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Equilibrium current in a Weyl-semimetal - superconductor heterostructure

K. A. Madsen, P. W. Brouwer, and M. Breitkreif]
Dahlem Center for Complex Quantum Systems and Fachbereich Physik,
Freie Universitat Berlin, 14195 Berlin, Germany
(Dated: April 19, 2021)

A heterostructure consisting of a magnetic Weyl semimetal and a conventional superconductor
exhibits an equilibrium current parallel to the superconductor interface and perpendicular to the
magnetization. Analyzing a minimal model, which as a function of parameters may be in a trivial
magnetic insulator phase, a Weyl semimetal phase, or a three-dimensional weak Chern insulator
phase, we find that the equilibrium current is sensitive to the presence of surface states, such as
the topological Fermi-arc states of the Weyl semimetal or the chiral surface states of the weak
Chern insulator. While there is a nonzero equilibrium current in all three phases, the appearance
of the surface states in the topological regime leads to a reversal of the direction of the current,
compared to the current direction for the trivial magnetic insulator phase. We discuss the interpre-
tation of the surface-state contribution to the equilibrium current as a real-space realization of the
superconductivity-enabled equilibrium chiral magnetic effect of a single chirality, predicted to occur

in bulk Weyl superconductors.

I. INTRODUCTION

A Weyl semimetal is a three-dimensional crystal with
topologically protected nodal points in the band struc-
ture [IH3]. The nodes have a well-defined chirality and
they appear in pairs, such that in total the sum of the
chiralities vanishes [4]. One manifestation of chiral Weyl
nodes and the associated chiral anomaly in crystals is the
existence of topologically protected surface states, which
connect the projections of two Weyl nodes of opposite
chirality on the surface band structure, in the form of
two “Fermi arcs” located at opposite surfaces of the Weyl
semimetal and moving in opposite directions. Another
manifestation is the chiral magnetic effect — an external-
magnetic-field induced current of Weyl Fermions directed
parallel or antiparallel to the magnetic field depending on
the chirality — which leads to unusual non-equilibrium
transport properties of the crystal [5H9]. In equilibrium
the chiral anomaly usually remains hidden, since the chi-
ral currents must compensate each other, in agreement
with general band-theoretic considerations [10].

As was shown by O’Brien, Beenakker, and Adagideli
[11] (see also Ref. [12]), there is, however, a way to cir-
cumvent the compensation of chiral anomalies in equilib-
rium with the help of superconductivity. This is most
easily seen in a minimal model of a magnetic Weyl
semimetal with two Weyl nodes of opposite chirality and
a superconducting s-wave pair potential. If the pair mo-
mentum is tuned to the momentum of one of the two
Weyl nodes via a flux or a supercurrent bias, supercon-
ductivity is induced there and the Weyl node is gapped
out, while the node of opposite chirality is left mostly
unaffected. In an applied magnetic field, this unaffected
chirality gives rise to an equilibrium current, as the oppo-
site chirality is no longer available to carry the compen-
sating current. Unfortunately, making a Weyl semimetal
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superconducting [I3HI6] meets the difficulty of a vanish-
ing density of states at the Weyl nodes, which suppresses
the critical temperature. Another obstacle, specifically
in the case of a magnetic Weyl semimetal considered in
this work, is the competition with magnetism.

An alternative route to achieve superconducting
phases in Weyl semimetals is to make use of the
proximity-induced superconductivity in heterostructures
by combining an otherwise non-superconducting Weyl
semimetal (N) and a conventional superconductor (S)
[I7H20]. One prominent type of such heterostructures is
the Josephson junction (SNS-heterostructure), which has
been extensively studied theoretically exploring the influ-
ence of various types of superconducting pairing mecha-
nisms [21H35], and has also been realized experimentally
[19 B6H40]. Other examples of similar heterostructures
are NS-type [17, 20, 4TH51], and NSN-type [62H56] het-

erostructures.

While most of these studies investigate equilibrium
currents that flow perpendicular to the superconductor
- Weyl-semimetal interface, in this article we theoreti-
cally investigate the equilibrium current in a bilayer con-
sisting of a Weyl semimetal and a single superconductor
(SN bilayer), as illustrated in Fig. [l} for which the equi-
librium current flows parallel to the interface. We con-
sider a magnetic Weyl semimetal and a conventional s-
wave superconductor, both are microscopically inversion-
symmetric, so that inversion symmetry is broken only by
the interface. To allow for a comparison between differ-
ent phases, we consider a model for the normal region
which, as a function of parameters, may be in a triv-
ial magnetic insulator phase, Weyl semimetal phase, or
a (three-dimensional) weak Chern insulator phase. We
find a significant contribution to the equilibrium cur-
rent from surface states (Fermi arcs in case of a Weyl
semimetal, chiral surface states for the weak Chern in-
sulator), which differs in sign and magnitude from the
interfacial current of a trivial insulator [57]. Although
our minimal model shows a clear signature at the onset
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FIG. 1. Mixed momentum-/real-space illustration of the SN
heterostructure considered in this article. It consists of a Weyl
semimetal slab of a finite width W with two Weyl nodes sepa-
rated along the k. axis and counterpropagating Fermi arcs on
the top (solid blue) and bottom (dotted blue) surfaces. The
Weyl semimetal slab borders on a superconductor (light blue)
at the bottom surface and it is capped by a trivial insulator
at the top surface. Because of this built-in spatial asymmetry
of the heterostructure, the superconducting proximity effect
acts asymmetrically on the two Fermi arcs.

of the topological regime, the magnitude of the equilib-
rium current is non-universal, because for an inversion-
symmetric Weyl semimetal the proximity superconduc-
tivity pairs electrons in the topological low-energy band
with electrons in a non-topological high-energy band —
an effect known as “chirality blockade” [22]. For the min-
imal model we can isolate the singular contribution to the
current from the Fermi-arc surface states by comparing
equilibrium currents in a finite-width slab for a chemi-
cal potential inside and outside the finite-size gap of the
Fermi-arc states at the Weyl node.

The contribution of topological surface states can be
interpreted as the result of an effective charge renormal-
ization of the chiral surface modes at the SN interface
[58], which leads to a disbalance with the counterprop-
agating surface modes of the opposite surface and re-
sults in a finite current. In this way, the idea of bulk
superconductivity acting asymmetrically on chiral states
in momentum space [I1],[12] is transferred to proximitized
superconductivity acting asymmetrically on chiral states
in real space. In the former case the equilibrium current
is carried by the disbalanced chiral Weyl Fermions in an
external magnetic field, in the latter by the disbalanced
chiral surface states at zero external magnetic field.

This article is structured as follows: After introduc-
ing the minimal model for the SN heterostructure in
Sec. [[I, we calculate and discuss the equilibrium current
in Sec. [[IIl We conclude in Sec. [Vl

II. MODEL

We consider a bilayer consisting of a superconductor
(S) and a normal region (N) of width W. We choose
coordinates such that the = axis is perpendicular to the
superconductor interface and the superconductor inter-
face is at * = 0. The normal region corresponds to
O<z<W.

Depending on parameters in our model Hamiltonian,
the normal region is a topologically trivial magnetic insu-
lator, a magnetic Weyl semimetal, or a three-dimensional
weak Chern insulator. At x = W the normal region layer
is capped by a non-magnetic trivial insulator. Below, we
give lattice models for the Weyl semimetal, the supercon-
ductor, and the trivial insulator. To keep the notation
simple, the lattice constant and £ are set to unity.

A. Normal region

We model the normal region with the four-band Hamil-
tonian

HW) (k) =tr3(0y sink, + gasink,)
+m(k)Ti00 + BT003 — 000, (1)

with

m(k) =mg + t'(2 — cos k, — cos k)
+t.(1 —cosk,), (2)

where the o; and 7, ¢ = 0, 1, 2, 3 are Pauli matrices corre-
sponding to spin and orbital degrees of freedom, respec-
tively. (These include the identity matrices oy and 79.)
Furthermore, 4 is the chemical potential, ¢, ¢/, and ¢, are
hopping parameters, mg an orbital-selective on-site po-
tential, and 8 the exchange field, which is directed in the
z direction. For definiteness, all of these parameters are
assumed to be positive. The Hamiltonian, shown in Eq.
(1), satisfies inversion symmetry,

HW) (k) = HW) (—k) 7y, (3)

whereas time-reversal symmetry is broken by the ex-
change field. (Time-reversal symmetry is represented as
09K, where K is complex conjugation.) At zero chemical
potential u, the Hamiltonian, see Eq. , also satisfies a
mirror antisymmetry,

H;(L\}:V())(kiz,ky, k.) = —agTsHﬁV:V())(kz, —ky, k)oaTs.  (4)

The Hamiltonian, given in Eq. , resembles minimal
models motivated by materials of the BiySes family [10],
where, however, for simplicity we omitted a term propor-
tional to 7303 sink,. [Such a term does not significantly
alter the topological phases that we are going to study,
but its absence makes the analysis more transparent. A
term 7303 sin k, preserves the inversion symmetry, Eq.



, and the mirror antisymmetry, Eq. (4), at p = 0. We
verified that our conclusions remain valid if we include
this term.]

The eigenvalues of the Hamiltonian, Eq. , can easily
be calculated in closed form. For each momentum k there
are four eigenvalues, labeled €4 +,

cui(k) = —pt \JR(sin® b, + sin® k) + (m(k) £ B)2.
()
The two bands with energy eigenvalues €4 1 (k) are com-
pletely gapped. The other two bands, which have energy
eigenvalues £4 _(k), may also be gapped or feature two
Weyl nodes, depending on the value of the exchange field
8. The Weyl-semimetal phase is found for

mo < B < mg + 2. (6)
In this case, two Weyl nodes exist at k = (0,0, +kp), with
B —mo

ko = 2arcsin T (7)

For 5 | mg, one has kg — 0: The two Weyl nodes
merge at k, = 0 and gap out for 8 < mg. Hence, for

O<B<m0 (8)

the system becomes a trivial magnetic insulator. For
B 1 mo+2t,, one has kg — 7, and the Weyl nodes merge
and gap out at the Brillouin zone boundary. For

B >mg+ 2tlz (9)

the system thus becomes a weak Chern insulator [59] [60],
which has open surface-state contours extending over the
whole Brillouin zone.

To prepare for the description of superconductor het-
erostructures using the Bogoliubov-de Gennes (BdG) for-
malism, we double the degrees of freedom by introducing
holes with Hamiltonian —oo HW) (—k)*oy. The resulting
Bogoliubov-de Gennes Hamiltonian

(W)
w) _ (H 0
" ( 0 02H<W>(k)*02) (10)

has particle-hole symmetry,
H(k) = _VQUQH(_k)*V2027 (11)
where Pauli matrices v;, j = 0,1,2,3, represent the

particle-hole degree of freedom.

B. Heterostructure

The normal region at 0 < z < W is embedded between
a superconductor for z < 0 and a trivial insulator for
x > W. The lattice Hamiltonians for the superconductor

(S) and trivial insulator (I) in the Bogoliubov-de Gennes
formulation are

H(S) (k) = t1/37'30'1 sin kz + Al/l’rod(), (12)

H(I)(k) = tl/37'30'1 sin km +m(1)1/3’7'10'0, (13)

where A > 0 is the superconducting order parameter

and m() — oo the mass gap in the insulating region.

Both the superconductor and the insulator satisfy inver-
sion symmetry,

HEOD (k) = HED (—k)my, (14)

characteristic of superconducting order with even inver-
sion parity, and time-reversal symmetry,

HED (k) = 0, HOD (~k)* 0. (15)

To describe the heterostructure with an z-dependent
Hamiltonian, we replace k, by —i0, and linearize the
Hamiltonians W), #®) and H® in k,. In this way,
we obtain the Hamiltonian

H = —itvyT3010, + M (), (16)
where
M(z) = M)
= Avi0g (17a)
for x < 0,
M(z) = MW

=tv3T30sink,

+ m(ky, k. )vsTio0 + Broos — przog,  (17b)
for 0 <z < W, and
M(z) =MD
=mWusr 00, (17¢)

for x > W, respectively. Here
m(ky, k) =mo+t'(1 — cosky) + t,(1 — cosk,) (18)

is the linearized mass term in the normal region.

C. Block diagonalization, chirality, Fermi arcs

A unitary transformation can be used to bring the
Hamiltonian to a block-diagonal form. Labeling the two
blocks by the parameter 7 = =41, the transformation

reads
H.=[UHUT] , Us=e/ones (19

The transformation acts non trivially only on the mass
term, which transforms as

[UZ/3T10’0UT]T = TV303, (20)



while the transformation of the other terms simply re-
places 73 by 7. After the unitary transformation from
Eq. the diagonal blocks of the Hamiltonian, Eq. ,
then read

H, = —itTr3010; + M, (), (21)

with M, (z) = M®) given by Eq. (17a), for z < 0,
M(z) = MW,

M(TW) =tTr302sinky

+m(ky, k.)Tusos — pvsoo + Broos (22)
for 0 <2 < W, and M(z) = MDD,
MW = O rpgay (23)

for x > W. In the transformed basis, inversion, time-
reversal, particle-hole conjugation, and the mirror an-
tisymmetry shown in Eq. are represented as 7303,
901K, 191001 K, and o973, respectively.

After the unitary transformation, the Weyl nodes are
found in the blocks 7 = —1 for electrons and 7 = +1 for
holes, respectively. Expanding ng) around the Weyl
nodes in the form ). v;0;(k; — K;), where K is the node
position, we can identify the chirality x = sign(vjvevs).
For our convention that all model parameters are posi-
tive, x = F for the node at k, = +kq for both electrons
and holes, as indicated for electrons in Fig. [T}

To find Fermi-arc surface states at the interface with
the trivial insulator at x = W, we consider electron and
hole eigenstates of the insulator that decay for o > W,
taken at x = W,

%mWﬁ%mC) (24)

7

with normalization coefficients a./, that have to be de-
termined separately. For the normal region x < W we
use the Ansatz

o) = au () e, (25)

The decay coefficient &« > 0 and the energy e can be
found by insertion of the Ansatz of Eq. into the
Bogoliubov-de Gennes equation

[HW) — €] (:j}’hg;) — 0. (26)

For 7 = —1 we find an electron-like solution with a =
B —m(ky, k;) and energy
ce(ky, k2) = —tsink, — pu. (27)

For 7 = 41, the solution is hole-like and has energy
en(ky, k) = —tsink, + p. (28)

Both solutions move in the y direction with velocity vp =
deejn/dk, = —tcosk,, as illustrated (for electrons) in
Fig. For small k, the condition o > 0 is satisfied for
|k.| < ko, i.e., for k., between the two Weyl points.

III. EQUILIBRIUM CURRENT

Superconductor-normal-metal heterostructures with a
magnetic N region are known to exhibit an equilibrium
current in the direction of E x B, where here the role of
the time-reversal breaking (magnetic) field B is played by
the exchange field (described by the term proportional to
B in HW) and here pointing in the z direction) and the
role of the inversion-symmetry breaking (electric) field
FE is played by a confinement-potential gradient of the
interface (here in the z direction) [57]. In our geometry
we thus expect to find an equilibrium current in the y
direction.

A. Scattering formulation

We calculate the equilibrium current density I, as
the derivative of the ground state energy E to the vec-
tor potential A,. The vector potential A, enters the
Bogoliubov-de Gennes Hamiltonian H of Eq. via
the standard substitution k, — k, — v3eA,. Then the
equilibrium current I, is

0 dN,(e)

1 0
Iy_zz;/_wd“aAy de

0
- ;Z K ) deag;lis), (29)

where dN(g)/de is the density of states of the Hamilto-
nian . of Eq. and N, (¢) is the cumulative density
of states.

The density of states dN,(g)/de is a sum of delta-
function contributions for |¢|] < A and continuous oth-
erwise. In principle, dN;(¢)/de may depend on A, in
both the discrete and continuous parts of the spectrum
[61]. To capture both contributions, we adopt a proce-
dure used by Beenakker and one of us for the calculation
of the Josephson effect in a chaotic quantum dot [62)].
Following Ref. [62], we determine N, (g) by matching so-
lutions of the Bogoliubov-de Gennes equation H,1) = 1)
in the superconducting region z < 0 and in the normal
region x > 0. To this end, we insert an “ideal lead”
between the superconducting region at x < 0 and the
normal region at z > 0, described by the Hamiltonian of
Eq. with M, = 0. At the end of the calculation,
the length of the ideal lead is sent to zero. In the ideal
lead, the Bogoliubov-de Gennes equation is solved by the
scattering states

Ve a(z) = eiiex/t|u, +u7), (30)

where |v,0) with v, 0 = %1 is an eigenspinor of vs at
eigenvalue v and of o; at eigenvalue o. The eigenstates
Y7+ and 1, _ represent solutions moving in the posi-
tive and negative x directions, respectively. The solutions
with v = 1 are electron-like; the eigenstates with v = —1
are hole-like.



In the ideal-lead segment around x = 0, the full so-
lution of the Bogoliubiov-de Gennes equation is a linear
combination of the scattering states given in Eq. ,

Vr(z) = Z [ar v rw+(2) + br vt —(2)] - (31)

v

Viewing the coeflicients a,, and b, as amplitudes of
quasiparticles incident on and reflected from the normal
region, respectively, we may relate them via the scatter-
ing matrix S; () of the normal region,

(r)-so() e

(The dependence of S-(g) on k, and k. is kept implicit.)
When seen from the superconductor, the coefficients a,
represent the reflected amplitudes, whereas the coeffi-
cients b, represent the incident amplitude, so that one
has the relation

() =59 (o). )

where S () is the scattering matrix of the supercon-
ducting region. Upon combining Egs. and ,
one finds that nontrivial solutions of the Bogoliubov-de
Gennes equation exist only if

det[1 — S-(£)S®)(e)] = 0. (34)

Since S () and Sgs)(s) are analytic functions of ¢ in the
upper half of the complex plane, we may directly obtain
the cumulative density of states N, () as [62]

No(e)= — L / dkydhz { Indet[l — S, (c7)5E) ()

™ (2m)2
;mwﬂﬁwmimwﬂﬂ®@n}
(35)

where et = € 4 in, n being a positive infinitesimal.

The second and third terms between the brackets in
Eq. do not contribute to the current after integration
to ky. The first term in Eq. is analytic in the upper
half of the complex plane and vanishes for Ime — oo.
Shifting the integration along the negative real axis to
the positive imaginary axis, we then find

dk.,
1= [ STk (36)

% =2 Indet[l — S, (iw)S® (iw)].  (37)

Under particle-hole conjugation, the basis state
Yr () of Eq. is mapped to FY_-._, 1 (z), while
simultaneously inverting ¢ — —e and ky . — —ky .,
and vice versa. For this choice of the scattering states,
particle-hole symmetry imposes the condition

Sr(esky, ky) = =11 8™ _(—e;—ky, —k.)11. (38)

Calculating the scattering matrix S of the supercon-
ductor one obtains

S&S)(E) — e—i’y(g)yl, ¥ = aI‘CCOS(E/A)7 (39)

which is the standard result for Andreev reflection off an
s-wave spin-singlet superconductor [63]. The scattering
matrix S;(¢) of the normal region is diagonal with respect
to the particle-hole index v,

. _ (re(esky, k) 0
S-,—(E, ky7kZ) - ( 0 —7”,7—(_5; _kya _kz)*> ’

(40)

where 7-(e;ky, k,) is the reflection amplitude for
electron-like quasiparticles. Inserting Egs. and
into Eq. and performing a partial integration to k,,
we find

2¢ [ dk 0 Ory (iw; ky, K
Yy

r_(iw; —ky, —k,)*
e2(w) 4y (iw; ky, ko )r— (iw; —ky, =k, )*

Because of the mirror antisymmetry at p = 0 given in
Eq. , the reflection amplitudes satisfy r,(e; ky, k,) =
r-(e;—ky, k)", from which it follows that the current
vanishes at ¢ = 0. We use this feature of our model
to focus our calculation on the derivative dZ,(k.)/du at
small .

B. Reflection amplitudes of normal region

We calculate the reflection amplitude r, by expressing
it in terms of the reflection and transmission amplitudes
rW) W) W) Cand #. W) of the normal region 0 <
x < W and the reflection phase i7 of the insulator at
x>W,

irt, (W)

— W) _tr
A A

(42)

In this notation, the unprimed amplitudes r&w) and t(TW)
refer to reflection and transmission from the normal re-
gion for particles incident at the interface with the su-
perconductor (S), whereas the primed amplitudes /(W)
and #. (W) are for particles incident at the interface with
the trivial insulator (I). Solving the scattering problem



with the Hamiltonian of Eq. 7 we find the explicit

expressions

T$W)(5;kya k) :T;—(W) (g; —ky, —k-)
. m(ky, k) + BT —itTsink,

43
thr coth(k, W) —i(e + p) (43)
tW) (e ky, ko) =t W (g5 —ky, —k,)
_ tnT/sinh(/fTW) , (44)
tkr coth(k, W) —i(e + p)
where we abbreviated
w22 = d, (ke ky)? — (e + )2, (45)

with

dr (ky k2) = \J2sin® k, + (8 + Tm(ky. k) (46)

the gap in the k,-dependent spectrum of the Hamiltonian
shown in Eq. , see Eq. . The symmetry relation be-
tween primed and unprimed reflection and transmission
amplitudes is a consequence of the inversion symmetry
from Eq. .

To evaluate the k,-resolved current density Z,(k.), it
is convenient to consider the three-dimensional Hamilto-
nian H(ky, ky, k.) as family of two-dimensional Hamilto-
nians #H(kz, ky) that parametrically depend on k.. The
two-dimensional Hamiltonian H"W)(k,,k,) describes a
trivial (two-dimensional) insulator if 8 < mg or if mg <
B < mo+2t, and |k.| > ko, see Egs. (6)—(8). It describes
a (two-dimensional) topologically nontrivial Chern in-
sulator if mg < B < mg + 2t, and |k,| < ko or if
B> mg+ Qt;.

For the calculation of the equilibrium current I, we
find it convenient to parameterize the reflection ampli-

tudes r&w), and 7~ W) in terms of the transmission coef-

ficient T, = \t(TW) |2 and the phase shifts ¢, and ¢,

T‘.(,_W) = iTﬂei¢T7
W) = i7\/1 = T, eir. (47)

Expressions for the reflection phases ¢, and ¢/ can be
obtained from Eq. (43). For small k,, €, and pu, the re-
flection phase ¢ of the high-energy band is well approx-
imated by

¢+(kyv kz) = ng_(—ky, _kz)
~(e4p—kyt)/ds. (48)

The approximations for the reflection phase for the low-
energy band for small &y, ¢, and p are different for the
trivial regime 8 < myg or |k.| > ko and the topological
regime 3 > mg + 2t or |k,| < ko,

¢—(kyvkz) :(ﬁl(*ky,sz) (49>

e+ p+kyt)/d- trivial,
Tl 7+ (e+ p— kyt)/d_ topological.

The fact that ¢_ = 7 at k, = 0 in the topological case
is what causes the appearance of the Fermi-arc surface
states near k, = 0. With the parameterization defined
in Eqgs. , the reflection amplitude r-(e; ky, k) reads

o €97+ VT —T;
el /1T, +1

ry = iTe

(50)

C. k.-resolved current density for large W

We will now discuss the k,-resolved current Z, (k)
well inside the trivial and topological regimes, so that
the two-dimensional Hamiltonian H"W) (k,, k) describes
a gapped phase with a gap magnitude on the order of the
band width. The case that k, is in the vicinity of kg will
be addressed in Subsec. [T El

For our calculation of Z, (k) we assume that the width
W of the normal region is much larger than the lattice
spacing (which is set to one). The energy scale corre-
sponding to the inverse width, ¢/W, the pair potential
A, and the chemical potential p are considered to be
much smaller that the band width ¢ ~ ¢/ ~ t/,. The en-
ergy difference of the high- and low-energy bands, 2my,
is considered to be on the order of the band width.

With this hierarchy of energy and length scales, the en-
ergy dependence of the reflection amplitudes of the nor-
mal region may typically be neglected when compared
to the energy dependence of the phase shift v for An-
dreev reflection from the superconductor. Also, one has
kW > 1, so that transmission is exponentially sup-
pressed, T | 0. Assuming continuity of the current with
T, | 0, which we discuss in more detail in App. [B] we
may set

rr(iw; ky, k2) = iTeMJT(ky’kZ), (51)

where the reflection phase ¢ (ky, k.) of the normal region
is evaluated at ¢ = 0. This approximation breaks down
if €' = —1, because then the denominator in Eq.
vanishes for 7T, | 0, which occurs if a Fermi-arc state at
the surface at © = W crosses the Fermi level. This case
will be discussed in Subsec. [ITD] With the approxima-
tion from Eq. , the w-integration in Eq. (41) may
then be performed, with the result

_eA [ dk, 00

k)= =5 | 5 ok,

(¢)sin(¢/2), (52)
where

¢(ky7kz) = ¢+(kya kz) -

and s(¢) = sign cos(¢/2).

Effectively, the approximations used to derive Eq.
from the general result of Eq. amount to restricting
to contributions from the discrete part of the Andreev
spectrum. (This approximation is known as the “short-
junction limit” in the context of the Josephson effect.)

¢—(_ky’ _kz) (53)



To show that Eq. represents the contribution from
the discrete part of the Andreev spectrum, we note that,
if we neglect the energy dependence of the reflection am-
plitudes from the normal region, Andreev bound states
appear at discrete energies €4 (ky, k.) satisfying the quan-
tization condition

e~ 127v(ex) id+ (kyk2) ig— (—ky,—k=) _ 1 (54)
Solving for e (ky, k), one finds
i (kg ) = A cos(6/2). (55)

The current associated with a single Andreev level is
Oe (ky,k.)/0A,. To find the total current we integrate
over the contributions from all Andreev levels with en-
ergy 5:t(ky7 kz) <0,

=32 Srgaetes. o)

where the Heaviside function ©(z) = 1 if z > 0 and
0 otherwise. Upon substitution of Eq. for €4, one
recovers Eq. .

To find the derivative dZ, (k.)/dp (recall that Z,(k.) =
0 for p = 0, see the discussion at the end of Subsec.
we observe that from Eq. we have

06, _ 1
= 1 (57)

where the gap d-(k,, k.) was defined in Eq. (46). For the
p-derivative of the k,-resolved current Z,(k.) we then
find a “regular” contribution and a “singular” contribu-
tion, which follows from the derivative of the discontinu-
ity of the step function s(¢) at ¢ = w (mod 27),

dz,(k:) _ dZ,(k.)" | AT, (k) (&) (58)
du du du ’
with
i) A [y [(1 1Y) 00 0
dp 4 ) on d+ _) ok,
2 0d, ¢
— E[)jky Sin 2:| S((b), (59)
dz, (k) dky 06 (11
du _eA/ 2 Ok, —q )o@,
(60)

where the delta function should be periodically extended
with period 27. In the limit of a large exchange field g,
d_ is much smaller than d; and one may further approx-
imate dZ,(k.)/dp by restricting to the terms inversely
proportional to d_.

On the basis of Egs. and we can compare
dZ,(k.)/dp in the trivial and topological regimes. The
phases ¢, and ¢_ are shown vs. k, for typical model

parameters in Fig. a) and (b). In the topologically
trivial case, generically both ¢ and ¢_ have a weak k,-
dependence and ¢ remains close to zero. In this case,
the singular contribution [dZ,(k,)/du]® is absent. Con-
sidering the “regular” contribution 7 we see that the
dominant contribution to the total equilibrium current I,
comes from regions in which the gap d_ is smallest, which
is in the vicinity of the Weyl points, i.e., for |k,| | ko.
The sign of the equilibrium current is determined by the
derivative d¢. /dk, near k, = 0.

In the topological case, as a result of the band inver-
sion from the sign change of 8 — m(k,,k.), the phase
¢_ decreases by 27 upon going from k, = —7 to k, = 7.
Hence, the singularity in the integrand at ¢ = 7 (mod 27)
cannot be avoided. This gives rise to the singular con-
tribution [dZ,(k,)/du]® of Eq. . Since ¢_ is close
to 7 in the vicinity of kK, = 0, the integrand in Eq.
has support precisely where the derivative 0¢y/0k, is
maximal, see Fig. (c) As a consequence, in the topo-
logical regime, the total current dZ,(k.)/du has larger
magnitude and opposite sign when compared to the triv-
ial regime, see Fig. [2(e).

To obtain an explicit expression for a special param-
eter choice well inside the topological regime, one may
consider k, = 0 and 8 = mg +t/, t' = t, in which case
k- =1 and ¢_(k,,0) = m — k, for all k,. Addition-
ally assuming a large gap dy =~ S+ mg > t, so that
¢+ (ky,0) = —(t/(mo + B)) sin ky, the current becomes

dz,(0) _ 2eA
dp  3w(B+mo)

(61)

For the trivial case we consider the leading-order term

in B/t, since the current vanishes at § = 0, and take
mo =t =1t and k, = 0, which gives
dzZ,(0 A

du 12wt

Comparing Egs. and also shows the opposite
signs of the equilibrium current in the two regimes.

D. Finite-size effects

For small transmission coefficient 7_ of the low energy
band, the presence of the Fermi-arc states at the inter-
face with the trivial insulator at z = W causes a narrow
resonance in the reflection amplitude r_(g; ky, kz). This
resonance occurs, when the denominator in Eq. is
approximately zero, ¢ ~ —1. In this case, the assump-
tion that the energy dependence of r_(e;ky, k.) can be
neglected when compared to the energy dependence of
the Andreev reflection phase e ~*7() is obviously violated,
despite the fact that the gap d_ > A.

For the minimal model we consider in this article, this
issue affects the topological regime 8 > myg, |k.| < ko
only. Here we consider the case of small p < t, so that
the resonance appears in the vicinity of k, = 0. For small
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FIG. 2. (a) and (b): Reflection phases ¢+ (ky, k.) at chemical
potential 4 — 0 and energy ¢ = 0 (after first taking the
limit W — oo) for parameter choices corresponding to the
trivial (a) and topological (b) regimes. (c) and (d): Factors
s(¢) sin(¢/2) (blue), (t/dy—t/d_) (red, dashed) and d¢ /Ok,
(red, solid) for the same parameter choices as in (a) and (b),
respectively. (e): k.-resolved equilibrium current Z;(k.) as
a function of k. from Eq. (solid curve). The sign of
the current changes if k. goes from the topological region (k.
between the Weyl nodes at +ko) to the trivial region. The
dashed line shows the result at ultrasmall chemical potential
within the finite-size gap of surface states, see Eq. . The
parameters are mo = 0.5¢, 3 = 1.5¢t,t =t =t, = 1. In
panels (a) and (c) we further set k. = 1; in panels (b) and
(d) we set k, = 2.6.

transmission coefficient T, the full reflection amplitude
r_ of Eq. may then be well approximated as

r_ = —ie'"w(kyt + & + ), (63)

with

2¢ —iT_d_
wle) = oira (64)
Since w(kyt + iw + p) = 1 if |kt +iw + p| 2 T-d_, the
presence of the factor w(k,t 4+ iw + p) has little effect
on the integrand in Eq. in the limit of small trans-
mission T_ if > T_d_, except for a small integration
region around kyt ~ —p and w S T_d_. Because of
the smallness of the integration region in which w sig-
nificantly differs from unity, the net finite-size effect on
dZ,(k.)/dp after integration over k, and w is small and
goes to zero if T_ — 0. For p < T_d_ this conclusion
cannot be drawn, however, because the singularity in the
fraction in Eq. coincides with the singularity of the
integrand in dZ,(k.)/du, which led to the singular con-
tribution shown in Eq. .

To analyze this limit of “ultrasmall” chemical poten-
tial p in further detail, we observe that the singular con-
tributions of the integration in Eq. from the van-
ishing of the denominator and from the finite-size factor
w(kyt+iw+p) are limited to a small interval —6 < k, < ¢
around k, = 0, where § < 1 may be chosen large enough
that w(+dt + p + iw) ~ 1. It follows that the “reg-
ular” contribution of Eq. to dZ,(k.)/du, which is
associated with momenta k, outside this interval, is un-
affected by the finite-size effects. On the other hand,
as we show in detail in App. [A] upon inclusion of the
finite-size effects the integrand of the singular contri-
bution dZ,(k,)® /du is multiplied by a negative factor
—(dy+d_)/(dy—d_), when compared to the result given
in Eq. for > T_d_. Hence for ultrasmall chemical
potential yp < T_d_ we find

dz, (k=) _ dT,(k.)® N dz,(k.)®
dp du du

with [dZ, (k.)/du]® given by Eq. and

dz, (k) dk, 0, (1 1
72# _EA/Q;}aky <d++d> (5(¢—7T).
(66)

; (65)

The sign change of the singular contribution leads to a
significant reduction of the equilibrium current in the case
of an ultrasmall chemical potential u < T_d_, when
compared to the case > T_d_.

To obtain an order-of-magnitude estimate, we again
set k, = 0 and consider the well-established topological
regime B =mo+t',t' =t, k, =0, B+mg > 1, for which
we find, that

dZ,(0) eA
dp " 3w(B+mo)

(67)

if p < T_d_. Comparison to Eq. shows that at
ultrasmall chemical potential the equilibrium current is
approximately —1/2 times the current at finite p.



Physically, the energy ~ T_d_ ~ te 2" that sepa-
rates the regimes of “ultrasmall” and “finite” p, is asso-
ciated with the finite-size gap of the Fermi-arc surface
states, whose wavefunctions decay exponentially away
from the surfaces. Based on our result that in the topo-
logical regime the equilibrium current is strongly modi-
fied when the chemical potential is inside this finite-size
gap, we interpret the difference between the finite-p and
ultrasmall-p limits as the contribution of the topologi-
cal surface states to dZ,/du. The difference between the
large-p and small-y limits involves the singular contribu-
tion [dZ,/du]®™ only. In the well-established topological
regime the surface-state contribution assumes the value

2[dZ, /dp)®, with [dZ,/du]® given in Eq. (60).

E. Total current density

The full equilibrium current density I,, involves the in-
tegral of Z, (k,) over k,. The k.-resolved current density
Z,(k.) is calculated in Sec. for the case that the
normal region is gapped at momentum k, and that the
gap d > A. This condition is no longer satisfied for the
low-energy band if k, is in the immediate vicinity of the
Weyl points, because d_ — 0 there.

That the results of Sec. [[ILC| cease to be valid if d_
becomes small in comparison to A is also reflected in
the expression in Eq. for dZ,(k.)/dp, which diverges
x A/d_ if d_/A — 0. This divergence should be cut off
for d_ ~ A. To see this, we evaluate dZ,(k,)/dp in
the opposite limit d_ <« A, in which we may neglect
the energy dependence of the Andreev reflection phase
e~ and of the reflection amplitude r, of the high-
energy band, but keep the full energy dependence of the
reflection amplitude r_ of the low-energy band.

Starting point of our calculation is Eq. . Since r_
depends on energy € and chemical potential p through
the combination € + p only, upon analytic continuation
€ — iw, one has Or* /Ou = i0r* /Ow. When calculat-
ing dZ,(k.)/dp, the integrand in Eq. then is a total
derivative to w and we find

dZ,(k.) 2e dk;yR 0+ 1

du v o ¢ Ok, e + 1’

where, as before, ¢(ky, k.) = ¢4 (ky, k) — o (—ky, —k.).
Using Rel/(e™% + 1) = 1/2 — w§(¢ — 7) we find that
dZy(k.)/dp ~ ed¢, [Ok,, which is the same order-of-
magnitude estimate as one would obtain from Eq. by
cutting off the small-d_-divergence at d_ ~ A. [We note
that the condition d_ <« A may not be fulfilled for all
k, simultaneously, so that, strictly speaking, the approxi-
mations leading to Eq. do not apply to the full range
of the ky-integration. This, however, does not affect the
order-of-magnitude estimate of dZ,(k.)/dp ~ ed¢. [0k,
that follows from Eq. ]

We thus find that dZ,(k,)/du ~ ed¢y/0k, is a regu-
lar function of k, in the vicinity of the Weyl points at
k, = +ko. Since the range of momenta k, affected by

(68)

ary/du [eA/n?t]
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FIG. 3. k.-resolved equilibrium current dZ,/dp. The super-
conducting gap A = 0.01¢; the other parameters are the same
as in Fig. The solid blue and dashed red curves are ob-
tained from Eq. with finite chemical potential = 0.01¢
and pu = 107°¢, respectively; The width of the normal re-
gion is W = 300 and W = 5, respectively. The solid and
dashed black curves are obtained from Egs. and ,
respectively. The inset shows a closeup at the Weyl node at
ko =~ /2. The discontinuity in the derivative of dZ,/du vs.
k- near ko is a finite-size effect and disappears upon further
increasing W.

the violation of the condition d, > A is correspondingly
small, we conclude that the contribution of the Weyl
points to the total current dI,,/du is small and that one
may obtain dI,/du by integration of the k,-resolved re-
sult of Eq. for dZ,(k.)/dp, omitting the immediate
vicinity of the Weyl points from the integration range.

F. Numerical results

In Fig. |3| we compare the k,-resolved equilibrium cur-
rent dZ,(k.)/dp obtained directly from Eq. with the
approximation of Eq. . We find excellent agreement
away from the Weyl points. We observe that dZ,(k.)/du
has opposite signs for p < T_d_ and p > T_d_ in the
topological regime (k, between the Weyl points), while
there is no difference between the cases of large and small
w in the trivial regime. Except for the finite-size effect at
ultrasmall chemical potentials, we observe only a weak
dependence on the width W of the normal region, which
is bound to the small vicinity (d— < A) of Weyl nodes
(data not shown).

Figure {f shows the total current density dI,/du, see
Eq. , as a function of the exchange field 8. For
comparison, the ultrasmall-p limit and the difference be-
tween the cases of ultrasmall and finite o are also shown
(dashed curves in Fig. . The current vanishes at 8 =0
because the system is time-reversal invariant there. Its
magnitude increases with J in the trivial insulator regime
B < mp. Upon entering the Weyl-semimetal regime,
dI,/dp receives an upturn due to the positive contri-
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FIG. 4. Equilibrium current dI,/du as a function of the ex-
change field 8. The solid blue curve is for finite chemical
potential © = 0.01¢ and width W = 300, which meets the
condition p > T_d_ for most of reciprocal space. The dashed
red curve is for ultrasmall chemical potential p = 10%¢ and
width W =5, which meets the condition p < T_d_ for most
of reciprocal space. The black dashed curve shows the differ-
ence of these two cases, which is the contribution to dI,/du
associated with the Fermi arcs. Other parameters are same
as in Figs. [ and [3|

bution of the Fermi arcs. In the weak Chern insulator
regime § > mg + 2t,, dI,/dp decreases upon (further)
increasing 3, but the difference between ultrasmall and
finite chemical potential p (dashed curve) persists.

To understand the apparent plateau in the Weyl-
semimetal region mg < § < mg + 2t5 and the decrease
with 8 in the Chern-insulator regime g > mg + 2t/, we
note that the order of magnitude of the contribution of
Fermi arcs (the difference between dI,, /dp for 1> T_d_
and p < T_d_) can be estimated from the difference
of Egs. (61 and , multiplying by the distance 2kg
between the Weyl points in the topological region,

dI:];A -~ GAI{O
dp B+mp’

(69)

where one needs to set kg = 7 in the Chern-insulator
regime. The apparent plateau in the Weyl-semimetal
regime appears, because the increase of the factor kg in
the numerator with § is compensated by the increase
of the denominator. In the Chern-insulator regime, the
numerator in Eq. is independent of 3, whereas the
denominator continues to increase with (3, explaining the
decrease of the current in the Chern-insulator regime.
Note that kg has a singular dependence on S at the
boundaries of the Weyl-semimetal regime at 8 = mg and
B = mg + 2t see Eq. , which relates to the sharp
upturns of the current. We verified that these sharp fea-
tures are eliminated if dI,;/du is considered as a function
of the node separation 2k in the Weyl-semimetal regime
(data not shown).
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IV. DISCUSSION AND CONCLUSION

We have investigated the equilibrium current in a min-
imal model describing an SN heterostructure, where S is
a conventional s-wave superconductor and, depending on
the value of the exchange field 3, the normal region (N)
can be a magnetic insulator with a topologically triv-
ial band structure, a Weyl semimetal with broken time-
reversal symmetry, or a three-dimensional weak Chern
insulator. The constituents of the heterostructure are mi-
croscopically inversion-symmetric, so that inversion sym-
metry is broken only by the heterostructure geometry. In
all three regimes, time-reversal symmetry is broken by
the exchange field.

In the trivial-insulator regime we find an equilibrium
current that is proportional to the exchange field 3 at
small 5. It quantifies the interface current of a super-
conductor - magnetic insulator heterostructure, which is
known to be generally possible in the presence of spin-
orbit coupling. Previously such an equilibrium current
has been predicted only for a system with interfacial
Rashba spin-orbit coupling [57], instead of the intrinsic
spin-orbit coupling considered here.

In the topological regime of a Weyl semimetal or a
weak Chern insulator the current shows a qualitatively
different behavior. Upon entering the topological regimes
the (B-dependence of the equilibrium current abruptly
changes, causing a reversal of the sign of the current well
inside the topological regime. The decisive contribution
comes from the topological surface states, which we can
identify within a minimal model (motivated by materi-
als of the BisSes family [10]) by comparing the equilib-
rium currents for a chemical potential inside and above
the finite-size gap of the surface states. In contrast, the
Weyl nodes of the bulk band structure, which the Fermi
arcs connect, do not give a significant contribution to the
equilibrium current.

That we find a large contribution of Fermi arcs and
an insignificant contribution of Weyl nodes relates to
previous studies which found that the bulk states of
an inversion-symmetric, magnetic Weyl semimetal are
mainly unaffected by superconductivity due to a “chi-
rality blockade” [22]. Accordingly, we expect that this
would change if the chirality blockade is lifted, which
happens when at least one of the constituents of the het-
erostructure breaks the microscopic inversion symmetry
[22]. In our model, the chirality blockade manifests itself
through the fact that Andreev reflection from the su-
perconductor switches quasiparticles between the topo-
logically trivial high-energy band and the (potentially)
topologically nontrivial low-energy band. It is this con-
nection of the trivial and the nontrivial band by the su-
perconducting pairing that also makes the magnitude of
the equilibrium current non-universal in both the topo-
logically trivial and nontrivial parameter regimes.

Whereas the “chirality blockade” prevents the bulk
Weyl points to be strongly affected by the proximity su-
perconductivity, Fermi-arc surface states at the interface



with the superconductor, on the other hand, undergo a
renormalization of their effective charge [58], which how-
ever is weak because of the chirality blockade. Relat-
ing the Fermi-arc current contribution of Eq. to the
charge renormalization of Fermi arcs one can interpret
the former in terms of an uncompensated chiral current
of surface states. Specifically, one can consider that each
Fermi arc contributes to the current density

djéarc) kogq
—— =sign (v) ——5, 70
G = s ) (70)
where v is the velocity of the Fermi arc and ¢ the effective
charge. The Fermi-arc contribution to the current of the
Fermi arcs is reproduced if the charge at the supercon-
ductor interface is renormalized to

g~ —e[l=A/(B+mo)], (71)

while the charge of the opposite surface remains unaf-
fected (¢ = —e). The sign of the Fermi-arc velocity has
been discussed in Sec. [ and is illustrated in Fig.

The contribution of Fermi arcs can be seen as a real-
space counterpart to the superconductivity-enabled equi-
librium chiral magnetic effect [II], 12], in which a disbal-
ance of chiral Landau levels of a pair of Weyl Fermions
is produced by current- or flux-biased bulk superconduc-
tivity acting asymmetrically in momentum space on the
chiral Landau levels. The fundamental connection of chi-
ral Landau levels and Fermi arcs allows for the comple-
mentary effect that we just described. The differences
between chiral Landau levels and Fermi arcs are that
the latter continue to exist in zero magnetic field and
are separated in real space. Our work shows that these
differences can be used to realize the equilibrium chiral
magnetic effect via the superconducting proximity effect,
without flux or current bias, and at zero magnetic field.

Our work, however, also shows that the experimental
detection of this effect is challenging because the equilib-
rium current is not exclusively due to Fermi arcs. The iso-
lation of the Fermi-arc contribution that we could obtain
in the minimal model (relying on an ultrasmall chemical
potential or an ultrasmall, constant width of the Weyl
semimetal, and mirror antisymmetry) does not seem to
be experimentally realizable on the basis of existing ma-
terials. We believe, however, that characteristic signa-
tures or other peculiar effects may be found in further
studies of the equilibrium current, such as exploring its
response to external magnetic fields.
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Appendix A: [dZ,(k.)/du)® for 1|0

To show that the singular contribution to dZ,/du
changes sign in the limit y < T_d_ of an “ultrasmall”
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chemical potential (as compared to the case p > T_d_ of
a “finite” chemical potential), we consider the regime of
small k, and ;1 in more detail. The equilibrium current
for finite W is found from Eq. by replacing ryr*
by —e®w*, where the function w(u + iw — kyt) is given
in Eq. , and by restricting the k,-integration to the
interval —d < ky < 4,

L 2 [0 dk o0 *
Z,(k.)® Zj/ Jlm/ do.)a(bJr v
0

m J_s5 2m Ok, e2in(W)=id g’

(A1)

The integration boundaries &4 are chosen such that, on
the one hand, w ~ 1 for |k,| = ¢, whereas, on the other
hand, § ] 0 as T_ — O.

To find [dZ,(k.)/du]®), we have to differentiate the in-
tegrand in Eq. to p. Using that for small k, one has
Ow/op = —(1/t)0w/0k, and 0¢/0p = (1/dy —1/d_) =
—(1/t)0¢/0k, — 2/d_ and using that ¢ is an odd func-
tion of k, for p — 0, so that we may treat d¢, /0k, as
a constant inside the integration range —6 < k, < §, we
obtain

dZ,(k:)" _2 ' Ay /00 w20+
dup ™ J_s 2m 0 Ok,

o ld 209N  w

tdky, d_0¢) e*(wW)=id —

(A2)

*

Since the first term between the brackets, which is pro-
portional to d/dk,, is a total derivative and since w* ~
at both ends of the integration domain, we may set
w* — 1 in the integrand when evaluating the first term.
This allows us to relate the first term to the equilibrium
current at finite p. Again using that (1/t)0¢/0k, =
—(1/dy +1/d_) = (dy +d-)/(dy — d_)0¢/Ou, we rec-
ognize that the first term is —(dy +d_)/(dy —d_) times
the singular contribution of Eq. (60).

The second term between the brackets vanishes to lead-
ing order in A/d_: To leading order in A/d_ the energy
dependence in w* can be neglected and the w integra-
tion can be performed similarly as when going from Eq.
to Eq. with the phase modified by w*, which
approaches 1 upon taking the limit 7 — 0. The whole
integrand is thus non-singular in this limit and, upon
integration, the term vanishes for 7 — 0 due to the
vanishing integration range.

Appendix B: Continuity of the current in the limit
T-10

In the main text we derived the current at the trans-
mission amplitude set to zero from the beginning. Here
we repeat the calculation in a more careful way, taking
the limit T_ — 0 at the end, to show that the current is
a continuous function of T_ at T_ = 0. For simplicity we
only consider the well-established topological regimes at
k,=0,8=mg+t, and t =t =t,. The goal is thus to
reproduce Eqgs. and .



Starting point is Eq. (41)), where we set k, = 0,
2e [ dk Ory(iw; ky,0)
7.(0) = = [ 22U R, dp—F "0 My V)
v(0) ™ / o /0 “ Ok,
r— (iw; —ky, 0)*
X —— .
e2 (W) 4 1 (iw; ky, 0)r_ (iw; —ky, 0)*

(B1)

We consider leading order in the gap d; =~ § + mg of

the high-energy band, allowing to approximate riw) =

iexp|—itsink, /(8 + mo)] and leading to

_ 2et dky o
Z,(0) = = / 5 €05 ky, Re /0 dw  (B2)

r_ (iw; —ky, 0)*
X —— )
e27(iw) 4 r_ (iw; —ky, 0)*

For the non-trivial band we take the full reflection am-
plitude of Eq. ,

where for brevity we have written T instead of T_. In the
well-established topological regime at k, = 0, 8 = mqg+t,
and t = ¢/ = t/, the reflection phase for the non-trivial
band is ¢_(ky, k.) = 7+ p/t — k. Further, we introduce
Z = exp(—ik,) and use dk, cosk, = idZ(1 + Z?)/222,
as well as w = Asinh¢ and dw = d{Acosh( (so that

e? = —e%¢) to obtain
Aet > dz
7,(0) = — B+ mo)mRe o dC%%COShC
i~/ — JT=TZ)(1 + 22) B4
2Z2-2)2-2y) .
where
Zy =S ii\/ sin® (i€ — p/t) = T + cos(i€ — pu/#) . (B5)

Vv1-T

The integration contour of Z is the unit circle in the
complex plane enclosing two poles, one at Z = 0 and the
other at Z = Z,..

For T = 0 only the pole at Z = 0 contributes to the
integral, due to cancellation of the (Z — Z) term of the
denominator with the first term of the numerator in Eq.

(B4), and it gives

Aet o .
70(0) = - ———Im / d¢ cosh ¢ e~ 26—/t
v (©) (B +mo) 0 ¢ ¢
(B6)
which for p < t evaluates to
dari’(0)  2eA (B
dp  3w(B+mo)’

reproducing Eq. .
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For T' > 0 both poles at Z = 0 and Z = Z contribute
to the integration. The contribution of the Z = 0 pole
gives the same as the result Eq. for T=0up to a
factor of 1//1 —T — 1.

The contribution to the integral from the pole at Z =
Z+ is

eA e .
- mlm /o d¢ g(i¢ — p/t)

x [2(i¢ — p/t) (1 + €*)

+ 26— p/t) (L+e72)], (BS)
where we abbreviated
. et T-TZ,
g(ZC - [L/t) - m(z+ - Z_) ’ (Bg)
2(i€ — p/t) = e Z,. (B10)

(One verifies that g and z are functions of i¢ — p/t only.)
Since it contributes for T' > 0 only, the pole at Z, can
be seen to represent a contribution to the equilibrium
current from the Fermi arc at the insulating side of the
semimetal. To estimate this contribution in the limit of
small T, we note that the difference Z; — Z_ is

-2 . _ t)_T
g g 9C, S0 (i€ —u/ '
+ ze\/ -7

(B11)

To further evaluate this expression in the limit of small
transmission 7', we note that for 7" < 1 one has

Z, =e W/t {1—i§cot (¢ — p/t) + ... (B12)

In the limit of large (, this expansion is convergent and
gives a numerator of order T in Eq. . Hence, for
large ¢, the integral in Eq. is convergent and of
order T'. If u # 0 this conclusion applies to the entire
integration domain ¢ > 0, so that we conclude that the
finite-T' correction to the result shown in Eq. is of
order 7" and smoothly vanishes for 7" | 0 if u # 0. The
case p = 0 is different because then the expansion shown
in Eq. is singular for ¢ — 0. In the limit of small
¢ one finds, if u = 0, that

VEHT—¢
2¢/C2+T

T
— . B13
2/ +T(VE+T+() (513)

We now divide up the ¢ integral into a region 0 < ( <
T*/* and a region T < ¢ with 0 < a < 1/2. In the
former region, the remaining factors of the integration
are approximately constant and integration of Eq.

gives a contribution to Z4"(0) that is of order /7. In
the region ¢ > T one may still use the small-T" expan-
sion from Eq. (B12)) to arrive at a systematic expansion

g(i¢) = —




around the result at 7" = 0. Since both contributions
to the integral vanish in the limit T — 0, we conclude
that Iél)(()) — 0 for T" — 0 even if 4 = 0, although the
convergence may be slower than for generic pu.

We now consider the derivative of with respect to
w at u = 0 before taking the limit T — 0. We use that
d/du = (i/t)d/d¢ acting on z(i¢ — p/t) and g(i¢ — u/t),
to obtain

az{M (0) eA > )
du - 27(B + mo)d— Re /0 d((l +e’ )
d d g(i
 gali€)e(ic) + (14 ) LA
(B14)
Using
. g(0) . 1
%lglo m = }131[)9(())2(0) T Ty (B15)

partial integration gives,

ﬂi@:‘ﬂ;imP_MAw“@%WM@
- 624*388)]. (B16)
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The remaining integral vanishes for T — 0 similarly as
the current in (B8] at u = 0 as shown above, hence

dziV(0) eA
i wBrme) (BI7)

Thus for the total current LSO) (0) —1—1'751) (0) in the ordered
limit p — 0, T'— 0 we obtain

dZ,(0) B eA
i 3n(B+mo)’ (B18)

reproducing Eq. @
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