Appendix D

Laplace's method

Here, Laplace's method of asymptotic evaluation of integrals depending on parameter ς is explained. We follow the line of [36]. For a more detailed justification see [34] or [13].

Consider the integral

$$I(\varsigma) = \int_{a}^{b} e^{-\frac{2V(y)}{\varsigma^{2}}} w(y) \, \mathrm{d}y, \qquad (D.1)$$

in which $a, b \in [-\infty, \infty]$, U and w are smooth functions on $\mathbf{R}, \varsigma > 0$. The following powerful method for approximating $I(\varsigma), \varsigma \to 0$, goes back to Laplace [26]. According to Laplace, the major contribution to the value of the integral arises from the immediate vicinity of those points of the interval [a, b] at which V assumes its smallest value. Let the minimum of V occur, say, at $y = y_{\min}$. if ς is small, the graph of the integrand has a very sharp peak at y_{\min} . It suggests that the overwhelming contribution to the integral comes from the neighbourhood of y_{\min} . Accordingly, we replace V and wby the leading terms in their series expansions in $y - y_{\min}$, and then extend the integration limits to $\pm \infty$. The evaluation of the resulting integral yields the required approximation.

We consider two major cases. Suppose first that a is finite, $y_{\min} = a$, V'(a) > 0 and $w(a) \neq 0$. Then Laplace's estimation reads as follows

$$\begin{split} I(\varsigma) &= \int_{a}^{b} e^{-\frac{2V(y)}{\varsigma^{2}}} w(y) \, \mathrm{d}y \simeq \int_{a}^{b} e^{-\frac{2}{\varsigma^{2}}(V(a) + (y-a)V'(a))} w(a) \, \mathrm{d}y, \\ &\simeq w(a) \, e^{-\frac{2V(a)}{\varsigma^{2}}} \int_{a}^{\infty} e^{-\frac{2}{\varsigma^{2}}(y-a)V'(a)} \, \mathrm{d}y = \frac{2\varsigma^{2}w(a)e^{-\frac{2V(a)}{\varsigma^{2}}}}{V'(a)}. \end{split}$$

The second major case arises when V has a simple minimum at an inte-

rior point y_{\min} of (a, b) and $w(y_{\min}) \neq 0$. Then

$$\begin{split} I(\varsigma) &= \int_{a}^{b} e^{-\frac{2V(y)}{\varsigma^{2}}} w(y) \, \mathrm{d}y \\ &\simeq \int_{a}^{b} e^{-\frac{2}{\varsigma^{2}}(V(y_{\min}) + \frac{1}{2}(y - y_{\min})^{2}V''(y_{\min}))} w(y_{\min}) \, \mathrm{d}y \\ &\simeq w(y_{\min}) \, e^{-\frac{2V(y_{\min})}{\varsigma^{2}}} \int_{-\infty}^{\infty} e^{-\frac{V''(y_{\min})}{\varsigma^{2}}(y - y_{\min})^{2}} \, \mathrm{d}y \\ &= w(y_{\min}) e^{-\frac{2V(y_{\min})}{\varsigma^{2}}} \sqrt{\frac{\pi\varsigma^{2}}{V''(y_{\min})}}. \end{split}$$

If V has a finite number of minima, we may break up the integral (D.1) into a finite number of integrals so that in each interval V reaches its minimum at one of the end-points and at no other point. Accordingly, we shall assume that V reaches its minimum at y = a and that V(y) > V(a), $a < y \le b$. Now we precisely formulate the theorem about Laplace's approximation, see [34, Chapters 7,9].

Theorem D.0.4 Let $a \in \mathbf{R}$, $b \in \mathbf{R} \cup \{+\infty\}$, a < b. Let $V : \mathbf{R} \to \mathbf{R}$ be differentiable, and $w : \mathbf{R} \to \mathbf{R}$ or \mathbf{C} be measurable.

Suppose in addition that

- (i.) the minimum of V is attained only at a;
- (ii.) V' and w are continuous in a neighbourhood of a;
- (*iii.*) as $y \downarrow a$,

$$V(y) = V(a) + P(y-a)^{\nu} + \mathcal{O}((y-a)^{\nu+1}),$$

$$w(y) = Q(y-a)^{\lambda-1} + \mathcal{O}((y-a)^{\lambda}),$$

and the first of these relations is differentiable. Here, P, ν and λ are positive constants, and Q is a real or complex constant.

(*iv*.)

$$I(\varsigma) = \int_a^b e^{-\frac{2V(y)}{\varsigma^2}} w(y) \,\mathrm{d}y,$$

converges absolutely throughout its range for all sufficiently small ς .

Then

$$I(\varsigma) = \frac{Q}{\nu} \Gamma\left(\frac{\lambda}{\nu}\right) \left(\frac{\varsigma^2}{2P}\right)^{\frac{\lambda}{\nu}} e^{-\frac{2V(a)}{\varsigma^2}} \left(1 + \mathcal{O}(\varsigma^{\frac{2}{\nu}})\right).$$
(D.2)

If the asymptotic expansions in ascending powers of (y - a) exist for V and w, the expansion of the integral $I(\varsigma)$ can also be obtained. The first three terms determined in [36]. For our purposes, it is sufficient to use the less exact asymptotics (D.2).

Let us apply Theorem D.0.4 to the double-well potential from Section 2.2.2 that is illustrated in Fig. 2.3 where y_0 denotes the saddle point, m_1 the minimum in the shallow well, and m_2 the minimum in the deep well. The corresponding potential barriers are V_{bar}^1 and V_{bar}^2 . We want to find the asymptotics of

(i.)
$$I_1(\varsigma) = \int_{-\infty}^{y_0} e^{-\frac{2V(y)}{\varsigma^2}} dy,$$
 (D.3)

(*ii.*)
$$I_2(\varsigma) = \int_{y_0}^{\infty} e^{-\frac{2V(y)}{\varsigma^2}} dy,$$
 (D.4)

(*iii.*)
$$I_3(\varsigma) = \int_{-\infty}^{\infty} e^{-\frac{2V(y)}{\varsigma^2}} dy.$$
 (D.5)

We start with the evaluation of $I_1(\varsigma)$. We break the interval $(-\infty, y_0]$ into two intervals $(-\infty, m_1]$ and $[m_1, y_0]$, and note that

$$I_{1}(\varsigma) = \int_{-\infty}^{y_{0}} e^{-\frac{2V(y)}{\varsigma^{2}}} dy = \int_{-\infty}^{m_{1}} e^{-\frac{2V(y)}{\varsigma^{2}}} dy + \int_{m_{1}}^{y_{0}} e^{-\frac{2V(y)}{\varsigma^{2}}} dy$$
$$= \int_{-m_{1}}^{\infty} e^{-\frac{2\overline{V}(y)}{\varsigma^{2}}} dy + \int_{m_{1}}^{y_{0}} e^{-\frac{2V(y)}{\varsigma^{2}}} dy, \qquad (D.6)$$

where $\overline{V}(y) = V(-y), y \in \mathbf{R}$. Both integrals in the last line of (D.6) satisfy the conditions of Theorem D.0.4. We expand V near m_1 and \overline{V} near $-m_1$ to get

$$V(y) = V(m_1) + \frac{\omega_1}{2}(y - m_1)^2 + \mathcal{O}((y - m_1)^3)),$$

$$\bar{V}(y) = \bar{V}(-m_1) + \frac{\omega_1}{2}(y + m_1)^2 + \mathcal{O}((y + m_1)^3)),$$

with $\omega_1 = V''(m_1) = \overline{V}''(-m_1)$. Thus, $P = \omega_1/2$, $\nu = 2$, $\lambda = 1$, $\mathcal{Q} = 1$. A direct application of Theorem D.0.4 yields with $\overline{V}(-m_1) = V(m_1)$

$$\int_{-m_1}^{\infty} e^{-\frac{2\bar{V}(y)}{\varsigma^2}} dy = \frac{\varsigma}{2} \sqrt{\frac{\pi}{\omega_1}} e^{-\frac{2V(m_1)}{\varsigma^2}} (1 + \mathcal{O}(\varsigma)),$$
$$\int_{m_1}^{y_0} e^{-\frac{2\bar{V}(y)}{\varsigma^2}} dy = \frac{\varsigma}{2} \sqrt{\frac{\pi}{\omega_1}} e^{-\frac{2V(m_1)}{\varsigma^2}} (1 + \mathcal{O}(\varsigma)),$$

and, consequently,

$$I_1(\varsigma) = \int_{-\infty}^{y_0} e^{-\frac{2V(y)}{\varsigma^2}} dy = \varsigma \sqrt{\frac{\pi}{\omega_1}} e^{-\frac{2V(m_1)}{\varsigma^2}} (1 + \mathcal{O}(\varsigma)).$$

Analogously, one evaluates the integral

$$I_{2}(\varsigma) = \int_{y_{0}}^{\infty} e^{-\frac{2V(y)}{\varsigma^{2}}} dy = \int_{y_{0}}^{m_{2}} e^{-\frac{2V(y)}{\varsigma^{2}}} dy + \int_{m_{2}}^{\infty} e^{-\frac{2V(y)}{\varsigma^{2}}} dy$$
$$= \int_{-m_{2}}^{-y_{0}} e^{-\frac{2\bar{V}(y)}{\varsigma^{2}}} dy + \int_{m_{2}}^{\infty} e^{-\frac{2V(y)}{\varsigma^{2}}} dy = \varsigma \sqrt{\frac{\pi}{\omega_{1}}} e^{-\frac{2V(m_{2})}{\varsigma^{2}}} (1 + \mathcal{O}(\varsigma)).$$

Without loss of generality we assume $V(m_2) = \min(V(m_1), V(m_2))$ and obtain for the asymptotics of (D.5):

$$I_3(\varsigma) = I_1(\varsigma) + I_2(\varsigma) = \varsigma \sqrt{\frac{\pi}{\omega_1}} e^{-\frac{2V(m_2)}{\varsigma^2}} (1 + \mathcal{O}(\varsigma)).$$