Appendix E

Second Eigenvector of \mathcal{L}^{ϵ} : Illustrative Example

Here, we refer to the last paragraph of Section 3.5.4 and compute the second eigenvector of the full dynamics' generator \mathcal{L}^{ϵ} in order to numerically compare the asymptotic result (3.75). To this end, we have chosen the potential $V=V(x, y)$ as

$$
\begin{equation*}
V(x, y)=5\left(y^{2}-1\right)^{2}+1.25(y-x / 2)^{2} . \tag{E.1}
\end{equation*}
$$

The potential is shown in Figure E.1. The metastable decomposition for fixed x is approximately given by $B_{x}^{(1)}=\left\{(x, y): y \in \mathbf{R}^{-}\right\}$and $B_{x}^{(2)}=$ $\left\{(x, y): y \in \mathbf{R}^{+}\right\}$. For the computation of the eigenvector, we choose $\epsilon=0.005$ fixed and increase the inverse temperature β. Concerning the structure of the second eigenvector u^{ϵ}, this can be considered equivalent to increasing the potential barrier in the direction of the fast variable y. For small values of β, the eigenvector $u^{\epsilon}(x, \cdot)$ is independent of the fast variable y, but clearly depends on x. The pictures seem to confirm the validity of the asymptotic strategy to derive u^{ϵ} that is outlined in the last paragraph of Section 3.5.4. For small values of β we obtain

$$
u^{\epsilon}(x, y) \approx a_{1}(x) \mathbf{1}_{B_{x}^{(1)}}(y)+a_{2}(x) \mathbf{1}_{B_{x}^{(2)}}(y),
$$

whereas for $\beta=8.5$ we approximately have

$$
u^{\epsilon}(x, y) \approx a_{1} \mathbf{1}_{B^{(1)}}(x, y)+a_{2} \mathbf{1}_{B^{(2)}}(x, y)
$$

where a_{1} and a_{2} now are independent of x. The pictures also reveal that the simple averaging procedure is inappropriate for $\beta \geq 2.5$.

Figure E.1: Second eigenvector of \mathcal{L}^{ϵ} corresponding to the potential V in (E.1) for $\epsilon=$ 0.005 and $\beta=1.0$ (right, top), $\beta=2.5$ (bottom, left) and $\beta=8.5$ (bottom, right).

