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Abstract
Objective: Seizure forecasting may provide patients with timely warnings to adapt 
their daily activities and help clinicians deliver more objective, personalized treat-
ments. Although recent work has convincingly demonstrated that seizure risk as-
sessment is in principle possible, these early approaches relied largely on complex, 
often invasive setups including intracranial electrocorticography, implanted devices, 
and multichannel electroencephalography, and required patient-specific adaptation or 
learning to perform optimally, all of which limit translation to broad clinical applica-
tion. To facilitate broader adaptation of seizure forecasting in clinical practice, non-
invasive, easily applicable techniques that reliably assess seizure risk without much 
prior tuning are crucial. Wristbands that continuously record physiological param-
eters, including electrodermal activity, body temperature, blood volume pulse, and 
actigraphy, may afford monitoring of autonomous nervous system function and move-
ment relevant for such a task, hence minimizing potential complications associated 
with invasive monitoring and avoiding stigma associated with bulky external monitor-
ing devices on the head.
Methods: Here, we applied deep learning on multimodal wristband sensor data from 
69 patients with epilepsy (total duration > 2311 hours, 452 seizures) to assess its 
capability to forecast seizures in a statistically significant way.
Results: Using a leave-one-subject-out cross-validation approach, we identified 
better-than-chance predictability in 43% of the patients. Time-matched seizure sur-
rogate data analyses indicated forecasting not to be driven simply by time of day 
or vigilance state. Prediction performance peaked when all sensor modalities were 
used, and did not differ between generalized and focal seizure types, but generally 
increased with the size of the training dataset, indicating potential further improve-
ment with larger datasets in the future.
Significance: Collectively, these results show that statistically significant seizure 
risk assessments are feasible from easy-to-use, noninvasive wearable devices with-
out the need of patient-specific training or parameter optimization.
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1 |  INTRODUCTION

Reliable methods to assess seizure risk could alleviate a 
major burden for epilepsy patients by providing timely warn-
ing or relief when seizure risk is high or low. From a clinician 
perspective, robust seizure risk assessments are desirable be-
cause of their ability to improve treatment by optimizing dos-
ing and timing of antiseizure medication regimen, utilizing 
objective, personalized standards, as well as by potentially 
enabling timely interventions to avert impending seizures.1 
Following initial attempts,2 there has been a recent surge 
of studies demonstrating the possibility of accurate seizure 
forecasting.3–7 To this end, most studies have utilized either 
electrocorticography (ECoG) or scalp electroencephalogra-
phy (EEG) as well as, to a lesser extent, electrocardiography 
(ECG), and have demonstrated that robust differentiation 
between preictal and interictal periods as well as early sei-
zure detection is possible with a better-than-chance perfor-
mance.8–13 Furthermore, seizure forecasting has traditionally 
performed best when algorithms were trained or optimized at 
the individual patient level, which often required some sort of 
training or adjustment phase8,14 prior to deployment.

To make seizure risk assessments available for broader 
clinical use, however, methods that build on noninvasive, 
easily recordable data streams and that can be readily used 
without the need of an adjustment phase or expert parame-
ter setting are desirable.15 Peripheral signals recorded using 
wearable devices, such as wristbands, are particularly inter-
esting in this respect, because these signals permit continuous, 
noninvasive recording of several physiological parameters, 
such as electrodermal activity, body temperature, blood vol-
ume pulse, and actigraphy.16 At the same time, the compact 
design may limit the risk of stigmatization, affords more easy 
application, and may altogether increase patient adherence 
relevant for long-term ambulatory use. Monitoring of such 
physiological parameters has already been demonstrated to 
assist in the detection of generalized tonic-clonic seizures.17 
Similar autonomous system measures may also provide in-
formation on detection of preictal patterns or periods. There 
is an urgent medical need for early identification of seizures, 
as this may permit earlier intervention, and ultimately im-
prove seizure management and epilepsy care.

Deep learning has been shown to exhibit strong classifi-
cation performance from complex feature sets.18 It therefore 
constitutes a promising technique to differentiate pre- from 
interictal periods based on complex, multimodal wristband 
data. Whereas more traditional machine learning approaches 
rely on hand-designed feature sets, deep learning uses mul-
tiple layers of connections to perform classification tasks 

without the need of feature designing, which may be an ad-
vantage in relatively underexplored, multimodal datasets, 
such as data from wrist-worn devices.

In this work, we used neural networks on a unique data-
set comprised of multimodal wristband sensor data recorded 
from patients with epilepsy during multiday, in-hospital 
monitoring. Our aims were to (1) evaluate whether forecast-
ing solely based on wristband data could deliver better-than-
chance performance, (2) assess the role of seizure timing 
on forecasting performance, (3) determine whether seizure 
forecasting differs for generalized and focal seizure types, (4) 
analyze the contribution of different wrist-worn modalities to 
seizure forecasting, and (5) determine the algorithm perfor-
mance's dependence on training data size.

2 |  MATERIALS AND METHODS

2.1 | Data recording and preprocessing

2.1.1 | Patients

We recruited patients with epilepsy admitted to the long-
term video-EEG monitoring (LTM) unit at Boston Children's 
Hospital and placed a biosensor wristband (E4, Empatica16) 
on either the left or right wrist or ankle for long-term record-
ing. For the purpose of this study, we considered all patients 
with wristband recordings from February 2015 until October 
2018. Data from one wristband per patient only were con-
sidered. When a patient recording involved multiple wrist-
bands (eg, from wrist and ankle), we selected the data from 
the biosensor wristband with the longest total recording time 
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Key Points

• Wearable devices may provide patients with 
timely seizure warning

• Here, we applied deep learning to long-term data 
from wearable devices worn by epilepsy patients

• Seizures from about one-half of the patients could 
be predicted with better-than-chance performance

• Forecasting performance increased with the 
amount of training data used, suggesting that 
more data may lead to further improvements in 
the future
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for further analysis. Upon patient enrollment, wristband data 
were continuously collected as long as technically and lo-
gistically possible throughout the LTM period, taking into 
consideration the availability of wristband devices, the need 
to charge device batteries approximately every 24 hours, and 
clinical considerations including tests where the device may 
have had to be removed. To allow stable recording condi-
tions, we removed data from the first and last hour of each 
recording from further analysis. Apart from this criterion, all 
recorded data (including interictal, preictal, ictal data) were 
subsequently considered for further processing and analysis 
in an attempt to be as close to real-life settings as possible, 
and to include as much data as possible. During recording, 
all sensor modalities (electrodermal activity [EDA], acceler-
ometer data in three dimensions [ACC], blood volume pulse 
[BVP], and temperature [TEMP]) were simultaneously mon-
itored. From all the patients monitored by wristband record-
ing (n = 317), we only included the patients with at least one 
seizure during the wristband recording period, limiting our 
analysis to 69 patients (Table 1). We analyzed all epileptic 
seizure types occurring in a patient, which included primary 
and secondary generalized, and focal seizures (Table 1), as 
determined by board-certified epileptologists. Written in-
formed consent was obtained from all participants, or their 
guardians, enrolled in the study. We received approval from 
the Boston Children's Hospital Institutional Review Board.

2.1.2 | Data selection and labeling

A prerequisite for seizure risk assessment is the reliable dis-
tinction between pre- and interictal periods. For this purpose, 
we analyzed continuous, nonoverlapping 30-second seg-
ments of wristband recordings composed of six sensor data 
streams (EDA, ACC, BVP, and TEMP; Figure 1A).

To train a forecasting algorithm, data needed to be labeled 
as either pre- or interictal. To define preictal periods during 
training of the algorithm, we focused only on lead seizures. 
We defined a lead seizure as a clinical seizure that occurs 
at least 2 hours after a preceding seizure. We considered a 
30-second data segment as preictal if it occurred between 
61 minutes and 1 minute prior to such a seizure, thus leav-
ing a 1-minute buffer prior to seizure onset (Figure 1B, red). 
This preictal window definition was chosen to be commen-
surate with other seizure-forecasting research using EEG and 
ECoG3-6 and to account for potential small ambiguities in 
determining the exact seizure onset between EEG data and 
wristband data. Thirty-second data segments were classified 
as interictal if they were 2 hours or more away from any sei-
zure (Figure  1B, green). Electrographic seizure onset was 
determined using video and EEG recordings. For training, 
we thus excluded intervals directly after the onset of a sei-
zure or when many seizures occurred in rapid progression, to 

not bias our analyses with seizure effects and with postictal 
period findings.19 Note again that for forecasting on test pa-
tients, all available sensor data were used.

2.2 | Preparation of training, validation, and 
test data

For the main results of our study, we applied a leave-one-
subject-out cross-validation approach, where data from 68 
patients were used for training, and testing was done on the 
full dataset of the one remaining out-of-sample patient. This 
allowed us to maximize the number of patients included in 
training and testing. Additional analyses were performed to 
train on a lower number of patients and use other patients 
for validation before testing on one out-of-sample test patient 
(see below; Figures 1D and 4).

For the preparation of the training datasets, we first iden-
tified all 30-second preictal segments and matched them by 
an equal number of randomly chosen interictal segments in 
each patient (Figure 1C). This resulted in a total of 39 814 
30-second segments, which (minus the ones belonging to the 
test patient) were used for training. This matching was done 
to handle the imbalanced data during training (interictal data 
mostly outnumber preictal data by a large factor in each pa-
tient).20,21 Next, the matched data from 68 patients were used 
for training, whereas testing was generally performed on the 
remaining patient's full dataset.

We also performed our analysis on training data with <68 
patients, where the remaining patients (apart from the test pa-
tient) were used for validation. Based on monitoring these 
validation data, we observed no indication of overfitting 
(Figure 1D; in this case: training on 67 patients, validation 
on one patient). Results for the main part of the article are 
thus reported for the leave-one-out cross-validation approach 
where data from 68 patients was used for training and testing 
was done on the one remaining patient. Additionally, we also 
report summary results for seizure-forecasting performance 
when training was done on fewer patients (Figure 4).

2.3 | Neural networks and training

We used long short-term memory (LSTM) networks, as they 
are specifically designed for learning underlying represen-
tations in time series data and have been shown to provide 
robust classification performance based on multidimensional 
time series data.18 The wearable device records data from dif-
ferent modalities at different sampling frequencies: EDA and 
TEMP are recorded at 4 Hz, BVP is recorded at 64 Hz, and 
ACC are recorded at 32 Hz. To use the wristband sensor data 
in LSTM networks, data were downsampled to 4 Hz for all 
sensors (downsampling after applying an antialiasing order 
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T A B L E  1  Demographics of patients

Patient Gender
Age, 
yr

Age of first 
seizure, yr Seizure types MRI findings Etiology

Wristband 
location

1 Male 15 13 Focal onset Not noted Structural Left wrist

2 Male 13 0 Focal onset Normal Unknown Left ankle

3 Female 17 Unknown Focal onset Normal Unknown Left wrist

4 Female 2 Unknown Focal onset Volume loss, unspecified Structural Left ankle

5 Female 5 4 Unclassified Malformation Structural Left wrist

6 Female 15 3 Generalized onset, unclassified Gliosis, unspecified Structural Right wrist

7 Female 22 10 Focal onset Infarction Structural Right ankle

8 Female 16 15 Focal onset Normal Unknown Left ankle

9 Male 17 7 Focal onset Normal Unknown Right wrist

10 Male 3 2 Focal onset Dysplasia Structural Right ankle

11 Female 14 Unknown Generalized onset Cyst Unknown Left wrist

12 Male 11 1 Focal onset Normal Unknown Left wrist

13 Male 10 1 Focal onset Malformation Structural Right wrist

14 Female 13 11 Focal onset, unclassified Volume loss, unspecified Structural Left wrist

15 Male 16 10 Focal onset Normal Unknown Left wrist

16 Male 8 7 Generalized onset Normal Unknown Left ankle

17 Female 2 Unknown Focal onset, unclassified Tuberous sclerosis/
hamartoma

Genetic Left ankle

18 Male 9 1 Focal onset, generalized onset Not noted Unknown Right ankle

19 Male 10 8 Focal onset Volume loss, unspecified Unknown Right wrist

20 Male 9 5 Focal onset, generalized onset Normal Unknown Left ankle

21 Male 5 0 Generalized onset Normal Unknown Left wrist

22 Female 14 7 Focal onset Infarction Structural Right wrist

23 Female 15 13 Focal onset, generalized onset Volume loss, unspecified Genetic Left ankle

24 Female 3 0 Generalized onset, unclassified Resection Structural Right ankle

25 Male 13 0 Focal onset Tuberous sclerosis/
hamartoma

Genetic Right ankle

26 Male 0 0 Focal onset Malformation Structural Right ankle

27 Female 27 14 Generalized onset Normal Unknown Right wrist

28 Male 17 15 Focal onset Tumor Structural Right ankle

29 Male 13 0 Focal onset Resection Unknown Left wrist

30 Female 2 1 Generalized onset Not noted Unknown Right ankle

31 Male 8 1 Focal onset Volume loss, unspecified Structural Right wrist

32 Female 15 0 Focal onset, unclassified Hippocampal sclerosis Structural Right ankle

33 Male 7 4 Focal onset Infarction Structural Left wrist

34 Female 17 1 Generalized onset Not noted Unknown Right wrist

35 Female 3 Unknown Focal onset Volume loss, unspecified Structural Right ankle

36 Female 6 3 Generalized onset, unclassified Gliosis, unspecified Structural Left wrist

37 Male 1 0 Generalized onset Not noted Unknown Left ankle

38 Female 11 7 Generalized onset Normal Unknown Right wrist

39 Male 12 6 Generalized onset Volume loss, unspecified Structural Right wrist

40 Male 7 Unknown Generalized onset Volume loss, unspecified Metabolic Right ankle

41 Male 3 1 Focal onset Resection Structural Right wrist

(Continues)
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8 Chebyshev type I filter; Python function scipy.signal.deci-
mate), to provide the same vector length for each 30-second 
segment (ie, 120 sampling points). To limit LSTM networks 
from overfitting, network architecture was kept simple and 
shallow (Table S1, Figure 1D), and training was performed 
on matched data, that is, where both classes appeared equally 
often. As stated above, no indication of significant overfitting 
was observed in learning metrics (Figure 1D).

We also compared the results using the LSTM network to 
forecast performance from a one-dimensional convolutional 
neural (1DConv) network. 1DConv networks are often eas-
ier and faster to train than LSTM networks while also being 
known to exhibit good performance on time series data.18 
Convolutional networks have recently also been applied to 
classification problems in epilepsy.14,22 Table  S1 shows the 

summary of the LSTM and 1DConv network hyperparameters 
used and a graphical schema depicting the network. All net-
works were trained for 200 epochs. We employed a learning 
rate of 0.001, that is, the parameter determining the step size 
at each iteration while moving toward minimizing the loss 
function, and Adam optimizer with a binary cross-entropy loss 
function. Analyses were performed with in-house–written code 
using Python (version 2.7) and Keras with Tensorflow backend.

2.4 | Performance metrics and 
statistical tests

Seizure-forecasting performance was assessed on the full time 
series data (after removal of potential dropouts, for example, 

Patient Gender
Age, 
yr

Age of first 
seizure, yr Seizure types MRI findings Etiology

Wristband 
location

42 Female 10 1 Focal onset, unclassified Dysplasia Structural Right wrist

43 Female 13 0 Focal onset Infarction Structural Left wrist

44 Male 2 0 Generalized onset, unclassified Tuberous sclerosis/
hamartoma

Genetic Left ankle

45 Male 4 2 Focal onset Volume loss, unspecified Structural Left ankle

46 Female 5 0 Focal onset Infarction Structural Right ankle

47 Male 8 5 Focal onset Tumor Structural Right ankle

48 Female 13 9 Focal onset, unclassified Normal Unknown Left ankle

49 Male 12 7 Focal onset Normal Unknown Right wrist

50 Male 0 0 Generalized onset, unclassified Not noted Unknown Right ankle

51 Male 9 Unknown Generalized onset Normal Unknown Right wrist

52 Female 13 3 Focal onset Volume loss, unspecified Structural Right wrist

53 Female 11 1 Focal onset Hippocampal sclerosis Structural Right ankle

54 Male 1 Unknown Focal onset Dysplasia Structural Left ankle

55 Male 14 0 Focal onset, unclassified Resection Structural Left wrist

56 Female 11 10 Generalized onset Tumor Structural Right wrist

57 Female 19 0 Generalized onset Volume loss, unspecified Unknown Right ankle

58 Male 7 1 Focal onset Normal Unknown Left ankle

59 Male 14 7 Generalized onset Dysplasia Structural Left ankle

60 Male 2 0 Generalized onset Dysplasia Unknown Left ankle

61 Male 12 1 Focal onset Not noted Structural Right wrist

62 Male 9 8 Focal onset Malformation Unknown Left ankle

63 Male 0 0 Unclassified Infarction Structural Right ankle

64 Male 9 1 Focal onset Normal Unknown Right ankle

65 Male 10 0 Focal onset Cyst Unknown Left ankle

66 Male 5 Unknown Focal onset Malformation Structural Right ankle

67 Female 3 1 Generalized onset, unclassified Normal Genetic Left ankle

68 Male 11 Unknown Generalized onset Normal Unknown Left wrist

69 Male 21 3 Focal onset, generalized onset Volume loss, unspecified Genetic Right ankle

Abbreviation: MRI, magnetic resonance imaging.

T A B L E  1  (Continued)



2658 |   MEISEL Et aL.

when the wristband was replaced by a new one for charging 
purposes) from out-of-sample test patients. Figure S3 shows 
the full data from one exemplary test patient. To be clinically 
useful, the binary classification has to be translated into a 
suitable user interface.23 We here used a sliding window ap-
proach in which the individual 30-second segment predictions 
were averaged over an integration window. If this averaged 
value crossed a threshold, an alarm would be initiated which 
would last for the duration of a seizure occurrence period. 
A new alarm could only be initiated once the seizure occur-
rence period had passed (Figure S3). This postprocessing thus 
requires the determination of three additional variables: inte-
gration window, threshold, and seizure occurrence period. In 

long-term recordings, parameters like this can in principle be 
optimized at the individual patient level, for example, by opti-
mizing these parameters during an initial adjustment phase.14 
Here, in our leave-one-subject-out cross-validation approach, 
we used the training data to find the optimal parameters using 
a grid search (Figure S2; integration window values: 150, 300, 
600, 1200  seconds; seizure occurrence period values: 150, 
300, 600, 1200, 2400, 3600, 7200 seconds; threshold values: 
0.5, 0.52, 0.54, 0.56, 0.58, 0.6). Therefore, for forecasting of 
a test patient using a network trained on 68 patients, the pa-
rameters yielding the on average highest improvement over 
chance (IoC) for predictions on the training data predictions 
from these 68 patients were chosen (Figure S2, blue square). 

F I G U R E  1  Outline of data processing for seizure forecasting. A, Continuous multimodal time series data were separated into consecutive 
30-second segments. B, Data segments in training data were labeled either preictal (red) or interictal (green). Sz, seizure. C, For each patient, 
preictal segments were matched with the same number of interictal segments for training. Results reported in this article are generally based on a 
leave-one-subject-out cross-validation approach, where training was performed on 68 patients and testing on the one left-out patient. Loss curves 
in the middle correspond to control analyses, where 67 patients were used for training, one patient for validation, one for testing. Solid lines and 
shading indicate mean ± SEM across all patients
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Note that this parameter selection process ensures that no 
information from the test patient is used to infer these three 
parameters. This grid search yielded highly similar results 
across patients (because training datasets overlap by 67 pa-
tients) and provided an integration window of 600 seconds, 
seizure occurrence period of 3600 seconds, and threshold of 
0.54 as the best parameter set in all 10 cases where it was 
applied (Figure S2). Although other parameters also yielded 
good forecasting performance results, these parameters were 
consequently chosen for the reported results in this article. As 
stated above, in future long-term trials, it is conceivable that 
these parameters can be further optimized for the individual 
patient, for example, by determining these parameters during 
an initial training period14 or to tune sensitivity versus time in 
warning (TiW) to suit the individual patient's needs.24

As clinically useful metrics to evaluate forecasting algo-
rithm performance,2,25 we used the metrics applied in Cook 
et al8: sensitivity, TiW, and improvement over chance (IoC)14:

• Sensitivity: Any seizures occurring during the alarm were 
considered to be true positive (TP), and seizures occurring 
outside alarms to be false negative (FN). Sensitivity (S) is 
then defined as: S = TP/(TP + FN).

• TiW: The fraction of time spent in warning.
• IoC: IoC = S − TiW.

All metrics are reported in percent.
We report mean prediction scores for these variables over 

10 independent runs for each patient where each run corre-
sponds to an independently trained deep neural network. As 
an additional control, we furthermore show IoC results for 
time-shuffled predictions, that is, when the 30-second seg-
ment predictions are randomly distributed over time prior to 
calculation of the algorithm performance metrics sensitivity, 
TiW, and IoC (Figure 4, gray line).

A two-sided Wilcoxon signed-rank test was used to assess 
the significance of IoC values in each patient. We controlled 
for multiple comparisons with the Benjamini and Hochberg 
false discovery rate using a threshold of 0.05.26 A Kruskal-
Wallis H test followed by a two-sided Wilcoxon signed-rank 
test was used to assess significance of IoC values depending 
on individual sensor modalities. A two-sided Mann-Whitney 
U test was applied for comparison between groups with re-
spect to age, seizure type, and location where the wristband 
was worn. We deemed P ≤ .05 to be significant.

2.4.1 | Assessment of seizure timing by 
generation of surrogate data

To better understand the dependence of forecasting perfor-
mance on time of day and vigilance state, we employed 
the forecasting algorithm also to time-matched seizure 

surrogate data27 in the patients who had sufficiently long 
data for such an analysis. The underlying idea is that, if 
forecasting performance was primarily based on detect-
ing a certain time of day (or better: the respective vigi-
lance state, which should be similar at the same time of 
day), then shifting seizure onset times to the same time of 
a random other day should not lead to a strong decline in 
forecasting performance. Conversely, if performance de-
clined significantly under time-matched seizure surrogate 
data, then it would be unlikely that the forecasting algo-
rithm was mainly detecting time of day (or the respective 
vigilance state). In our data, we identified n = 28 patients 
with sufficiently long data recordings to randomly shift all 
seizure onset times to another day while maintaining the 
exact same time of day. Using the metrics outlined above, 
forecasting performance was then compared between data 
containing the true seizure onset times and data containing 
the time-matched seizure surrogate data (Figure S5).

2.4.2 | Assessment of performance 
contribution of individual sensor modalities

To assess the influence of individual data modalities, we per-
formed additional experiments where, during training, the sen-
sor data of individual modalities (EDA, TEMP, BVP, or ACC) 
were all set to zero. Any potential information with respect to the 
preictal period contained in this particular modality could thus 
not be learned during training. We then assessed performance 
with and without this modality in terms of IoC (Figure 3).

2.5 | Data and code availability

The datasets and code generated and/or analyzed during the 
current study are available from the corresponding author on 
reasonable request.

3 |  RESULTS

3.1 | Demographics

Our dataset was comprised of multiday recordings from 69 
epilepsy patients (mean age = 9.8 ± 5.9 years [mean ± SD], 28 
females, total duration = 2311.4 hours, 452 seizures; Table 1).

3.2 | Overall prediction performance

We evaluated performance of the proposed seizure-fore-
casting system in terms of sensitivity, TiW, and IoC.2,5,8,25 
We applied a leave-one-subject-out cross-validation 
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approach where matched pre-/interictal data from 68 pa-
tients were used for training (Figure 1C), and testing was 
done on the full dataset of the one remaining out-of-sample 
patient. Control analyses indicated no signs of significant 
overfitting during training (Figure 1D). Performance was 
calculated for predictions from 10 independently trained 
LSTM networks (Table  S1) for each patient. Figure  2 
shows the average performance for all 69 patients. 
Significant IoC larger than zero is an indication that sei-
zure forecasting is useful in a clinical setting.5 In our data, 
seizure forecasting was significantly better than chance for 
43.5% of patients (30 of 69 patients). For these patients, 
we obtained a mean IoC of 28.5 ± 2.6%, a mean sensitiv-
ity of 75.6 ± 3.8%, and a mean TiW (ie, the percentage 
of time spent in warning) of 47.2 ± 3.4% (mean ± SEM). 

Across all patients, including those with nonsignificant, 
nonpositive IoC, mean IoC was 14.1 ± 1.9%, mean sensi-
tivity was 51.2 ± 3.8%, and mean TiW was 43.7 ± 2.3%. 
Note that mean IoC in patients with nonpositive mean IoC 
was set to zero prior to averaging across patients. To in-
vestigate whether an increase in model complexity might 
lead to an improved performance, we also compared our 
results to a more complex LSTM network (100 LSTM 
units instead of 10 units; Table S1). This did not result in 
an overall better performance (mean IoC across patients 
of 13.7 ± 1.8%). Mean age in the group of patients with 
better-than-chance forecastability was higher than in the 
remainder of patients (mean age = 10.7  ±  5.3  years vs 
9.1 ± 6.2 years), although this difference did not reach sta-
tistical significance. (P = .16, Wilcoxon signed-rank test).

F I G U R E  2  Forecasting performance results in a pseudoprospective approach for all patients. Bars represent mean values over 10 runs; 
error bars indicate SEM. A, Improvement over chance. B, Sensitivity. C, Time in warning. D, Prediction horizon. E, Number of seizures. F, 
Number of hours in recording. *IoC values significantly larger than zero after correcting for multiple comparison
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3.3 | Evaluation of seizure timing as 
potential prediction confounder

Seizures are more likely to occur at certain times of the day 
or vigilance states, and we also noted a bimodal peak in the 
histogram of seizure occurrences in our dataset (Figure S4). 
To rule out detection driven simply by time of day and re-
spective vigilance state, we also employed the forecasting 
algorithm to time-matched seizure surrogate data27 in the 
patients who had sufficiently long data records (n = 28 pa-
tients; Figure S5). Performance was found strongly and sig-
nificantly decreased for time-matched seizure surrogates in 
comparison to actual seizure times (Figure S5A; P = .011, 
Wilcoxon signed-rank test). These results consequently 
provide strong indication that forecasting is not primarily 
based on detection of a time of day or the respective vigi-
lance state.

3.4 | Prediction horizon

For practical application as a warning system for patients, 
the expected time between alarm onset and seizure onset, the 
prediction horizon (Figure S3), is of particular interest. A suf-
ficiently long alarm may afford patients to take precautionary 

steps or avoid certain activities. The mean prediction horizon 
across all patients observed in our data was 1844 ± 80 sec-
onds. For the 30 patients with significantly better-than-
chance forecastability, the mean prediction horizon was 
1896  ±  101  seconds (minimum = 738  seconds, maximum 
= 3273 seconds), a period that may be long enough to afford 
reasonable warning in advance and that excludes the possi-
bility that some early seizure-related activity might have con-
tributed to the detection.

3.5 | Prediction performance in relationship 
to seizure type and sensor location

Next, we investigated whether prediction performance was 
dependent on seizure type, in particular whether performance 
depended on seizures of focal or generalized onset. We thus 
compared prediction performance between patients with 
only focal onset seizures (n = 35 patients) and patients with 
only generalized onset of seizures (n = 16 patients; Table 1). 
Group comparison revealed no significant difference in IoC 
values (P  =  .32). Similarly, no significant dependence on 
where the device was worn (wrist: n  =  31 patients, ankle: 
n = 38 patients) in terms of IoC performance values was re-
vealed by group comparison (P = .14).

F I G U R E  3  Influence of individual 
sensor modalities on overall performance. 
Each bar indicates the improvement over 
chance (IoC) averaged across patients. 
Results are based on five independent 
network runs for each patient and modality. 
A, IoC averaged across all patients. Results 
indicate that, on average, best performance 
is achieved when all modalities are included 
for training and each modality contributes 
to seizure forecasting. B, Results averaged 
across the 20 patients with worst overall 
forecasting performance. These results 
indicate that accelerometer data in three 
dimensions (ACC) may particularly 
contribute to the poor performance in 
these patients. BVP, blood volume pulse; 
EDA, electrodermal activity; TEMP, 
temperature
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3.6 | Contribution of individual modalities 
to seizure prediction

As a purely data-driven approach that gives machine learn-
ing methods free reign to identify the most useful data fea-
tures across modalities, our approach considered all data 
modalities (EDA, TEMP, BVP, ACC). To better under-
stand the information that is provided by the multimodal 
data in terms of each modality's contribution for successful 
seizure forecasting, we performed additional analyses by 
removing the information of each modality individually. 
Specifically, we repeated neural network training where 
all data from each modality individually were set to zero, 
thereby providing no information about the preictal period 
(Figure  3). Across all patients, these analyses indicated 
that performance was on average best when all modalities 

were included (Figure  3A). Thus, each modality contrib-
uted to seizure forecasting. Relative influences for seizure-
forecasting performance varied between modalities, but 
variations did not reach statistical significance (P =  .099, 
Kruskal-Wallis H test). These analyses also confirmed that 
ACC contributed strongly to algorithm performance also 
under downsampling. Finally, to obtain some insights into 
which modalities may have contributed most to the poor 
performance of the worst-performing patients, we assessed 
relative influence of individual modalities in the 20 worst-
performing patients only (Figure 3B). There, results indi-
cated ACC in particular to have had a large detrimental 
influence on IoC values.

3.7 | Performance based on training set size

Machine learning, particularly deep learning, benefits 
from large datasets that afford learning of the underlying 
data representations while also containing enough vari-
ability to permit generalization to unseen data. In a use-
case like ours, it is conceivable that performance requires 
a certain amount of data and, more generally, benefits from 
training on larger datasets. To determine the relationship 
between seizure-forecasting performance and size of the 
training dataset, and to obtain a better understanding of 
how our approach might benefit from more data in the fu-
ture, we evaluated performance under different amounts 
of training data. For this purpose, instead of training on 
all 68 patients in a leave-one-out approach, as described 
above, we systematically reduced the amount of training 
data by considering only a smaller number of patients 
(n = 4, 8, 16, 32, or 55 patients) for training. Specifically, 
performance for each test patient was calculated for 10 
independently trained networks, where training data were 
composed of only n number of randomly chosen patients 
in each run. Figure 4 shows the dependence of forecasting 
performance in terms of average IoC across all patients 
(mean IoC in patients with nonpositive mean IoC again set 
to zero prior to averaging). Performance increased mono-
tonically as more patients were used for training (blue 
line), whereas control analyses based on randomly time-
shuffled predictions remained low and did not improve 
with increasing training data size (gray line). Note that 
the gray markers indicate what true chance prediction at 
the group level would look like, that is, when predictions 
are uniformly distributed across recording time, and ac-
cumulations of predictions indicative of proictal dynamics 
are destroyed (Figure 4). The performance increase with 
training size demonstrates the benefits of creating larger 
datasets for training. As no saturation effect under larger 
training size is apparent, these results suggest that larger 
datasets than the one used in this study might, on average, 

F I G U R E  4  Seizure-forecasting performance improves with larger 
training datasets. Blue indicates average improvement over chance 
for increasing sizes of training data. Performance was assessed at the 
individual patient level (test data), where training of neural network 
was performed with training data comprised of 4, 8, 16, 32, 55, or 68 
patients. Plot indicates averages across all patients (mean ± SEM). 
Gray indicates average improvement over chance for time-shuffled 
predictions (patients with mean negative improvement over chance 
[IoC] are set to IoC = 0 prior to averaging across patients). Note 
that the gray markers indicate what true chance prediction at the 
group level would look like, that is, when predictions are uniformly 
distributed across recording time, and accumulations of predictions 
indicative of proictal dynamics are destroyed
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improve seizure-forecasting performance even more in the 
future.

4 |  DISCUSSION

We showed that forecasting of seizures is feasible with wrist-
worn data. Forecasting was independent of time of day and 
independent of focal or generalized seizure type, suggesting 
that such an approach might be useful for a broad range of 
epilepsy patients. All wrist-worn data streams contributed to 
forecasting. Preliminary analyses suggest that more data will 
improve prediction.

Of the patients included in our analysis, about one-half dis-
played a significant IoC. Although future research will need 
to quantify the clinical value of these forecasts for patients, 
our results indicate that seizure forecasting is feasible with 
relatively noisy, multimodal signals recorded from devices 
far away from the brain. As such, the results can be regarded 
as a benchmark for future methodological refinements and 
clinical usability assessments. The better-than-chance clas-
sification performance in about one-half of the patients was 
obtained despite the comparably brief duration of data and 
despite the variability in seizure types, age, and wristband 
location. Our approach used the data in raw format ("as is") 
in an attempt to maximize the transferability of our approach 
to real-world, noisy conditions, and utilized a pseudoprospec-
tive assessment scheme, that is, using only data from the past 
for future predictions, which is essential for use in real-world 
conditions to evaluate future seizure risk.

Others have shown effects of seizure timing and seizure 
location on seizure occurrence.28 Adding these data among 
other clinical predictors may improve performance in larger 
datasets in the future.29 Furthermore, it is possible that the 
autonomic variability and normative ranges, which vary sig-
nificantly across pediatric age groups (eg, lower resting heart 
rates with increasing age), may have complicated seizure 
forecasting. Training on more homogenous or adult patient 
populations may thus potentially improve prediction rates.

Our results demonstrate that there exists a preictal signa-
ture in autonomous nervous system30 and actigraphy data, 
which, despite possibly not being detectable by visual inspec-
tion, may be picked up by deep learning. Importantly, our 
work demonstrates that this signature may be learned across 
patients and is therefore not patient-specific. This can be 
considered an advance from most traditional seizure predic-
tion work, which mostly succeeded when using algorithms 
trained specifically for the individual patient.5,6,8 An algo-
rithm that can be trained across patients has the advantage 
that it can be readily employed to a new patient, without any 
training to learn patient-specific factors or expert knowledge 
to set parameters. For the first-in-man study, for example, 
that reported statistically significant seizure forecasting for 

10 patients, forecasting algorithm parameters were set for 
each individually after an initial training phase.8 If the IoC 
values of these patients are averaged, a mean IoC of 38.1% 
is obtained.

The average IoC for the 30 patients with significantly bet-
ter-than-random predictability in our study was slightly less 
(mean IoC = 28.5%). Clearly, a direct comparison between 
these studies is limited, and care has to be taken when com-
paring the results obtained from 10 of 11 patients8 to results 
from 30 of 69 patients here. However, considering that our 
results reported here did not require invasive ECoG, pa-
tient-specific training and parameter optimization, or signif-
icant patient selection (we included patients with both focal 
and generalized seizure onset; Table 1), and were obtained 
from an algorithm trained on out-of-sample data, which may 
allow constant improvement with larger and larger datasets 
(Figure 4), our results are overall encouraging and provide a 
step forward.

Seizure forecasting builds on the notion that a preictal pe-
riod, during which a seizure is more likely to occur soon, can 
be reliably distinguished from interictal periods. To this end, 
most studies have focused on data recorded either from ECoG 
and EEG or from ECG. ECG has thus been a long-stand-
ing example that peri- and preictal changes not only can be 
detected within the central nervous system but are also re-
flected in a variety of cardiac effects.31–33 Cardiac activity 
is controlled by parasympathetic and sympathetic branches 
of the autonomic nervous system, with the former producing 
an inhibitory response and the latter producing an excitatory 
response on heart rate.24 Preictal changes in brain activity 
that occur in or propagate to autonomic control centers may 
affect this autonomic balance and, consequently, affect car-
diac activity during the lead-up to a seizure. A recent study 
that compared the information content in ECoG, EEG, and 
ECG in terms of identifying preictal periods found that sin-
gle-channel ECG contains a comparable amount of informa-
tion to multichannel EEG,35 which highlights the relevance 
of peripheral sensors for seizure forecasting. Autonomous 
nervous system changes are captured by the wristband sen-
sors used in this study in several ways. Electrodermal activity 
is known to be sensitive to sympathetic innervation. Blood 
volume pulse curves contain information about heart rate, 
which is controlled by the parasympathetic and sympathetic 
interplay. Similarly, body temperature is known to be main-
tained by the autonomic nervous system. The approach pro-
posed in this study builds on monitoring these autonomous 
nervous system functions along with actigraphy, which indi-
rectly also monitors resting periods and sleep, and therefore 
pioneers the seizure forecasting based on such multimodal 
sensor data, going beyond more traditional ECoG/EEG and 
ECG approaches.7

In our approach, we used the same LSTM model for 
all patients, albeit models were trained for each patient 
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separately. Although it is possible that model hyperparame-
ters individualized for each patient might bring about better 
performance, we chose to have the same model architecture 
across patients, which could potentially be implemented 
"out-of-the-box" in future prospective settings. Ultimately, 
the usefulness of a seizure-forecasting system may depend 
also on a patient's preference in terms of sensitivity and time 
spent in warning. Our approach has three parameters—in-
tegration window, seizure occurrence period, and thresh-
old (Figure S3)—that could be tuned for these purposes in 
a straightforward manner. With longer data, one may tune 
these parameters for the individual patient's needs, for ex-
ample, during an initial adjustment phase, for optimal future 
performance and patient preferences.14,24 Due to the relative 
shortness of our data, which only covered up to a few days 
per patient, we did not attempt this and used the parameters 
identified in a grid search from the training data (Figure S2). 
Our results show that statistically significant seizure fore-
casting is possible, and it is likely that a parameter tuning 
at the individual patient level on longer data may improve 
performance even more. Furthermore, although we tested 
different models with different complexity, it is certainly 
possible that other, more refined machine learning methods 
will provide even better results and should be explored in the 
future. Crowd-sourcing competitions may be a great way to 
allow such exploration of many different approaches to find 
the best-performing algorithm.36,37 It is furthermore pos-
sible that seizures may manifest very differently for some 
subset of patients, in which case increasing the amount of 
training data might not help, but different approaches (eg, 
other sources of data, higher sampling rate, personalized or 
semisupervised models) may help to develop useful methods 
also for these patients.

Results need to be interpreted in the setting of data acqui-
sition. One limitation of our study is the relative short dura-
tion of recordings, with only a few days of continuous data 
per patient. Training data benefits from long periods of data 
acquisition, where algorithms can better learn to generalize, 
and which give a more realistic account of seizure-forecast-
ing capabilities. However, the current dataset is unique in the 
sense that it contains multimodal sensor data over several 
days from a relatively large number of epilepsy patients along 
with ground-truth video-EEG, which is essential for proper 
training. The better-than-chance predictability in about one-
half of the patients in this study is therefore encouraging for 
future, longer trials using these sensors. This encouragement 
is further supported by the improvement of seizure-fore-
casting performance as a function of dataset size (Figure 4). 
Based on these observations, to improve seizure-forecasting 
performance even more, it may be useful to pool datasets 
from different institutions and laboratories together. The cre-
ation of additional datasets, similar to the one used here, will 
also afford validation of findings.

Another limitation is the absence of benchmarks to com-
pare our approach to. Although we attempted a comparison 
of our results to the first-in-man seizure-forecasting study8 
and used chance predictors as well as well-established statis-
tical frameworks, the uniqueness and novelty of the current 
dataset limits more comprehensive comparison to other ap-
proaches. Lastly, we did our best to balance patient recruit-
ment and data acquisition, but cannot rule out selection and 
information bias, and confounding by clinical data, which are 
inherent to this and similar studies. By including timing and 
seizure type analyses, we did our best to evaluate the effect of 
confounders and covariates. There is growing awareness of 
the benefits of creating data warehouse ecosystems that allow 
rigorous and continuous reevaluation and benchmarking by 
making data and algorithms available to many researchers, 
and evaluating larger patient datasets.36,37 We expect that 
these open-science efforts will increase the reproducibility 
and help benchmark and improve algorithms, such as the 
ones proposed in the current study, in the future.

We here assessed the utility of physiological sensor data 
recorded from a wearable device to estimate seizure risk in 
a clinically useful way. Our work is motivated by the poten-
tial benefits for patients and clinicians from a robust seizure 
gauge.1 Forecasting seizures would provide patients with 
timely warning to adapt daily activities and allow clinicians 
to titrate therapies and develop novel interventions that po-
tentially could prevent impending seizures.1,38 Peripheral 
sensor data that can be recorded easily and noninvasively 
with a wristband would be desirable for such a purpose, be-
cause approaches based on ECoG8 or a large number of scalp 
EEG channels15 limit broad clinical application.

Seizure forecasting is likely to bring about notable ben-
efits for many epilepsy patients and may improve seizure 
management from the perspective of clinicians. To make sei-
zure forecasting available for broad use, noninvasive, easily 
applicable techniques are crucial. We here demonstrated the 
capability of multimodal wristband sensor data from easy-to-
use, noninvasive devices in combination with deep learning 
to provide statistically significant seizure forecasting. These 
results provide a step toward patient empowerment and more 
objective epilepsy diagnostics with feasibility for broad 
application.
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