
Appendix B

Averaging with Kurtz’s
Theorem

This section is concerned with the reformulation of the theorem of Kurtz [25,
see Appendix B.4] in the sense that the abstract ergodicity condition is re-
placed by another which allows for simpler validation. Then, we apply the
reformulated theorem to the SDE (2.34)&(2.35) resulting in the averaged
model (2.47). The averaging techniques as used in the theorem of Kurtz are
built on the analysis of strongly continuous semigroups. Hence we spend
some time setting up the necessary background and notation.

B.1 Background

We are given a time homogeneous Markov process {Xt}t∈R+ on the state
space X via its transition kernel p : R+ × X× B(X) → [0, 1] with

p(t, x,A) = P[Xt ∈ A |Xt=0 = x].

With the Markov process we may associate the family of propagators Pt, t ≥
0 acting on L1(X) according to the formula

∫

A
Ptf(z) dz =

∫

X
f(x)p(t, x,A) dx all A ∈ B(X). (B.1)

By exploiting some properties of the transition kernel it is easily seen that Pt
forms a semigroup wrt. time t, see e.g. [19, 41]. The semigroup Pt describes
the evolution of the distributions of the Markov process Xt. Namely, if we
consider the process as beginning not at a given point X0 = Xt=0 = x but
rather a random point X0 with distribution µ0(dx) = f(x)dx : P[X0 ∈ A] =
µ0(A), the distribution µt(dx) at time t will be Ptf(x)dx.

The infinitesimal generator A of the semigroup is defined by the equality

Af = lim
t→0+

Ptf − f

t
,
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the domain D(A) of A being the set of f ∈ L1(X) for which the limit exists.
It is evident that A is a linear operator from D(A) into L1 := L1(X). It is
not generally the case that D(A) equals L1, but it is dense in the space

L = {f ∈ L1 : lim
t→0+

‖Ptf − f‖ = 0}.

We call Pt a strongly continuous semigroup if

lim
t→0+

Ptf = f for every f ∈ L1.

Thus, if Pt : L1(X) → L1(X) is strongly continuous in L1 then D(A) is
dense in L1(X), i.e., D(A) = L1.

For the systems we are interested in, the infinitesimal generator of the
semigroup Pt arises in connection with the Fokker-Planck equation

∂tft = Aft,

where the solution is
ft = Ptf0.

A probability density f∗ is said to be invariant under the Markov process
Xt if Ptf∗ = f∗. In terms of the generator A we can express the invariance
of a density f∗ ∈ D(A) equivalently by Af∗ = 0. Thus, every density from
the nullspace of A, denoted by N (A), gives rise to an invariant density of
the process Xt. A Borel set E ⊂ X is said to be invariant with respect to a
positive operator P on L1(X) if for f ∈ L1(X) with Supp(f) ⊂ E we have
Supp(Pf) ⊂ E, where

Supp(f) = {x ∈ X : f(x) 6= 0}

and all statements about sets are taken modulo null sets. The semigroup Pt
is said to be irreducible if the only sets which are invariant with respect to all
Pt are ∅ and X. As is shown in [9, Chapter 7], irreducibility of the semigroup
Pt immediately implies dimN (A) ≤ 1. Furthermore, if Pt is assumed to be
irreducible with dimN (A) = 1 the unique invariant density f∗ is strictly
positive which means that

∫

E
f∗(x)dx > 0

for every Borel set E with positive Lebesgue-measure [9, Chapter 7].

B.2 Reformulation of Kurtz’s Theorem

Throughout the section we fix the σ-finite measure space (Z,dz). Suppose
that P εt is a strongly continuous contraction semigroup acting on the space
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L1 := L1(Z) and depending on a smallness parameter ε. Our basic assump-
tion will be that its generator Aε can be decomposed into the sum of two
generators:

Aε =
1

ε
A0 + A1. (B.2)

We are interested in what happens to P εt as ε→ 0.

Suppose that the semigroup P εt corresponds to a Markov process

(Xε(t), Y ε(t)) ∈ X× Y = Z

where Xε denotes the slow mode and Y ε the fast mode (the part A0/ε of
the generator incorporates the forces acting on Y ε and the time scale of
the dynamical behaviour of Y ε is assumed to scale with ε). As an example
for the origin of such processes we may consider dynamical systems of the
following form:

d

dt
Xε = f(Xε, Y ε, ξ) (B.3)

d

dt
Y ε =

1

ε
g(Xε, Y ε, η, ε) (B.4)

where ξ and η are time-dependent stochastic processes, and f and g are
chosen such that the solution is a Markov process with generator of form
(B.2) . If we freeze Y ε(t) ≡ y on the RHS of (B.3) then the solution Xε

y(t) :=
(Xε(t), y) of (B.3) is independent of ε and can be considered as a Markov
process corresponding to the infinitesimal generator Ay

1 := A1. Here, the
index indicates the coordinate that can be considered fixed, i.e., for y fixed
Ay

1 acts on f(x, y) as a function of x alone. Thus, we have to distinguish
between D(A1) ⊂ L1(X × Y) and D(Ay

1) ⊂ L1(X × {y}). We will simply
identify X × {y} = X in the following. In the same way we relate the
process Y ε

x (t) (given as the solution of (B.4) for frozen Xε ≡ x) to the
generator (1/ε)A0 where A0 is denoted by Ax

0 if we want to say that it acts
on f = f(x, y) as a function of y alone. Thereby we get a family of operators
Ax

0 acting on the y-direction for fixed x. Again, the domain of Ax
0 is seen as

a subset of L1(Y), whereas A0 is considered as operator acting on functions
f = f(x, y) ∈ L1(X× Y).

A basic demand for the convergence of P εt to a limiting semigroup Pt as
ε→ 0 is that the process Y ε

t is ergodic in a sufficiently strong sense. This is
related to some requirements for the generator family Ax

0 . More precisely,
we have to demand that for every x ∈ X there exists a strictly positive
density µx ∈ L1(Y) such that Ax

0µx = 0. For simplicity let us additionally
assume that the corresponding propagator semigroup Sxt is irreducible1, thus
dimN (Ax

0) = 1 for every x ∈ X. Let us now define the projection operator

1A comment on the assumption of irreducibility is given in the next remark
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Π on L1(X × Y) by

(Πf)(x, y) = µx(y) ·
∫

Y
f(x, y)dy. (B.5)

Thus, Π maps every function f ∈ L1(X × Y) onto the space of functions
which can be written in the form

f(x, y) = f̄(x) · µx(y),

where f̄ is an arbitrary function of L1(X). Again, by fixing x the operator
Π can be considered as acting on L1(Y). If this is meant we will write Πx

instead of Π, thus Πx : L1(Y) → N (Ax
0). With these preliminaries we are

in position to present our theorem. The range of an operator A is denoted
by R(A).

Theorem B.2.1 Let P εt ,Aε,A0, and A1 be defined as above. Furthermore
assume that A0 and A1 are generators of strongly continuous contraction
semigroups St and Ut, respectively. In addition, suppose that A0 is the
closure of A0 restricted to D(A1) ∩ D(A0). For every x ∈ X suppose that
Sxt is irreducible and that there exists a strictly positive density µx ∈ L1(Y)
such that A0µx = Ax

0µx = 0. Let Π denote the projection operator according
to (B.5) and let D = R(Π) ∩ D(A1), and define Aµ

by

Aµ
f = ΠA1f for all f ∈ D.

Suppose that the closure of Aµ
is the infinitesimal generator of a strongly

continuous semigroup Pt defined on D with D denoting the closure of D.
Then the following property holds:

lim
ε→0

P εt f = Ptf for all f ∈ D.

Proof: The proof is based on a Theorem of Kurtz in [25] and on results by
Davies [9], stated in Appendix B.4 as Theorem B.4.2 and Theorem B.4.3.
In order to apply Theorem B.4.2 we have to show the following conditions:

(i)

lim
λ→0

λ

∫ ∞

0
e−λtStfdt = Πf,

for all f ∈ L1(X× Y) and Π defined by (B.5).

(ii)

D ⊂ R(λ−Aµ
) for some λ > 0.
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(i) can be verified by using Theorem B.4.3 in the appendix which has
to be applied to the semigroup Sxt for every x ∈ X: Take f = f(x, y) ∈
L1(X × Y) and fix the variable x such that fx := f(x, ·) ∈ L1(Y). Now
we apply Theorem B.4.3 to Sxt which is assumed to be irreducible with
Sxt µx = µx. S

x
t obviously satisfies (B.12). Thus, we immediately get

lim
λ→0

λ

∫ ∞

0
e−λtStf(x, ·)dt = lim

λ→0
λ

∫ ∞

0
e−λtSxt fxdt = Πxfx, (B.6)

where the limit is in the sense of strong convergence in L1(Y) for fixed x.
Let us define Fλ by

Fλ(x, y) := λ

∫ ∞

0
e−λtStf(x, ·)dt− Πf(x, y).

We now have to show that Fλ(x, y) converges to 0 in L1(X × Y), i.e.,
∫

x

∫

y
|Fλ(x, y)|dxdy → 0, as λ→ 0. (B.7)

According to (B.6) we know that

F̃λ(x) :=

∫

y
|Fλ(x, y)|dy → 0

pointwise for every x ∈ X as λ→ 0. Suppose that there exists an integrable
function F̃ ∈ L1(X) such that

F̃λ(x) ≤ |F̃ (x)| (B.8)

for every x ∈ X. Then we are able to apply Lebesgue’s dominated conver-
gence theorem to get the desired convergence (B.7). Thus, we only have to
show (B.8):

∫

y
|Fλ(x, y)|dy ≤ ‖λ

∫ ∞

0
e−λtSxt fxdt‖L1(Y) + ‖Πxfx‖L1(Y)

≤ λ

∫ ∞

0
e−λt‖Sxt fx‖L1(Y)dt + ‖Πxfx‖L1(Y)

≤ λ

∫ ∞

0
e−λt‖f(x, ·)‖L1(Y)dt + ‖Πxfx‖L1(Y)

≤ ‖f(x, ·)‖L1(Y) + ‖Πxfx‖L1(Y),

which is integrable in L1(X) as we have chosen f ∈ L1(X × Y).
For (ii) we observe that for all λ > 0 we have R(λ − Aµ

) = D since
we assumed that Aµ

is the infinitesimal generator of a strongly continuous
semigroup on D. This is due to the Theorem of Lumer-Phillips, see e.g. [37].
�
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Remark B.2.2 The reformulated theorem no longer contains the condi-
tions on ergodicity and on the range of the shifted generator. The new con-
ditions on irreducibility of the fast process and on the existence of a strictly
positive invariant measure are more easily checked, for example for systems
that originate from statistical mechanics, molecular dynamics, or materials
science.

It is possible to formulate the theorem even if we do not assume irre-
ducibility of the process but only the existence of a strictly positive invariant
measure.

Theorem B.2.3 Let P εt ,Aε,A1, and A2 be defined as above. Furthermore
assume that A1 and A2 are generators of strongly continuous contraction
semigroups St and Ut, respectively. In addition, suppose that A1 is the
closure of A1 restricted to D(A2) ∩ D(A1). For every x ∈ X suppose that
there exists a strictly positive density µx ∈ L1(Y) such that A1µx = Ax

1µx =
0. Let Π denote the projection operator defined by

Πf := lim
λ→0

λ

∫ ∞

0
e−λtStfdt

and let D = R(Π) ∩ D(A2). Define Aµ
by

Aµ
f = ΠA2f for all f ∈ D.

Suppose that the closure of Aµ
is the infinitesimal generator of a strongly

continuous semigroup Pt defined on D with D denoting the closure of D.
Then the following property holds:

lim
ε→0

P εt f = Ptf for all f ∈ D.

Remark B.2.4 Due to [9] the expression for the projection Π in Theo-
rem B.2.3 is equivalently given by the mean ergodic projection

Πf := lim
r→∞

1

r

∫ r

0
Stfdt for each f ∈ L1(X× Y).

For example, these results enable us to apply the Theorem of Kurtz even
to the deterministic Hamiltonian system with slow and fast parts (result-
ing from so-called strong constraining potentials) which obviously is not
irreducible. This is investigated in another project and will be part of a
forthcoming paper.
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B.3 Application to SDE with Switching Process

Recall the fast-slow system from the previous section, where the fast dy-
namics is governed by OU-processes:

ẋε = −DxV (x, y) + σẆ1,

ẏε = −1

ε
ω(I(t,x))(x) ·

(
y −m(I(t,x))(x)

)
+
ς(x)√
ε
Ẇ2, (B.9)

with I(t, x) ∈ S denoting the x-dependent Markov jump process with state
space S = {1, 2, ..., N} as specified in Section 2.2.4. Recall, that the fast
process for fixed slow variable x and fixed i ∈ S admits a unique invariant

density µ
OU(i)
x (see (2.37)).

Let Zε(t) denote the Rm+1 × S-valued process (xε(t), yε(t), I(t, xε)).
Then Zε(t) is a time-homogeneous Markov process. Due to (B.1) the family
of propagators P εt , t ≥ 0 acting on L1(Rm+1 × S) is given by the formula

(P εt u)(dz, {j}) =
∑

i∈S

∫

R2

u(z̃, i) pε(t, z̃, i,dz, {j})dz̃,

where pε(t, z̃, i,dz, {j}) denotes the transition function corresponding to the
Markov solution process (xε(t), yε(t), I(t)) of (2.34)&(2.35) given initial con-
dition (xε(0), yε(0)) = z̃, I(0) = i. Using the notation of Section B.2 we
remark that the processes Xε(t), Y ε(t) are given by Xε(t) = (xε(t), I(t)),
Y ε(t) = yε(t), thus X = Rm × S, Y = R. The propagator semigroup {P εt }
admits an infinitesimal generator in L1(Rm+1×S), which we already stated
in (2.38). However, for reasons of consistency we slightly change the nota-
tion such. Thus, for every f ∈ D(Aε) the infinitesimal generator Aε is given
by the operator Aεf : Rm+1 × S → R being defined by

Aεf =
1

ε
A0f + A1f (B.10)

A0f(x, y, i) =
ς2(x)

2
∆yf(x, y, i) + Dy

(
ω(i)(x)(y −m(i)(x)) f(x, y, i)

)

A1f(x, y, i) =
σ2

2
∆xf(x, y, i) + Dx(DxV (x, y)f(x, y, i))

+

N∑

j=1

qjif(x, y, j).

As A0 acts as a differential operator on the fast variable y only, it can be
considered in the space L1(Y) as well. If this is the case, i.e., if we consider
A0 as acting on functions of y only, we will denote it Ax,i

0 . In accordance

with Section B.2, the notation Ax,i
0 is used to indicate the coordinates that

can be considered fixed for the respective operation. Analogously, for fixed
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y the generator Ay
1 := A1 is defined for functions depending on x and i.

Thus, it should be clear that

D(A0), D(A1) ⊂ L1(X × Y) = L1(Rm+1 × S),

D(Ax,i
0 ) ⊂ L1(Y) = L1(R),

D(Ay
1) ⊂ L1(X) = L1(Rm × S).

We will neither execute all the conditions concerning strong continuity of the
semigroups P εt and the semigroup which is generated by the ’slow’ generator
A1, nor is our concern to sort things out regarding the respective domains.
This is a delicate field in the area of functionalanalysis and will be missed
out here. Instead, we call attention to the generator A0 whose properties
should be checked out very carefully for the application of Theorem B.2.1.

Hence we now consider the generator Ax,i
0 of the Markov process defined

by (B.9) (ε = 1) for fixed x ∈ Rm, i ∈ S known as the Ornstein-Uhlenbeck
process. The evolution of densities is governed by the Fokker-Planck equa-
tion ∂tf = Ax,i

0 f . Due to Davies [10, Chapter 4.3], this defines a strongly

continuous contraction semigroup Sx,it = exp(tAx,i
0 ) on L1(R). The follow-

ing is known about the semigroup Sx,it (see e.g. [27, Chapter 11.7]):

(i) Sx,it is irreducible;

(ii) the semigroup possesses the (unique) invariant density µ
OU(i)
x that is

given by (2.37).

Apart from the above remarks, we may assume that the results of Sec-
tion B.2 are applicable in this situation. Recall that the projection operator
Π according to (B.5) in our case is

(Πf)(x, y, i) = µOU(i)
x (y) ·

∫
f(x, y, i) dy.

Therewith, the averaged operator is determined by ΠA1 on the pre-set do-
main D = R(Π) ∩ D(A1). Now we observe that every f ∈ D is expressed
as

f(x, y, i) = µOU(i)
x (y) · f(x, i) with f ∈ D(Ay

1) for y ∈ R.

By using the above equality, simple calculations reveal

(ΠA1f)(x, y, i) = µOU(i)
x · Af̄(x, i),

where the operator A is defined for f ∈ ∩yD(Ay
1) by

Af(x, i) =
σ2

2
∆xf(x, i) −Dx

(∫
DxV (x, y)µOU(i)

x (y)dy · f(x, i)

)
+

∑

j∈S

qji(x)f(x, j).
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Finally assume that ∩yD(Ay
1) is contained in the closure of R(λ − A) for

some λ > 0, i.e., ∩yD(Ay
1) ⊂ R(λ−A). This implies that the closure of

A generates a strongly continuous semigroup etA on L1(X) = L1(Rm × S)
where its domain contains ∩yD(Ay

1). Therefore, Theorem B.2.1 is applicable
where the limiting semigroup Pt is generated by the closure of ΠA1 on D
and is strongly continuous on

D = {µOU(i)
x (y) f(x, i) : f ∈ L1(Rm × S)}.

Conclusively, the evolution of densities f = µ
OU(i)
x (y) f(x, i) ∈ D is governed

by the semigroup etA on L1(Rm × S) according to

(Ptf)(x, y, i) = µOU(i)
x (y) (etAf)(x, i),

and Kurtz’s Theorem yields strong convergence of densities:

lim
ε→0

P εt f = Ptf in D.

A is the infinitesimal generator associated with the SDE

ẋ0 = −
∫
DxV (x, y)µOU(I(t,x))

x (y) dy + σẆ1,

with I(t, x) being the Markov chain model from (2.35) that creates transi-
tions between the stationary (probability) densities of (2.35) that are used
to average out the fast variable y.

B.4 Theorem of Kurtz

Theorem B.4.1 ([25]) Let St be a strongly continuous semigroup on L
with infinitesimal operator A0. Suppose

lim
λ→0

λ

∫ ∞

0
e−λtStfdt = Πf (B.11)

exists for every f ∈ L. Then

1. Π is a bounded linear projection, i.e., Π2 = Π;

2. StΠ = ΠSt = Π all t > 0;

3. R(Π) = N (A0)(the null space of A0);

4. R(A0) is dense in N (Π);

5. A0Πf = 0 all f ∈ L, ΠA0f = 0 all f ∈ D(A0).
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Let Ut and St be strongly continuous semigroups of linear contractions
on a Banach space L with infinitesimal operators A1 and A0, respectively.
Suppose that for each sufficiently small ε, the closure of (1/ε)A0 + A1 is
the infinitesimal operator of a strongly continuous semigroup P εt on L. In
addition, assume that A0 is the closure of A0 restricted to D(A1) ∩ D(A0).
We are interested in what happens to P εt as ε goes to zero.

Theorem B.4.2 (Kurtz, [25]) Let Ut, St and P εt be defined as above. Sup-
pose St satisfies the conditions of Theorem B.4.1. Let

D = {f ∈ R(Π) : f ∈ D(A1)},

and define Af = ΠA1f for f ∈ D. Suppose R(λ−A) ⊃ D for some
λ > 0. Then the closure of A restricted so that Af ∈ D̄ is the infinitesimal
operator of a strongly continuous contraction semigroup Pt defined on D̄ and
limε→0 P

ε
t f = Ptf for all f ∈ D̄.

Theorem B.4.3 ([9]) Let St be a strongly continuous semigroup of posi-
tivecontractions on L = L1(Y,dy) where (Y,dy) is a measure space. Suppose
there exists a strictly positive f0 ∈ A0 such that A0f0 = 0 with A0 being the
generator of St. Then

lim
λ→0

λ

∫ ∞

0
e−λtStfdt = Πf

exists for all f ∈ L. If in addition St is irreducible and satisfies

∫

Y
(Stf)(y)dy =

∫

Y
f(y)dy (B.12)

for all f ∈ L and t ≥ 0, then

Πf = f0

∫

Y
f(y)dy

for all f ∈ L.


