Electronic Supplementary Information

Formation of cobalt-oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(II) center

Deesha D. Malik, ${ }^{\text {a }}$ Anirban Chandra, ${ }^{\text {b }}$ Mi Sook Seo, ${ }^{\text {a }}$ Yong-Min Lee, ${ }^{\text {a }}$ Erik R. Farquhar, ${ }^{\text {c }}$ Stefan Mebs, ${ }^{\text {d }}$ Holger Dau, ${ }^{\text {d }}$ Kallol Ray, ${ }^{*, b}$ and Wonwoo Nam ${ }^{*, \mathrm{a}}$
${ }^{\text {a }}$ Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
${ }^{\mathrm{b}}$ Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
${ }^{\text {c Case Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory Upton, NY }}$ 11973, USA
${ }^{\text {d }}$ Freie Universität Berlin, FB Physik, Arnimallee 14, 14195 Berlin, Germany

*To whom correspondence should be addressed.
E-mail: wwnam@ewha.ac.kr; kallol.ray@chemie.hu-berlin.de

Table of Contents

Table S1 Crystallographic data of 1-BPh 4 S4
Table S2 Bond distance and bond angles of 1-BPh 4 S5
Table S3 Product analysis of cyclohexene- $h_{10} /$ cyclohexene- d_{10} S6
Table S4 EXAFS simulation results for 2a S7
Table S5 EXAFS simulation results for $\mathbf{3}$ S8
Table S6 DFT optimized parameters S9
Table S7 Hammett parameters of p-X-PhCHO for 2a S10
Table S8 $\quad k_{2}$ values for HAT and OAT reactions by $\mathbf{2 a}$ and $\mathbf{3}$ S11
Table S9 Product analysis for HAT and OAT reactions S12
Fig. S1 Crystal structure and EPR of $\mathbf{1}-\mathrm{BPh}_{4}$ S13
Fig. S2 UV-vis spectra for generation of 2a S14
Fig. S3 k_{2} values with THF/THF- d_{8} S15
Fig. S4 UV-vis and k_{2} values with cyclohexene- $h_{10} /$ cyclohexene- d_{10} S16
Fig. S5 EPR spectra for 2a, 2b and 2c S17
Fig. S6 CSI-MS spectra of $\mathbf{2 b}$ S18
Fig. S7 UV-vis spectra for generation of $\mathbf{2 c}$ S19
Fig. S8 CSI-MS spectra of $\mathbf{2 c}$ S20
Fig. S9 UV-vis spectra for formation of $\mathbf{3}$ from $\mathbf{2 b}$ and $\mathbf{2 c}$ S21
Fig. S10 Fourier-transformed EXAFS spectra of $\mathbf{3}$ S22
Fig. S11 DFT optimized structures S23
Fig. S12 Spin amount quantification of $\mathbf{3}$ S24
Fig. S13 Generation of 2a in presence of DMPO S25
Fig. S14 UV-vis spectra of $\mathbf{1}$ with 2,6-DTBP and 9,10-DHA S26
Fig. S15 UV-vis spectra of $\mathbf{3}$ with CCA S27
Fig. S16 Reactivity study of 2a with CCA S28
Fig. S17 Product analysis of 2a with CCA S29
Fig. S18 Aldehyde deformylation reactions of $p-\mathrm{X}-\mathrm{PhCHO}$ by $\mathbf{2 a}$ S30
Fig. S19 Reactivity study of 2a with PPh_{3} S31
Fig. S20 Product analysis of 2a with PPh_{3} S32
Fig. S21 Reactivity study of $\mathbf{3}$ with PPh_{3} S33
Fig. S22 Product analysis of $\mathbf{3}$ with PPh_{3} S34
Fig. S23 C-H bond activation reaction by $\mathbf{2 a}$ S35
Fig. S24 C-H bond activation reaction by 3 S36
Fig. S25 Reactivity study of $\mathbf{2 c}$ in HAT and OAT reactions S37
Fig. S26 Product analysis of 2a with xanthene S38
Fig. S27 Product analysis of $\mathbf{3}$ with xanthene S39

Table S1. Crystallographic data and refinements for $1-\mathrm{BPh}_{4}$.

	1-BPh ${ }_{4}$
Empirical formula	C45 H68 Co N10 B
Formula weight	758.74
Temperature (K)	296.15
Wavelength (A)	0.71073
Crystal system/space group	Monoclinic, P2(1)/n
Unit cell dimensions	
$a(\AA)$	17.8648(18)
b (\AA)	19.110(2)
$c(\AA)$	18.2001(19)
$\alpha\left(^{\circ}\right.$)	90
$\beta\left({ }^{\circ}\right)$	91.7957(13)
$\gamma\left({ }^{\circ}\right)$	90
Volume (\AA^{3})	6210.2(11)
Z	6
Calculated density ($\mathrm{g} / \mathrm{cm}^{-3}$)	1.2172
Absorption coefficient (mm^{-1})	0.326
F(100)	2438.1511
Reflections collected	11020
Absorption correction	multi-scan $\left(\mathrm{T}_{\min }=0.7073, \mathrm{~T}_{\max }=0.7452\right)$
Independent reflections [$R($ int)]	9194
Data/restraints/parameters	11020/0/750
Goodness-of-fit on F^{2}	1.0451
Final R indices [$F^{2}>2 \sigma\left(F^{2}\right)$]	$R_{1}=0.0307, w R_{2}=0.0702$
R indices (all data)	$R_{1}=0.0416, w R_{2}=0.0755$
Largest difference peak and hole (e/ $\left.{ }^{3}{ }^{3}\right)$	0.252 and -0.345

Table S2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 1-BPh 4 .

	Bond Distances (Å)	
Co1-N1		
Co1-N5	$1.9850(13)$	
Co1-N8		$1.9787(13)$
Co1-N4		$1.9921(13)$
	Bond Angles (${ }^{\circ}$)	$2.0735(12)$
N5-Co1-N1		$122.55(5)$
N8-Co1-N1	$117.66(5)$	
N8-Co1-N5	$118.21(5)$	
N4-Co1-N1	$84.84(5)$	
N4-Co1-N5	$85.97(5)$	
N4-Co1-N8	$86.68(5)$	

Table S3. Product analysis for the O_{2}-activation reactions by $\mathbf{1}$ with cyclohexene- h_{10} and cyclohexene- d_{10} in O_{2}-saturated acetone at $25^{\circ} \mathrm{C}$.

substrate	product	yield, \%
cyclohexene- h_{10}	cyclohex-2-enol	16
	cyclohex-2-enone	20
	cyclohexene oxide	2
	cyclohex-2-enol	17
	cyclohexene- d_{10}	cyclohexex-2-enone oxide

Table S4. Results of the EXAFS simulations (fit) ${ }^{\text {a }}$ for 2a.

fit	Co-N/O			$\mathrm{Co}-\mathrm{O} / \mathrm{N}$			Co \cdots C			$\Delta \mathrm{E}_{0}$	χ^{2}	R
	n	r	σ^{2}	n	r	σ^{2}	n	r	σ^{2}			
1	4	2.04	6.9							-0.78	14.09	0.0173
2	5	2.03	8.9							-1.35	7.81	0.0096
3	6	2.03	10.9							-1.88	15.72	0.0193
4	4	2.04	6.6	1	1.89	11.4				-2.94	15.94	0.0048
5	3	2.06	5.6	1	1.94	5.3				-0.91	34.56	0.0105
6	5	2.03	7.5		1.83	11.1				-4.32	10.78	0.0033
7	5	2.04	8.9							-1.49	48.78	0.1967
8	5	2.04	9.0				4	2.97	6.8	-0.46	39.01	0.1301
9	5	2.04	9.0				6	2.97	10.0	-0.50	42.58	0.1420
10	5	2.03	9.1				8	2.97	13.6	-0.71	48.63	0.1622
11	5	2.04	9.0					$\begin{aligned} & 2.97 \\ & 3.40 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 2.8 \end{aligned}$	-0.80	9.65	0.0255

${ }^{\text {a }}$ Fitting range was $k=2.0-12.4 \AA^{-1}$ (resolution $=0.145 \AA$) with back transform ranges of 1-1.9 \AA for fits 1-6 and 1-3.25 \AA for fits 7-11. r is in units of $\AA ; \sigma^{2}$ is in units of $10^{-3} \AA ; \Delta \mathrm{E}_{0}$ is in units of $\mathrm{eV} ; \mathrm{R}$ represents the fractional mis-fit of the data, while χ^{2} is the χ^{2} fitting metric normalized by the number of independent data points in a given fit.

Table S5. Results of the EXAFS simulations (fit) for $\mathbf{3}(\mathrm{Rf}=9.9 \%)$.

shell	\mathbf{N}^{*}	\mathbf{R}	err	\mathbf{S}^{*}	err
Co-O	1	1.85	0.04	0.075	0.008
Co-N	4	2.03	0.02	0.075	
Co-C	4	2.86	0.03	0.075	
Co-C	3	3.06	0.05	0.075	
Co-C	8	3.40	0.02	0.075	

Table S6. Selected bond distances in DFT-optimized structures of $\left[\left(\mathrm{TMG}_{3} \operatorname{tren}\right) \mathrm{Co}^{\mathrm{IV}}(\mathrm{O})\right]^{2+}$, $\left[\left(\mathrm{TMG}_{3} \text { tren }\right) \mathrm{Co}^{\mathrm{IV}}(\mathrm{O})\left(\mathrm{Sc}(\mathrm{OTf})_{3}\right)\right]^{2+}$ and $\left[\left(\mathrm{TMG}_{3} \operatorname{tren}\right) \mathrm{Co}^{\mathrm{IV}}(\mathrm{O})-\left(\mathrm{Sc}(\mathrm{OTf})(\mathrm{OH})_{2}\right)_{2}\right]^{2+}$ in the $S=$ $3 / 2$ state.

model	Co-N3	Co-N4	Co-N5	Co-N6	Co-O	O-Sc1	O-Sc2	Co-Sc1	Co-Sc2
$\left[\left(\mathrm{TMG}_{3} \operatorname{tren}\right) \mathrm{Co}^{\mathrm{IV}}(\mathrm{O})\right]^{2+}$	2.071	1.978	1.967	2.018	1.636	-	-	-	
$\left[\left(\mathrm{TMG}_{3} \operatorname{tren}\right) \mathrm{Co}^{\mathrm{IV}}(\mathrm{O})\left(\mathrm{Sc}(\mathrm{OTf})_{3}\right)\right]^{2+}$	2.075	1.970	1.964	1.972	1.739	1.880	-	3.619	
$\left[\left(\mathrm{TMG}_{3} \operatorname{tren}\right) \mathrm{Co}^{\left.\mathrm{IV}(\mathrm{O})\left(\mathrm{Sc}(\mathrm{OTf})(\mathrm{OH})_{2}\right)_{2}\right]^{2+}}\right.$	2.111	1.953	1.930	2.597	1.843	2.059	2.094	3.476	3.651

Table S7. Hammett parameters ($\sigma_{\mathrm{p}}{ }^{+}$) of p-X-substituted benzaldehydes and second-order rate constants (k_{2}) for the oxidation of p-X-substituted benzaldehydes by $\mathbf{2 a}$ in acetone at $25^{\circ} \mathrm{C}$.

substrate	$\sigma_{\mathrm{p}}{ }^{+\mathrm{a}}$	$k_{2}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$\log k_{2}$
p-Me-PhCHO	-0.311	$3.0(3) \times 10^{-1}$	-0.52
p-F-PhCHO	-0.073	$6.8(5) \times 10^{-1}$	-0.17
PhCHO	0	$7.4(5) \times 10^{-1}$	-0.13
p-CN-PhCHO	0.659	$4.1(4)$	0.61

${ }^{\text {a }}$ Taken from the reference: Brown H. C.; Okamoto, Y. Electrophilic Substituent Constants. J. Am. Chem. Soc., 1958, 80, 4979- 4987.

Table S8. Second-order rate constants for the hydrogen atom transfer and oxygen atom transfer reactions by $\mathbf{2 a}$ at $25^{\circ} \mathrm{C}$ and $\mathbf{3}$ at $0^{\circ} \mathrm{C}$ in acetone.

substrate	${\mathrm{BDE},{ }^{\mathrm{a}} \mathrm{kcal} \mathrm{mol}}^{-1}$		$k_{2}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$	
xanthene- h_{2}	75.5	$3.9(3) \times 10^{-1}$	$7.0(6) \times 10^{-1}$	
xanthene- d_{2}	-	$8.4(6) \times 10^{-2}$	$3.1(3) \times 10^{-1}$	
DHA	77	$1.0(1) \times 10^{-1}$	$2.9(2) \times 10^{-1}$	
CHD	78	$6.8(5) \times 10^{-2}$	$7.5(6) \times 10^{-2}$	
PPh_{3}	-	$8.4(5) \times 10^{-2}$	$7.3(5)$	

${ }^{a}$ Taken from the reference 47 in Text.

Table S9. Product analysis for the hydrogen atom transfer and oxygen atom transfer reactions by $\mathbf{2 a}$ at $25^{\circ} \mathrm{C}$ and $\mathbf{3}$ at $0^{\circ} \mathrm{C}$ in acetone.

substrate		yield, \%	
	product	$\mathbf{2 a}$	$\mathbf{3}$
xanthene	xanthone	$40(3)$	$100(4)$
DHA	anthracene	$100(4)$	$60(4)$
CHD	benzene	$88(4)$	$40(3)$
PPh_{3}	$\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$	$100(4)$	$80(4)$

(a)

(b)

Fig. S1 (a) X-ray single crystal structure of $\left[\left(\mathrm{TMG}_{3} \operatorname{tren}\right) \mathrm{Co}^{\mathrm{IH}}\right]^{2+}$ moiety in $\left[\left(\mathrm{TMG}_{3}\right.\right.$ tren $\left.) \mathrm{Co}^{\mathrm{II}}\right]\left(\mathrm{BPh}_{4}\right)_{2}\left(\mathbf{1}-\mathrm{BPh}_{4}\right)$. Tetraphenyl borate anions and hydrogen atoms are omitted for clarity [Co, pink; N, blue; C, white] (see Tables S1 and S2 for the crystallographic data). (b) X-band CW-EPR spectrum of 1-BPh 4 in acetone at 5 K .

Fig. S2 UV-vis spectral changes for the formation of $\mathbf{2 a}$ (blue line) in the O_{2}-activation reaction by $\mathbf{1}$ with THF upon addition of THF $(0.20 \mathrm{M})$ to an O_{2}-saturated acetone solution of $1\left(0.25 \mathrm{mM}\right.$; black line) at $25^{\circ} \mathrm{C}$. Inset shows time courses monitored at 400 nm under O_{2} (blue circle) and Ar (black circle) atmospheres in acetone at $25^{\circ} \mathrm{C}$.

Fig. S3 Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of THF (black circles) and THF- d_{8} (red circles) for the formation of $\mathbf{2 a}$ in the O_{2}-activation reaction by $\mathbf{1}$ in acetone at $25^{\circ} \mathrm{C}$ to determine the second order rate constants (k_{2}) and KIE value.

Fig. S4 (a) UV-vis spectral changes for the formation of $\mathbf{2 b}$ (blue line) in the O_{2}-activation reaction by $\mathbf{1}$ upon addition of cyclohexene $(1.0 \mathrm{M})$ to an O_{2}-saturated acetone solution of $\mathbf{1}$ (0.25 mM ; black line) at $25^{\circ} \mathrm{C}$. Inset shows time course monitored at 410 nm due to $\mathbf{2 b}$. (b) Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of cyclohexene (black circles) and cyclohexene- d_{10} (red circles) for the formation of $\mathbf{2 b}$ in the O_{2}-activation reaction by 1 with cyclohexene- $\left(h_{10}\right.$ or $\left.d_{10}\right)$ in acetone at $25^{\circ} \mathrm{C}$ to determine the second order rate constants (k_{2}) and KIE value.
(a)

(b)

(c)

Fig. S5 X-band CW-EPR spectra (black lines) of (a) $\mathbf{2 a}(1.0 \mathrm{mM})$, (b) $\mathbf{2 b}(1.0 \mathrm{mM})$, and (c) 2c (1.0 mM). Spectra were recorded in acetone at 5 K . Red lines show the simulated spectra. Simulation parameters: $g=[2.09,4.35,4.45]$ and $A=[213,154,84]$ G for 2a, $g=[2.09,4.28$, $4.51]$ and $A=[210,148,84] \mathrm{G}$ for $\mathbf{2 b}$, and $g=[2.09,4.29,4.51]$ and $A=[213,154,84] \mathrm{G}$ for 2 c .

Fig. S6 Positive mode CSI-MS spectrum of $\mathbf{2 b}$ produced in the O_{2}-activation reaction by $\mathbf{1}$ upon addition of cyclohexene $(0.20 \mathrm{M})$ into an O_{2}-saturated acetone solution of $\mathbf{1}(0.25 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$. The peaks at $m / z=664.4$ and 648.4 correspond to $\left[\mathrm{Co}^{\mathrm{IV}}(\mathrm{O})\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}$ (calculated $m / z=664.3)$ and $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}$(calculated $\left.m / z=648.3\right)$, respectively. The insets show the observed isotope distribution patterns for $\left[\mathrm{Co}^{\mathrm{IV}}\left({ }^{16} \mathrm{O}\right)\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}$ $(m / z=664.4)$ originated from 2b- ${ }^{16} \mathrm{O}$ (left panel) and $\left[\mathrm{Co}^{\text {IV }}\left({ }^{18} \mathrm{O}\right)\left(\mathrm{TMG}_{3} \operatorname{tren}\right)(\mathrm{OTf})\right]^{+}(\mathrm{m} / \mathrm{z}=$ 666.4) originated from $\mathbf{2 b}-{ }^{18} \mathrm{O}$ (right panel).

Fig. S7 UV-vis spectral changes for the formation of 2c (blue line) observed in the reaction of $\mathbf{1}(0.25 \mathrm{mM}$; black line) and cumene hydroperoxide ($\mathrm{CumOOH} ; 50 \mathrm{mM}$) in acetone at $25^{\circ} \mathrm{C}$. Inset shows time course monitored at 415 nm due to $\mathbf{2 c}$.

Fig. S8 Positive mode CSI-MS spectrum of 2c produced in the reaction of $\mathbf{1}(0.25 \mathrm{mM})$ and cumene hydroperoxide ($\mathrm{CumOOH} ; 50 \mathrm{mM}$) in acetone at $25^{\circ} \mathrm{C}$. The peaks at $\mathrm{m} / \mathrm{z}=663.3$ and 664.3 correspond to $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{TMG}_{3} \text { tren-O) }(\mathrm{OTf})\right]^{+}\right.$(calculated $\mathrm{m} / \mathrm{z}=663.3$) and $\left[\mathrm{Co}^{\mathrm{IV}}(\mathrm{O})\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}$(calculated $\left.m / z=664.3\right)$, respectively. The insets show the observed isotope distribution patterns for $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{TMG}_{3} \text { tren }{ }^{-16} \mathrm{O}\right)(\mathrm{OTf})\right]^{+}(\mathrm{m} / \mathrm{z}=663.3)$ and $\left[\mathrm{Co}^{\mathrm{IV}}\left({ }^{16} \mathrm{O}\right)\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}(\mathrm{m} / \mathrm{z}=664.3)$ originated from $2 \mathbf{c c}^{-16} \mathrm{O}$ (left panel) and $\left[\mathrm{Co}^{\text {III }}\left(\mathrm{TMG}_{3} \text { tren- }{ }^{18} \mathrm{O}\right)(\mathrm{OTf})\right]^{+}(\mathrm{m} / \mathrm{z}=665.3)$ and $\left[\mathrm{Co}^{\mathrm{IV}}\left({ }^{18} \mathrm{O}\right)\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}(\mathrm{m} / \mathrm{z}=666.4)$ originated from $2 \mathbf{c}^{-18} \mathrm{O}$ (right panel), indicating that, when $\mathrm{Cum}^{18} \mathrm{O}^{18} \mathrm{OH}$ was used instead of $\mathrm{Cum}^{16} \mathrm{O}^{16} \mathrm{OH}$, two mass unit shift from $m / z=663.3$ and 664.3 to $\mathrm{m} / \mathrm{z}=665.3$ and 666.3 , respectively, was observed.

Fig. S9 UV-vis spectral changes for the formation of $\mathbf{3}$ (red line) from (a) $\mathbf{2 b}(0.25 \mathrm{mM}$; blue line) and (b) $\mathbf{2 c}\left(0.25 \mathrm{mM}\right.$; blue line) upon addition of $\mathrm{Sc}(\mathrm{OTf})_{3}(1.25 \mathrm{mM}$; 5.0 equiv.) to an acetone solution of $\mathbf{2 b}$ and $\mathbf{2 c}$ at $-40^{\circ} \mathrm{C}$.

Fig. S10 Observed (black solid line) and simulated (red dashed line) Fourier-transformed EXAFS spectra of $\mathbf{3}$. The inset shows the observed (black solid line) and simulated (red dashed line) EXAFS data on a wave-vector scale before calculation of the Fourier transform.

Fig. S11 DFT-optimized structures of (a) $\left[\left(\mathrm{TMG}_{3} \text { tren }\right) \mathrm{Co}^{\mathrm{IV}}(\mathrm{O})\right]^{2+}$, (b) $\left[\left(\mathrm{TMG}_{3}\right.\right.$ tren $) \mathrm{Co}^{\mathrm{IV}}(\mathrm{O})-$ $\left.\left(\mathrm{Sc}(\mathrm{OTf})_{3}\right)\right]^{2+}$, and $(\mathrm{c})\left[\left(\mathrm{TMG}_{3} \text { tren }\right) \mathrm{Co}^{\mathrm{IV}}(\mathrm{O})\left(\mathrm{Sc}(\mathrm{OTf})(\mathrm{OH})_{2}\right)_{2}\right]^{2+}$.

Fig. S12 First derivative (a, d), integrated (b, e) and doubly integrated (c, f) EPR spectra of (a, b, c) $\mathbf{1}$ and (d, e, f) $\mathbf{3}$ recorded in acetone at $5 \mathrm{~K} . \mathbf{3}$ was generated by reacting $\mathbf{1}(1.0 \mathrm{mM})$ with THF $(0.10 \mathrm{M})$ in the presence of $\mathrm{Sc}(\mathrm{OTf})_{3}(2.0 \mathrm{mM})$ in O_{2}-saturated acetone at $0^{\circ} \mathrm{C}$. The yield of the intermediate 3 was estimated to be 94%, which was calculated from the amount of $\mathbf{1}$ remained in the solution.

Fig. S13 UV-vis spectral changes observed upon addition of THF (0.20 M) to $\mathbf{1}(0.25 \mathrm{mM}$; black line) in the absence (blue line) and presence of DMPO (0.25 mM ; red line) in O_{2} saturated acetone at $25^{\circ} \mathrm{C}$. (b) Time profiles monitored for the change of absorbance at 400 nm due to $\mathbf{2 a}$ for the O_{2}-activation by $\mathbf{1}(0.25 \mathrm{mM})$ with THF $(0.20 \mathrm{M})$ in the absence and presence of DMPO $(0-0.50 \mathrm{mM})$ in O_{2} saturated acetone at $25^{\circ} \mathrm{C}$.

Fig. S14 UV-vis spectral changes upon addition of (a) 0.2 M 2,4 di-tert-butyl phenol (b) 0.2 M DHA to an acetone solution of $\mathbf{1}\left(0.25 \mathrm{mM}\right.$; black line) at $25^{\circ} \mathrm{C}$.

Fig. S15 UV-vis spectral changes observed in the reaction of $\mathbf{3}(0.25 \mathrm{mM})$ and CCA (50 mM) in acetone at $25^{\circ} \mathrm{C}$. The rate is almost identical to that of natural decay of $\mathbf{3}$.

Fig. S16 (a) UV-vis spectral changes observed in the reaction of $\mathbf{2 a}(0.25 \mathrm{mM}$) and CCA (20 mM) in acetone at $25^{\circ} \mathrm{C}$. (b) Plot of pseudo-first-order rate constants (k_{obs}) against the concentration of CCA obtained in the deformylation reaction of CCA by $\mathbf{2 a}$ in acetone at $25^{\circ} \mathrm{C}$ to determine the second-order rate constants (k_{2}).

Fig. S17 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of CCA $(20 \mathrm{mM})$ by 2a $(0.25 \mathrm{mM})$ in acetone at $25{ }^{\circ} \mathrm{C}$. The peaks at $\mathrm{m} / \mathrm{z}=249.5$ and 648.4 correspond to $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)\right]^{2+}$ (calculated $\left.m / z=249.5\right)$ and $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}$ (calculated $m / z=648.3$), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of CCA $(20 \mathrm{mM})$ by $\mathbf{2 a}(0.50 \mathrm{mM})$ in acetone at $25^{\circ} \mathrm{C}$. Spectrum was recorded in acetone at 5 K .

Fig. S18 Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of para-Xbenzaldehydes, (a) benzaldehyde, (b) p-methylbenzaldehyde, (c) p-fluorobenzaldehyde, and (d) p-cyanobenzaldehyde, obtained in the nucleophilic aldehyde deformylation reaction of para-X-benzaldehydes $(\mathrm{X}=\mathrm{Me}, \mathrm{H}, \mathrm{F}$, and CN$)$ by 2a in acetone at $25^{\circ} \mathrm{C}$ to determine the second-order rate constants $\left(k_{2}\right)$.

Fig. S19 (a) UV-vis spectral changes observed in the reaction of $2 \mathbf{2 a}(0.25 \mathrm{mM})$ and triphenylphosphine (40 mM) in acetone at $25^{\circ} \mathrm{C}$. (b) Plots of pseudo-first-order rate constants ($k_{\text {obs }}$) against the concentration of triphenylphosphine to determine the second-order rate constant $\left(k_{2}\right)$ for the reaction of $\mathbf{2 a}$ with triphenylphosphine in acetone at $25^{\circ} \mathrm{C}$.

Fig. S20 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of $\mathrm{PPh}_{3}(10 \mathrm{mM})$ by 2a $(0.25 \mathrm{mM})$ in acetone at $25{ }^{\circ} \mathrm{C}$. The peaks at $\mathrm{m} / z=249.5$ and 648.4 correspond to $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)\right]^{2+}$ (calculated $\left.m / z=249.5\right)$ and $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}$ (calculated $m / z=648.3$), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of $\mathrm{PPh}_{3}(20 \mathrm{mM})$ by $\mathbf{2 a}(0.50 \mathrm{mM})$ in acetone at $25^{\circ} \mathrm{C}$. Spectrum was recorded in acetone at 5 K .

Fig. S21 (a) UV-vis spectral changes observed in the reaction of $\mathbf{3}(0.25 \mathrm{mM})$ with $\mathrm{PPh}_{3}(2.5$ mM) in acetone at $0{ }^{\circ} \mathrm{C}$. (b) Plot of pseudo-first-order rate constants ($k_{\text {obs }}$) against the concentration of PPh_{3} to determine the second-order rate constants $\left(k_{2}\right)$ in the oxidation of PPh_{3} by $\mathbf{3}$ in acetone at $0^{\circ} \mathrm{C}$.

Fig. S22 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of $\mathrm{PPh}_{3}(10 \mathrm{mM})$ by $3(0.25 \mathrm{mM})$ in acetone at $0{ }^{\circ} \mathrm{C}$. The peaks at $m / z=249.5$ and 648.4 correspond to $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)\right]^{2+}$ (calculated $\left.m / z=249.5\right)$ and $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}$ (calculated $m / z=648.3$), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of $\mathrm{PPh}_{3}(10 \mathrm{mM})$ by $\mathbf{3}(0.50 \mathrm{mM})$ in acetone at 0 ${ }^{\circ} \mathrm{C}$. Spectrum was recorded in acetone at 5 K .

Fig. S23 Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of substrates [(a) 9,10-dihydroanthracene (DHA) and (b) 1,4-cyclohexadiene (CHD)] to determine the second-order rate constants (k_{2}) in the C-H bond activation reaction of DHA and CHD by $2 \mathbf{a}$ in acetone at $25^{\circ} \mathrm{C}$.

Fig. S24 Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of substrates [(a) 9,10-dihydroanthracene (DHA) and (b) 1,4-cyclohexadiene (CHD)] to determine the second-order rate constants (k_{2}) in the C-H bond activation reaction of DHA and CHD by $\mathbf{3}$ in acetone at $0^{\circ} \mathrm{C}$.

Fig. S25 UV-vis spectral changes observed in the oxidation of (a) xanthene (50 mM) and (b) triphenylphosphine (50 mM) by $\mathbf{2 c}(0.25 \mathrm{mM})$ in acetone at $25^{\circ} \mathrm{C}$. The Insets show time courses monitored at 415 nm due to $\mathbf{2 c}$.

Fig. 26 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of xanthene $(20 \mathrm{mM})$ by $\mathbf{2 a}(0.25 \mathrm{mM})$ in acetone at $25^{\circ} \mathrm{C}$. The peaks at $m / z=249.5$ and 648.4 correspond to $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)\right]^{2+}$ (calculated $\left.m / z=249.5\right)$ and $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}$ (calculated $m / z=648.3$), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of xanthene $(20 \mathrm{mM})$ by $\mathbf{2 a}(0.50 \mathrm{mM})$ in acetone at $25^{\circ} \mathrm{C}$. Spectrum was recorded in acetone at 5 K .

Fig. S27 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of xanthene (20 mM) by $\mathbf{3}(0.25 \mathrm{mM})$ in acetone at $0^{\circ} \mathrm{C}$. The peaks at $\mathrm{m} / \mathrm{z}=249.5$ and 648.4 correspond to $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)\right]^{2+}$ (calculated $\left.m / z=249.5\right)$ and $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{TMG}_{3} \text { tren }\right)(\mathrm{OTf})\right]^{+}$ (calculated $m / z=648.3$), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of xanthene (20 mM) by $\mathbf{3}(0.25 \mathrm{mM})$ in acetone at $0^{\circ} \mathrm{C}$. Spectrum was recorded in acetone at 5 K .

