Appendix C

Transition Times Considered in Full State Space (Sequel)

Here, we refer to Section 2.2.5 and present the derivation of the metastable transition times $\bar{T}_{1 \rightarrow 2}^{\epsilon}$ for the situation as illustrated in the right picture of Fig. 2.5. In so doing, we directly affiliate to the achievements from Section 2.2.5.

Situation 2: $\boldsymbol{V}_{\text {bar }}^{(1)}$ strictly monotonically decreasing. In addition, we assume $\lim _{x \rightarrow \infty} V_{\mathrm{bar}}^{(1)}(x)=0$. We demonstrate the problem with the averaged exit rates by choosing a bounded connected domain $D=D(\sigma)=[a, b]$ of the x state space such that $\int_{D} \bar{\mu}^{(1)}(x) \mathrm{d} x \approx 1$, that is, the x trajectory will almost never enter the complement D^{c} of D. In so doing, we decompose the integral in (2.49) and exploit that the minimum of $V_{\mathrm{bar}}^{(1)}(x)$ in D is attained at the right boundary b of D, that is, $V_{\text {bar }}^{(1)}(b)=\min \left\{V_{\text {bar }}^{(1)}(x) \mid x \in D(\sigma)\right\}$. Once more we apply Laplace's method to obtain

$$
\begin{gather*}
\mathbf{E}_{\bar{\mu}^{(1)}}\left[1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x)\right]=\int_{-\infty}^{b} 1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x) \bar{\mu}^{(1)}(x) \mathrm{d} x+\int_{D^{c}} 1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x) \bar{\mu}^{(1)}(x) \mathrm{d} x \\
\simeq \frac{\sqrt{\omega^{(1)}(b) \omega_{0}(b)}}{\pi\left(-\partial_{x} V_{\mathrm{bar}}^{(1)}(b)\right)} \frac{1}{Z^{(1)}} \exp \left(-\frac{2}{\sigma^{2}} V\left(b, m^{(1)}(b)\right)\right) \frac{\varsigma^{2}}{\epsilon} \exp \left(-\frac{2}{\varsigma^{2}} V_{\mathrm{bar}}^{(1)}(b)\right) \\
\quad+\frac{1}{\epsilon} \int_{D^{c}} 1 / \mathcal{T}_{1 \rightarrow 2}(x) \bar{\mu}^{(1)}(x) \mathrm{d} x \tag{C.1}
\end{gather*}
$$

such that an offset of the boundary b to the right will diminish the second term on the RHS of (C.1). To get a grip on the integral over D^{c}, let us assume the boundary b to be far away from the accessible part of the state space. As we have $\int_{D^{c}} \bar{\mu}^{(1)}(x) \mathrm{d} x \approx 0$, the second term on the RHS of (C.1) seems to be negligible. However, because $V_{\mathrm{bar}}^{(1)}(x) \rightarrow 0$ as $x \rightarrow \infty$, the transition rates for fixed $x \in D$ are faster decreasing asymptotically as the
rates for $x \in D^{c}$. Thus, in the limit of small noise ς (and for fixed $\epsilon=\epsilon^{*}$), the major contribution to $\mathbf{E}_{\bar{\mu}^{(1)}}\left[1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon^{*}}(x)\right]$ arises from the integral over D^{c}, such that $\int_{D} 1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon^{*}}(x) \bar{\mu}^{(1)}(x) \mathrm{d} x$ has asymptotically vanishing contribution.

This phenomenon is observed even more clearly by coupling ς to ϵ through (2.48) with $V_{\mathrm{bar}}^{\text {small }}=V_{\mathrm{bar}}^{(1)}(b)$ and letting $\epsilon \rightarrow 0$. As we will see, the averaged transition rates then become a completely useless quantity and cannot represent the effective transition rates from $B^{(1)}$ to $B^{(2)}$. The problem is exemplified by using (C.1) and inserting (2.48). Then we asymptotically have

$$
\begin{align*}
\int_{-\infty}^{b} 1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x) \bar{\mu}^{(1)}(x) & =\operatorname{ord}\left((\ln (1 / \epsilon))^{-1}\right) \quad \longrightarrow 0 \tag{C.2}\\
\int_{b}^{\infty} 1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x) \bar{\mu}^{(1)}(x) & =\operatorname{ord}\left(\epsilon^{-\delta}(\ln (1 / \epsilon))^{-1}\right) \quad \longrightarrow \infty, 0<\delta<1 \tag{C.3}
\end{align*}
$$

Therefore $\mathbf{E}_{\bar{\mu}^{(1)}}\left[1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x)\right] \rightarrow \infty$ as $\epsilon \rightarrow 0$, which completely contradicts the physical intuition, for the trajectory will almost never reach D^{c} and concentrate around the minimum of $V\left(x, m^{(1)}(x)\right)$ instead. The problem of getting falsified values in the case of $\epsilon \rightarrow 0$ can be explained by the following consideration: As mentioned above, the derivation of the averaged transition rates according to (2.49) is performed under the assumption that the metastable transitions between $B^{(1)}$ and $B^{(2)}$ happen on a time scale that is longer than the time scale of the slow variable dynamcis' x; for fixed $\epsilon=\epsilon^{*}$ and $\varsigma \rightarrow 0$, we easily observe the transition times for fixed x to exponentially grow which implies the metastable transition times to happen on a time scale longer than the x dynamics; thus, for $\epsilon=\epsilon^{*}$ and ς small, we obviously can apply formula (2.49) and asymptotically get $\overline{\mathcal{T}}_{1 \rightarrow 2}^{\epsilon^{*}} \simeq 1 / \mathbf{E}_{\bar{\mu}^{(1)}}\left[1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x)\right]$; in contrast, for $\epsilon \rightarrow 0$ and $\varsigma=\varsigma(\epsilon)$ given by (2.48) with $V_{\mathrm{bar}}^{\mathrm{small}}=V_{\mathrm{bar}}^{(1)}(b)$ we have to carefully inspect the integrals in (C.2). As we see, (C.3) tends to infinity indicating the existence of points $x \in(b, \infty)$ with $\mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x) \rightarrow 0$ as $\epsilon \rightarrow 0$, which in turn prevents the sampling of $\bar{\mu}^{(1)}$ before any transition from $B^{(1)}$ to $B^{(2)}$ happens. Therefore, $\mathbf{E}_{\bar{\mu}(1)}\left[1 / \mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x)\right]$ is inappropriate in this case.

The difficulty of finding an appropriate formulation for the metastable transition times to $B^{(2)}$ is overcome by incorporating the expected exit times from the set $(-\infty, b]$. For vanishing ϵ we expect the following: As long as the process $x^{\epsilon}\left(\right.$ with $\left.\left(x^{\epsilon}, y^{\epsilon}\right) \in B^{(1)}\right)$ is restricted to the domain $(-\infty, b)$, no transitions occur, whereas exiting $(-\infty, b]$ asymptotically leads to an instantly happening jump to $B^{(2)}$, for $V_{\mathrm{bar}}^{(1)}(x)<V_{\mathrm{bar}}^{(1)}(b)$ whenever $x>b$. However, as the transition probability depends on the rate $1 / \mathcal{T}_{2 \rightarrow 1}^{\epsilon}(x)$ as well, we have to incorporate the course of $V_{\mathrm{bar}}^{(2)}(x)$ into our considerations. More precise, whenever $\mathcal{T}_{1 \rightarrow 2}^{\epsilon}(x) / \mathcal{T}_{2 \rightarrow 1}^{\epsilon}(x) \rightarrow \infty$, the transition probability to jump to $B^{(2)}$ (at $x^{\epsilon}(t)=x$) will asymptotically converge to zero. But
this is exactly the case for $V_{\text {bar }}^{(2)}(x)<V_{\text {bar }}^{(1)}(x)$. In order to modify the effect let us assume for simplicity that $V_{\text {bar }}^{(2)}(x)$ is strictly monotonically increasing with $\lim _{x \rightarrow-\infty} V_{\mathrm{bar}}^{(2)}(x)=0$. This implies the existence of a point m such that $V_{\text {bar }}^{(1)}(m)=V_{\text {bar }}^{(2)}(m)$. If we assume $b<x<m$, we obtain $V_{\text {bar }}^{(2)}(x)<V_{\text {bar }}^{(1)}(x)<$ $V_{\text {bar }}^{\text {small }}=V_{\text {bar }}^{(1)}(b)$, such that the process x^{ϵ} has to exit the domain $(-\infty, m]$ for an instantly happening jump from $B^{(1)}$ to $B^{(2)}$ in the asymptotic limit $\epsilon \rightarrow 0$.

An illustration of the problem is shown in Figure C. 1 and Fig. C. 2 below. The left side of Fig. C. 1 visualizes a possible choice of $V_{\text {bar }}^{\text {small }}=V_{\text {bar }}^{(1)}\left(b^{(1)}\right)=$

Figure C.1: left: Illustration of $V_{\text {bar }}^{(i)}, i=1,2$ and $b^{(2)}<m<b^{(1)}$; middle: transition probabilities (time step $\mathrm{d} t=0.01$) corresponding to (2.48) with $V_{\text {bar }}^{\text {small }}=V_{\text {bar }}^{(1)}\left(b^{(1)}\right)$ and $\epsilon=10^{-3}$; right: transition probabilities with $\epsilon=10^{-12}$.
$V_{\text {bar }}^{(2)}\left(b^{(2)}\right)$ with $b^{(1)}=2>m=0$. The picture in the middle shows the transition probabilities $p_{1 \rightarrow 2}=p_{12}^{\epsilon}(\mathrm{d} t, x), p_{2 \rightarrow 1}=p_{21}^{\epsilon}(\mathrm{d} t, x)$ to jump over the barrier for moderately chosen $\epsilon=10^{-3}$ and time step $\mathrm{d} t=1 / 100$. At the right we illustrate the transition probabilities for very small $\epsilon=$ 10^{-12}. We clearly observe that for vanishing ϵ the particle will jump over the barrier once it has reached $b^{(1)}$ and $b^{(2)}$, respectively. In Fig. C. 2 the

Figure C.2: Same as Figure C.1, but this time $b^{(1)}<m<b^{(2)}$.
situation is contrary: The picture at the left illustrates the choice of $V_{\text {bar }}^{\text {small }}=$ $V_{\text {bar }}^{(1)}\left(b^{(1)}\right)=V_{\text {bar }}^{(2)}\left(b^{(2)}\right)$ where this time $b^{(1)}=-1<m=0$ and thus $b^{(2)}>m$.

The transition probabilities for $\epsilon=10^{-12}$ at the right-hand side reveal
$p_{1 \rightarrow 2}=p_{12}^{\epsilon}(\mathrm{d} t, x) \approx 0 \quad$ for $x<m, \quad p_{2 \rightarrow 1}=p_{12}^{\epsilon}(\mathrm{d} t, x) \approx 1 \quad$ for $x>m$.
The model for the experiments is chosen from Section 2.3 with potential given in (2.57).

Summarisingly, under the assumption of strictly monotonic decrease of $V_{\mathrm{bar}}^{(1)}$ with $\lim _{x \rightarrow \infty} V_{\mathrm{bar}}^{(1)}(x)=0$, and strictly monotonic increase of $V_{\mathrm{bar}}^{(2)}$ with $\lim _{x \rightarrow-\infty} V_{\mathrm{bar}}^{(2)}(x)=0$ we obtain the following: Denote $m \in \mathbf{R}$ the point with $V_{\mathrm{bar}}^{(1)}(m)=V_{\mathrm{bar}}^{(2)}(m)$. Our result in the limit $\epsilon \rightarrow 0$ comprise the Smoluchowski dynamics $x^{(i)}(t)$ for $i=1,2$ that correspond to the potentials $V\left(x, m^{(i)}(x)\right)$, respectively. For simplicity we assume that $V\left(x, m^{(i)}(x)\right)$ has one local minimum, for $i=1,2$ respectively, and agree $V\left(x_{*}^{(i)}, m^{(1)}\left(x_{*}^{(i)}\right)\right)=$ $\min \left\{V\left(x, m^{(i)}(x)\right) \mid x \in \mathbf{R}\right\}$ such that $x_{*}^{(1)}<m<x_{*}^{(2)}$. Now, we choose $\varsigma=\varsigma(\epsilon)$ to be defined by (2.48) with $V_{\mathrm{bar}}^{\mathrm{small}}=V_{\mathrm{bar}}^{(1)}\left(b^{(1)}\right)$ and $b^{(1)} \in\left(x_{*}^{(1)}, \infty\right)$ and denote $b^{(2)}$ the uniquely determined point x with $V_{\mathrm{bar}}^{\mathrm{small}}=V_{\mathrm{bar}}^{(2)}(x)$. Finally, we define the expected exit time from the set D over the process $x^{(i)}(t)$ with starting point x_{*} by $\mathbf{E}_{x_{*}}\left[\tau_{D}\left(x^{(i)}(t)\right)\right]$ for $i=1,2$. Now, we are in position to explicitly present the metastable transition times by the precise asymptotics in the limit of vanishing ϵ :

$$
\begin{aligned}
& \overline{\mathcal{T}}_{1 \rightarrow 2}^{\epsilon} \simeq \mathbf{E}_{x_{*}^{(1)}}\left[\tau_{D^{(1)}}\left(x^{(1)}(t)\right]\right. \\
& \overline{\mathcal{T}}_{2 \rightarrow 1}^{\epsilon} \simeq \mathbf{E}_{x_{*}^{(2)}}\left[\tau_{D^{(2)}}\left(x^{(2)}(t)\right]\right.
\end{aligned}
$$

where $D^{(1)}=\left(-\infty, \max \left(b^{(1)}, m\right)\right]$ and $D^{(2)}=\left[\min \left(b^{(2)}, m\right), \infty\right)$.

