Electronic Supplementary Information

Formation of cobalt-oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(II) center

Deesha D. Malik,^a Anirban Chandra,^b Mi Sook Seo,^a Yong-Min Lee,^a Erik R. Farquhar,^c Stefan Mebs,^d Holger Dau,^d Kallol Ray,^{*,b} and Wonwoo Nam^{*,a}

 ^a Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
 ^b Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
 ^c Case Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory Upton, NY

^e Case Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory Upton, NY 11973, USA

^d Freie Universität Berlin, FB Physik, Arnimallee 14, 14195 Berlin, Germany

*To whom correspondence should be addressed.

E-mail: wwnam@ewha.ac.kr; kallol.ray@chemie.hu-berlin.de

Table of Contents

Table S1	Crystallographic data of 1 -BPh ₄	S 4
Table S2	Bond distance and bond angles of 1 -BPh ₄	S5
Table S3	Product analysis of cyclohexene- h_{10} /cyclohexene- d_{10}	S 6
Table S4	EXAFS simulation results for 2a	S 7
Table S5	EXAFS simulation results for 3	S 8
Table S6	DFT optimized parameters	S 9
Table S7	Hammett parameters of <i>p</i> -X-PhCHO for 2a	S 10
Table S8	k_2 values for HAT and OAT reactions by 2a and 3	S 11
Table S9	Product analysis for HAT and OAT reactions	S12
Fig. S1	Crystal structure and EPR of 1-BPh ₄	S 13
Fig. S2	UV-vis spectra for generation of 2a	S14
Fig. S3	k_2 values with THF/THF- d_8	S15
Fig. S4	UV-vis and k_2 values with cyclohexene- h_{10} /cyclohexene- d_{10}	S16
Fig. S5	EPR spectra for 2a, 2b and 2c	S17
Fig. S6	CSI-MS spectra of 2b	S18
Fig. S7	UV-vis spectra for generation of 2c	S19
Fig. S8	CSI-MS spectra of 2c	S20
Fig. S9	UV-vis spectra for formation of 3 from 2b and 2c	S21
Fig. S10	Fourier-transformed EXAFS spectra of 3	S22
Fig. S11	DFT optimized structures	S23
Fig. S12	Spin amount quantification of 3	S24
Fig. S13	Generation of 2a in presence of DMPO	S25
Fig. S14	UV-vis spectra of 1 with 2,6-DTBP and 9,10-DHA	S26
Fig. S15	UV-vis spectra of 3 with CCA	S27
Fig. S16	Reactivity study of 2a with CCA	S28
Fig. S17	Product analysis of 2a with CCA	S29
Fig. S18	Aldehyde deformylation reactions of <i>p</i> -X-PhCHO by 2a	S 30
Fig. S19	Reactivity study of 2a with PPh ₃	S 31

Electronic Supplementary Information S2

Fig. S20	Product analysis of 2a with PPh ₃	S32
Fig. S21	Reactivity study of 3 with PPh ₃	S33
Fig. S22	Product analysis of 3 with PPh ₃	S34
Fig. S23	C-H bond activation reaction by 2a	S35
Fig. S24	C-H bond activation reaction by 3	S36
Fig. S25	Reactivity study of 2c in HAT and OAT reactions	S37
Fig. S26	Product analysis of 2a with xanthene	S38
Fig. S27	Product analysis of 3 with xanthene	S39

	1-BPh ₄
Empirical formula	C45 H68 Co N10 B
Formula weight	758.74
Temperature (K)	296.15
Wavelength (Å)	0.71073
Crystal system/space group	Monoclinic, $P2(1)/n$
Unit cell dimensions	
<i>a</i> (Å)	17.8648(18)
<i>b</i> (Å)	19.110(2)
<i>c</i> (Å)	18.2001(19)
α (°)	90
β(°)	91.7957(13)
γ (°)	90
Volume (Å ³)	6210.2(11)
Z	6
Calculated density (g/cm ⁻³)	1.2172
Absorption coefficient (mm ⁻¹)	0.326
F(100)	2438.1511
Reflections collected	11020
Absorption correction	multi-scan ($T_{min} = 0.7073$, $T_{max} = 0.7452$)
Independent reflections [R(int)]	9194
Data/restraints/parameters	11020/0/750
Goodness-of-fit on F^2	1.0451
Final R indices $[F^2 > 2\sigma(F^2)]$	$R_1 = 0.0307, wR_2 = 0.0702$
R indices (all data)	$R_1 = 0.0416, wR_2 = 0.0755$
Largest difference peak and hole $(e/Å^3)$	0.252 and -0.345

 Table S1. Crystallographic data and refinements for 1-BPh4.

Electronic Supplementary Information S4

Bond Distances (Å)						
Co1-N1	1.9850(13)					
Co1-N5	1.9787(13)					
Co1-N8	1.9921(13)					
Co1-N4	2.0735(12)					
Bond Angles (°)						
N5-Co1-N1	122.55(5)					
N8-Co1-N1	117.66(5)					
N8-Co1-N5	118.21(5)					
N4-Co1-N1	84.84(5)					
N4-Co1-N5	85.97(5)					
N4-Co1-N8	86.68(5)					

Table S2. Selected bond distances (Å) and angles (°) for 1-BPh₄.

substrate	product	yield, %
	cyclohex-2-enol	16
cyclohexene- h_{10}	cyclohex-2-enone	20
	cyclohexene oxide	2
	cyclohex-2-enol	17
cyclohexene- d_{10}	cyclohex-2-enone	2
	cyclohexene oxide	19

Table S3. Product analysis for the O₂-activation reactions by **1** with cyclohexene- h_{10} and cyclohexene- d_{10} in O₂-saturated acetone at 25 °C.

C *.		Co-N/	0		Co-O/	N		Co•••	•C	4.5		
fit	n	r	σ^2	n	r	σ^2	n	r	σ^2	ΔE_0	χ ²	R
1	4	2.04	6.9							-0.78	14.09	0.0173
2	5	2.03	8.9							-1.35	7.81	0.0096
3	6	2.03	10.9							-1.88	15.72	0.0193
4	4	2.04	6.6	1	1.89	11.4				-2.94	15.94	0.0048
5	3	2.06	5.6	1	1.94	5.3				-0.91	34.56	0.0105
6	5	2.03	7.5	1	1.83	11.1				-4.32	10.78	0.0033
7	5	2.04	8.9							-1.49	48.78	0.1967
8	5	2.04	9.0				4	2.97	6.8	-0.46	39.01	0.1301
9	5	2.04	9.0				6	2.97	10.0	-0.50	42.58	0.1420
10	5	2.03	9.1				8	2.97	13.6	-0.71	48.63	0.1622
11	5	2.04	9.0				4 4	2.97 3.40	6.7 2.8	-0.80	9.65	0.0255

Table S4. Results of the EXAFS simulations (fit)^a for 2a.

^a Fitting range was k = 2.0-12.4 Å⁻¹ (resolution = 0.145 Å) with back transform ranges of 1-1.9 Å for fits 1-6 and 1-3.25 Å for fits 7-11. r is in units of Å; σ^2 is in units of 10⁻³ Å; ΔE_0 is in units of eV; R represents the fractional mis-fit of the data, while χ^2 is the χ^2 fitting metric normalized by the number of independent data points in a given fit.

shell	N *	R	err	S*	err
Co-O	1	1.85	0.04	0.075	0.008
Co-N	4	2.03	0.02	0.075	
Co-C	4	2.86	0.03	0.075	
Co-C	3	3.06	0.05	0.075	
Co-C	8	3.40	0.02	0.075	

Table S5. Results of the EXAFS simulations (fit) for 3 (Rf = 9.9%).

Table S6. Selected bond distances in DFT-optimized structures of $[(TMG_3tren)Co^{IV}(O)]^{2+}$, $[(TMG_3tren)Co^{IV}(O)(Sc(OTf)_3)]^{2+}$ and $[(TMG_3tren)Co^{IV}(O)-(Sc(OTf)(OH)_2)_2]^{2+}$ in the S = 3/2 state.

model	Co-N3	Co-N4	Co-N5	Co-N6	Co-O	O-Sc1	O-Sc2	Co-Sc1	Co-Sc2
[(TMG ₃ tren)Co ^{IV} (O)] ²⁺	2.071	1.978	1.967	2.018	1.636	-	-	-	-
$[(TMG_3 tren)Co^{IV}(O)(Sc(OTf)_3)]^{2+}$	2.075	1.970	1.964	1.972	1.739	1.880	-	3.619	-
$[(TMG_3 tren)Co^{IV}(O)(Sc(OTf)(OH)_2)_2]^{2+}$	2.111	1.953	1.930	2.597	1.843	2.059	2.094	3.476	3.651

substrate	σ_p^{+a}	$k_2, \mathrm{M}^{-1} \mathrm{s}^{-1}$	$\log k_2$
p-Me-PhCHO	-0.311	$3.0(3) \times 10^{-1}$	-0.52
p-F-PhCHO	-0.073	$6.8(5) imes 10^{-1}$	-0.17
PhCHO	0	$7.4(5) imes 10^{-1}$	-0.13
p-CN-PhCHO	0.659	4.1(4)	0.61

Table S7. Hammett parameters (σ_p^+) of *p*-X-substituted benzaldehydes and second-order rate constants (k_2) for the oxidation of *p*-X-substituted benzaldehydes by **2a** in acetone at 25 °C.

^a Taken from the reference: Brown H. C.; Okamoto, Y. Electrophilic Substituent Constants. *J. Am. Chem. Soc.*, **1958**, 80, 4979-4987.

substrate		$k_2, \mathrm{M}^{-1} \mathrm{s}^{-1}$			
	BDE," Kcal mol	2a	3		
xanthene- <i>h</i> ₂	75.5	$3.9(3) \times 10^{-1}$	$7.0(6) imes 10^{-1}$		
xanthene- <i>d</i> ₂	-	$8.4(6) \times 10^{-2}$	$3.1(3) \times 10^{-1}$		
DHA	77	$1.0(1) \times 10^{-1}$	$2.9(2) \times 10^{-1}$		
CHD	78	$6.8(5) \times 10^{-2}$	$7.5(6) imes 10^{-2}$		
PPh ₃	-	$8.4(5) \times 10^{-2}$	7.3(5)		

Table S8. Second-order rate constants for the hydrogen atom transfer and oxygen atom transfer reactions by 2a at 25 °C and 3 at 0 °C in acetone.

^a Taken from the reference 47 in Text.

auhatrata	and duct	yield, %			
substrate	product	2a	3		
xanthene	xanthone	40(3)	100(4)		
DHA	anthracene	100(4)	60(4)		
CHD	benzene	88(4)	40(3)		
PPh ₃	Ph ₃ P=O	100(4)	80(4)		

Table S9. Product analysis for the hydrogen atom transfer and oxygen atom transfer reactions by **2a** at 25 °C and **3** at 0 °C in acetone.

Fig. S1 (a) X-ray single crystal structure of $[(TMG_3tren)Co^{II}]^{2+}$ moiety in $[(TMG_3tren)Co^{II}](BPh_4)_2$ (**1**-BPh_4). Tetraphenyl borate anions and hydrogen atoms are omitted for clarity [Co, pink; N, blue; C, white] (see Tables S1 and S2 for the crystallographic data). (b) X-band CW-EPR spectrum of 1-BPh_4 in acetone at 5 K.

Fig. S2 UV-vis spectral changes for the formation of 2a (blue line) in the O₂-activation reaction by 1 with THF upon addition of THF (0.20 M) to an O₂-saturated acetone solution of 1 (0.25 mM; black line) at 25 °C. Inset shows time courses monitored at 400 nm under O₂ (blue circle) and Ar (black circle) atmospheres in acetone at 25 °C.

Fig. S3 Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of THF (black circles) and THF- d_8 (red circles) for the formation of **2a** in the O₂-activation reaction by **1** in acetone at 25 °C to determine the second order rate constants (k_2) and KIE value.

Fig. S4 (a) UV–vis spectral changes for the formation of **2b** (blue line) in the O₂-activation reaction by **1** upon addition of cyclohexene (1.0 M) to an O₂-saturated acetone solution of **1** (0.25 mM; black line) at 25 °C. Inset shows time course monitored at 410 nm due to **2b**. (b) Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of cyclohexene (black circles) and cyclohexene- d_{10} (red circles) for the formation of **2b** in the O₂-activation reaction by **1** with cyclohexene-(h_{10} or d_{10}) in acetone at 25 °C to determine the second order rate constants (k_{2}) and KIE value.

Fig. S5 X-band CW-EPR spectra (black lines) of (a) **2a** (1.0 mM), (b) **2b** (1.0 mM), and (c) **2c** (1.0 mM). Spectra were recorded in acetone at 5 K. Red lines show the simulated spectra. Simulation parameters: g = [2.09, 4.35, 4.45] and A = [213, 154, 84] G for **2a**, g = [2.09, 4.28, 4.51] and A = [210, 148, 84] G for **2b**, and g = [2.09, 4.29, 4.51] and A = [213, 154, 84] G for **2c**.

Fig. S6 Positive mode CSI-MS spectrum of **2b** produced in the O₂-activation reaction by **1** upon addition of cyclohexene (0.20 M) into an O₂-saturated acetone solution of **1** (0.25 mM) at 25 °C. The peaks at m/z = 664.4 and 648.4 correspond to $[Co^{IV}(O)(TMG_3tren)(OTf)]^+$ (calculated m/z = 664.3) and $[Co^{II}(TMG_3tren)(OTf)]^+$ (calculated m/z = 648.3), respectively. The insets show the observed isotope distribution patterns for $[Co^{IV}(^{16}O)(TMG_3tren)(OTf)]^+$ (m/z = 664.4) originated from **2b**-¹⁶O (left panel) and $[Co^{IV}(^{18}O)(TMG_3tren)(OTf)]^+$ (m/z = 666.4) originated from **2b**-¹⁸O (right panel).

Fig. S7 UV–vis spectral changes for the formation of **2c** (blue line) observed in the reaction of **1** (0.25 mM; black line) and cumene hydroperoxide (CumOOH; 50 mM) in acetone at 25 °C. Inset shows time course monitored at 415 nm due to **2c**.

Fig. S8 Positive mode CSI-MS spectrum of **2c** produced in the reaction of **1** (0.25 mM) and cumene hydroperoxide (CumOOH; 50 mM) in acetone at 25 °C. The peaks at m/z = 663.3 and 664.3 correspond to $[Co^{III}(TMG_3tren-O)(OTf)]^+$ (calculated m/z = 663.3) and $[Co^{IV}(O)(TMG_3tren)(OTf)]^+$ (calculated m/z = 664.3), respectively. The insets show the observed isotope distribution patterns for $[Co^{III}(TMG_3tren^{-16}O)(OTf)]^+$ (m/z = 663.3) and $[Co^{IV}(^{16}O)(TMG_3tren)(OTf)]^+$ (m/z = 664.3) originated from **2c**⁻¹⁶O (left panel) and $[Co^{III}(TMG_3tren^{-18}O)(OTf)]^+$ (m/z = 665.3) and $[Co^{IV}(^{18}O)(TMG_3tren)(OTf)]^+$ (m/z = 666.4) originated from **2c**⁻¹⁸O (right panel), indicating that, when Cum¹⁸O¹⁸OH was used instead of Cum¹⁶O¹⁶OH, two mass unit shift from m/z = 663.3 and 664.3 to m/z = 665.3 and 666.3, respectively, was observed.

Fig. S9 UV–vis spectral changes for the formation of **3** (red line) from (a) **2b** (0.25 mM; blue line) and (b) **2c** (0.25 mM; blue line) upon addition of $Sc(OTf)_3(1.25 \text{ mM}; 5.0 \text{ equiv.})$ to an acetone solution of **2b** and **2c** at –40 °C.

Fig. S10 Observed (black solid line) and simulated (red dashed line) Fourier-transformed EXAFS spectra of **3**. The inset shows the observed (black solid line) and simulated (red dashed line) EXAFS data on a wave-vector scale before calculation of the Fourier transform.

Fig. S11 DFT-optimized structures of (a) $[(TMG_3tren)Co^{IV}(O)]^{2+}$, (b) $[(TMG_3tren)Co^{IV}(O)-(Sc(OTf)_3)]^{2+}$, and (c) $[(TMG_3tren)Co^{IV}(O)(Sc(OTf)(OH)_2)_2]^{2+}$.

Fig. S12 First derivative (a, d), integrated (b, e) and doubly integrated (c, f) EPR spectra of (a, b, c) **1** and (d, e, f) **3** recorded in acetone at 5 K. **3** was generated by reacting **1** (1.0 mM) with THF (0.10 M) in the presence of Sc(OTf)₃ (2.0 mM) in O₂-saturated acetone at 0 °C. The yield of the intermediate **3** was estimated to be 94%, which was calculated from the amount of **1** remained in the solution.

Fig. S13 UV–vis spectral changes observed upon addition of THF (0.20 M) to **1** (0.25 mM; black line) in the absence (blue line) and presence of DMPO (0.25 mM; red line) in O_2 saturated acetone at 25 °C. (b) Time profiles monitored for the change of absorbance at 400 nm due to **2a** for the O₂-activation by **1** (0.25 mM) with THF (0.20 M) in the absence and presence of DMPO (0 – 0.50 mM) in O₂ saturated acetone at 25 °C.

Fig. S14 UV–vis spectral changes upon addition of (a) 0.2 M 2,4 di-tert-butyl phenol (b) 0.2 M DHA to an acetone solution of **1** (0.25 mM; black line) at 25 °C.

Fig. S15 UV-vis spectral changes observed in the reaction of **3** (0.25 mM) and CCA (50 mM) in acetone at 25 °C. The rate is almost identical to that of natural decay of **3**.

Fig. S16 (a) UV-vis spectral changes observed in the reaction of **2a** (0.25 mM) and CCA (20 mM) in acetone at 25 °C. (b) Plot of pseudo-first-order rate constants (k_{obs}) against the concentration of CCA obtained in the deformylation reaction of CCA by **2a** in acetone at 25 °C to determine the second-order rate constants (k_2).

Fig. S17 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of CCA (20 mM) by **2a** (0.25 mM) in acetone at 25 °C. The peaks at m/z = 249.5 and 648.4 correspond to $[Co^{II}(TMG_3tren)]^{2+}$ (calculated m/z = 249.5) and $[Co^{II}(TMG_3tren)(OTf)]^+$ (calculated m/z = 648.3), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of CCA (20 mM) by **2a** (0.50 mM) in acetone at 25 °C. Spectrum was recorded in acetone at 5 K.

Fig. S18 Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of *para*-Xbenzaldehydes, (a) benzaldehyde, (b) *p*-methylbenzaldehyde, (c) *p*-fluorobenzaldehyde, and (d) *p*-cyanobenzaldehyde, obtained in the nucleophilic aldehyde deformylation reaction of *para*-X-benzaldehydes (X = Me, H, F, and CN) by **2a** in acetone at 25 °C to determine the second-order rate constants (k_2).

Fig. S19 (a) UV-vis spectral changes observed in the reaction of **2a** (0.25 mM) and triphenylphosphine (40 mM) in acetone at 25 °C. (b) Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of triphenylphosphine to determine the second-order rate constant (k_2) for the reaction of **2a** with triphenylphosphine in acetone at 25 °C.

Fig. S20 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of PPh₃ (10 mM) by **2a** (0.25 mM) in acetone at 25 °C. The peaks at m/z = 249.5 and 648.4 correspond to $[Co^{II}(TMG_3tren)]^{2+}$ (calculated m/z = 249.5) and $[Co^{II}(TMG_3tren)(OTf)]^+$ (calculated m/z = 648.3), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of PPh₃ (20 mM) by **2a** (0.50 mM) in acetone at 25 °C. Spectrum was recorded in acetone at 5 K.

Fig. S21 (a) UV-vis spectral changes observed in the reaction of **3** (0.25 mM) with PPh₃ (2.5 mM) in acetone at 0 °C. (b) Plot of pseudo-first-order rate constants (k_{obs}) against the concentration of PPh₃ to determine the second-order rate constants (k_2) in the oxidation of PPh₃ by **3** in acetone at 0 °C.

Fig. S22 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of PPh₃ (10 mM) by **3** (0.25 mM) in acetone at 0 °C. The peaks at m/z = 249.5 and 648.4 correspond to $[Co^{II}(TMG_3tren)]^{2+}$ (calculated m/z = 249.5) and $[Co^{II}(TMG_3tren)(OTf)]^+$ (calculated m/z = 648.3), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of PPh₃ (10 mM) by **3** (0.50 mM) in acetone at 0 °C. Spectrum was recorded in acetone at 5 K.

Fig. S23 Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of substrates [(a) 9,10-dihydroanthracene (DHA) and (b) 1,4-cyclohexadiene (CHD)] to determine the second-order rate constants (k_2) in the C–H bond activation reaction of DHA and CHD by **2a** in acetone at 25 °C.

Fig. S24 Plots of pseudo-first-order rate constants (k_{obs}) against the concentration of substrates [(a) 9,10-dihydroanthracene (DHA) and (b) 1,4-cyclohexadiene (CHD)] to determine the second-order rate constants (k_2) in the C–H bond activation reaction of DHA and CHD by **3** in acetone at 0 °C.

Fig. S25 UV-vis spectral changes observed in the oxidation of (a) xanthene (50 mM) and (b) triphenylphosphine (50 mM) by **2c** (0.25 mM) in acetone at 25 °C. The Insets show time courses monitored at 415 nm due to **2c**.

Fig. 26 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of xanthene (20 mM) by **2a** (0.25 mM) in acetone at 25 °C. The peaks at m/z = 249.5 and 648.4 correspond to $[\text{Co}^{II}(\text{TMG}_3\text{tren})]^{2+}$ (calculated m/z = 249.5) and $[\text{Co}^{II}(\text{TMG}_3\text{tren})(\text{OTf})]^+$ (calculated m/z = 648.3), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of xanthene (20 mM) by **2a** (0.50 mM) in acetone at 25 °C. Spectrum was recorded in acetone at 5 K.

Fig. S27 (a) ESI-MS spectrum of the complete reaction solution obtained in the oxidation of xanthene (20 mM) by **3** (0.25 mM) in acetone at 0 °C. The peaks at m/z = 249.5 and 648.4 correspond to $[Co^{II}(TMG_3tren)]^{2+}$ (calculated m/z = 249.5) and $[Co^{II}(TMG_3tren)(OTf)]^+$ (calculated m/z = 648.3), respectively. (b) X-band CW-EPR spectrum of the complete reaction solution obtained in the oxidation of xanthene (20 mM) by **3** (0.25 mM) in acetone at 0 °C. Spectrum was recorded in acetone at 5 K.