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Summary of Main Findings

Brain activity is observed using various methods of measurement that op-
erate on a large range of spatial and temporal scales. In the case of ex-
tracellular recordings, the electrode signal is commonly interpreted on two
such levels: while its high-frequency components reveal the precise timing of
locally generated action potentials, the low-frequency contributions consti-
tute a mesoscopic population signal –referred to as the local field potential
(LFP)– that is dominated by the superposition of activities of neurons in a
larger volume. Although it is commonly assumed that the oscillatory fea-
tures of the LFP result from the synchronous subthreshold activity in the
neuronal population, it is a question of ongoing debate how these oscillations
are related to the spiking discharge, and to synchrony on the level of spikes in
particular. This thesis contains five reports that describe different aspects of
how the relationship between the concerted spiking activity and the LFP is
informative of the features and the dynamical organization of the underlying
neuronal system. The focus of this thesis rests on three of these reports that
uncover the missing link between precise synchrony of action potentials and
the LFP.

In order to reliably quantify the typically weak entrainment of neurons
to the LFP a novel technique was developed that originates in the phase syn-
chronization analysis of continuous signals. In contrast to commonly used
measures based on signal averaging, such as the spike-triggered average, the
method directly analyzes the spike-LFP phase relationship on the basis of
the single spike. All the reports in this thesis demonstrate how this method-
ological tool sensitively identifies and characterizes the neuronal ensembles
that are coupled to the observed population oscillations.

The first study demonstrates learning-related response changes to odor
stimulation in the output region of the antennal lobe of the honeybee during
olfactory conditioning. We show that learning induces a restructuring of the
ensemble representation of odors (based on the rate responses of individual
neurons) that is strongest for the rewarded odor. Moreover, observed re-
sponse changes in LFP power in a given frequency band for the rewarded
odor correlate with changes in the size and composition of the neuronal sub-
population phase-locked to the same band. Therefore, the analysis in this
report reveals strong support for the hypothesis that the LFP acts as monitor
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of the learning-induced reorganization of the temporal ensemble representa-
tion of an external stimulus.

In the second study, we analyze separately the role of four identified
neuronal subtypes in the striatum of anesthetized rats in relaying oscillations
of cortical origin to the basal ganglia network. The methods based on spike-
LFP and spike-ECoG (electrocorticogram) phase coupling, augmented by the
analysis of interneuronal cross-correlations, allows us to identify the neuronal
subtype, fast spiking interneurons, that is linked to the generation of the
oscillatory LFP component in the high-frequency (gamma) range. Here, the
LFP reflects the synchronized action of a specific physiological neuron type.

The third and largest study of this thesis consists of three successive re-
ports that reveal how spike synchrony on a millisecond time-scale is related
to the synchronous mass action visible in the LFP. The experimental data is
recorded from motor cortex of monkey in a delayed pointing task. We first
show that the amplitude (or envelope) of the LFP is indicative of the propor-
tion of spikes that phase-lock to the LFP. In the following report we directly
prove the long-standing hypothesis that synchronous spikes are reflected in
the field potential by analyzing the LFP coupling separately for single spikes
and precise spike coincidences. Contrary to intuition, we show that this rela-
tion holds only for synchronous spikes that occur in time windows where the
number of observed coincidences significantly exceeds the expectation. These
excess coincidences are signatures of the coordinated discharge patterns of
specific neuronal subgroups (assemblies). A conceptual model consistently
explains the experimental data in the context of the assembly framework.
In the final study we show how the combination of measures of synchrony
on the spike and population levels reveals a macroscopic parameter that es-
timates the network-wide degree to which active cell assemblies contribute
to neuronal spike data. In summary, these three studies provide first-time
evidence that LFP oscillations are an image of the orchestrated activity of
neuronal ensembles, as predicted by one of today’s most intriguing theories
on neuronal computation.
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Chapter 1

Introduction

Even after more than a century of intense research in the neurosciences, it
is fascinating to realize that we are still struggling to understand the basic
principles by which our brains work. The stereotypical, all-or-none pulse
emitted by neurons, the action potential or spike, is commonly identified as
the most likely carrier of information in the nervous system. At least two
fundamental problems obstruct our attempts in trying to interpret the role
of individual spikes in the light of cortical processing: undersampling and
complexity. First, if the detailed knowledge of the emission times of spikes is
necessary to understand the workings of our brain, then how should we deal
with the fact that even the most sophisticated recording technologies capture
only a small proportion of spikes? Second, even if all action potentials were
known to us, we are in need of methods that deal with the complexity of the
collected data. The problem is more than a mere technicality: it requires
knowledge of the subtle signatures that a hypothesized dynamical process
would imprint on a large set of observations.

Virtually parallel to the discovery of the microscopic potentials across
membranes in the single cell, large-scale electric potentials exhibiting wave-
like properties were identified from recordings of scalp electrodes, the EEG.
These signals are easy to record and sample across a large part of the neu-
ronal population, but are unspecific in origin. From the large size of such
population signals compared to the simple transmembrane potentials, they
are believed to arise from coherence within the neuronal population. This dy-
namical interpretation gives hope that the combination of large-scale brain
signals and the detailed information on spiking level may provide insights
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on the underlying mechanisms that determine the spiking activity of the
network. However, how the population signals emerge from the activity of
individual neurons is still a matter of ongoing research. In this study, we in-
vestigate the relationship of coherence phenomena on the single cell level to
the oscillatory activity of the local field potential (LFP), a mesoscopic pop-
ulation measure operating on a much smaller spatial scale than the EEG.
In the Introduction, we first give a brief overview of current research on the
biophysical origins of the LFP and the common interpretation of its oscil-
latory features. In this context, we introduce one of the major theories on
higher brain function developed in the last decades, and state its hypothe-
sized relation to the LFP. In the second part we explain the analytic tools we
developed to evaluate the synchronization between the spiking activity and
population signals. Finally, we briefly guide the reader through the sequence
of reports that make up the main part of this thesis.

1.1 The Local Field Potential (LFP) as a Probe for
Population Activity

1.1.1 Origin and Correlates of the LFP

Neuronal data is typically recorded on various spatial and temporal scales
(Varela et al., 2001), ranging from large-scale measurements of brain ac-
tivity, such as functional magnetic resonance imaging (fMRI) or electroen-
cephalography (EEG), to observations on the single cell level in an intracel-
lular recording. On the level of extracellular recordings, the rich electrode
signal is typically evaluated on two distinct time scales. To this end, the raw
electrode signal is filtered to extract the frequency components of interest be-
fore further processing is performed. High frequencies, where a typical range
of values might be 500 Hz to 5 kHz, yield a signal from which the extracel-
lular spike wave forms emitted by neurons in a close vicinity (≈ 140µm) of
the electrode may be extracted (Buzsáki, 2004). In addition to determining
the exact spike times from the filtered signal, the magnitude of the rectified
electrode signal, sometimes referred to as multiple-unit activity (MUA), is
regarded as a measure of the average spiking intensity of neurons near the
recording site (Eckhorn et al., 1988). In contrast to these signals, the slow
components of the electrode signal, typically obtained below frequencies of
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200 Hz (sometimes higher, see Buzsáki and Draguhn, 2004), are collectively
termed the local field potential, or LFP.

The origin of the LFP is commonly attributed to the weighted average
of transmembrane currents of neurons in the vicinity of the recording elec-
trode: Currents flowing into one cell (current sink) at one location (e.g., an
influx of positive ions) will cause a counteracting outward current (source)
at another location some distance apart (Nunez and Shrinivasan, 2006). The
resulting dipole will evoke an electric field visible in the conducting extra-
cellular space. Its major contributions are assumed to originate from cur-
rents associated with excitatory and inhibitory synaptic activity (Mitzdorf,
1985; Viswanathan and Freeman, 2007; Monosov et al., 2008), though other
contributors to the subthreshold dynamics are also likely to influence LFP
dynamics. In particular, various voltage-gated membrane oscillations (Ka-
mondi et al., 1998) and the afterpolarizations following soma-dendritic spikes
(Buzsaki et al., 1988) are candidates for secondary factors that could influ-
ence LFP dynamics (for a current summary see, Goense and Logothetis,
2008). Nevertheless, the LFP is commonly considered to be a reflection of
the mean input into a specific region of cortex, as opposed to the generated
output spikes (see, e.g., Eckhorn and Obermueller, 1993; and for a direct
demonstration: Viswanathan and Freeman, 2007). Highlighting this view,
it was recently shown in the visual system that measured LFPs at a certain
location are predictable from the timing of spikes of distant neurons, given
knowledge of their respective average postsynaptic effect on the LFP at that
location (Nauhaus et al., 2009). Although it is assumed that the fast action
potential dynamics of individual neurons is not visible in the recorded LFP
(Elul, 1971; Logothetis, 2003), low-frequency components of the spike may
still enter the frequency-range of the LFP (Ray et al., 2008). Therefore,
care must be taken when comparing LFP and spike signals from the same
electrode to avoid spurious correlations between the two signals, especially
at high LFP frequencies (personal observation). In cortex, the elongated,
large shape of (excitatory) pyramidal neurons and the aligned, layered ar-
rangement of their apical dendrites make them primary candidates for LFP
generators (Logothetis and Wandell, 2004), since this geometry supports an
additive overlap of fields (open field), in contrast to less orderly configura-
tions where fields would cancel each other out (closed field).

A question under current debate is the radius of the region over which
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the LFP is integrated. In general, although the extracellular medium may
be well approximated by an Ohmic resistor, neither is its conductivity easy
to measure nor would the complex structure of the extracellular space sug-
gest it to be uniform and direction-independent (Elul, 1971; Mitzdorf, 1985).
Moreover, evidence indicates that oscillations in lower frequency bands tend
to exhibit increased volume conductance (Buzsáki and Draguhn, 2004). Nev-
ertheless, current-source-density methods (Mitzdorf, 1985; Pettersen et al.,
2006) successfully employ a far-field approximation to estimate the current
sinks and sources underlying the generation of the LFP. Fortunately, a re-
cent study suggests that the particulars of the extracellular medium are well
approximated by an isotropic, frequency-independent resistor, as deviations
from this assumption influence the LFP to a lesser degree than the mag-
nitudes of the underlying generators of the oscillation (Logothetis et al.,
2007). Data from experimental and modeling studies indicate that indeed in
a columnar architecture the low-pass LFP signal may be assumed to decay
less rapidly than the high-pass filtered MUA (Legatt et al., 1980; Somo-
gyvári et al., 2005; Gold et al., 2007; Logothetis et al., 2007; Pettersen et al.,
2008). Early estimates of the LFP radius based on estimates of the lateral
accuracy of current-source density techniques range between 1 mm and 3 mm
(Mitzdorf, 1987). Other studies (Murthy and Fetz, 1996a; Destexhe et al.,
1999; Juergens et al., 1999) that analyze the correlation between population
activity at different recording sites observe that these correlations decrease
over distances up to around 3 − 6 mm depending on the underlying system
and behavioral state. Therefore, these studies cannot disentangle what con-
tribution to this estimate is due to strong correlations in the input patterns
at both recorded patches, in contrast to volume conductance of the LFP. In
fact, in areas such motor cortex, LFPs display long-range correlations and
exhibit a wave-like propagation (Rubino et al., 2006) that is unlikely to be
due to conductance effects. Under some conditions, LFPs may even become
phase-coupled across brain areas (Courtemanche and Lamarre, 2005). A re-
cent modeling study (Lindén et al., 2009) estimates that the LFP radius is
on the order of 500µm in the absence of interneuronal correlations, and finds
that nearby correlated inputs may drastically increase the power content of
the LFP. An inventive study by Katzner et al. (2009) yields an experimen-
tal estimate of the LFP radius as a Gaussian distribution with a half-width
corresponding to an integration area of ≈ 250µm, by combining information
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from visual orientation maps and a linear superposition model of LFPs.
While LFPs are typically considered as an epiphenomenon of the synaptic

network activity, it is still an open question in how far the field potential os-
cillations in turn influence the spike timing of individual neurons by ephaptic
effects. A recent study by Radman et al. (2007) demonstrates theoretically
and experimentally that indeed spike timing can be affected by oscillatory
fields of even small amplitudes, comparable to the field strength of LFPs.
Other studies in hippocampus confirm a possible role of field potentials in
enhancing spiking precision (Anastassiou et al., 2008). A different modeling
study (Holt and Koch, 1999) suggests that ephaptic effects of extracellular
potentials due to spiking activity on pyramidal cells are small, and should
have an effect only on neurons close to threshold. As current evidence on
the relevance of ephaptic effects is inconclusive for the neuronal systems
investigated in this thesis, we discuss this topic further in Sec. 4.2.

1.1.2 Interpretation of Oscillatory LFP

LFP signals typically exhibit an oscillatory structure, and can often be de-
composed into a number of oscillatory modes. These modes are historically
classified into different bands (Buzsáki and Draguhn, 2004) based on their
approximate frequency composition and behavioral correlates. In this study
we focus on two of the fastest bands, namely the β- (approx. 15−45 Hz) and
γ-bands (approx. 30 − 100 Hz), which are sometimes collectively described
(Donoghue et al., 1998). For example definitions of both bands in a single
study see, e.g., Kopell et al. (2000). Due to its origin as an average over many
neurons, the LFP should reflect a highly complex signal. Indeed, features
of the LFP oscillation are informative not only of external stimuli or behav-
ioral aspects (Laurent, 2002; Mehring et al., 2003; O’Leary and Hatsopoulos,
2006; Mazzoni et al., 2008), but also correlate with internal processes, such as
movement planning (Murthy and Fetz, 1996a; Donoghue et al., 1998; Roux
et al., 2006) or attentional modulation (Fries et al., 2001; Lakatos et al.,
2008; Rotermund et al., 2009).

Functionally, it was hypothesized early on that the oscillatory nature of
the LFP is likely to result from non-cancelling potential contributions of a
subpopulation of synchronized neurons, which is coarsely estimated to be as
low as 10% of the whole network (Elul, 1971). Evidence from sensorimotor
areas shows that the intrinsic rhythmicity of neurons is not necessary for
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the generation of oscillations (Witham and Baker, 2007), corroborating the
view that oscillations emerge as a network phenomenon. While in general
the LFP is only weakly - if at all - predictive of spike times (Donoghue et
al., 1998; Rasch et al., 2008), it has been established that single spikes can
become transiently entrained to the LFP in a rhythmic or non-oscillatory
fashion (Eckhorn and Obermueller, 1993; Murthy and Fetz, 1996a). In the
case of γ oscillations, a growing body of evidence supports the view that
they involve the entrainment of excitatory cells to an underlying rhythm
created by a synchronized inhibitory cell network (Fries et al., 2007; Berens
et al., 2008). Indeed, simple models of an interacting network of excitatory
and inhibitory neurons are able to generate rhythms compatible with the
γ-range (Mazzoni et al., 2008). The proposal of Fries et al. (2007) that the
oscillations act as a mechanism to transform stimulus intensity to a phase-of-
firing code is currently under debate (Ray et al., 2008). Another hypothesis
(Womelsdorf et al., 2007) states that rhythms act as a gate to channel the
information carried by excitatory neurons (see also Sec. 1.1.3). The degree
of phase locking between neurons and the LFP depends in general on the
strength of LFP oscillations (see Murthy and Fetz, 1996b and Sec. 3.1), and
the phase relationships are behaviorally and functionally informative (Harris
et al., 2002; Friedrich et al., 2004; Montemurro et al., 2008). The population
rate of groups of neurons tends to show correlations with the LFP (Mukamel
et al., 2005) most likely as a result of the underlying network dynamics
(Viswanathan and Freeman, 2007). Furthermore, in LFP spindles (brief
epochs of strong oscillations, about 5 − 10 cycles) spiking activity exhibits
oscillatory features (Murthy and Fetz, 1996a). Combining the latter two
observations, Nir et al. (2007) show that the firing rate profiles correlate
with γ-band LFP power only if the level of interneuronal rate correlation
(correlations on slow time scales) is high. On a finer temporal scale, distinct
spike patterns across neurons and their phase relationship to LFP oscillations
encode a substantial amount of surplus of information about the stimulus
compared to information contained in the firing rate alone (Kayser et al.,
2009). A recent review summarizing the main interpretations of oscillatory
LFP is given by Singer et al. (2009).

Despite these findings, it remains unclear what mechanisms are responsi-
ble for the typically weak correlations between the two biophysically distin-
guished (Sec. 1.1.1) levels of observation, single spikes and the LFP, in the
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absence of global synchronized network state. Contrary to intuition, corre-
lations in membrane potentials do not in general predict spike synchrony, in
particular in the awake, active state of cortical networks. In recordings in
the anesthetized animal (Lampl et al., 1999) that exhibit strong correlations
between the membrane potentials of neurons, the action potentials evoked
by an artificial excitatory drive become synchronized on a fine time scale.
However, in the absence of strong current injections the synchronizing effect
of subthreshold oscillations diminishes. A recent study by Poulet and Pe-
tersen (2008) demonstrates that although LFPs are highly correlated with
the synchronized membrane potentials of nearby neurons, synchronous ac-
tion potentials occur largely independently of the field potential. Supporting
this view, theoretical studies agree that the correlation transfer from synap-
tic input to spikes is weak within neurons (Tetzlaff et al., 2008). Therefore,
a key question is to identify how synchronized spiking activity on a fine
temporal scale (millisecond scale) is related to the LFP.

1.1.3 LFPs in the Framework of the Assembly Hypothesis of
Neuronal Coding

An intriguing hypothesis of information coding in the brain originates from
a proposal by Hebb (1949) that has since then been steadily extended. Ac-
cording to this theory, the identities of groups of synaptically coupled and
synchronously activated neurons, termed assemblies, are the primary carri-
ers of information. In contrast to models of rate coding (Hubel and Wiesel,
1959; Georgopoulos et al., 1986), the precise timing of spikes is attributed a
decisive role. Theoretically, the concept offers elegant solutions for a num-
ber of conceptual problems associated with rate-based approaches, such as
feature-binding of related and complementary percepts (von der Malsburg
and Schneider, 1986; Singer, 1999; Yu et al., 2008). The concept of the syn-
fire chain (Abeles, 1991) has provided the framework to study the properties
of stable propagation of information via the successive activation of groups
of synchronized neurons (Diesmann et al., 1999; see, e.g., Abeles et al., 2004;
Hayon et al., 2005 for recent studies that probe computational capabilities
of synfire models). Experimentally, despite recent technological advances
on the experimental (Nicolelis et al., 1997; Csicsvari et al., 2003; Euston
et al., 2007; Fujisawa et al., 2008) and technical levels (Brown et al., 2004;
Gerstein, 2004; Schrader et al., 2008), the undersampling of the neuronal
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population makes it difficult to detect assemblies from the spiking activity.
Nevertheless, a hallmark signature of the assembly is the behavior-related,
repeated coactivation of two or more neurons belonging to the same assem-
bly (Gerstein et al., 1989). The Unitary Events method (for a summary,
see Grün, 2009) detects such imprints of assembly activations by comparing
the number of coincidences between two neurons to the prediction based on
the firing rates. A number of studies have found evidence for precise spike
synchrony in a behavioral context (Vaadia et al., 1995; Riehle et al., 1997;
Kohn and Smith, 2005; Fujisawa et al., 2008; Maldonado et al., 2008), some
interpreting observed spatio-temporal patterns of activation as indications of
synfire propagation (e.g., Ikegaya et al., 2004), while some studies questioned
the functional relevance of observed correlations (Baker and Lemon, 2000).

Early on, it was suggested that the correlations between spiking signals
and the fast β- or γ-band LFP rhythms exhibited by roughly one third to one
half of the recorded population may reflect those neurons that participate
in the assembly dynamics (Eckhorn et al., 1988; Murthy and Fetz, 1996b;
Donoghue et al., 1998). In this interpretation, it is not necessarily a single
population of neurons that is related to the LFP rhythm, but neurons may
engage transiently in different active assemblies. This idea of ’multiplexing’
assemblies on a grid given by the oscillation is illustrated in Singer (1999). A
recent study has given some preliminary evidence for such a picture: Wom-
elsdorf et al. (2007) showed that interactions between multi-unit activities,
defined by the magnitude of their power correlation, are most prominent
in those trials where their oscillatory activity becomes locked to a specific
phase of the LFP. It is commonly assumed that pyramidal neurons, whose
synaptic inputs mainly contribute to the LFP (cf., Sec. 1.1.1), constitute the
assemblies. Therefore, one reasonable interpretation to reconcile this picture
with the findings of the previous section is that fast oscillations, generated
by a recurrent inhibitory network (cf., Sec. 1.1.2), generate a time grid by
which the assembly activations are structured (Buzsáki and Draguhn, 2004).
Notably, the hypothesis of assemblies being reflected in the LFP rhythms
is in good agreement with recent findings of Poulet and Petersen (2008):
strong and specific imprints of synaptic activity are observed in membrane
potentials (which themselves correlate strongly with the LFP) preceeding
synchronized spikes, such as required for the propagation of synchronous ac-
tivity in the assembly framework. However, there exists no direct proof for
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any hypothesized relation between synchrony on the spike-level and the LFP
in the active cortical network.

1.2 Phase Locking between Spiking Activity and
LFP

1.2.1 Introducing the Phase Analysis

Central to the analysis performed in each of the studies presented in this
thesis is the evaluation of occurrences of spikes with respect to the oscilla-
tion cycle, in other words their locking. In this section we present a short
overview of the analysis method used throughout the remainder of this the-
sis. A classical, heuristic approach to relate spikes to the LFP is the spike-
triggered average (STA) of the LFP, which is obtained by calculating the
cross-correlation function c(τ) = 〈S(t) L(t− τ)〉t of the binned spike train
S(t) and the LFP signal L(t). The result corresponds to the average LFP
centered at the time points of spike occurrences. Intrinsic rhythms in the
signals and correlations between the spike train and the LFP induce an oscil-
latory component in the resulting STA. However, phase lag, amplitude, and
frequency composition of the LFP all influence the resulting shape of the
STA. Thus, the STA (or its related Fourier transform, termed spike-field co-
herence; see Rosenberg et al., 1989; Fries et al., 2002) cannot quantitatively
distinguish to what extent its features result from contributions of spikes
that are well entrained to the rhythm of the LFP or those that occur at a
higher amplitude (i.e., envelope) of the oscillation.

A more direct way to assess the degree of synchrony between two signals
is to analyze the phase synchronization between them directly (Rosenblum
et al., 1996). In systems of interacting oscillators, this measure is informa-
tive of the true coupling of individual oscillators, as opposed to their mere
entrainment to a common rhythm (Pikovski et al., 2001). The underlying
idea is to extract the instantaneous phase φi(t) and φj(t) from two con-
tinuous signals as the relevant observables. Quyen et al. (2001) shows that
comparable results are obtained by two commonly used methods to compute
these phases, based on the complex-valued analytic signal (often inaccurately
termed Hilbert transform) and the convolution of the signal by a complex
wavelet function, respectively. In contrast to the STA, both methods are
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Figure 1.1: Generation of surrogate data for the phase synchronization anal-
ysis. a. Original data data (black) compared to one surrogate data trace (red, right).
The time-dependent rate profile of the original data is approximated by the local shuffling
procedure (top graphs), the interspike interval distributions (bottom graphs) are exactly
retained. b. Distribution of R (histogram) from one thousand surrogates constructed as
in panel a. Due to the clear structure in the first-order interval statistics, the cumulative
distribution of the surrogate data (dark green curve) differs from the Poisson assumption
(i.e., Rayleigh criterion) for R (light green curve). All data and analysis parameters taken
from the study presented in Sec. 2.2.

independent of the instantaneous amplitudes (envelopes) of the underlying
signals. In fact, the time-dependent amplitude may be conveniently ob-
tained as a completely decoupled measurement in a similar fashion. As time
series, such as the LFP, typically contain a superposition of several frequency
components, it becomes necessary to pre-filter the signal with a band pass
around the frequency range of interest in order to interpret the phase in a
meaningful manner (Boashash, 1992). As a further consequence, transient
non-oscillatory periods where the instantaneous phase is undefined should
be excluded from the analysis. In a subsequent step, the constancy of the
absolute phase difference |φi(t)− φj(t)| is evaluated over the length of the
time series (Quiroga et al., 2002) as a measure of the coupling between the
two signals. Phase synchronization analysis has become a standard tool in
the analysis of continuous neuronal time series (e.g., Lachaux et al., 1999;
Rodriguez et al., 1999; for reviews, see Varela et al., 2001; Quyen and Bragin,
2007).

In contrast to the original definition of phase synchronization, spike data
is only characterized by single points in time. Besides the possibility of con-
verting the spike data to a time-dependent continuous rate function before
performing the analysis described above (Hurtado et al., 2004), one alter-
native is to analyze the phase of a continuous signal at the points in time
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indicated by the discrete process (Schäfer et al., 1999). This approach has
been successfully used in a number of areas where a clear phase relation-
ship between spiking activity and the continuous signal is observed, most
prominently in studies of phase-precession in hippocampus (e.g., Harris et
al., 2002) or auditory processing (e.g., Liu et al., 2006). In the work con-
tained in this thesis we extended the use of phase synchronization analysis to
the irregular spiking activity typically encountered in cortical spike data, an
approach that is becoming increasingly popular (e.g., Kayser et al., 2009).

To this end, we first compute the instantaneous phases φ(ti) of the LFP
at the time of the spike occurrences ti, i = 1, . . . , N . The modulation of
the resulting phase distribution, also termed locking strength or phase lock-
ing value (Lachaux et al., 1999), can be determined by the magnitude R
of the vector sum R exp(2πiµ0) =

∑N
i=1 exp(2πiφ(ti)). For better inter-

pretation, this value can be transformed to the circular standard deviation
σ =

√−2 lnR, which corresponds to the familiar standard deviation σ of a
Gaussian distribution wrapped around the unit circle in the limit of small
R (Mardia and Jupp, 2000). The value of µ0 reveals the mean phase of
the circular distribution. To test whether a given phase distribution indi-
cates spike-LFP locking that exceeds chance level, we test R against the null
hypothesis of a uniform distribution (Rayleigh test). This test assumes a
stationary oscillation and a Poisson spiking statistics.

Clearly, a regular spiking process would intrinsically show locking to a
well defined oscillation of comparable frequency. Therefore, the Rayleigh test
is not conclusive of whether the generators of the two signals are indeed cou-
pled, i.e., phase-locked better than expected assuming their independence.
To account for spiking statistics that is more regular than Poisson, as found
in many neuronal systems (Shinomoto et al., 2009), we resort to a surrogate
technique. Random spike trains are generated by shuffling the original order
of interspike intervals, thus retaining to first order the regularity inherent
in the spike train (see Fig. 1.1 for an illustration). From the distribution of
R obtained from these surrogates we determine whether the precise timing
of measured spikes leads to a stronger phase-locking than expected. Note
that both tests evaluate the strength of entrainment only, independent of the
preferred phase µ0. A concise treatment of circular statistics, further testing
methods, and the use of boot-strap techniques for circular data, is given by
Mardia and Jupp (2000) and Stark and Abeles (2005).
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Figure 1.2: Reliability in detecting locked spikes embedded in an otherwise
unlocked background process. a. Example spike train (ticks) and LFP (simulated
as a sinusoid) of one trial generated for 3 different choices of the rate fp of the unlocked
Poisson spike train in the central locking region (t = 500−1000 ms). The rate of the locked
spike train (red) is kept fixed at f = 20 Hz (one spike per period). The total spike train
outside the center region has a fixed rate of f+fp. The percentage r is defined by the ratio
fp/f . b. Results of the phase locking analysis for the three choices of the parameter r
(calculated using n = 20 trials per parameter; each trial is similar to the respective trial in
panel a). Analysis is carried out across trials and in sliding windows of length T = 200 ms
(4 periods of the LFP oscillation). The black line indicates the raw value of the vector
strength R. The red curve shows the mean phase µ0; the circular standard deviation σ is
visualized by the red shaded area. The green curve indicates the p-value of the Rayleigh
test, plotted for the last percentile (right axis). For p > 0.99, the window is significantly
non-uniform at the 1% level.

1.2.2 Sensitivity and Reliability of the Phase Analysis

In the following, we illustrate the sensitivity and reliability of the measures
introduced in Sec. 1.2.1 in detecting subtle, transient changes in the locking
characteristics of neurons. This section highlights findings from a larger body
of work presented in Denker et al. (2005). As a basis of each analysis that
follows, for given parameters we construct n = 20 simulated trials of spike
trains and LFPs (examples of a single trial for different parameters are shown
in Fig. 1.2a and Fig. 1.3a). Each trial consists of a phase-locked region in
the middle part (t = 500−1000 ms), where one spike per LFP cycle (colored
red) is randomly placed within a locking region of width 0 < ∆φ<2π. These
locked spikes are framed by Poisson spike trains (t = 0 − 500 ms and t =
1000 − 1500 ms) such that the rate of the entire process is constant. The
LFP is modeled as a pure sine function with a fixed frequency. Since we
choose to model the unlocked spikes by a Poisson process, we are able to use
the simple Rayleigh test to detect the presence of locked spikes, instead of
the more involved surrogate technique. We first test whether the procedure
is able to detect a central region of perfect locking (i.e., ∆φ = 0) in the
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Figure 1.3: Reliability in detecting weakly locked spikes. a. Compared to Fig. 1.2,
the detectability of phase-locked spikes is probed for three different choices the phase jitter
∆φ and in the absence of non-locked spikes (fp = 0). Locked spikes (red) are placed
randomly in an interval [π −∆φ/2;π + ∆φ/2] (indicated in panel b). The total rate of
the spike process is fixed to f = 20 Hz. b. Results of locking analysis for the three
choices of the parameter ∆φ. Curves correspond to their equivalents in Fig. 1.2: value of
vector strength R (black), circular mean µ0 (red; shading indicates the circular standard
deviation σ) and p-value of the Rayleigh test (green). The dark shading indicates the
original locking interval defined by ∆φ. As before, analysis is carried out across trials and
in sliding windows of length T = 200 ms.

presence of additional non-locked spikes characterized by the rate fp of their
generating Poisson process (Fig. 1.2). Second, we test whether locking is
reliably detected in the absence of unlocked spikes (i.e., fp = 0), but with a
non-zero phase jitter ∆φ of the locked spikes (Fig. 1.3).

We observe that for variation of the respective parameters fp and ∆φ,
the method is reliably able to detect the central region of locked spikes (indi-
cated by the green curves in Fig. 1.2b and Fig. 1.3b). Furthermore, probing
the sensitivity reveals that this holds even for high values of these param-
eters. Denker et al. (2005) show that the estimation remains surprisingly
good given the simultaneous variation of both parameters. Therefore, given
reasonable model parameters that one might encounter in electrophysiolog-
ical recordings, the phase synchronization method sensitively and reliably
detects transient periods where spike trains become significantly coupled to
the underlying oscillation.

1.3 Overview of the Thesis

Equipped with a review of relevant state-of-the-art hypotheses on the gen-
eration and interpretation of the LFP signal (Sec. 1.1) and the detailed
explanation of the common analysis method used to analyze spike-LFP re-
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Figure 1.4: Schematic representation of the central idea linking the studies presented in
this thesis. Neuronal activity is recorded on two spatial scales: spiking activity in parallel
recordings of neurons (local, left) and LFPs integrating over the potentials arising from
transmembrane currents in a large area surrounding the electrode (mesoscopic, right). In
the absence of a global synchronized state governing the spiking activity, only a subset of
synchronized neurons is expected to couple to (or generate) the observed LFP oscillations.
The composition of this subset may change over time. Shown schematically are spikes of
two groups of neurons within the network (red and green), which become transiently
(shaded areas) synchronized (colored spike pairs represented by ticks). The grouping may
be induced by different mechanisms, such as: neurons are part of an ensemble coding for a
specific behavioral correlate or stimulus (Sec. 2.1), neurons belong to a neuronal subtype
specifically involved in the propagation of the oscillation (Sec. 2.2), or neurons are part
of an internal network process that involves their entrainment to the LFP (Chap. 3).
Background staining modified from Ramon y Cahal, 1901.

lationships (Sec. 1.2), we now turn to introduce the individual studies that
are combined in this thesis. The central theme linking all the reports is the
search for neuronal populations that are reflected in the oscillations exhibited
by the LFP (compare sketch in Fig. 1.4). The different studies are grouped
into two chapters: Chap. 2 highlights information gained from the analy-
sis of the coupling of single spikes to the population signal, while Chap. 3
investigates how coincident spiking activity is related to the LFP.

In Chap. 2, we investigate the relationship of single spikes to the LFP
in order to identify neuronal subpopulations reflected in the LFP based on
behavioral correlates or the physiological characterization of neurons. The
study in Sec. 2.1 analyzes the plastic changes induced by olfactory condi-
tioning in the output region of the antennal lobe of the honeybee. The cor-
relations between learning-induced changes in the LFP power spectrum and
changes in the synchronization of neurons to the LFP leads to the conclusion
that the LFP likely reflects the temporal representation of the odor stimulus
by means of a synchronized ensemble. The second study presented in Sec. 2.2
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shows that in recordings from the basal ganglia of the anesthetized rat, the
strong interneuronal correlations of a specific subtype of striatal neurons (the
fast-spiking interneurons) are related to a prominent synchronization of this
neuron type to fast population oscillations. Thus, in this case we identify a
specific neuron type as the group of neurons coupled to the LFP oscillations.

In Chap. 3 we present the main finding of this thesis in a series of three
reports that investigate the link between synchronous activity in spike data
to oscillations in the LFP. The experimental data used throughout this chap-
ter is recorded from the primary motor cortex of monkeys in a time-delay
pointing task. In Sec. 3.1 we present an analysis that identifies spikes that
occur during strong oscillations of the LFP as those that are most strongly
phase-locked to the LFP cycle. In Sec. 3.2 we provide the central experi-
mental study that explains how neuronal cell assemblies are reflected in the
oscillatory structure of the LFP (cf., Sec. 1.1.3). In a theoretical companion
study given in Sec. 3.3, we not only provide increased detail on how the
experimental findings are to be reconciled with the theoretical framework of
assembly coding, but show how the combination of measurements of syn-
chrony on the spike and population levels provide access to a network-wide
parameter that describes the extent to which assemblies are represented in
the spiking activity of the brain.

Finally, in Chap. 4 we provide a summary that recapitulates, links, and
interprets the aspects revealed by the individual reports. Furthermore, we
discuss issues that are touched by all presented studies, and provide an out-
look to questions that follow from the results presented in Chap. 3.
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The LFP as a Monitor of
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Abstract

Extracellular spiking activity and local field potentials (LFP) were
recorded via tetrodes at the output of the antennal lobe in the honeybee
brain during olfactory conditioning. Odors induce reliable rate responses
which consist of either odor-unspecific phasic-tonic responses, or complex
responses with odor-specific temporal profiles. In addition, odors evoke
consistent responses of LFP oscillations in the 50 Hz band during the pha-
sic ON response to odor stimulation, and variable LFP responses at other
frequency bands during the sustained response. A principle component
analysis of the ensemble activity during differential conditioning consis-
tently indicates the largest changes in response to the learned odor (CS+).
Relative LFP power increases for CS+ in the 15-40 Hz frequency band
during the sustained response, and decreases for frequencies above 45 Hz.
To quantify the relationship between these population responses given by
the ensemble spiking activity and LFP, we show that for CS+ the learning-
related changes in the degree of the phase-locked spiking activity correlate
with the power changes in the corresponding frequency bands. Our results
indicate associative plasticity in the antennal lobe of the bee leading to
both enhancement and decrease of neuronal response rates. LFP power
changes and the related changes in the correlation between spike and LFP
serve as further evidence for a learning-induced restructuring of temporal
ensemble representations. The observed changes appear to decorrelate

1
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the responses to the learned and non-learned odors and may provide a
learning-related neural signature to the learned odor.

Introduction

Learning leads to changes of neural connectivity, giving the network the power
to store previous experience and to retrieve it later for behavioral control (e.g.
hippocampus: Sutherland & McNaughton, 2000; prefrontal cortex: Goldman-
Rakic, 1995; orbito-frontal cortex: Rolls et al., 1996; reward system in the
ventral tegmentum: Schultz, 1998). The processes involved in learning-related
adaptive changes have been intensively studied in the olfactory system of both
vertebrates (e.g. Wilson et al., 1987; Keverne, 1995; Ravel et al., 2003) and
invertebrates - in particular, of insects (Faber et al., 1999; Daly et al., 2004;
Yu et al., 2004). Odors are represented at the level of the first stage of neural
integration (the antennal lobe, AL, in insects) by spatially distributed activity
patterns (Joerges et al., 1997; Wang et al., 2003; Hallem & Carlson, 2006) and
the timing of spike activity both at the level of the single neuron and in neu-
ronal populations (for a review, see Laurent, 2002). Most second-order neurons
(projection neurons, PNs, in the insect AL) connecting the first-order neuropil
with downstream integration areas receive input from a single glomerulus. The
across-fiber activity patterns appear to reflect the spatial glomerular coding
together with the result of lateral neural interactions via local inhibitory and
excitatory interneurons. These local inhibitory networks shape the chemical
response profiles of these PNs (Sachse & Galizia, 2002; Krofczik et al., 2009)
and induce temporal structures in the odor responses that code odors also in
the time domain (Laurent et al., 2001). Stopfer et al. (1997) observed that
pharmacological interference with the GABA inhibitory circuit in the honeybee
antennal lobe changed the oscillatory field potential and reduced learned odor
discrimination.

Learning was also found to alter the spatial coding of odors in the antennal
lobe of Drosophila (Yu et al., 2004) and the honeybee (Faber et al., 1999; San-
doz et al., 2003), and thus one would expect that the activity patterns across
different fibers in the PNs might be changed by learning. In rats, odor learning
leads to a shift of the dominant frequency from the gamma band (60-90 Hz) to
the beta band (15-40 Hz) in local field potentials of the olfactory bulb (Ravel et
al., 2003 ; Martin et al., 2006), indicating changes in the odor-induced timing
of spike activity at the population level. In the terrestrial mollusc Limax olfac-
tory conditioning also changes the oscillatory activity in the primary olfactory
neuropil (Gelperin, 1990; Tank et al., 1994).

Here we ask whether activity patterns of PNs in the honeybee brain change
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in the course of associative learning. We monitor neural activity by recordings
of multi-unit spiking activities composed of single to few units, as well as by
simultaneous recordings of local field potentials (LFP). We find both enhance-
ment and decrease of spike rates to the odors learned, which result in a specific
restructuring of the ensemble network response to conditioned odors. The power
of LFP induced by the odor stimuli also changes in a characteristic manner in-
dicating that the correlation between spike and LFP may serve as a signature
for a learning-induced restructuring of the temporal ensemble code.

Materials and Methods

Electrophysiology

Data were obtained from 21 foraging honeybees (Apis mellifera carnica) caught
at the hive entrance, immobilized by cooling, and mounted in a metal tube.
Bees were fed with sucrose solution and kept overnight in the dark at 20◦ C.
The next day the head was fixed with dental wax and dissected by removing
a piece of cuticle between the antennae, the ocelli and the compound eyes. A
hole for the reference electrode was cut into one compound eye. Small droplets
of bee saline (in mmol/l: 130 NaCl, 6 KCl, 2 MgCl2, 10 HEPES, 17 glucose,
6 fructose, 160 sucrose, pH 6.7) were applied to prevent the brain from drying
out (Mauelshagen, 1993).

Two shanks of tetrodes of a silicon probe (supplied by the Center for Neu-
ral Communication Technology, University of Michigan, Daryl R. Kipke) were
inserted at the inner border of the AL into a depth of 60 – 90 µm, thus close
to the median and lateral antenno-calycal tract (m and lACT) exiting the AL
here. The distance between the shanks was 60 µm, and they were inserted such
that the two ACTs were expected to run between the two shafts. The input
resistances of the electrodes varied between 2 and 4 MΩ. Signals from tetrodes
were amplified by two eight-channel amplifiers (Lynx-8, Neuralynx, Tucson,
AZ). An A/D converter (DT3010 Data Translation A/D board, Data Transla-
tion Inc., Marlboro, MA) digitalized the extracellular signals with a sampling
rate of 32 kHz. Gain and filter settings were adjusted via software (Cheetah
Data Acquisition Software, Neuralynx, Tucson, AZ). All channels were filtered
between 0.3 and 6 kHz for recording the spike signals. Two probe channels were
additionally filtered between 10 and 125 Hz for recording the local field potential
(LFP). Line hum was removed from the LFP signal with a Hum-Bug filter (50
Hz, Quest Scientific, Vancouver, BC, Canada).

A thin silver wire was used as an electromyographic electrode for recording
the electrical activity of the M17 muscle. Activity of the M17 indicates the
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extension of the proboscis as a monitor for the unconditioned and conditioned
response (a threshold of 5 M17 muscle action potentials was applied to detect
a response).

Differential conditioning

In differential conditioning animals learn to discriminate between a rewarded
(CS+) and an unrewarded (CS-) stimulus (Bitterman et al., 1983). The se-
quence of trials is shown in Fig. 1a. In a pre-test phase, three different odors
were presented within three trials each with duration of 1 s and an inter-stimulus
interval of 60 s. Odor A then became the CS+ in the next phase, odor B became
the CS-. Odor C, the control odor (Ctrl), was not presented during differential
conditioning, and acted as a test for generalization in the third phase, the post-
test. In the differential conditioning phase the CS+ was paired with sucrose
solution (2 M), which was applied with a toothpick to both antennae and then
to the proboscis. The CS+ and CS- conditioning trials followed each other in
intervals of 1 minute (massed conditioning). Five minutes after the end of the
differential conditioning trials, the post-test phase followed, in which all three
odors were presented in the same way as in the pre-test (extinction trials).

An olfactometer was used for odor stimulation as described in Galizia et
al. (1997). A custom-made software program (Visual Basic) controlled the
stimulation conditions. Three different odors out of ten (1-octanol, 1-nonanol,
1-heptanol, 2-hexanone, 2-heptanone, hexanal, isoamylacetat, methylsalycilate,
cineol, and spearmint) were used for an individual animal. Across different
animals the odors were balanced with respect to their function as CS+, CS-
and Ctrl. The odor source consisted in five microliters of pure substance on
a filter paper inserted into each container of the olfactometer. These stimulus
conditions were found to give the best conditioning results (Pelz et al., 1997).
Since no difference was found between the 10 odors with respect to the learning
related changes, the responses to the different odors will be pooled and analyzed
according to their function during conditioning (CS+, CS-, Ctrl).

Spike extraction and LFP selection

For spike detection of the 8 recording sites those were selected which gave the
best signal to noise ratio, and which did not record from the same unit(s). Two
forms of spike signals were observed. In the first case the signal-to-noise ratio
was high, and the spikes were of the same waveform and amplitude (Fig. 1b).
This type of spike signal was observed in 18% of all recorded data. In the
other 82%, the signal-to-noise ratio was lower and spikes occurred with different
amplitudes (Fig. 1c). In such cases it was not possible to separate spike forms
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Figure 1: Design of the differential conditioning experiment and spike detection.
(a) The odors A, B, and C functioning as CS+, CS-, and Ctrl were selected from 10 different
odors. The experiment is composed of three phases: pre-test, differential conditioning, and
post-test. Boxes indicate the presentation of odors, attached numbers illustrate the relative
duration of application in seconds. The box labeled ’US’ marks the time of the sucrose reward.
Odors of each phase were applied at intervals of one minute, and each set of three odors was
repeated 3 times (5 times for the differential conditioning phase). The interval between the
three phases was 5 minutes. (b) Example of a single-unit recording during odor stimulation.
The horizontal line at -191.50 µV marks the chosen spike threshold, and extracted spikes
are marked as ticks (top line). (c) Same as (b), but for a different recording with a lower
signal-to-noise ratio. Here, the choice of the threshold at -126.35 µV yielded a spike train
from presumably two contributing neurons.
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unambiguously due to the noise of our recordings, and a threshold level was
chosen that may have included the spikes of more than one form. Judging
by eye we consider that only in very rare cases three forms of spikes might
have pooled together. We shall refer to “unit” for those spikes pooled together
throughout the text recognizing that such “units” may well receive spikes from
more than one neuron, possibly two (and in rare cases even three) very closely
attached neurons. We included into our analysis only such recordings which were
stable with respect to the spike forms over the whole time of the experiment
(>1 h). We also compared the stability of the recordings between clear single
neuron recordings and other recordings, and found no difference in stability of
the recordings. On average, we simultaneously recorded four units from each
animal, and the total number of recorded units was 99.

Both spike signals and LFP signals were recorded during odor presentation
as well as for an interval of one second before and one second after each odor
presentation. LFP time courses obtained from the two recording channels were
typically highly correlated, and therefore we performed all analysis involving
LFP on the channel with the highest total power during spontaneous activity
of the pre-test phase averaged across all three presented odors. The data were
visualized in Spike2 (Cambridge Electronic Design Ltd., Cambridge, UK). Fur-
ther data analysis was performed using the MATLAB software package (The
MathWorks, Inc., Natick, MA, USA).

Response properties

During the pre-test phase most of the units (87 out of 99) showed a character-
istic rate response to repeated odor stimuli to at least one of the three odors
presented. Here, an excitatory response was defined as a rate increase exceeding
two standard deviations above the spontaneous level in at least 2 of the 3 tri-
als; analogously an inhibitory response corresponded to a rate decrease falling
below one standard deviation from the spontaneous mean. Across all animals,
51% of units responded to all three odors, whereas 20% responded selectively to
only two and 17% to only one of the presented odors. The majority of detected
responses to odors (60%) responded with phasic ON-excitation, whereas only
10% responded with phasic inhibition, and 30% did not show an ON response to
any odor. Here and in the following, ON is defined as the 500 ms time window
starting at odor stimulation onset. The sustained responses during the remain-
ing 500 ms of the odor presentation were more variable (31% excitatory, 16%
inhibitory, 53% no response), and complex time courses of excitation and inhibi-
tion were seen frequently. Most units (36%) gave excitatory ON bursts (around
100 ms after stimulus onset) often in combination with short non-responsive
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to inhibitory sustained responses or OFF-responses (500 ms time window fol-
lowing the end of the odor presentation). Individual units exhibited diverse
response patterns: Though typical ON responses were excitatory, a small per-
centage of units (5%) showed inhibitory responses to one or two of the odors,
and excitation to the remaining. The average sustained response rates for the
different odors were 1-heptanol: 47 Hz, 1-octanol: 62 Hz, 1-nonanol: 73 Hz,
2-hexanone: 42 Hz, 2-heptanone: 48 Hz, hexanal: 47 Hz, isoamylacetat: 70 Hz,
spearmint: 55 Hz, cineol: 50 Hz, and methylsalicilate: 68 Hz. The average
latencies (time between stimulus onset and begin of excitatory response) var-
ied between 98.2±78.0 ms (isoamylacetat) and 163.8±54.2 ms (cineol). All of
these response patterns were required to be stable during the pre-test phase and
showed no stimulus repetition effect.

Spectral analysis

Power spectra were computed using a 256-point Fourier transform tapered by a
Hanning-window to reduce spectral leakage. Time-resolved power spectra were
calculated in sliding windows of 300 ms in steps of 30 ms. Baseline power was
evaluated during 700 ms before odor presentation.

Phase analysis

To investigate a possible relationship between spike rates and LFP, we analyzed
the phase relation between the LFP oscillations and individual spikes using
methods originating in phase synchronization analysis (Denker et al. 2007;
Harris et al. 2002; Hurtado et al. 2004; Sharott et al., 2009; Varela et al. 2001).
In a first step, the LFP was filtered to a specified frequency band (compare also
Fig. 2b). The cutoff frequencies [f/1.1; f/0.9] of the filter (8th order Butter-
worth) were chosen such that they contained frequencies corresponding to +/-10
percent of the period T of the center frequency f = T−1. The determination of
the oscillation phase φ(t) of the filtered LFP signal was based on the analytic
signal obtained by a Hilbert transformation x̃ (t) = 1

π P.V.
∫ x(t)

t−τ dτ of the
original signal x(t), where P.V. denotes that the integral is to be taken as the
Cauchy principal value (Le Van Quyen et al., 2001; Rosenblum et al., 1996). In
a next step, we analyzed the distribution of instantaneous phases φ(ti) of the
LFP obtained at spike time occurrences. In particular, we obtained the mean

phase φ of the circular average R eiφ = N−1
N∑
i=1

eiφ(ti), where φ(ti) indicates the

phase of the field potential at time ti of spike i.
A natural way to quantify whether spikes show a pronounced phase rela-

tionship to the LFP is to test for non-uniformity of the resulting distribution
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of phases (e.g., Rayleigh test for uniform phase distribution with correction for
small sample size; cf. Mardia and Jupp, 2000). However, the inter-spike interval
distributions suggest that spiking activity has a tendency for regularity, in par-
ticular during strong rate responses of the initial phase of the odor presentation.
Therefore, we might expect a non-uniform phase distribution as a mere conse-
quence of the underlying regularity. To investigate locking that is not explained
by such underlying regularity we employed surrogate spike trains to quantify
the intrinsic degree of locking between spikes and LFP. We constructed these
surrogates by shuffling the inter-spike intervals that occurred during each of the
500 ms time windows, while choosing a random time point for the first spike.
Thus the spike count and the first-order interval statistics were preserved. Using
these surrogates we built our test statistics for of the phase locking from the
lengths R of their circular average.

Odor response classification

To prepare for the analysis of learning induced changes in the complete neuronal
ensemble, we constructed a representation in a high-dimensional space where
individual dimensions represent the activity of the various units of the ensemble.
Thus a point in this space represents the ensemble activity contributions of all
units for a given stimulus type, experimental phase and trial. We investigated
consistent changes in the ensemble representation of the three stimulus types.
A common method for dealing with such high-dimensional representations is to
employ the principal component analysis (PCA) to reduce the data to a few
dimensions.

In practice, we defined for each stimulus type (CS+, CS-, Ctrl) and for
each trial of the pre-test, differential conditioning, and post-test phase a 99-
dimensional vector, where each element represents the rate of one unit (esti-
mated by its spike count during one of the time windows, typically ON). Thus
for each time window we obtain 28 such vectors (3 stimulus types with 3 trials
in pre-test and post-test phase, and 2 stimulus types with 5 trials in the differ-
ential conditioning phase). The PCA was applied to these vectors to determine
the directions of the largest variance in the data, which are then used as a new
basis (principle components, PC). The component (or loading) wi of a PC in
the yields the weight with which each unit i contributes to the PCA represen-
tation. Reducing the dimensionality by using only the first three PCs, 74% of
the variance in our data is explained. This reduction allows us to graphically
visualize the structure of the data in an optimal way (cf., Fig. 4).
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Results

Odor coding: Relation between LFP and spiking activity

Odor responses are not only reflected in rate changes of individual units, but
also in complex LFP responses. Spindle-shaped oscillations in the LFP occurred
both during spontaneous activity and during odor stimulations. First, we inves-
tigated the characteristics of these LFP responses to odor presentations during
the pre-test phase. We analyzed the LFPs for dynamic changes in their fre-
quency composition. The time-resolved and trial-averaged LFP power spectra
to different odors in the same animal typically reveal a complex structure of
frequency components in time. These patterns differ for different odors in the
same animal, and are not odor-specific across animals.

To identify common response components across all odors and animals, we
characterized the average frequency content for the 500 ms windows during
spontaneous activity (baseline), phasic ON, sustained and OFF responses, re-
spectively (Fig. 2a, top panels). During phasic ON, the total power in all
frequency bands is larger than in all other time windows. In addition, a broad
peak of enhanced power (compared to base line) between 40 Hz and 60 Hz
emerges, which decays and shifts toward lower frequencies during the sustained
and OFF responses, while the overall power decays.

We calculated a baseline-corrected and time-resolved power spectrum (Fig.
2a, bottom panels) to investigate the temporal structure of the observed increase
in power from base line during odor stimulation (phasic ON, sustained and OFF
response). The spectrum reveals that the peak observed during the ON response
is a broad odor response across high LFP frequencies about 100 ms after odor
onset. This peak starts out with a maximum at about 45 Hz, and sharpens
out toward 50 Hz during the latter course of the odor presentation. Therefore,
despite the high response variability across the animals, a consistent increase in
power above baseline is found in the gamma frequency regime. These frequencies
are not necessarily the dominant frequencies in individual animals/odors, i.e.
those with the strongest power, but rather the frequencies which are consistently
enhanced.

For single odor presentations we found that 73% of the odor applications
in all animals evoked a significant change in the total power of the spectrum.
Here, enhancement in power was defined as significant, when the power within
300 ms after stimulus onset exceeded the tolerance interval of two standard
deviations around the spontaneous mean. These responses to odor stimulations
were typically 300-400 ms long, and had an average response latency of 55±63
ms. In 10 (out of 21) animals all three odors evoked a response, in 6 animals
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Figure 2: Frequency analysis of LFP and relationship of spikes to LFP. (a) Top: Raw
power spectra for the four consecutive 500 ms time windows: spontaneous base line activity,
phasic ON response, sustained response, and OFF response. Each box shows the trial-averaged
power spectra in pre-test pooled across all animals and odors (curves). Shaded areas enclose
at each point 90% of all recorded power spectra. Bars in the three right-most panels indicate
frequency bins where the distribution of power (at that frequency) significantly deviates from
the one during base (Wilcoxon signed-rank test, p=0.05). Bottom: Corresponding pooled,
time-resolved, baseline-corrected power spectra of the LFP (300 ms sliding window; averaged
over the three trials.). Here, at each time bin the spectra (indicated by color) are normalized
to baseline (1000 ms before odor presentation) by subtracting its mean and dividing by its
standard deviation. Beginning and end of odor presentation are marked by dashed white
lines. (b) To assess the degree of phase locking between units and LFP (top, tick marks
and trace, respectively), the LFP is filtered to a specified frequency band (bottom). Its
instantaneous phase (implied by red lines, each spanning one oscillation cycle) is computed
at the time points of spike occurrences (180 degrees: trough). (c) Percentage of units that
show significant locking (as determined by surrogate distribution, p=0.05) to the LFP during
each of the four time windows (colors as in (a)) as a function of the center frequency of the
applied band-pass filter (dotted line: 5% significance threshold). (d) The distribution of mean
phases of all significantly locked unit-LFP pairs (at the frequency band centered at f=50 Hz,
cf. peak in panel (c)) during ON (left) and base (right) shows a consistent tendency for spike
occurrence on the falling phase of the LFP.
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Figure 3: Typical examples of unit rate responses. Rate profiles of two units are shown
before and after differential conditioning, separately for CS+ (left), CS- (middle) and Ctrl
(right). Two simultaneously recorded units (top and bottom row, respectively) are presented.
The rate responses are quantified by the PSTHs (bin size 25 ms) that include the three
trials of the pre-test (light gray) and the post-test (dark gray, reflected about the x-axis for
comparison). Dashed lines mark the interval of the stimulus presentation.

two, and in the 4 animals for one of the three odors.

Odor coding: Relationship of spikes to LFP

In a subsequent step, we analyzed how the oscillatory LFP responses are related
to the responses of the spiking activity (compare Fig. 2b). To this end, we
calculated the phase relationship between spiking activity of individual units and
the simultaneously recorded LFP during the pre-test phase. Fig. 2c shows for
all frequencies the relative number of LFP-unit pairs that are locked more than
expected by chance (p=0.05) given their spike interval statistics. The analysis
reveals that unit activity shows such genuine locking to the LFP predominantly
for oscillations around 50 Hz. This effect is most pronounced for the phasic ON
response (Fig. 2c, black line) in comparison to the other time windows.

The mean preferred LFP phases of all significantly locked units are not evenly
distributed, but rather exhibit a strong tendency to prefer spiking on the falling
phase of the oscillation. Although the mean phase shifts with the frequency
band, it remains on the falling phase for all LFP frequencies investigated (15-70
Hz). The distributions of mean phases during phasic ON response and baseline
(Fig. 2d) have a similar mean and variance, indicating that the preferred phase
of the spikes to the LFP oscillation is not stimulus-dependent.
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Learning-related changes: Spike rate responses

In the following sections we will investigate how the observed responses to odors
change during the course of differential conditioning. We first asked whether
the spike rate responses are affected by learning. Most of the rate responses
during the pre-test stimuli are excitatory (cf. Methods). The average spike
rates across all animals and trials were calculated for the responses to CS+, CS-
and Ctrl during the various phases of the experiment (pre-test phase, differential
conditioning phase and post-test phase). Average responses for the CS+ and
CS- during the differential conditioning phase exhibit a slight but not significant
decrease. However, the rate responses showed a very high variability across the
population of units for a particular stimulus and experiment phase.

A more detailed analysis of spike rates performed for each of the units sepa-
rately revealed either an increase or a decrease of the respective spike rates when
comparing the rates during the pre-test phase with those during the post-test
phase for both CS+ and CS- (see Fig. 3 for typical examples of rate changes).
Therefore, even within an individual animal, the simultaneously recorded units
may individually change their odor responses by either increasing or decreasing
their spike rates. Averaging the changes in responses between pretest phase
and post-test phase across the population would thus eliminate these complex
response characteristics in individual neurons.

In order to quantify the learning-induced changes in spike rate, we calculated
for each unit the average rate of the three trials in the pretest phase and eval-
uated whether the rates in post-test trials differed significantly (rate change of
+/- 1 standard deviation estimated from the variability during spontaneous ac-
tivity). We classified a change in response if at least two of the three trials of the
post-test phase differed significantly. Thus we characterized unit ON responses
solely by the fact that they changed, irrespective of increase or decrease of rates.
79% of the 99 units changed their rate response significantly for CS+, 67% for
CS- and 74% for Ctrl. These results apply to the phasic responses. A similar
effect was found for the sustained responses and the phasic OFF responses.

Besides these quantitative effects we also observed qualitative changes during
the course of differential conditioning. A large number of units changed the type
of their phasic ON response (33 changed their responses to CS+, 32 to CS- and
31 to Ctrl). Of these, 5 units (2 for CS+, 1 for CS-, 2 for Ctrl) switched
from excitatory to inhibitory responses. In the latter cases the switch occurred
abruptly in the second or third trials of the differential conditioning phase. In
39 cases an excitatory response disappeared in the post-test phase. For CS-
and Ctrl each, 5 units showed an excitatory response exclusively in the post-
test phase. Similarly, 9 (CS+), 11 (CS-), and 8 (Ctrl) units responded with
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Figure 4: The result of the principle component analysis (PCA) for the ensemble
of all 99 unit response rates during the ON response. (a) Projection of the response
rate vectors (dots) onto the first three principle components (PCs). Each rate vector represents
the response of all units for one trial of one stimulus presentation (green: CS+, red: CS-,
gray: Ctrl) during the pre-test phase (dark shades) or post-test phase (light shades). (b)
The hierarchical cluster tree shows the Euclidean cluster distances between all data points in
panel (a). Trial responses in the same condition are tightly clustered, and cluster distances of
pre-test and post-test phases of the same stimulus are closer than those between stimuli. (c)
Rank-ordered contributions (weights) of each individual unit to the PC space representation
of the data. Units marked by a red asterisk were recorded in animals that were classified as
behavioral learners based on their M17 response.

inhibition only in the post-test phase. Finally, 7 (CS+), 3 (CS-), and 3 (Ctrl)
units showed inhibitory responses in the pre-test phase and no response in the
post-test phase.

In conclusion, both positive and negative changes in spike rates are observed
mostly for CS+. This effect is shadowed if rates are simply averaged across
the population, since these changes are compensated. To capture the highly
selective response properties, we turn to more detailed measure of the learning-
induced neuronal population response.

Learning-related changes: Ensemble response changes

Assuming that neural coding is a network property, learning-related changes
may express themselves in global adjustments of its properties. Any analysis
focusing on single neuron properties would not capture important aspects of
the learning-induced network change. Below we consider the complete set of
recorded units as a representative sample drawn from the network, irrespective
of the fact that not all units were recorded simultaneously in the same animal.
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Similar approaches were taken for calculating the direction-selective ensemble
responses in the motor cortex (Georgopoulos et al., 1986) or in the analysis of
odor coding in the moth Manduca (Daly et al., 2004) and in the locust (Laurent,
1996).

In a first step we concentrated on learning-induced changes from the pre-
test to the post-test phase during the phasic ON response. To this end we
constructed a 99-dimensional feature vector for each odor representation in both
phases, whose entries are set to the respective response rates of each of the 99
recorded units (see Methods). The results of a principle component analysis
(PCA) for all trials before and after differential conditioning are shown in Fig.
4a. Each resulting vector represents the projected response rates of all units to
a stimulus type for one trial of the pre-test or post-test phase. Projections onto
the first three principle components (PCs) captured 74% of the variance in the
data. Pre-test and post-test data cluster in a stimulus-specific way. During the
sustained response, the quality of clustering rapidly decreased and disappeared
for the OFF response.

Another way to visualize the result of the PCA is by hierarchical clustering,
as revealed by a cluster tree (Fig. 4b). This tree visualizes the clustering of
the vectors by means of the Euclidean distances, which are represented by the
lengths of the tree’s connecting branches. The distance between the correspond-
ing data points in these two phases exceeds the variance of the distances in the
individual trials of each phase. In particular, the distance for CS+ slightly ex-
ceeds that for CS-, whereas the distance for Ctrl is substantially lower than for
the other two stimuli. We confirmed that this clustering could not be attributed
to a dominant influence of only a few odors by systematically excluding single
odor identities from the analysis.

In addition, we further tested the possibility that only few recordings (e.g.,
with a high rate) dominate the clustering. We analyzed the impact of each
recording, i.e., the coefficients weighting the contributions w i of each unit (99
weights) onto individual PCs. Fig 4c shows an ordered representation of these
weights summed overall PCs, revealing that nearly all units share a substantial
contribution to the ensemble representation. Next, we identified those units
with an combined absolute impact w(i) on the first three PCs that differed
clearly from zero (|w |> 1). We find that all 21 animals contribute at least with
one unit thus suggesting that no small group of outliers from particular animals
was responsible for the clustering. For additional control, we asked how many
animals and therefore, how many units had to be pooled in order to obtain
a stimulus-specific clustering. We created random subgroups of increasing size
from of the set of 21 animals and performed the PCA on each of these subgroups
in an identical manner. A similar qualitative clustering using the first three PCs
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Figure 5: Comparison between animals classified as behavioral learners (left) and
non-learners (right) as indicated by the response of the muscle M17 to CS+ and
CS- in the post-test phase. The set of three left bars shows for learners the Euclidean
cluster distances of the PCA rate vectors between pre-test and post-test phases during the
ON response separately for CS+, CS-, and Ctrl. To compare these distances to the group
of non-learners, we account for the different sample sizes of the two groups by a boot strap
procedure. Non-learner distances were recomputed 1000 times using a random selection of
animals, each consisting of an equal number (5) of animals as in the group of learners. The
set of three right bars shows the mean of the distributions of distances obtained by this
procedure for each of the odors (error bars indicate the 5% quantiles of the distribution). The
star indicates a significant increase above the 5% level in the learner group compared to this
resampled distribution. For each of the 1000 recomputations the odor exhibiting the largest
cluster distance was identified. The inset shows the distribution of outcomes across the three
odors (CS+: left, CS-: middle, Ctrl: right).

was obtained for all subgroups consisting of at least 5 animals.
To relate the observed changes in network dynamics to the learning process,

we tested whether the observed clustering was specific to behavioral learners.
These were identified by their conditioned responses (measured with the M17
recording) to CS+ but not to CS- during the post-test phase. The rather low
learning rate (5 out of 21 animals) is most likely due to the impairing dissec-
tion. The PCA contributions of units recorded in behavioral learners (units
indicated by asterisks in Fig. 4c) are comparable to those of the non-learners
(16 animals). Furthermore, we contrasted the Euclidean cluster distances be-
tween pre-test and post-test phases of the five behavioral learners with 1000
recomputations considering five animals each that did not show any M17 re-
sponse (Fig. 5). Pre- and post-test clusters are significantly further apart for
CS+ in the group of learners (p=0.05, comparison to distribution of distances
obtained from groups non-learners), indicating a stronger restructuring for the
rewarded odor in animals that showed learning in the behavioral response. Nev-
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ertheless, most of these shuffled groups of non-learners consistently showed the
largest pre-post cluster distance for CS+ and CS-, compared to Ctrl (Fig. 5,
inset). Taken together, these findings reveal that the change of response rates
represented in the PCA is more pronounced in the group of behavioral learners,
but not restricted to that group. Furthermore, the analysis suggests that the
response characteristics are evenly distributed among all recorded animals, and
justify our approach of pooling across animals to obtain a network sample.

To further characterize the changes in the network responses, we analyzed
the transition between the observed clusters of pre-test and post-test phases
during the course of conditioning. The distances between unit rate response
vectors of successive trials belonging to the same phase of the experiment were
smaller for the pretest and posttest phase as compared to those of the differen-
tial conditioning phase (for both, CS+ and CS-). Therefore, we conclude that
without conditioning, an odor retains a rather stable representation in unit rate
space, while the learning process induces a strong change in its ensemble rate
representation. The finding serves as a strong indication that the change in re-
sponse rates is due to conditioning and not to a gradual change over the whole
experiment.

In summary, a PCA of all unit responses across animals revealed a homo-
geneous stimulus specificity of the rate responses in the pre-test and post-test
phase of the experiment, where the distance between the two phases for the
CS+ exceeded that for the CS- and Ctrl.

Learning-related changes: LFP power

To further characterize learning-induced changes in the network response, we
address the question whether also changes in the LFP responses occurred due
to differential conditioning. In particular, we ask if the LFP power shifted
with respect to the contributions of certain frequency components. The average
time-resolved power spectra for CS+ in the pre-test phase as compared to the
post-test phase (Fig. 6a) shows prominent changes in the normalized power
mainly during ON response. In particular, we observe a reduction in power at
high LFP frequencies around 50 Hz shortly after stimulus onset. To quantify
this observation we calculated the average across animals of the difference be-
tween pre- and post-test power (Fig. 6b). For each animal we averaged the
normalized spectra in the post-test trials and subtracted the average of the nor-
malized spectra of the respective pre-test trials separately for the three stimulus
conditions (CS+, CS-, and Ctrl). Only for CS+, the relative power in the 15–40
Hz band increases significantly from the pre-test to the post-test phase, while
the power in the frequency components above 40 Hz decrease significantly (vari-
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Figure 6: Changes in LFP power from pre-test to post-test phase. (a) Time-resolved
power spectra for pre- (left) and post-test (right) averaged across all animals for CS+. Analysis
is carried out in sliding windows of 300 ms and the average of the three trials per animal is
normalized to unit area per time slice before pooling. White lines indicate stimulus onset and
offset, power is indicated by color. b) Average power change during the ON response from
pre- to post-test phase for CS+ (left), CS- (middle), and Ctrl (right), resolved by individual
frequency bands. Before averaging across animals, the differences between power (averaged
across the three trials and normalized to unit area) in pre-test and post-test are calculated.
Error bars (+/-95%) were obtained using 100 bootstraps.
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ability across animals estimated by bootstrapping). In contrast, no significant
power changes were observed for the other two stimuli (CS-, Ctrl). In the other
time windows, no significant changes were seen for any of the stimuli.

To clarify the nature of the observed change in power for the CS+, we
investigated its time course also during the differential conditioning phase. The
change in LFP power occurs only with the start of the post-test phase. Thus, we
might speculate that the LFP power reflects a consolidation effect, whereas the
continuous rate change during the conditioning phase is indicative of immediate
and local changes in the network.

The frequency components were also analyzed separately for the behavioral
learners. For these five animals, we observed similar changes in power as for
the whole population. Likewise, for the rest of the animals that did not show
an M17 response we found comparable power changes. Thus we conclude that
the observed result is independent of behavioral learning, in agreement with our
results of the unit ensemble analysis.

Learning-related changes: Relationship between LFP and
spiking activity

As shown in the previous section, we observed a relative change in the power
composition of the LFP for the CS+ odor. However, learning-induced changes
in unit rates involved a complex restructuring of the ensemble responses, which
is not reflected in the averaged network response. Therefore, we did not observe
direct correlations between the global changes reflected by the LFP and the
average rate changes of units recorded in the same animal.

However, we were able to directly investigate changes in the relation between
spikes and LFP oscillations. Learning-related changes were investigated with
respect to an emergence or loss of significantly locked units in the post-test
phase as compared to the pre-test phase. In a first step we calculated the
change in the number of units locked to the LFP more precisely than expected
given their regularity during the ON response as a function of the LFP frequency
(Fig. 7a, cf. also Fig. 2). We observed a tendency for a decrease in the number
of locked units at 45-60 Hz for CS+ and Ctrl, and a slight increase in the 15-40
Hz band for CS+ and CS-.

This frequency-resolved analysis shows a strong similarity between the change
in the number of locked units and the change in power from pre-test to post-
test phases (compare Fig. 6b). We quantified the similarity by calculating the
correlation coefficient between these two measures across frequencies. For CS+,
changes in locking and changes in power are highly correlated across frequen-
cies with a correlation coefficient of 0.58 during the ON response. For the other
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Figure 7: Learning-related changes in the phase relationship of spikes to LFP. a)
Difference from pre-test to post-test phases in the relative number of units locked significantly
to LFP oscillations for CS+ (left), CS- (middle), and Ctrl (right) for frequencies from 20-70 Hz.
The change is expressed in percent of the total number of units available per odor. Error bars
(+/-95%, thin lines) are calculated using a resampled data sets comprising 75% of the data.
(b) Distribution of correlation coefficients between the frequency-resolved changes in power
and locking obtained for each unit-LFP pair in during ON. Insets show mean and standard
deviation of this distribution (black lines), in addition to distributions (gray) of means and
standard deviations of the distributions of correlation coefficients obtained from 100 surrogates
(randomized trial-by-trial pairing of power and locking). (c) Mean and standard deviation of
distribution of correlation coefficients as in panel b, but for all 4 time windows. (d) Number
of units during CS+, CS-, and Ctrl, respectively, that are locked exclusively to either only
pre-test or only post-test for frequencies between 40 and 60 Hz, relative to the number of units
that are locked in any of these two phases. (e) Number of units during pre- and post-test,
respectively, that are locked to either only CS+, only CS- or only Ctrl, relative to the number
of units locked to any of these three odor stimuli. Error bars in (d) and (e) indicate the range
of exclusively locked units expected assuming randomly chosen identities of locked units based
on the measured frequency of locking.
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two stimuli, correlations are weaker and in fact anti-correlated for CS-, with
correlation coefficients of -0.27 and -0.38 for CS- and Ctrl, respectively.

Given the large variability between individual animals, we investigated whether
a similar relationship between changes in locking and power can be observed for
single recorded units. Fig. 7b shows histograms of the correlation coefficients
measured between the change in power and the change in locking (represented
as a binary vector for each unit, indicating for each individual frequency locked
or unlocked as 1 or 0, respectively) for all animals during the ON response. In
addition, the mean and standard deviations of the resulting distributions are
shown (insets), along with the means and standard deviations obtained from
a set of 100 surrogates. For each surrogate, the power changes corresponding
to one unit were correlated with the locking changes obtained from a different,
randomly-chosen unit. The distributions appear largely unimodal and centered
around zero. Therefore, the relationship between the average locking change
and average power change does not indicate a consistent trend for individual
units. Similar results are obtained for the remaining time windows (Fig. 7c).
To understand this effect, it is helpful to realize that an individual unit is typi-
cally locked to only a particular frequency component. Therefore, on the level
of individual units, we find no correlation across frequencies. In contrast, on the
network level, LFP power for a certain frequency correlates with the probability
of neurons becoming entrained to oscillatory network activity at that frequency.

Next, we investigated the stability of locked units from pre-test to post-test
(Fig. 7d), and specificity of locked units across different CS+, CS- and Ctrl
odors (Fig. 7e). The analysis reveals that the composition of units that show
significant locking to the LFP is highly variable. In fact, most units are highly
specific in locking to the experienced odor (CS+, CS- or Ctrl). In addition, even
though the total number of units locked to the LFP does not change on average,
the identities of units that exhibit locking after conditioning have changed to
a large extent. Due to the low relative number of units that show significant
locking, this specificity may be well explained by a random selection of the units
identities (as indicated by the black lines in Fig 7d,e). Therefore, the question
of whether this observation is in fact due to a systematic restructuring that
enforces this specificity cannot be answered in this analysis. Nonetheless, these
results support our previous findings that differential conditioning induces a
broad restructuring of responses within the network, not only on the rate level,
but more over in the temporal coordination of individual units to the network
activity expressed through oscillatory LFP activity.
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Discussion

Learning during differential conditioning of the bee leads to spike rate increases
and decreases in responses to the reward odor (CS+), the unrewarded odor
(CS-), and the control odor (Ctrl) introduced to test generalization. An analy-
sis of the ensemble activity indicated the largest learning related difference for
CS+. Furthermore, LFP power increases for CS+ in the 15-40 Hz frequency
band during the odor presentation, and decreases for frequencies above 45 Hz.
For CS+, learning-related changes in the size of the phase-locked spiking ac-
tivity correlate with the LFP power changes. These results reflect associative
plasticity in the antennal lobe of the bee resulting from a restructured odor
coding network. The observed changes appear to decorrelate the responses to
the learned and non-learned odors and may provide a learning-related neural
signature of odor learning.

Characteristics of unit and LFP responses

Our recordings aimed for PNs by positioning the two tetrodes close to the AL
exit of the mACT and lACT. The responses of units recorded resemble those
collected with intracellular electrodes in PNs (Sun et al., 1993; Abel et al., 2001;
Müller et al., 2002, Krofczik et al., 2009). Odors elicit excitatory phasic-tonic
responses, inhibitory tonic or phasic responses, and excitatory and inhibitory
OFF-responses. The response patterns of 17% of our recordings, and their odor
response profiles are in accordance with the findings for the lACT type of PNs
(Müller et al., 2002). 83% of the recordings showed response properties that are
similar to those of the mACT neurons (Abel et al., 2001; Müller et al., 2002).
They respond more specifically to odors, and their response patterns consist
of bursting-like spiking, inhibitory responses or off-responses, properties which
were only seen in mACT neurons (Müller et al., 2002). The average response
rates in our recordings were between 1.5 and 2 times higher than those observed
in intracellular recordings of mACT neurons.

LFP oscillations occurred both spontaneously and odor-induced. It is still
under debate what kind of information lies in such oscillations with respect to
olfactory information processing. Recordings from the AL of Manduca sexta
revealed that the frequency spectra of oscillations are more specific for the
recording site than for odor identities, and may be restricted to single glomeruli
(Christensen et al., 2000, 2003). This could mean that the oscillations reflect the
summed activity of neuronal populations processing odor information within a
single glomerulus or a small number of glomeruli and thus may depend strongly
on the spatial organization of the AL. Recordings in Schistocerca americana
suggested a more global function of LFP oscillations and are interpreted as a
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reference for the transient synchronization of subpopulations of PNs (reviews:
Laurent, 2002; Laurent et al., 2001). These latter authors conclude that such
a transient synchronization serves as a mechanism for the transfer of olfactory
information from the AL to the MB, where MB-intrinsic Kenyon cells may act
as coincidence detectors for the synchronous firing of PNs during fixed cycles
of the LFP oscillation period. This hypothesis is particularly interesting in the
context of odor learning, because changes in the synchronization of PN spike
activity may reflect a signature of learned odors (Finelli et al., 2008, see below).

The frequency spectra of LFPs for different odors were specific within the
same animal, and different for the same odor in different animals. Since the
units picked up may differ between animals, we conclude that odor-evoked LFP
oscillations are specific for both the recording site and the odor identity. This
supports the idea that odors are coded by a spatio-temporal glomerular activity
pattern within the AL of the honeybee, as indicated by optical recordings (for
a review, see Galizia & Menzel, 2000). The oscillations would then reflect the
summed activity of odor-specific subpopulations of neurons.

Yet the sources of the LFP oscillations remain unclear. The LFP signals
were nearly identical at the two shafts (separated by 60 µm). LFPs recorded
at two remote sites, the AL and the mushroom body (calyx or alpha lobe)
on the same side of the brain are also very similar and synchronous, whereas
LFPs recorded on the two sides of the brain are less similar and not synchronous
(Szyszka and Menzel, pers. observation). This indicates that the sources of LFP
in the honeybee brain are distributed, or – if localized – are synchronous for the
distributed sites in one half of the brain. We conclude that the LFP - which we
recorded with the same electrodes as the spike activity - represents not only the
low-frequency components of summed spikes at the recording site, but reflects
further-ranging low-frequency components indicative of coherence phenomena
in a population of neurons. It is, therefore, not surprising that odor-induced
unit responses and LFP oscillations were not always related to each other. In
10% of all odor stimulations even strong unit responses were not associated
with strong LFP oscillations. Furthermore, strong LFP oscillations were not
always connected to unit responses (as observed in 3% of all odor stimulations).
Furthermore, the high frequency component was found in our recordings at a
considerable higher frequency (around 45-60 Hz) than in recordings from the
bee brain by Stopfer et al. (1997) around 30 Hz. The reasons for this difference
is elusive but may be related to the fact that we ensured temperature at the
recording site above 23◦ C because we found in other experiments that a tem-
perature below 23◦ C leads to lower spontaneous activity, lower response rates
and spikes with smaller amplitude.

The high 50 Hz power occurs during the phasic on-response of PN, a response
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component that codes odor identity less reliable than the sustained response
component (Sun et al., 1993; Abel et al., 2001; Müller et al., 2002, Krofczik et
al., 2009). Thus the phasic synchronization of the fast odor-induced activity
may serve other functions than specific odor coding (possibly as a reference
point for latency coding, and/or general excitation of mushroom body-intrinsic
and -extrinsic neurons). The delayed synchronization in the frequency band
of <40 Hz could be related to specific odor coding. Learning-related changes
in these two frequency bands may inform us whether the learned signal may
be more specifically coded and whether the fast and general odor signal may
become less important.

Locking between spikes and LFP oscillations was observed particularly for
the 45-60 Hz band, which shows a large power increase during the initial phase
of the stimulus presentation. The locking was unit-specific, occurred only dur-
ing subsets of unit and LFP responses, and was dominant for a certain fre-
quency band, indicating an AL-intrinsic mechanism. It is thus possible that
these oscillations reflect a transient synchronization of PN subgroups, as has
been suggested for Schistocerca americana (Laurent, 2002). Such transient syn-
chronization could play a role in the fine tuning of odor representations, and/or
could provide a coincident input to Kenyon cells (Finelli et al., 2008).

Learning-related rate changes in population responses

The goal of this study was to investigate whether learning-related plasticity ex-
ists in the AL of the bee and how it might be expressed at the levels of neuronal
spiking and population activity. The AL of the honeybee is believed to be a com-
ponent of a distributed network storing olfactory information (review: Menzel &
Müller, 1996). Evidence comes from four observations. (1) The reward neuron
VUMmx1 converges with the olfactory pathway in the AL besides its conver-
gence sites in the mushroom body and the lateral protocerebrum (Hammer,
1993); (2) local injection of the putative transmitter of VUMmx1, octopamine,
substitutes for the unconditioned stimulus (US, sucrose) when injected into the
AL immediately after an odor presentation (Hammer & Menzel, 1998); (3) local
uncaging of cAMP in the AL (cAMP is a second messenger known to promote
the transfer from short- to long-term memory in bees), will shift short to long-
term memory when it is uncaged shortly after a single learning trial (Müller,
2000); (4) optical imaging of activity-dependent Ca2+ signals of glomeruli in the
AL of the honeybee and Drosophila reveal an increase in the Ca2+ signal for the
CS+ in the case of the bee (Faber et al., 1999), and in Drosophila a recruitment
of previously inactive output synapses of the PNs within the glomeruli for the
CS+ (Yu et al., 2004).
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Our results show significant unit rate changes, both increases and decreases,
for the three groups of odors used in differential conditioning (CS+, CS-, Ctrl).
This result is not surprising if one considers the complex interactions between
excitatory and inhibitory neurons within the AL. Strengthening the response
in a subgroup of AL neurons may well lead to both an increase of excitation
and inhibition. Although we cannot strictly relate our extracellular recordings
to any type of neuron (see above) and thus cannot separate the strengthening
and weakening of responses to any neuroanatomical subtype, we still presented
arguments above in favor of the interpretation that our electrodes predominantly
picked up spikes of PNs. In this case, our results would mean that PNs -
possibly even those receiving input within the same glomerulus - may change
their response strengths in opposing directions. This situation might explain
why optophysiological recordings from glomeruli showed in some experiments
learning-induced changes and in others no such changes were observed. In the
study by Peele et al. (2006) which gave no indication of learning related Ca2+

activity changes, special care was taken to fill many lACT neurons with the Ca2+

indicator dye. This could have well lead to the filling of several PNs projecting
out of one glomerulus, and if they changed their responses in opposing directions,
as concluded here, no effect will be seen at the glomerular level. Interestingly,
in a parallel study (Weidert et al., 2004) both enhancement and weakening of
the Ca2+ responses to the learned odor (CS+) was found in lACT postsynaptic
sites. In this latter study less intensive dye filling has been applied. These
controversial results have yet to be resolved, and our findings here may provide
a basis for this.

Rate changes were not only seen for the CS+ but also for CS- and to a
slightly lower degree for Ctrl. Although average response rates decreased only
slightly over the course of the sequential stimulations one might still argue that
the observed rate changes may not reflect a differential learning effect, but
rather non-associative phenomena (habituation, sensitization) or a decrease in
the animals’ fitness throughout the experiment. Habituation is a comparatively
slow process in honeybee odor processing (Chandra et al., 2000), and only more
than 20 sequential odor stimuli lead to a rather weak habituation effect. Multiple
sucrose stimuli habituate the proboscis extension response only after more than
15 sucrose applications (Braun & Bicker, 1992). Sucrose stimuli sensitize the
animal which leads in behavior to a transient increase of response probability
to different stimuli (Menzel, 1990). The time course of US induced sensitization
lies in the range of a few minutes. Since the post phase started 5 minutes after
the end of conditioning it is unlikely that US sensitization would still play a
role, although it cannot be excluded that the time course of neural correlates of
sensitization may last longer. The rather high degree of absolute rate changes for
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Ctrl may indicate a non-associative sensitization effect besides a generalization
effect. A slow weakening of the animals’ fitness can be ruled out because the
shifts in unit ensemble responses were strong during the differential conditioning
phase, whereas both pre-test and post-test phases exhibited only small changes.

In differential conditioning bees learn both the CS+ and the CS- (Bitter-
man et al., 1983; Menzel, 1990). The forward paired CS+ is responded to more
strongly, and inhibitory learning of the backward paired CS- is uncovered by a
resistance of acquisition to subsequent forward pairing (Hellstern et al., 1998).
The direction of neuronal change as indicated by spike rate responses is obvi-
ously not related to the distinction between excitatory forward and inhibitory
backward learning during differential conditioning.

Besides these quantitative changes we also observed qualitative changes in
the course of differential conditioning. About 30% of units switched their pha-
sic ON responses, more frequently for the CS+ than for the CS-. Several units
were recruited or lost their response properties during conditioning. Daly et
al. (2004) observed in Manduca sexta recruitment of neuron activity for CS+,
and a loss of neuron activity for the CS-. Recruitment of neural responses was
also seen in Drosophila olfactory conditioning (Yu et al., 2004). Interestingly,
in our experiments all these changes occurred abruptly between the second and
third training trial indicating a sudden reorganization of the AL network after
more than one learning trail. Single and multiple learning trials lead to dif-
ferent forms of memory in the honeybee (Menzel, 1999), single learning trials
only to short-term memory and multiple learning trials to long-term memory
via several phases of consolidation. Since we saw the spike rate changes during
acquisition but the changes in LFP power only in the post-test phase we might
speculate that these two measures indicate different components of associative
plasticity. The first might monitor associative plasticity initiated predominantly
in the AL by pairing effects; the latter may result from consolidation phenom-
ena which could include downstream neuropiles like the mushroom body. The
mushroom bodies in bees are known to be involved in memory formation during
5–7 minutes after conditioning, whereas the AL appears to contribute to mem-
ory formation only during about one minute after conditioning (Menzel et al.,
1974). It will be interesting to ask in future experiments which neural correlates
of associative changes are related to learning phenomena and which to those of
memory formation.

The PCA analysis supports our conclusion that the learning effect in dif-
ferential conditioning is spread across a population of neurons, changing their
responses relative to each other both by a rise and a fall in response strength
(Fig. 4). Such network properties may reflect a tendency to rebalance the ef-
fects caused by learning-related enhancement of excitation in a subpopulation
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of neurons, and may indicate a shift in the stimulus sensitivity profile toward
the learned stimulus as it was found for the frequency tuning of neurons in
the rat primary auditory cortex (Froemke et al., 2007). Since the spatial code
of odor-induced activity in the AL is similar in different bees the recordings
in 21 different animals can be viewed as simultaneous recordings at 21 differ-
ent recording sites in one animal. According to this view, the clustering of
stimuli and experimental phases reveals changes in the ensemble. Since each
multi-dimensional point in PCA space contains the complete information from
simultaneously recorded response rates, the differences between the clusters of
the experimental phases reflect the absolute amount of rate change that has
taken place in the ensemble. The analysis shows that the Euclidean distance
between pre-test and post-test phases in the space of the three dominant princi-
pal components is highest for CS+, indicating a differential learning effect, and
corroborating our conclusion - presented above - that the absolute rather than
the positive or negative change in response rates reflects associative plasticity
in the network.

Thus our analysis reveals that both unit and LFP responses monitor asso-
ciative plasticity in the network. An obvious question is how these two signals
are related, keeping in mind that in the common view LFP signals reflect the
low-pass filtered neuronal activities in the surrounding volume. We observed
that LFP power responses to CS+ increase significantly in the 15-40 Hz band
and strongly decrease in the 45-60 Hz band in the course of conditioning. We
do not find any clear relation between these power changes and spike rates,
neither for individual nor for pooled responses. This suggests that the LFP
cannot be interpreted as a mere reflection of the firing rate dynamics of the
neuronal ensemble. However, one might also argue that it is difficult to observe
net ensemble firing rate changes in a signal averaged over a large population of
neurons, because we observe similar numbers of units that increase their rates
with CS+ as compared to units that decrease their rates.

Assuming that a high degree of synchronization is reflected in enhanced os-
cillatory LFP components an increase in spike synchronization on the ensemble
level should also be expressed in a more precise temporal relationship between
spikes and these oscillations, which should occur at a similar frequency. In-
deed, a similar tendency as for the learning-induced power changes is observed
for changes in the precision of the phase relationship of spiking to LFP. In
particular for CS+, locking sharpens for the 15-40 Hz band and reduces for
the 45-60 Hz band during the differential conditioning phase (Fig. 7a). These
changes for CS+ in spike-LFP locking and changes in LFP power were highly
correlated across frequencies. Furthermore, we found that spikes became less
precisely locked after learning almost as often as they increased their locking
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(Fig. 7e). This coexistence of emergence and loss of locking is indicative of a
reorganization of synchronization between neurons as a consequence of learning.

It is often assumed that the frequency of oscillations is related to the spa-
tial extent of interaction (Buzsaki & Draguhn, 2004). In this context, we may
hypothesize that the shift to lower frequencies after conditioning for both lock-
ing and power could reflect a tendency for a more global representation of the
rewarded odor than before learning. Therefore, it may provide evidence for a
contrast sharpening of the meaningful odors against others. Similar effects were
seen in rats (Ravel et al., 2003; Martin et al., 2006), where odor learning leads to
a shift of the dominant frequency in LFP in the olfactory bulb from the gamma
band (60-90 Hz) to the beta band (15-40 Hz).

In analyzing the ensemble rate responses we found that the degree of change
in the representation of the CS+ odor changed significantly more for behavioral
learners as compared to the non-learners. Thus, learning-related changes in
the neural network of the AL correlated with the scores of behavioral learning
(probability to extend the proboscis to the CS+ alone and not to the CS-).
This is in line with findings of mushroom body extrinsic neurons, the PE1,
whose learning-related changes of odor responses (an associative reduction of
their spiking rate) correlate with the level of behavioral learning (Okada et al.,
2007). Nonetheless, even in behavioral non-learners, CS+ consistently showed
the strongest ensemble restructuring in our data. Thus, the rather loose correla-
tion between scores of learning and the degree of ensemble change suggest that
the performance during learning is related but not determined by the network
reorganization of the antennal lobe that provides the signal for down stream
networks more closely controlling behavior.

Taken together, these results indicate that olfactory learning leads to a re-
organization of neural processing of odors both at the level of the particular
PNs involved in transmitting the spatial glomerulus activity patterns and the
network properties of many neurons in the circuit connecting the antennal lobe
with the mushroom body. It will be necessary in the future to document more
closely that a learned odor is indeed more precisely coded, and is more strongly
represented by higher synchrony of particular PNs. In such a case the signature
of a learned odor would lie in the changed balance between inputs from different
PNs.
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Different Subtypes of Striatal Neurons Are Selectively
Modulated by Cortical Oscillations
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The striatum is the key site for cortical input to the basal ganglia. Cortical input to striatal microcircuits has been previously studied only
in the context of one or two types of neurons. Here, we provide the first description of four putative types of striatal neurons (medium
spiny, fast spiking, tonically active, and low-threshold spiking) in a single data set by separating extracellular recordings of sorted single
spikes recorded under halothane anesthesia using waveform and burst parameters. Under halothane, the electrocorticograms and
striatal local field potential displayed spontaneous oscillations at both low (2–9 Hz) and high (35– 80 Hz) frequencies. Putative fast
spiking interneurons were significantly more likely to phase lock to high-frequency cortical oscillations and displayed significant cross-
correlations in this frequency range. These findings suggest that, as in neocortex and hippocampus, the coordinated activity of fast
spiking interneurons may specifically be involved in mediating oscillatory synchronization in the striatum.

Introduction
The striatum is the major source of input to basal ganglia net-
works and receives afferents from nearly all cortical areas (Bolam
et al., 2000). The entrainment of striatal neurons to thalamocor-
tical rhythms suggests a high sensitivity of these networks to
global forebrain dynamics (Gervasoni et al., 2004). Striatal pro-
jection and interneurons recorded from awake rats are entrained
by slow-wave, high-voltage spindle and theta oscillations from
the cerebral cortex and hippocampus in a topographical manner
(Berke et al., 2004; Dejean et al., 2007). Phase locking of single
striatal neurons to high frequencies has not been demonstrated
(Berke et al., 2004).

Medium spiny neurons (MSNs), the projection neurons of
the striatum, are GABAergic and comprise �97% of the rat stri-
atum (Rymar et al., 2004). They receive both cortical and tha-
lamic synaptic inputs on the heads of their dendritic spines
(Groenewegen and Berendse, 1994; Bolam et al., 2000). The re-
maining striatal neurons are made up of four different types of
aspiny interneurons. “Giant” aspiny interneurons that release
acetylcholine are generally agreed to correspond to the tonically
active neurons (TANs) recorded extensively in primates in vivo
(Tepper and Bolam, 2004). The unique ion channel properties of
TANs, as defined in vitro, suggest that these characteristic features
of their spike trains could be intrinsically generated (Bennett et
al., 2000; Wilson, 2005).

The remaining striatal neurons are GABAergic interneurons that
can be differentiated neurochemically. Parvalbumin-positive neu-
rons receive input from diverse cortical areas, suggesting a role in
integration of cortical inputs in the striatum (Ramanathan et al.,
2002). Electrophysiologically, they resemble the fast spiking inter-
neurons (FSIs) found in the cerebral cortex and hippocampus
(Kawaguchi and Kondo, 2002; Somogyi and Klausberger, 2005),
where their coordinated activity underlies the entrainment of net-
works to global low-frequency oscillations and to local high-
frequency oscillations (Klausberger et al., 2003; Bartos et al., 2007;
Tukker et al., 2007). Although there is evidence that putative FSIs in
the striatum are strongly entrained to low-frequency (�10 Hz) cor-
tical oscillations (Berke et al., 2004), it is unclear whether this prop-
erty is specific to FSIs and whether it also applies to higher frequency
activities. Anatomical evidence suggests that the synchronized firing
of these neurons could coordinate striatal activity (Kawaguchi, 1993;
Ramanathan et al., 2002). GABAergic interneurons without parval-
bumin, but expressing neuropeptide Y and somatostatin, can be
differentiated electrophysiologically in vitro as they display low-
threshold calcium spikes (LTSs) (Tepper and Bolam, 2004). A third
type of GABAergic interneuron, expressing the calcium binding pro-
tein calretinin, has also not been characterized electrophysiologically
in vivo, although there is anecdotal evidence that they may also dis-
play LTSs (Tepper and Bolam, 2004).

Here, we demonstrate that extracellular recordings of striatal
neurons under halothane anesthesia can be convincingly separated
into four putative subtypes. This enables us for the first time to
separately analyze and compare their relationship to spontaneously
occurring high- and low-frequency oscillations. The results provide
strong evidence that putative GABAergic interneurons could control
the propagation of oscillations in the corticostriatal pathway.

Materials and Methods
Animal preparation. The experiments were performed on nine male
Brown-Norway rats weighing 200 –300 g. Precautions were taken to
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avoid pain and stress in accordance with the German law for the protec-
tion of animals and National Institutes of Health Guidelines on the Care
and Use of Laboratory Animals. The animals were kept under controlled
environmental conditions (ambient temperature, 20°C; 12 h light/dark
cycle). A standard diet and water were allowed ad libidum. After initial
anesthesia with ketamine (20 mg/kg, i.p.) and xylazine (5 mg/kg, i.p.),
animals were tracheotomized, artificially respirated (70% O2/30% N2O/
0.5–1% halothane), and fixed in a stereotactic frame. After trepanation
and removal of the dura, the cortex was exposed bilaterally to allow the
placement of two hydraulic microdrives (FHC). To ensure stability of
anesthesia, electrocardiograms were constantly monitored and all ani-
mals were respired at a rate adjusted to maintain an endexpiratory CO2

level of 3.5– 4% (small animal ventilator, model 683; Harvard Instru-
ments) as measured by a CO2 analyzer (Capstar 100; CWE). Body tem-
perature was monitored and maintained at 36.5–37.5°C using a homeo-
thermic blanket (Fine Science Tools). Whereas halothane level was kept
at 1% during all preparatory manipulations, it was kept constant at 0.5–
0.7% throughout the recording sessions. At the end of each experiment,
the animals were killed with a lethal overdose of pentobarbital (200 mg/
kg, i.p.) and electrolytic lesions (20 �A/20 s) were made to mark the
recording sites within the respective target structure. Subsequently, rats
were perfused transcardially with saline and then with buffered formalin.
To verify the recording locations, fixed brains were sectioned and stained
for Nissl and acetylcholinesterase (supplemental Fig. 1 A, available at
www.jneurosci.org as supplemental material). Pilot experiments were
performed under ketamine/xylazine anesthesia (100 mg/kg ketamine/10
mg/kg xylazine) using the procedure, with the exception that the animals
were breathing freely. Additional dosages of ketamine were given at reg-
ular intervals (every 60 –90 min).

Recording and data acquisition. In each hemisphere, four tungsten elec-
trodes (FHC; impedance, 200–800 k�) were independently targeted to the
desired recording site. Distances between electrodes varied between 300 and
1000 �m. Recording sites were sensorimotor cortex (Cx) and the caudate–
putamen complex (CPu). All striatal cells were recorded from a limited
region of the CPu (1.0 mm anterior to 1.5 mm posterior to bregma), on both
medial and lateral sides of the striatum (2.5–4.0 mm lateral to bregma). The
recording depth varied depending on the desired target structure from 0 to
2.0 mm (Cx) and 2.5 to 6.0 mm (CPu), respectively. Electrodes were left in
place for a minimum of 5 min to allow stabilization before recording. Neural
activity that could not unequivocally be attributed to either cortex or stria-
tum was not included in this study. During the course of each experiment,
neural activity was recorded from two or three different trajectories varying
in the rostrocaudal plane.

Additionally, electrocorticographic (ECoG) recordings were performed
using two skull screws placed above both ipsilateral and contralateral senso-
rimotor cortices (2.7–3.0 mm anterior to bregma, 2.0 mm lateral). A refer-
ence electrode was placed on the skull 4 mm anterior to bregma. Signals from
each electrode were preamplified, amplified and differentially filtered (Multi
Channel Processor; Alpha Omega). From the broadband recordings (1 Hz to
5 kHz), we extracted single-cell action potentials (single-unit activity),
multiple-unit spike activity (multiunit activity) (both bandpass filtered 500
Hz to 5 kHz), and local field potentials (LFPs) (bandpass filter, 1–100 Hz).
Whereas ECoG waves were used as correlates of a coherent synaptic activity
in cortical neurons, striatal LFPs were used as such in striatal neurons. In
some of the recordings, a notch filter was used to eliminate line noise at 50
Hz, and we therefore consistently excluded the bins at 50 Hz from the spec-
tral analysis of these signals. Additionally, we verified in the ECoG and LFP
that potentially induced phase jumps across the notch filter frequency were
small (�10°) by estimating the average phase differences between neighbor-
ing frequency bins of their Fourier spectrum in nonoverlapping sliding win-
dows of 10 s.

Recordings used for analysis had a minimum length of 184 s (mean,
782 � 33 s) each with between one and eight recorded single units.
Recordings with obvious artifacts were discarded. Bipolar derivations of
LFPs were used only when two electrodes were in the striatum of the same
hemisphere. Because LFPs were recorded on only two electrodes per
hemisphere, some unit recordings did not have a corresponding bipolar
LFP. Single units from the same electrode were not used in any
correlation-based analysis because of possible shadowing effects (Bar-

Gad et al., 2001). Unless stated otherwise, units from both hemispheres
were included in all analyses. All data analysis was performed by using
Matlab and its Signal Processing Toolbox (Mathworks).

Spike detection and characterization of unit subtypes. Spike detection
was performed off-line by a level crossing algorithm. The threshold value
was set sufficiently high above the noise level to avoid artificial triggers by
noise peaks (mean threshold � SD, 7.4 � 2.7 �). When possible, multiple
single units were separated on the basis of several waveform parameters,
including principal components, signal energy, peak time, and other
distinguishing features (Offline-Sorter; Plexon). Spike durations were
obtained by reading the time difference between cursors placed at the
points at which the averaged spike waveform departed and returned to
baseline. A mean of 3686 digitized spikes was averaged to characterize the
spike waveform for a given cell.

After spike sorting, the width of each phase of each spike was calculated
using a peak finding algorithm. Spikes were then clustered using three
parameters related to the length of the waveform: the length of the total
initial deflections, the length of the valley, and the sum of these two
parameters. Similar parameters have been previously used to discrimi-
nate putative striatal projection neurons and interneurons (Berke et al.,
2004). Clustering was performed using a K-means supervised clustering
algorithm and was performed using both a value for each record and for
each neuron. As waveform shapes remained highly stable across record-
ings (i.e., when other electrodes were moved), this made little difference
to the result. Final classification used clustering using the individual
records, which slightly improved the estimate.

Detection of LTS bursting. All spike trains were examined for evidence
of LTS bursts. To characterize the types of bursts in the data, we used the
methods of Jeanmonod and colleagues (Jeanmonod et al., 1996; Sarn-
thein and Jeanmonod, 2007), which examine three main criteria. In line
with these studies, a burst here was defined simply as two or more spikes
with interspike intervals (ISIs) of �10 ms. First, a standard ISI histogram
for LTS neurons should be bimodal and have a peak �10 ms. Second, the
duration of ISI was tested for a positive correlation with the ordinal of the
ISI in each burst for bursts of comprising two to five spikes. Third, in
the majority of bursts, the second spike should be smaller than the first. If
65% of 50 randomly selected bursts displayed this characteristic, this
third criterion was considered to be met. Only neurons that passed all
three criteria were considered LTS positive.

Cross-correlation analysis of spike trains. In recent years, analysis of the
oscillatory properties and correlation between multiple neurons is in-
creasingly performed directly in the frequency domain (Rivlin-Etzion et
al., 2006; Witham et al., 2007). Here, we chose to analyze unit activity first
in the time domain, to avoid the assumption that the correlations be-
tween neurons would be oscillatory. To this end, we compared the max-
imum correlations, number of significant correlations, and the Fourier
transform of the cross-correlation to characterize the absolute correla-
tion, the likelihood of correlation, and the oscillatory content of the
correlation, respectively.

Raw cross-correlations were calculated for each pair of spike trains and
normalized by removing the mean correlation across the lag range. The
aim of the analysis was to detect pairs of spike trains in which the number
of coincidences and/or oscillatory properties were significantly different
than those that would be predicted by the first-order characteristics of the
spike train (i.e., rate and interspike interval distribution). To this end,
cross-correlations were calculated using surrogate spike trains con-
structed by globally shuffling the interspike intervals of both neurons and
calculating their correlation 1000 times. This produced a null hypothesis
distribution for each lag point. The real correlation was then converted to
a t score (the number of SDs of the true correlation from the mean of the
null hypothesis) that was used as a measure of the correlation strength, as
it is dependent mainly on the temporal locking of the two spike trains.
The maximum absolute t score within the center of the cross-correlation
(0 � 0.25 s) was used for statistical comparison. The absolute score
indicates how strongly the neurons influenced each other, regardless of
the sign. A cross-correlation was considered significant at a given lag if it
was outside 2 SDs of the null hypothesis (again, significantly positive and
negative correlations are grouped together). This criterion was used to
construct significance histograms (see Figs. 5–7), which were used to
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investigate the likelihood of significant correlation between a specific
pair type at a given lag.

Correlation strength was calculated in this way for each pair of spike
trains using two sets of parameters. To maximize the detection and visu-
alization of low- and high-frequency activities, a 2 s and a 0.2 s window
were used, respectively. In cross-correlation-based analysis, large-
amplitude common elements at low frequencies tend to dominate (Chal-
lis and Kitney, 1990). To test for any correlation between spike trains at
higher frequencies, cross-correlations calculated with the smaller win-
dow were high-pass filtered at 30 Hz. To smooth the low-frequency
activities, a 10 Hz low-pass filter was also used for some analyses. In both
cases, a two-pole Butterworth filter was applied. Additionally, the Fou-
rier transform of the higher resolution cross-correlation was used to
evaluate the amplitude of oscillations in the correlations. As the Fourier
transform (as opposed to windowed power spectral estimate) is vulner-
able to outlying values, a multitaper approach, with three tapers, was
used to stabilize the estimate. For analysis of low- and high-frequency
activity, the center 0.5 and 0.3 s of the cross-correlation were used, re-
spectively. This process was performed on the t score, which ensured that

the amplitude of the oscillations in the cross-
correlation were the result of temporal correla-
tions above those expected because of the pri-
mary spiking statistics.

Unless otherwise stated, statistical compari-
sons between different putative neuron groups
were calculated using Wilcoxon’s rank sum test
with Bonferroni–Holmes step down correc-
tions for multiple comparisons. For selected
analysis, results that were significant without
the corrections are indicated with one asterisk
and those significant with the correction are in-
dicated with two asterisks (for details, see indi-
vidual figure legends).

Spectral analysis of LFPs. For LFPs, all spectral
parameters were computed using 0.25 Hz resolu-
tion [4040 points/fast Fourier transform (FFT)
window] to allow separation of low-frequency ac-
tivities, and with a Hanning window to prevent
spectral leakage. Coherence was computed using
the same parameters and the square root of the
coherence was Fisher transformed to normalize
the variance before any averaging or statistical
analysis (Rosenberg et al., 1989). Coherence was
calculated between the ECoG and the raw, mo-
nopolar LFP and the bipolar derivation of the
LFPs in the same hemisphere.

The coherence between the ECoG and the
bipolar derivation should provide a measure of
coupling relatively free from volume conduc-
tion and global noise. However, it is possible
that coherence after bipolar derivation could be
contaminated by subtraction artifacts or, con-
versely, underestimates the real coherence. To
try to counter these problems, the phase spectra
was calculated for the ECoG to each monopolar
and bipolar pair, together with 95% confidence
limits as described by Halliday et al. (1995). A
detailed investigation of the phase relations be-
tween cortex and striatum is beyond the scope
of this study, as the phase delay is ambiguous in
complex systems, unless used together with
complementary techniques (Cassidy and
Brown, 2003). Therefore, we used confidence
limits of the phase spectra to establish the inci-
dence of nonzero phase coupling across the fre-
quency range. By definition, if at a given fre-
quency the number of phase values with
confidence intervals excluding 0 and �180°
(which could be attributable to an arbitrary po-
larity reversal) greatly exceeds 5% (the propor-

tion that would be expected by chance), the data would be incompatible
with a situation in which volume conduction or noise are responsible for
all of the significant coherence (Magill et al., 2006). In the case of bipolar
derivations, these results would also argue against coherence caused by
subtraction artifacts (Magill et al., 2006). This was statistically evaluated
by using Fisher’s exact test to compare the sum of nonzero values across
a given frequency bands to the number that would be expected by chance
for all the ECoG-striatal LFP pairs within each animal.

To investigate the fundamental frequencies in the ECoG and LFP data,
we used the correlation matrix method previously described by Masi-
more et al. (2004) that has successfully been applied to basal ganglia LFP
data (Fogelson et al., 2005; Masimore et al., 2005). Briefly, power spectral
parameters were calculated in short time windows (10 s/5 s overlap or
12 s/6 s overlap). The correlation coefficient was calculated for all values
across time for each frequency bin against all other frequency bins from
0.5 to 100 Hz with a frequency resolution of 1 or 0.25 Hz to examine high
and low frequencies, respectively. Correlations that were not significant
after Bonferroni’s correction were then set to zero. Significant correla-

Figure 1. LTS bursting in striatal neurons under halothane anesthesia. A–D, Burst and interspike interval analysis of a putative
parvalbumin negative interneuron displaying LTS bursts. A, Interspike interval histogram of a single LTS-positive neuron. Note the
bimodal distribution with a peak �10 ms. The inset shows an example of a single burst from this neuron. B, The ISI return plot of
the same neuron shows asymmetry at the diagonal�10 ms showing that the interburst interval is not constant. This is elaborated
in C, which demonstrates that the interspike interval positively correlates with its ordinal in the burst shown for bursts consisting
of up to five ISIs. D, The length of the first interspike interval decreases together with the number of spikes in the burst. E, F, Plot
of the mean ordinal (E) and ISI histogram (F ) showing that these features are consistent in all the neurons demonstrating LTS
bursting. The shaded areas in F show the SEMs across neurons.
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tions were separated into positive and negative
correlations and Fisher transformed before av-
eraging. Positive/negative separation was per-
formed to clarify visualization and reveal
whether there were both positive and negative
correlations in different records, which would
not be clear after averaging (averaged signifi-
cant positive and negative correlations could
result in a false zero). Correlation matrices for
each record were first averaged within animals
and subsequently across animals. Correlations
therefore had to be highly consistent within and
between animals to result in a high coefficient in
the final analysis. Correlation matrices provide
two types of information. First, patches on the di-
agonal demonstrate covariation in power over
time, indicating that these frequencies form a
functional band. Second, significant values out-
side the diagonal show correlation between the
involved bands (for more details, see Results).

Analysis of spike-field phase locking. Oscilla-
tory modes of field potentials are commonly
considered as an indicator of coordinated net-
work dynamics (Elul, 1971; Mitzdorf, 1985;
Logothetis and Wandell, 2004). To explore how
the spiking activity of identified neurons is re-
lated to this rhythmic activity, we evaluated the
phase relationship between the ECoG/LFP sig-
nal and the spiking activity of single units. To
this end, we expanded on current methods
originating from phase synchronization analy-
sis (cf. Varela et al., 2001; Friedrich et al., 2004)
to study the instantaneous phase of the field
potentials at spike times.

ECoG and LFP signals were filtered using a
neutral-phase bandpass filter (sixth-order Butter-
worth), in which the width of each of the 50 de-
fined pass bands (centered on frequencies from 2
to 126 Hz) was chosen as �15% of the respective
center period (exemplified in Fig. 4A for three
different frequencies). In a subsequent step, the
instantaneous phase of the field potentials was cal-
culated from the analytic signal obtained via the
Hilbert transformation (for details, cf. Lachaux et
al., 1999; Le Van Quyen et al., 2001). In this for-
malism, troughs of the LFP correspond to a phase
of 180°. The calculation of the analytic signal can
be applied to arbitrary signals, but its interpreta-
tion as instantaneous phase is difficult if the signal
contains time periods in which either the ampli-
tude becomes too small to discriminate the oscil-
lation from background noise, or in which the
regular oscillation is disrupted (Boashash, 1992).
To account for these effects, we discarded all cal-
culated phase values that violated the monotonic-
ity of the phase time series or exhibited instanta-
neous phase jumps.

We then analyzed the distributions of ex-
tracted phase values (Denker et al., 2007) using
tools from circular statistics (Mardia and Jupp,
2000). In particular, we obtained the mean
phase � of the circular average,

Rei� � �
i

N

ei��ti�,

where �(ti) indicates the phase of the field po-
tential at time ti of spike i. In addition, we used

Figure 2. Separation of striatal neuron subtypes based on waveform parameters and LTS bursting. A, The parameters of
mean waveforms for each neuron were plotted against each other, revealing three clear clusters, which were verified using
a clustering algorithm. B, The clusters corresponded to three types of waveforms, which could be distinguished by eye
after sorting. Long waveforms (red cluster/waveform) and very short waveforms (green cluster/waveform) correspond to
previous descriptions of cholinergic neurons, usually referred to as tonically active neurons (pTANs) and parvalbumin-
positive GABAergic interneurons, usually referred to as fast spiking interneurons (pFSIs), respectively. The majority of
neurons had a waveform between these two extremes (blue cluster/waveform) and were thought to be putative medium
spiny projection neurons (pMSNs). With one exception, all of the neurons identified as LTS positive (black spheres) were in
this middle cluster (A) and are also shown separately (inset). C, D, Histograms of the rate and burstiness of putative
neurons; color codes are as above. C, The rate of all putative interneuron types was significantly higher than that of the
pMSNs. D, pLTS units had a significantly larger burst rate than all other putative neuron types. In addition, pFSIs were
burstier than pTANs and pMSNs. E, The normalized interspike interval histograms averaged across all putative neuron
types showed clear variations between the subtypes. F, LTS neurons had significantly more ISIs �10 ms than any other
type. In the other time windows analyzed, there were significant differences between all putative subtypes.Error bars
indicate SEM. Asterisks indicate significance with Bonferroni–Holmes correction.
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the transformation of the vector strength R to the circular SD
� � �� 2 log R as a measure of the concentration of the phase distri-
bution. For small values of �, this measure relates to the SD of a normal
distribution, whereas for flat distributions �3 �.

We quantified whether the spikes recorded from each neuron showed a
significant phase preference using two distinct criteria. First, we tested
against the null hypothesis that the phase sample was taken from the uniform
circular distribution (Rayleigh’s test), which would be expected assuming a
regular (e.g., filtered) field potential and an independent spike train with a
Poisson spiking statistics. However, deviations from this assumption toward
more regular spike trains as observed in this study could impose a certain
degree of chance locking between the two signals. To examine whether phase
distributions showed a stronger phase preference than expected given their
underlying spiking statistics, we tested the measured value of the vector
strength R against the distribution of R obtained from 1000 surrogates con-
structed from the original data. For each surrogate, we locally shuffled the
interspike intervals of the recorded spike train in nonoverlapping windows
of 10 s, while keeping the field potential trace unchanged. By doing so, we
aimed to destroy the phase relation to the field potential, while retaining to
first order the regularity of the spike train and respecting the overall rate
profile. Unless otherwise stated, we say that a neuron has a nonuniform
phase distribution if it passes the first criterion based on the Rayleigh’s test,
and that it is locked with respect to the surrogates if it passes the second, more
restrictive criterion.

Results
Detection of low-threshold spike bursts allows separation of
putative parvalbumin-negative GABAergic interneurons (pLTS)
LTS bursting is a common feature of thalamic neurons during sleep
(Llinás and Steriade, 2006) and can be reliably detected in extracel-
lular recordings (Jeanmonod et al., 1996; Lacey et al., 2007). In vitro
recordings have shown that, in the striatum, only parvalbumin-
negative GABAergic interneurons display LTS bursting in response
to current injection (Tepper and Bolam, 2004). Figure 1, A–D, shows
an example of a single neuron displaying all the key features of LTS
bursting. These include a bimodal ISI histogram with a peak �10
ms, a positive correlation between the ISI and ordinal of the ISI in the
burst, and a negative correlation between the first ISI and the size of
the burst. In total, 15 neurons (21 recordings) in the sample matched
the two key markers of LTS (i.e., an increase in ISI with the ordinal of
the spike in the burst and a significant number of ISIs �10 ms).
Figure 1, E and F, shows that these properties were highly consistent
within the LTS-positive population. In addition, these neurons had a
high percentage of bursts with a smaller second spike than the first
(83 � 10% SD). LTS-positive neurons were recorded in five of nine
animals across a range of depths. These LTS-displaying neurons
were considered to be putative parvalbumin-negative GABAergic
interneurons (pLTS). Recordings of pLTS, and all other neuron
types, were highly stable across hundreds of seconds (supplemental
Fig. 1C, available at www.jneurosci.org as supplemental material),
and bursts were therefore unlikely to be the result of injury discharge
or other phenomenon related to recording conditions.

Clustering of unit waveforms allows separation of three unit
subtypes verified by physiological criteria
Previous studies have described the different waveform proper-
ties of different striatal neurons that have been subsequently la-
beled (Wilson et al., 1990; Kawaguchi, 1993; Mallet et al., 2005).
We plotted three waveform parameters from all recorded neu-
rons: the peak, initial first deflections, the valley and the sum of
the two. These parameters yielded three clusters, which could be
clearly separated by a supervised clustering algorithm (Fig. 2A).
The long waveforms (red) of one of the clusters correspond to
previous descriptions of giant cholinergic interneurons, often
called TANs, and we therefore consider these cells to be putative

neurons of this type (pTANs). Conversely, waveforms in the clus-
ter with the shortest waveforms (green) match descriptions of
parvalbumin-positive GABAergic interneurons, putative fast
spiking interneurons (pFSIs). The majority of neurons had a
waveform between these two extremes, conforming to previous
reports of medium spiny projection neurons (pMSNs). The vast
majority of waveforms for pLTS neurons were found in the cen-
tral pMSN cluster, consistent with previous reports that their
waveform is longer than FSIs (Kawaguchi, 1993) (Fig. 2A, inset).
One pLTS waveform was in the pTAN cluster, but lacked the
distinctive shape seen in the majority of pTAN waveforms (Fig.
2A). As there are no reports of LTS bursting in TANs, this may
have been attributable to the electrode being particularly close to
the soma (Gold et al., 2006), as indicated by the high signal-to-
noise ratio in the recordings of that neuron. The consistency of
the waveform shape across long periods of time (600 –1500 s)
could be clearly demonstrated in individual examples of each
putative subtype in different animals (supplemental Fig. 2, avail-
able at www.jneurosci.org as supplemental material).

The second step was to verify the separation using known
physiological properties of the neurons that are independent of
waveform and LTS-related parameters. The mean rate of the
pMSNs was significantly lower than all other putative subtypes
(Fig. 2C, Table 1). In addition, pFSIs had a significantly higher
rate than pLTS cells. Both pLTSs and pFSIs had more bursts per
second than pMSNs and pTANs using the burst criteria applied
for LTS analysis (Fig. 2D, Table 1). The mean firing rate of the
pFSIs (�6 spikes/s), although on first reflection seems low, is
faster than that observed in histologically identified FSIs recorded
under ketamine anesthesia (Mallet et al., 2005) and within the
range seen in the awake animal (Berke et al., 2004). Finally, the
normalized interspike interval histogram was compared using
four different windows (4 –10, 11– 80, 100 –250, 251–500 ms).
Clear differences could be seen in the profile of the ISI histogram
for each putative subtype (Fig. 2F, Table 2). The ISI histogram for

Table 1. Statistical comparisons of rate and burst parameters

Cell type pFSI pTAN pLTS

Rate pMSN p � 0.0001 p � 0.0001 p � 0.02
pFSI NS p � 0.01
pTAN NS

Burst (10 ms ISI) pMSN p � 0.0001 NS p � 0.00001
pFSI p � 0.0046 p � 0.005
pTAN NS

Significance is noted only after Bonferroni–Holmes correction within each parameter.

Table 2. Statistical comparisons of normalized ISI histogram

Time window Cell type pFSI pTAN pLTS

4 –10 ms pMSN 0.0230 NS �0.0001
pFSI 0.0030 0.0001
pTAN 0.0004

10 – 80 ms pMSN 0.0000 NS NS
pFSI NS 0.0001
pTAN NS

100 –250 ms pMSN 0.0007 0.0002 NS
pFSI NS NS
pTAN 0.0032

250 –500 ms pMSN NS 0.0111 NS
pFSI 0.0034 NS
pTAN 0.0043

ISI histograms were calculated between 1 and 912 ms and normalized. Significance is noted only after Bonferroni–
Holmes correction within each window.
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pTANs was unimodal with a clear peak
�250 ms, consistent with a regular firing
rate of 4 –5 Hz as previously described in
several preparations (Aosaki et al., 1995;
Bennett et al., 2000; Apicella, 2007). In
contrast, pFSIs consistently had a bimodal
distribution suggestive of bursting with a
longer interburst interval compared with
LTS neurons with a peak at �20 ms, con-
sistent with subsequently labeled record-
ings under ketamine (Mallet et al., 2005)
(Fig. 2D). In vitro studies have led to the
suggestion that this is the likely firing pat-
tern for FSIs in vivo (Tepper and Bolam,
2004). Significant differences were found
between all combinations of putative neu-
rons in at least one of these windows (Fig.
2D, Table 2).

Halothane anesthesia leads to multiple
interrelated oscillatory activities
Spontaneous population activity in cortex
and striatum, in the form of LFPs and
ECoGs, has been extensively characterized
under urethane and/or ketamine/xylazine
anesthesia, but far less so using volatile an-
esthetics. We observed spectral properties
of these population signals under halo-
thane that markedly differed from those
reported under ketamine-based anesthe-
sia. Power spectra from striatal LFPs and
ECoG displayed prominent peaks in the
delta range (2– 4 Hz) and the gamma range
(40 – 80 Hz), which were highly consistent
across animals (Fig. 3A–C). Both peaks
were reduced, but clearly present in the bi-
polar derivations of both the striatal LFP
power and the coherence between the
ECoG and striatal LFP, suggesting that
they were not the result of volume conduc-
tion between the two structures (Fig. 3A–
C). This was supported by analysis of the
phase spectra, which demonstrate that,
even in the monopolar case, the percent-
age of coherence values with nonzero
phase was well above chance across the fre-
quency range from 1 to 100 Hz (supplemen-
tal Fig. 4, available at www.jneurosci.org as
supplemental material). The bands with the
highest monopolar coherence, 2–4 and
40–80 Hz (excluding 48–52 Hz, which
could be affected by line noise), had the larg-
est percentage of nonzero phase delays
(�60–70%), suggesting that the frequencies
with the highest coherence were attributable
to neuronal interaction and not volume con-
duction, which would be expected to have a
delay incorporating 0° or �180°. For ECoG
and bipolar-LFP pairs, the distribution of
nonzero coupling was more evenly distrib-
uted across the frequency spectra, as previ-
ously shown for similar data (Magill et al.,
2006). At these frequency ranges, the sum of

Figure 3. Spontaneous corticostriatal population activity under halothane anesthesia. A, B, The power spectra of the ECoG (A)
and striatal LFP (B) have two prominent peaks at low (�4 Hz) and high frequencies (40 –75 Hz). C, These activities are coherent
between the structures whether using the monopolar (blue) or bipolar (red) striatal LFP. The shaded areas show SEMs across
animals. D, E, Time–frequency analysis of power in the cortex (ECoG; top) and striatum (LFP; bottom) reveals that these peaks are
often composed of more focal activities that wax and wane over time. F, G, The relationship across frequency bins can be described
using correlation matrices in which the Pearson correlation coefficient is calculated for the fluctuations in power over time for each
frequency with all other frequencies between 0.5 and 100 Hz. Hence the diagonal (each frequency correlated with itself) is always
1. The matrices show separately the positive correlations above the diagonal (top) and the absolute value of negative correlations
below the diagonal (note that positive and negative correlations are coded by two distinct color scales). Patches above the
diagonal show neighboring frequencies that covary over time and can therefore be considered as bands (marked by the white
lines). Patches off the diagonal indicate positive and negative correlations between those bands. The matrix for the ECoG shows
two individual bands between 35–55 and 60 – 80 Hz. Activity is negatively correlated between these two frequency ranges within
the gamma band. H, I, The mean bipolar LFP power (H ) and coherence (I ) between the ECoG and LFP showed were similar
between recordings containing each neuron type (blue, pMSN; green, pFSI; red, pTAN; black, pLTS).
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nonzero values was significantly above that expected by chance for
both monopolar and bipolar pairs within each individual animal
(Fisher’s exact test, p � 0.0001).

Spectral analysis of large data segments can mask fluctuations
in dominant frequencies over time (Fig. 3D,E). To analyze such
temporal relationships, we used a correlation matrix approach
(Fig. 3F,G), which has been previously used to reveal interfre-
quency relationships in corticobasal ganglia networks (Masimore

et al., 2004; Fogelson et al., 2005). The correlation matrix uncov-
ers two pieces of information. First, continuously significant bins
around the diagonal show frequencies that covary over time. The
matrix for cortical ECoG shows discrete bands in the lower fre-
quencies at 2– 4 and 5–9 Hz, and at high frequencies between
35–55 and 60 – 80 Hz (marked on Fig. 3F). The matrix for striatal
LFP is very similar, although there is also a clear band around beta
frequencies (10 –30 Hz) that is not a prominent feature in the

Figure 4. Phase locking of striatal neurons to ECoG oscillations. A, Sketch of the phase analysis. The raw ECoG signal (left) is filtered separately for different frequency bands, illustrated by three
examples on the right. The instantaneous phases at spike occurrences (ticks) are assessed separately for each frequency band. B, Distribution of the mean phases of each neuron showing a
nonuniform phase distribution ( p �0.05, Rayleigh’s criterion) at a filter center frequency of 3.1 Hz (cutoff at 2.7 and 3.6 Hz). Here, and in the following panels, the distributions are shown separately
for neurons classified as pMSN, pFSI, pTAN, and pLTS. C, Relative number of significantly ( p � 0.05) locked neurons using the Rayleigh (red curve) and surrogate (gray histogram) criteria for
significance evaluation, resolved by the filter center frequency. The expected percentage of false positives of 5% is indicated by the dashed lines. D, Frequency-resolved phase distributions computed
from all spikes recorded from neurons that exhibited a nonuniform phase distribution ( p � 0.05, Rayleigh’s criterion). The color code of each graph is chosen to maximize the contrast by mapping
maximum and minimum values to the same color in all graphs (red and blue, respectively). The absolute values for each graph can be read from the color bar on the right. For each frequency, the
phase distribution was normalized to its sum across the 50 bins of the vertical phase axis, such that a flat distribution would show a probability of 0.02 per bin (marked by a black line in each color
bar). Results are displayed for frequencies, in which 	10% of neurons locked to the ECoG (compare C, red curve). E, Consistency of phase across neurons. Frequency-resolved estimate of the
variability of the mean phase across neurons measured by its circular SD. Low values of this measure indicate consistency of the mean phase across neurons. As in D, for each frequency only neurons
with a nonuniform phase distribution enter the analysis, and results are displayed for a minimum of 10% of the neurons showing such locking. F, Variability of locking strength across neurons.
Histogram of the circular SDs of the phase distributions of each neuron resolved by frequency. Colors indicate counts per bin; their mean is indicated by a white curve. In contrast to D and E, all neurons
enter the distribution regardless of whether they exhibit a nonuniform phase distribution.
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cortex. Second, significant frequencies
outside the diagonal show either positive
or negative correlations between those
bands identified on the diagonal. These
will not be discussed in detail here, but we
point out that the two prominent fre-
quency ranges within the gamma band
(35–55 and 56 – 80 Hz, respectively) are
anticorrelated in their power, providing
additional evidence that they originate in
discrete activities.

A central aim of this work was to com-
pare the oscillatory correlation between
different unit subtypes. This comparison
would be more meaningful if the oscilla-
tory conditions at the level of the cortical
and striatal population were not signifi-
cantly different during the recording of the
different neuronal types. To this end, the
power and coherence of the different re-
cordings was compared in the frequencies
identified by the correlation matrices
based on which units were in each record-
ing [delta (2– 4 Hz), theta (5–9 Hz), low
gamma (40 –55 Hz; excluding 48 –52 Hz,
which could be affected by line noise), and
high gamma (56 – 80 Hz)]. After Bonfer-
roni–Holmes correction for number of
frequency band comparisons, no signifi-
cant difference was found in the normal-
ized ECoG power or monopolar striatal
LFP in any frequency range ( p 	 0.05).
There was also no difference in the nor-
malized bipolar LFP power, arguably the
most accurate measure of the population
activity in the striatum, without any cor-
rection for multiple comparisons (Fig.
3H) (rank sum test, p 	 0.05). Finally, no
significant difference was found in the co-
herence between ECoG and striatal mo-
nopolar and bipolar LFPs (Fig. 3I). It
therefore seems reasonable to conclude
that differences between the oscillatory
properties of different neuron subtypes
were unlikely to reflect global state changes
that can be caused by factors such as vari-
ations in the level of anesthesia across dif-
ferent recordings.

Phase locking of striatal neurons to
cortical oscillations
We examined the phase relationship be-
tween the spiking activity of individual
neurons and the oscillatory ECoG dynam-
ics (Fig. 4A). For each neuron, we ex-
tracted the instantaneous phase at the time of spike occurrences
and calculated its mean. Figure 4B shows the distributions of
mean phases of the population of neurons that showed a signifi-
cant nonuniform phase distribution ( p � 0.05). Results are sep-
arated by the putative neuronal subtype, and relate to the low
delta frequency band. At this frequency, all neuron types showed
a strong tendency to spike shortly after the peak of the ECoG
oscillation cycle, regardless of the strength of the observed phase

locking. For the putative GABAergic interneurons, pFSI and
pLTS, a majority of neurons favored a mean spiking phase that
was slightly advanced by �20 –30° from that of either pMSNs or
pTANs, although significance of this finding could not be estab-
lished because of the small sample sizes.

We quantified the relative number of neurons that were
locked to the ECoG as a function of frequency using two distinct
criteria. In a first step, we tested against the null hypothesis that

Figure 5. Slow correlation between pMSNs and putative interneurons. Correlation between different putative interneurons
and pMSNs was assessed using cross-correlation. For all panels, the color code for pair types is the same: blue, pMSN–pMSN;
green, pMSN–pFSI; red, pMSN–pTAN; black, pMSN–pLTS. A–D, The t score is the number of SDs from the surrogate correlation
distribution calculated from the same neurons with shuffled interspike intervals. The mean t score for each pair type is shown by
the lines (scale on left), with the shaded areas showing the SEM. The histogram shows the percentage of neurons in which 2 SDs
were exceeded at a given lag regardless of the sign of the correlation. More significant correlations than would be expected by
chance were observed between pMSNs and other pMSNs (A), pFSIs (B), pTANs (C), and pLTS cells (D). E, The maximum t score
(between �250 ms) of the correlation was significantly higher for pMSN–pFSI correlations than for pMSN–pTAN and pMSN–
pLTS correlations. F, When the strength of ipsilateral (dark bars) and contralateral (light bars) correlations was compared, only
pMSN pairs showed a significant difference with correlations being stronger between ipsilateral pairs. Error bars indicate SEM.
Asterisks indicate significance without (*) and with (**) Bonferroni–Holmes correction.
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the phase sample was taken from the uniform circular distribu-
tion (Rayleigh’s test), which would be expected assuming a reg-
ular LFP and an independent spike train with a Poisson spiking
statistics (Fig. 4C, red curve). We observed that, for each of the
neuronal subtypes, 60 – 80% of the respective neurons showed
significant phase locking to the low-frequency component with a
peak at 4 Hz. In addition, pMSN, pTAN, and pLTS exhibited a
second smaller peak at �8 Hz (pFSI, 11 Hz). Moreover, pFSIs
showed significant locking at two frequencies not observed for
the other neuron types, identified by a small peak at �15 Hz and
strong component (46%) in the lower gamma band at �35 Hz.
For all other neuron types, the number of neurons with a signif-
icant phase preference at gamma frequencies was only found at
chance level (5%, as indicated by the dashed line in Fig. 4C show-
ing the expected percentage of false positives).

In a second step, we accounted for chance locking caused by
potential regularity of the spike trains by testing the strength of
observed phase locking against surrogates derived by local shuf-
fling of the ISIs (for details, see Materials and Methods). We
observe a similar percentage of significantly locked neurons (Fig.
4C, gray histograms) as for Rayleigh’s test (red line), excluding
the possibility that the observed locking is a trivial consequence of
the underlying spike train statistics.

In Figure 4D, we show the corresponding phase distributions
constructed from all spikes for each frequency, in which the per-
centage of locked neurons exceeded 10% using the test of non-
uniformity (compare Fig. 4C, red curves). For low frequencies, all
neuron types have comparable phase distributions related to the
peaks indicated above. Although these phase distributions for the
delta band frequencies significantly differed in mean and/or vari-
ance for all subtype comparisons (Mardia–Watson–Wheeler test,
p � 0.01), they did not provide a clear criterion for the separation
of the neuronal subtypes. The exceptional locking of pFSI in the
gamma range is associated with a weakly modulated phase distri-
bution. The reason for the broadening of the population-
averaged phase distribution is twofold: First, the mean phases
across individual pFSI neurons were less consistent than ob-
served for other frequencies in which neurons exhibited phase
locking (Fig. 4E). Second, phase distributions obtained from
each neuron were less concentrated compared with those found
in the delta range (Fig. 4F). In conclusion, we observed strong
and similar locking of all neuronal subtypes to the delta frequency
band of the ECoG, but pFSIs in addition expressed locking in the
low gamma frequency band in nearly one-half of all observed
neurons.

To complement these findings, we repeated the previous anal-
ysis in which the reference signal was replaced by an LFP record-
ing (excluding the electrode used to record spiking activity). We
obtained similar results (data not shown), but note two major
differences: the preferred phase consistently differed from that
obtained for the ECoG independent of the neuronal subtype, and
was approximately shifted by 180°. Furthermore, we observed
that the frequency range in which significant locking of pFSI

neurons to gamma oscillations is observed, increased to include
also higher gamma frequencies than 60 Hz. The exclusive en-
trainment of the class of pFSI to gamma frequency oscillations in
both types of field potentials provides evidence that activity of
pFSI neurons is tightly related to cortical and striatal oscillations
in this frequency range.

pMSNs correlate more strongly with putative GABAergic
interneurons than pTANs
Cross-correlations were computed between pMSNs and all si-
multaneously recorded single neurons not recorded on the same
electrode (Fig. 5A–D). All pair types had more significant corre-
lations than would be expected by chance (5%), with the most
correlations occurring around zero lag (Fig. 5A–D, histograms).
The strength of connectivity between different neuron types was
assessed by comparing the maximum t scores (the number of SDs
from the surrogate null hypothesis) for each pair type (Fig. 5E).
pMSNs were significantly more correlated with pFSIs (n � 59)
than pTANs (n � 20; p � 0.004). They were also more correlated
with themselves (n � 80; p � 0.04), although this was not signif-
icant after correction for multiple comparisons. pMSNs–pMSN
pairs were the only type to show a significant difference between
ipsilateral (n � 38) and contralateral (n � 42) pairs ( p � 0.0004),
indicating that pMSNs were more correlated if they were in the
same hemisphere (Fig. 5F). In contrast, differences between
pMSN and putative interneuron pairs were not significant. Low-
frequency correlations between pMSNs, pFSI, and pLTS neurons
could be clearly observed in raw examples (supplemental Fig. 5,
available at www.jneurosci.org as supplemental material). To-
gether, these results indicate that the locality of neuron pairs
affected correlation between the putative projection neurons
more than the correlation between projection and interneuron.

As all pair types showed some evidence of oscillation, we then
compared the amplitude of the cross-correlations at the low fre-
quencies in the ECoG/LFP signals (Fig. 5A–D). In all low-
frequency ranges, the amplitude of the cross-correlation between
pMSNs and pFSI or pLTS neurons was significantly higher than
for pMSN–pTAN pairs (Table 3). pMSN–pFSI pairs where also
more significantly correlated than pMSN–pMSN pairs in the
lowest range. In the 5–9 Hz range, the amplitude of pMSN–pLTS
was also significantly greater than pMSN–pMSN correlations. In
summary, pMSNs showed the highest correlation between them-
selves and putative GABAergic interneurons. Correlations be-
tween putative projection and GABAergic interneurons were os-
cillatory, whereas those with pTANs were usually not.

Pilot recordings under ketamine anesthesia showed that stri-
atal neurons could also be differentiated by waveform and were
strongly correlated when recorded using another anesthetic
preparation (supplemental Fig. 3, available at www.jneurosci.org
as supplemental material).

Correlated activity is stronger between pairs of pFSIs than
between pFSIs and other putative interneurons
More dramatic differences were observed in correlations between
putative interneurons. pFSI pairs were often highly oscillatory
across the whole lag range, and the phase of the oscillation at �5
Hz was consistent enough to accumulate in the mean (Fig. 6A).
Closer examination of individual pairs revealed that correlations
were observed both at very low frequencies (Fig. 6B, top left) and
at 5 Hz (Fig. 6B, bottom left), but that in both cases the correla-
tion was extremely strong and centered around zero. The fre-
quency of the correlation matched the dominant power in the
ECoG (corresponding panels to the right). Correlations between

Table 3. Statistical comparisons of low-frequency power in pMSN cross-correlations

Correlation type 0 –2 Hz 2– 4 Hz 5–9 Hz

pMSNpMSN/pMSNpFSI p � 0.0005 NS NS
pMSNpMSN/pMSNpTAN p � 0.008 p � 0.007 p � 0.002
pMSNpMSN/pMSNpLTS NS NS p � 0.01
pMSNpFSI/pMSNpTAN p � 0.00001 p � 0.0033 p � 0.005
pMSNpFSI/pMSNpLTS NS NS NS
pMSNpTAN/pMSNpLTS p � 0.00005 p � 0.02 p � 0.0001
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pFSIs and pLTS neurons were also common around zero lag
(75% pairs) (Fig. 6C). Strong low-frequency correlations be-
tween pLTS and pFSI cells could be clearly observed in raw cross-
correlation histograms (supplemental Fig. 5, available at www.
jneurosci.org as supplemental material). As with pFSI pairs, anal-
ysis of single pairs showed similar low and 5 Hz correlation as
pFSI pairs, which matched the dominant frequency in the ECoG
power (Fig. 6D).

pFSIs were correlated both with themselves and pLTS neurons
significantly more than with pTANs ( p � 0.0003; p � 0.05) (Fig.

6H). Although strong correlations could be found between pFSIs
and pTANs, they were clearly different in nature. Although the
majority of putative GABAergic interneuron correlations were
significantly positive around zero lag, the significant pFSI–pTAN
correlations were negative with a positive latency when the pFSI
was the reference (Fig. 6E,F). Despite the similar lag and oscilla-
tion of pFSI–pFSI and pFSI–pLTS correlations, pFSI–pFSI pairs
were more correlated than pFSI–pLTS pairs ( p � 0.03) (Fig. 6G),
although this was not significant after correction. A large peak in
the amplitude of the cross-correlation was observed between

Figure 6. Low-frequency cross-correlation analysis between pFSIs and putative interneurons. Cross-correlations between different types of putative interneurons showed marked
differences. For all panels, the color code for pair types is the same: green, pFSI–pFSI; red, pFSI–pTAN; black, pFSI–pLTS. As in Figure 5, the curves in A, C, and E denote the average t score,
and the histogram shows the percentage of neurons in which 2 SDs were exceeded at a given lag regardless of the sign of the correlation. A, Pairs of pFSIs (n � 17) were almost always
significantly correlated at zero phase lag and were often highly oscillatory. B, Two types of correlations were observed, demonstrated here by two representative example neurons. The
top cross-correlation is slow with some oscillation and was accompanied by slow oscillations in the ECoG (right). The bottom correlation is highly oscillatory at �5 Hz and is accompanied
by power at the same frequency in the ECoG (right). ECoG in both cases is averaged across the hemispheres. Note that, in both cases, the t score is large and centered on zero. C, The
majority of pFSI–pLTS pairs (n � 11) were significant near zero lag but showed little evidence of oscillation. D, Analysis of single pairs shows, however, that these pairs also oscillate
depending on the ECoG power (same format as B), albeit less than the FSI pairs. Note that both correlations are centered on zero. E, In contrast, fewer pFSI–pTAN pairs (n � 16) were
significantly correlated and those that were exhibited negative and nonoscillatory correlations. F, In six pairs in which there was a significant t score, however, the pattern of correlation
was highly uniform with a significant drop in coincidences 200 ms after the firing of the pFSI (the reference). G, The particularly strong 5 Hz oscillations of some pFSI pairs (not observed
for other putative interneuron types) was visible in the autocorrelograms of simultaneously recorded putative interneurons (color code as above). H, The maximum t score (between
�250 ms) of the correlation was significantly higher for pFSI–pFSI correlations than for pFSI–pTAN and pFSI–pLTS correlations. pLTS correlations were also significantly stronger than
pFSI–pTAN correlations. Error bars indicate SEM. I, FFT of the correlation of the different neuron types confirmed the pFSI pairs were significantly more oscillatory at �5 Hz. Asterisks
indicate significance without (*) and with (**) Bonferroni–Holmes correction.
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pFSI pairs at �5 Hz and the amplitude of the cross-correlation
significantly greater in the 5–9 Hz range than for pFSI–pTAN
pairs (Fig. 6H, Table 4). Although the amplitude in this range was
not significantly greater than for pFSI–pLTS pairs, single exam-
ples could be demonstrated in which a pFSI followed this fre-
quency, whereas pLTS neurons did not (Fig. 6G), and pFSIs
showed a uniquely strong relationship to cortical oscillations at
this frequency over time (see below) (see Fig. 8). Differences
between pFSI–pFSI and pFSI–pTAN pairs could also be seen in
relation to oscillations of different frequencies that could be ob-
served in single recordings (supplemental Fig. 6, available at
www.jneurosci.org as supplemental material).

After filtering of low frequencies, only pFSI–pFSI correlations
showed convincing evidence of high-frequency oscillations (Fig.
7A–C). The absolute correlation was significantly different be-
tween pairs of pFSIs than pFSI–pTAN pairs (Fig. 7D). The am-
plitude of the t score between 35 and 70 Hz for pFSI pairs was
significantly higher than for correlations between pFSIs and
pTAN ( p � 0.015) or pLTS ( p � 0.03) cells (Fig. 7E), and large
gamma oscillations could be clearly observed in individual pFSI
pairs (Fig. 7F; supplemental Fig. 6, available at www.jneurosci.org as
supplemental material). The relationship between FSIs with them-
selves was, therefore, notably stronger than with other interneurons
on both slow and fast timescales.

The oscillatory behavior of pFSIs is strongly related to
cortical oscillations
As demonstrated by the phase-locking analyses, pFSIs had a par-
ticularly strong relationship to cortical oscillations. We explored
this further by looking at the dynamic relationship between pFSI
pairs and cortical oscillations at different frequencies. During
periods of highly synchronized cortical activity in the theta range
(Fig. 8Ai), the oscillation frequency changed by small gradua-
tions (0.25– 0.5 Hz) over time. Individual pairs of pFSIs could
follow these small changes remarkably closely (Fig. 8Aii–Aiv). In
several recordings, the firing of pFSIs appeared to be highly re-
lated to periods in which the ECoG activity was dominated by this
theta-like activity and the peak frequency of gamma oscillations
was in transition (Fig. 8B). During these transition periods, the
autocorrelation of pFSIs displayed gamma oscillations. In other
recordings, in which 5–9 Hz activity was sustained, the cross-

Figure 7. High-frequency cross-correlation analysis between pFSIs and putative interneurons. Correlation analyses in Figure 6 were repeated after high-pass filtering to reveal high-frequency/
short timescale correlations. For all panels, the color code for pair types is the same: green, pFSI–pFSI; red, pFSI–pTAN; black, pFSI–pLTS. A, pFSI pairs were also correlated at high frequency
(high-pass filter, 30 Hz), which was not apparent in the other correlation types, pFSI with pTAN (B) and pFSI with pLTS (C). D, The strength of the correlation, however, was only significantly different
for pFSI–pTAN pairs. Error bars indicate SEM. E, As for slow correlations, however, the high-frequency power was significantly higher for pFSI pairs than for other combinations of neurons types and
over a frequency identical with the gamma frequency ECoG and LFPs. F, Gamma oscillation in a single pair of pFSIs in the cross-correlation (top) and its FFT (bottom). Two asterisks indicate
significance after Bonferroni–Holmes step down correction.

Table 4. Statistical comparisons of low-frequency power in putative interneuron
cross-correlations

Correlation type 0 –2 Hz 2– 4 Hz 5–9 Hz

pFSIpFSI/pFSIpTAN p � 0.0004 NS p � 0.002
pFSIpFSI/pFSIpLTS p � 0.02 NS NS
pFSIpTAN/pFSIpLTS p � 0.03 NS p � 0.001
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correlation of pFSIs had power at the gamma frequency during
periods of higher gamma power (Fig. 8C). Together, these results
suggest that coordinated activity of these pFSIs could propagate
high and low cortical rhythms to the striatum.

Discussion
These results provide the first simultaneous identification and
analysis of four putative subtypes of striatal neurons in a single
data set and the first evidence that the subtypes differ significantly
in their phase locking to cortical population oscillations. The
magnitude and rhythmicity of correlations between different
neuronal subtypes varies systematically with neuron type. In par-
ticular, the majority of pFSI neurons are locked to fast cortical
oscillations, and a large percentage of pFSI pairs are correlated at
high frequency.

It is important to address the limitations of the methodology
used here. First, there is a limit to the extrapolation of findings
under halothane anesthesia to the awake animal. In practical
terms, halothane enabled a high level of stability that allowed us
to record relatively stationary neuronal activity over long periods
of time, aiding both spike sorting and data analysis. As with other
anesthetics, the exact mechanism of action of halothane is un-
known; however, the major frequencies observed are consistent
with those previously described in the cortex of halothane-
anesthetized rats (Berridge and Foote, 1991; Berridge et al., 1996;
Imas et al., 2004). Halothane is also known to block gap junctions
(Johnston et al., 1980), which simplifies the interpretation of the

cross-correlation results (see below). In terms of how this com-
pares to the state-related oscillatory activity in the awake animal,
low-frequency oscillations (�4 Hz) are found only during sleep
(Steriade, 2000). Despite this, the high level of synchronization
during slow oscillations provides a highly useful tool for looking
at neuronal interactions between the basal ganglia and cortex
(Stern et al., 1998; Mahon et al., 2001; Berke et al., 2004), which
can be predictive of higher frequency activities at the single-
neuron level (Mallet et al., 2008). With this in mind, it is impor-
tant to note that theta and gamma activities over a similar fre-
quency range are a prominent feature in the striatum of awake rat
(Berke et al., 2004; Tort et al., 2008). Therefore, although we
cannot rule out the possibility that the choice of anesthetic influ-
enced certain parameters, such as the proportion of each neuron
type recorded, the majority of our findings regarding the tempo-
ral relationships of different neurons to each other and to cortex
raise specific hypotheses about those relationships during those
activities in the awake animal.

Second, how sure can we be that the putative neuronal sub-
types described here belong to those different populations? Ide-
ally, recorded neurons would be labeled and identified histolog-
ically using the juxtacellar method, which has been used to
investigate the relationship of specific neuron types to network
oscillations in hippocampus, cortex, and thalamus (Klausberger
et al., 2003; Tierney et al., 2004; Lacey et al., 2007). However, to
study the large numbers of simultaneous pairs of single neurons

Figure 8. Oscillations in single and coupled pFSI firing are strongly related to those in the cortical ECoG over time. Ai, The autocorrelation of an ECoG channel plotted over 150 s. The color scale
shows the movement of the lag of the peaks and troughs of the prominent 5 Hz oscillation. Aii, Aiii, The autocorrelograms of two concurrently recorded pFSIs also have clear 5 Hz oscillations and show
the same small deviations in frequency over time, which are also seen in the cross-correlation of the same units (Aiv). Bi, The time–frequency plot of an ECoG channel over 700 s shows characteristic
transitions in both low and high frequencies (20 s windows). The rate of a single pFSI (superimposed white line) is elevated only during the transition periods. Bii, Gamma oscillations are present
in the FFT of the autocorrelation of the pFSI in these periods. Ci, The rate of two pFSI neurons during an 800 s period with stable 5 Hz oscillations. Cii, The time–frequency representation of the ECoG
during this period displays fluctuations in gamma oscillations. Ciii, The amplitude of the cross-correlation in the frequency domain of the two FSIs display gamma oscillations during these periods,
which can also be seen in the filtered cross-correlation (Civ).
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(	200) described here, it becomes essential to use a different
method. Using waveform parameters to separate neurons has
proved a valuable technique for separating neurons (Csicsvari et
al., 1999; Constantinidis and Goldman-Rakic, 2002; Mitchell et
al., 2007). The waveform characteristics of our pFSIs and pTANs
match those of labeled parvalbumin-positive GABAergic inter-
neurons (Kawaguchi, 1993; Mallet et al., 2005) and giant cholin-
ergic neurons (Wilson et al., 1990), respectively. This approach
demands care to circumvent several potential sources of error.
Most obviously, it relies on high-quality spike sorting to produce
an average waveform that truly reflects a single neuron. Although
it is common to use tetrodes for this purpose (Berke et al., 2004;
DeCoteau et al., 2007), the electrodes used here gave excellent
results and enabled us to identify more types of striatal neurons
than previous studies. The shape and length of the waveform are
to some extent a function of the position of the electrode in
relation to the neuron (Gold et al., 2006, 2007). To address this
issue, we used several physiological parameters to convincingly
verify the separation of units. Regarding pLTS neurons, we pro-
vide the first description of low-threshold spike bursts in the
striatum in vivo. There is no evidence to suggest that MSNs, FSIs,
or TANs display LTS bursts. Therefore, based on in vitro studies
(Kawaguchi, 1993), it seems most likely that pLTS neurons cor-
respond to the subpopulation of GABAergic interneurons ex-
pressing neuropeptide Y and somatostatin. Because of the limited
descriptions of calretinin expressing GABAergic interneurons,
however, we cannot rule out the possibility that they neurons
may also correspond to this type. Despite the considerable elec-
trophysiological evidence presented here, this putative separa-
tion will need to be verified using histological methods.

Third, it is important to evaluate the analytical methods
used here. A significant cross-correlation between two neu-
rons does not necessarily reflect direct synaptic connectivity
(Nowak and Bullier, 2000). Indeed, it is highly unlikely that
many of the neurons in this sample were monosynaptically
connected, given that most were recorded from electrodes
�0.5 mm apart. Rather than representing specific synaptic
connections, the correlations seen here are more likely to re-
flect the locking to cortical population activity. It is likely that
that the strong correlations between striatal neurons are at-
tributable to synchronized inputs from the cortex. The corti-
costriatal projection is highly convergent, with a convergence
ratio of 10 between corticostriatal neurons and striatal neu-
rons, but also sparse, with many cortical inputs being neces-
sary to cause action potential firing in projection neurons
(Ramanathan et al., 2002; Zheng and Wilson, 2002). This in-
terpretation would explain why two GABAergic neurons were
usually positively correlated around zero lag, rather than neg-
atively correlated. Although this result seems initially counter-
intuitive, it is what would be expected if the correlations were
driven primarily by efferents from the cortex.

The corticostriatal projection is a key processing step in the
basal ganglia network. Although the results of cross-correlation
analyses presented here may not reflect direct synaptic interac-
tion, the relationships between different striatal neurons in rela-
tion to cortical activity is, therefore, of considerable importance
to striatal physiology. In the hippocampus and cerebral cortex,
there is reciprocal inhibitory/excitatory connectivity between in-
terneurons and projection neurons that is likely to underlie local
high-frequency oscillations (Traub et al., 2004). Oscillations in
striatum, however, appear primarily driven by the cortex, and at
low frequency there is ample evidence for this (Stern et al., 1998;
Murer et al., 2002; Berke et al., 2004). The specificity of gamma

locking of pFSIs to cortical oscillations revealed in the present
phase-locking analysis suggests that coherent gamma oscillations
between cortex and striatum at the population level are entrained
through this connection. Several lines of evidence from previous
investigations support this finding. First, FSIs in the cortex and
hippocampus are key drivers of high-frequency population oscil-
lations (Klausberger et al., 2003; Hasenstaub et al., 2005). Second,
the circuitry of striatal FSIs is suggestive of their involvement in
coordinating large-scale activity (Ramanathan et al., 2002; Tep-
per and Bolam, 2004). FSIs form multiple synaptic contacts on
MSN soma providing powerful inhibition (Koos et al., 2004).
Third, the FSIs receive short latency cortical input, which is hy-
pothesized to allow feedforward inhibition of MSNs (Mallet et
al., 2005). Together, this suggests that FSIs may be involved both
in the local generation of fast striatal oscillations and a key medi-
ator of their entrainment to cortical rhythms. Gap junctions are
commonly found between neighboring FSIs allowing for fast syn-
chronization (Kita et al., 1990); however, the finding that halo-
thane is a gap junction blocker (Johnston et al., 1980) suggests
that these may not be required for the interactions among FSIs
observed here.

To what extent can we rule out the contributions of other
interneuron types to the propagation of oscillatory activity in
the striatum? We could not test for correlations between
pTAN or pLTS neurons, but, given the relatively low incidence
of locking to the cortical oscillation, it seems unlikely that
there would be high-frequency locking between these neuron
types. In contrast, contrary to our observations, one might
expect high-frequency correlations between pFSIs and pM-
SNs, as the latter need to be recruited to influence other basal
ganglia structures. However, oscillations can manifest in the
membrane potentials of neurons without initiating similar
temporal patterning in the action potentials (Hasenstaub et
al., 2005), including MSNs (Mahon et al., 2006). Indeed, given
that FSIs make up only 0.8% of the striatum, a large summa-
tion of synchronized activity at the level of MSN membrane
potential is the most likely explanation for the prominent
power of oscillations in the bipolar LFP.

Many studies have demonstrated the importance of such os-
cillations in neuronal processing (Engel et al., 2001; Buzsáki and
Draguhn, 2004) and gamma oscillations have received special
attention as possible mediators of dynamic neuronal communi-
cation (Fries, 2005). A possible role of the coordinated high-
frequency firing of FSIs might be to provide precise time windows
for processing, integrating any MSNs that have sufficient synaptic
input to fire at high frequency. At the systems level, coherent
activity at gamma frequency between the striatum and cortex
could facilitate the formation of temporally precise assemblies
between the major processing hubs of the forebrain (Gervasoni et
al., 2004) at a computationally relevant timescale (Fries, 2005;
Womelsdorf et al., 2007). Our results add substantial support to
the growing body of evidence that parvalbumin-positive
GABAergic neurons are a crucial mediator of this process at the
population level (Hasenstaub et al., 2005).

In conclusion, as in the cerebral cortex and hippocampus, the
coordinated activity of fast spiking interneurons appears to un-
derlie the emergence of high-frequency population oscillations in
the striatum, fostering the entrainment of striatal rhythms by
direct cortical projections. This finding suggests an important
role of striatal FSIs in the propagation of oscillations within the
striatum and the basal ganglia.
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Fogelson N, Pogosyan A, Kühn AA, Kupsch A, van Bruggen G, Speelman H,

Tijssen M, Quartarone A, Insola A, Mazzone P, Di Lazzaro V, Limousin P,
Brown P (2005) Reciprocal interactions between oscillatory activities of
different frequencies in the subthalamic region of patients with Parkin-
son’s disease. Eur J Neurosci 22:257–266.

Friedrich RW, Habermann CJ, Laurent G (2004) Multiplexing using syn-
chrony in the zebrafish olfactory bulb. Nat Neurosci 7:862– 871.

Fries P (2005) A mechanism for cognitive dynamics: neuronal communica-
tion through neuronal coherence. Trends Cogn Sci 9:474 – 480.

Gervasoni D, Lin SC, Ribeiro S, Soares ES, Pantoja J, Nicolelis MA (2004)
Global forebrain dynamics predict rat behavioral states and their transi-
tions. J Neurosci 24:11137–11147.
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Supplemental Materials 

 

Supplemental Figure 1. Recording of putative striatal projection and interneurons. (A) 

The position of all recordings was histologically verified. (Ai) Two parallel electrode tracks 

(marked with arrows) can be seen penetrating the dorsal striatum. (Aii) Single track with 

clearly defined lesions. (B) In records with multiple neurons, between 2-8 striatal units were 

recorded simultaneously. The recordings shown in each of the two subpanels show the 

electrode signals recorded simultaneously in one session. Single striatal units showed 

markedly different patterns of activity under the same conditions. (Bi) The top neuron fires 

tonically, while the middle two neurons burst, sometimes synchronously. The bottom neuron 

fires in only a single burst during this period. (Bii) The top two neurons show similar bursting 

to the middle units in Bi, with the middle neuron in Bii firing more irregularly. The bottom cell 

is also bursting but with much shorter intra-burst intervals. (C) Raw trace of a singe neuron 

(subsequently identified as pLTS) at shown in 10 s epochs at 100 s intervals. Red lines 

indicate 5 standard deviations of the mean amplitude. 

 

Supplemental Figure 2. Stability of waveform characteristics. Representative examples 

of waveform consistency in recordings of single neurons lasting for between 600 and 1500 s.  

(Ai) Color representation of all the waveforms of a pMSN recorded for 630 seconds. Each 

column of the matrix is a single waveform with the peaks and troughs of the spike 

represented by the color scale. Note the consistency of both the amplitude and latency of the 

defining peaks and troughs. (Aii) The mean waveform ±2SD (shaded areas). (Aiii) 5 s epochs 

of the raw trace of the same neuron taken arbitrarily at 100s intervals. (B-D) Identical plots 

for a pTAN (B), pLTS (C) and pFSI (D). Each neuron was recorded in a different animal.  

 

Supplemental Figure 3. Putative MSNs and FSIs recorded under ketamine/xylazine 

anesthesia. (Ai) Raw trace of ECoG and two striatal neurons with waveforms corresponding 

to those of pFSI (top) and pMSN (bottom) recorded under halothane. The pFSI fires a burst 
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of spikes on every cycle of the slow oscillation, where are as the pMSN only fires on some 

cycles. (Aii) Raw cross correlation between the two neurons in Ai displays low frequency 

locking. White curves show the low pass filtered correlogram. (Aiii) Subtracting the low pass 

filtered correlation reveals higher frequency oscillations, corresponding to spindle frequency. 

(Bi) Three waveforms from striatal neurons recorded in a different animal. The lengths of the 

top two correspond to those of pFSIs and the bottom to that of a pMSN. (Bii) Raw cross 

correlation between the two pFSI neurons. (Biii) As in Aiii, subtracting the low pass filtered 

correlation reveals higher frequency oscillations.   

 

Supplemental Figure 4. Phase relations between ECoG and striatal LFPs. Histograms 

showing the percentage of values across frequencies from 1 to 100Hz (excluding 48-52 Hz 

which could be affected by line noise) where the phase value of the coherence spectrum 

between ECoG and striatal monopolor (A) and bipolor (B) LFPs was significantly different 

from 0° and ±180°.  Shaded areas show the SEM across animals.  

 

Supplemental Figure 5. Representative raw cross correlations between  three pMSNs 

(labeled a-c), one pLTS and one pFSI recorded from five different electrodes across 

both hemispheres in a record of around 800s. (A) The pFSI/pLTS correlation is strongly 

centered around zero lag and oscillatory at around 3-4Hz. (B-D) The size and oscillatory 

strength of the correlations between the pFSI and pMSNs varies but in all cases is centered 

on zero lag and also displays the 3-4 Hz oscillation. (E-G) Correlations between the pLTS 

neuron and the pMSNs are also centered on zero lag but with less evidence of oscillation.   

(H-J) Correlations between pMSNs are the weakest, partly due to the low firing rate, but note 

that the pair with the lowest coincidences over the entire 2 s window is still sharply centered 

on zero lag (H). 

 

Supplemental Figure 6. Inter-pFSI correlations can be stronger and more oscillatory 

that pFSI–pTAN correlations under the same conditions. The figure shows raw cross 
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correlation histograms between three pFSIs and one pTAN recorded from four different 

electrodes in the same hemisphere in a record of around 600s. (A-C) Inter-pFSI correlations 

are extremely oscillatory at low frequency and also at higher frequencies. White curves show 

the low pass filtered correlogram. (D-F) Subtracting the low pass filtered correlation reveals 

high frequency oscillations in the bottom two pairs. (G-L) Neither type of correlation is seen 

between any of the pFSI–pTAN pairs, despite that there are as many or more coincident 

spikes in the same time range. 
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Chapter 3

Relating Local Field Potentials
to Neuronal Assemblies

3.1 Phase Synchronization between LFP and Spik-
ing Activity in Motor Cortex During Movement
Preparation

The following article has been published as:

M. Denker, S. Roux, M. Timme, A. Riehle, and S. Grün. Phase
synchronization between LFP and spiking activity in motor cor-
tex during movement preparation. Neurocomputing 70, 2096-
2101 (2007).
The published article is available at http://www.elsevier.com
doi: 10.1016/j.neucom.2006.10.088
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Abstract

A common approach to measure and assess cortical dynamics focuses on the analysis of mass signals, such as the local field potential

(LFP), as an indicator for the underlying network activity. To improve our understanding of how such field potentials and cortical

spiking dynamics are related, we analyzed the phase and amplitude relationships between extracellular recordings from motor cortex of

monkey in a delayed pointing task. We applied methods from phase synchronization analysis to extract the instantaneous phase of the

LFP time series and to characterize the degree of phase coupling between the spike train and oscillation cycles in a frequency-

independent manner. In particular, we investigated the dependence of observed phase preferences on the different periods of a behavioral

trial. Furthermore, we present evidence to support the hypothesis that increased LFP oscillation amplitudes are related to a stronger

degree of synchronization between the LFP and spike signals. However, neurons tend to keep a fixed phase relationship to the LFP

independent of the amplitude or the choice of the electrode used to record the LFP.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Phase synchronization; LFP; Motor cortex; Monkey; Spike-field locking; Synchronization

1. Introduction

Cortical spiking activity is often recorded in parallel with
the local field potential (LFP) obtained by low-pass
filtering of the electrode signal. The LFP typically exhibits
prominent oscillatory features and has been shown to
display modulations that contain information about
relevant behavior [11,18]. To date, the detailed mechanisms
that relate LFP oscillations and network dynamics are not
well understood. A current hypothesis describes the
magnitude of LFP oscillations as an indicator for the
presence of synchronous synaptic activity of many neurons

in a large volume around the electrode (e.g., [3,4,12]). Such
cooperate network activity has been reported as a possible
mechanism in the processing of information in motor
cortex [2,15]. Assuming that increases in the magnitude of
LFP oscillations indicate that a larger part of the neural
population contributes to such coordinated activity, a
neuron receiving this input would respond with increased
temporal precision. This relation suggests a connection
between the magnitude of LFP amplitudes and a pre-
ference for spike occurrences in a distinguished phase of
the oscillation cycle. Previous studies have demonstrated
the possibility to exploit such relationships between
instantaneous LFP phase and spike time to extract
information carried by the networks (see, e.g., [5]).
In this study we analyzed recordings from primary motor

cortex of a behaving monkey in a time discrimination task
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[17]. Preceding the actual execution of the movement, the
experimental design involved two periods in which different
amounts of prior information about the upcoming move-
ment were available. Previous work provides evidence that
the dynamics observed in motor cortex are closely related
not only to the movement itself, but also to movement
preparation [14,18].

Here, we employed newly developed methods (Denker
et al., in prep.) that directly utilize the instantaneous phase
of the LFP time series to measure the degree of phase
coupling between spike trains and oscillation cycles. This
approach provided an amplitude-independent measure of
the current position on the oscillation cycle irrespective of
the instantaneous frequency. We show that the observed
locking periods of single LFP-neuron pairs exhibited a
variety of different properties in terms of duration, strength
and phase preference. In particular, we investigated the
dependence of the precision of phase coupling on the
different periods of a behavioral trial. Furthermore, we
tested if periods of increased LFP amplitudes are related to
a stronger degree of synchronization between the spike
train and LFP time series. In addition, the observed phase
preferences were compared between LFPs recorded at local
or distant electrodes.

2. Methods

2.1. Behavioral task and recording

A rhesus monkey was trained to perform arm move-
ments from a center position to one of the two possible
peripheral targets left and right of the center, depending on
the prior information provided by the preparatory signal
(PS) and a time discrimination performed by the monkey
[17]. The peripheral targets were presented simultaneously
at PS, one in red, the other in green, the side of the color
was chosen at random. An auditory response signal (RS)
was then presented after either a short delay (600ms) or a
long delay (1200ms). The monkey learned to associate to
each color a delay and responded accordingly to the
respective target. Each type of experimental configuration
was presented with equal probability. As a result, during
the first preparatory period (PP1) of 600ms length the
probability for the monkey to move at the end of this delay
was 0.5, whereas when RS did not occur at that time (i.e.,
in long trials), the probability turned to 1 during the
second preparatory period (PP2) after the expected signal
(ES) at 600ms. For analysis, all trials were aligned to PS
occurrence.

LFPs and spikes of single neurons, detected by an online
sorting algorithm (MSD, Alpha Omega, Nazareth, Israel),
were obtained simultaneously from multi-electrode record-
ings of two to four electrodes in primary motor cortex. The
inter-electrode distance was u400mm. LFPs were sampled
at a resolution of 250–500 kHz and hardware filtered from
1 to 100Hz. In total, we analyzed nine recording sessions,

which yielded 22 single neurons in approximately 40 trials
per experimental condition.

2.2. Data analysis

We analyzed the spike trains and their relationship to the
LFP by using methods that originate from phase synchro-
nization analysis (see, e.g., [8,16,20]) and adapted them to
the treatment of signals described by discrete points in
time, such as spikes [6,7,19]. In a first step, we prefiltered
the LFP signals to a frequency band that contained the
dominant oscillatory component (phase-preserving imple-
mentation, MATLAB). In our case, we used a 10–22Hz
band, a prominent frequency band observed during an
instructed delay in motor cortex (see [9] for a review). This
frequency band was primarily observed during the
preparatory periods between PS and RS (cf. Fig. 1a).
In a second step, we extracted the instantaneous phases

of the remaining oscillatory LFP component. The phase
fðtÞ is a function with values in the range ½0; 2p� and serves
as an indicator of the current position in the oscillation
cycle, independent of the instantaneous cycle frequency (cf.
Fig. 1b). For harmonic signals the phase is simply given by
the argument, e.g., sinðfðtÞÞ. Several methods have been
proposed to obtain the instantaneous phase for oscillatory
time series (see, e.g., [13]). Here we calculated the phase
fðtÞ as the angle of the complex-valued analytic signal
L̄ðtÞ ¼ AðtÞ exp½ifðtÞ� corresponding to the LFP signal.
The analytic signal was obtained as L̄ðtÞ ¼ LðtÞ þ iH½LðtÞ�,
where LðtÞ is the original real-valued LFP time series and
H½�� denotes the Hilbert transform. In addition, the
amplitude AðtÞ of the analytic signal provides a measure
for the magnitude of the LFP, i.e., its envelope.
We collected the instantaneous phase fðtiÞ of the LFP at

the individual spike times ti across trials in six different
time windows related to the experiment: the complete range
from PS to RS (Total), and 400ms windows around PS,
around ES (long trials only), during PP1, during PP2 (long
trials only) and after RS (Mvt). Spikes that occurred at
extremely low LFP amplitudes were omitted when the
phase signal was not monotonous and smooth. We
analyzed phase distributions in these time windows using
methods from circular statistics (cf. [10]). This allowed us
to quantify the degree of non-uniformity in the phase
distribution, and to test if a measured phase preference is
statistically significant compared to a uniform distribution.
The underlying assumption for a uniform phase distribu-
tion is that 2NR2 is w2-distributed with two degrees of
freedom, where N is the number of spikes and R ¼

N�1
PN

i¼1 exp½ifðtiÞ� is the vector strength.
In a further step, we categorized individual spikes

according to the envelope, or amplitude, AðtiÞ of the LFP
signal at spike occurrence. Note that this is not equivalent
to the amplitude LðtÞ of the LFP itself, but rather measures
the instantaneous oscillation amplitude, given by L̄ðtÞ. We
subdivided each spike train into two exclusive groups,
where one group contained the spikes that occurred at high
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amplitudes (‘‘Hi’’), and the second group contained spikes
that occurred at low amplitudes (‘‘Lo’’). The threshold y
for the separation of spikes into these groups is expressed
as the ratio of number of spikes in the Lo group compared
to the original number of spikes. Consequently, 1� y
denotes the relative number of spikes assigned to the Hi
group. Subsequent phase analysis was then performed
separately and independently on each of these two groups
in the manner described above.

Robustness of our results was tested by a bootstrap
procedure. The mean and standard deviation of the
bootstrap measurements served as an estimate of the
variability across the data set.

3. Results and conclusions

Single neurons showed a variety of locking behavior with
respect to the LFP. In Fig. 1c the phase relationship of one
neuron and the LFP recorded simultaneously from the
same electrode is shown in a time-resolved manner. This
particular neuron exhibited a constant tendency towards
spiking on the falling flank ð0� p) of LFP cycles. However,
few neurons displayed such a clearly pronounced, sustained
phase preference.

To investigate the dependence between spike timing and
LFP phase in relation to behavior, we calculated phase
distributions during the six time windows described above
related to specific periods in the experiment. In Fig. 2a we
visualized the relative number of LFP-neuron pairs that
showed a significant phase preference in these time

windows for any one of the experimental configurations
(black bars). Note that due to the pooling of experimental
configurations individual LFP-neuron pairs may enter the
distribution more than once. We observe that about one
fourth of the pairs shows a phase preference when
considering the complete trial (Total). The fact that the
other time windows showed fewer pairs is an indication of
our earlier observation that sustained phase preferences
across the experiment are rare. During movement, only few
neurons showed a pronounced phase preference, as might
be expected from the diminished LFP magnitude in the
investigated frequency band during movement onset, where
the LFP is dominated by a strong, slow triphasic
component (movement related potential, [18]).
In particular, looking at the mean phase of LFP-neuron

pairs with a significant phase preference confirmed that if a
phase preference is detected, it occurred in roughly 60–70%
of the cases on the falling flank of the LFP as opposed to
the rising flank (not shown). Furthermore, we did not
detect a dependence of the preferred phase on the
experimental conditions of the task.
The envelopes of the LFP oscillation were typically

modulated in time on a time scale much longer than
individual oscillation cycles (cf. e.g., Fig. 1b). This
modulation shows no correlation or fixed locking to trial
onset or the behavioral task. The instantaneous phase
typically remained well defined even for low amplitudes. To
investigate the dependence of phase preferences on the
amplitude, we separated individual spike trains into Hi and
Lo groups of equal numbers of spikes (y ¼ 0:5). Analysis of
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Fig. 1. Detecting instantaneous phase relationships between LFP and spikes. (a) Trial-averaged power spectrum of one LFP recording in one possible

experimental condition (long delay) calculated in sliding windows of 200ms. During the preparatory periods (PP1 and PP2) a prominent oscillatory

component around 16Hz is visible. (b) Filtered LFP signal (gray) of three example trials. The extracted phase signal fðtÞ (black) from 0 to 2p is sketched

above each LFP (troughs correspond to fðtÞ ¼ p). Ticks indicate the location of spikes of a neuron recorded from the same electrode. The shaded region

marks the time interval where movement started. (c) Time-resolved histogram of the phase distribution fðtiÞ for the LFP-neuron pair shown in (b), but

across all trials (sliding windows Dt ¼ 100 ms (50ms overlap), 16 phase bins). For each time window, the distribution was normalized with respect to its

maximum. The neuron shows a sustained preference for spiking during the falling flank (0pfpp) of the LFP.
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these groups revealed that primarily spikes occurring at
high LFP envelopes (group Hi) lead to the phase
preferences of a given LFP-neuron pair (Fig. 2a). In fact,
uniformity in the phase distributions of spikes in the Lo
group led to a smaller number of significant LFP-neuron
pairs in the original spike train as compared to the Hi
group (see, e.g., time period PP2). The corresponding
amplitude distributions (see Fig. 2b for an example) were
unimodal, but skewed towards low amplitudes.

In Fig. 2c we investigated the dependence of phase
preferences in the complete preparatory period (Total) as a
function of the threshold y. Only at a threshold of y ¼ 0:8
(i.e., the top 20% of spikes associated with the highest LFP
envelopes are in the Hi group, while the remaining spikes
are categorized as Lo) we find an equal number of LFP-
neuron pairs that display a phase preference in both
groups. This finding suggests not only that spikes at high
LFP magnitudes exhibit a stronger tendency for locking to
the LFP cycle, but moreover that observed phase
preferences are due to spikes occurring at the highest
amplitudes.

We investigated the distribution of the mean phase of all
LFP-neuron pairs that showed a significant phase pre-
ference pooled across experimental configurations. The
analysis was done independently for the two groups Hi and
Lo (at y ¼ 0:5). In addition, we grouped according to

whether spikes and LFP were recorded from the same or
different electrodes. Fig. 3 shows the results for the Hi
group. In both possible configurations (same/different
electrode) the mean of the histograms was centered on
the falling flank of the LFP (cf. also [1]). In particular, this
peak was more pronounced for recordings on the same
electrode as compared to different electrodes. Due to the
low number of LFP-neuron pairs that showed a significant
phase preference, the distribution for the Lo group lead to
weak statistics. Nevertheless, the distribution of phase
preferences for both electrode combinations showed a
similar tendency as for the Hi group. We conclude that
individual LFP-neuron pairs that exhibit a phase pre-
ference tend to have a fixed preferred phase independent of
the LFP amplitude. This preference is more pronounced
when spikes and LFP are taken from the same electrode.
Although simultaneously recorded LFPs are typically
highly correlated, our finding may be understood under
the assumption that the LFP is a reflection of synaptic
input activity preceding a spike. Therefore, when LFP and
spikes are taken from the same electrode the LFP would be
more closely related to this local input and therefore
expected to exhibit a more precise temporal relationship to
the spike times.
In summary, our analysis demonstrates that spikes of

neurons in motor cortex have a tendency for a phase
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preference. The preferred phase relationship is specific for
the individual LFP-neuron pair. Nonetheless, across pairs
this phase preference showed a tendency to be located on
the falling flank of the LFP oscillation. Furthermore, our
analysis revealed that periods of higher LFP amplitudes
tend to show an increase in the precision of locking
between spikes and LFP. We hypothesize that this effect is
a result of neurons becoming entrained to take part in a
cooperative network activity that is manifested in an
increased oscillatory activity.
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3.2 Local Field Potentials Reflect Neuronal Assem-
blies
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Abstract

Ongoing e�orts to unravel the mechanisms governing brain processing

have led to the proposal that information is conveyed by the function-

ally coordinated discharge patterns of speci�c neuronal subgroups (assem-

blies). The oscillatory nature of the cortical local �eld potential (LFP)

is commonly interpreted as a re�ection of synchronized network activity,

but its relationship to observed transient coincident �ring of neurons on

the millisecond time-scale remains unclear. Here we present experimen-

tal evidence to reconcile the notions of synchrony at the level of neuronal

spiking and at the mesoscopic scale in the assembly coding framework. We

demonstrate that the phase coupling of spikes to the LFP is stronger for

spikes that are synchronous with other spikes, in particular in periods of

strong LFP oscillations. However, spike coincidences are better entrained

to the LFP than expected on the basis of the locking of individual spikes

only in time intervals where the large number of coincidences indicates

that the neurons coordinate their spike emission. A quantitative model

explains the LFP dynamics by the orchestrated spiking activity in neu-

ronal assemblies that constitute the observed excess synchrony. From the

pairwise correlation analysis, we infer that neurons participate in several

1
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assemblies but contribute only a fraction of their spikes to temporally

precise assembly activity, suggesting a dual coding scheme of rate and

synchrony. Revealing that transient spike synchronization correlates not

only with behavior, but with a mesoscopic brain signal corroborates its

relevance in cortical processing, and opens new perspectives for decoding

population signals in brain-machine interfaces and diagnostics.

Introduction

Ongoing e�orts to unravel the mechanisms governing brain processing have led

to the proposal that information is conveyed by the functionally coordinated

discharge patterns of speci�c neuronal subgroups (assemblies). The signature

of such an assembly coding scheme is behavior-speci�c synchronous spiking (1)

with millisecond precision observed in parallel recordings of neuronal activity

(2,3). Despite recent advances in tackling the experimental (4-6) and theoreti-

cal (7,8) di�culties in �nding such signatures, the local �eld potential (LFP) is

recorded as an alternative mesoscopic measure of neuronal population dynamics.

The LFP is a spatially weighted average of the synaptic transmembrane currents

(9,10) and its oscillatory structure is hypothesized to re�ect predominantly syn-

chronized synaptic input (11). More speci�cally it has been conjectured that

LFP oscillations may represent an alternative network-averaged signature of as-

sembly activations (12,13) that enable the timed binding of features coded by

di�erent assemblies (14).

Indeed, features of the LFP signal correlate with external stimuli (15), be-

havioral aspects (16), internal processes (17-19), and attentional modulation

(20). To date, it has been established that single spikes can become transiently

entrained to the LFP in a rhythmic or non-oscillatory fashion (21,22). The de-

gree of phase locking between neurons and the LFP depends in general on the

strength of LFP oscillations (23), and the phase relationships are functionally

informative (24-26). The average postsynaptic e�ect in the LFP triggered on

spikes initiated across a patch of cortex is predictive of the LFP at a given site

(27). In LFP spindles spiking activity often becomes oscillatory (22), and �ring

rate pro�les correlate with gamma band LFP power when the level of interneu-

ronal correlation on slow time scales is high (28). In contrast, distinct spike

patterns across neurons and their phase relationship to LFP oscillations encode

a substantial amount of surplus of information about the stimulus compared to

information contained in the �ring rate alone (29). Despite these advances, the

critical link between the dynamics of precise interneuronal spike-spike correla-

tions and the LFP on a trial-by-trial basis is missing. Furthermore, in the ab-

sence of a network oscillation in the spiking activity (Fig. S1B-E, cf. (30)) there
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neurons in excess of the chance contribution is explained by their speci�c co-activation in a
neuronal ensemble, termed assembly. Two assemblies are sketched in green and blue but the
recorded neurons participate only in the green one. We investigate the relationship of the two
types of observed spike synchrony (CC and UE) to the LFP. (B) STA of the LFP averaged
over all 123 neurons (n=297484 spikes total) for the three disjunct sets of spikes. The left
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and spike rate is not signi�cant (α=0.01, coe�cient R).
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is no intuitive correspondence between spike synchrony and spatially extended

LFP oscillations (Fig. S1A, cf. (31)). Recent studies succeeded to directly

relate synchronized subthreshold membrane potential oscillations to LFPs, but

did not �nd such a simple relationship for synchronized action potentials of

the same neurons (18). This discrepancy between subthreshold dynamics and

spiking activity is in agreement with theoretical work linking subthreshold and

suprathreshold dynamics in balanced cortical states (32). Therefore, synchrony

of action potentials is expected to be dominated by processes that deliver strong,

precisely timed, and speci�c inputs to the cells (18), such as required for the

reliable activation of neuronal assemblies.

Here, we uncover the missing link between observed precise spike synchrony

and LFPs by directly relating these two observables. For this purpose, we con-

centrate on timing experiments in motor cortex of monkey, where both spike

synchrony (2) and LFP oscillations in the beta band (17) have been shown to

be behaviorally relevant in tasks involving movement preparation. Using the

Unitary Events analysis (33,34), we identify transient periods where the spiking

activity of simultaneously recorded sets of neurons shows a surplus of coinci-

dence events compared to the number expected on the basis of the �ring rates

(for a schematic illustration, see Figure 1A). During these periods the excess

synchrony is attributed to the synchronous �ring of both observed neurons as

part of a network process that activates a speci�c subset of neurons: the assem-

bly (Figure 1A depicts the spikes of two di�erent assemblies in green and blue).

We show that synchronous spikes originating in part from transient assembly

activation exhibit pronounced phase-locking to the LFP, whereas the locking

of chance coincidences is predicted on the basis of spike-LFP coupling of non-

coincident spikes. This �nding provides direct evidence for the hypothesized re-

lation that precise spike synchrony constitutes a major temporally and spatially

organized component of the LFP, embedding the notions of synchrony in LFP

oscillations and transient spike synchrony into a single framework. Furthermore,

these results enable us to estimate the fractional contribution of assemblies to

the neuronal activity, exploiting signatures of assembly activity on the spike

and the LFP level. Revealing that assembly activity detected as a signi�cant

surplus of spike synchrony correlates not only with behavior (2), but also with

a mesoscopic brain signal corroborates its relevance in cortical processing. Our

�ndings reinterpret the dynamical features of the LFP in terms of brain pro-

cessing and open a new perspective for decoding of an accessible and reliable

signal in brain-machine interfaces and diagnostics.
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Results

We analyze spike data of 143 single units and simultaneously recorded LFP data

from motor cortical areas in two monkeys during the instructed delay (prepara-

tory period, PP) of two motor tasks (see SI Methods). LFPs and spikes were

recorded from di�erent electrodes spaced at 400 µm (see sketch of analysis in

Figure 1A) to exclude trivial signal correlations induced by volume conduc-

tance e�ects (cf., e.g. (35)). We identify precise spike synchrony (36) between

all neuron pairs of a given neuron and classify the spikes recorded from each

neuron (all spikes) exclusively into one of three sets: isolated spikes (ISO),

chance coincidences (CC), and Unitary Events (UE). Spikes involved in

pairwise coincidences (within 3 ms) are classi�ed as CC if they occur during

time periods where the observed coincidence rate is explained by the instanta-

neous trial-by-trial rates of the two involved neurons, and as UE if their number

signi�cantly exceeds the expectation (see Methods). However, no method is

available able to identify the coincidences that result from the process causing

the excess of synchrony during an UE period, i.e. those coincidences stemming

from the activation of the assumed assembly. Therefore, a substantial frac-

tion (see Discussion for an estimate) of coincidences in the UE group is due to

chance coincident spiking (e.g., rightmost UE coincidence in Figure 1A). Spikes

not classi�ed as CC or UE with respect to any of the simultaneously recorded

neurons (2-5) are classi�ed as ISO. Consequently each spike is labeled according

to the type of event it belongs to, and an individual spike train may contain

spikes of di�erent categories (compare gray, cyan, and red boxes in Figure 1A,

respectively).

As a �rst step, Figure 1B compares the spike-triggered averages (STAs) of

the LFP for the three sets, where each STA is pooled across all neuron-LFP

pairs. We observe that the magnitude of the STAs of both chance coincidences

(left, cyan) and Unitary Events (middle, red) signi�cantly exceed that of the

isolated spikes (gray). Moreover, the spike-triggered average of UE is larger than

that of CC (right). The oscillatory structure of the STAs exhibits a strong beta

frequency component, and the STAs are typically centered on the downward

slope of the oscillation cycle. Non-averaged, single-neuron STAs do not exhibit

these di�erences between the three groups as strongly (see Figure S2A for a

typical example). The reason for this is two-fold: First, individual sessions have

a substantially higher sampling variance, especially considering the typically

low number of UE spikes. Second, STA shapes result from the combination

of three e�ects: instantaneous LFP frequency, spike-LFP phase locking and

oscillation amplitude. Nevertheless, the STA increase, in particular for UE

spikes, is observed in a signi�cant number of single neurons of both monkeys
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(Figure 1C) and is consistently more pronounced for experiments where we were

able to evaluate a larger number of partner neuronsNp for potential coincidences

(Figure 1D), thus better identifying CC and UE groups.

Two mechanisms could underlie the di�erences in the STAs: changes in LFP

amplitude or changes in the locking between LFP and spikes. However, the LFP

amplitude does not co-vary with spike rate (Figure 1E). Therefore increased

amplitudes and the disproportionate increase of the chance coincidence count

during periods of elevated rates is an improbable cause of the STA increase for

CC. In addition, spike histograms triggered on the peaks of the LFP oscillations

(Figure S2B) reveal that spikes do not only tend to prefer the falling phase, but

also avoid the rising phase of the LFP. This suggests that the three sets of

spikes di�er in the degree of phase coupling to the LFP rather than in the

accompanying amplitude of the LFP.

Nevertheless, in order to clearly di�erentiate between these mechanisms,

it is necessary to formally disentangle the dependence of spike timing on the

amplitude of the LFP from its dependence on the phase. Figure 2A explains

the procedure (for details see SI Methods). For both monkeys we consistently

observe a prominent beta oscillation (in both monkeys around 15 Hz) of the LFP

during the preparatory period that stops with movement onset (Mvt). Therefore

we focus on the beta frequency band and extract the instantaneous phase and

amplitude (envelope) of the �eld potential for each spike time. Compared to

the STA analysis, even individual neurons exhibit clear and speci�c di�erences

between ISO, CC, and UE in both measures (Figure S3, same example neuron

as in Figure S2). We are now prepared to study the two contributions in detail

across the population.

Figure 2B shows that across the population of neurons CC are systematically

better locked (decreased circular standard deviation σ of the phase distribution)

than ISO, and UE better than CC. As a suitable reference value to compare the

fraction of locked neurons in the 3 sets we extracted the average locking strength

σl=1.97 obtained for those neurons that are signi�cantly locked if all spikes are

considered (surrogate test). In the following we investigate how the systematic

di�erences in locking strength between the three sets of spikes are a�ected by

the intrinsic spike-LFP relationship of the neurons, i.e. if a neuron in general

tends to lock well to the LFP or not. Di�erentiating groups of strongly (38%)

and weakly (62%) locked neurons (i.e., signi�cantly locked and unlocked neurons

considering all their spikes) does not introduce a bias by a�ecting the percentage

of neurons that exhibit CC and UE (Figure S4A). Both groups exhibit the same

general pattern of locking in the three groups (Figure S4B) shown in Figure

2B. As expected, the percentage of neurons better locked than σl in the ISO

group di�ers considerably (51% vs. 5%) between strongly and weakly locked
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neurons. However, this di�erence between strongly and weakly locked neurons

is less pronounced for CCs (62% vs. 28%) and further decreases for UEs (67%

vs. 46%). The conservation of the locking of UE spikes in strongly and weakly

locked neurons compared to the declines for ISO and CC hints at di�erent

dynamical origins of the spikes in CC and UE.

Figure 2C con�rms that individual neurons are consistent with the �ndings

for population ratios (Figure 2B). The scatter plots of the circular standard

deviation reveal that in 73% of the recorded neurons CC spikes are better locked

than ISO spikes, and in 84% of the neurons UE spikes are better locked than ISO

spikes. Finally, in 69% of all neurons UE spikes are better locked to the LFP than

CC spikes. In contrast to the experimental data, only 58% of surrogate spike

trains that retain the original inter-spike interval statistics show an increase in

phase locking for coincident spikes (outlined ellipse).

Because of the consistency in the population, in the following we focus on the

phase locking of strongly locked neurons. The selection is conservative because it

reduces the di�erences in locking between the three sets of spikes (Figure S4B).

Comparable results are obtained for the complete set of recorded neurons. The

phase distributions in Figure 3A (top) show that locking of spikes to the LFP

is strongest for Unitary Events, and weakest for isolated spikes.

The phase distribution exhibited already by isolated spikes modulates the

spiking probability in time. Given the high level of synchrony between LFPs

(Fig. S1A), one may therefore argue that the increased modulation of the phase

distribution of CC trivially results from the individual phase locking distribution

of the two neurons forming the coincidence (predictor assuming independence of

neurons, see SI Methods). Interestingly, the phase distribution of CC is indeed

largely in agreement with this predictor (black curve), while that of UE is not.

Hence, despite the impossibility to remove the substantial fraction of chance

coincidences from the UE group, the locking of UE cannot be explained on the

basis of the intrinsic phase locking of the neurons forming the coincidences.

Earlier studies (22,23) demonstrate that spikes occurring during periods of

high LFP amplitudes exhibit a stronger locking to the LFP (see Supporting

Text and Figure S5). This raises the question of whether coincidences, and in

particular Unitary Events, predominantly occur at high LFP amplitudes. Figure

3A (density plots) shows the number of spikes as a function of both LFP phase

and amplitude for each of the three sets ISO, CC, and UE. Here, CC and UE

occur at similar amplitudes as ISO, even though the amplitude distributions

(left) reveal a small shift towards high amplitudes for CC and UE. The phase

distributions (top panels), however, clearly show a progressive increase in the

degree of phase locking from ISO to CC to UE. Finally, observing that UEs

exhibit similar amplitudes as CC, we can ask the reverse question of whether at
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high amplitudes ISO, CC and UE still exhibit the systematic increase in locking.

Figure 3B shows that for the 50% of the spikes occurring at the largest LFP

amplitudes (above black dashed line in Fig. 3A) the e�ect of improved phase

locking for the UE group is strongly ampli�ed. In contrast, the ISO and CC

phase distributions do not change. This �nding reveals that those coincidences

in UE periods that are responsible for the increased locking of UE are those

that occur during strong LFP oscillations.

Discussion

In this report we explicitly reveal how the neuronal population dynamics re-

�ected by LFP oscillations relate to the synchronous discharge of individual

neurons in motor cortex. Spikes which are emitted at the same time as spikes of

other neurons exhibit a better phase locking to the dominant beta-range LFP

oscillation than those which occur in isolation. However, in time periods where

the number of spike coincidences is at chance level, the quality of the locking is to

a large extent explained by a predictor assuming independence of the spikes con-

stituting a coincidence. In contrast, the pronounced locking to the LFP in time

periods with a signi�cant excess of coincident spikes (Unitary Events) cannot be

explained in this way. The probability of the occurrence of coincident spikes is

only weakly coupled to changes in the magnitude of the LFP signal. Nonethe-

less, spikes that coincide with episodes of high LFP amplitudes are on average

better locked to the LFP than those at low amplitudes. A separate analysis of

these two factors, spike synchrony and LFP magnitude, demonstrates that both

a�ect the strength of the spike-LFP coupling largely independent of each other.

What conclusions about network dynamics and possible coding mechanisms do

these results imply, in particular in the light of the distinctive role of Unitary

Events?

Several authors have elucidated the functional role of LFP oscillations in

motor cortex in the beta and lower gamma range. These oscillations are only

loosely correlated across trials, i.e. their phase is not time-locked to any external

(e.g. stimulus) or internal (e.g. movement onset) event. Oscillatory beta range

LFP activity in motor cortex is a unique feature of experimental protocols in-

cluding a waiting period before movement execution and has been described in

relation to attentional processes, movement preparation and motor maintenance

(12,15,17,37-39). The oscillations terminate at movement onset and may well

represent a top-down modulatory input from higher sensory areas (e.g., (40)).

Furthermore, there is a large body of knowledge about delay-related spiking

activity in motor cortical areas and its functional implication in sensorimotor

integration and movement preparation (for a review, see (41)). Finally, tran-
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sient spike synchrony observed among individual neurons is remarkably well

related to timing-related aspects of the behavioral task (2) but does not de-

pend on the mean �ring rate of the participating neurons (42). However, only a

few studies relate LFP oscillations to correlations of the spiking activity (22,28).

Reports in various brain areas demonstrate single neurons which selectively par-

ticipate in oscillatory periods of the LFP by phase locking (20,21,37,43), where

occasionally the autocorrelations of the spike trains become oscillatory (22,40).

In conclusion, the apparent complexity of the simultaneous coding of neuronal

activity for di�erent aspects of motor cortical processing challenges the idea

that LFP oscillations and the emergence of transient UEs are two re�ections of

only one single functional process performing the planning and preparation of

movements.

It is reasonable to assume that synchrony on a spike-by-spike level, and

population oscillations expressed by the LFP both originate from network pro-

cesses that involve the pulsed, synchronous co-activation of speci�c subsets of

neurons. One may argue that in this case we should observe an even more

distinct relationship between the two measures. However, our techniques to de-

tect synchrony related to the activation of neuronal assemblies are limited. The

Unitary Event analysis assesses indirectly which coincidences are more likely to

originate from such activations based on the comparison of the time-resolved

rate of observed and expected coincidences. Nevertheless, the set of UEs may

be composed of coincidences resulting from assembly activation and a consider-

able fraction of chance coincidences (see estimate below). Therefore, although

the di�erence in locking precision between signi�cant (UE) and non-signi�cant

(CC) time segments seems small at �rst glance, in this light it is even more sur-

prising that we are able to observe an enhanced phase locking for the UEs. The

argument implies that the subset of coincidences caused by assembly activation

has a tight locking to the LFP. This conclusion is supported by previous work

demonstrating that coherent membrane potential oscillations do not generate

synchronized output spikes, and that brief, simultaneous synaptic inputs to a

cell are the likely drive for action potential generation (18).

Unitary Events prefer a particular phase of the LFP oscillation, a signal

which is rather homogeneous across the motor cortex (17,31). This �nding

renders unlikely a model of processing where assemblies can be simultaneously

active and still distinguished (multiplexed) by locking to di�erent phases of the

oscillatory cycle (e.g., (26)). Moreover, in such a model the waxing and wan-

ing of the LFP oscillation would likely show phase shifts as di�erent assemblies

become active. Our results insinuate that neurons participate in di�erent as-

semblies at di�erent times (see also (2)), but predominantly at the same phase

of the LFP (cf., (13)). We observe the phenomenon in 20-30% of the neurons
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Figure 4: A conceptual model relating increased LFP locking and assemblies. (A)
Sketch of the LFP (top) and the simultaneous spiking activity of �ve neurons (middle), of
which only two are recorded (yellow background). Based on the latter, time periods where
coincidences occur at chance level (non-UE, left) are distinguished from those with excess
synchrony (UE, right). Each spike is either part of an assembly of co-active neurons (green)
or not (black). In this simpli�ed scenario, one assembly is active on the left, and a di�erent
one on the right; both observed neurons contribute to the latter. Only assembly spikes exhibit
locking to the LFP, expressed by a non-uniform phase distribution p(φ) (green). (B) Two
ratios β and γ determine the composition of the phase distributions for ISO, CC, and UE (left)
of assembly and non-assembly spikes. γ determines the overall probability that a spike is part
of an assembly activation (top, ISO). pCC(φ) (middle) results from the combinatorics of two
independent spike trains (ISO). pUE(φ) (bottom) di�ers from pCC(φ) by the relative excess
β of assembly spikes in UE periods. A conservative (minimal) estimate of β, i.e., maximally
locked p2 (φ), is obtained by substituting pUE(φ) and pCC(φ) in the bottom equation by the
experimental distributions. γ is determined from either of the top two equations by using
p(φ).
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in agreement with estimates from other studies (e.g., (22)). However, even in

this category of neurons we can attribute only a fraction of spikes to assembly

activation. One hypothesis is that the motor cortex is involved in parallel cod-

ing schemes, where synchronous assembly activity can be dissociated from the

rate-based continuous-time coding.

To better understand the implications for the organization of cortical pro-

cessing we consider a conceptual model where spikes of a neuronal assembly

are locked to the LFP (Figure 4) based on (i) the assumption that UEs re�ect

assembly activity (2) and (ii) our observation that UEs have the strongest lock-

ing to the LFP. A potential mechanism is that assembly spikes originate from

synchronous synaptic input to local groups of neurons. The simplest explana-

tion for the �nding that ISO and CC also exhibit locking, albeit weaker than

UE, is that the spikes of a neuron are composed of a mixture of non-assembly

(unlocked) and assembly spikes (locked). The latter are not identi�ed as UE

due to the lack of corresponding partner neurons in the recording (Figure 4A).

Consequently, the phase histogram of the ISO spikes is a superposition of the

histograms of non-assembly and assembly spikes, with a factor γ determining

their ratio (Figure 4B, top row). Chance coincidences are composed of spikes

from independent sources (Figure 4B, middle row) but the combinatorics of non-

assembly and assembly spikes enhances the locking. Finally, periods identi�ed

as UE contain excess coincidences (Figure 4B, bottom row) resulting from the

activation of an assembly in which both neurons participate. Their relative con-

tribution β leads to an enhanced locking of UE compared to CC. The structure

of the model allows us to derive conservative estimates of the parameters γ and

β from the experimental phase histograms. We �nd that outside of UE periods

γ=11% of the spikes of a neuron participate in an assembly, and β=23% of the

coincidences in UE periods result from the joint participation in an assembly.

Even though this is clearly a highly simpli�ed model, it provides a �rst quan-

titative bridge between functionally relevant spike synchrony (2,13,44) and the

LFP as a robust mesoscopic measure of brain activity (45).

Our results show that neuronal mass signals like the LFP convey speci�c

information about network processes. We directly demonstrate in the brain of a

behaving animal that the LFP is related to spike synchronization. Nevertheless,

there is a substantial fraction of spikes without an apparent relationship to the

LFP. Thus the two measures are observables of the same neuronal network but

do not necessarily carry the same information. Taken together, we interpret

our results as evidence that LFP (beta) oscillations, especially at high ampli-

tudes, are re�ections of the activation of neuronal assemblies which propagate a

synchronous volley through the network. With massively parallel recordings be-

coming available we may be able to disambiguate the superposition of multiple
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neuronal assemblies. This gives us con�dence that by improving our under-

standing of the various components of the LFP signal we will eventually be

able to use the LFP as an antenna delivering news from several communicating

network stations.

Methods

Coincidence detection and Unitary Event Analysis

From simultaneously recorded spike data of individual sessions we extract all

unique pair combinations of spike trains that are recorded from distinct elec-

trodes. Coincident spike events are derived by counting coincident spike oc-

currences of both neurons (compare Figure S6). To allow coincidences with a

temporal jitter up to a maximal coincidence width of b=3 ms, we apply the

'multiple-shift' approach (36,42). In this method exact coincidences (within the

time resolution h of the data) are detected for various shifts of the second spike

train against the �rst (reference) spike train. The shift is stepwise increased

from 0 in steps of h=1 ms up to b=3 ms (for positive and negative shifts).

Detected coincidences are marked for further analysis.

To account for the non-stationarity of the neurons' �ring rates, and to cap-

ture the dynamics of correlation, we perform the Unitary Event (UE) analysis

in a sliding window fashion (34). This is done by moving a window of �xed

duration (here: Tw=100 ms) along the data to cover the duration of a trial, i.e.

the duration of the PP. The length of the time window is chosen large enough

to include at least one complete cycle of the beta oscillation. The window is

advanced in steps corresponding to the time resolution h of the data. The �rst

window position is centered at trial onset, and the last window at the end of

the delay period.

Within each window position the total number of empirical coincidence counts

nemp is derived by summing the exact coincident spike events from each shift l

and from all M trials j : nemp =
M∑
j=1

L∑
l=1

nj,lemp, with L=2(b/h)+1. To derive UEs

this count is compared to the number of coincidences that would occur by chance

given the �ring rates of the neurons. This involves the following calculations.

To account for non-stationary rates across trials (46), the relevant measures

are obtained from the single trial and only subsequently summed across tri-

als. Thus, within the analysis window the expected number of coincidences is

calculated on the basis of the trial by trial �ring probabilities pi,j which are

estimated by the spike count ci,j of neuron i in trial j divided by the number

of bins N within a window: pi,j=ci,j /N with N=Tw /h. The joint probability

for �nding a coincidence by chance per trial is calculated by the product of the
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single neuron �ring probabilities p12 ,j=p1 ,j p2 ,j . The expected number of co-

incidences per trial j results from multiplying this probability with the number

of bins N that are included in the analysis window and the number of shifts L:

njexp = NL p12,j . The total number of expected coincidences within the window

is derived from the sum of the expected numbers per trial: nexp =
M∑
j=1

njexp.

Finally we compare the empirical nemp to the expected number nexp of coin-

cidences to detect signi�cant deviations. To this end, we calculate the joint-p-

value jp, i.e. the probability of measuring the given number of empirical coinci-

dences (or an even larger number) under the null-hypothesis of independent �r-

ing. The distribution under this null-hypothesis representing the probability to

�nd a given number of coincidences is given analytically assuming Poisson pro-

cesses (33). The latter assumption is shown to yield a conservative estimate for

cortical spike trains considering their non-Poisson and non-renewal properties

(8). Then the signi�cance of nemp yields (33): jp(nemp|nexp) =
∑ nr

exp
r! e

−nexp .

If its value is below an a priori threshold (here chosen as 5%) coincident �ring

is classi�ed as signi�cant and identi�ed as Unitary Events. Spikes are labeled

as UE if they are part of at least one sliding window identi�ed to contain sig-

ni�cant excess synchrony (for an illustrated summary of this analysis approach,

see (44)). In addition, we require such time windows to exhibit a minimum

�ring rate of 5 Hz for each neuron. Spikes that are part of coincident events

but not identi�ed as UE with respect to any of the neurons recorded in parallel

are labeled as chance coincidences (CC), all remaining spikes as isolated spikes

(ISO).

A thorough description of the experimental protocol and the methods used

to relate spikes and LFP, can be found in SI Methods.
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Supporting Information

Methods

Ethics Statement

Care and treatment of the animals during all stages of the experiments con-

formed to the European and French government regulations, according to the

Weatherall report (`The use of non-human primates in research', December

2006).

Experimental design and electrophysiological recordings

All data were taken from recordings partially presented elsewhere (1). Two rhe-

sus monkeys (monkey K and monkey O) were trained to perform arm movements

from a center position to one of two possible peripheral targets left and right

of the center in two di�erent tasks involving an instructed delay. In the �rst, a

choice reaction time task (chRT), both peripheral targets were presented simul-

taneously as a preparatory signal (PS), one in red and the other in green. The

animal learned to attribute to each color one of two possible delay durations. If

the (directionally non-informative) auditory response signal (RS) occurred after

a short delay, the monkey had to select the red target, after a long delay the

green one. Both the laterality of the colored targets and the presentation of

the two durations were varied at random with equal probability. In contrast,

in the second self-paced movement task (SELF), the presentation of only one

peripheral target, either in red or green, either at the left or the right, required

a self-initiated response after estimating one of the two delays as coded by PS.

In both tasks (1), four di�erent timing patterns were used to identify the short

and long delay, respectively: (i) 500 ms and 1000 ms (monkey K); (ii) 500 ms

and 1200 ms (monkey K); (iii) 600 ms and 1200 ms (monkey O); (iv) 1000 ms

and 1400 ms (monkey O).

In this study we exclusively analyzed the delay activity, i.e. activity recorded

during the preparatory period (PP) starting at PS and ending with either RS

in the chRT task or the earliest allowed response time (AT) in the SELF task.

Therefore, the trials were aligned to PS occurrence for the analysis. The neural

activity related to movement execution, i.e. after RS or AT, respectively, is

not analyzed. For both tasks, only correct trials were considered, in which the

monkey responded within a time window (after the end of PP) of maximally

300 ms (monkey O) and 500 ms (monkey K) and in which movements were

performed in the required movement direction.

In order to exclude e�ects due to pooling of neuronal activities of di�erent

behavioral contexts and di�erent tasks, their activity was analyzed separately

Local Field Potentials Re�ect Neuronal Assemblies 20

CHAPTER 3. RELATING LFPS TO NEURONAL ASSEMBLIES 110



for the four possible behavioral conditions (combinations of short or long delay

duration and left or right upcoming movement direction) and each experimental

session. For the sake of simplicity, we refer in this manuscript to a recorded

neuron by the combination of its identity and the behavioral context during

which it was recorded. In this sense, data recorded from the same neuron

may enter a population average up to eight times (maximum of four di�erent

conditions in two tasks).

Data acquisition and data analysis

LFPs and spikes were recorded simultaneously in primary motor cortex using a

multielectrode device of 2-4 electrodes (MT-EPS, Alpha Omega). Spikes of sin-

gle neurons were detected by an online sorting algorithm (MSD, Alpha Omega,

Nazareth, Israel). The inter-electrode distance was on the order of 400 µm.

LFPs were sampled at a resolution of 250-500 Hz and hardware �ltered (band

pass, 1-100 Hz). In total, we analyzed 53 recording sessions (monkey K: 25;

O: 28), which yielded 143 single neurons or 570 combinations of neurons and

behavioral conditions. On average 33±11 trials were recorded per experimen-

tal condition. In analyses that combine spikes and LFP, each neuron enters

only once, and we never combined LFP and spikes that were recorded on the

same electrode to exclude the possibility of spike artifacts in the signal. We

con�rmed that simultaneously recorded LFPs are highly synchronous in the

frequency regimes of interest. Likewise, coincident activity between neurons

was analyzed only from neurons recorded from di�erent electrodes, totaling 123

analyzed pairs of neurons. All data analysis was performed using the Matlab

software environment (The Mathworks Inc., Nattick MA).

Spectral analysis

Power spectra are used to assess the dominant frequencies in the LFP during

the task. All power spectra are calculated using a Hamming window as taper.

To illustrate the temporal modulation of power in di�erent frequency bands,

we use a time-resolved spectral analysis using 200 ms windows with a 50 ms

overlap.

Spike-triggered averages

Spike-triggered averages (STAs) are computed by averaging LFP segments from

time windows of 200 ms centered at each spike time. For the STA analysis, LFPs

are �ltered between 2-80 Hz to remove DC components. To compare STAs across

recordings, in which electrode signals often di�er in their absolute amplitude

values, we z-transform each LFP before further analysis by subtracting its mean
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(calculated across trials) and dividing by its standard deviation. In order to

quantify the magnitude (or size) of an STA, we calculate the total area the STA

encloses with the time axis. Similar results to those presented here (not shown)

are obtained using alternative measures of the STA magnitude, such as the area

under its envelope, or the maximum of its absolute value. The magnitude of

the STA is in general dependent on the number of trigger spikes. In order to

compare STAs obtained from two sets of trigger spikes of di�erent number of

spikes n1 and n2 (n1>n2 ) we construct 1000 STAs of set 1, each computed from

n2 randomly selected spikes. We de�ne the STA of set 2 to be larger than that of

set 1 if the magnitude of set 2 exceeds 50% of the re-computations of set 1, and

signi�cantly larger (at a level of 5%) if it exceeds 95% of the re-computations.

Peak-triggered spike histograms

We evaluate the population-averaged spiking discharge triggered on the peaks of

the LFP oscillation (43). To this end we detect maxima of the LFP separated by

a minimum time interval of 33 ms, which corresponds to a maximal oscillation

frequency of 30 Hz. The spike histogram is calculated from data within a window

of 200 ms around each peak, and averaged across all individual peaks in all

neurons (see (2) for a di�erent technique to relate spike times to EEG time course

based on amplitude). Simultaneously, we also compute the peak-triggered LFP

by averaging the z-transformed LFP aligned on its peaks.

Rate-amplitude correlation

To assess the degree of correlation between LFP oscillation strength and spike

rates, we calculate the mean value of the recti�ed, z-transformed LFP along

each trial with sliding windows of 200 ms length and 100 ms overlap. These

values are then correlated with the rate pro�le of the neuron estimated as the

spike count across trials in the same windows. Similar results as those shown

here are obtained using alternative measures of LFP strength, including the

mean value of the envelope of the beta-�ltered signal (compare phase-locking

analysis), or by using the total signal power in the beta range (10-22 Hz).

Phase analysis

After examination of the dominant beta frequencies on a session-by-session

basis, LFPs of both monkeys are �ltered with a zero-phase 10-22 Hz band

pass �lter (Butterworth, 8-pole). Short �lter transients in the time domain

allow for good estimates of the instantaneous LFP amplitude. In a subsequent

step, we calculate the instantaneous phase of the LFP from the analytic signal

ξ(t) = x(t) + i x̃(t) obtained via the Hilbert transformation
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x̃ (t) =
1
π

P.V.
∫

x (t)
t− τ dτ

of the original signal x(t), where P.V. denotes that the integral is to be taken as

Cauchy principal value (3). In this formalism, troughs of the LFP are identi�ed

by a phase of π. The calculation of the analytic signal can be applied to arbitrary

signals, but its interpretation as instantaneous phase is di�cult where either

the signal amplitude becomes too small to discriminate the oscillation from

background noise, or where the regular oscillation is disrupted (4). To account

for these e�ects, we discard phase values which violate the monotonicity of the

phase time series or exhibit instantaneous phase jumps. To further corroborate

our results, we exclude from our analysis those 10% of spikes per neuron that

occur at the lowest LFP amplitudes.

We analyze the distributions of extracted phase values at the times of spike

occurrences (23) using tools from circular statistics (5). The mean phase φ is

obtained via the circular average R ei φ = N−1
∑
ei φ(ti), where φ(ti) indicates

the phase of the �eld potential at time ti of spike i. Furthermore, we utilize

the transformation of the vector strength R to the circular standard deviation

σ =
√−2 logR as a measure of the concentration of the phase distribution.

For small values, σ relates to the standard deviation of a normal distribution,

whereas for �at distributions it behaves as σ → ∞. In all phase analysis, we

discard neurons that �re in total (across trials) less than 25 spikes.

Additionally, we employ two measures to quantify whether spikes recorded

from individual neurons show a signi�cant phase preference to the LFP. For the

�rst, we test against the null hypothesis that the phase sample is taken from

the uniform circular distribution (Rayleigh test (5)), which is expected by as-

suming a regular (e.g., �ltered) �eld potential and independent random spiking.

However, spike trains that have a certain regular structure in time may display

intrinsic locking to the LFP. To measure the degree of genuine locking that is

not explained by the regularities of the two signals, we calculate as the second

measure the degree of locking R in 1000 surrogates, each created by shu�ing the

inter-spike intervals of the spikes on a trial-by-trial basis (random placement of

the �rst spike). This procedure preserves to �rst order the regularity manifested

in the inter-spike interval distribution. A comparison with the measured value

R yields the p-value for this surrogate test. Since the construction of such sur-

rogates can only be performed on the complete spike train, this measure could

not be sensibly applied to the subsets of spikes in our analysis (i.e., ISO, CC,

UE, as well as Lo and Hi in the amplitude analysis presented in the Supporting

Information).

The phase distribution of coincident spikes may be trivially sharpened due
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to a preferred phase occurrence of individual spikes. To correct for that we

calculated the expected phase distribution of coincident spikes (compare black

curve in Figure 3 and S3A). To this end, we calculate the joint phase proba-

bility distribution of a neuron pair by the phase-by-phase multiplication of the

occurrence probabilities of spikes at these phases. The predictor for the whole

population is the average of the pair-wise phase distributions weighted by the

relative number of coincidences between the two neurons.

In contrast to this predictor which considers the phase of spikes irrespective

of the spike interval distribution, we also construct a predictor based on the

reverse scenario. For each pair of simultaneously recorded neurons the inter-

spike intervals of the spike trains of each neuron are shu�ed on a trial-by-

trial basis to create a set of 1000 surrogate pairs. For each surrogate, the

variance σ is evaluated separately for the resulting sets of non-coincident and

coincident spikes. Thus, we obtain for each neuron the variances σ of phase

locking of coincident and non-coincident spikes for the original data and for the

1000 surrogates, allowing us to compare their distributions (Figure 2C).

Supporting Text

Magnitude of global oscillations in�uences spike locking. At a given

time the amplitude of the LFP oscillation is de�ned by its envelope (blue curves

in Figure 2A). To examine the dependence of spike locking on the amplitude of

the LFP (23), we form two exclusive sets of spikes, termed 'Hi' and 'Lo', based

on whether a spike occurs at an amplitude above or below a certain value,

respectively (Figure S5A). We account for the session-by-session variability of

the LFP amplitude by de�ning the threshold θ in terms of the fraction of spikes

an individual neuron contributes to the Lo category (Figure S5B).

For threshold ranges between 0.2 and 0.8 we observe that the percentage

of signi�cantly locked neurons (Rayleigh test, α=0.05) of the Hi set is only

decaying slightly from 41% to 34% (Figure S5C). This percentage is in the same

range as the percentage of locked neurons considering all spikes (Figure 2B).

We emphasize that even for high thresholds, where only few spikes are included,

the locking of neurons can be explained using Hi spikes only. In contrast, when

considering spikes of the Lo set, the percentage of locked neurons starts at 5%

and increases approximately linearly with θ at a much steeper slope, meaning

that at increasingly higher amplitudes more and more spikes are included in the

Lo set. This shows that locking of spikes to the local �eld potential is largely

due to spikes that occur at high LFP amplitudes.
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Figure S1: Characteristics of LFP and spiking dynamics. (A) Two single-trial LFPs
recorded simultaneously (gray) at di�erent electrodes (during long trials with movement to
the right in the SELF task). Superimposed are the beta-�ltered (10-22 Hz) signals (red)
and their instantaneous oscillation phase (black lines). The histogram visualizes the phase
di�erences between the two signals across all time bins. (B) Spike raster of one example neuron
recorded in parallel to the LFP shown above (same neuron as in Figure 2). (C,D) Neither
the trial-averaged inter-spike interval distribution (C ) nor the normalized auto-correlograms
(D) indicate an oscillatory nature of the neuron. (E) The cross-correlogram with a di�erent
neuron recorded in parallel (neuron 1 in Figure S6) remains �at. Red lines indicate mean
(solid) and 5% con�dence intervals (dashed) of cross-correlograms obtained from surrogate
spike trains where each spike was jittered uniformly in window of ±20 ms around its original
position.
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Figure S2: Relationship of LFP and synchronized spiking behavior in a single
neuron and LFP-triggered PSTHs of synchronized activity. (A) STA of the LFP
(�ltered between 2-80 Hz to remove DC components) of one neuron (same neuron as in
Figures 2 and S1) for three disjunct sets of trigger spikes: not coincident with spikes from
simultaneously recorded other neurons (isolated spikes, ISO, gray), in coincidences predicted
by rate (chance coincidences (within 3 ms) , CC, cyan), and involved in signi�cant coincidences
(Unitary Events, UE, red). The left panel compares the STA of ISO (dark gray curve, n=4098)
to the STA of CC (cyan curve, n=533). To account for the di�erence in variability due to
sample sizes, the STA of ISO is recomputed using only 533 random trigger spikes. The light
gray band results from the superposition of 1000 re-computations of which 95% are enclosed
by the dashed curves at each point in time. Similarly, the middle and right panel compare
the STA of UE (red curve, n=150) to the STA of ISO and CC, respectively. (B) Bottom:
Population-averaged LFP-triggered histogram of ISO (left), CC (middle), and UE (right).
The trigger times are the largest local maxima of the LFP that are separated by a minimum
distance of 33 ms. The spikes of a neuron are triggered on exactly one LFP channel. Top:
LFP averages for each neuron contributing to the histogram (light gray curves) based on the
same trigger. The dark gray curve is the average of the single neuron LFP averages.
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Figure S3: Phase and amplitude distributions (normalized to unity area) of the
same example neuron as in Figures 2, S1, and S2 shown separately for ISO (left),
CC (middle), and UE (right). (A) The modulation of the phase distribution increases
from left to right. Phase π is the location of the trough of the LFP oscillation. The black curve
in the middle and the right panel is the expected phase distribution of coincidences predicted
from the phase distributions of the contributing neurons (see Materials and Methods). (B)
Simultaneously to the increased locking, the amplitude distribution shifts to higher values.
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Figure S4: The increased locking of UEs is independent of the overall degree
of locking of the neuron. (A) Fraction of neurons exhibiting (threshold of 25 spikes)
ISO, CC and UE separately for the sets of strongly (left) locked and weakly (right) locked
neurons (criterion: surrogate test (α=0.05) on original spike train containing all spikes). (B)
Percentage of neurons with a locking stronger than σl in each of the two groups (strongly and
weakly locked). For the selected value of σl=1.97 (average locking strength of strongly locked
neurons) the percentages are shown as bars.
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Figure S5: In�uence of oscillation magnitude on locking of spikes to LFP. (A)
Spikes in periods with an LFP magnitude (i.e. envelope of LFP, light gray curve) above a
certain threshold (dashed line) are termed the 'Hi' set (light gray ticks) and the remainder
the 'Lo' set (dark gray ticks). (B) Separation of spikes into Hi and Lo for the same example
neuron as in Figures S1 and S2. Spikes are rank ordered according to LFP magnitude, the
histogram on the right shows the distribution of the respective magnitudes. The threshold θ
is de�ned as the relative number of spikes labeled as Lo. The dark gray arrow illustrates a
threshold choice of θ=0.5, and corresponds to a data dependent relative amplitude (light gray
arrow). Spikes at extremely low LFP amplitudes (lowest 10%) do not enter the analysis. (C )
Percentage of neurons with signi�cant (Rayleigh test, α=0.05) phase-locking of the Hi spikes
(light gray curve) and of the Lo spikes (dark gray curve) as a function of magnitude threshold.
Even for large θ, the set of Hi spikes shows signi�cant locking in 34% of the neurons, although
it consists of only few spikes. The dashed line shows as a reference the percentage of locked
neurons computed if spikes are not separated into Hi and Lo (i.e. all spikes). Thus the locking
of neurons is mainly explained by the locked Hi spikes, and their locking is approximately
independent of θ.
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Figure S6: Detection of Unitary Events. (A) Spike rasters for the same neuron (neuron
6) shown in Figures S1-S3 and one simultaneously recorded neuron (neuron 1). Each line in
the rasters corresponds to one trial. Simultaneously recorded activities of the two neurons are
shown on lines of the same height in the respective raster. Spikes are indicated by black dots,
coincident spikes and Unitary Events are surrounded by a cyan or red square, respectively.
Data shown are recorded during the self-paced task with long time delay (see Methods and
Materials for experimental details). The corresponding behavioral events are marked in the
rasters with di�erently colored �lled circles: occurrence of the preparatory stimulus PS (dark
red), allowed movement time AT (light blue), movement initiation (dark blue) and end of
movement (dark green). (B) Firing and coincidence rates. The �ring rates of the two neurons
are shown in dark gray (neuron 6) and light gray (neuron 1), together with the rate of the
empirical coincidences (light cyan) and the coincidence rate expected from the neurons' �ring
rates (dark cyan), calculated as the sum of the trial-by-trial rates. All rates are estimated in
sliding windows of 100 ms width shifted by 1 ms. (C ) Signi�cance of empirical coincidences.
The joint surprise (dark gray curve) results from the comparison of the empirical and the
expected coincidence counts. Signi�cant excess coincidences (i.e. UEs) are detected if the
joint surprise is larger than the 5% level (dashed line). For comparison, the 1% level is also
indicated (dotted line). UEs are found during a short period before PS occurrence, shortly
after PS, and at 600 ms after PS. The latter is one of the short delay times that monkey was
exposed to in parallel to the shown delay scheme. Note that although there is a considerable
increase of coincident events in relation to the arm movement, they occur at chance level.
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Abstract

The hypothesis that cortical networks employ the coordinated activ-
ity of groups of neurons, termed assemblies, to process information is
debated. Results from multiple single-unit recordings are not conclusive
because of the dramatic undersampling of the system. However, the lo-
cal field potential (LFP) is a mesoscopic signal reflecting synchronized
network activity. This raises the question whether the LFP can be em-
ployed to overcome the problem of undersampling. In a recent study in
the motor cortex of the awake behaving monkey based on the locking of
coincidences to the LFP we determined a lower bound for the fraction
of spike coincidences originating from assembly activation. This quantity
together with the locking of single spikes leads to a lower bound for the
fraction of spikes originating from any assembly activity. Here we derive
a statistical method to estimate the fraction of spike synchrony caused by
assemblies – not its lower bound – from the spike data alone. A joint spike
and LFP surrogate data model demonstrates consistency of results and
sensitivity. Combining spike and LFP signals, we obtain an estimate of
the fraction of spikes resulting from assemblies in the experimental data.
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1 Introduction

A common hypothesis concerning the processing of information by cortical net-
works involves the propagation of activity through synchronously firing groups
of neurons, termed assemblies. Despite the inherent undersampling of state of
the art multiple single-unit recordings, experimental studies indirectly substan-
tiate the assembly idea with findings of behavior related significant synchronous
spiking (e.g., Riehle et al., 1997). Independently thereof, a signal on the pop-
ulation level, like the mesoscopic local field potential (LFP), typically exhibits
temporally structured oscillations commonly interpreted as correlated network
activity. Synaptic transmembrane currents have been identified as the primary
contributor to LFP generation (Mitzdorf, 1985; Logothetis and Wandell, 2004).
Surprisingly, although synchronized membrane potential oscillations of neurons
in the vicinity (Katzner et al., 2009) of the recording electrode show strong
correlations with the LFP (Poulet and Petersen, 2008), these do not induce the
same degree of coincident spiking between the same neurons. Their correlated
spiking is on average independent of the former two signals (Tetzlaff et al., 2008;
Poulet and Petersen, 2008).

In a recent study (Denker et al., submitted) we were able to demonstrate
in data of the motor cortex of the awake behaving monkey the missing link
between significant spike synchrony and the LFP. A conceptual model enabled
us to derive lower bounds for the fraction of spike coincidences β originating
from observed assembly activity and the fraction of spikes of a neuron γ caused
by assembly activity whether observed or not. The results were obtained by
comparing the locking of spike coincidences to the LFP in time periods with
significant synchrony to the locking outside of these periods.

In the remainder of this section we first introduce the Unitary Events analysis
method (Sec. 1.1) used to quantify spike synchrony. We then review our earlier
findings on the phase locking (Sec. 1.2) and the model-based interpretation of
the data (Sec. 1.3). In the present work we remove the limitation to lower
bounds of β and γ by evaluating a parameter-free model of the composition of
spike coincidence counts. Sec. 2 introduces the model and derives an estimator
for β only based on the configuration of spikes in the respective time interval.
In Sec. 3 we explain that γ – in contrast to β – cannot be extracted from
the spike trains alone. Nevertheless equipped with the estimate of β we are
in the position to compute γ using the previously found relationships between
the phase distributions of the spike-LFP coupling (Sec. 1.3). This highlights
the importance of the LFP in overcoming the undersampling problem. We
demonstrate the consistency of the concept with the help of a joint spike-LFP
toy model. In the physiological range, the parameters can reliably be determined
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and the lower bounds obtained from the phase locking are compatible with the
parameter estimates yielded if the spike statistics is considered in addition.
Finally, we utilize our new tool to reanalyze the experimental data (Sec. 4) for
β and γ. Although highly simplified the toy model enables us to discuss (Sec. 5)
various aspects of the distribution of parameters obtained from the experimental
data set.

1.1 Analysis of spike synchrony

In the following we will briefly summarize the results obtained in Denker et al.
(submitted) which serve as a starting point for our analysis. In a first step we
analyzed simultaneously recorded single units from monkey motor cortex (cf.,
e.g., Roux et al., 2006) for excess spike synchrony by employing the Unitary
Events analysis method (Grün et al., 2002b; Grün, 2009). The method compares
the empirically measured spike coincidences to the number expected by chance
given by the product of the neurons’ firing rates. The expected number defines
the mean of the a Poisson distribution realizing the null-hypothesis of statistical
independence. If the p-value of the empirically found number of coincidences
evaluated by comparison to this distribution exceeds the significance level, the
coincidences are considered significant and are termed Unitary Events (UE).
This analysis is performed in a sliding window fashion (windows of 100 ms) to
account for the dynamics of correlations and the non-stationarities in the firing
rates in time. Non-stationarity across trials is accounted for by calculating
the expected number of coincidences as the sum of trial-by-trial expectancies
(Grün et al., 2003). Coincident spike events with a temporal precision of up
to 3 ms were collected by the multiple-shift method (Grün et al., 1999), which
adapts the expected number accordingly. As a result we are able to detect the
dynamics of spike synchrony and can identify time intervals that exhibit UE, i.e.
excess spike synchrony. Non-UE time periods contain coincidence spike events
at chance level only.

1.2 Analysis of phase-locking

In a next step we investigated the relation of spikes to the LFP. In particular,
we were interested if spikes in synchronous events, such as chance coincidences
(CC) or UE, have a different relation to the LFP than spikes that are not in-
volved in a coincidence, i.e. isolated spikes (ISO). Therefore we classified each
spike of a data set into one of these three classes and analyzed the classes sepa-
rately (see Fig. 1(a) for an illustration). Spike triggered averages (STA) of the
LFP revealed for all classes an oscillatory structure at about 17 Hz with spikes
occurring preferentially at the decaying amplitude. However, the amplitude of
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Figure 1: Strongest phase locking of spikes to the LFP during time periods of
excess spike synchrony. (a) Sketch of the analysis: the number of pairwise synchronous
spikes between two neurons (here, neuron 1 and 2) is evaluated in sliding windows of T =
100ms (top graph). Synchronous spikes between the two neurons are classified as Unitary
Events (UE; red) in windows where the observed number of coincidences exceeds a minimal
number required to reach significance (dotted line). Outside of these windows coincidences are
classified as chance coincidences (CC; cyan). Spikes that are not part of an observed coincident
event are classified as isolated spikes (ISO; gray). UE periods are interpreted to originate from
activation of a neuronal assembly (green) in which both observed neurons participate. Here,
the assembly consists of the observed neurons 1 and 2 and the unobserved neurons 4 and
5. In contrast, during CC periods each of the observed neurons may individually participate
in other assembly activations within the network, but not the same one (here, neuron 2
participates in an assembly that does not include neuron 1). The instantaneous phase φ of
the LFP is extracted at spike times and pooled according to the spike classification (φISO,
φCC, and φUE). (b) Distributions of the LFP phase at spike occurrences for the three sets
ISO (left), CC (middle), and UE (right) in experimental data from monkey motor cortex (see
Sec. 4.1). Phase π corresponds to the trough of the LFP oscillations. The black curve in
the middle and right graph represents the expected phase distribution of coincident spikes
assuming independent neurons.
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the STAs derived for the different spike classes were strikingly different: con-
sistent across the whole data set the STA triggered on UE spikes exhibited the
largest amplitude, for CC spikes a smaller amplitude and for ISO the smallest.

However, the STA analysis cannot uncover the reason for the differences in
STA amplitude, since it may be due to differences in the LFP amplitudes or due
to different degrees of phase locking between spikes and the LFP. In order to
disentangle these aspects we performed a phase-amplitude analysis of the LFP.
Using a Hilbert transform of the LFP we gained the instantaneous phase and
amplitude as time dependent functions, and extracted the respective measures
at spike times. The phase distribution exhibits the phase preferences by non-
uniformity of the phase histograms (see Fig. 1(b)). We observed that UE spikes
expressed the strongest degree of phase locking, CC less (at the predicted chance
level) and even less for ISO. This result is consistent across the whole population
of recorded neurons, and 69% of the neurons exhibit a stronger phase locking of
UE than CC. In contrast we found much smaller or even negligible differences
of the LFP amplitude measured as its envelope at spike times.

1.3 Interpretation and conceptual model

Our analysis of the relation of spikes to the LFP revealed several unexpected
results. Firstly, we found a difference in the locking degree for spikes involved in
different categories of coincidences, i.e. UE vs CC. Following the hypothesis that
active assemblies are expressed by coordinated spiking activity, UE coincidences
are interpreted as a signature of such active assemblies. Our new finding on the
phase locking of UE spikes to the LFP leads to the interpretation that assembly
activity occurs in a pulsed fashion, locked to the LFP oscillation. The fact
that spikes of chance coincidences also occur phase locked seems contradictory.
However, their degree of locking is fully explained by the (weak) locking of
non-UE spikes, which trivially leads to an enhanced locking of such spikes if
occurring coincidently. Thus the question is rather, why isolated spikes outside
UE periods exhibit phase locking at all.

To get a better understanding of these puzzling observations, we developed
a conceptual model which consistently explains all our findings (Fig. 2(a)). One
basic assumption of the model is that spikes involved in assemblies exhibit lock-
ing to the LFP while non-assembly spikes do not. According to our findings
that individual spike trains typically contain a mixture of all spike categories, it
is reasonable to assume that an individual spike train is composed of assembly
and non-assembly spikes. Due to the severe undersampling of the system caused
by the limited number of recording electrodes, it is highly likely that also ISO
spikes contain assembly spikes, but the corresponding partner neurons could
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Figure 2: Conceptual model to explain the differences in spike-LFP locking and
definition of a suitable stochastic spike-LFP model. (a) A individual spike train is
assumed to be composed of assembly spikes that exhibit locking to the LFP (non-uniform
phase distribution pa(φ), top right) and of non-assembly spikes that do not lock to the LFP
(uniform phase distribution pn(φ), top left). The observed phase distributions for isolated
spikes pISO(φ), for chance coincidence spikes pCC(φ), and Unitary Event spikes pUE(φ) are
expressed as combinations of pn(φ) and pa(φ) by the three respective equations. (b) A
stochastic spike-LFP model is used to probe the consistency and sensitivity in estimating the
parameters β and γ from data. UE periods (red) are modeled as independent spike trains
of a given background rate, and excess coincidences due to an additional process from which
identical spikes are injected into both parallel spike trains (labeled by green letter ’a’). The
latter is modeled as Poisson process with a number of nc spikes. The background processes
of each neuron contain n1 − nc and n2 − nc spikes, respectively. A fraction γ of background
spikes may also be part of an unobserved assembly, also marked with the green letter ’a’.
Labeled spikes exhibit locking to the LFP according to pa(φ), non-labeled spikes do not lock
(uniform phase distribution pn(φ)). A CC period (cyan) is realized as two independent Poisson
processes with the same spike counts n1 and n2 for neuron 1 and 2, assembly probability γ
as for the UE period.
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not be identified. Consequently, the phase histogram of ISO must contain a
mixture of unlocked and locked spikes. Assuming a uniform phase distribution
pn(φ) for non-assembly spikes and an unknown non-uniform phase distribution
pa(φ) for assembly spikes, the phase distribution of the ISO spikes pISO(φ) can
be expressed by a weighted combination of the two components:

pISO(φ) = (1− γ)pn(φ) + γpa(φ) (1)

Thus also ISO spikes show locking, and its strength is expressed by the factor
γ.

CC result from pairs of independent spike trains that express coincidences by
chance. Under the above assumption that spike trains are composed of assembly
and non-assembly spikes, chance coincidences are the result of combinations
of different spike types: unlocked-unlocked spikes, locked-unlocked spikes (two
possible combinations), and locked-locked spikes. Thus, pCC(φ) is also expressed
as a composition of pn(φ) and pa(φ):

pCC(φ) = (1− γ)2pn(φ) + γ(1− γ)pn(φ)pa(φ) + γ2p2
a(φ) (2)

In case of time periods that contain UEs, coincidences resulting from an
active assembly are present, but likely intermixed with chance coincidences that
are not related to this assembly. Thus, the phase distribution of UE is assumed
to be composed of a contribution of chance locking of a percentage of (1 − β),
and to a percentage of β of assembly coincidences (see sketch in Fig. 2(a)):

pUE(φ) = (1− β)·[
(1− γ)2pn(φ) + γ(1− γ)pn(φ)pa(φ) + γ2p2

a(φ)
]

+ βp2
a(φ) (3)

As a result, the enhanced locking of UE as compared to CC is a consequence
of the presence of assembly coincidences i.e. β > 0.

2 Estimation of assembly activations from spike

statistics

In terms of spike coincidences, β is the ratio of the number of coincidences
resulting from assembly activation and the total number of coincidences in a
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given time window
β =

nc

nemp
. (4)

The task therefore is to construct an estimate of nc on the basis of the known
properties of the observed spike trains. For two independently spiking neurons
with n1 spikes in one spike train and n2 spikes in the other, the probability to
observe k coincidences is given by the hypergeometric distribution (Grün et al.,
2003)

Hn1, n2
Th

(k) (5)

where we introduced the shorthand

Th = T/h. (6)

and h is the resolution of the discretized time axis. We define H = 0 outside of
[0, Th]. The expected number of coincidences is

nexp =
1
Th
· n1n2. (7)

The expectation value (7) is just the probability to observe a coincidence in
a given bin (n1/Th) (n2/Th) multiplied by the number of available time bins
Th. In the presence of nc deterministic coincidences, however, only a reduced
number of spikes of the two neurons is available to form chance coincidences

nexp,c = nc +
1

Th − nc
· (n1 − nc) (n2 − nc) .

The construction of the respective spike trains is illustrated in Fig. 2(b). Let us
now assume that we measure the number of coincidences 〈nemp〉 averaged over
many repetitions of the experiment with exactly the same values for nc, n1,
n2. In this case we can equate the empirical average with the expectation value
〈nemp〉 = nexp,c. In this expression nc is the only unknown variable. Hence, we
can express nc in terms of n1, n2, and 〈nemp〉. Given only the triplet of a single
realization (n1, n2, nemp) we can still hope that the measured nemp is typical
and write

nemp = nc +
1

Th − nc
· (n1 − nc) (n2 − nc) . (8)

Multiplication with (Th − nc)

(Th − nc)nemp = (Th − nc)nc +
(
n1n2 − ncn2 − ncn1 + n2

c

)
shows that the quadratic terms in nc cancel
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−ncnemp − Thnc = −Thnemp − nc (n1 + n2) + n1n2

and collecting terms with nc gives

nc =
Thnemp − n1n2

Th + nemp − (n1 + n2)
. (9)

Using (9) we can already compute β for all experimental UE periods with their
individual triplets (n1, n2, nemp) and obtain the distribution of β as well as
its mean βUE (see Sec. 4). Clearly (9) is an approximation, the expression is
negative for small nemp, in particular when no coincidence has been observed
(nemp = 0).

Next we consider a slightly more realistic model with a variable number of as-
sembly activations nc. The purpose of the model is to help us to understand the
conditions under which we can reliably extract β. In the absence of any knowl-
edge about the process generating the additional coincidences nc we assume that
each value consistent with the observed number of coincidences is equally likely.
Thus, each possible value of nc occurs with probability 1/(nemp + 1). For a
particular nc, however, the probability to be consistent with the nemp observed
coincidences is again given by the hypergeometric distribution (5)

Hn1−nc, n2−nc
Th−nc

(nemp − nc) .

The probability that a particular nc underlies the observation therefore is

1
nemp + 1

Hn1−nc, n2−nc
Th−nc

(nemp − nc)

and the total probability to observe nemp coincidences is

nemp∑
i=0

1
nemp + 1

Hn1−i, n2−i
Th−i (nemp − i) .

Consequently, the expected nc given the observed triplet (n1,n2, nemp) is

nc =
nemp∑
i=0

i · 1
nemp+1Hn1−i, n2−i

Th−i (nemp − i)∑nemp
j=0

1
nemp+1Hn1−j, n2−j

Th−j (nemp − j)

which reduces to

nc =

∑nemp
i=0 i · Hn1−i, n2−i

Th−i (nemp − i)∑nemp
i=0 Hn1−i, n2−i

Th−i (nemp − i)
. (10)
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Note that the denominator is not unity as the sum extends over probabilities
from different hypergeometric distributions.

2.1 Correspondence of models of assembly activations

The intuitive approximation (9) is compatible with the more detailed model
result (10). To see this, we first approximate the individual hypergeometric
distributions in (10) by the one for the average nc and extend the range of the
sums to the maximum value Th − nc:

nc =

∑Th−nc
i=0 i · Hn1−nc, n2−nc

Th−nc
(nemp − i)∑Th−nc

i=0 Hn1−nc, n2−nc
Th−nc

(nemp − i)
.

This reduces the denominator to unity. With the substitution k = nemp− i this
reads

nc =
nemp∑

k=nemp−(Th−nc)

(nemp − k) · Hn1−nc, n2−nc
Th−nc

(k) .

The sum only has contributions for k ≥ 0 and we again extend the range to the
maximum value

nc =
Th−nc∑
k=0

(nemp − k) · Hn1−nc, n2−nc
Th−nc

(k) .

This suggests a decomposition of the sum to

nc = nemp

Th−nc∑
k=0

Hn1−nc, n2−nc
Th−nc

(k)−
Th−nc∑
k=0

k · Hn1−nc, n2−nc
Th−nc

(k)

where the first sum is unity and the latter term is the expectation value of k.
Hence,

nc = nemp · 1− 1
Th − nc

· (n1 − nc) (n2 − nc)

which is (8) implying the intuitive result (9).

2.2 Accuracy of the count of assembly activations

Before we turn to the experimental data in Sec. 4 we need to assess the accuracy
of our estimator of nc. To this end we construct a surrogate data set with
parameters adapted to the experimental data. The data are organized into 32
blocks containing an increasing number of assembly activations from nc = 0
to 31. A block is composed of M = 2700 time windows, consistent with the
number of UE windows found in the experimental data. A time window has
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a duration (6) of Th = 5000 at a resolution of h = 1 ms, corresponding to the
100 ms segments of UE analysis covering 50 trials. Each time window contains
surrogate spike trains of two neurons with totals of exactly n1 = n2 = 100 spikes
(corresponding to a rate of 20 Hz). In each spike train the ni−nc non-assembly
spikes are uniformly distributed over the time window.

Fig. 3(a) shows the distribution of injected coincidences nc in the data set
organized by the total number of coincidences in each window nemp. Here and
in the following only windows containing a significant number of coincidences
(nemp > nα) are analyzed (cf. Sec. 1.1). The estimator (9) of nc assigns a
unique value to each value of nemp because the spike counts are identical for
all windows. Therefore at a given nemp the estimate of nc is identical for each
window and thereby identical to the average over all windows. We observe
that the estimate well describes the mean of the actual distribution of nc at a
particular nemp. The average value of nc is replotted in Fig. 3(b). The panel
demonstrates that the approximative (9) and the exact (10) estimator only start
to deviate for nemp below nα. Fig. 3(c) uses the same representation as Fig. 3(a)
to illustrate the excellent correspondence between the distribution of the actual
β and the estimated values. The total distribution of β (Fig. 3(d)) in the model
is asymmetrical because of the lack of a typical nc and the constant spike count.
In conclusion, our measure is a faithful estimator of the average β in the data.

3 Estimating the assembly participation proba-

bility in a joint spike-LFP model

In the following section, we extend the simple spike model defined in Sec. 2
to include a representation of the LFP locking and verify numerically that the
results obtained in the previous section yield a reliable estimate of our model
parameters β and γ.

3.1 Combined spike-LFP model

First, we choose a parameter γset as the assumed probability that any spike in
the network is part of an assembly activation, in agreement with our conceptual
model. In the following we simulate for each choice of nc the set of M = 2700
UE time windows as combinations of an injection process and a background
process for two neurons as described in Sec. 2.2. In addition, CC time windows
are generated by a background process alone, again with equal spike counts
n1 = n2 = 100 (see Fig. 2(b) for an illustration). Again, only significant UE
windows (nemp > nα) and non-significant CC windows (nemp ≤ nα) are re-
tained. To model the experimental results, we assign a label ’a’ to all spikes
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that originate from an assembly activation (Fig. 2(b)). By definition of our
assembly process, every spike that originates from the injection process receives
a label. In addition, a random proportion γset of spikes from the background
process is labeled (in both, UE and CC time windows). In our simulations, the
overall probability for a spike to belong to an assembly is set to γset = 0.1.
Next, we define two distributions pn(φ) and pa(φ), where the latter has a larger
modulation depth, which describe the locking of non-assembly and assembly
spikes, respectively (Fig. 2(a)). Here, pn(φ) is modeled as a uniform distri-
bution, whereas for pa(φ) the uniform distribution is weakly modulated by a
Gaussian. Classification of spikes into the groups ISO (taken here as the single
spikes in CC windows), CC and UE allows us to calculate the simulated phase
distributions pISO(φ), pCC(φ), and pUE(φ) as mixtures of pn(φ) and pa(φ).

3.2 Estimating the minimal β from phase distributions

The setup allows us to follow the same analysis steps that we will perform on
the experimental data in the following section. From the conceptual model in-
troduced in Sec. 1.3, which is formally expressed in (1)-(3), we infer the lower
bound βφmin of coincidences originating from assemblies during an observed UE
period. Substituting the measured population phase distribution of chance co-
incidences pCC(φ) of (2) into (3) yields an expression relating the known phase
distribution pUE(φ) of UE coincidences to the parameter β and the squared
phase distribution of assembly spikes p2

a(φ):

pUE(φ) = (1− β) · pCC(φ) + β · p2
a(φ). (11)

By systematic variation of the parameter β we thus obtain a corresponding
phase distribution p2

a(φ) by solving the equation separately for each bin of the
respective distributions. However, for small values of β the assembly distribution
p2
a(φ) must exhibit a strong modulation to compensate for the large difference

between pUE(φ) and (1−β)pCC(φ). In the extreme case, it can become necessary
for a bin of p2

a(φ) to contain negative values, ruling out that particular choice
of the parameter β. From this consideration, we define βφmin as the lowest value
of β that leads to a phase distribution p2

a(φ) with non-negative entries. This
lower bound depends on the choice of the assembly phase distribution pa(φ)
we initially introduced into our model: the smaller the difference in locking
between assembly spikes pa(φ) and non-assembly spikes pn(φ), the lower are the
values that βφmin may assume. In Fig. 3(d) we show that in our spike-LFP model
we obtain a value for βφmin well below the mean βUE extracted from the spike
analysis (Sec. 2). We note that when generating the model data with a more
strongly modulated Gaussian to model pa(φ), the minimum βφmin approaches
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Figure 3: Consistency and sensitivity of the estimation procedure in surrogate
data. (a) Estimated (red curve) and actual (gray shading indicates probability distribution)
number of injected coincidences nc as a function of the empirical number nemp of coincidences
per time window. Values for all significant (UE analysis,α = 0.05, all panels unless otherwise
stated) windows of 2700 windows per value for nc = 0, 1, . . . 31 were pooled and reordered
according to nemp. The dotted line represents the minimum number nα of coincidences needed
for a window to become significant. Since the total number of spikes n was fixed, the estimated
nc for given nemp is constant. (b) Approximate (light gray) and exact (dark gray) theoretical
prediction of nc. For comparison, the red curve shows the measured nc (same curve as in
panel (a)). (c) Estimated (red line) and actual (gray distribution) values of β = ncn

−1
emp as a

function of nemp in analogy to panel (a). The dark gray curve shows the result from the exact
theoretical prediction in panel (b). (d) Distribution of β (red bars) across all observed values
of nempand the corresponding mean βUE (red line). The green line shows that the lower
bound βφmin calculated from the simulated phase distributions is well below the mean for our
particular choice of pa(φ). (e) Comparison of theoretical (light) and measured (dark) values
of β (green) from the UE analysis and corresponding γ (magenta) from the phase analysis as a
function of nc. Dashed curves show the minimum βφmin and corresponding γφmin. The shaded
graph indicates the probability for a time window at given nc to become significant. The
deviation of estimates from their theoretical value for nc < nα (dotted line) is an expected
artifact due to the pre-selection of significant UE periods. The average βUE from (d) yields a
good estimate γ = 0.098 ≈ γset (black cross on vertical axis).
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βUE from below (not shown).

3.3 Estimation of γ from phase distributions

We are now prepared to extract the parameter γ from the simulated phase
distributions using the estimate of βUE derived in Sec. 2. First, using β = βUE

we extract p2
a(φ) from (3) by solving the equation separately for each bin of

p2
a(φ). Taking the square root pa(φ), we renormalize the distribution to unit

area, and insert it in (1). By variation of the parameter γ, we find the value
γφ,UE that minimizes the sum of the absolute bin-by-bin differences between
the measures distribution pISO(φ) and the right side (1 − γ) · pn(φ) + γ · pa(φ)
of (1).

Using this method, we first analyze separately each of the 32 blocks of data
with a fixed number of injected coincidences nc. Let β̃ and γ̃ be the estimated
values of βUE and γφ,UE within a single block. In Fig. 3(e) β̃ and γ̃ are compared
to their theoretical means β̄ (calculated as the mean of nc/nemp over all signif-
icant time windows from one set of simulations with fixed nc) and γset. The
estimates are in good agreement for datasets where nc was set above the signif-
icance threshold nα. Below this threshold, the number of injected coincidences,
and hence β̃ and γ̃, is overestimated. Clearly, in this regime contributing UE
periods become significant due to an unusually high number of coincidences in
the background process. Therefore, the mean approximation (9) does no longer
hold. In principle it is possible to correct for the bias due to the selection of sig-
nificant periods, although it is not possible to arrive at an expression in closed
form for nc. Nevertheless, in fact only a small fraction of windows actually
become significant for low values of nc (shaded graph in Fig. 3(e)). Therefore,
in practice, where the true nc is unknown, only few windows enter the analysis
when nc is below the significance threshold. For this reason, the bias does not
affect the estimate when re-sorting the data according to the observed nemp

(Fig. 3(a)-(c)), and the original value of γset is well estimated as γφ,UE = 0.098
from the complete dataset spanning all nc (black cross in Fig. 3(e)). Consis-
tently, the lower bounds βφmin and γφmin are a lower bound on the respective
estimates β̃ and γ̃ for all values of nc. In summary, these calibrations using
a simple, combined spike-LFP model demonstrate that our method and the
approximation (9) are well suited to estimate the parameter γ from the phase
distributions in a dataset with a realistic choice of parameters.
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4 Analysis of experimental data

In this section we estimate the percentage of coincident spike events reflecting
assembly activity (model parameter β) and the percentage of spikes that are part
of an assembly activation (model parameter γ) from neuronal data of primary
motor cortex of monkeys.

4.1 Experimental procedures

Two rhesus monkeys were trained to perform arm movements in two different
tasks involving an instructed delay. In this study we exclusively analyze the
delay activity during the preparatory period for the upcoming arm movement.
Only correct trials were considered, in which the monkey responded within a
predefined time window and in which movements were performed in the required
movement direction. LFPs and spikes were recorded simultaneously in primary
motor cortex using a multielectrode device of 2-4 electrodes. Spikes of sin-
gle neurons were detected by an online sorting algorithm. The inter-electrode
distance was on the order of 400µm. LFPs were sampled at a resolution of
250−500 Hz and hardware filtered (band pass, 1-100 Hz). In total, we analyzed
53 recording sessions, which yielded 143 single neurons or 570 combinations of
neurons and behavioral conditions. This selection included only those neurons
which exhibited an average firing rate of 5 Hz or more. On average 33±11 trials
were recorded per experimental condition. In analyses that combine spikes and
LFP, each neuron enters only once, and we never combined LFP and spikes that
were recorded on the same electrode to exclude the possibility of spike artifacts
in the signal. We confirmed that simultaneously recorded LFPs are highly syn-
chronous in the frequency regimes of interest. For experimental details see Roux
et al. (2006).

The Unitary Events analysis was applied to all simultaneously recorded pairs
of neurons recorded on different electrodes thus totaling 123 pairs of neurons.
Data were analyzed separately for the possible behavioral conditions and each
experimental session. Defining a neuron by the combination of its identity and
the behavioral context during which it was recorded, data from the same neuron
may enter a population average up to eight times. Based on the results of the
UE analyses each individual spike was marked as either ISO, CC or UE (see
Sec. 1.1 and Denker et al. (submitted) for details). We observed a dominant
component of the β-band (here around 17 Hz) in the LFP during the preparatory
period and therefore filtered the LFP accordingly before applying the Hilbert
transform to extract instantaneous phase and amplitude (i.e. the envelope).
Finally, we derived the phase histogram pooled over the whole population for
each class of spikes (see Fig. 1(b)).
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4.2 Estimating the minimal β from phase distributions

As described in Sec. 3.2, we derive the lower bound of the percentage of coin-
cidences originating from assembly activity βφmin. Again, we make use of the
equation (11) that relates the phase histogram of the UE to the model param-
eter β. This equation contains two components that we extract from the data,
i.e. the phase distribution of the UE spikes pUE(φ) and the phase distribution
of the CC spikes pCC(φ). We vary β in the interval [0, 1] and retrieve the cor-
responding p2

a(φ). Four examples are shown in Fig. 4 for different values of
β. The first two examples demonstrate how choosing a small value of β may
lead to distributions p2

a(φ) that have negative entries and indicate a non-valid
solution. From the systematic variation of β we derive the value βφmin = 0.23,
that just leads to non-negative entries in all bins of p2

a(φ) (see Fig. 4, bottom).
This result indicates that at least about a fourth of the coincidences during a
UE period are reflections of the observed assembly.

4.3 Estimate of βUE from coincidence counts

As introduced in Sec. 2 the parameter β can be estimated by the comparison of
the expected number of coincidences nexp and the number of empirical coinci-
dences nemp. Fig. 5(a) shows nemp as a function of its respective nexp value for
all analysis windows that were detected to contain UE for all pairs and sessions.
Due to the selection of windows that contain UE, the empirical coincidence
counts are larger than the minimal number of coincidences nα required to be
significant given the significance level α. nα does not have a constant difference
to nexp but increases non-linearly as a function of nexp since the Poisson dis-
tribution used for the evaluation of the significance becomes broader for larger
expected number of coincidences (see for details in Grün et al. (2002a)).

Based on (9) we estimate the number of coincidences resulting from the ac-
tive assembly nc for each nexp, nemp combination. We use a version of the UE
analysis that also allows to detect temporally imprecise coincidences by employ-
ing the multiple-shift method. This method detects coincidences of systemat-
ically shifted spike trains up to a predefined shift, and sums the coincidence
counts from all shifts. For the UE evaluation, the expected number of coinci-
dences then has to be adjusted by a factor of 2s+ 1 with s being the maximal
shift (see for details Grün et al., 1999). Thus to estimate the number of co-
incidences nc that generically result from active assemblies, (9) was adjusted
correspondingly. Fig. 5(b) shows nc versus its corresponding nemp and we find
an average number of assembly coincidences of nUE

c = 7.72.
Next, we can derive for each pair of (nc, nemp) an estimate of the percentage

of coincidences reflecting assembly activity β (Fig. 5(c)). We find these values
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Figure 4: Determination of βφmin from experimental data. The four upper rows show
the measured distributions pUE(φ) (left, red), β pCC(φ) (middle, cyan) and the resulting
squared phase distribution of assembly spikes p2a(φ) entering the third equation in Fig. 2(b)
for four different choices of β. The bottom graph shows the relationship between the choice of
β and the resulting modulation depth of pa(φ) (difference between maximum and minimum).
The gray area indicates invalid choices of β where the corresponding distribution p2a(φ) has
negative values (compare green filled areas of p2a(φ) in the top two rows). Hence, the minimum
value for β is determined as βφmin = 0.23.
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Figure 5: Distribution of estimated β and the resulting βUE obtained from the
data. (a) Scatter plot of the expected number of coincidences nexp and the empirical number
of coincidences nemp. Here and in the following panels, each dot represents the values of
one significant 100ms time window (α = 0.05, UE analysis), where each neuron exhibits a
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c = 7.72 and
βUE = 0.46 are indicated by the light gray line. The dark gray line shows the lower bound
βφmin for comparison.
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peaked around mean value of βUE = 0.46 with a standard deviation of 0.108.
The obtained distribution of β is in good agreement with the minimum βφmin

obtained in Sec. 4.2, as βφmin lies well below the mean βUE of the distribution of
β as expected for an estimate of a lower bound. Although βφmin in fact seems to
be a bound for the complete distribution of β, this must not necessarily be the
case: As a measure derived from the population estimate of phase distributions,
it can only have predictive power on the population mean βUE, but not the
estimate β of single windows (compare Fig. 3(d)).

4.4 Estimation of γ from phase distributions

Finally, we estimate the fraction γ of spikes in the network that are part of an
assembly activation (compare Sec. 3.3). Again, by systematic variation of the
parameter γ in (1) we find the best fit between the measured pISO(φ) and the
right side of the equation (see Fig. 6). Here, the assembly distribution pa(φ)
is known from Fig. 5 by setting β = βUE, while the phase distribution of non-
assembly spikes pn(φ) is taken as the uniform distribution (see Sec. 5). Taking
all analysis steps together, the best fit is derived for γφ,UE = 0.22 indicating
that on average 22% of the spikes of any neuron in the network originate from
assembly activity (Fig. 6, bottom).

5 Discussion

Despite the complex mechanisms that contribute to the formation of the local
field potential, it is well established that a primary contribution to the oscillatory
LFP dynamics arises from the superposition of synchronized, slow transmem-
brane currents of cells close to the recording site (Mitzdorf, 1985; Logothetis and
Wandell, 2004). Nevertheless, how rhythmicity in the LFP should be linked to
synchrony on the spiking level has remained an open question (Poulet and Pe-
tersen, 2008) due to the unspecificity of the LFP signal and lack of a global oscil-
latory spiking activity. Several authors have interpreted the LFP as reflections
of the specific synchronous synaptic activity responsible for the co-activation of
neurons in the context of Hebbian cell assemblies (Eckhorn et al., 1988; Murthy
and Fetz, 1996) which, in the simplest case, time their activations to the rhythm
revealed by the LFP (Singer, 1999). Our recent experimental findings (Denker
et al., submitted) demonstrate that indeed only identified assembly activity,
which is identified as transient periods of significant excess spike synchrony be-
tween two neurons (UE analysis, Grün et al., 2002a,b), shows an exceptional
phase relationship to LFP oscillation that exceeds expectation (Fig. 1(b)), thus
confirming the hypothesis.
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Figure 6: Calculation of the average assembly participation γ from experimental
data. The top four rows show the different distributions entering the first equation in Fig. 2(b)
for 4 different choices of γ. Left: measured phase distribution pISO(φ) (gray) of isolated spikes,
repeated in each of the four rows. Middle: calculated distribution (1−γ) pn(φ)+γ pa(φ) (blue)
compared to the measured distribution pISO(φ) (gray). Right: Scaled assembly distribution
γ pa(φ) (green). The bottom graph shows the absolute bin-by-bin difference between pISO(φ)
and the calculated distribution as γ is varied (compare distributions in the middle column).
Both distributions match best for γφ,UE = 0.22.
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This link provides a handle on characterizing the spike synchronization dy-
namics in the context of the network oscillations. A simple model that captures
the main experimental findings (Denker et al., submitted) on the spike-LFP
relationship is introduced in such a way that it includes a parameter γ that
measures the overall participation of individual spikes in an assembly – inde-
pendent of whether it is observed or not. However, the estimation of this network
parameter from the data requires knowledge of a second model parameter β, the
expected relative number of coincidences stemming from an active assembly (as
opposed to chance coincidences) during UE periods. Estimating this number
from the spike data alone and integrating it into the conceptual model yields
an average participation of single spikes to assembly activity of γ = 22%.

The combination of measurements of synchrony on the local and mesoscopic
scales enables us to access parameters of the network dynamics that remain
hidden on the two individual levels of observation. The nature of the estima-
tion process via the population phase distributions obtained from the LFP-spike
locking requires a vast pooling of the experimental data in different sessions and
two different monkeys in order to obtain a large sample of neurons as an ap-
propriate representation of the network activity in motor cortex. The resulting
value for γ must therefore be seen as a coarse estimate of the degree of assembly
activity. Despite the finding that the parameter β shows a rather narrow distri-
bution (Fig. 5(c)), the extent to which an individual neuron contributes to the
assembly dynamics will fluctuate around the network mean γ. By quantifying
the quantiles for 2 standard deviations of the experimental distribution of β we
find corresponding γ values between γ = 0.13 and γ = 0.30 as an estimate of
the range of γ across neurons.

In understanding the underlying dynamical structure, more interesting than
the precise value of γ itself are two simple observations: first, γ < 1. Therefore,
not all spikes are part of an assembly activation, and therefore some spikes must
be attributed to a complementary mechanism. Intuitively, this is clear from the
observation that in individual UE periods, it is always the falling phase of the
LFP oscillation where increased locking is observed. Second, γ > 0, specifically
at least about one fourth of all spikes must originate from assembly activity (with
a non-zero lower bound γφmin). Thus the activation of assemblies is an ubiquitous
phenomenon in the network, providing compelling evidence for the presence of
an assembly coding scheme in addition to the correlation of synchrony with
behavior (Riehle et al., 1997). Indeed, we typically observe a fraction of about
26% of neurons that show UEs during a given task. Therefore, combined with
the large value of γ this suggests that typically any neuron is part of one or
several assemblies. Nevertheless, information about the existence of higher-
order synchrony between neurons is required for a further characterization of
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the assembly, such as an estimate of the number of neurons that form a typical
assembly.

A crucial part of our analysis is the estimation of the average relative amount
of excess synchrony β during UE periods directly from the synchrony analysis.
By design, all currently available methods to detect the presence of an active
assembly activation, such as the UE analysis, rely on a significance test (Grün,
2009). Therefore, we must assume that the amount of excess synchrony β is
influenced by the explicit choice of the significance level α used for the signif-
icance test: For a very restrictive significance criteria, only UE periods with
very high excess synchrony nc will be detected, resulting in higher values of β.
Nevertheless, by choosing the same α level for the phase locking analysis, we will
in turn also obtain a correspondingly more modulated distribution for pUE(φ),
reflecting that it contains a higher proportion of assembly spikes. Therefore, β
yields a consistent phase distribution pa(φ) of the assembly spikes independent
of α.

The approximate formula (9) does not make any assumptions on preselect-
ing significant periods of synchrony in the first place. However, we apply this
estimate specifically in periods that display a significant surplus of synchrony,
i.e. UE periods. If the number of coincidences nc coming from the injection pro-
cess is small, significance is only reached with an unexceptionally high amount
of coincidences originating from the background. Therefore, in our stochastic
spike-LFP model, in those very few trials that are significant for a given nc, the
average background rate will be underestimated and the average injection rate
overestimated (Fig. 3(c)). However, restructuring the model data to the realistic
case where only nemp is measured (pooling across the data sets with different
nc) automatically incorporates the low frequency of significant windows with
small nc. Therefore the overall estimate of β is not significantly affected.

Our spike-LFP model (Sec. 3) is created in the spirit of providing a simple
abstraction of the experimental findings in order to test the analysis under
controlled conditions (equal counts per spike train with fixed injections). Due
to this intentional lack of experimental detail in the model, the distribution
of β that is obtained in the spike-LFP model naturally deviates from the one
found in the data (compare Fig. 3(d) and Fig. 5). The model assumes an equal
probability for a large range of nc (number of injected coincidences). In real
data, nc likely follows a much more narrow distribution that does not exploit
this range, resulting in lower values of β (compare Fig. 3(e)). Moreover, we
assumed fixed counts n1, n2 for all neurons in the model. In reality, rates
vary considerably across neurons. Especially for higher rates, where a higher
proportion of coincidences can be assumed to originate from the background,
we would expect a tendency towards lower β values.
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In generating the spike-LFP model in Sec. 3 we did not explicitly model
an LFP oscillation to place spikes at specific points of the field potential. In
extreme situations this might be an oversimplification, where the constraints
placed on the spikes due to the LFP locking influence the probability to detect
coincidences. In our model, however, non-assembly spikes are associated with
a uniform phase distribution, such that pn(φ) does not impose any constraints
on the spiking probability in time. The Poissonian spike interval statistics of
non-assembly spikes thus remain unaffected. In contrast, the assembly spikes
from the background process must in principle be adjusted with respect to a
hypothetical LFP so that their phase distribution matches the assumed the
distribution pa(φ) of assembly spikes. However, as pn(φ) is uniform, doing so
will only influence the probability of finding a coincidence between two spikes
that are both assembly spikes, i.e. that participate by chance in two different
assemblies at the same time. Nevertheless, the probability (γset)2 = 0.01 of
this to happen is negligibly small. Finally, assembly spikes from the injection
process are synchronous by definition, and therefore remain unaffected by the
choice of pa(φ). Due to their small number they can always be freely placed in
the time window T in accordance with pa(φ). Taken together, the simple model
introduced in Fig. 2 to represent the experimental findings in the context of the
spike model includes sufficient detail without the need to explicitly model the
actual positions of individual spikes with respect to an artificial LFP.

The analysis we provide in this manuscript focuses on estimating a global
parameter that characterize the network dynamics. Given the overall consis-
tency of our conceptual assembly model, the results suggest that oscillations
and assemblies are tightly coupled. However, one may still speculate whether
LFPs are in fact the direct cause of the assembly process, or whether they act
as a supporting mechanism that coordinates synchronized firing. Whichever the
initial cause of the LFP oscillation, a promising next step is to return to the level
of the single neuron and integrate our knowledge on the dependence of spike
synchrony on the LFP in order to discriminate which of the spikes are likely
candidates to originate from the assembly process, and which are not. Two
pieces of information aid us in this task: first, the knowledge of the observed
UE phase distributions in relation to the ISO and CC distributions to determine
the likelihood of a single spike to be part of an assembly activation. Second,
the parameter γ that is informative of the relative number of spikes to assign
to the assembly dynamics. Therefore knowledge about the LFP in relation to
the spiking activity may well provide an independent indicator to identify pe-
riods where recorded neurons become transiently synchronized as part of an
assembly activation. Moreover, the pulsed activation of assemblies triggered on
the LFP oscillations cycle suggested by the experimental data stimulates the
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idea that maybe even assemblies, where only one neuron is recorded, may be
inferred from the phase locking statistics. Thus, incorporating a mesoscopic
signals may serve to overcome problems related to the undersampling in mul-
tiple single-neuron recordings. The success of the method presented here not
only corroborates the assembly hypothesis of neuronal processing, but offers a
promising vista on reinterpreting the dynamical implications of observed LFP
signals.
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List of symbols

T Duration of each simulated time window
h Temporal resolution of spike trains
pn(φ) Phase distribution of spikes not participating in an assembly
pa(φ) Phase distribution of spikes participating in an assembly
pISO(φ) Measured phase distribution of ISO spikes
pCC(φ) Measured phase distribution of CCs
pUE(φ) Measured phase distribution of UEs
β Fraction of spikes originating from assembly activity during a

UE period
βφmin Minimal value of β extracted from the phase distributions
γ Fraction of spikes in the network activated in assemblies
γφmin Value of γ that corresponds to the lower bound βφmin

βUE Average value of β obtained from the UE analysis
γφ,UE Final estimate of γ obtained from phase distributions using

βUE

α Significance level of the Unitary Event analysis
nα Number of coincidences required to reach significance at the

α-level
ni Spike count of neuron i in a given window across trials
n Total number of spikes per neuron and window in the

stochastic spike-LFP model
nemp Empirical number of coincidences in a given time window
nexp Expected number of coincidences in a given time window

based on the firing rates
nc Number of injected coincidences in our stochastic spike-LFP

model
M Number of windows simulated in the spike-LFP model per

choice of nc

γset Predefined value of γ in the spike-LFP model
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Chapter 4

Conclusion

In this chapter we first briefly summarize the key findings presented in
Chap. 2 and Chap. 3 and discuss them in the context of this thesis. We
then highlight several points common to all five studies, before we give an
outlook on how the ideas presented in Chap. 3 could be continued in the
future.

4.1 Summary and Interpretation

The work presented in Sec. 2.1 demonstrates learning-induced response chang-
es during olfactory conditioning in the output of the antennal lobe (AL) of
the honeybee, both on the level of the network spiking activity and the LFP.
Simultaneous extracellular recordings were performed in fibers that contain
mostly projection neurons which carry information from single glomeroli of
the AL, the first stage of processing in the olfactory system, to second-order
neuropiles. Therefore, the odor-specific spatial activity patterns of the glom-
eroli (e.g., Joerges et al., 1997; Hallem and Carlson, 2006) and the temporal
response profiles represented in the timing of individual spikes (Laurent,
2002) are likely to be relayed to the level of projection neurons. In addition,
the resulting patterns of activation (Sachse and Galizia, 2002; Krofczik et
al., 2009) and temporal responses (Laurent et al., 2001) of the projection
neurons are modulated by the interaction with a network of interneurons.
A number of studies have demonstrated that learning induces plasticity in
the representation of odors at the level of the AL of insects (Faber et al.,
1999; Sandoz et al., 2003; Yu et al., 2004), suggesting that also responses at
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the output level show learning-induced changes. To test this hypothesis, we
subjected bees to a differential conditioning task, where administration of
a rewarded odor (sucrose reward) was interwoven with an unrewarded and
a control odor, and responses were compared from before the conditioning
phase (pre-test) to after (post-test).

We demonstrate that learning leads to a restructuring of the rate-based
odor representations in the neuronal network. Recorded units (spikes from
single neurons or mixtures of spikes from several, but few neurons) often
change their response characteristics in the course of conditioning. However,
both rate increases and rate decreases are frequent, such that the average
level of activity does not show a difference between the rewarded and unre-
warded odors. However, by representing an odor by the ensemble response of
neurons in the network (cf. also Laurent, 1996; Daly et al., 2004), we demon-
strate that the composition of rate responses across neurons that codes for
an odor changes consistently in the course of conditioning. In particular, the
pattern representing the rewarded odor changes most drastically. The large
pool of neurons required for this analysis is obtained by pooling responses
across bees and interpreting them as signals from different electrodes in the
same animal. The finding of changes in the ensemble response is in agree-
ment with previous work demonstrating recruitment and loss of responding
neurons to odor conditioning in the AL (Daly et al., 2004; Yu et al., 2004).

The LFPs typically display a complex response to odor stimulation, visu-
alized in the temporal pattern of their frequency composition. Nevertheless,
we frequently observe oscillations around 50 Hz shortly after odor onset. We
find that for the rewarded odor only, learning induces a reduction of the
power content at this frequency and an increase in power in a broad band
around 15 − 40 Hz. Similar observations have been reported in the olfac-
tory system of the rat (Ravel et al., 2003; Martin et al., 2006). Therefore,
both population measures, ensemble rate response and LFP, show distinct
changes in response to the rewarded odor. However, we do not find a relation
between these power changes and the spike rates, suggesting that the LFP
reflects a change in the synchronization of neuronal ensembles in response to
the rewarded odor. Using the techniques introduced in Sec. 1.2, we therefore
investigate the phase relationship between spiking responses and the LFP. In
the unconditioned bee, most neurons exhibit significant locking to the LFP
at the 50 Hz band. From pre- to post-test, however, for the rewarded odor
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the change in the number of locked neurons per frequency band correlates
with the respective power change in that band. In particular, the change in
the frequency composition towards the lower 15− 40 Hz band is reflected by
an increase of the size of the respective phase-locked ensemble. Thus, the
described changes in response to differential conditioning are indicative that
plastic changes in the network are expressed on two levels, a coarse reorgani-
zation of rate responses across projection neurons, and a specific entrainment
of neurons at a decreased frequency in response to the learned odor. Sum-
marizing within the topic of this thesis, this report demonstrates how the
spike-LFP relationship reveals that features of the LFP reflect a group of
neurons that dynamically changes its synchronization characteristics in the
response to an external stimulus.

The most pressing open question is surely, how the emergence of these
synchronized responses is related to the observed restructuring of the rate
responses. However, these questions cannot be answered conclusively in the
present data set due to the limited number of recordings and odor presen-
tations that provide a too sparse sampling of the network response. Partial
answers may be obtained through a more simple experiment that focuses in
more detail on the overlap of phase-locked patterns (David et al., 2007) to the
50 Hz oscillation and ensemble rate responses to singular odor presentations
in the absence of learning.

The study introduced in Sec. 2.2 investigates the role of different neuronal
subtypes in the striatum of the anesthetized rat in relaying cortical oscilla-
tions to the basal ganglia network. To present, at least four putative types of
striatal neurons have been identified: the medium spiny projection neurons,
in addition to the fast spiking, the tonically active, and the low-threshold
spiking interneurons. In the present study we provide the first classification
of recorded neurons into these four categories in a single data set. This anal-
ysis is based on waveform parameters as well as the firing statistics (rates
and interspike interval distributions) of individual neurons. The resulting
classification allows us to analyze to what extent individual neuron classes
are involved in the generation of oscillations in different frequency bands
exhibited within the striatal network.

Cortical input enters the basal ganglia mainly through the striatum.
Recordings of electrocorticograms (revealing primarily cortical input) and
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striatal LFP display spontaneous oscillations at both low (2 − 9 Hz) and
high (35− 80 Hz) frequencies, and oscillations are coherent between the two
types of measures. Although the recordings were performed in the anes-
thetized animal, the use of halothane as anesthetic provides a setting where
oscillations at multiple frequency bands are exhibited in a stable fashion,
thus aiding our analysis. In particular, the θ and γ frequencies observed
under halothane (Imas et al., 2004) are readily observed in the awake ani-
mal (Tort et al., 2008). While the involvement of striatal neurons in slow
oscillations has been well described, no phase-locking of neurons to the fast
γ rhythms has been reported previously (Berke et al., 2004).

In the present study, we show that only putative fast spiking interneurons
exhibit significant phase locking to oscillations in the γ range. The finding
is backed by a cross-correlation analysis between the different cell types that
reveals significant correlations on a comparably fast time scale only for this
neuron type. A further analysis that corroborates this the special role of fast
spiking interneurons, previously presented by Denker et al. (2008), reveals
how a locked fast spiking interneuron modulates its firing rate and strength
of phase-locking in accordance with spontaneously occurring state changes
in the frequency composition of the LFP oscillations. In contrast, all neu-
ron types are entrained to the slow oscillations. The finding identifies fast
spiking interneurons as the key contributors to the propagation of cortical
oscillations into the striatum, a view that is matches similar observations
in cortex (Hasenstaub et al., 2005; Cardin et al., 2009) and hippocampus
(Klausberger et al., 2003). Given the high proportion of ≈ 97% of projec-
tion neurons in the striatum (Rymar et al., 2004), it is not surprising why
typically the relationship between striatal γ oscillations and neuronal spiking
activity remains obscured.

The finding that in the absence of behavior oscillations are driven by a
single cell type further highlights the special role of interneurons (Sec. 1.1.2)
in generating coherent rhythms in the high frequency range without the need
for feedback from an entrained excitatory population. Thus, the results add
further support for the current hypothesis that interneurons may act as a
mechanism that structures the neuronal dynamics in the temporal domain
(Fries et al., 2007; Berens et al., 2008), even in subcortical structures such
as the basal ganglia. As a practical application, spike-LFP phase relation-
ships may serve as an additional parameter, next to morphology, wave form
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characteristics and spiking statistics, to separate neurons into their respec-
tive physiological categories. It remains to be shown to what extent these
findings are transferable to the behaving animal, and how a modulation of
cortical oscillatory drive is represented in the response of the phase-locked
population of interneurons.

In comparison with the work presented in Sec. 2.1, this study relates
oscillations of the LFP to synchronization within a specific class of neurons
based on their physiology, as opposed to their role in the coding of a stimulus.
In both studies, however, knowledge of the spike-LFP relationship provides
an handle to characterize and classify a specific ensemble of cells, whose
synchronized action is reflected in the LFP.

In the subsequent three sections of Chap. 3, we take the approaches pre-
sented so far one step further and show that in the behaving animal the
cortical LFP reflects the transient coactivation of neuronal groups in the
context of neuronal assemblies (cf. Sec. 1.1.3). In doing so, we establish
the link between the precise synchronization of spikes and the oscillatory
population activity of the LFP. The experimental basis for all three stud-
ies are recordings of LFP and spikes from motor cortex of monkeys in a
delayed pointing task (Roux et al., 2003, 2006). The experimental design
provides a time window between trial start and movement onset that has
been shown to exhibit a reliable oscillation in the β range (e.g., 15− 40 Hz)
that is commonly associated with preparatory and attentional modulation
(Sanes and Donoghue, 1993; Murthy and Fetz, 1996a) and may also repre-
sent modulatary input from higher cortical areas (Lebedev and Wise, 2000).
In addition, we observe transient spike synchronization that is correlated to
behaviorally relevant time points of the trial (Riehle et al., 1997; Grammont
and Riehle, 2003; Kilavik et al., 2009). Therefore, these experiments deliver
rich data that provides signatures of synchrony on the level of single spikes
and the population.

Neurons typically display a flat auto-correlation. Previous studies sug-
gest that only during periods of enhanced LFP activity (typically occurring
in spindles that encompass on the order of 5-10 oscillatory cycles), neurons
may become oscillatory and entrained to the LFP oscillation (Murthy and
Fetz, 1996b; Donoghue et al., 1998). In addition, cross-correlations between
these neurons also become oscillatory in about half of the recorded popula-
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tion. In a first study (Sec. 3.1), we quantify the dependence of the locking
of single spikes to the LFP as a function of the instantaneous amplitude
(or envelope) of the LFP oscillations (i.e., their magnitude) using the phase
analysis technique (Sec. 1.2). Consistent with previous work, we find that
only a fraction of neurons (30−40%) displays significant locking to the LFP.
By separating spikes into two groups based on the magnitude of LFP os-
cillations at which they occur, we could quantitatively verify that indeed
mainly spikes associated with high LFP amplitudes are responsible for the
observed locking of a given neuron. This observation is largely independent
of the threshold on LFP amplitudes used to separate the two groups. There-
fore, we conclude that the small percentage of the spikes that occur during
episodes of the largest LFP oscillations are able to explain the phase pref-
erence of the cell’s spikes. In contrast, spikes are largely independent of the
LFP rhythm during low amplitudes of the population oscillations.

We investigated the dependence of observed phase locking on the dif-
ferent periods of a behavioral trial. This leads to a quantitative, but not
qualitative difference in the results: in each period, spikes that occur at
large LFP amplitudes are still best locked to the field potential oscillation.
However, the percentage of phase-locked neurons decreases in total during
each of the short periods of the trial compared to the complete trial, thus
indicating a transient nature of the spike-LFP locking. Given that the LFP
modulates its power on a roughly comparable time scale as the length of
these periods, our interpretation of transient synchronization is in full agree-
ment with the dependence of spike-LFP locking on LFP amplitudes. For
all observed data sets, neurons tend to keep a fixed phase relationship to
the LFP independent of the amplitude or the choice of the electrode used to
record the LFP. In conclusion, we present evidence to support the hypothesis
that increased LFP oscillation amplitudes are related to a stronger degree
of synchronization between the LFP and spike signals. Thus, interpreting
the percentages of locked neurons as probabilities to lock to the LFP, and
considering the constant mean phase exhibited by locked spikes, our study
links LFP amplitudes to the size of the neuronal population synchronized to
the population signal.

It is commonly assumed that the oscillatory structure of mesoscopic brain
signals, such as the local field potential (LFP), reflects synchronous spiking
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activity (Sec. 1.1.2). However, this hypothesis was never verified directly,
and what types of synchronized network activity on the level of single spikes
are expressed in the LFP remains speculative. A recent study by Poulet and
Petersen (2008) exposes the nature of this question: despite strong corre-
lations of simultaneously intracellularly recorded membrane potentials and
LFP signals, this correlation was not simply reflected in the highly specific
occurrence of synchrony on the spike-spike level. In the central study of this
thesis presented in Sec. 3.2, we are able to prove for the first time that the
long-standing belief of LFPs as a reflection of synchronized spiking activ-
ity indeed has objective grounds, and provide a framework to reconcile the
apparent discrepancy to Poulet and Petersen (2008).

To this end, we classified individual spikes according to their participation
in synchronous events with spikes from a second neuron. We show experi-
mentally that correlated spiking activity on a fine temporal scale (millisecond
range) is indeed better locked to the phase of the LFP than single spikes.
However, spike coincidences are better entrained to the LFP than expected
by chance (on the basis of the locking of single spikes) only in those time
intervals where the large number of coincidences indicates that the neurons
coordinate their spike emission (Unitary Event analysis, see Grün et al.,
2002a,b; Grün, 2009). The excess amount of synchrony observed in these
periods is commonly attributed to a process that repeatedly coactivates a
specific subgroup of cells where the recorded neurons are both part of, i.e.,
an assembly (Sec. 1.1.3). Therefore, our findings provide evidence of the
hitherto unproven hypothesis (Eckhorn and Obermueller, 1993; Murthy and
Fetz, 1996b; Donoghue et al., 1998; Singer, 1999) that assembly activations
are the synchronized activity that is reflected in the LFP oscillation.

Our results are robust under variation of the various parameters inherent
in the analysis, such as the allowed temporal jitter of coincidences or the
particulars of the filtering process of the LFP. Similar, albeit less pronounced,
findings already emerge using the simpler spike-triggered average (Sec. 1.2.1).
However, only by means of the phase synchronization analysis it is possible to
quantitatively disentangle the subtle effects of increases in locking strength
due to the observation of excess synchrony and due to the amplitude effects
as described in Sec. 3.1.

The experimental evidence brings up two main questions: first, how can
we understand the (weakly) non-uniform distribution of spike phases that
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are not involved in a synchronous event? Second, why do assemblies always
prefer to lock to a specific phase of the LFP, independent of the identity of
the participating neuron? To gain an understanding of the first question,
we linked the concept of neuronal cell assemblies to the LFP in a unifying
conceptual model based on these experimental results. Central to the model
is the concept that phase-locked spikes of neurons that are not activated in an
observed assembly should therefore be involved in a non-observed assembly.
This simple insight highlights the LFP population signal as a measure of
synchronous activations of cells within the network that are hidden from
direct observation. Using simple calculations, the conceptual model therefore
allows us to give an estimate of the minimal percentage of spiking activity
that results from assembly activations (11%). This functional framework
bridges the apparent discrepancy between synchrony on the spike and on
the population levels in a quantitative way.

The second question as to why synchronized activations of neurons in
assemblies are themselves synchronized to a specific phase of the LFP re-
mains unresolved. It has been suggested that the time-locked activation of
assemblies could reflect a temporal queue to multiplex coactivations of dif-
ferent compositions of neurons on a time grid (Singer, 1999). Thus, the LFP
would provide a temporal structure on which assemblies are activated. The
recent study by Womelsdorf et al. (2007) shows evidence for such a picture:
Interactions between groups of neurons (given by the power correlations in-
dicating their rate covariations) are strong only when their spiking activities
exhibit a specific phase lag with respect to one another - and a specific lag to
the the LFP. Our study goes beyond these findings by identifying only one
specific phase lag at which neurons exhibit not only slow correlations but
precise neuronal synchrony. Combined with current theories on the genera-
tion of fast oscillations by the modulatory inputs onto pyramidal cells from
inhibitory circuits of interneurons (Fries et al., 2007; compare also discussion
of Sec. 2.2), we could hypothesize that these oscillations act as a gating mech-
anism for the effective integration of synchronized input patterns (Cardin et
al., 2009), that fascilitate, inhibit, or structure the functional activation of
assemblies in time.

Combined with the findings detailed in Sec. 3.1, we extend our inter-
pretation that LFP amplitudes predict the size of the population of spikes
involved in assembly activity. However, a more quantitative analysis of this
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hypothesis in the framework of our conceptual model is the subject of future
work (see also Sec. 4.3).

In the final study presented in this thesis (Sec. 3.3), we show how to
extract an estimate of the proportion of spikes γ that contributes to the
assembly dynamics from the conceptual model presented above. In order to
arrive at this estimate given the experimental findings in Sec. 3.2, we first
demonstrate formally how to estimate the relative number of coincidences
β stemming from an assembly –as opposed to chance coincidences– during
periods where excess synchrony is observed (i.e., a period detected by the
Unitary Event analysis). Integrating this result with the measured phase
distribution of coincidences during the corresponding Unitary Event periods
allows to estimate the precision with which assemblies lock to the LFP. In
a last step, this measure of the temporal structure of assembly activations
allows to backtrack the fraction γ from the phase distributions of single
spikes. The crucial step of this method is to accurately obtain the parameter
β independently from our conceptual model, based on the spike data alone.
A simple toy model is therefore used to calibrate our method, before it is
applied to the experimental data. We find that about γ = 22% of spikes in
the motor cortical network are involved in assemblies.

Our conceptual model represents a highly simplified description, yet by
combining measurements of synchrony on the local and mesoscopic scales
it reveals parameters of the network dynamics that remain hidden on the
two individual levels of observation. The nature of the estimation process
requires that the population activity must be represented by a large sample
of spike-LFP and –in particular coincidence-LFP– combinations. To this
end, experimental data in different sessions and two different monkeys are
pooled, and γ can therefore only represent a rough estimate of the fraction
of spikes originating from of assembly activity. Nevertheless, the fact that
the parameter β (central to the estimate of γ) follows a surprisingly narrow
distribution even when sampled across this pooled data set corroborates our
result.

By increasing the amount of available data, a similar but more detailed
analysis could be performed, in particular, by pre-grouping neurons accord-
ing to rate, response behavior, or similar features and then calculating the
individual probabilities to participate in an assembly. Thus, we could in
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principle identify whether certain groups of neurons are more involved in the
assembly dynamics than others. This type of measurement is hardly possible
by evaluating assembly participation from the spiking dynamics alone due to
the low probability of observing an assembly in the first place. As we have
seen, in contrast the phase distributions provide information on the degree
of assembly activity independent of the observation of assembly.

In summary, incorporating population signals in the analysis of spike
data may serve to overcome problems related to the undersampling of the
activities in multiple single-neuron recordings. Taken together, the wealth
of experimental and theoretical findings presented in Chap. 3 substantially
strengthen the argument in favor of the assembly hypothesis of neuronal
processing and provide a promising vista to reinterpret and efficiently exploit
neuronal population signals in a wide range of applied areas (e.g., brain-
machine interfaces, cf. Mehring et al., 2003; Hochberg et al., 2006). The
success of the conceptual model in predicting parameters of the underlying
network dynamics shows how brain processes on the finest spatio-temporal
scale are reflected in a robust population signal.

4.2 General comments

Let us now briefly discuss two concerns that are of relevance for all studies
presented in this thesis. First, we point to a technical issue related to the gen-
eration of surrogate data for the phase locking analysis that was introduced
in Sec. 1.2.1 of the Introduction. As a reminder, the null hypothesis for the
parameter R describing the degree of non-uniformity of phase distributions
was generated by locally shuffling the interspike intervals of the spike train
data in order to destroy the precise spike-LFP phase relations while retaining
to first order the regularity of the spike data. The definition of locally must
be adapted to data set: in the study presented in Sec. 2.1, where only three
trials are available, data was too scarce as to allow for shuffling windows that
follow non-stationarities expressed by sudden rate changes. However, we ob-
serve that those units that showed strong rate responses had a tendency for
regularity in their spiking activity during the response. Therefore, the in-
terval shuffles nevertheless produce a far more conservative null hypothesis
compared to the Poisson assumption underlying the Rayleigh test. In con-
trast, the extremely low firing rates encountered in Sec. 2.2 and the large
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number of trials in the studies shown in Chap. 3 posed no problem to produce
shuffles that operate on time scales that approximate the actual rate non-
stationarities (see, e.g., Fig. 1.1). A completely different approach based on
surrogates of the continuous signal (e.g., using techniques described in Thiel
et al., 2002) also provides a promising alternative, as the regular oscillations
exhibited by the LFP might provide a more stable signal that is less contam-
inated by non-stationary effects. We suggest that a new type of surrogate
data that operates directly on the statistics of the phase description of the
signal (Hurtado et al., 2004) may remedy some of the problems related to
non-stationarity and higher-order serial correlations (Farkhooi et al., 2009).
However, it is in the nature of such surrogates that their properties are in
general more difficult to control.

Second, we return to the question raised in Sec. 1.1.1 concerning possible
ephaptic effects, i.e. the possibility that LFPs directly influence the sub-
threshold membrane potentials, or even spike generation. As pointed out,
not enough information is available to rule out the possibility of ephaptic
effects. Fortunately, in the context of the current studies, we believe that
this question is of little relevance. In Sec. 2.1, we observe a large variation in
the locking of individual neurons to the LFP, and therefore we must conclude
that ephaptic effects are small enough not to induce locking by themselves.
Moreover, in Sec. 2.2 it is implausible that one particular neuronal subtype
should be affected by extracellular fields to a much greater extent than oth-
ers. Thus, while ephaptic coupling might quantitatively influence the precise
strength of spike-LFP locking, they are unlikely to explain the different lock-
ing characteristics of different neuronal subtypes. Finally, although external
fields in the experiments outlined in Chap. 3 may play a role in determin-
ing the non-uniform phase distribution of single spikes, they are completely
unable to explain the selective enhancement of the phase coupling of those
coincidences that are part of a Unitary Event compared to those that occur
by chance. However, ephaptic effects could lead to small corrections in the
value estimated for the probability γ of spikes to belong to an assembly. In
fact, we propose that it could be possible to roughly estimate the ephaptic
effect by adjusting the intrinsic phase distribution of spikes not involved in
assemblies (assumed as a uniform distribution pn(φ) in the conceptual model
of Sec. 3.3) such that the same value of γ simultaneously and self-consistently
explains the measured phase distributions of both, single spikes and chance
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coincidences (first two equations of the conceptual model).

4.3 Outlook

In this final section we give a short outlook on further possibilities to extend
the work presented in Chap. 3. First of all, it becomes necessary to formally
reconcile the findings on the dependence of spike-LFP locking on LFP am-
plitude (Sec. 3.1) with the framework of the conceptual model linking the
LFP to assembly activations (Sec. 3.3). In particular, our findings indicate
that the parameter γ (probability of a spike to belong to an assembly) is
dependent on the strength of LFP oscillations – most likely in a nonlinear
fashion considering the results of Sec. 3.1. To investigate such a dependency
would likely require a large pool of data. Fortunately in this respect, the
spatial homogeneity of cortical LFP (i.e., wave propagation with large wave-
lengths, cf., Rubino et al., 2006) gives reason to hope that γ does not have
a significant dependence on the lateral cortical location. Relating LFP am-
plitude to synchronous spiking might help to better reconcile findings on the
behavioral correlates of both synchronous spiking (Riehle et al., 1997) and
LFP power (e.g., Murthy and Fetz, 1992; Mehring et al., 2003).

Our results indicate that only part of the neuronal population is involved
in assembly activity. A natural question arises: what is the mechanism that
causes non-assembly spikes? It is well known that rate responses in motor
cortex are correlated with movement related aspects (e.g., directional tuning
Georgopoulos et al., 1986; Moran and Schwartz, 1999; Georgopoulos et al.,
2007; van Hemmen and Schwartz, 2008) and can be predictive of movement
on the level of the neuronal ensembles (Fetz, 1999; Wessberg et al., 2000;
Moritz et al., 2008). Can we confirm the hypothesis of a dual coding scheme
of rate and synchrony in motor cortex (e.g., from the view point of directional
tuning), and how do these processes overlap and disentangle? To this end,
one hypothesis we might put forth is that if two completely separate sets of
spikes code for different aspects by rate and synchrony, then the predictive
performance of rate responses should increase if putative assembly spikes
(after all, about one fourth according to our estimate) are not considered.

However, such an approach requires definite knowledge of whether an
identified spike from the network is part of a synchronous event, or not.
Even with recent advances of recording techniques that allow simultaneous
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recordings from 100 or more electrodes (Nicolelis et al., 1997; Csicsvari et
al., 2003; Euston et al., 2007; Fujisawa et al., 2008), the system is undersam-
pled and recording sites are typically dispersed over a large area. Moreover,
there are challenging problems in analyzing the resulting data given current
methods (Grün, 2009) due to the complexity of the task and the resulting
combinatorial explosion (Brown et al., 2004). Our findings on how the oc-
currence of excess synchrony is related to the LFP oscillation cycle offers an
exciting window to circumvent the undersampling problem by independently
identifying best possible candidates for spikes that are involved in assembly
activations based on the LFP. To this end, we may use the knowledge of
the probability of assembly activity to occur (Sec. 3.3), its locking charac-
teristics (Sec. 3.2), and possibly its dependence on the LFP amplitude (see
above). Therefore, the LFP might provide an additional measure to aid the
detection of likely assembly activity where only spikes from a single neuron
are directly observed.

The studies presented in this thesis make no assumption on the group
size (assembly size) of individual synchronous events in the system. In order
to further exploit the LFP as an indicator of hypothesized large-scale syn-
chronous firing in the network, we must establish our model in the context
of observed synchronous events of higher-order, i.e., repeated activations of
patterns of more than 2 neurons. The task is quite a challenging one, as the
probability of detection of significant patterns of coactivated neurons is low,
and only a handful of methods exist (e.g., Baker and Gerstein, 2000; Ger-
stein, 2004; Shlens et al., 2006; Schneidman et al., 2006; Schrader et al., 2008;
Shlens et al., 2009), most of which rely on inferring higher-order structure
from the pair-wise correlations, or which are practically limited to analysis of
few neurons due to the underlying computational complexity. Nevertheless,
in the context of this thesis the simplest prediction we could postulate is that
all synchronized events, no matter what group size, would exhibit the same
phase relationship as observed in the case of pair-wise correlations. For LFP
amplitudes, on the other hand, it is hard to make a prediction: one theory
could be that the amplitude of LFP oscillations is indicative not only of the
number of active assembly activations, but also of their respective group size.
By understanding the relationship between the LFP and synchronous events
consisting of a large number of neurons, we have hope to discover new esti-
mates, such as the size of a typical assembly, from the combined knowledge
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of how synchronous activity is represented on the different scales of cortical
measurements.
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Anhang A

Zusammenfassung der
Hauptergebnisse (Summary of
Main Findings in German)

Gehirnaktivität wird mittels verschiedener Messmethoden beobachtet, die
eine große Spannbreite räumlicher und zeitlicher Skalen umfassen. Im Falle
extrazellulärer Ableitungen wird das resultierende Signal der Elektrode in
der Regel auf zweierlei Ebenen interpretiert: während die höherfrequenten
Komponenten das präzise zeitliche Auftreten von Aktionspotentialen nahe
der Elektrode sichtbar machen, so liefern die niederfrequenten Anteile ein me-
soskopisches Populationssignal –als lokales Feldpotenzial (LFP) bezeichnet–
welches von der überlagerten Aktivität einzelner Neurone in einem größe-
ren Umkreis dominiert wird. Obwohl im allgemeinen angenommen wird,
dass die oszillatorischen Eigenschaften des LFP durch synchronisierte un-
terschwellige Aktivität innerhalb der neuronalen Population hervorgerufen
werden, besteht größtenteils Unklarheit darüber inwiefern die Oszillationen
mit der Einzelspikeaktivität, und insbesondere mit dem Auftreten synchro-
nisierter Spikeaktivität, zusammenhängen. Diese Dissertationsschrift enthält
fünf Berichte, die unterschiedliche Aspekte beleuchten, wie der Zusammen-
hang zwischen der konzertierten Spikeaktivität und dem LFP Informationen
über die Eigenschaften und die dynamische Organisation des zugrunde lie-
genden neuronalen Systems bereitstellt. Der Fokus dieser Dissertation ruht
auf einer Folge von dreien dieser Berichte, die das fehlende Bindeglied zwi-
schen präzisen Aktivitätsmustern koordinierter Aktionspotenziale und dem
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LFP aufdecken.
Um die typischerweise schwache Kopplung zwischen Spikes und dem LFP

zuverlässig quantifizieren zu können, wurde eine neuartige Methode entwi-
ckelt, die aus den Techniken zur Phasenanalyse kontinuierlicher Signale her-
vorgeht. Im Gegensatz zu herkömmlichen Maßen, die auf der Signalmittlung
aufbauen (z.B. das Spike-triggered Average), analysiert diese Methode direkt
die Spike-LFP Phasenkopplung auf der Basis des Einzelspikes. Alle in die-
ser Dissertation zusammengefassten Berichte zeigen, wie dieses methodische
Werkzeug sensitiv neuronale Ensembles identifizieren und charakterisieren
kann, die an die beobachteten Populationssignale gekoppelt sind.

Die erste Studie demonstriert lernabhängige Änderungen der neurona-
len Antwort auf Duftstimulation im Ausgangsbereich des Antennallobus der
Honigbiene während einer olfaktorischen Konditionierung. Der Lernprozess
geht mit einer Änderung der Ensembleantwort auf Düfte einher (basierend
auf den Ratenantworten einzelner Neurone), die für den belohnten Duft am
stärksten ist. Darüber hinaus zeigen wir, dass entsprechende Änderungen in
der Power des LFP in bestimmten Frequenzbändern für den belohnten Duft
mit Änderungen in der Größe und der Zusammensetzung der neuronalen
Subpopulation, die zu dem entsprechenden Band gekoppelt ist, korrelieren.
Somit stärkt die Analyse in diesem Bericht die Hypothese, dass das LFP als
Monitor für die lern-induzierte Reorganisation der zeitlichen Ensemblereprä-
sentation des externen Stimulus dient.

In einer zweiten Studie analysieren wir separat die Rolle vierer identi-
fizierter neuronaler Subtypen im Striatum der anästhesierten Ratte in der
Weiterleitung von Oszillationen kortikalen Ursprungs in die Basalganglien.
Basierend auf der Spike-LFP und Spike-ECoG (Elektrokortikogramm) Pha-
senkopplung, und gestärkt durch die Analyse interneuronaler Kreuzkorrela-
tionen, identifizieren wir die Neuronenklasse, die Fast Spiking Interneurone,
die zu der Erzeugung oszillatorischer LFP Komponenten des hochfrequenten
Gammabereichs in Bezug gesetzt werden kann. Somit reflektiert das LFP
hier die synchrone Aktivität eines speziellen, physiologisch definierten Neu-
ronentyps.

Der größte Teil dieser Dissertation besteht aus drei aufeinanderfolgen-
den Arbeiten, die den Zusammenhang zwischen synchroner Spikeaktivität
mit Millisekundengenauigkeit und der im LFP sichtbaren synchronen Mas-
senaktivität aufzeigen. Die experimentelle Datenbasis für alle drei Studien



ANHANG A. ZUSAMMENFASSUNG 167

bilden Ableitungen aus dem Motorkortex des Affen in einem Experiment,
in dem das Tier trainiert wird, eine zeitverzögerte Armbewegung zu voll-
führen (delayed pointing task). Zuerst zeigen wir, dass die Amplitude (oder
Einhüllende) der LFP Oszillationen ein Maß für die Größe der phasengelock-
ten Population darstellt. Durch eine separate Phasenanalyse von Spikes und
Spikekoinzidenzen belegen wir in der darauf folgenden Arbeit direkt die lang-
läufige Hypothese, dass synchrone Spikeaktivität im Feldpotenzial reflektiert
ist. Entgegen der Intuition gilt diese Aussage jedoch nur für diejenigen prä-
zisen Koinzidenzen, die in Zeitfenstern auftreten in denen die Anzahl der
detektierten Koinzidenzen die Erwartung signifikant übertrifft. Diese über-
schüssigen Koinzidenzen stellen eine Signatur für koordinierte Spikemuster
spezifischer neuronaler Subgruppen (Zellassemblies) dar. Ein konzeptionel-
les Modell erklärt die experimentellen Daten im Kontext der Idee neuronaler
Kodierung mittels Zellassemblies. In der letzten Studie zeigen wir, wie die
kombinierte Messung von Synchronizität auf der Spike- und Populationsebe-
ne einen makroskopischen Parameter schätzt, der angibt in welchem Maße
aktive Zellassemblies zu der gesamten Spikeaktivität des Netzwerkes beitra-
gen. Zusammenfassend erbringen die drei Arbeiten den ersten Beweis dafür,
dass LFP Oszillationen ein Abbild orchestrierter Aktivität neuronaler En-
sembles darstellen, wie sie durch eine der faszinierendsten aktuellen Theorien
neuronaler Informationsverarbeitung vorhergesagt werden.
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