Appendix D

Laplace's method

Here, Laplace's method of asymptotic evaluation of integrals depending on parameter ς is explained. We follow the line of [36]. For a more detailed justification see [34] or [13].

Consider the integral

$$
\begin{equation*}
I(\varsigma)=\int_{a}^{b} e^{-\frac{2 V(y)}{\varsigma^{2}}} w(y) \mathrm{d} y \tag{D.1}
\end{equation*}
$$

in which $a, b \in[-\infty, \infty], U$ and w are smooth functions on $\mathbf{R}, \varsigma>0$. The following powerful method for approximating $I(\varsigma), \varsigma \rightarrow 0$, goes back to Laplace [26]. According to Laplace, the major contribution to the value of the integral arises from the immediate vicinity of those points of the interval $[a, b]$ at which V assumes its smallest value. Let the minimum of V occur, say, at $y=y_{\min }$. if ς is small, the graph of the integrand has a very sharp peak at $y_{\min }$. It suggests that the overwhelming contribution to the integral comes from the neighbourhood of $y_{\min }$. Accordingly, we replace V and w by the leading terms in their series expansions in $y-y_{\text {min }}$, and then extend the integration limits to $\pm \infty$. The evaluation of the resulting integral yields the required approximation.

We consider two major cases. Suppose first that a is finite, $y_{\min }=a$, $V^{\prime}(a)>0$ and $w(a) \neq 0$. Then Laplace's estimation reads as follows

$$
\begin{aligned}
I(\varsigma) & =\int_{a}^{b} e^{-\frac{2 V(y)}{\varsigma^{2}}} w(y) \mathrm{d} y \simeq \int_{a}^{b} e^{-\frac{2}{\varsigma^{2}}\left(V(a)+(y-a) V^{\prime}(a)\right)} w(a) \mathrm{d} y, \\
& \simeq w(a) e^{-\frac{2 V(a)}{\varsigma^{2}}} \int_{a}^{\infty} e^{-\frac{2}{\varsigma^{2}}(y-a) V^{\prime}(a)} \mathrm{d} y=\frac{2 \varsigma^{2} w(a) e^{-\frac{2 V(a)}{\varsigma^{2}}}}{V^{\prime}(a)} .
\end{aligned}
$$

The second major case arises when V has a simple minimum at an inte-
rior point $y_{\text {min }}$ of (a, b) and $w\left(y_{\min }\right) \neq 0$. Then

$$
\begin{aligned}
I(\varsigma) & =\int_{a}^{b} e^{-\frac{2 V(y)}{\varsigma^{2}}} w(y) \mathrm{d} y \\
& \simeq \int_{a}^{b} e^{-\frac{2}{\varsigma^{2}}\left(V\left(y_{\min }\right)+\frac{1}{2}\left(y-y_{\min }\right)^{2} V^{\prime \prime}\left(y_{\min }\right)\right)} w\left(y_{\min }\right) \mathrm{d} y \\
& \simeq w\left(y_{\min }\right) e^{-\frac{2 V\left(y_{\min }\right)}{\varsigma^{2}}} \int_{-\infty}^{\infty} e^{-\frac{V^{\prime \prime}\left(y_{\min }\right)}{\varsigma^{2}}\left(y-y_{\min }\right)^{2}} \mathrm{~d} y \\
& =w\left(y_{\min }\right) e^{-\frac{2 V\left(y_{\min }\right)}{\varsigma^{2}}} \sqrt{\frac{\pi \varsigma^{2}}{V^{\prime \prime}\left(y_{\min }\right)}}
\end{aligned}
$$

If V has a finite number of minima, we may break up the integral (D.1) into a finite number of integrals so that in each interval V reaches its minimum at one of the end-points and at no other point. Accordingly, we shall assume that V reaches its minimum at $y=a$ and that $V(y)>V(a), a<y \leq b$. Now we precisely formulate the theorem about Laplace's approximation, see [34, Chapters 7,9].

Theorem D.0.4 Let $a \in \mathbf{R}, b \in \mathbf{R} \cup\{+\infty\}, a<b$. Let $V: \mathbf{R} \rightarrow \mathbf{R}$ be differentiable, and $w: \mathbf{R} \rightarrow \mathbf{R}$ or \mathbf{C} be measurable.

Suppose in addition that
(i.) the minimum of V is attained only at a;
(ii.) V^{\prime} and w are continuous in a neighbourhood of a;
(iii.) as $y \downarrow a$,

$$
\begin{aligned}
V(y) & =V(a)+P(y-a)^{\nu}+\mathcal{O}\left((y-a)^{\nu+1}\right) \\
w(y) & =Q(y-a)^{\lambda-1}+\mathcal{O}\left((y-a)^{\lambda}\right)
\end{aligned}
$$

and the first of these relations is differentiable. Here, P, ν and λ are positive constants, and Q is a real or complex constant.
(iv.)

$$
I(\varsigma)=\int_{a}^{b} e^{-\frac{2 V(y)}{\varsigma^{2}}} w(y) \mathrm{d} y
$$

converges absolutely throughout its range for all sufficiently small ς.
Then

$$
\begin{equation*}
I(\varsigma)=\frac{Q}{\nu} \Gamma\left(\frac{\lambda}{\nu}\right)\left(\frac{\varsigma^{2}}{2 P}\right)^{\frac{\lambda}{\nu}} e^{-\frac{2 V(a)}{\varsigma^{2}}}\left(1+\mathcal{O}\left(\varsigma^{\frac{2}{\nu}}\right)\right) \tag{D.2}
\end{equation*}
$$

If the asymptotic expansions in ascending powers of $(y-a)$ exist for V and w, the expansion of the integral $I(\varsigma)$ can also be obtained. The first three terms determined in [36]. For our purposes, it is sufficient to use the less exact asymptotics (D.2).

Let us apply Theorem D.0.4 to the double-well potential from Section 2.2 .2 that is illustrated in Fig. 2.3 where y_{0} denotes the saddle point, m_{1} the minimum in the shallow well, and m_{2} the minimum in the deep well. The corresponding potential barriers are $V_{\text {bar }}^{1}$ and $V_{\text {bar }}^{2}$. We want to find the asymptotics of

$$
I_{1}(\varsigma)=\int_{-\infty}^{y_{0}} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y
$$

(ii.)

$$
\begin{equation*}
I_{2}(\varsigma)=\int_{y_{0}}^{\infty} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y \tag{D.3}
\end{equation*}
$$

$$
\begin{equation*}
(i i i .) \quad I_{3}(\varsigma)=\int_{-\infty}^{\infty} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y \tag{D.4}
\end{equation*}
$$

We start with the evaluation of $I_{1}(\varsigma)$. We break the interval $\left(-\infty, y_{0}\right]$ into two intervals $\left(-\infty, m_{1}\right]$ and $\left[m_{1}, y_{0}\right]$, and note that

$$
\begin{align*}
I_{1}(\varsigma) & =\int_{-\infty}^{y_{0}} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y=\int_{-\infty}^{m_{1}} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y+\int_{m_{1}}^{y_{0}} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y \\
& =\int_{-m_{1}}^{\infty} e^{-\frac{2 \bar{V}(y)}{\varsigma^{2}}} \mathrm{~d} y+\int_{m_{1}}^{y_{0}} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y \tag{D.6}
\end{align*}
$$

where $\bar{V}(y)=V(-y), y \in \mathbf{R}$. Both integrals in the last line of (D.6) satisfy the conditions of Theorem D.0.4. We expand V near m_{1} and \bar{V} near $-m_{1}$ to get

$$
\begin{aligned}
V(y) & \left.=V\left(m_{1}\right)+\frac{\omega_{1}}{2}\left(y-m_{1}\right)^{2}+\mathcal{O}\left(\left(y-m_{1}\right)^{3}\right)\right) \\
\bar{V}(y) & \left.=\bar{V}\left(-m_{1}\right)+\frac{\omega_{1}}{2}\left(y+m_{1}\right)^{2}+\mathcal{O}\left(\left(y+m_{1}\right)^{3}\right)\right)
\end{aligned}
$$

with $\omega_{1}=V^{\prime \prime}\left(m_{1}\right)=\bar{V}^{\prime \prime}\left(-m_{1}\right)$. Thus, $P=\omega_{1} / 2, \nu=2, \lambda=1, \mathcal{Q}=1$. A direct application of Theorem D.0.4 yields with $\bar{V}\left(-m_{1}\right)=V\left(m_{1}\right)$

$$
\begin{aligned}
\int_{-m_{1}}^{\infty} e^{-\frac{2 \bar{V}(y)}{\varsigma^{2}}} \mathrm{~d} y & =\frac{\varsigma}{2} \sqrt{\frac{\pi}{\omega_{1}}} e^{-\frac{2 V\left(m_{1}\right)}{\varsigma^{2}}}(1+\mathcal{O}(\varsigma)) \\
\int_{m_{1}}^{y_{0}} e^{-\frac{2 \bar{V}(y)}{\varsigma^{2}}} \mathrm{~d} y & =\frac{\varsigma}{2} \sqrt{\frac{\pi}{\omega_{1}}} e^{-\frac{2 V\left(m_{1}\right)}{\varsigma^{2}}}(1+\mathcal{O}(\varsigma))
\end{aligned}
$$

and, consequently,

$$
I_{1}(\varsigma)=\int_{-\infty}^{y_{0}} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y=\varsigma \sqrt{\frac{\pi}{\omega_{1}}} e^{-\frac{2 V\left(m_{1}\right)}{\varsigma^{2}}}(1+\mathcal{O}(\varsigma))
$$

Analogously, one evaluates the integral

$$
\begin{aligned}
I_{2}(\varsigma) & =\int_{y_{0}}^{\infty} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y=\int_{y_{0}}^{m_{2}} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y+\int_{m_{2}}^{\infty} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y \\
& =\int_{-m_{2}}^{-y_{0}} e^{-\frac{2 \bar{V}(y)}{\varsigma^{2}}} \mathrm{~d} y+\int_{m_{2}}^{\infty} e^{-\frac{2 V(y)}{\varsigma^{2}}} \mathrm{~d} y=\varsigma \sqrt{\frac{\pi}{\omega_{1}}} e^{-\frac{2 V\left(m_{2}\right)}{\varsigma^{2}}}(1+\mathcal{O}(\varsigma)) .
\end{aligned}
$$

Without loss of generality we assume $V\left(m_{2}\right)=\min \left(V\left(m_{1}\right), V\left(m_{2}\right)\right)$ and obtain for the asymptotics of (D.5):

$$
I_{3}(\varsigma)=I_{1}(\varsigma)+I_{2}(\varsigma)=\varsigma \sqrt{\frac{\pi}{\omega_{1}}} e^{-\frac{2 V\left(m_{2}\right)}{\varsigma^{2}}}(1+\mathcal{O}(\varsigma))
$$

