
Appendix D

Laplace’s method

Here, Laplace’s method of asymptotic evaluation of integrals depending on
parameter ς is explained. We follow the line of [36]. For a more detailed
justification see [34] or [13].

Consider the integral

I(ς) =

∫ b

a
e
−

2V (y)

ς2 w(y) dy, (D.1)

in which a, b ∈ [−∞,∞], U and w are smooth functions on R, ς > 0. The
following powerful method for approximating I(ς), ς → 0, goes back to
Laplace [26]. According to Laplace, the major contribution to the value of
the integral arises from the immediate vicinity of those points of the interval
[a, b] at which V assumes its smallest value. Let the minimum of V occur,
say, at y = ymin. if ς is small, the graph of the integrand has a very sharp
peak at ymin. It suggests that the overwhelming contribution to the integral
comes from the neighbourhood of ymin. Accordingly, we replace V and w
by the leading terms in their series expansions in y− ymin, and then extend
the integration limits to ±∞. The evaluation of the resulting integral yields
the required approximation.

We consider two major cases. Suppose first that a is finite, ymin = a,
V ′(a) > 0 and w(a) 6= 0. Then Laplace’s estimation reads as follows

I(ς) =

∫ b

a
e
−

2V (y)

ς2 w(y) dy '
∫ b

a
e
− 2

ς2
(V (a)+(y−a)V ′(a))

w(a) dy,

' w(a) e
−

2V (a)

ς2

∫ ∞

a
e
− 2

ς2
(y−a)V ′(a)

dy =
2ς2w(a)e

−
2V (a)

ς2

V ′(a)
.

The second major case arises when V has a simple minimum at an inte-
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rior point ymin of (a, b) and w(ymin) 6= 0. Then

I(ς) =

∫ b

a
e
−

2V (y)

ς2 w(y) dy

'
∫ b

a
e
− 2

ς2
(V (ymin)+ 1

2
(y−ymin)2V ′′(ymin))

w(ymin) dy

' w(ymin) e
−

2V (ymin)

ς2

∫ ∞

−∞

e
−

V ′′(ymin)

ς2
(y−ymin)2

dy

= w(ymin)e
−

2V (ymin)

ς2

√
πς2

V ′′(ymin)
.

If V has a finite number of minima, we may break up the integral (D.1)
into a finite number of integrals so that in each interval V reaches its mini-
mum at one of the end-points and at no other point. Accordingly, we shall as-
sume that V reaches its minimum at y = a and that V (y) > V (a), a < y ≤ b.
Now we precisely formulate the theorem about Laplace’s approximation,
see [34, Chapters 7,9].

Theorem D.0.4 Let a ∈ R, b ∈ R ∪ {+∞}, a < b. Let V : R → R be
differentiable, and w : R → R or C be measurable.

Suppose in addition that

(i.) the minimum of V is attained only at a;

(ii.) V ′ and w are continuous in a neighbourhood of a;

(iii.) as y ↓ a,

V (y) = V (a) + P (y − a)ν + O((y − a)ν+1),

w(y) = Q(y − a)λ−1 + O((y − a)λ),

and the first of these relations is differentiable. Here, P, ν and λ are
positive constants, and Q is a real or complex constant.

(iv.)

I(ς) =

∫ b

a
e
−

2V (y)

ς2 w(y) dy,

converges absolutely throughout its range for all sufficiently small ς.

Then

I(ς) =
Q

ν
Γ

(
λ

ν

)(
ς2

2P

)λ
ν

e
−

2V (a)

ς2 (1 + O(ς
2
ν )). (D.2)
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If the asymptotic expansions in ascending powers of (y − a) exist for V
and w, the expansion of the integral I(ς) can also be obtained. The first
three terms determined in [36]. For our purposes, it is sufficient to use the
less exact asymptotics (D.2).

Let us apply Theorem D.0.4 to the double-well potential from Sec-
tion 2.2.2 that is illustrated in Fig. 2.3 where y0 denotes the saddle point,
m1 the minimum in the shallow well, and m2 the minimum in the deep well.
The corresponding potential barriers are V 1

bar and V 2
bar. We want to find the

asymptotics of

(i.) I1(ς) =

∫ y0

−∞

e
−

2V (y)

ς2 dy, (D.3)

(ii.) I2(ς) =

∫ ∞

y0

e
−

2V (y)

ς2 dy, (D.4)

(iii.) I3(ς) =

∫ ∞

−∞

e
−

2V (y)

ς2 dy. (D.5)

We start with the evaluation of I1(ς). We break the interval (−∞, y0] into
two intervals (−∞,m1] and [m1, y0], and note that

I1(ς) =

∫ y0

−∞

e
−

2V (y)

ς2 dy =

∫ m1

−∞

e
−

2V (y)

ς2 dy +

∫ y0

m1

e
−

2V (y)

ς2 dy

=

∫ ∞

−m1

e
−

2V (y)

ς2 dy +

∫ y0

m1

e
−

2V (y)

ς2 dy, (D.6)

where V̄ (y) = V (−y), y ∈ R. Both integrals in the last line of (D.6) satisfy
the conditions of Theorem D.0.4. We expand V near m1 and V̄ near −m1

to get

V (y) = V (m1) +
ω1

2
(y −m1)

2 + O((y −m1)
3)),

V̄ (y) = V̄ (−m1) +
ω1

2
(y +m1)

2 + O((y +m1)
3)),

with ω1 = V ′′(m1) = V̄ ′′(−m1). Thus, P = ω1/2, ν = 2, λ = 1, Q = 1. A
direct application of Theorem D.0.4 yields with V̄ (−m1) = V (m1)

∫ ∞

−m1

e
−

2V̄ (y)

ς2 dy =
ς

2

√
π

ω1
e
−

2V (m1)

ς2 (1 + O(ς)),

∫ y0

m1

e
−

2V̄ (y)

ς2 dy =
ς

2

√
π

ω1
e
−

2V (m1)

ς2 (1 + O(ς)),

and, consequently,

I1(ς) =

∫ y0

−∞

e
−

2V (y)

ς2 dy = ς

√
π

ω1
e
−

2V (m1)

ς2 (1 + O(ς)).
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Analogously, one evaluates the integral

I2(ς) =

∫ ∞

y0

e
−

2V (y)

ς2 dy =

∫ m2

y0

e
−

2V (y)

ς2 dy +

∫ ∞

m2

e
−

2V (y)

ς2 dy

=

∫ −y0

−m2

e
−

2V̄ (y)

ς2 dy +

∫ ∞

m2

e
−

2V (y)

ς2 dy = ς

√
π

ω1
e
−

2V (m2)

ς2 (1 + O(ς)).

Without loss of generality we assume V (m2) = min(V (m1), V (m2)) and
obtain for the asymptotics of (D.5):

I3(ς) = I1(ς) + I2(ς) = ς

√
π

ω1
e
−

2V (m2)

ς2 (1 + O(ς)).


