, MYC, and TGFBR1,
which were of interest regarding the enriched pathways and processes (Figure 5.45c). These four genes
also carried a MEG3 BS in a promoter or associated enhancer.

MEG3 was moderately negatively correlated with CDK1 and CCNB1 across the MB cohort (Figure
5.46a-b). However, the negative correlation with CDK1 and CCNB1 was stronger collectively in SHH and
Group 4 cases (Figure 5.46a-b). CDK1 and CCNB1 were expressed in all MB subgroups and subclusters,
whereby CCNB1 was higher expressed and showed more variation compared to CDK1 (Figure A.57,
A.58). Overall, the strong negative correlation with CDK1 and CCNB1 in SHH and Group 4 MBs and
the predicted MEG3 BS in promoter/enhancer regions indicate the MEG3 negatively regulates the
expression of CDK1 and CCNB1 in these two subgroups. The shown results substantiate the observed
negative association between MEG3 expression and mitotic cell cycle since CDK1 and CCNB1 genes
are important regulators of the cell cycle during G2-M progression [348, 349].
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Figure 5.45: Genes and pathways negatively correlated with MEG3 expression in MB. a) The stacked bar
plots show the total number of genes that were negatively correlated with MEG3 expression
and the number of genes associated with and without MEG3 BS, as indicated by the legend
(Method Section 5.4.6.8, 5.4.6.9). Each bar relates to one gene set that was identified across
the whole MB PedBrain cohort, SHH MBs, Group 3 MBs or Group 4 MBs. b) Heatmap
visualises the enrichment of selected biological processes and pathways among genes
that were negatively correlated with MEG3 expression. The enrichment is given by the
FDR of the applied hypergeometric test (Methods Section 5.4.6.10). Left heatmap: Genes
that were negatively correlated with MEG3 expression across the whole cohort, SHH MBs,
Group 3 MBs, or Group 4 MBs, as shown in panel a). Right heatmap: Subset of genes that
were negatively correlated with MEG3 expression and were associated with a MEG3 BS, as
shown in panel a). c) The Venn diagram visualises the overlap of the four correlation gene
sets that are shown in panel a). Positions of selected genes in the Venn diagram are given
by the capital letters A-C in the brackets.
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Figure 5.46: MEG3 is negatively correlated with a) CDK1, b) CCNB1, and c) MYC. Scatter plots show
left) whole cohort, right SHH and Group 4 samples or Group 4 samples only. Colours
indicate subgroups: WNT=blue, SHH=red, Group 3=yellow, Group 4=green. Spearman
correlation coefficient, related p-value, and the number of samples n are displayed above
each plot.

The oncogene MYC showed a moderate correlation across the cohort and Group 4 MBs, respectively,
but the correlation was stronger across Group 4 MBs (Figure 5.46.c). MYC was also differentially
expressed among Group 4 subclusters (FDR = 9.51e-05) with higher average expression and wider
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expression range in the Grp4-c3 subcluster compared to Grp4-c1 and Grp4-c2 (Figure A.59). The
observed negative correlation with MYC, the MEG3 BS, and the wide expression range of MYC in
Grp4-c3 cases indicate that MEG3 could be predictive of survival in Grp4-c3 cases via regulating MYC.

We detected that the Transforming Growth Factor Beta Receptor 1 (TGFBR1), a receptor of the
cancer-relevant TGF� pathway [350], was expressed in all MB subgroups with lower expression in
Grp4-c1 among Group 4 subclusters. TGFBR1 was negatively correlated with MEG3 expression across
the cohort, SHH MBs, and Group 4 MBs (Figure 5.47a-b). Here, the negative expression correlation
between MEG3 and TGFBR1 was the most pronounced in Group 4. We validated that the significant
negative correlation on the external MB cohort (rho = -0.43 , p = 1.456e-35, n=763), SHH MBs (rho
= -0.17, p = 1.073e-02, n=223), and Group 4 MBs (rho = -0.36, p = 3.205e-11, n=326). Here, the bigger
cohort size revealed a significant negative correlation also in WNT MBs (rho = -0.33, p = 5.543e-03,
n=70) (Figure A.60). Group 3 MBs showed no significant correlation in both cohorts (Figure 5.47b and
A.60.d). The significant but weaker negative correlation values between MEG3 and TGFBR1 on the
external microarray cohort could originate from the smaller dynamic range of expression microarrays
compared to RNA-seq. Lin et al. have reported an intragenic enhancer of TGFBR1 that interacts with
the TGFBR1 promoter and regulates TGFBR1 expression in MB [218]. We found that this intragenic
enhancer carried an in silico predicted MEG3 BS region that spanned 39 bps (GA-rich, reverse strand)
and contained six overlapping MEG3 binding sides (Figure 5.47c). (The MEG3 binding motif was 25 bps
long and, therefore, fitted several times in the 39 bps long region.) To evaluate the regulatory strength
of MEG3 on TGFBR1 expression, we utilised our inferred GRN of the main subgroups (Section 5.3.2.2
and 5.3.2). Based on the GENIE3-derived interaction weights, the six TFs that showed the highest
interaction weights with TGFBR1 were compared, considering MEG3 as a TF. Here, MEG3 showed
clearly the strongest interaction weight among the top six TFs. MYC showed the second-highest
interaction weight but was positively correlated with TGFBR1 expression. MYC was significantly
positively correlated with TGFBR1 in Group 3 MB (rho = 0.39, p = 0.0154, n=39), but not in SHH and
Group 4 MBs (rho = 0.15, p = 0.12; n=110; Figure A.61, A.62). The enhancer that carried a MEG3 binding
site in MB was different from the reported enhancer that carries a MEG3 BS and regulates TGFBR1
expression in breast cancer (as introduced above in Section 2.5). However, in MB, MEG3 could regulate
TGFBR1 through a different enhancer since the results presented above provide a strong support.
The negative regulation of TGFBR1 by MEG3 might provide a direct link for the negative association
between MEG3 expression and TGF� pathway enrichments that we observed in MB (Figure 5.45.b).

As summarised above in Section 2.5, MEG3 can be regulated through the DNA methylation of the
IG- and MEG3-DMR since MEG3 is expressed from parentally imprinted region [58]. Using DNA
methylation array data of the ICGC PedBrain cohort (n=155), we calculated average methylation
level of the MEG3-DMR across the 33 covert CpGs of this DMR; the IG-DMR was not covered by the
array (Methods Section 5.4.6.11). The average methylation level at the MEG3-DMR was significantly
differentially methylated between the MB subgroups (Figure 5.48.a). An intermediated methylation
level around 0.5 is expected for a parentally imprinted locus because only one of the two alleles is
methylated [58, 351]. In MB, the median methylation level of the MEG3-DMR was 0.497 and 0.540
in Group 3 and 4 MB, respectively, and 0.611 and 0.670 in WNT and SHH MB, respectively (Figure
5.48.a). We observed the most robust preservation of the MEG3-DMR imprinting in Group 4 since the
methylation levels in Group 4 were tightly distributed around the median of 0.540. Group 3 MBs showed
a broader distribution and the most frequent hypomethylation in a subset of samples. WNT and SHH
MB showed a trend for hypermethylation. However, MEG3 expression and MEG3-DMR methylation
level were not correlated in MB (Figure 5.48.b). Our observation is in line with a previous publication
in the context of meningioma (a tumour of the meninges), where Zhang and colleagues concluded that
mechanisms additional to DNA methylation contribute to the transcriptional regulation of MEG3 [62].

Taken together, the pathways and biological processes that we found to be negatively correlated with
MEG3 expression might explain the discovered association between MEG3 expression and OS in SHH
and Group 4 MB, including the subgroup-dependent associations. A strong negative correlation with
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MYC TGFBR1 0.0016 0.41
TAL2 TGFBR1 0.0016 0.47
BLM TGFBR1 0.0016 0.37

CAMTA2 TGFBR1 0.0015 -0.16
KLF16 TGFBR1 0.0014 0.36
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Figure 5.47: MEG3 expression is a potential negative regulator of TGFBR1. a) Violin plots show ex-
pression profile of TGFBR1 in ICGC PedBrain MBs. 25% , 50% and 75% quantiles are
indicated by horizontal lines. Individual MB samples are shown as bee swarm plots. b)
Scatter plots show expression of MEG3 and TGFBR1 across all PedBrain MB samples and
across samples of each subgroup individually. Colours relate to panel a). Spearman cor-
relation coefficient, related p-value, and number of samples n is displayed above each
plot. c) Schematic of the TGFBR1 locus. The location of the intronic enhancer (blue) and
the enhancer-overlapping MEG3 binding site (BS) region (purple) are highlighted, and
coordinates are given in matching colours. Different transcripts are shown. Black boxes
indicate exons. Arrows show the direction of transcription. d) GENIE3-inferred interaction
weights between TGFBR1 and the six top-ranked regulators. 119
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mitotic cell cycle processes and the essential cell-cycle-controlling genes CDK1 and CCNB1 indicated
that MEG3 could inhibit proliferation also in MB. Negative regulation of MYC and the TGF� pathway
could be at least in Group 4 an additional mechanism of how MEG3 acts as a tumour suppressor in MB.
The previous Sections showed in detail the expression pattern of MEG3 in MB. However, understanding
the expression pattern of MEG3 in normal cerebellum during development and in adults could bring
additional insights into the biological role of MEG3 in MB.

a) b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WNT SHH Group 3 Group 4

�

�

�

�

av
er

ag
e 
M
EG

3�
D

M
R

 m
et

hy
la

tio
n 

[b
et

a 
va

lu
es

]

rho = 0.04 (p = 0.662; n=155)

0.0 0.2 0.4 0.6 0.8 1.0

�2
0

2
4

6

average MEG3�DMR methylation [beta values]

M
EG

3
[lo

g 2
(R

P
K

M
)]

Figure 5.48: Methylation of MEG3-DMR in MB subgroups. 155 MB samples of the ICGC PedBrain
cohort with matching DNA methylation and RNA-seq data are shown. a) Violin plots show
average methylation levels across 33 CpG sites at the MEG3-DMR. The MEG3-DMR is
significantly differentially methylated between MB subgroups (p = 1.55e-09, F-test). Upper
and lower edge of black boxes indicate 25% and %75 quantile. White dot indicates the
median. b) Scatter plot of average MEG3-DMR methylation levels and MEG3 expression.
Colours of data points indicate subgroups, as shown in panel a). See Method Section
5.4.6.11.

5.3.3.9 MEG3 expression in normal brain and cerebellum

We depicted the expression of MEG3 in the cerebellum of the human and developing mice. MEG3 was
lower expressed in prenatal vs. postnatal human cerebellum and non-cerebellum brain (Figure 5.49a).
However, MEG3 showed higher expression in pre- and postnatal CB compared to non-cerebellum
brain tissues (Figure 5.49a). ISH in E14.5 mouse, obtained from the gene expression atlas GenePaint,
showed clear expression of Meg3 across the CNS with absent expression in the ventricular zone of
the neocortex, midbrain and cerebellum (Figure 5.49.b)[352]. In E14.5 murine cerebellum, Meg3 was
expressed in the postmitotic differentiating and NT zone (Section 5.1.2). The ISH indicated that Meg3
is expressed in postmitotic neurons but not in progenitor cells of the cerebellum, which is supported
by previously published Single-cell RNA-seq of the mouse brain [48].

We detected that the strong negative expression correlation between MEG3 and TGFBR1 in MB was
also present in human CB across pre- and postnatal stages (Figure 5.50.a). Integrating all available
brain tissues in BrainSpan, the MEG3-TGFBR1-correlation was only present among prenatal samples
(Figure 5.50.b-d). Our results indicate that regulation of TGFBR1 by MEG3 relates to a transcriptional
program that is active in the prenatal brain, whereas in CB, this program is active in pre- and postnatal
tissue.
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Figure 5.49: MEG3/Meg3 expression in human and mouse brain. a) Violin plots show MEG3 expression
in human cerebellum (CB) and non-cerebellum brain tissues of BrainSpan[299]. Left two
violin plots: prenatal tissue (pren.). Right two violin plots: postnatal tissue (postn.). b) ISH
of Meg3 in E14.5 mouse. Image credit for ISH: GenePaint expression atlas [352].
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Figure 5.50: MEG3 and TGFBR1 correlation in the human brain. Scatter plots show MEG3 and TGFBR1
expression in a) pre- and postnatal cerebellum, b) pre- and postnatal brain tissues, c)
prenatal brain tissues, and d) postnatal brain tissues. Spearman correlation coefficient,
related p-value, and the number of samples n are displayed above each plot. RNA-seq
data derived from BrainSpan.
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5.4 Material and Methods
Contributions of third persons comprising colleagues and ICGC PedBrain consortium partners are
indicated at the begin of each section.

5.4.1 Preliminaries: Correlation coe�cient evaluation
Correlation between two expressed genes was measured using Spearman or Pearson correlation
coefficients. For the evaluation of individual measured coefficients, several cutoffs were used [353]:

Table 5.5: Cutoffs for the evaluation of measured correlation coefficients.

Evaluation Cutoff

non-correlated |coefficient| < 0.3
weak correlation 0.3 ∑ |coefficient| > 0.5 and significant (p, FDR <0.05)
moderate 0.5 ∑ |coefficient| > 0.6 and significant (p, FDR <0.05)
strong 0.6 ∑ |coefficient| and significant (p, FDR <0.05)

5.4.2 Discovery cohort
5.4.2.1 Tissue collection, clinical data, RNA-sequencing, and RNA-seq read processing

The tissue collection of medulloblastoma (164 MB samples) and cerebellum controls (eight samples)
was done by PedBrain consortium partners. “[A]ll patient material was collected after receiving
informed consent according to ICGC guidelines and as approved by the institutional review board of
contributing centres” [222]. Consortium partners provided clinical information, including the overall
survival and age of the patients.

Tissue sample processing, RNA-sequencing, and RNA-seq read mapping was done by members of
the Gene Regulation & System Biology of Cancer (GRSBC) Lab, as previously described: “RNA was
extracted from fresh frozen tissue samples using the AllPrep DNA/RNA/Protein Mini kit (Qiagen) in-
cluding DNase I treatment on a column. All samples were subjected to quality control on a Bioanalyzer
instrument. RNA sequencing libraries were prepared from 10 µ g of total RNA. Strand-specific RNA
sequencing was performed following a protocol described previously. Sequencing was carried out with
2× 51 cycles on a HiSeq 2000 instrument (Illumina). All reads were aligned to the human reference
genome (1000 genomes version of human reference genome hg19/GRCh37) using BWA (v 0.5.9-r16).
Aligned reads were converted to the SAM/BAM format using SAMtools.” [218]. Mapped reads were
annotated to Ensembl v70 [354]. Read counts per gene were used to calculate RPKM values (reads per
kilobase per million reads) [78]. RPKM values were normalised for transcriptome composition effects
based on trimmed mean of M values (TMM) using edgeR (v3.10.2) [80].

5.4.2.2 DNA Methylation data and subgroup classification

The DNA methylation data of the discovery cohort were provided by PedBrain consortium partners.
Here, Infinium HumanMethylation450 BeadChip arrays (450k array) were used to perform the DNA
methylation profiling, as previously described [222]. For further information on microarray-based
DNA methylation profiling, please see [355] and [356]. Subgroup classifications of the MB samples
were based on 450k array data and provided by PedBrain consortium partners following the procedure
of Hovestadt et al. [357].
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For the DNA methylation analysis that was performed in this thesis, the provided IDAT-files were
processed using the Bioconductor package minfi (v1.30.0; R version 3.6.0) [358]. Intensities were
normalised using the preprocessFunnorm function with default parameters. The getBeta function
was used to obtain beta values. Beta values were corrected for potential inter-chip batch effects using
ComBat from the sva package (v3.28.0) [359]. Here, subgroup assignments were additionally provided
to avoid the corrections of tumour-related features.

5.4.2.3 CNV data

Copy number estimations based on whole-genome sequencing for the discovery cohort were provided
by PedBrain consortium partners [222]. The provided tumour-purity-corrected copy numbers were
integrated for further analysis.

5.4.3 External resources
Several external resources were integrated into the analysis and for validation. These external resources
comprised an MB cohort, RNA sequencing data of human brain tissues, CAGE data of human tissue
and cell types, and a catalogue of lnc gene loci and loci-associated features.

5.4.3.1 External medulloblastoma cohort

The external medulloblastoma cohort relates to the introduced study of Cavalli et al. that included
763 primary MB samples compressing 70 WNT, 233 SHH, 144 Group 3, and 326 Group 4 tumours.
The authors used Affymetrix Gene 1.1 ST arrays for the profiling of gene expression. Processed
gene expression data, including gene mapping to Ensembl, were downloaded from Gene expression
Omnibus (GEO; accession ID: GSE85217). Subgroup, subtype, and clinical information were taken
from supplemental material published by Cavalli et al. [221]. This cohort was used for a comparison
between reported subtypes and identified subclusters as well as survival-related analyses due to the
larger cohort size and longer patient follow-up.

5.4.3.2 Active enhancers and ChIP-seq in medulloblastoma

Coordinates of active enhancers in MB as well as putative gene targets of these enhancers were taken
from supplementary data published by Lin et al. [218]; this study was introduced above in Section
5.1.4. Since the work of Lin et al. was done in the framework of ICGC PedBrain, collaboration partners
provided processed ChIP-seq data of HLX, LMX1A, and LHX2 from primary MB samples. ChIP-seq
of HLX was done from a Group 3 MB, LHX2 from a Group 3 and 4 sample, and LMX1A from a Group
4 sample. Here, ChIP-seq peaks were called using MACS and peaks with a p-value < 1e-09 were
considered; sample-matched input DNA was used as background [218, 360].

Published ChIP-seq of NEUROD1 and OTX2 that had been done from MB cell lines (D283 - Group
3/4 , D341 - Group 3) was downloaded from Gene Expression Omnibus (GEO) (GEO accession ID:
GSE92585; sample accession ID: GSM2432952, GSM2432944 GSM2432942, GSM2432950, GSM2432957,
GSM2432949) [226, 306]. These data were processed by members of the GRSBC lab. ChIP-seq reads
were mapped to the human reference genome (1000 genomes version of human reference genome
hg19/GRCh37) using BWA (v 0.5.9-r16). ChIP-seq peaks were called using MACS applying a p-value <
1e-09 as cutoff for considered peaks.

5.4.3.3 BrainSpan: External RNA sequencing data from human brain tissue

The BrainSpan data set comprises 524 RNA-seq samples from 26 different human brain structures/regions
and different pre- and postnatal stages. The data set includes also eleven prenatal and 21 post-
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natal cerebellum tissue samples. RPKM values were downloaded from the BrainSpan website [299]:
http://www.brainspan.org/api/v2/well_known_file_download/267666525. Here, the RNA
had been sequenced using an unstranded protocol.

5.4.3.4 FANTOM CAT

The FANTOM CAT resource is part of the FANTOM5 project and provides an accurate atlas of lnc gene
loci and a collection of annotated features that relate to these loci [133, 361]. In FANTOM CAT, the
CAGE technology provided precise locations of 5’ ends of lnc genes on the genome, which allowed
the accurate annotation of the three types of lnc genes divergent, antisense, and intergenic [133]. The
CAGE data set covers a comprehensive collection of different human tissue and cell types and has
been used to calculate a score that evaluates the expression specificity of individual lnc genes across
69 different cell types facets; cell type-specific expression had been termed as “enriched expression”
by the authors [133].

The resource FANTOM CAT was obtained by downloading supplementary information of the original
publication as provided by Hon et al. [133]. Related CAGE-based gene expression data were down-
loaded from the FANTOM5 website (https://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/
data/expression/expression_atlas/FANTOM_CAT.expression_atlas.gene.lv3_robust.rle_
cpm.tsv.gz).

5.4.4 Transcriptome profiling
5.4.4.1 Clustering into subgroups

The RNA-seq-based de novo clustering of MB samples into four subgroups was done by taking the
most variable protein-coding genes, applying non-negative matrix factorisation with 60 iterations, and
assuming four clusters (see Section 3.3.1). Most variable genes were selected using the 85th percentile
of the absolute deviations to the median of the expression value of a gene termed as percentile absolute
deviation (PAD) (with reference to the median absolute deviation - MAD [362]):

exg = medi an(xg ) (5.1)

PADg = P85(|xg ° exg |), (5.2)

where xg is a vector of expression values of gene g . PAD was calculated on l og2-transformed RPKM
values to obtain the relative deviation as well as on raw RPKM values to obtain the absolute deviation
of gene expression. Selected genes showed a relative PAD > 0.8 and an absolute PAD > 1. The absolute
PAD was used to avoid the selection of lowly expressed genes. The PAD was chosen over simple
standard deviation since a more robust measurement of deviation was needed because the cohort was
heterogeneous and an unbalanced number of tumours per subgroup between 15 and 63 MB samples.
The 85-th percentile was chosen to also catch expression deviation related to the smallest subgroup in
consideration of the two-sided properties of the PAD. Before applying NMF, RPKM values per gene
were log2-transformed RPKM values adding a pseudo-value of 0.5 and scaled (a mean = 0; standard
deviation = 0), and scaled values < 0 were set to 0.

5.4.4.2 Molecular subcluster identification within subgroups

Molecular subclusters within the subgroups SHH, Group 3, and Group 4 were de novo identified using
an unsupervised consensus clustering approach with subsequent semi-supervised clustering; the
number of WNT MBs (n=15) was to small for subclusters identification. This consensus approach
included the calculation of a consensus distance matrix of pair-wise distances between MB samples.
This consensus distance matrix formed the basis for agglomerative hierarchical clustering of the
samples. The resulting dendrogram indicated the final subcluster of each sample.
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Subcluster identification was done subgroup-wise for each subgroup independently. Tumour
samples were clustered based on the most variable genes selected by the PAD, as explained above
(Section 5.4.4.1) taking the 75-th percentile; genes with a relative PAD > 0.7 and am absolute PAD >
1 were selected ( SHH: 3288 genes; Group 3: 4193 genes; Group 4: 2633 genes). RPKM values were
log2-transformed adding a pseudo-value of 0.5. The consensus distance matrix was defined by the
average distance between sample pairs across subsamples of the most variable genes (genes are equal
to features and samples to entities). In 1000 iterations, only 90% of the originally selected genes were
used for the calculation of pair-wise distances using Pearson correlation coefficients (PCC; pair-wise
distance = 1 ° PCC). The consensus matrix was obtained by averaging across the 1000 iterations.
Agglomerative hierarchical clustering with average linkage was applied to the consensus matrix and
samples were assigned to a subcluster based on the obtained dendrogram. Subsequently followed the
semi-supervised clustering of the samples. This clustering step was semi-supervised because genes for
the clustering were selected based on differential expression between identified subclusters within
a subgroup (differential gene expression analysis is explained in the next Section 5.4.4.3). Here, a
common distance matrix based on PCC and agglomerative hierarchical clustering with average linkage
was used for the clustering of the samples. The resulting dendrogram was used to assign samples to
their final subclusters.

5.4.4.3 Di�erential gene expression analysis

Differential gene expression analyses were performed using the R package edgeR by fitting a GLM and
applying an LRT (see Section 3.3.2). For the GLM, subgroup or subcluster assignments per tumour
sample were used as categorical predictors coded as n °1 dummy variables, where n is the number
of subgroups/subclusters since one subgroup/subcluster is defined as the intercept. Differential
expression between subgroups or subcluster within a subgroup was tested using a LRT by comparing
the null model M0 against the full model M1:

M0 = µ0 (5.3)

M1 = µ1, (5.4)

where µ0 2£0, µ1 2£1, and£0 Ω£1. The parameter set£0 of the null model M0 contains the intercept
of the fitted GLM. The parameter set£1 of the full model M1 contains the intercept and n °1 dummy
variables of subgroup/subcluster assignments. Via the LRT is gene-wise tested if the full set of sub-
groups/subclusters explains significantly better the observed read count distribution across the data
set than the intercept alone.

Coding and lnc genes showing ∏ 1 RPKM in as least six tumours among the analysed sample set
were considered for differential gene expression analysis. For the detection of differential expression
between subclusters within a subgroup, only samples belonging to the respective subgroup were used
for the analysis. Obtained p-values were corrected for multiple testing using the Benjamin-Hochberg
(BH) procedure. Genes were at first selected based on FDR: FDR ∑ 0.01 for subcluster comparison
and FDR ∑ 0.001 for subgroup comparison. The FDR only indicates whether gene expression de-
pends on subgroups/subclusters but does not indicate in which subgroup/subcluster a gene is up-
or downregulated. Therefore, fold change values between compared sample groups were used to
identify subgroups/subcluster-specific up- or downregulation. A gene was considered as subgroup-
/subcluster-specific upregulation when a particular subgroup/subcluster showed a fold change ∏
2 against the remaining subgroups/subclusters allowing the exception that the fold change against
one of the remaining subgroups/subclusters was ∏ 1.75. This exception was used to prevent missing
relevant differential expression due to the high number of tested sample groups. Additionally, some
subgroups share some similarities such as Group 3 and Group 4 (Section 5.1.6). The same scheme was
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used for subgroup-/subcluster-specific downregulation using inverse fold change values. Additionally,
subgroup-/subcluster-specifically expressed genes needed to show an absolute difference ∏ 1 RPKM
between compared sample groups.

5.4.4.4 Gene set overrepresentation analysis

Gene set overrepresentation analyses were performed using the Genomatix Pathway System (Geno-
matix GmbH, Munich) and other gene function annotation databases in combination with a hyper-
geometric test (see Section 3.3.3). GO term annotations for genes were downloaded from Ensembl
[354], and pathway annotations of the databases PID, KEGG, Reactome, and WikiPathways were
downloaded from Consensus Path DB [344]. 15028 expressed coding genes were defined as back-
ground for the hypergeometric test. Obtained p-values were corrected for multiple testing using BH
procedure. GO terms and pathways were considered as significantly enriched when they displayed
an FDR ∑ 0.05 and minimum overlap of three genes with the analysed gene set. Analysed gene sets
comprised subgroup-/subcluster-specifically upregulated coding genes as well as coding genes that
were significantly correlated with lnc genes expression, as later described in Section 5.4.6.10.

5.4.5 Gene regulatory networks inference
5.4.5.1 Annotation of transcription factors

TFs were annotated using a set of selected 34 GO terms, as previously described [123], and the Geno-
matix Genome Analyzer (Genomatix GmbH, Munich) that provides a database of transcription factors.
The selected GO terms indicated nucleic acid or DNA binding, and transcriptional regulation. Genes
were selected based on GO terms when a single annotated GO term indicated the functions nucleic
acid/DNA binding and transcriptional regulation or when both functions were indicated by at least
two annotated GO terms. After manual inspection, 15 genes were removed from the TF list because
the literature did not provide strong evidence of TF functions.

5.4.5.2 Implementation of GENIE3

Gene regulatory networks were inferred from gene expression data applying the in Section 3.5.1 intro-
duced algorithm GENIE3 that provides weights of regulatory links between regulators and putative tar-
gets [120]. An R implementation of GENIE3 (downloaded from http://www.montefiore.ulg.ac.be/ huynh-
thu/GENIE3.html) was run using default parameters, log2 normalised RPKM values, and without
pre-defining regulatory genes. In the resulting network, the set of defined TFs, as described in the
previous section, was used as regulators. Since GENIE3 does not provide information about the nature
of the regulatory relationship, Spearman’s rho was calculated to assign negative and positive regulation
between pairs of TFs and analysed genes. However, in the later analysed GRNs only links associated
with positive regulation were considered.

In separate runs, four gene regulatory networks were inferred that corresponded to the subgroups
and the subclusters in SHH, Group 3, and Group 4. Two different schemes were performed to construct
the GRN for the subgroups and subclusters, respectively. The GRN representing subgroups was
constructed running GENIE3 on the union between the differentially expressed genes and the most
8078 variable genes across the cohort (overall 8504 genes). The most variable genes were selected as
described in Section 5.4.4.1 using PAD with a 85-th percentile; genes were expressed in minimum ten
MB samples with >= 0.5 RPKM. The calculated weights of regulatory links were directly used for further
processing, and only genes differentially expressed between subgroups were considered for the GRN.

To infer the regulatory networks representing the subclusters in SHH, Group 3 or Group 4, the
following steps were separately applied to each subgroup. Weights of regulatory links were calculated
by taking cohort-wide and intra-subgroup effects into account. Intra-subgroup weights were calculated
applying GENIE3 to MB samples of the considered subgroup. Here, analysed genes comprised the most
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variable genes within the considered subgroup and genes that were differentially expressed between
subclusters of this subgroup. The most variable genes within a subgroup were selected taking the 75th
percentile of the PAD; genes were expressed in minimum five samples with >= 0.5 RPKM (SHH: 3241
genes, Group 3: 4229 genes, Group 4: 2519 genes). Cohort-wide weights were calculated integrating
all MB samples and the union between genes that were used for subgroup GRN and intra-subgroup
weights inference. The final weights of regulatory links were achieved by taking the geometric mean
between the cohort-wide and intra-subgroup weights of a certain link. Only differential expressed
genes between subclusters were considered in the final subcluster GRN per subgroup.

5.4.5.3 GRN fitting score

After the calculation of regulatory weights via GENIE3, a threshold for regulatory links with potentially
relevant weights was evaluated because the weights allow a ranking of regulatory links. However, the
value range of the weights is context-dependent and the weights do not have a statistical meaning in
terms of significance [120]. The authors of GENIE3 did not provide a procedure to obtain a threshold
for relevant weights. An own-developed procedure was applied for threshold determination using a
GRN fitting score that was based on the enrichment predicted transcription factor binding site (TFBS)
in promoter regions of putative transcription factors targets as well as the density of the network.

The enrichment of TFBSs was calculated as follows. A promoter region was defined by 2000 bp up-
stream and 50 bp downstream of a transcription start site that was annotated by Ensembl; overlapping
alternative promoters of a gene were merged. TFBSs were predicted by applying the MatInspector tool
(Genomatix GmbH, Munich) that uses position weight matrices and optimised thresholds [363]. For
each TF with available position weight matrices, an enrichment of TFBSs in promoters of putative
targets was evaluated by calculating a z-score for the observed TFBS frequency. Here, the observed
frequency of TFBSs in target promoters was compared to the empirical distribution of expected TFBS
frequencies in promoter or intergenic regions, similar to a previously published approach [364]; in-
tergenic regions had a defined length of 2050 bps. The TFBS frequency b was given as TFBSs per Mb
and defined by b = s ·1000000/n, where s is the number of TFBSs and n is the number of examined
nucleotides. Let bOBS and bE X P denote the observed and expected frequency of TFBSs, respectively.
The number of TFBSs is normalised by the number of examined nucleotides to address different
promoter lengths introduced by merged overlapping promoters. The promoter background included
54078 promoters of expressed genes (RPKM >= 0.5 in minimum 5 samples), and the intergenic back-
ground comprised around 50000 regions. Taking a TF targeting k genes with m promoters and bOBS

observed TFBS frequency, the empirical distributions of TFBS frequencies bE X P was achieved by
drawing m regions from the promoter or intergenic background 2000 times. The mean and standard
deviation of bE X P distributions was used to calculate the z-score of bOBS representing a measure of
TFBS enrichment.

The z-score of TFBSs formed the basis for the threshold determination. Here, GRN fitting scores
were calculated at different weight cutoffs, and the best GRN fitting score was chosen. For each GRN,
10-15 different cutoffs were evaluated taken at a chosen set of i -th percentiles of the weight matrix
returned by GENIE3. This matrix included all tested genes and not only differentially expressed genes.
For an evaluated weight cutoff, only TF-target links were considered displaying a weight higher than
the cutoffs and positive regulation; TFs and genes needed to be differentially expressed between
subgroups/subclusters of the analysed GRN. The lowest tested percentile was individually chosen per
inferred GRN and represented a weight cutoff where the TF-target link list included between four and
five TFs per target on average. The mean of TFBS frequency z-scores across TFs was calculated for the
selected TF-target links. The GRN fitting score was defined by the ratio between the mean of TFBS
frequency z-scores (z) and the network density (d) at the evaluated cutoff:

GRN fitting score = z
d

. (5.5)
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The network density d was defined by the ratio between the number of selected links l and the
maximum number of links r in a fully connected network:

d = l
r

(5.6)

r = NT F ·NT AR , (5.7)

where NT F is the number of TFs and NT AR is the number of targets in the selected list of TF-targets
links. The network density was used here as penalty of the TFBS enrichment because GRNs have
the characteristics to be sparse [121] and, therefore, the GRN fitting score was defined in favour of
a high sparsity (low density). The TFBS enrichment can be seen as the overall performance of the
TF-gene interaction prediction. The 0.99725th, 0.985th, 0.989th and 0.9835th percentile were taken as
the optimal threshold for the GRN of the main groups, and SHH, Group 3 and Group 4 sub-clusters,
respectively. The final list of TF-targets links contained only links with a significant Spearman’s rho
(FDR >= 0.05).

5.4.5.4 Module detection in GRN

After the inference was the GRNs using GENIE3, the topology of the GRNs was analysed by de-
tecting modules that provide biologically relevant information like co-expression/-regulation and
functional associations, as summarised in Section 3.5.2. Modules were detected applying the map
equation algorithm for each of the four GRNs; the map equation algorithm detects hierarchical
modules in networks using random walks, as described in [125]. The map equation algorithm had
been implemented as part of the Infomap software by the original authors and was downloaded
from www.mapequation.org (v0.18.1) [365]. The infomap tool was run considering the networks
as weighted undirected and using following parameters: -i ’pajek’ -N 100 –clu –tree –bftree –map
–to-nodes –flow-network –node-ranks –seed 634711. The GENIE3-based interaction weights between
TFs and putative targets were also provided as link weights to the Infomap tool. The module detection
was also necessary for the calculation of the network influence score.

5.4.5.5 Network influence score of transcriptions factors

In order to allow the identification of TFs that have potentially the most influence on subgroup-
/subcluster-specific gene expression in MB, a previously described network influence score (NIS),
since it allows to rank TFs by their influence on gene expression for individual cell types, summar-
ised in Section 3.5.2 [123]. In the presented MB study, cell types are represented by subgroups and
subclusters that also relate to specific gene expression. The NIS was calculated per TF and a certain
subgroup/subcluster as follows:

N I SSi
(ri ) =

NX

j=1
z(t j )+N · z(ri ) , t 2Ok ^ t 2 Lri

^ r 2Ok , (5.8)

where ri is the i -th TF (regulator), t j is the j -th target of TF ri , Lri
is the target set of TF ri , N is

the number of targets of TF ri , Ok is the set of genes belonging to the k-th detected module of the
GRN, the z function is the average of expression z-scores among the tumour sample set Si for a TF
or target, Si represents samples of a certain subgroup or subcluster. The limitation that both the
TF and the target need to be part of the same module is also part of the original definition of the
NIS [123]. This allows the integration of the network topology in the calculation of the NIS. In the
original definition of the NIS, z(ti ) and z(r j ) were additionally weighted by the mean expression of the
target/regulator since genes can display different functional expression ranges, as later discussed [123].
The calculation of the z-scores was also adapted to the analysed MB cohort [123]. For GRN related to
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the subgroups, the whole MB cohort was considered for the z-score normalisation of gene expression
values per gene. For each of the three GRNs that related to subclusters within a certain subgroup, only
samples of the respective subgroup were considered z-score normalisation (e.g. for the GRN of the
SHH subclusters only SHH tumours were considered). In order to adjust for differences in sample sizes
between subgroups or subclusters, z-scores were calculated taking the weighted mean and weighted
standard deviation where each subgroup or subcluster had equal weight.

5.4.5.6 Network visualisation

The inferred GRNs were visualised using Cytoscape (v2.8.3) using the AllegroLayout plugin app. Net-
works were visualised a directed network and the node size related to the outdegree of genes; since
only TFs represent nodes with outgoing links in the GRN, enlarged nodes always represented TFs in
the visualised network.

5.4.5.7 Evaluation of the GRN validity

ChIP-seq data of HLX, LMX1A, LHX2, NEUROD1, and OTX2 — as described in Section 5.4.3.2 —
were used for evaluation of the GRN validity. A Gene was assassinated as a putative target when
a ChIP-seq peak overlapped a promoter region of the gene or an enhancer that regulates the gene.
Promoters covered 2000 bps upstream and 50 bps downstream of transcription start sites. Enhancer-
gene assignments were taken from Lin et al. [218]. The four GRNs were not individually evaluated but
as a whole by taking the union of all inferred TF-target links. For the evaluation, the fraction of targets
validated by ChIP-seq was considered and a hypergeometric test was applied to check if the observed
number of validated targets could be obtained by chance compared to the number of expressed genes
associated with ChIP-seq peaks; overall, 23222 genes were expressed in the MB cohort.

5.4.6 Characterisation of lnc coding genes
5.4.6.1 Considered lnc genes

The set of genome-wide lnc genes was selected based on Ensembl v70. Lnc genes were annotated via
the gene biotypes antisense, lincRNA, and processed transcript. Additionally, lnc genes that overlapped
exon regions of coding genes on the sense strand were excluded. The basic set of lnc genes comprised
11207 genes. This basic set was tested for differential expression together with coding genes, as
described in Section 5.4.4.3. The set of lnc genes that were differentially expressed between subgroups
or subclusters was further characterised.

5.4.6.2 Annotation of lnc gene types and coding partners

The three lnc gene types divergent, antisense, and intergenic — as introduced in Section 2.5 — were an-
notated integrating FANTOM CAT (Section 5.4.3.4). In the case that a lnc gene was in divergent orienta-
tion to one coding gene/pseudogene and in antisense orientation to another coding gene/pseudogene,
this lnc gene was generally annotated as divergent gene. The authors of FANTOM CAT classified lnc
genes as divergent when its strongest transcription start site was within ±2 kb of any start site of a lnc
gene and a coding gene/pseudogene on the opposite stand [133]. For the annotation of antisense lnc
genes, classifications of FANTOM CAT and Ensembl were combined since the FANTOM CAT definition
of antisense gene was too strict. In FANTOM CAT, a lnc gene was classified as an antisense gene when at
least 50% of its gene body overlapped with a gene body of a coding gene/pseudogene on the opposite
strand [133]. In Ensembl: “Antisense RNAs: Locus that has at least one transcript that intersects any
exon of a protein-coding locus on the opposite strand, or published evidence of antisense regulation
of a coding gene.” [132]. When a lnc gene was annotated as antisense by Ensembl but as intergenic by
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FANTOM CAT, the lnc gene was assigned to the antisense type. Annotations for divergent lnc genes
were only based on FANTOM CAT; at this point, Ensmebl did not provide this annotation [132]. The
remaining lnc genes belonged to the type intergenic.

The annotation of lnc gene types also allowed to define coding gene partners. Coding gene partners
of antisense and divergent lnc genes were in the respective orientation. An antisense gene could be in
antisense orientation to more than one coding gene, where all of these coding genes were considered
as coding partners. A divergent gene could be in divergent orientation to a coding gene but also in
antisense orientation to an additional coding gene; both, divergent and antisense coding genes were
considered as coding partners for divergent lnc genes. The coding partners of intergenic lnc genes
included coding genes within ± 1 Mb and the same topological associating domain (TAD) that was
shared between the lnc and coding gene. TAD boundaries were downloaded for human dorsolateral
prefrontal cortex from the 3D Genome Browser since data for cerebellum were not available [366].

5.4.6.3 Expression correlation with coding partners

The correlation between lnc genes and their coding partners was measured using Spearman correlation
in order to analyse the transcriptional dependencies. Additionally, lnc genes were classified based
on their correlation with coding partners into the classes positively correlated, negatively correlated,
non-correlated, and coding partner not expressed. Positive correlation was defined by Spearman
correlation coefficients rho ∏ 0.3 and negative correlation by rho ∑ -0.3 (FDR < 0.05), in relation to
potentially relevant correlation. None correlation related to -0.3 > rho < 0.3. A lnc gene was classified
as

• "positively correlated" when at least one coding partner was positively correlated and none of
the coding partners negatively correlated,

• "negatively correlated" when at least one coding partner was negatively correlated,
• "non-correlated" when all coding partners did not display positive or negative correlations, and
• "coding partner not expressed" when all coding partners were not expressed.

For negatively correlated and non-correlated lnc genes, all coding genes within ±100 kb were con-
sidered for the classification to ensure that these lnc genes did not show positive correlation with
the direct coding gene neighbourhood because it was from interest to identify lnc genes that are not
co-expressed with coding gene partners/neighbourhood.

5.4.6.4 Annotation of tissue-/cell-type-specific gene expression

For the annotation of tissue-/cell-type-specific gene expression, FANTOM CAT and the BrainSpan
data set were used. Here, expression patterns related to development were of interest due to the
embryonic origin of MB. The annotation of tissue-/cell-type-specific enriched expression by FANTOM
CAT was integrated to identify lnc genes that are specifically/enriched expressed in embryonic and
neural stem cells. The BrainSpan data set was used to identify lnc gene that showed upregulation in
pre- or postnatal cerebellum/brain by comparing pre- and postnatal tissue samples (analyses was
individually done for cerebellum and whole brain) as well as up- or downregulation in cerebellum vs.
the remaining brain regions. Gene expression data of the BrainSpan data set are only provided as RPKM
values and, therefore, read count-based analyses using edgeR, as in Section 5.4.4.3, could not be done.
Significant differential expression was detected using the Wilcoxon rank-sum test. Genes expressed
by minimum 0.2 RPKM in at least three analysed samples were tested. A gene was significantly
differentially expressed between tested groups when it showed an absolute mean log2 fold change
> 1 and an FDR < 0.05 (BH procedure); a pseudo-value of 0.5 was added to RPKM values for log2

transformation.
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5.4.6.5 Annotation of lnc gene associated publications

In order to facilitate a comprehensive annotation of publications that relate to the analysed set of lcn
genes, the database gene2pubmed was downloaded from NCBI (February 20 2019, ftp://ftp.ncbi.
nih.gov/gene/DATA/gene2pubmed.gz) [367]. This database uses Entrez gene IDs. The mapping of
Ensembl and Entrez gene IDs was downloaded from the Ensembl website using the BioMart online
tool [368]. One Ensembl ID could map to several Entrez IDs. Lnc genes with at least seven publications
were screened for implications in MB or other cancer types as well as comprehensive functional
characterisations of these lnc genes. Based on this screening, twelve potentially interesting lnc genes
were selected for further characterisation.

5.4.6.6 Co-expression clustering

Lnc and coding genes were clustered into co-expression clusters applying the algorithm CLICK (CLuster
Identification via Connectivity Kernels) that is part of the software tool EXPANDER (v7.11) [369]. The
most variable genes among subgroups and subclusters (Section 5.4.4.2) as well as all differentially
expressed genes (Section 5.4.4.3) were clustered (overall 10132). RPKM values were log2 transformed
and z-score normalised. The CLICK parameter expected homogeneity was tested between the values
0.5 and 0.8 in 0.01 steps. Based on the average separation between and the average homogeneity
within co-expression clusters, the value 0.59 was chosen as the best solution. Overall, 29 clusters were
identified comprising 9544 genes. Identified co-expression clusters were further analysed when lnc
genes of interest were part of a cluster.

5.4.6.7 Gene expression-based survival analysis

In order to identify lnc genes that displayed a significant association between gene expression and
overall survival, tumour samples were split into two groups that represented high and low expression
of an analysed lnc gene using a defined cutoff. A log-rank test (Section 3.3.4) was applied, testing for
significant differences in survival between the groups. Simply using the cutoff with lowest p-value
could lead to an overestimation of the effect of the prognostic factor [97]. In order to avoid overfitting,
a subsampling approach was used to find an optimised robust expression cutoff. For each gene,
expression cutoffs were evaluated between the 25% and 75% percentile in 1% steps. Each cutoff was
evaluated based on the signal-to-noise ratio of test statistic values (chi-square) that were obtained
from log-rank tests across 1000 cohort subsamples taking 50% of the available samples per subsample.
The cutoff (percentile) showing the highest signal-to-noise ratio was selected as an optimised cutoff.
The final evaluation of the expression of a lnc gene as a potential prognostic marker was based on the
p-value of the log-rank test using the optimised cutoff on the whole cohort (p < 0.05). The application
of the signal-to-noise that was obtained across subsamples of the data set refers to the MSVM-RFE
approach for feature selection (see Section 3.4.2.1). The signal-to-noise ratio provides the information
whether a cutoff relates to a meaningful split of patients (differences in survival) that is stable across
many subsamples.

Lnc and coding genes were tested for association with survival using the ICGC MB cohort at first.
Overall survival data were available for 155/164 MB samples. The average follow-up time of patients
was ~2 years. 16 patients with a follow up > 5 years were excluded from the analysis since none of these
patients experienced death and the general low follow-up time leaving 139 samples for the analysis.
The union of the most variable genes across the cohort and differentially expressed genes between
subgroups/subclusters, which were expressed in at least 25% of the sample by 0.5 RPKM, were tested
(8182 genes). Here, 82 lnc genes showed a significant association with overall survival (p-values < 0.05).
Here, only the p-value was used and not the FDR to define significance since a subsequent validation
procedure was applied using an independent cohort in order to ensure the identification of potentially
true prognostic markers [370].
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The subsequent validation was done on the microarray cohort published by Cavalli et al. [221].
External RNA-seq MB cohorts were not available. Survival data were available for 612 patients overall.
The average follow-up time was ~5 years. Survival data were right-censored at ten years because
only 10% of the patients exceeded a follow-up time of 10 years. Among the 82 lnc genes that showed
significant association with survival using the ICGC cohort, eight lnc genes that could be mapped
to the microarray probes showed sufficient expression on the microarray. Lnc genes that showed an
log2 expression intensity > 5.2 (comparable to 0.5 RPKM [65]) in at least 25% of the MB samples were
analysed. Optimised expression cutoffs were evaluated as for the ICGC MB cohort.

Time-dependent survival of MEG3 high- and low-expressing MB samples was visualised using
Kaplan-Meier curves plotted with the km.coxph.plot function of the survcomp R package (v1.20.0)
[371]. Differences in survival between sample groups were evaluated using Cox regression-based
hazard ratio and p-value [96].

5.4.6.8 MEG3 binding motif and binding site prediction

Data published by Mondal et al. were used to obtain a PWM of the MEG3 DNA binding motif [43]. The
authors have provided a list of 532 MEG3 ChOP-seq peaks (Section 2.5) associated with genes that were
deregulated after MEG3 knockdown [43]. The sequences of these 532 peaks were used to obtain a PWM
using the algorithm CoreSearch that is part of the Genomatix Genome Analyser (Genomatic GmbH,
Munich) [372]. The following parameters were changed from the default: -MOTIF=2, -MATSIM=0.85,
-CORE=8. Setting the parameter MOTIF=2 allows that a found motif can match to several positions
per sequence, which was critical since the MEG3 binding motif is composed of GA-repeats [372]. The
parameter MATSIM defines the minimum similarity of the found motif across sequences that were
used to build the PWM. This parameter was set from 80% (default) to 85% because 85% provided a
shorter motif with 25 bps (33 bps with 80%) that was closer to reports of Mondal et al.. CoreSearch
initially identifies a core sequence of a motif that is used to obtain the final motif. The length of this
core sequence is related to the parameter -CORE and was set from 7 to 8 due to the GA-repeats of the
MEG3 binding motif.

The obtained PWM was used to predict MEG3 binding-sides in promoter and enhancer regions
MEG3 binding-sides were assigned to genes via associated promoter and enhancer regions. Enhancer
regions and enhancer-gene associations in MB were taken from Lin et al. [218].

5.4.6.9 MEG3 -centred expression correlation analysis

Genes significantly correlated with MEG3 expression were identified calculating Spearman correlation
and using the MB RNA-seq cohort (|rho| > 0.3; FDR < 0.05, BH procedure). Here, expression correlation
was measured across the cohort as well as across SHH, Group 3, or Group 4 samples resulting in four
correlation gene sets; the WNT subgroup was too small for an individual analysis. Analysed genes were
expressed with > 1 RPKM in at least five samples and were among the top 75% of expressed genes
with the highest standard deviation. Negatively and positively correlated genes were independently
considered in downstream analyses.

Visual inspection revealed spurious correlations within the correlation gene set that was obtained
across the cohort; here, subgroup-dependent expression was a confounding factor. A heuristic ap-
proach was applied to identify spurious correlation. This approach was based on the assumption that
non-spurious correlations should remain stable after removing one subgroup or at least within one
subgroup. Through measuring correlation in different settings, the confounding effect of subgroup-
dependent expression was systematically evaluated. The evaluation within each subgroup was essen-
tial to capture subgroup-dependent correlations that are potentially not detected after removing the
subgroup associated with dependent correlation from the analysis. Subgroup-dependent correlations
are expected due to the molecular heterogeneity of the subgroups. Among others, the correlation
stability between gene pairs was evaluated by comparing the correlation coefficient measured across
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the whole cohort to the coefficient measured in a different setting (e.g. removing one subgroup).
The comparison of two correlation coefficients was based on Fisher’s z-transformation (z-test) that
can also be applied to Spearman and not only Pearson correlation coefficients [373]. A one-sided
z-test was applied testing if the coefficient that was measured across the whole cohort was bigger
than coefficient that was measured in a different setting using absolute coefficient. A correlation was
defined as spurious when the correlation was not stable 1) after removing one subgroup and 2) within
the removed subgroup. A non-stable correlation showed a significant drop of the coefficient in the
tested setting (z-test, p<0.05) and a p-value > 0.075 of the coefficient in the tested setting (related to
non-relevant correlations). The second condition was used because a coefficient in the tested setting
could be significantly smaller but still significant/relevant (for example, a drop from 0.8 to 0.6). A
more tolerant significance level of 0.075 was used since the tested settings always comprised a smaller
number of MB samples, compared to the whole cohort, resulting in a lower statistical power. Identified
spurious correlations were excluded from the list of significantly correlated genes.

5.4.6.10 Gene set enrichment in MEG3 -correlated coding genes

A gene set enrichment analysis was applied to identify significantly enriched functions among genes
correlated with MEG3 expression, which was similar to Section 5.4.4.4. Each of the four correlation
gene sets, which related to the whole cohort, SHH, Group 3 or Group 4, were independently analysed.
Here, positively and negatively correlated genes were separately analysed. The enrichment analysis
was repeated for correlated genes that carried a MEG3 binding side in a promoter or enhancer (Section
5.4.6.8).

5.4.6.11 DNA methylation analysis at the MEG3 locus

Since DNA methylation changes in specific regions around the MEG3 locus can regulate MEG3 expres-
sion, as summarised in Section 2.5 (page 13), DNA methylation patterns for these regions were analysed
in MB. DNA methylation data (Infinium HumanMethylation450 BeadChip array) for 155 MB samples
that matched to the RNA-seq cohort were provided by collaboration partners of ICGC PedBrain [222].
Data were processed and normalised using the minfi R package (v1.14.0) [374]. Between-sample
normalisation was done using the preprocessFunnorm function of minfi and potential batch effects
were removed using ComBat of the sva R package (v3.18.0) [359, 375].

The IG-DMR was not covered by the array. The MEG3-DMR was covered by 33 probes that spanned
chr14:101290556-101293856. Coordinates of MEG3-associated DMRs were obtained from [376]. Aver-
age DNA methylation levels (based on beta value) for the MEG3-DMR were calculated across the 33
covered probes for each MB sample. An F-Test was performed using the dmpFinder function of minfi
to test for significantly different MEG3-DMR methylation levels between subgroups.

5.5 Discussion
We presented a MB transcriptome study that was based on a deeply sequenced RNA-seq cohort of 164
tumours, comprising the expected fractions of the MB subgroups WNT, SHH, Group 3, and Group 4
[83] (Section 5.3.1.1). Our MB transcriptome study concentrated on three aspects.

First, we explored the molecular heterogeneity beyond the four subgroups by identifying nine
molecular subclusters within the subgroups SHH, Group 3, and Group 4. Here, each subgroup was
split into three subclusters. These subclusters were validated by and related to recently published MB
subtypes (Section 5.3.1.2).

Second, the consensus subgroups and the defined subclusters provided the basis for deeper ana-
lyses of the molecular heterogeneity in MB. We identified differentially expressed lnc and coding
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genes among subgroups and among subclusters of one subgroup (Section 5.3.2.1). These specifically-
expressed genes were used to understand the subgroups and subclusters in MB by the identification
of functional enrichments and underlying gene regulatory networks (Section 5.3.2.2, 5.3.2). We in-
ferred four GRNs from MB gene expression data. These GRNs depict the landscape of transcription
factors that have a high impact on specific gene expression in MB subgroups and subclusters (Section
5.3.2). The inferred GRNs allowed to portray specific and common gene regulatory programs between
subgroups and subclusters.

Third, we computationally characterised lnc genes that we detected as differentially expressed
among MB subgroups and subclusters to gain insights into functional roles of lnc genes in the MB
(Section 5.3.3). At first, we achieved a systematic characterisation of lnc genes by two forms of clas-
sification. The first classification was based on the genomic position relative to coding genes. The
second classification utilised the expression correlation with neighbouring coding genes to derive
different lnc gene categories. We performed DGEAs to identify lnc genes that show brain/cerebellum
development-associated expression patterns, which highlighted potentially disease-relevant candid-
ates. Twelve lnc genes that have been frequently described in cancer were re-evaluated in the context
of MB. Here, several regulatory links that were reported in other contexts could be validated in MB. We
identified the co-expression cluster Cc1 that contained several reported cancer-associated lnc genes.
Cc1 was associated with protein biogenesis and protein signalling profiles regulated by MYC family
genes. Additionally, survival analyses and co-expression-based functional inference highlighted MEG3
as potential tumour suppressor in MB and prognostic marker in subclusters of SHH and Group 4.

5.5.1 Molecular subgroup and subcluster identification using RNA-seq
The dissection of the molecular complexity of MB has been a central part of understanding this disease.
Here, in previous studies, mainly 450k methylation arrays and expression microarrays were used to
identify the four main subgroups [193, 216, 217]. Therefore, we evaluated the capability of RNA-seq
to identify the four subgroups. Thereby, we verified that RNA-seq is suitable for this task since the
RNA-seq-based MB sample clustering and the 450k array-based sample classification showed a high
agreement regarding the identification of the four subgroups. (Figure 5.3 in Section 5.3.1.1).

Seeking a deeper understanding of the molecular heterogeneity in MB beyond the four consensus
subgroups, we identified and explored three molecular subclusters within each of the main subgroups
SHH, Group 3, and Group 4. These subclusters were strongly supported by external subtypes that
were published by Cavalli et al. parallel to the work on our study (Section 5.3.1.2) [221]. Additionally,
the sets of subcluster-specifically expressed genes that we identified facilitated the classification of
the external MB samples (Cavalli et al.) into the subclusters. In this way, we could prove that these
subcluster-associated genes are stable across cohorts and technologies since Cavalli et al. had used
microarrays [221]. Besides the validation of the subclusters, by comparing the subclusters to the
subtypes of Cavalli et al., we could relate the subclusters to detailed clinical features and somatic copy
number aberrations. Our analysed RNA-seq cohort was too small to obtain such detailed information
when considering the high number of molecular subclusters and the short follow-up time of patients in
the RNA-seq cohort. Cavalli et al. had integrated 763 tumour samples with a sufficiently long follow-up
into their study [221].

Our described subclusters were also compared to subtypes of Group 3 and Group 4 MBs published
by Northcott et al. [222]. These published subtypes of Group 3 and Group 4 MBs showed a robust
agreement with our subclusters, but subtypes published by Cavalli et al. showed a better agreement
with the subclusters (Section 5.3.1.2). For example, our subcluster Grp3-c2 matched with subtype
Group 3� by Cavalli et al. but did not match with any subtype by Northcott et al.. Cavalli et al.
have reported that the split of the subtypes Group 3� and Group 3� has been mainly supported by
expression data [221]. Here, it is important to note that Northcott et al. had used only array-based DNA
methylation data for subtype identification, whereas Cavalli et al. had used array-based methylation
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and gene expression data [221, 222]. Our RNA-seq-based subclusters support the reports of Cavalli et
al. that certain MB subtypes can be only identified using gene expression because subcluster Grp3-c2
did not agree with any DNA methylation-based subtype of Northcott et al..

Additional differences between our subclusters and published subtypes include SHH-c1 vs. Cavalli
et al. as well as Grp3-c3 and Grp4-c2 vs. Northcott et al. (Section 5.3.1.2). Here, one subcluster
corresponded to two reported subtypes. The RNA-seq cohort of our study that was used to identify the
MB subclusters has a considerably smaller size (n=164) than the two external cohorts used for subtype
identification (over 700 MB samples). This might explain why we did not observe a further split of the
subclusters SHH-c1, Grp3-c3, and Grp4-c2. However, considering that our RNA-seq cohort is ~4.5
times smaller than the external cohorts and the overall good agreement with subtypes of Cavalli et al.,
RNA-seq provides a sensitive platform for the identification of molecular subtypes/subclusters within
the four main subgroups.

We applied an unsupervised consensus clustering approach and a subsequent semi-supervised
clustering to identify the presented subclusters subgroup-wisely. The second step was semi-supervised
because it integrated genes that were differentially expressed between the subclusters within one
subgroup. These differentially expressed genes represented additional information that supported the
clustering. Therefore, the semi-supervised clustering was favoured over the unsupervised clustering
for the final cluster assignments. Due to the integration of additional information, the semi-supervised
clustering should allow a correct cluster assignment even for samples that are difficult to cluster.
This assumption was proven by five Group 4 samples that could not be assigned to a cluster by the
unsupervised clustering. The consensus clustering approach — based on a consensus distance matrix
defined by the average pair-wise dissimilarity of samples across subsamples of genes — that we applied
differs from the classical version of consensus clustering [377]. For classical consensus clustering, a
consensus matrix is used that contains the pair-wise consensus rate between samples. The consensus
rate is defined by the frequency of two samples being assigned to a common cluster across repeated
clustering runs on random subsamples of analysed data [377]. A direct comparison of our applied
consensus distance matrix with the classical consensus clustering approach would be of interest
to evaluate the performance of the consensus distance matrix procedure (e.g. based on samples
that were difficult to cluster by the unsupervised clustering). Even though the performance of the
consensus distance matrix procedure was not directly evaluated, the subclusters that we found were
strongly supported by external data. These results underline that our applied consensus distance
matrix clustering approach is suitable for identifying meaningful molecular subclusters; however, a
second semi-supervised clustering step is necessary to correct potential misclassification.

5.5.2 Inference of gene regulatory networks in MB subgroups and
subclusters

One focus of the transcriptome study presented above was to infer gene regulatory networks that
underlie the subgroup- and subcluster-specific expression. We inferred the shown GRNs from gene
expression data in order to take advantage of the deeply sequenced RNA-seq MB cohort. The networks
were inferred using the ensemble machine learning algorithm GENIE3 that is based on a random
forest of regression trees (see Section 3.5.1) [120]. Many different algorithms are available for the
inference of GRNs from gene expression data. However, among these algorithms, GENIE3 has shown
a good or the best performance in the DREAM4 and DREAM5 challenges [119, 120]. Even though
GENIE3 is a well-performing method for inferring GRNs, it provides only a weight (score, criterion) for
ranking TF-gene interaction — like many other GRN inference methods [119] — leaving the choice of
a threshold for the weight that controls the number of false positive and false negative predictions to
the user [378]. A number of methods have been proposed for selecting features based on importance
scores (like interaction weights) from tree-based ensemble methods, such as GENIE3 [379]. However,
many of these methods are computationally extensive because they require multiple runs of the
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learning algorithm on permuted data [379, 380]. (In the case of GENIE3, this procedure needs to
be repeated for each gene of the input data set.) Furthermore, these methods select a maximum
number of features (TFs in GRNs) that show at least some predictive power on the target variable.
This design of feature selection might not be the best choice in a GRN inferred from gene expression,
considering regulatory cascades, as pointed out by Huynh-Thu and Geurts [379]. Such cascades (e.g.
TF1 !TF2 !target) have the effect that TFs upstream in the cascade (like TF1 in the example) are
still predictive of the expression of the target gene. Due to these indirect effects in a GRN, selecting
a maximum number of informative features would introduce many (false positive) indirect links.
Therefore, these feature selection approaches for tree-based methods are not necessarily appropriate
for gene-expression-based GRN inference [379].

Addressing the problem of determining a threshold for relevant TF-gene interaction weights, we
proposed a GRN fitting score above. Here, we did not evaluate the interaction weights directly as done
by the approaches that were designed for tree-based methods. We examined different thresholds
by evaluating the resulting GRN. Here, we used the proposed GRN fitting score for the evaluation.
This fitting score was based on the ratio between the average enrichment of predicted TFBSs and the
network density. The average TFBS enrichment represents a performance measure of the interaction
prediction and can be used alone to reduce false positives. An increasing TFBS enrichment would
correlate with a decreasing number of false positives and an increasing number of true positives
among predicted targets. However, it can be expected that the change of average TFBS enrichment
over an increasing threshold will flatten above a certain threshold since the true positive predictions
accumulate among higher interaction weights [381]. GRNs are sparse [121] because a gene is regulated
by only one or a few TFs, and, therefore, network sparsity can be understood as one objective in the
GRN reconstruction [382]. Thus, we used the network density as an additional indication for the false
positive and false negative levels. Here, we assumed that a decreasing network density (increasing
sparsity) is correlated with a decreasing number of false positives at the cost of a higher false negative
level. Overall, the proposed GRN fitting score combines two objectives by using the network density as
a penalty of the average TFBS enrichment to evaluate a threshold of interaction weights based on the
inferred GRN.

Finding a cutoff for the interaction weights only filters the GENIE3 output, whereas hyperparameters
and options of GENIE3 influence the algorithm directly. GENIE3 hyperparameters comprise the num-
ber of randomly drawn genes per regression tree (R) and the number of trees in the random forest (see
Section 3.5.1) [120]. Defaults hyperparameter values were used (R =

p
N , N = number of input genes;

1000 trees) that were suggested for the application of GENIE3 before [119, 120]. These hyperparameter
values are commonly used for random forest [383]. The tuning of the GENIE3 hyperparameters was
not addressed in the study above since the tuning step remains challenging for GENIE3, as already
pointed out by the authors of this method [120]. An option that could be tested in the future is to apply
a grid search that includes the two hyperparameters and the cutoff for the interaction weights using
the introduced GRN fitting score as an evaluation metric. Besides the hyperparameters, GENIE3 also
provides the option to predefine a set of known TFs to evaluate regulatory interactions [120]. However,
this option should be used with caution when considering the algorithm (Section 3.5.1). GENIE3
obtains a ranking of regulatory interactions by a random forest of regression trees. Each tree node
minimises a loss function by selecting gene j (putative regulator) and a sample split that minimises
the expression variation of gene i (target) (see Section 3.5.1). Here, the capability to be a regulator
of gene i is compared between input genes. When the set of regulators is predefined but the true
regulator of gene i is not part of the predefined set, the regulatory interactions with gene i and the
predefined regulators will probably be overrated, leading to false positive results. For this reason, we
run GENIE3 considering all input genes as potential regulators since probably not all human TFs are
known; additionally, non-TF genes can also influence gene expression.

We obtained four GRNs by applying GENIE3 to our RNA-seq MB cohort to identify the regulatory
networks that underlie the expression profiles of subgroups and subclusters within the main subgroups

137



5 Medulloblastoma study

SHH, Group 3, and Group 4. By integrating published ChIP-seq data performed in MB of the TFs HLX,
LHX2, LMX1A, OTX2, and NEUROD1, we could show a good validation rate of 81% for the overall 270
putative targets of these five TFs. These results indicate a good overall validity for the inferred GRNs in
MB. In comparison, a published community method — which integrates numerous inference methods
to obtain a community ranking of regulatory TF-gene interactions and performed as good as or even
better than GENIE3 — showed a validation rate of ~70% [119]. Additional to the validation based on
ChIP-seq, known aspects about gene regulation in MB also supported the robustness of our inferred
GRNs (Section 5.3.2.3). However, the cutoffs that we determined for the interaction weights were rather
strict and chosen in favour of a high network sparsity when we selected the best GNR fitting score,
which was a conservative choice. This assured the inference of reliable GRNs, as indicated by the
validation rate of 81%, but could miss potentially true regulatory interactions as the later discussed
interaction between MEG3 as regulator of TGFBR1. Nevertheless, robust GRNs based on strict cutoffs
are preferred for genome-wide analyses considering that we could directly validate inferred regulatory
interactions for only five of 339 TFs due to the limited number of ChIP-seq experiments performed in
MB.

We used the inferred GRNs to identify TFs that potentially have the strongest impact on subgroup-
and subcluster-dependent gene expression (Section 5.3.2). TFs were ranked based on a previously
described NIS, which has been applied to identify the TFs with the strongest impact on cell/tissue type-
specific gene expression in regulatory networks inferred from gene expression [123]. The performed
MB study showed similarities to the original NIS publication. We inferred GRNs also from expression
data, and the analysed MB cohort also comprised a collection of cell types represented by subgroups
and subclusters. Therefore, the NIS appeared to fit the task to identify TFs with strong influence on
subgroup- and subcluster-dependent gene expression in MB. We used an adapted version of the NIS
above (Method Section 5.4.5.5). Here, we did not weight genes (targets and TFs) by their expression
level since functional relevant genes can be expressed on individual expression levels. This can be
exemplified by the two TFs ATOH1 and CRX that showed a high NIS in the subgroup SHH and Group 3,
respectively (Section 5.3.2.3). ATOH1 showed an average expression level of 40 RPKM in SHH samples,
whereas CRX was expressed at 12 RPKM on average in Group 3 samples.

Overall, the GRNs that we inferred from gene expression data included the majority of the detected
differentially expressed genes (78% ) in MB. The high validation rate by ChIP-seq data and the literature
support strongly suggest that our inferred GRNs provided a reliable basis to identify TFs with a high
impact on gene expression in MB and reveal new aspects of gene regulation in MB.

5.5.3 Expression profiles and gene regulatory networks in subgroup
and subcluster

We overlaid the inferred GRNs and NIS-based TF ranking with functional enrichments that we detected
among subgroup- and subcluster-specifically upregulated genes. Comparing these analyses provided
links between gene regulation and expression profiles that are characteristic for MB subgroup and
subcluster. For example, top-ranked TFs that we found in WNT and SHH MBs reflect the respectively
activated pathways in these subgroups (Section 5.3.2.3) [83]. However, the performed analyses revealed
more details for the subgroups Group 3 and 4, their subclusters, and the SHH subclusters.

We observed that the expression profile of Group 4 MBs is characterised by a neuronal-developmental
signature, as previously described [83]. Our performed TF ranking provides evidence that ZBTB18 and
NEUROD2 probably strongly contribute to this neuronal-developmental signature in accordance with
the reported function of both TFs in the development and differentiation of cerebellar neurons [253,
254]. In our data set, these two TFs showed a strong regulatory influence and specific upregulation in
all Group 4 MB and in subcluster Grp3-c2 that expressed a Group 4-like profile. Moreover, the potential
regulatory role of ZBTB18 and NEUROD2 in MB was supported by a functional enrichment for neuron
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development among putative target genes that we inferred. Upregulation of NEUROD2 (alias NDRF)
and ZBTB18 (alias RP58, ZNF238) is known for Group 4 MBs [218, 230]. However, a regulatory role of
these two TFs has not been reported for MB or subgroup Group 4, including the work of Lin et al. [218].

Although the inferred GRNs strongly suggest both TFs as important regulators, the question arises
what kind of functional role ZBTB18 and NEUROD2 might have in Group 4 and Grp3-c2 MBs. The
expression of ZBTB18 and NEUROD2 in pre- and postnatal human cerebellum shown above was
also reported in mice where differentiating and matured cerebellar cell types express both TFs [253,
254]. Since ZBTB18 and NEUROD2 expression is part of normal pre- and postnatal cerebellum, and
only ZBTB18 showed upregulation in Group 4 MB vs controls in our analysis (~2.2-fold), the question
remains whether or not the expression of ZBTB18 and NEUROD2 has a cancer-relevant implication
for Group 4/Grp3-c2 MBs or simply reflects transcriptional programs of cerebellar cell types that
are conserved in the tumours. By comparing the expression profile of human bulk MB samples to
single-cell RNA-seq data of the developing mouse cerebellum, Vladoiu et al. have recently shown that
the expression profile of Group 4 MB is similar to that of unipolar brush cells at mouse embryonic
stage E16 or E18 [314]. In the mouse cerebellum single-cell data of Vladoiu et al., Neurod2 and Zbtb18
have been among the top differentially expressed genes that were upregulated in pre- and postnatal
populations of unipolar brush cells, in granule cells, and other interneuron types. The data of Vladoiu et
al. support a general role of Neurod2 and Zbtb18 in the differentiation of GABAergic and glutamatergic
interneurons in the cerebellum, as recently shown [253, 314, 384]. Considering the work of Vladoiu
et al. and the expression of ZBTB18 and NEUROD2 in pre- and postnatal human cerebellum, as
shown above, ZBTB18 and NEUROD2 expression could indeed simply reflect an expression program of
differentiating or differentiated cerebellar cells (potentially unipolar brush cells at E16 or E18) that is
conserved in Group 4 MB. Nevertheless, previous publications have reported functions of NeuroD2
and Zbtb18 that could be relevant for Group 4 tumours [253, 254, 384, 385]. In the mouse cerebellum,
NeuroD2 promotes the postnatal survival of basket and stellate cells (molecular layer) and granule
cells during early postnatal time points by upregulating genes that are potentially implicated in the
survival of cerebellar neurons [254, 384]. Zbtb18 promotes neuron survival in mouse neocortex at late
prenatal (E16.5, E18.5) and early postnatally (P2, latest tested) stages but not in earlier prenatal stages
(E14.5, earliest tested). Therefore, Zbtb18 might also promote postnatal survival cerebellar cells such
as NeuroD2 [385]. A study of Zbtb18 in mouse cerebellum evaluated the effect of Zbtb18 knockout
on neuron survival at E14.5 without seeing differences between wild-type and knockout. However,
considering the study of the neocortex, E14.5 is probably too early to see potential effects of Zbtb18
knockout on neuron survival in the cerebellum [253, 385]. Transferring these reports to MB, ZBTB18
and NEUROD2 can potentially promote cell survival and tumour maintenance in Group 4 MB. The
capacity of TFs — that are associated with rather a cell-type-specific signature than obvious oncogenic
processes in MB such as ZBTB18 and NEUROD2 — to maintain MB tumours has been recently shown
for NRL in Group 3 MB by Garancher et al. [268]. However, at this point, additional experiments in
MB are necessary in order to answer the question of whether or not reported survival-promoting
functions of ZBTB18 and NEUROD2 in cerebellar/neocortical neurons could also play a role in Group
4 and Grp3-c2 MB maintenance. If this assumption is correct, other alterations cause the initiation of
tumourigenesis and ZBTB18 and NEUROD2 would promote tumour maintenance. Since both TFs are
well expressed in the normal cerebellum, it is probably unlikely that ZBTB18 and NEUROD2 carry an
oncogenic function in MB like the TF OTX2 [246].

Tatard et al. have reported that exogenous overexpression of ZBTB18 inhibits tumour growth in
an SHH MB cell line (DAOY) [386]. However, overexpression of ZBTB18 probably has subgroup-
dependent effects that differ between SHH and Group 4 MBs. Here, it should be considered that
SHH MB resembles a granule progenitor and Group 4 MB a differentiating/mature cell type [314]. In
the normal cerebellum, only granule progenitors react to Shh-signalling and proliferate; initiation of
differentiation goes along with a post-mitotic stage [386]. Tatard et al. concluded that Zbtb18 might
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inhibit the SHH MB cell line by introducing cell differentiation blocking response to Shh-signalling
[386]. Since Group 4 MB already reflects a differentiating/mature cell type and does not depend on
Shh-signalling, ZBTB18 most likely has different effects in subgroup Group 4 compared to SHH MB.

Besides Group 4 MB, the GRNs revealed new aspects about gene regulation in Group 3, Grp3-c3,
and Grp4-c3 MB. The characteristic photoreceptor expression signature that we detected for Group 3
tumours agrees with previous reports [387]. However, this photoreceptor signature was also expressed
in subcluster Grp3-c3 and Grp4-c3. The performed TF ranking highlighted the cooperating of TFs NRL,
CRX, and RAX2 in the regulation of the photoreceptor signature in Group 3, Grp3-c3 and Grp4-c3 MB.
This regulatory role of NRL, CRX, and RAX2 was supported by functional enrichments for photoreceptor
development among putative targets of the three TFs in MB, as shown above, and the known regulatory
functions of these TFs in photoreceptor differentiation [215, 242, 243]. The role of NRL and CRX as
master regulators of the photoreceptor signature in MB was confirmed by a more recent study by
Garancher et al. — published in parallel to the work on the present study. The authors also showed
an upregulation of both TFs in Group 3 MB and subtypes of Group 3 and Group 4 [268] where these
subtypes match to our MB subclusters Grp3-c3 and Grp4-c3. The authors did not mention RAX2 in this
context. Lin et al. have reported a TFBS enrichment for RAX2 in subgroup specific-enhancers of Group
3 and Group 4 [218]. However, in our present study, RAX2 was virtually not expressed in several Group
3 and Grp4-c3 samples, whereas NRL and CRX were expressed in all Group 3 MB except for three
samples of the Group 4-like subcluster Grp3-c2. Considering the expression levels that we observed for
RAX2 in MB and the reported function of Rax2 as a simple transcriptional modulator by enhancing the
transactivating function of Nrl and Crx in mice [242], the maintenance of the photoreceptor signature
in MB depends on NRL and CRX expression, but RAX2 expression is dispensable.

Our performed TF ranking in subcluster Grp3-c1 suggests that the top-ranked TFs MYC and HLX
mainly influence gene expression in Grp3-c1 MBs. The oncogenic activation of MYC in a subset of
Group 3 tumours due to copy number gain/amplification and PVT1-MYC fusion is well described [193,
269]. Subcluster Grp3-c1 and matching previously reported subtypes (Group3�, II) reflect this subset
of MYC-driven Group 3 MB [221, 222]. In contrast to MYC, oncogenic functions have not been reported
for HLX in MB. However, information scattered across several publications may help to understand the
observed expression association between MYC and HLX in Grp3-c1 MB. The expression correlation
between HLX and MYC in bulk Group 3 MB that we observed above was also reported on single-cell
level of MB, as published by Hovestadt et al. [388], underlining a strong expression association between
both TFs in Group 3 MB. Two mechanisms might explain the expression association between HLX and
MYC in Group 3 and the upregulation in Grp3-c1 MB, respectively. HLX is located on chromosome
1q, and it was reported that copy number gain of chromosome 1q leads to upregulation of HLX in
MB [298]. Cavalli et al. described that subtype Group3�, matching subcluster Grp3-c1, is not only
defined by recurrent chr. 8 (MYC) but also recurrent chr. 1q gain. Therefore, co-amplification/-gain of
MYC and HLX in subcluster Grp3-c1 might be a possible mechanism causing the upregulation of both
TFs in these tumours. Lin et al. have reported that HLX binds to an MYC-regulating enhancer that is
active in Group 3 and WNT MB, which provides a potential mechanism for the expression correlation
between HLX and MYC in Group 3 MB [218]. Moreover, both mechanisms might work together to
enhance MYC expression. A deeper understanding of the regulatory role of HLX in MYC-driven Group
3 MB via functional experiments is needed since this subset shows the worst survival among Group 3
tumours [221].

The remaining two subclusters Grp4-c1 and Grp-c2 within Group 4 were not defined by photoreceptor-
associated TFs as in subcluster Grp4-c3. The function of the TF EBF1 that we found to be top-ranked
in subcluster Grp4-c1 is not well described in MB. In terms of EBF1 gene expression patterns in MB,
previous reports mentioned upregulation in Group 4 MB and differential expression among Group
4 subtypes [221, 229]. In terms of gene regulation, an enrichment of EBF1 binding sites has been
reported in somatic lowly methylated regions in SHH MB and enhancers active in Group 3 and Group 4
MB [218, 277]. However, as we presented above, genes upregulated in Grp4-c1 MB and putative targets
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of EBF1 were enriched for neuronal-developmental functions indicating that EBF1 contributes to an
expression signature that is associated with neuron differentiation on top of the Group 4-common
signature regulated by ZBTB18 and NEUROD2.

We found several interesting features for the subcluster Grp4-c2. In Grp4-c2 MB, we identified
highly-ranked TFs, upregulated genes, and enriched pathways that were related to stemness or
EMT/mesenchymal features or both, comprising PI3K-AKT pathway, the TFs TWIST1, SOX11, SOX9,
and the gene NES [278, 283, 285, 288, 289, 293, 294]. A direct link between EMT, SOX9, and PI3K-AKT
signalling has been described for SHH MB. Here, PI3K-AKT signalling stabilises SOX9 protein by inhib-
iting GSK3/FBW7-dependent SOX9 degradation. Elevated protein levels of the TF SOX9 lead to EMT
and higher cell motility in SHH tumours associated with metastasis and worse clinical outcome [289].
This reported mechanism could also promote metastases in Grp4-c2 MB since we found SOX9 and
genes of the PI3K-AKT pathway to be upregulated in this subcluster. In our analysis, the TF TWIST1
showed the highest NIS for Grp4-c2 MB. TWIST1 is a the well-described EMT-initiating TF [278] sup-
porting the idea that Grp4-c2 MB undergoes EMT that might promote metastasis formation. TWIST1
was not only the top-ranked TF in Grp4-c2 MB but also specifically upregulated when compared to
non-WNT tumours. Therefore, Grp4-c2 could be marked by frequent metastasis. However, Cavalli
et al. reported the same frequency of metastasis at diagnosis for Group 4 subtypes [221]. Since the
published subtypes matched well to our subclusters Group 4 MB described above (see Section 5.1.3),
the reported same frequency of metastasis between Group 4 subtypes does not support the idea of
EMT-driven metastasis in Grp4-c2 MB at first glance. Nevertheless, it should be considered that Group
4 MB shows a generally high frequency of metastasis at diagnosis (40%) among MB subgroups which is
twice as much as in SHH MB (see Section 5.1.3). Therefore, the mentioned factors could still promote
EMT-associated metastasis in Grp4-c2 tumours, and alternative or partially overlapping mechanisms
lead to metastasis in the remaining two Group 4 subclusters. For example, we detected an enrichment
of the FGF and PI3K-AKT signalling pathway for the remaining two subclusters Grp4-c1 and Grp4-c3,
respectively. Besides the PI3K-AKT signalling, several pathways can promote EMT in cancer including
the FGF pathway [389]. Nevertheless, the results could be interpreted in another way, too. In cancer,
EMT and stemness are disease-driving features that can occur independently but frequently co-occur
[390]. EMT is linked with metastasis since it promotes motility and invasion of tumour cells, whereas
expression of stemness-associated factors is related to tumour cell proliferation and maintenance [390,
391]. Therefore, these crossroads between stemness and EMT suggest that rather stemness-associated
features than EMT-associated features might play a disease-relevant role in Grp4-c2 tumours [390,
391]. In this case, common or subcluster-independent mechanisms of forming metastasis would
explain the similar frequency of metastasis between Group 4 subclusters (subtypes). Overall, the
data that we presented highlight Grp4-c2 MB as an interesting subcluster since it upregulates EMT-
and stemness-related factors and Group 4 MB is more known to resemble an immature/mature cell
type. Further experiments are needed to understand the involvement of EMT and stemness factors in
Grp4-c2 tumours.

The TF ranking for the SHH subgroup simply reflected the activation of the Shh pathways. However,
new insights into the age-related molecular heterogeneity of SHH MB were provided by analysing
the GRN and expression profiles of the SHH subclusters. Comparing the subclusters presented above
to MB subtypes published by Cavalli et al. underlined that the identified SHH subclusters SHH-c1
SHH-c3, and SHH-c2 represent infant, childhood, and adult SHH MB cases, respectively. Among
the identified subclusters, the expression profiles of the SHH subclusters showed the most complex
relation. These data indicated that infant and adult SHH MBs have a distinct expression profile, and
childhood SHH MBs share expression profiles with the remaining two age groups. This is in line
with several publications that had concentrated on the dissection of the molecular heterogeneity
within SHH MBs [212, 214, 221]. However, none of these publications has defined the set of genes
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that childhood SHH MB shares with infant or adult cases. Here, the genes presented above that are
differentially expressed between SHH subclusters provide new insights into the age-group-related
expression pattern.

TFs that were highly ranked in the SHH subclusters also followed the age-group-related expression
pattern indicating a regulatory link. Here, ATOH1 and NEUROD1 might make a main contribution
to the age-group-related expression pattern. In mouse MB models, it has been shown that NeuroD1
overexpression promotes neuronal differentiation and leads to downregulation of Shh targets such as
Gli1, whereas Atoh1 overexpression represses neuronal differentiation including downregulation of
NeuroD1 [237, 392]. The apparent inverse association between these two TFs and their regulation of
cell differentiation-repressing or -promoting programmes has been recently validated in human MB
(published during the work on the present study). Here, Hovestadt et al. demonstrated that NEUROD1
and ATOH1 expression is negatively correlated and higher in infant or adult SHH MB, respectively.
Additionally, the authors reported that NEUROD1 expression in infant SHH MB correlates with the
expression signature of immature/mature granule neurons and unipolar brush cells, whereas ATOH1
expression in adult SHH MB correlates with the signature of progenitors of these two cell types [388].
These reports fit well with the results shown above, including the expression patterns of ATOH1 and
NEUROD1 and the observed functional enrichments related to repression or promotion of cell differ-
entiation in adult and the non-adult SHH subclusters, respectively. Our presented expression profiles
of ATOH1 and NEUROD1 in MB suggest that the children subcluster SHH-c3 might be influenced by
both TFs, explaining the intermediate expression profile of SHH-c3 MBs.

Besides upregulated TFs, the visualised GRNs also depicted the contribution of subgroup- or
subcluster-specifically downregulated TFs to gene regulation in MB. In the context of subgroups,
TFs downregulated in WNT or SHH MB showed a high impact on gene expression in non-WNT and
non-SHH MB, respectively. Here, previous work in Lin et al. study confirmed that OTX2, RREB1, and
TBR1 are potentially involved in gene regulation in non-SHH MB based on binding site enrichments
detected in active enhancers and super-enhancers [218]. In our MB study presented above, DEK
was among the TFs that were specifically downregulated in WNT MB. Here, we found DEK also to
be upregulated in non-WNT MB vs. normal cerebellum. These results are supported by a reported
upregulation of DEK in Group 4 MB vs. fetal neural brain [230]. However, DEK is not yet well studied
in the context of MB. DEK has been reported to be an oncogene in many different cancer types [393].
Therefore, it might be of interest to study DEK in the context of non-WNT MB for future research [393].

Our performed overlay of copy number and gene expression of selected TFs emphasise a general
contribution of copy number variation on expression levels of TFs indicating that copy number changes
influence GRNs in MB. However, copy number variations alone did not always fully explain expression
patterns and, therefore, additional mechanisms most likely influence expression levels of TFs as well.

The GRNs that we inferred from gene expression data (expr-GRNs) depicted regulatory links but
did not resolve to which extent TF binding in promoter or enhancer elements played a role in gene
regulation[394]. By integrating putative enhancer-targeted genes in MB, published by Lin et al.,
we showed that over 50% of predicted TF target genes are potentially regulated via TF binding in
enhancer elements [218]. The high fraction of enhancer-targeted genes underlines the reported idea
that enhancers essentially contribute to transcriptional changes in cancer [395]. Furthermore, the
fact that not all genes in our GRNs were assigned to be an enhancer target indicates a contribution
of promoter-mediated gene regulation in the expr-GRNs. Promoter-mediated gene regulation is a
type of regulation that is not covered by the previously published enhancer-mediated GRN (enh-
GRN) of the Lin study. An additional advantage of the expr-GRN compared to the enh-GRN is the
independence from available TF binding motifs for GRN construction. Here, the enh-GRN is biased by
the research status of individual TFs. Additionally, the quality of available TF motifs can differ, and
TFs of the same family recognise the same or highly similar motifs, which complicates the assignment
of regulatory links to a particular TF when several TFs of the same family are expressed [396]. On the
other hand, in expr-GRNs, the individual contributions of highly correlated TFs cannot always be
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deconvolved, which results in the inference of false or indirect links in the case of a regulatory cascade
(TF1 !TF2 !target). Here, expr-GRNs could be improved by the integration of TFBS predictions.
Overall, our study presented above extends the previous work of Lin et al..

Lastowska et al. published a GRN for MB inferred from microarray gene expression data, too, but
concentrating on a specific aspect. At first, the authors performed a mutagenesis experiment to identify
17 genes (including six TFs) that were associated with SHH MB formation in Ptch+/° mice tumour
models. Second, the authors inferred an expression-based GRN in MB. Several of the found SHH
MB-associated genes were part of a subnetwork that was connected to gene regulation in Group 4
(highlighting MYT1L) and non-Group 4 MBs. However, due to the authors’ focus, the GRN of Lastowska
et al. shows only a fraction of the GRN in MB compared to the expr-GRNs that we presented above.

All in all, the individually inferred GRNs of subgroups and subclusters within subgroup SHH, Group
3, and Group 4 depicted the landscape of TFs that probably predominantly contribute to the transcrip-
tomic heterogeneity in MB linking TFs to certain transcriptional signatures. The dissection of gene
regulation in MB highlighted TFs that might be of interest for future studies including so-far unknown
master regulators of Group 4 expression profiles, stemness- and EMT-associated TFs in Grp4-c2 MB,
HLX in Grp3-c1 MB, and DEK in non-WNT MBs.

5.5.4 Characterisation of di�erentially expressed lnc genes in MB
Besides the analysis of the expression profiles and GRNs in subgroups/subclusters, the study presented
above also focused on the characterisation of differentially expressed lnc genes in MB.

Unsupervised clustering and differential gene expression showed that expression of lnc genes
follow the profiles of MB subgroups and subclusters. This analysis provides the general idea of a
potential role of lnc genes in MB. We selected the set lnc genes that we further analysed based on
differential expression among subgroups or subclusters. Overall, the performed DGEA identified a
smaller number of lnc than coding genes. As shown above and in previous reports, lnc genes have a
generally lower expression than coding genes, which might be a potential explanation for the smaller
number of detected differentially expressed lnc genes (Section 5.3.3.2) [133]. A lower gene expression
has the consequence that fewer reads are available. The lower read number, in turn, leads to less
statistical power to detect differential gene expression by the applied DGEA method edgeR. This
method assumes a negative binomial distribution for the modelling of read counts [397, 398] (see
Section 3.3.2). Additionally, we applied the same cutoffs to coding and lnc genes. The chosen average
absolute difference of ∏ 1 RPKM between groups represents probably a strict cutoff for lnc genes. All
these points indicate that the 448 lnc genes detected above comprise only the highest expressed lnc
genes that are differentially expressed in MB. Therefore, these 448 lnc genes represent a robust set for
detailed characterisations.

The computational characterisation that we performed for the 448 lnc genes in MB focused on
several aspects:

• a systematic general characterisation by the position relative to coding genes and expression
correlation with neighbouring coding genes,

• the identification of lnc genes interesting in the contest of MB, and
• inferring potential implication of individual lnc genes in MB.

Here, (1) several external resources (FANTOM CAT, BrainSpan, and Ensembl), (2) literature, and (3) the
analysed MB RNA-seq cohort were used for the characterisation [133, 299, 354].

Previous reports showed that the classification of lnc genes into different types, which is based on
their position relative to coding and pseudo-genes, provides insights into the molecular genetics and
biology of lnc genes and their transcribed lncRNAs, as previously shown [133, 135]. For this reason,
we classified the 448 analysed lnc genes into the three types divergent, antisense, and intergenic.
Here, the resource FANTOM CAT provided essential information for the classification of divergent lnc
genes since FANTOM CAT was developed to improve lnc gene models by an accurate annotation of
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transcription start sites [133] (see Section 3.6.1). To understand the three lnc gene types in the context
of MB, we compared the analysed lnc genes based on the three types. This comparison included
the positional coding gene partners/neighbourhood of the lnc genes. The functional enrichments
detected above for transcription factor activity and developmental processes in coding gene neigh-
bourhood of divergent and intergenic lnc genes is supported by previous genome-wide studies [134,
135]. Therefore, these functional associations are rather general than MB-related characteristics of
coding partners of these two lnc gene types. However, the coding gene neighbourhood of divergent lnc
genes was enriched for nervous system development. This enrichment is of interest because nervous
system development-associated genes/TFs can have tumourigenic functions in MB or contribute to
its molecular heterogeneity [193]. Considering this and a described regulation of coding partners by
divergent lnc genes in cis [399], divergent lnc genes might regulate the expression of coding genes with
implications in MB.

The higher expression specificity that we observed for lnc genes when compared to their coding
neighbourhood is a generally known characteristic of lnc genes [133]. However, the strong positive
expression correlation that we detected between divergent lnc genes and their coding partners in MB
would not necessarily support a significantly higher expression specificity for divergent lnc genes.
(The observed strong positive expression correlation is in line with previous reports [135].) This
discrepancy might be explained by the general lower expression of lnc genes compared to coding ones,
as shown above and previously reported [133]. The lower expression could have introduced a bias
in the expression specificity score that was obtained from FANTOM CAT [133]. The lower expression
might increase the probability that expressed lnc genes remain undetected due to limitations of every
RNA quantification technology including the CAGE technology that has been used to calculate the
expression specificity scores [133]. However, the published expression specificity score should still
provide useful information. However, probably only pronounced differences in cell-specific expression
as seen between intergenic and coding genes should be considered significant. Previous studies showed
that intergenic lnc genes have a general higher expression specificity because their transcription
initiation sites frequently overlap with enhancers [133]. The association between intergenic lnc genes
and enhancers is of interest because enhancers are involved in cancer-associated transcriptional
changes [395]. Additionally, oncogenic functions have been reported for lnc genes that are transcribed
from super-enhancer loci [400]. Therefore, further characterisation of intergenic lnc genes by obtaining
H3K4me1 histone marks to distinguish promoter- and enhancer-associated TSS in MB would be of
interest to understand better the role of intergenic lnc genes in this disease.

In our analyses, the majority of lnc genes were significantly positively correlated. Only nine lnc genes
showed a significant negative correlation with coding partners. This negative correlation might be
interesting due to the fact that lnc RNAs can act as a negative regulator of transcription in cis [401].
However, for none of these nine lnc genes, such a function has yet been reported. The observed
significant negative correlation might not imply cis-regulating functions for these lnc genes and could
be caused by coincidence. The negative correlation between ZFAS1 and the divergent coding partner
ZNFX1 observed above was also reported in Head and Neck Squamous Cell Carcinomas. However,
across breast cancer cell lines, ZFAS1 and ZNFX1 no expression correlation was reported [402, 403].
Additionally, DLGAP1-AS1, which we detected to be negatively correlated with the antisense coding
gene DLGAP1, is only one out of five lnc genes in antisense orientation to the large DLGAP1 locus that
spans nearly one Mb. The genomic location of both genes does not indicate a strong dependency
between DLGAP1-AS1 and DLGAP1.

Nevertheless, our investigation of expression correlation between lnc genes and coding gene partners
facilitated the definition of correlation-based lnc gene categories. These categories allowed us to lnc
genes that were not significantly positively correlated with coding partners in MB. This set of lnc
genes qualified for further analyses because additional characterisations were based on expression
data. Here, a strong positive correlation between lnc genes and coding partners would not allow
inferring potential functions of individual lnc genes independent of the coding partner. However, it

144



5.5 Discussion

is important to note that significance alone is probably not an appropriate indicator of whether lnc
and coding partners show a potentially relevant co-expression. A significance level can be reached for
non-meaningful/low correlation coefficients in larger data sets as in the analysed ICGC MB cohort due
to high statistical power. Here, in our study, a Spearman correlation coefficient > 0.3 was used as a
cutoff for potentially relevant co-expression between partners. A significance level (FDR < 0.05) was
already reached at a coefficient around 0.16.

We identified 95 that were not significantly positively correlated with coding partners in MB among
the 448 lnc genes that we computational characterised. For 20 of these 95 lnc genes, integration and
analyses of external data (BrainSpan, FANTOM CAT) revealed expression patterns that are associated
with brain/cerebellum development, NSCs, and ESCs (Figure 5.31). These expression patterns are
of particular interest due to the embryonic origin of MB and, therefore, may point to lnc genes that
play a role in this disease (see Section 5.1.1). However, many of these 20 lnc genes are un- or rarely
studied. Among these 20 lnc genes, development-related expression has been reported for GAS5,
RMST, RP11-453F18__B.1 (alias FIRRE) [315, 404, 405]. Additionally, our annotation of development-
related expression patterns highlighted the antisense lnc gene GLYCTK-AS1. Only GLYCTK-AS1 was
expression-enriched in ESCs and upregulated in pre- vs. postnatal cerebellar tissue displaying an
exclusive expression in prenatal cerebellum (Figure 5.31 and Figure 5.32.a). Additionally, we detected
a strong expression correlation between GLYCTK-AS1 the neural stem cell marker HES5 [300] in the
prenatal human brain (BrainSpan), which supports an implication of GLYCTK-AS1 in brain/cerebellum
development. The resource FANTOM CAT provides the information that the TSS of GLYCTK-AS1 is
located in an enhancer, whereas the antisense coding gene GLYCTK is transcribed from a promoter,
which is underlining independent transcription of GLYCTK and GLYCTK-AS1 [133]. The transcription
of GLYCTK-AS1 from an enhancer supports a cell-type-specific expression of this gene [406]. Here, we
observed exclusive expression in the prenatal cerebellum. Additionally, FANTOM CAT annotations
comprised enriched expression mainly in neuronal/brain-associated cell/tissue ontologies for GLYCTK-
AS1 [133]. As already pointed out, additional H3K4me1 marks are necessary to validate the enhancer-
associated transcription of GLYCTK-AS1 in MB. Interestingly, current gene annotations in mice contain
an uncharacterised lnc gene (D030055H07Rik) that is in antisense orientation to Glyctk (GRCm38,
Ensembl release 100) [407]. If GLYCTK-AS1 is conserved in mice, ISH experiments might provide
insights into the potential role of GLYCTK-AS1 in brain/cerebellum development and cell-type-related
expression. Overall, our results strongly suggest that GLYCTK-AS1 is linked to cerebellar development
and potentially stem/progenitor cells. The upregulation of GLYCTK-AS1 in Group 4 MB, which we
showed above, might be interesting because this subgroup has rather been associated with im-/mature
cell types than progenitor/stem cells and, therefore, GLYCTK-AS1 might reveal new aspects about
Group 4 MB [314]. Additionally, we showed a constant upregulation of GLYCTK-AS1 in subcluster SHH-
c2 compared to the remaining SHH subclusters, which might point to a specific role of GLYCTK-AS1 in
adult vs. non-adult SHH tumours.

Twelve lnc genes, which we selected based on previous reports of these lnc genes, were reassessed in
the context of MB using the analysed RNA-seq MB cohort. Here, we depicted subgroup- and subcluster-
related expression patterns and previously reported regulatory links between lnc and coding genes
were evaluated in MB. This analysis revealed some interesting aspects. We found the lnc gene LINC-
ROR to be exclusively expressed in WNT MB and absent in the normal cerebellum. The reported
cell proliferation- and metastasis-promoting function of LOXL1-AS1 in MB that had been studied in
Group 3/4-classified MB cell lines [305] might be especially relevant for subcluster Grp3-c1 and -c3,
and Grp4-c2 because we observed consistent high expression in these subclusters of Group 3 and
Group 4 compared to normal cerebellum. Based on the strong positive correlation of FEZF1-AS1 and
HOTAIRM1 with their coding partners, we could verify that the reported cis-regulatory function of both
lnc genes [317, 319] is preserved in MB. The regulatory roles of both lnc genes in cis might be of interest
in MB since the coding partners HOXA1/HOXA2 and FEZF1 have been shown to promote tumour cell
proliferation in glioblastoma and colorectal carcinoma, respectively [317, 319].
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Overall, our evaluation of previously reported regulatory (direct or indirect) links between lnc and
coding genes was limited to a small number of reported links because publications were manually
evaluated. Here, the integration of databases that collect reported targets of lnc genes (such as
"LncRNA2Target") might facilitate a faster and more comprehensive evaluation of literature-based
knowledge in MB and should be considered for future studies [408].

We identified the co-expression cluster Cc1 in MB that showed high expression in WNT, SHH and
Grp3-c1 MB. This co-expression cluster included five of the lnc genes that we selected via literature,
PVT1, SNHG16, GAS5, ZFAS1 and DANCR. The accumulation of these five lnc genes in the co-expression
cluster Cc1 is noticeable since all of these lnc genes have been frequently reported to be involved in
cancer [307–310, 320, 321, 324, 329, 331, 332, 409]. Further, among the genes of Cc1, we detected
functional enrichments that suggest that these five lnc genes are associated with MYC-target expression
and translational processes in MB, following the approach guilt-by-association (see Section 3.6.2).
Previous publications of these lnc genes support these functional associations. PVT1, SNHG16, and
DANCR are known MYC targets in humans providing a direct regulatory link between these lnc genes
and the MYC-target enrichment in the co-expression cluster [213, 310, 322]. In prostate cancer, Chen et
al. have identified a co-expression cluster that contained GAS5 and ZFAS1. This cluster was enriched
for RNA-processing and protein translation, similar to co-expression cluster Cc1, indicating that the
strong correlation between these two lnc genes and the functional association with translational
processes is not only present in MB [330]. Moreover, a direct association with ribosomes and ribosome
biogenesis, reflecting translational processes, has been reported for SNHG16, ZFAS1, and GAS5 [332,
402, 410].

Additionally, the role of GAS5 needs to be evaluated in MB since it is mostly known as a tumour
suppressor [329]. Nevertheless, two publications showed oncogenic functions of GAS5 depend on the
expression of specific isoforms. This is an aspect that should be considered for future studies of GAS5
in MB [331, 332]. Among these five lnc genes, only PVT1 is known in MB, but just in the context of
co-amplification or fusion with MYC in MYC-driven Group 3 tumours [213]. The expression profiles
of PVT1 shown above and the reported oncogenic functions in other cancer types indicate that PVT1
might play a role also in WNT and SHH MB as well [409].

Overall, additional experiments are needed in order to understand the exact functional implication
of these five lnc genes in MB since these lnc genes fulfil their oncogenic functions by a variety of
mechanisms [320, 324, 326, 409].

Interestingly, our evaluation of the expression correlation between mean pattern of Cc1 and mem-
bers of the MYC gene family members strongly suggests that the co-expression cluster Cc1 might
be collectively regulated by MYC, MYCN, and MYCL in MB in association with subgroup-specific
dependency. Here, especially MYC and MYCN have been reported to drive MB formation (see Section
5.1.3) [269]. Therefore, the co-expression cluster Cc1 probably represents tumour-promoting processes
that MYC family members collectively regulate in MB. Here, the enrichment in Cc1 for translational
processes shown above provides a link between a tumour-promoting role of Cc1 and MYC family
genes. Translational processes are known to be regulated by MYC, where increased translation/protein
synthesis is considered to enhance cell-cycle progression in cancer [411].

Our performed analyses strongly suggest a correspondence between co-expression cluster Cc1 and
a reported MYC-like kinase activity profile that has been described in MB by Zomerman et al. (see
Section 5.1.5) [220]. The authors showed that MYC or MYCN (MYCL was not tested) can induce this
MYC-like kinase activity profile. However, Zomerman et al. reported that several MB samples that
were associated with a MYC-like kinase activity profile did not show high expression of MYC, MYCN or
MYCL. Therefore, the authors concluded that MYC or MYCN abnormalities (overexpression and ampli-
fication) are dispensable for the activation of a MYC-like kinase activity profile in medulloblastoma. In
this case, other aberrations might induce this kinase profile. However, this conclusion conflicts with
our results shown above of the collective regulation of the co-expression cluster Cc1 by MYC family
members considering that Cc1 is associated with the MYC-like kinase profile. The results presented

146



5.5 Discussion

above highlight that the summed overall expression of MYC, MYCN, and MYCL needs to be considered
to fully capture the impact of MYC family members in individual MB tumours, an aspect that was not
considered by Zomerman et al. [220].

In the study that we presented above, the most detailed functional characterisation was done
for MEG3 using clinical data, a gene-centred co-expression analysis, and predicted DNA binding
sites. As previously proposed [41], associations with clinical outcomes can point to lnc genes with
cancer-relevant functions. To detect associations between gene expression and OS, it was essential to
determine an expression cutoff that allowed an optimised split of cases into two groups associated
with different survival rates. Here, we applied a signal-to-noise-/subsampling-based approach to
avoid the overfitting of detected associations. Overfitting needs to be addressed when values of a
continuous prognostic factor are categorised [97]. The top-three cutoff solutions for MEG3 expression
of the discovery and external cohort varied around an overlapping solution. This demonstrates that the
applied approach truly allowed an estimation of robust cutoffs by avoiding overfitting, considering the
different sample size (164 vs. ~700 samples) and technologies used for gene expression quantification
of the two cohorts (RNA-seq vs. microarrays).

We chose a gene-centred co-expression analysis for MEG3 because genes that are negatively correl-
ated with MEG3 expression were of interest. Therefore, co-expression clusters were not applicable.
Co-expression cluster analyses can be performed in an unsigned or signed manner. Signed analyses
result in clusters comprising only positive correlation, whereas unsigned analyses result in clusters
comprising positive and negative correlation. Signed analyses are to be preferred over unsigned ones
because signed analyses provide more interpretable and biological relevant clusters. The identification
of co-expression clusters that only relate to negative correlation is not possible [138, 140]. Additionally,
gene-centred co-expression/guilty-by-association analyses have been previously used in lnc character-
isation. This allows for analysing positive and negative correlations independently [139]. We improved
the inference of MEG3 functions in MB by integrating predicted binding sites of this lnc genes. Hereby,
the detection of particular pathways that are negatively associated with MEG3 expression was enabled.
The usefulness of predicted binding sites for the characterisation of the lnc gene is also highlighted
by a recently published pan-cancer study by Chiu et al., in which binding site predictions and co-
expression analyses were combined [412]. The authors used the Triplexator tool to predict lnc gene
binding sites because it works independently of ChOP data.

Independent of the binding site prediction, our inspection of detected correlations between MEG3
and coding genes revealed potential spurious correlations since subgroup-dependent expression
was a confounding factor. Here, subgroup-dependent gene expression profiles reflected different
marginal distributions that might have caused the detection of spurious correlations [413]. We applied
a heuristic approach to detect spurious correlations (Section 5.4.6.9, 5.3.3.7). Our evaluation suggests
that this approach successfully selected spurious correlations, but the fraction of missed spurious
correlations remains unknown. This heuristic approach has the advantage that the removal of effects
of supposed confounding factors can be well controlled, for example, by choosing a cutoff for the
strength of correlation that should remain after removing one subgroup or within a single subgroup.
However, this approach has the disadvantage that confounding effects are not fully captured. The
application of model-based correction of confounding effects in co-expression analyses might be an
option to capture the whole effect of confounders [414, 415]. However, the controllability of effect
removal in the performed analyses was important in our study since truly correlated gene pairs could
still be under the effect of subgroup-dependent expression.

We showed that MEG3 expression levels in MB tumours can stratify SHH and Group 4 cases into
outcome-related groups (Section 5.3.3.6). Furthermore, we demonstrated that MEG3-based outcome
stratification in these two subgroups was restricted to the subclusters SHH-c1, Grp4-c2, and Grp4-c3.

MEG3-high-expressing Grp4-c3 cases showed a strikingly favourable outcome, and MEG3-low-
expressing Grp4-c2 tumours showed the worst five-year survival rate among Group 4 cases. Molecular
subtypes of Group 4 tumours that are reported by Cavalli et al. or Schwalbe et al. do not provide a good
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stratification of patients with Group 4 tumours in terms of overall survival [221, 223]. However, our
results show that risk stratification of Group 4 cases by jointly using molecular subclusters/subtypes
and MEG3 expression could improve the identification of low risk (Grp4-c3 + MEG3-high), high risk
(Grp4-c2 + MEG3-low), and medium risk (remaining Group 4 samples) Group 4 patients.

We demonstrated in SHH-c1 (infant SHH MB) cases, high expression of MEG3 strikingly marked
favourable outcomes (similar to Grp4-c3 MB), whereas low MEG3 expression marked patients with
rapid death and a miserable outcome. A higher tumour sample number allowed Cavalli et al. to define
two subtypes of infant SHH MB jointly represented by subcluster SHH-c1. Here, in both subtypes SHH�
and SHH�, MEG3-expression-based stratification could still define patient groups with significantly
different OS. Cavalli et al. showed that subtype SHH� represents infant SHH MB cases with a worse
OS compared to subtype SHH�. However, a MEG3-expression-based stratification might improve
outcome prediction in infant SHH MB when comparing the 5 years overall survival between subtype
SHH�/� and MEG3 expression-stratified patient groups (Figure 5.3, 5.42, A.56).

By identifying enriched processes among genes that are negatively correlated with MEG3 expression,
we could show that MEG3 probably acts as a tumour suppressor in MB via negatively regulating mitotic
cell cycle and TGF� pathway (see Section 5.3.3.8). Similar tumour suppressive functions of MEG3 have
been reported, for example, in breast cancer (see Section 2.5) [43, 416]. We observed this potential
tumour suppressive function of MEG3 in MB in a subgroup-dependent manner for SHH and Group 4
MB, providing a functional link and an explanation why MEG3 expression is prognostic in SHH and
Group 4 subclusters but not in Group 3 MBs.

We could highlight CDK1, CCNB1, MYC, and TGFBR1 as putative MEG3 targets by identifying
predicted MEG3 binding sites in promoter and enhancer regions of these genes. Here, MEG3 probably
acts as a negative regulator, taking the negative expression correlation between MEG3 and these
genes into account. CDK1 and CCNB1 (regulators of G2-to-M phase progression in the cell cycle
[349]) provide a potentially direct regulatory link for the observed negative association between MEG3
expression and mitotic cell cycle in SHH and Group 4 MB. These data indicate that MEG3 can induce
cell growth arrest in SHH and Group 4 MB, a tumour suppressive function of MEG3 that has been
described in several cancer types including downregulation of CDK1 and CCNB1 [50, 59].

We detected a negative correlation between MYC and MEG3. This negative correlation seemed to
be more relevant for Group 4 MB because it was stronger in this subgroup. Grp4-c3 tumours that
were stratified based on MEG3 expression, in turn, showed upregulation of MYC among Group 4
subclusters. These data indicate that high MEG3 expression in a subset of Grp4-c3 MBs might impair
tumour progression via downregulation of the oncogene MYC [269, 417]. Huang et al. reported that
MEG3 functions as ceRNA in bladder cancer and indirectly, negatively controls MYC mRNA expression
through a complex cascade involving miR-27a, PHLPP2, and JUN, which impairs tumour invasion
[418]. However, the data shown above suggest that MEG3 might regulate MYC in MB via binding a
MYC-regulating enhancer.

Among genes that were negatively correlated with MEG3, we could show that a functional enrichment
for the TGF� pathway increased after filtering for genes carrying a MEG3 binding site. This increase of
enrichment highlights MEG3 as a negative regulator of the TGF� pathway in MB. As shown above, a
predicted MEG3 binding site was located in an enhancer of TGFBR1 that has been shown to interact
with the TGFBR1 promoter in MB [218]. This provides a possible mechanism for how MEG3 might
regulate the TGF� pathway in MB. We showed that TGFBR1 and MEG3 expression are significantly
negatively correlated in both SHH and Group 4 MB but stronger in Group 4 tumours. Additionally, we
found the strongest functional enrichment for the TGF� pathway among genes that were negatively
correlated with MEG3 in Group 4 tumours. These data indicate that negative regulation of the TGF�
pathway by MEG3 might be especially relevant for Group 4 MB. Furthermore, we also observed a strong
negative correlation between MEG3 and TGFBR1 in developing brain tissues and in pre- and postnatal
cerebellum in humans. Here, our findings suggest that the negative regulation of TGFBR1 by MEG3 is
a transcriptional program that is active during the development of the brain and cerebellum. TGF�
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signalling has been previously linked to genes that are affected by genetic events in Group 3 MB and to
metastasis formation and progression in SHH MB [222, 419, 420]. However, an implication of the TGF�
pathway in Group 4 MB still needs to be evaluated since this pathway shows a tumour-suppressive or
promoting function in cancer [421].

We observed a downregulation of MEG3 in MB (excepting Grp4-c1 tumours) compared to normal
cerebellum (excepting Grp4-c1 tumours), a finding that is supported by previous reports [337]. This
downregulation provides additional evidence that MEG3 might act as a tumour suppressor in MB. Our
findings suggest that the observed capability of MEG3 to stratify SHH-c1, Grp4-c2, and Grp4-c3 MB is
associated with a certain expression distribution in these subclusters. Here, the fraction of MB samples
that displayed either MEG3 expression within or below the expression range of normal cerebellum was
similar. These results indicate that MEG3 has a critical expression level to act as a tumour suppressor
in MB, which is frequently reached in SHH-c1, Grp4-c2, and Grp4-c3 MB but infrequently in WNT,
SHH-c2, SHH-c3, and Group 3 tumours. In the case of subcluster Grp4-c1, it remains unclear whether
the general high MEG3 expression or unknown subcluster-dependent mechanisms — counteracting
tumour suppressive functions of MEG3 — prevented a stratification of Grp4-c1 cases using MEG3
expression. The possibility that a marker can be prognostic only in one subcluster within a subgroup is
supported by Cavalli et al.. The authors described a subtype-dependent implication of TP53 mutations
among SHH subtypes, where a TP53 mutation was linked to a desperate OS in SHH↵, but not in the
renaming SHH cases [221].

Several lnc genes have recently been reported to have implications in MB comprising CCAT1,
CDKN2B-AS1, linc-NeD125 , Nkx2-2as [422], and UCA1 [423]. None of these genes was among the
detected differentially expressed lnc genes. This indicates the existence of MB-relevant lnc genes that
do not follow subgroup-/subcluster-specific expression, despite the possibility that these lnc genes
were expressed at a level that did not pass the strict cutoffs of the DGEA. Therefore, for future studies,
it would be of interest to expand the performed characterisation to lnc genes that are highly variably
expressed in MB or differentially expressed between controls and MB.

Joshi et al. [424] and Kesherwani et al. [425] recently published an analysis of lnc genes in MB, but
with a much more limited scope compared to our study presented above. Both publications concen-
trated on expression profiles associated with subgroups and did not address subclusters. Even though
Joshi et al. and Kesherwani et al. reported more lnc genes associated with survival in MB, in none of
the studies, a potential mechanism between lnc gene expression and the observed survival association
was investigated. Using the Cavalli cohort, Kesherwani et al. reported MEG3 to be prognostic in SHH
MB but did not evaluate subtypes of SHH MB nor provided further details [425]; here, Group 4 MB
were also not mentioned. Kesherwani et al. used microarray data (covering only a fraction of lnc
genes on the genome) and Ingenuity pathway analysis to identify potential regulators and enriched
biological functions of differentially expressed lnc genes per subgroup. However, for the enrichment
analysis, the authors did not take into account that most lnc genes are not studied and, therefore,
lack annotations in gene functional databases [425]. Using the ICGC MB RNA-seq cohort, Joshi et
al. identified nine co-expression clusters of lnc genes and linked four of them to subgroup-specific
expression. However, they did not provide further functional annotations of the co-expression clusters
[424]. Joshi et al. additionally concentrated on classifying MB samples into subgroups using lnc gene
expression [424]. Considering the work of Joshi et al. and Kesherwani et al., the study that we presented
above provides a more detailed analysis and extensive characterisation of lnc genes in MB than the
most recent genome-wide publications on this topic in MB.

149





6 Implications and conclusions

This chapter recapitulates the main findings and associated literature related to this thesis, focusing
on computational analyses of CRC and MB cancer transcriptomes.

6.1 Machine learning-based classification and treatment
outcome prediction in colorectal carcinoma

The process of treatment choices for cancer patients has only recently developed from a "one-size-fits-
all" treatment per cancer type towards precision oncology that considers the tumours’ genomic and
molecular makeup [426]. The application of high-throughput omics technologies facilitated the step
towards precision oncology by enabling the analysis of a tumour’s whole molecular landscape. The
genomic and molecular information can be used to identify biomarkers and construct models (like
classifiers) predicting treatment outcome [426]. Omics data types that are commonly used for preci-
sion oncology include mutations, copy number variations, gene expression, DNA methylation, and
proteomics [426]. However, gene expression, DNA methylation, and proteomics data show the most
predictive potential [426, 427]. Statistical and machine learning approaches (such as (M)SVM-RFE)
play an essential role in biomarker identification and model construction [426]. In order to successfully
apply these approaches, common issues like overfitting and class imbalance for classification tasks
need to be addressed [426].

The cetuximab response classifier that we presented above (OT mini-classifier) has a potential
impact on treatment choice in CRC. The good performance of the OT mini-classifier underlines: using
a cost-sensitive SVM and stratified resampling provides a solution — minimally interfering with the
learning step and training data — for the application of (M)SVM-RFE to class-unbalanced data. The
good performance also shows that MSVM-RFE can be applied for the selection of predictive expression
signatures and the construction of predictive classifiers in the context of precision oncology. The
reported higher predictive potential of gene expression compared to mutation data in precision medi-
cine [426, 427] is supported by the gene-expression-based OT mini-classifier that outperformed the
commonly used KRAS/NRAS/BRAF mutation status to predict the outcome of cetuximab treatment in
CRC. Additionally, the gene-expression-based classifier serves the need for biomarkers/tools predict-
ing cetuximab treatment outcome in RAS/RAF wild-type CRCs. Overall, the built OT mini-classifier
suggests the use of gene-expression-based classifiers to complement (or instead of) mutation status
whenever possible to predict cetuximab treatment outcome in CRC. This aspect should be considered
for the future development of precision oncology guidelines for CRC patients, although cost-benefit as
well as regulatory issues also come into play.

6.2 GRN inference and expression profiles and regulators
of the molecular heterogeneity in medulloblastoma

The application of systems biology approaches has been an important element in cancer research
to dissect the complex molecular interactions defining the biological system of cancer [115]. The
identification of transcriptional gene regulatory networks, which play an essential role in the control
of numerous biological and cellular processes [428], is a major challenge in systems biology [116].
Reverse engineering of GRNs using gene expression data is a relevant approach. This approach enables
the genome-wide inference of regulatory TF-gene interactions in combination with high-throughput
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technologies like RNA-seq. In contrast, ChIP-seq techniques focus on individual TFs [116]. The
large number of available algorithms that infer GRNs from expression data, such as GENIE3, allow an
importance ranking of TF-gene interactions by providing interaction weights [119]. However, the choice
of an interaction weight threshold, which controls the number of false positive and false negative
predictions, is left to the user [120, 378]. A number of methods have been proposed for selecting
features based on importance scores (such as interaction weights) from tree-based ensemble methods,
such as GENIE3 [379]. However, many of these methods are computationally extensive because they
require multiple runs of the learning algorithm on permuted data [379, 380]. Additionally, these
methods cannot deal well with regulatory cascades (e.g. TF1 !TF2 !target) because TFs upstream
in the cascade are still predictive of the expression of the downstream target gene. Therefore, these
methods would select many (false positive) indirect links [379]. In contrast to these methods, we
did not evaluate the interaction weights directly but examined different thresholds by evaluating the
resulting GRNs. Thus, our proposed approach addresses the GRN interference task directly. For the
evaluation we proposed a GRN fitting score that is based on the ratio between the average of predicted
TFBS enrichments across TFs and the network density. Additional work is necessary to evaluate the
reliability of the GRN fitting score but this score might represent a comprehensible measure that assists
in finding a threshold for trustworthy TF-gene interaction weights for gene-expression-based GRN
interference.

In MB, GRNs have mostly been studied under particular aspects including subgroup-specific gene
expression [268], enhancer-mediated GRNs of subgroups [218], and small GRNs comprising SHH-MB-
promoting genes identified via mutagenesis screening [229]. In contrast to these publications, the
GRNs that we presented in this thesis were inferred from gene expression data without limiting the
analysis to certain aspects of gene regulation in MB. For example, it can be assumed that our gene-
expression-based GRNs comprise not only enhancer-mediated but also promoter-mediated gene
regulation, a type of regulation that is not covered by the previously published enhancer-mediated
GRN of the Lin study. The inference of GRNs allowed us to depict the regulatory maps and landscape
of master regulators of the subgroup- and subcluster-specific gene expression in MB. The presented
work extends the enhancer-mediated GRN published by Lin et al. and systematically illustrates GRNs
in MB subclusters (subtypes) for the first time.

The subclusters that we identified and analysed relate to the recently emerging research of molecular
subtypes within the four main MB subgroups in MB [221–223, 429]. These subtypes within the four
main MB subgroups represent a further development revealing and dissecting molecular heterogeneity
of MB [210]. Generally speaking, the gene expression profiles of MB subtypes are less well studied
compared to the four MB subgroups. Work by Northcott et al. [222], Schwalbe et al. [223], and Sharma
et al. [429] provided only limited information on the expression profile of MB subtypes. Cavalli et al.
analysed the functional enrichments of subtype-related expression profiles but used microarrays and
only identified the most variable expressed genes in each subgroup without reporting specific up- or
downregulation of genes for a particular subtype [221].

The subclusters that we analysed in this thesis match the subtypes of Cavalli et al. [221]. Therefore,
expression profiles and GRNs of subclusters that we presented can be directly linked to the subtypes
of Cavalli et al., extending further the work of these authors. Here, we identified concrete signatures
of genes specifically expressed in MB subcluster; hence, providing a more defined characterisation
of these subtypes. Here again, the use of RNA-seq data for the identification tumour subclusters
corroborates previous reports that particular subtypes can only be revealed via gene expression data
analysis [221]. These results suggest that also gene expression and not only DNA methylation data
should be considered to find a consensus of MB subtypes. This aspect was only partially addressed
by Sharma et al. [429] who defined a consensus of MB subtypes based on DNA methylation data
by comparing subtype identification approaches that were used by Northcott et al., Schwalbe et al.,
and Cavalli et al.. Thus, a complete evaluation of the importance of gene expression for defining MB
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subtypes is still missing.
Overall, the study presented above on MB molecular heterogeneity and associated GRNs provide

novel findings and hypotheses that are of interest for future MB studies:
• ZBTB18 and NEUROD2 as master regulators of the Group 4 expression signature with a hypo-

thesised role associated with Group 4 tumour maintenance,
• a contribution of RAX2 to the photoreceptor signature in MB,
• HLX as a putative important regulator in MYC-driven Group 3 MB (subcluster/subtype Grp3-

c1/Group 3�), and
• high expression of EMT-/stemness-linked TFs (TWIST1, SOX11, and SOX9) and genes (NES) in

Grp4-c2 (Group 4↵) MB, which is potentially relevant for this MB subset.

6.3 Computational characterisation of lnc genes and their
involvement in medulloblastoma

Previous cancer studies have revealed lnc genes that regulate disease-relevant processes on different
levels (transcriptional, post-transcriptional, translational, or signalling) by interacting with proteins,
RNAs, DNA, and chromatin [34, 38]. Here, lnc genes function as oncogenes or tumour suppressors
[34, 41]. However, the gene function is unknown for the majority of lnc genes [127], while the number
of lnc genes exceeds the number of protein-coding genes [430]. The functional characterisation
and classification of lnc genes remains challenging. One reason is the low evolutionary sequence
conservation of lnc genes compared to protein-coding genes, preventing a classification based on
sequence-related functional domains [127]. A second reason is the formation of rather structure-
related (secondary and tertiary structures) than sequence-related functional domains [127, 128]. The
application of high-throughput NGS technologies together with computational analyses has formed
the basis for genome-wide studies of lnc genes, where RNA-seq and the analysis of expression data,
e.g. by building co-expression networks and performing DGEAs, is commonly used for the functional
prediction of lnc genes [127, 431]. Considering the current knowledge, there are different possibilities
for annotating and classifying lnc genes but a "gold standard" that would provide a universal system for
lnc gene characterisation is still missing [432]. For example, the classification of lnc genes according to
their genomic location relative to protein-coding genes has revealed specific features for the classes of
divergent, antisense, and intergenic lnc genes including different transcriptional relations between lnc
genes and their coding gene neighbours [133–135]. However, only a minority of previously published
pan-cancer studies of lnc genes proactively integrate this classification to obtain a more detailed lnc
gene characterisation [41, 139, 412, 433–438]. Here, three out of nine studies integrated location-based
lnc classification comprising the classes antisense and intergenic (and sense-overlapping lnc genes)
[139, 434, 437], but only one of these three studies integrated divergent lnc genes as an additional
class [437]. Two of the three studies evaluated the expression correlation with coding gene neighbours
[139, 437]. Pan-cancer studies are probably a good indicator for the current design of computational
analyses to characterise lnc genes in cancer genome-wide considering the large amount of data and
integrative work undertaken.

The computational analysis, which is presented in this thesis, of lnc genes differentially expressed in
MB underlines that a location-based lnc gene classification provides additional information enhancing
the computational characterisation of lnc genes in cancer. A valuable piece of information resulting
from this classification is the annotation of neighbouring protein-coding partners, which permits the
evaluation of the expression correlation between lnc genes and coding partners. Since co-expression
analyses are important to infer functions of lnc genes following the guilty-by-association principle
[41, 431, 433, 439], a strong correlation between lnc and coding partners would not allow functional
characterisation of the lnc gene independent of the coding partner. An aspect that is especially
important for divergent lnc genes that show frequent strong expression correlation with the divergent
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coding partner, due to a shared nucleosome-free region or promoter [136], and a potential prevalent
regulatory role of the coding partner in cis [440]. Additionally, the results that we presented highlight
that the integration of binding sites for RNA:DNA:DNA triplex-forming lnc genes improve functional
predictions using co-expression with protein-coding genes, a consideration that was also taken into
account in a recently published pan-cancer study [412].

Two genome-wide studies of lnc genes in the context of MB have been recently published by Joshi
et al. [424] and Kesherwani et al. [425]. Both studies focused on subgroup-dependent expressed lnc
genes and gave an overview of lnc genes that are associated with survival [424] (including MEG3 for
the SHH subgroup) [425], but did not provide potential functional mechanisms for MB. Additionally,
Joshi et al. concentrated on lnc gene expression-based subgroup classification [424]. Kesherwani et
al. used microarray data, covering only a fraction of lnc genes on the genome, and applied functional
enrichment analyses directly to lnc genes without considering that most lnc genes lack functional
annotations [425].

The lnc gene characterisation that we presented above gives more explicit details on the involvement
of lnc genes in MB compared to the previous work of Joshi et al. and Kesherwani et al.. Within
our study, computational characterisations included lnc genes that were subgroup- and subcluster-
specifically expressed. Among the analysed lnc genes, we identified twenty lnc genes that showed
expression patterns associated with developmental processes in the cerebellum or whole brain. These
developmental expression patterns are of interest — because of the embryonic origin of MB [193].
Here, the unstudied lnc gene GLYCTK-AS1 stands out since our results suggest that GLYCTK-AS1 might
be linked to cerebellar development and potentially to neural stem/progenitor cells. The upregulation
of GLYCTK-AS1 in Group 4 MB might be interesting because this subgroup has rather been associated
with im-/mature cell types than progenitor/stem cells [314] and, therefore, GLYCTK-AS1 might reveal
new aspects about Group 4 MB. The co-expression cluster Cc1 that we identified, comprising lnc and
coding genes, might point out to MB-relevant processes:

• The cluster contained five lnc genes (PVT1, SNHG16, GAS5, ZFAS1, and DANCR) that have
been frequently described to be involved in cancer [307–310, 320, 321, 324, 329, 331, 332, 409].
However, besides GAS5 and ZFAS1 [330], these lnc genes have not been described in association
to each other. Therefore, the presence of these five cancer-related lnc genes in the co-expression
cluster might suggests a functional association between all five lnc genes in MB.

• We detected a functional enrichment for translational processes in Cc1, which enhance cell-cycle
progression in cancer [411].

• Summed expression values of members of the MYC gene family strongly correlated with the
expression profile of Cc1, which was enriched for MYC target genes. These results suggest
additive effects of MYC, MYCN, and MYCL in regulating MYC target expression in MB. There-
fore, a collective assessment of the MYC family genes in MB tumours should be considered to
determine the cooperative influence of these genes, given that MYC and MYCN are involved in
MB formation [269].

The accumulation of cancer-associated lnc genes in Cc1 paves the way for future MB studies to
fully understand the functional role of the lnc genes and their association with MYC family genes as
regulators.

Our study demonstrates an involvement of MEG3 as a non-coding tumour suppressor in MB and
prognostic marker in subtypes within SHH and Group 4 MB. Therefore, our results provide new
findings for MEG3 as a prognostic marker in MB; Kesherwani et al. [425] reported MEG3 as a prognostic
marker only for the whole SHH subgroup. Overlaying expression correlation analyses and predictions
of MEG3 binding site suggests that MEG3 might negatively regulate mitotic cell cycle (targetting CDK1
and CCNB1), TGF� pathway (targetting TGFBR1), and MYC in MB via triplex formation in promoter
and enhancer regions. Regulatory links between MEG3 these pathways and target genes have been
previously reported in other cancer types [43, 50, 59, 418]. Additional functional experiments of MEG3
in MB are needed to validate our results and hypotheses. However, our work highlights MEG3 as a
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6.3 Computational characterisation of lnc genes and their involvement in medulloblastoma

promising prognostic marker in MB and adds MB to the list of cancer types where MEG3 potentially
acts as a tumour suppressor (see [52]).
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A Appendix

A.1 Authors of the OncoTrack publication

Figure A.1: List of authors of the OncoTrack publication.
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A Appendix

A.2 Performance of anti-EGFR therapy outcome
prediction

Table A.1: Performance of the SVM-based OT mini-classifier classifier in individual external cohorts.

Table A.2: Performance of the SVM-based OT mini-classifier in merged external cohorts.
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Figure A.3: Expression profile of HSF2, DEK, and HDAC2 in MB. 25% , 50% and 75% quantiles are
indicated by horizontal lines. Individual samples are shown as bee swarm plots.
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Figure A.4: Expression profile of MYC and HLX in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots.

�4
�2

0
2

4
6

Pren
ata

l C
B

Pos
tna

tal
CB

WNT
SHH

Grou
p 3

Grou
p 4

SHH�
c1

SHH�
c2

SHH�
c3

Grp3
�c

1

Grp3
�c

2

Grp3
�c

3

Grp4
�c

1

Grp4
�c

2

Grp4
�c

3

��� �� ���

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
����� �� ���

�

� �� � �� �� ��� �

�

� �� � �� � ��� ���

�

�

�

�
�

�

� ��

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

���

�

� � ��� ��� ��

�

�� �� � ��� ��

�

� ��

�

��

�

� �� � � ��� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

C
R
X

[ l
og

2(
R

PK
M

) ]
�2

0
2

4
6

8

Pren
ata

l C
B

Pos
tna

tal
 C

B
WNT

SHH

Grou
p 3

Grou
p 4

SHH�
c1

SHH�
c2

SHH�
c3

Grp3
�c

1

Grp3
�c

2

Grp3
�c

3

Grp4
�c

1

Grp4
�c

2

Grp4
�c

3

�
�
�

��
�
��

�
�
�

�
��
�

�
�

�
�

�
�

��

�
�

��
�
��

�

�
�

�

�
�

�
�

�
�

� �
�

�

� �

�

�
�

�
�

�
�

�

�
�

� � �

�

�
�

�

�

�

�

�

� ��

�

� �

�
�

�

��

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

��

� �

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�

���

�

��

�

��
�

�
�

�

�
� �

� �

��

�
��

� �

�

�
�

�
�

�

�
�

�

�

�

�

�

��
�
��
�

��

�

�
�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�
�

�

�
�

�

�

�

�

�

�
�

�

��

�

��

�

�

�

�

�

�

�

�

�

�

�

N
R
L

[ l
og

2(
R

PK
M

) ]

Figure A.5: Expression profile of NRL (top) and CRX (bottom) in MB. Violin plots show expression
destitution. 25% , 50% and 75% quantiles are indicated by horizontal lines. Individual
samples are shown as bee swarm plots.
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Figure A.6: Expression profile of OTX2, RREB1, NEUROG1 and TBR1 in MB. Violin plots show expression
destitution. 25% , 50% and 75% quantiles are indicated by horizontal lines. Individual
samples are shown as bee swarm plots.
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A Appendix

PCL

CN

Figure A.7: ISH of RREB1 in P56 mice cerebellum. CN - cerebellar nuclei. PCL - Purkinje cell layer.
Image credit for ISH: Allen Institute [201]. Labels were added to image.
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Figure A.8: Expression profile of AGAP2-AS1 and in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots.
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Figure A.9: xpression profiles of NEUROD2, ZBTB18, and LMX1A in MB. Violin plots show expression
destitution. 25% , 50% and 75% quantiles are indicated by horizontal lines. Individual
samples are shown as bee swarm plots.
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Figure A.10: Expression profile of CHD5, THRA in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots.
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A.3 Expression pattern of TFs in MB
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Figure A.11: Expression pattern of TFs with highest NIS in subgroups and subclusters. Left) Coloured
rectangles annotate top-ranked TFs per subgroups and subclusters. Different colours re-
late to individual subgroups and subclusters, as indicated at the bottom. Right) Heatmap
shows meant expression in subgroups and subclusters. Significant up- and downregula-
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Figure A.12: Expression profiles of ETS1, FLT1, KDR, and TEK in MB. Violin plots show expression
destitution. 25% , 50% and 75% quantiles are indicated by horizontal lines. Individual
samples are shown as bee swarm plots.
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Figure A.13: Expression profile of ZNF540 in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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Figure A.14: Expression profile of ATOH1, SOX2, GLI1, and NFATC1 in MB. 25% , 50% and 75% quantiles
are indicated by horizontal lines. Individual samples are shown as bee swarm plots.
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Figure A.15: Expression profile of SOX9 in MB. 25% , 50% and 75% quantiles are indicated by horizontal
lines. Individual samples are shown as bee swarm plots.
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Figure A.16: Expression profile of NEUROD6 in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots.
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Figure A.17: Expression profile of MYT1 in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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Figure A.18: Expression profile of NEUROD1 in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots.
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Figure A.19: Expression profile of MYC and HLX in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots.
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A.3 Expression pattern of TFs in MB
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Figure A.20: Scatter plots of MYC and HLX expression in ICGC MB samples. a) Whole cohort. b) Group
3 MB. c) non-Group 3 MB. Colours indicate MB subgroups: WNT=blue, SHH=red, Group
3 = yellow, Group 4 = green.
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Figure A.21: Expression profile of NRL and CRX in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots.
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Figure A.22: Expression profile of CRX in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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Figure A.23: Expression profile of RAX2 in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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Figure A.24: Expression profile of EBF1 in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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A.3 Expression pattern of TFs in MB
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Figure A.25: a) Expression profile of TWIST1 in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots. b+c) Scatter plot of TWIST1 and BMI1 expression in b) Group 4 and c)
Group 3 MB samples. Colours indicate MB subgroups as shown in panel a).

−2
0

2
4

6
8

Pren
ata

l C
B

Pos
tna

tal
 CB

WNT
SHH

Grou
p 3

Grou
p 4

SHH−
c1

SHH−
c2

SHH−
c3

Grp3
−c

1

Grp3
−c

2

Grp3
−c

3

Grp4
−c

1

Grp4
−c

2

Grp4
−c

3

●

●●
●

●

●
●

●

●
● ●●

●

●
● ●

●●
●
●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

● ●
●

●
●

●

●

●

●

● ●

●●

●

●

●

SO
X1
1

[ l
og

2(
R

PK
M

) ]

Figure A.26: Expression profile of SOX11 in MB. 25% , 50% and 75% quantiles are indicated by hori-
zontal lines. Individual samples are shown as bee swarm plots.
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Figure A.27: Expression profile of a) NES and b) SOX9 in MB. 25% , 50% and 75% quantiles are indicated
by horizontal lines. Individual samples are shown as bee swarm plots.
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Figure A.28: Expression profile of a) AKT1 and b) PIK3CA in MB. 25% , 50% and 75% quantiles are
indicated by horizontal lines. Individual samples are shown as bee swarm plots.
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Figure A.29: Expression profile of LHX4 in MB. 25% , 50% and 75% quantiles are indicated by horizontal
lines. Individual samples are shown as bee swarm plots.
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A Appendix

Figure A.30: Aggregated GRN in MB and differentially expressed TFs among subgroups. Caption as in
Figure 5.46.
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A.3 Expression pattern of TFs in MB

Figure A.31: Aggregated GRN in MB and differentially expressed TFs among SHH subclusters. Caption
as in Figure 5.46.
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A Appendix

Figure A.32: Aggregated GRN in MB and differentially expressed TFs among Group 3 subclusters.
Caption as in Figure 5.46.
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A.3 Expression pattern of TFs in MB

Figure A.33: Aggregated GRN in MB and differentially expressed TFs among Group 4 subclusters.
Caption as in Figure 5.46.
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A.4 Expression pattern of lnc genes and related coding
genes
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Figure A.34: Expression profile of MYC in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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Figure A.35: Expression profiles of VPS9D1-AS1 in MB. a) Violin plots show expression destitution. 25%
, 50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown
as bee swarm plots. b+c) Scatter plot of b) VPS9D1-AS1 and MYC and c) VPS9D1-AS1
and CDK6 expression in ICGC PedBrain MB samples. Colours indicate MB subgroups:
WNT=blue, SHH=red, Group 3 = yellow, Group 4 = green.
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Figure A.36: Expression profile of LOXL1-AS1 in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots.
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Figure A.37: Expression profile of DANCR in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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Figure A.38: Scatter plot of MYC and DANCR expression in ICGC MB samples. a) Group 3 tumours.
b) All four subgroups. Colours indicate MB subgroups: WNT=blue, SHH=red, Group 3 =
yellow, Group 4 = green.
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Figure A.39: Expression profile of LINC-ROR in MB. Violin plots show expression destitution. 25% ,
50% and 75% quantiles are indicated by horizontal lines. Individual samples are shown as
bee swarm plots.
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Figure A.40: Expression profile of RMST in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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Figure A.41: Correlation of HOTAIRM1 with HOXA genes. Colours indicate MB subgroups: WNT=blue,
SHH=red, Group 3 = yellow, Group 4 = green.
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Figure A.42: Scatter plot of FEZF1-AS1 and FEZF1 expression in ICGC MB samples. Colours indicate
MB subgroups: WNT=blue, SHH=red, Group 3 = yellow, Group 4 = green. Spearman
correlation coefficient, related p-value, and number of samples n is displayed above the
plot.
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Figure A.43: Scatter plot of FEZF1-AS1 and CDKN1A (P21) expression in ICGC MB samples. Colours
indicate MB subgroups: WNT=blue, SHH=red, Group 3 = yellow, Group 4 = green. Spear-
man correlation coefficient, related p-value, and number of samples n is displayed above
the plot.
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Figure A.44: Expression profile of GAS5 and ZFAS1 in MB. Violin plots show expression destitution.
25% , 50% and 75% quantiles are indicated by horizontal lines. Individual samples are
shown as bee swarm plots.
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Figure A.45: Scatter plot ofZFAS1 and ZEB1 expression in ICGC MB samples. Colours indicate MB
subgroups: WNT=blue, SHH=red, Group 3 = yellow, Group 4 = green. Spearman correlation
coefficient, related p-value, and number of samples n is displayed above the plot.
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Figure A.46: Expression profile of ZEB1 in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.

3 4 5 6 7 8

�2
0

2
4

rho = �0.43 (p = 1.33e�08; n=164)

ZFAS1 [log2 (RPKM)]

N
KD

2
[lo
g 2
(R
PK

M
)]

Figure A.47: Scatter plot ofZFAS1 and NKD2 expression in ICGC MB samples. Colours indicate MB
subgroups: WNT=blue, SHH=red, Group 3 = yellow, Group 4 = green. Spearman correlation
coefficient, related p-value, and number of samples n is displayed above the plot.
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Figure A.48: Scatter plot ofZFAS1 and NKD2 expression in ICGC non-WNT MB samples. Colours indic-
ate MB subgroups: SHH=red, Group 3 = yellow, Group 4 = green. Spearman correlation
coefficient, related p-value, and number of samples n is displayed above the plot.
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Figure A.49: Expression profile of ZEB1 in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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Figure A.50: Scatter plot ofGAS5 and PDCD4 expression in ICGC MB samples. Colours indicate MB
subgroups: SHH=red, Group 3 = yellow, Group 4 = green. Spearman correlation coefficient,
related p-value, and number of samples n is displayed above the plot.
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Figure A.51: Scatter plot ofGAS5 and PTEN expression in ICGC MB samples. Colours indicate MB
subgroups: SHH=red, Group 3 = yellow, Group 4 = green. Spearman correlation coefficient,
related p-value, and number of samples n is displayed above the plot.
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Figure A.52: Scatter plot ofGAS5 and CDKN1A expression in ICGC MB samples. Colours indicate MB
subgroups: SHH=red, Group 3 = yellow, Group 4 = green. Spearman correlation coefficient,
related p-value, and number of samples n is displayed above the plot.
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Figure A.53: Expression profile of YBX1 in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.

188



A.4 Expression pattern of lnc genes and related coding genes

�2 0 2 4 6

�2
0

2
4

6

rho = 0.69 (p < 2.2e-16; n=164)

DANCR [log2 (RPKM)]

PV
T1

[lo
g 2
(R
PK

M
)]

2 3 4 5 6

�2
0

2
4

6

rho = 0.62 (p < 2.2e-16; n=164)

SNHG16 [log2 (RPKM)]

DA
N
C
R
[lo
g 2
(R
PK

M
)]

2 3 4 5 6

�2
0

2
4

6

rho = 0.69 (p < 2.2e-16; n=164)

SNHG16 [log2 (RPKM)]

PV
T1

[lo
g 2
(R
PK

M
)]

3 4 5 6 7 8

2
3

4
5

6

rho = 0.74 (p < 2.2e-16; n=164)

ZFAS1 [log2 (RPKM)]

SN
H
G
16

[lo
g 2
(R
PK

M
)]

3 4 5 6 7 8

�2
0

2
4

6

rho = 0.70 (p < 2.2e-16; n=164)

ZFAS1 [log2 (RPKM)]

PV
T1

[lo
g 2
(R
PK

M
)]

3 4 5 6 7 8

�2
0

2
4

6

rho = 0.69 (p < 2.2e-16; n=164)

ZFAS1 [log2 (RPKM)]

DA
N
C
R
[lo
g 2
(R
PK

M
)]

2 3 4 5 6

�2
0

2
4

6

rho = 0.73 (p < 2.2e-16; n=164)

GAS5 [log2 (RPKM)]

DA
N
C
R
[lo
g 2
(R
PK

M
)]

2 3 4 5 6

�2
0

2
4

6

rho = 0.73 (p < 2.2e-16; n=164)

GAS5 [log2 (RPKM)]

PV
T1

[lo
g 2
(R
PK

M
)]

2 3 4 5 6

2
3

4
5

6

rho = 0.76 (p < 2.2e-16; n=164)

GAS5 [log2 (RPKM)]

SN
H
G
16

[lo
g 2
(R
PK

M
)]

2 3 4 5 6

3
4

5
6

7
8

rho = 0.87 (p < 2.2e-16; n=164)

GAS5 [log2 (RPKM)]

ZF
AS

1
[lo
g 2
(R
PK

M
)]

Figure A.54: Pairwise correlation and scatter plots of GAS5, ZFAS1, SNHG16, PVT1, and DANCR expres-
sion in ICGC MB samples. Colours indicate MB subgroups: WNT=blue, SHH=red, Group 3
= yellow, Group 4 = green. Spearman correlation coefficient, related p-value, and number
of samples n is displayed above each plot.
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Figure A.55: Expression profile of MEG3 in Cavalli et al. MB cohort [221]. Violin plots show expression
destitution. 25% , 50% and 75% quantiles are indicated by horizontal lines. Individual
samples are shown as bee swarm plots.
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Figure A.56: OS association with MEG3 expression in SHH subtypes defined by Cavalli et al. [221].
Kaplan-Meier curves show OS in MEG3 low- and high-expressing MBs. a) SHH-alpha. b)
SHH-beta. c) SHH-gamma. d) SHH-beta + SHH-gamma. e) SHH-delta. Shown p-value
and hazard ratio relates to differences in survival between groups based on Cox regression
(Methods section 5.4.6.7). Hazard ratio (HR) indicates risk comparing low-expressing vs.
high-expressing samples. 95% confidence interval (CI) of HR is shown in brackets.
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Figure A.57: Expression profile of CDK1 in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots. Colours indicate MB subgroups: WNT=blue, SHH=red, Group 3 = yellow,
Group 4 = green.
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Figure A.58: Expression profile of CCNB1 in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots. Colours indicate MB subgroups: WNT=blue, SHH=red, Group 3 = yellow,
Group 4 = green.
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Figure A.59: Expression profile of MYC in MB. Violin plots show expression destitution. 25% , 50%
and 75% quantiles are indicated by horizontal lines. Individual samples are shown as bee
swarm plots.
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Figure A.60: Scatter plot of MEG3 and TGFBR1 expression in Cavalli et al. cohort. a) Across the whole
cohort. b) WNT MB. c) SHH MB. d) Group 3 MB. d) Group 4 MB. Colours indicate MB
subgroups: WNT=blue, SHH=red, Group 3 = yellow, Group 4 = green. Spearman correlation
coefficient, related p-value, and number of samples n is displayed above each plot.
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Figure A.61: Scatter plot ofMYC and TGFBR1 expression in ICGC Group 3 MB samples. Spearman
correlation coefficient, related p-value, and number of samples n is displayed above the
plot.

�1 0 1 2 3 4 5

2.
5

3.
5

4.
5

5.
5

rho = 0.15 (p = 0.12; n=110)

MYC [log2 (RPKM)]

TG
FB

R
1
[lo
g 2
(R
PK

M
)]

Figure A.62: Scatter plot ofMYC and TGFBR1 expression in ICGC SHH and Group 4 MB samples. Col-
ours indicate MB subgroups: SHH=red, Group 4 = green. Spearman correlation coefficient,
related p-value, and number of samples n is displayed above the plot.
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A.5 Gene symbols and their description

Symbol and description of genes mentioned within the text.

Gene symbol Description

AGAP2-AS1 AGAP2 antisense RNA 1
AKT1 v-akt murine thymoma viral oncogene homolog 1
APC adenomatous polyposis coli
AREG amphiregulin
ATOH1 atonal homolog 1 (Drosophila)
AURKA aurora kinase A
BAIAP2 BAI1-associated protein 2
BAIAP2-AS1 BAIAP2 antisense RNA 1 (head to head)
BMI1 BMI1 polycomb ring finger oncogene
BRAF v-raf murine sarcoma viral oncogene homolog B
CCAT1 colon cancer associated transcript 1 (non-protein coding)
CCNB1 cyclin B1
CDK1 cyclin-dependent kinase 1
CDK6 cyclin-dependent kinase 6
CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)
CDKN2B-AS1 CDKN2B antisense RNA 1
CEACAM7 carcinoembryonic antigen-related cell adhesion molecule 7
CHD5 chromodomain helicase DNA binding protein 5
CRNDE colorectal neoplasia differentially expressed (non-protein coding)
CRX cone-rod homeobox
CSNK2B casein kinase 2, beta polypeptide
CTDNEP1 CTD nuclear envelope phosphatase 1
CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa
DANCR differentiation antagonizing non-protein coding RNA
DDX3X DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked
DDX31 DEAD (Asp-Glu-Ala-Asp) box polypeptide 31
DEK DEK oncogene
DIO3 deiodinase, iodothyronine, type III
DLGAP1 discs, large (Drosophila) homolog-associated protein 1
DLGAP1-AS1 DLGAP1 antisense RNA 1
DLK1 delta-like 1 homolog (Drosophila)
E2F5 E2F transcription factor 5, p130-binding
EBF1 early B-cell factor 1
EGFR epidermal growth factor receptor
EN1 engrailed homeobox 1
EN2 engrailed homeobox 2
EOMES eomesodermin
EPHA7 EPH receptor A7
ERBB2 v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2
EREG epiregulin
ETS1 v-ets avian erythroblastosis virus E26 oncogene homolog 1
FEZF1 FEZ family zinc finger 1
FEZF1-AS1 FEZF1 antisense RNA 1
FGF8 fibroblast growth factor 8 (androgen-induced)
FGFR1 fibroblast growth factor receptor 1
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FIRRE firre intergenic repeating RNA element
FLT1 fms-related tyrosine kinase 1
FYN FYN oncogene related to SRC, FGR, YES
GAS5 growth arrest-specific 5 (non-protein coding)
GBX1 gastrulation brain homeobox 1
GDF15 growth differentiation factor 15
GFI1 growth factor independent 1 transcription repressor
GFI1B growth factor independent 1B transcription repressor
GLI1 GLI family zinc finger 1
GLI2 GLI family zinc finger 2
GLYCTK glycerate kinase
GLYCTK-AS1 GLYCTK antisense RNA 1
HDAC2 histone deacetylase 2
HES5 hes family bHLH transcription factor 5
HLX H2.0-like homeobox
HNRNPK heterogeneous nuclear ribonucleoprotein K
HOTAIRM1 HOXA transcript antisense RNA, myeloid-specific 1
HOXA1 homeobox A1
HOXA2 homeobox A2
HOXA3 homeobox A3
HOXA4 homeobox A4
HOXA5 homeobox A5
HOXA6 homeobox A6
HOXA7 homeobox A7
HSF2 heat shock transcription factor 2
IRX6 iroquois homeobox 6
KBTBD4 kelch repeat and BTB (POZ) domain containing 4
KDM6A lysine (K)-specific demethylase 6A
KDR kinase insert domain receptor (a type III receptor tyrosine kinase)
KLF2 Kruppel-like factor 2
KMT2C lysine (K)-specific methyltransferase 2C
KMT2D lysine (K)-specific methyltransferase 2D
KRAS Kirsten rat sarcoma viral oncogene homolog
LHX2 LIM homeobox 2
LHX4 LIM homeobox 4
LINC-ROR long intergenic non-protein coding RNA, regulator of reprogramming
LINC01122 long intergenic non-protein coding RNA 1122
LMX1A LIM homeobox transcription factor 1, alpha
LOXL1-AS1 LOXL1 antisense RNA 1
MAP2K1 mitogen-activated protein kinase kinase 1
MEG3 maternally expressed 3 (non-protein coding)
MSX2 msh homeobox 2
MYC v-myc avian myelocytomatosis viral oncogene homolog
MYCL v-myc avian myelocytomatosis viral oncogene lung carcinoma derived homolog
MYCN v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog
MYT1 myelin transcription factor 1
MYT1L myelin transcription factor 1-like
NES nestin
NEUROD1 neuronal differentiation 1
NEUROD2 neuronal differentiation 2
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NEUROD6 neuronal differentiation 6
NEUROG1 neurogenin 1
NFATC1 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1
NKD2 naked cuticle homolog 2 (Drosophila)
NKX2-2AS NKX2-2 antisense RNA 1
NRAS neuroblastoma RAS viral (v-ras) oncogene homolog
NRL neural retina leucine zipper
OTX2 orthodenticle homeobox 2
PART1 prostate androgen-regulated transcript 1 (non-protein coding)
PAX2 paired box 2
PDCD4 programmed cell death 4 (neoplastic transformation inhibitor)
PDGFRA platelet-derived growth factor receptor, alpha polypeptide
PHLPP2 PH domain and leucine rich repeat protein phosphatase 2
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
PRDM6 PR domain containing 6
PTCH1 patched 1
PTEN phosphatase and tensin homolog
PVT1 Pvt1 oncogene (non-protein coding)
RAX2 retina and anterior neural fold homeobox 2
REG4 regenerating islet-derived family, member 4
RMST rhabdomyosarcoma 2 associated transcript (non-protein coding)
RREB1 ras responsive element binding protein 1
RUNX2 runt-related transcription factor 2
SIX6 SIX homeobox 6
SMARCA4 SWI/SNF related, matrix asso., actin depen. regulator of chromatin, subf. a, mem. 4
SMO smoothened, frizzled family receptor
SNCAIP synuclein, alpha interacting protein
SNHG16 small nucleolar RNA host gene 16 (non-protein coding)
SOX2 SRY (sex determining region Y)-box 2
SOX9 SRY (sex determining region Y)-box 9
SOX11 SRY (sex determining region Y)-box 11
SP5 Sp5 transcription factor
ST18 suppression of tumorigenicity 18 (breast carcinoma) (zinc finger protein)
SUFU suppressor of fused homolog (Drosophila)
TBR1 T-box, brain, 1
TEK TEK tyrosine kinase, endothelial
TERT telomerase reverse transcriptase
TGFB2 transforming growth factor, beta 2
TGFBR1 transforming growth factor, beta receptor 1
TGFBR2 transforming growth factor, beta receptor II (70/80kDa)
THRA thyroid hormone receptor, alpha
TP53 tumor protein p53
TWIST1 twist family bHLH transcription factor 1
UCA1 urothelial cancer associated 1 (non-protein coding)
VPS9D1-AS1 VPS9D1 antisense RNA 1
WNT1 wingless-type MMTV integration site family, member 1
YAP1 Yes-associated protein 1
YBX1 Y box binding protein 1
ZBTB8B zinc finger and BTB domain containing 8B
ZBTB18 zinc finger and BTB domain containing 18
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ZEB1 zinc finger E-box binding homeobox 1
ZFAS1 ZNFX1 antisense RNA 1
ZMYM3 zinc finger, MYM-type 3
ZNF521 zinc finger protein 521
ZNF540 zinc finger protein 540
ZNFX1 zinc finger, NFX1-type containing 1
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Zusammenfassung
Maligne Tumore akkumulieren während ihrer Entwicklung genetische und epigenetische Veränderungen, die
eine Fehlregulation von Genexpression und zellulären Prozessen verursachen. Da die Regulation der Genex-
pression viele zelluläre Prozesse steuert, bietet die Erforschung des Transkriptoms von malignen Tumoren
Einblicke in die Biologie von Krebs. Schlüsseltechnologie für die molekulare Analyse von Krebstranskriptome
ist Next-Generation-Sequencing (NGS) von RNA (RNA-seq) aus Tumorgewebe. Die folgende Arbeit präsentiert
zwei Krebstranskriptomstudien, die sich mit der computergestützten Analyse von RNA-seq-Daten von ko-
lorektalen Karzinomen (KRK) und Medulloblastomen (MB) unter Anwendung statistischer und maschineller
Lern-Methoden (ML) befassen.

KRK ist eine klinisch herausfordernde Krankheit, da nur ein Bruchteil der Tumoren auf verfügbare Chemo-
und zielgerichtete Therapien anspricht. Es wird angenommen, dass der funktionelle Verlust des Tumorsup-
pressors APC die initialle Mutation darstellt. Zusätzliche Ereignisse umfassen Mutationen in jeweils einem von
drei RAS/RAF Proto-Onkogenen sowie Mutationen in den TGF-, PI3K- und TP53-Signalwegen. Routinemäßig
verwendete Biomarker für eine Resistenz gegen den EGFR-Inhibitor Cetuximab sind RAS/RAF-Mutationen,
die den Signalweg nach EGFR aktivieren. Dennoch sind einige der Wildtyp-KRKs gegen die Behandlung
mit Cetuximab resistent. Um die Notwendigkeit eines besseren molekularen Verständnisses von KRK in
der Präzisionsonkologie zu adressieren, hat das OncoTrack-Konsortium (Innovative Medicine Initiative)
eine Multi-Omics-Strategy entwickelt, die die Einrichtung einer präklinischen Plattform für KRK-Organoid-
und Xenotransplantat-Modelle integriert. In der unten vorgestellten Studie konzentrierten wir uns auf die
integrative Analyse von Genexpressionsdaten und Daten zur Effektivität von Cetuximab-Behandlungen, die
aus behandelten patientenbezogenen Xenotransplantaten (PBXs) gewonnen wurden. Mittels statistischer
Methoden identifizierten wir eine Signatur von 241 Genen, die mit dem Ansprechen auf Cetuximab assoziiert
sind. Wir verwendeten eine Support Vector Machine (SVM), ein ML-Algorithmus, um einen auf Genexpression
basierenden Klassifikator zu erhalten, der das Ansprechen auf Cetuximab vorhersagt. Hier haben wir 16
prädiktive Gene mittels multiple SVM recursive feature elimination ausgewählt. Der entwickelte Klassifikator
übertraf RAS/RAF-Mutationen als Prädiktor für das Ansprechen von Tumoren auf Cetuximab und schnitt gut
bei RAS/RAF-Wildtyp KRK ab, für den es derzeit keine Biomarker für Cetuximab Behandlungsergebnis in der
klinischen Praxis gibt.

Die zweite Studie befasste sich mit der molekularen Analyse von MB. MB, ein Tumor des Kleinhirns, ist
der häufigste bösartige Hirntumor bei Kindern. Transkriptomanalysen von MB unter Verwendung von
Microarrays hatten vier Haupt-Tumorgruppen ergeben, nämlich WNT, SHH, Gruppe 3 und Gruppe 4, die un-
terschiedliche genetische Veränderungen, molekulare Profile und klinische Merkmale zeigen. Hauptsächlich
Mutationen verursachen eine Signalwegaktivierung in WNT bzw. SHH MB, während in Gruppe 3 und Gruppe
4 MB chromosomale Veränderungen häufiger vorkommen und Tumore exprimieren eher eine zelltypspezi-
fische Gensignatur. Innerhalb dieser vier Hauptgruppen wurde eine zusätzliche molekulare Komplexität
erkannt, die zur Identifizierung von Subtypen innerhalb der Hauptgruppen führte. Die Genregulationsnet-
zwerke, die zur molekularen Heterogenität bei MB beitragen, sind jedoch nur teilweise bekannt, und die Rolle
von langen nicht-kodierenden (lnk) Genen wurde bei dieser Krankheit nur unzureichend untersucht. Um
weitere Einblicke in die Molekularbiologie von MB zu gewinnen, wurde im Rahmen des ICGC das Projekt
PedBrain gegründet. Als Beitrag zu diesem Projekt haben wir 164 MB RNA-seq-Proben sequenziert und ana-
lysiert. Um die Heterogenität von MB zu adressieren, identifizierten und validierten wir molekulare Subcluster
innerhalb der vier Hauptgruppen. Subgruppen- und subcluster-spezifische Genexpressionsprofile wurden
durch funktionelle Anreicherungen und Genregulationsnetzwerke (GRNs), die aus Genexpressionsdaten
abgeleitet wurden, analysiert. Diese GRNs zeigten Gemeinsamkeiten und Unterschiede in der Genregulation
zwischen Subclustern und Hauptgruppen. Durch Abschätzen des Einflusses von TFs konnten wir zum ersten
Mal systematisch Hauptregulatoren der subclusterspezifischen Genexpression entschlüsseln und unbekan-
nte Regulatoren der Gruppe 4 MB hervorheben. Darüber hinaus charakterisierten wir lnk-Gene, die in MB
differentiell exprimiert waren. Unter diesen Genen haben wir 20 lnk-Gene identifiziert, die Expressionsmuster
aufweisen, die mit der Gehirnentwicklung assoziiert sind, was aufgrund des embryonalen Ursprungs von MB
von Interesse ist. Wir identifizierten einen Co-Expressionscluster, der bekannte krebsbezogene lnk-Gene akku-
muliert und diese Gene mit der krebsfördernden Proteinbiogenese in Verbindung bringt. Überlebensanalysen
zeigten das lnk-Gen MEG3 als prognostischen Marker in SHH- und Gruppe-4-Subclustern, das möglicher-
weise als Tumorsuppressor wirkt, der den Zellzyklus und die TGF-Rezeptorexpression negativ reguliert.
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