
Chapter 2

Replacing Fast Dynamics by
Coupled OU Processes

Whereas Conditional Averaging is derived in terms of the ensemble dynam-
ics (1.3), in this chapter our purpose is to think the approach over by exam-
ining the single system dynamics (1.1)&(1.2). In so doing, we will construct
coupled fast-slow systems, where each approximates the fast dynamics in
one of the (two) metastable sets. We thus obtain a stochastic process where
the slow variable at each instant is coupled to one of two fast variables but
where a stochastic switching process controls the switches from one fast vari-
able to the other. With these preliminaries, we are in a position to apply
well-known averaging techniques ( [35, 28, 25, 15]) in order to arrive at a
reduced model that describes the effective motion of the slow DOF in the
limit ε→ 0.

2.1 Guiding Remarks

The key assumption for the appropriateness of the limit model (1.18) is
nicely illustrated in Figure 2.1 showing the course of the metastable decom-
position in the full state space: We observe that the metastable decompo-
sition do not depend on the slow variable x so that transitions between the
subsets always happen along the direction of the y dynamics. This is ex-
actly the situation where we can apply the conditionally averaged dynamics
without doubt in order to reproduce the effective dynamics of the origi-
nal system. Therefore, we will concentrate throughout the chapter on the
situation that is illustrated in the picture.

We prescribe for the fast dynamics the simplest energy landscape ex-
hibiting exactly two metastable subsets: For fixed x, the potential energy
landscape in y will be given by a double-well potential. This allows us to
consult the rich literature on the derivation of asymptotic formulas for tran-
sition rates between the potential wells. However, we must slightly modify
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Figure 2.1: The boundary between the metastable decomposition does not depend on x

which implies that transitions between B(1) and B(2) are solely caused by the y dynamics.

system (1.1)&(1.2), mainly for the following reason: Recall the scaling as-
sumption (1.13) that justifies the need for Conditional Averaging. This is
explicitly realized only if exp(−2V x

bar/σ
2) scales like ε, which is achieved by

either rescaling the potential barrier in an appropriate manner, or, as a sec-
ond possibility, decreasing the noise intensity σ. We will choose the second
way, for the approximation of the metastable fast dynamics by irreducible
processes is justified for vanishing σ. This requires to uncouple the diffusion
in the slow and the fast equation. Thus, we denote ς the noise amplitude in
the fast equation and consider now

ẋε = −DxV (x, y) + σẆ1 (2.1)

ẏε = −1

ε
DyV (x, y) +

ς√
ε
Ẇ2, . (2.2)

Here, we cannot easily write down an invariant density for the full dynamics,
but for fixed slow variable x the invariant density on every fibre of the fast
variables’s state space will be given by

µx(y) =
1

Zx
exp(− 2

ς2
V (x, y)), Zx =

∫

Rn

exp(− 2

ς2
V (x, y)) dy, (2.3)

which is assumed to be the unique invariant density for every x.

The conditionally averaged dynamics (1.21) can equally well be obtained
for differing noise in the slow (σ) and fast equation (ς), and the need for
Conditional Averaging is now expressed by the scaling assumption

τ̄ εx ' C(x) ε exp(
2

ς2
V x

bar) = ord(1), (2.4)
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that depends on the diffusion in the fast equation. As we cannot assume
that the full dynamics admit a (unique) invariant probability density (re-
spectively, we cannot write it down as a Gibbs measure), the asymptotic
procedure as is done in [43] has to be modified wrt. the Fokker-Planck
equation in the unweighted function space L2(R2) ( for x, y ∈ R). However,
for fixed slow variable x the fast dynamics (2.2) admit the (assumed unique)
invariant density µx as defined in (2.3), and, consequently, the conditionally
averaged dynamics are given by (1.21) as well1. However, to obtain the cor-

responding averaged potentials V
(1)

and V
(2)

, we have to replace the inverse
temperature β in (1.22) by 2/ς2.

We conclude the introductory comments by briefly discussing the ques-
tions arising from (1.18) that are addressed by the approach ’Replacing fast
dynamics by coupled OU processes’.

Questions Arising from Conditional Averaging

The limit equation (1.21) is formally derived by exploiting the scaling as-
sumption (1.15) together with the approximation of the second eigenfunction

u1(x, ·) by step functions that are constant on the metastable subsets B
(1)
x

and B
(2)
x . Aiming at a numerical integration of the system immediately

poses the question of how to derive the metastable decomposition. In the
context of numerical schemes designed to recover metastable sets from the
computation of eigenfunctions, there is a considerable interest in the knowl-
edge of the eigenfunction u1(x, ·) that becomes an excellent approximation of
the indicator functions of the metastable sets. Relating the structure of the
eigenfunction according to (1.14) to the potential energy landscape yields
the result that the eigenfunction will drop sharply at the saddle point that
separates two potential wells. Following [43], we define the almost invariant
subsets by the zero of the eigenfunction u1(x, ·):

B(1)
x = {y ∈ R |u1(x, y) < 0}, B(2)

x = {y ∈ R |u1(x, y) > 0}. (2.5)

The problem of finding the zero z in the asymptotic limit σ → 0 has been
a subject of controversy in several articles. In [20, 8] it is the belief that

1For ease of presentation we omit the procedure, other than remarking that it starts
from the dynamics

∂tp
ε =

`1

ε
Ax + Ay

´

pε,

where pε is the physical probability density and Ax, Ay denote the generators for the
fast and the slow dynamics, respectively. For fixed slow variable x we can switch to the
generator Lx : L2(µx) → L2(µx) that is related to Ax by

pε(t, x, y) = dε(t, x, y)µx(y) =⇒ Axpε(t, x, ·) = µx Lxdε(t, x, ·).

The decomposition (1.16) can be easily applied to Ax, with corresponding modifications
to the steps between (1.16) and (1.18).
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the zero is generally not in the neighbourhood of the saddle point but much
closer to the minimum in the deep well of the potential. However, using
the results in [36] suggests to rather approximate the zero by the saddle
point. The difficulty of finding the correct decomposition concerns not only
the restricted probability density (1.20) that is used to obtain the averaged

potentials V
(i)
, i = 1, 2 in (1.22), but also the rate matrix Qx. Therefore, to

overcome the problem, we must carefully examine the entries of Qx. This
immediately brings us to the decisive question of how to establish a relation
between the entries of Qx and the exit rates/times from metastable subsets
in the fast DOF. In the Wentzell-Freidlin setting of large deviation theory
( [15]), relations between the dominant spectrum of the generator Lx and
the potential energy landscape are studied. It can be shown that in the limit
of vanishing noise amplitude σ, the dominant eigenvalues are related to the
inverse mean transition times between two potential wells being separated by
an energy barrier. Consequently, we have to study especially the following
questions:

(Q1) Does the matrix Qx actually capture the transition behaviour between
the metastable states in the full dynamics description? What exactly
is the relation between the dominant eigenvalue λ1 and the expected
inter-well transition rates for some given potential energy landscape?

(Q2) How should the metastable decomposition then be defined?

Based on observations from studying (Q1), we hope to understand how (2.4)
is connected to the scaling assumption (1.15) that is explicitly required for
the asymptotic procedure performed to obtain the conditionally averaged
dynamics. According to (2.4), the metastable transitions can only be frozen
on an order unity time scale, if 2V x

bar/ς
2 scales as − ln ε. This brings us to

the last question2:

(Q3) Assuming that the potential energy barrier does not change, how do
we have to couple ς to ε such that the scaling assumption (2.4) is
fulfilled?

2.2 Theory

Subsequently we study the SDE (2.1)&(2.2), where the following basic as-
sumptions about the potential V = V (x, y) are made:

Assumption 2.2.1 (i.) V ∈ C∞(Rm+1);

2The question of how to rescale the potential energy barrier will be considered in
Chapter 3.
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(ii.) V (x, ·) is a double-well potential for all x ∈ Rm with two local minima
at y = m(1),m(2) and one local maximum at y = y0 with m(1) < y0 <
m(2); to point out the dependence on x we will also write m(i)(x), i =
1, 2 and y0(x), respectively;

(iii.) the position of the saddle point does not depend on x, without loss of
generality we may assume y0(x) = 0 for every x;

(iv.) the extrema are non-degenerate, i.e., for i = 1, 2

DyyV (x,m(i)) = ω(i)(x) > 0, DyyV (x, y0) = −ω0(x) < 0.

Therefore, for fixed x, the particle spends a ’long time’ in one basin (=po-
tential well), then quickly undergoes a transition into the other basin, in
which it spends another ’long time’, and so on. The condition y0(x) = 0
implies that for every x ∈ Rm the locations of the two basins do not de-
pend on x such that the natural decomposition of the entire state space into
metastable subsets is simply given by B(1) ∪B(2), where3

B(1) = {(x, y) ∈ Rm+1 | y < 0}, B(2) = {(x, y) ∈ Rm+1 | y > 0}. (2.6)

The double-well potentials may serve as toy models mimicking a larger sys-
tem whose potential energy surface presents several basins corresponding to
metastable states. The design of V (x, ·) already suggests that an averaging
procedure should incorporate metastabilities in the fast dynamics that are
induced by the double-well structure.

We give a short illustration of the theory develop throughout Section 2.2.
To help orient the reader, we present the different steps in Figure 2.2. If
the noise level in the fast equation is small, the diffusion sample paths are
located near the local minima of the potential wells, and transitions between
the two potential wells can be considered as rare events. Then, the diffusion
can be decomposed into two almost irreducible subprocesses

(
xε(t), yε(1)(t)

)
=

(
xε(t), yε(t)

)
1B(1)

(
xε(t), yε(t)

)
,

(
xε(t), yε(2)(t)

)
=

(
xε(t), yε(t)

)
1B(2)

(
xε(t), yε(t)

)
,

and a two-state Markov chain I(t, x) mimicking the transitions between B(1)

and B(2) which happen along the y dynamics and thus depend on the posi-
tion of the slow one. In Section 2.2.1 we approximate for fixed x each of the
subprocesses yε(i), i = 1, 2 by an appropriately chosen Ornstein-Uhlenbeck

process (OU process), which is given in (2.10). As a consequence, we obtain
two irreducible processes yεOU(1) and yεOU(2) evolving independently of each

3In [43], the metastable decomposition for fixed x is defined by the zero z of the second
eigenfunction u1(x, ·) of the fast dynamics generator. We show in Section 2.2.6 that the
zero z of u1(x, ·) actually is approximated by the saddle point of the potential V (x, ·).
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Figure 2.2: Illustration of the approach ’Replacing metastable fast dynamics by coupled
OU processes’.

other. The result can be mathematically justified for vanishing diffusion in
the fast equation (2.2). To quantify the rates at which the process moves
between the two varying OU processes for fixed x, we consider the distribu-
tion of the first exit times from the metastable subsets of the fast dynamics
in Section 2.2.2. For vanishing diffusion term in the fast equation we ob-
tain asymptotics for the expected exit times that are used to parametrize
the Markov switching process I(t, x) that regulates the transitions between
the OU processes. To this end, we define the exchange rates between the
metastable states of the fast dynamics as the inverse of the expected exit
times for fixed x. In Section 2.2.3 we summarize the achieved results by
incorporating the slow variable dynamics in x. The approximated system is
given in (2.31)&(2.32), where the Markov chain I(t, x) is generated by the
rate matrix Qx whose entries are explicitly given in (2.30).
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In Section 2.2.4 we use the system with coupled OU processes as the basis
to obtain an appropriate averaged model. The reduced model then describes
the effective motion in the slow DOF. We present the asymptotic strategy
that is based on a perturbation expansion in the smallness parameter ε of the
partial differential equation associated with the stochastic model equations.
In so doing, we start from the Fokker-Planck equation (2.38). The essential
point in the averaging strategy is that the fast dynamics now are given by
two (respectively N) irreducible processes (replacing the almost irreducible
motion in the double-well potential). The averaged model in (2.47) is then

obtained by projecting the full dynamics onto the invariant density µ
OU(i)
x of

the OU process yεOU(i) for i ∈ {1, 2, ..., N}, where the evolution of the Markov

chain I(t, x) controls the switches on the state space S = {1, 2, ..., N}.

2.2.1 Approximation of Fast Dynamics by OU Processes

The present section builds upon the assumed double-well structure of the
potential energy surface V (x, ·) for fixed x, see Assumption 2.2.1. For sim-
plicity, we assume the function V (x, ·) to be a fourth-degree polynomial. For
small noise intensity ς, the process yε corresponding to the Smoluchowski
equation (2.2) for fixed x is almost decomposable4 into two subprocesses
yε(1), y

ε
(2), each attracted to a minimum m(i)(x), i = 1, 2 of the function

V (x, ·).
Thus, we consider the fast motion yεx(t) for fixed slow variables x ∈ Rm:

ẏεx = −1

ε
DyV (x, yεx) +

ς√
ε
Ẇ2, (2.7)

and distinguish between the two different regions of attraction O
(1)
x and O

(2)
x

where O
(i)
x is an open subset of B

(i)
x with m(i)(x) in its interior. The subsets

B
(1)
x and B

(2)
x are defined by the potential energy barrier:

B(1)
x = {y ∈ R : y < y0(x)}, and B(2)

x = {y : y > y0(x)}, (2.8)

with y0(x) = 0 denoting the saddle point of the potential V (x, ·). For ς small

we can almost decouple the process yε into two subprocesses yε(1)(t) ∈ O
(1)
x

and yε(2)(t) ∈ O
(2)
x . For vanishing noise intensity ς, in each of the subsets

O
(i)
x the fast diffusion will consist of small fluctuations around the potential

minimam(1)(x) andm(2)(x), respectively. The drift term in (2.2) can now be
expanded in a Taylor series with respect to y. Taylor-expansion of DyV (x, ·)
around m(i)(x), i = 1, 2 gives

DyV (x, y) = DyyV (x,m(i)(x)) · (y −m(i)(x)) + O(|y −m(i)(x)|2),(2.9)
4The notion ’almost decomposable’ is used to indicate that we cannot consider the two

’subprocesses’ as evolving independently of each other. Instead we have to wait a finite
time only until the dynamics change from yε

(i) to yε
(j) for i 6= j.
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where we have used DyV (x,m(i)(x)) = 0. For y sufficiently close to m(i)(x),
this provides us with an approximation of the SDE (2.7):

ẏεOU(i) = −1

ε
ω(i)(x) ·

(
yεOU(i) −m(i)(x)

)
+

ς√
ε
Ẇ2, (2.10)

with ω(i), i = 1, 2 denoting the curvature of V (x, ·) in m(i)(x)

ω(i)(x) = DyyV (x,m(i)(x)).

The solution of the stochastic differential equation (2.10) is known as a
process of Ornstein-Uhlenbeck type, or OU process for short. To distinguish
it from the ’decoupled’ processes yε(i), i = 1, 2 that originate from (2.7) we
denote it yεOU(i) for i = 1, 2. We omit the index for the fixed variable x.

The quality of the approximation will depend on how close the original
motion stays in the vicinity of the minima m(i)(x), i = 1, 2. Consequently,
we expect the approximation error decreases for vanishing ς. This can be
made more precise by applying the small noise expansion method for stochas-
tic differential equations. Since noise is often small, this is a method of wide
practical application. The basic assumption of asymptotically expanding
the solution process yε(i) for i = 1, 2 into powers of the noise intensity ς leads

to a reduction of the equation (2.7) into a sequence of time-dependent OU
processes. Mostly the first order is quite adequate and amounts to a lineari-
sation of the original equation about the deterministic solution. The reader
may refer to [16], where it is shown that the procedure up to first order
yields pathwise convergence in the asymptotic limit ς → 0, more precise,

E |yε(i)(t) − yεOU(i)(t)| = O(ς2), i = 1, 2.

Comparison of Stationary Densities

The stationary solution is obtained by letting t → ∞. As the OU pro-

cess (2.10) is ergodic, the stationary density µ
OU(i)
x is simply given by the

Gaussian with mean m(i)(x) and variance ς2/(2ω(i)(x)). If we denote the
invariant density corresponding to equation (2.7) by µx, it is sensible to

compare µ
OU(i)
x , i = 1, 2 with µ

(i)
x where

µ(i)
x (y) =

1

µx(B
(i)
x )

µx(y)1B(i)
x

(y), i = 1, 2. (2.11)

Our goal is to show that µ
OU(i)
x comes arbitrarily close to µ

(i)
x in L1(R)

for vanishing diffusion term ς. There is no loss of generality in assuming
V (x,m(i)(x)) = 0 for fixed i ∈ {1, 2}. Then, the densities can be written

µOU(i)
x (y) =

1

Z
OU(i)
x

exp
(
− ω(i)(x)

ς2
(
y −m(i)(x)

)2)
,

µ(i)
x (y) =

1

Z
(i)
x

exp
(
− 2

ς2
V (x, y)

)
1
B

(i)
x

(y),
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with Z
OU(i)
x and Z

(i)
x denoting appropriate normalization constants that de-

pend on ς. We now use standard asymptotics that will allow to evaluate

‖µ(i)
x − µ

OU(i)
x ‖L1 in the asymptotic limit ς → 0. We first examine the nor-

malization constants: Z
OU(i)
x is given explicitly, whereas for Z

(i)
x we use the

method of Laplace in order to obtain the main contribution to the integral
in the asymptotic limit ς → 0. This yields

ZOU(i)
x =

∫
exp

(
− ω(i)(x)

ς2
(
y −m(i)(x)

)2)
dy = ς

√
π

ω(i)(x)
,

Z(i)
x = ς

√
π

ω(i)(x)
(1 + O(ς)) + ς

√
π

ω(i)(x)
.

For an explanation of Laplace’s method we refer to Appendix D. In order to

obtain the asymptotics of ‖µOU(i)
x −µ(i)

x ‖L1 in the limit ς → 0, we decompose
the integral according to

∫ ∞

−∞

|µOU(i)
x (y) − µ(i)

x (y)|dy =

∫ m(i)(x)−Cς

−∞

|µOU(i)
x (y) − µ(i)

x (y)|dy

+

∫ m(i)(x)+Cς

m(i)(x)−Cς
|µOU(i)
x (y) − µ(i)

x (y)|dy (2.12)

+

∫ ∞

m(i)(x)+Cς
|µOU(i)
x (y) − µ(i)

x (y)|dy,

with C > 0 denoting a positive constant. We first compute the middle term
on the RHS of (2.12). To this end, we use Taylor-expansion of V (x, ·) around
the minimum m(i)(x), which yields

V (x, y) =
1

2
ω(i)(x)

(
y −m(i)(x)

)2
+ O((y −m(i)(x))3).

Thus, we get

∫ m(i)(x)+Cς

m(i)(x)−Cς
|µOU(i)
x (y) − µ(i)

x (y)|dy

=

∫ m(i)(x)+Cς

m(i)(x)−Cς
e
−

ω(i)(x)

ς2
(y−m(i)(x))2

∣∣∣∣
1

Z
OU(i)
x

− e
− 2

ς2
O((y−m(i)(x))3)

Z
(i)
x

1
B

(i)
x

∣∣∣∣dy

= ς

∫ C

−C
e−ω

(i)(x)y2
∣∣∣∣

1

Z
OU(i)
x

− e
− 2

ς2
O(ς3y3)

Z
(i)
x

1
B

(i)
x

(
m(i)(x) + ςy

)∣∣∣∣dy.

For fixed C > 0 we clearly observe that the correction term e
− 2

ς2
O((ςy)3)

uniformly converges to 1 for y ∈ [−C,C]. Together with

ς

Z
(i)
x

.
=

ς

Z
OU(i)
x

=

√
ω(i)(x)

π
,
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we obtain in the limit ς → 0

∫ m(i)(x)+Cς

m(i)(x)−Cς
|µOU(i)
x (y) − µ(i)

x (y)|dy .
= 0.

For the first term on the RHS of (2.12) we simply show that we always find
a C > 0, such that the values of the integrals

∫ m(i)(x)−Cς

−∞

µ(i)
x (y) dy,

∫ m(i)(x)−Cς

−∞

µOU(i)
x (y) dy, (2.13)

come arbitrarily close to 0. To estimate the first expression we use

V (x, y) = (m(i)(x) − y)2 P2(x, y),

with P2(x, y) being a polynomial in y of degree 2 and

lim
ς→0

P2(x,m
(i)(x) + ςy) = P2(x,m

(i)(x)) > 0

pointwise for every y. Therefore, we obtain in the asymptotic limit ς → 0

∫ m(i)(x)−Cς

−∞

µ(i)
x (y) dy =

ς

Z
(i)
x

∫ −C

−∞

e−2y2 P2(x,m(i)+ςy)dy

.
=

√
ω(i)(x)

π

∫ −C

−∞

e−2y2P2(x,m(i)(x)) dy.

This shows that we can always find a C > 0 such that the value of the
integral is arbitrarily close to 0. The second expression in (2.13) is evaluated
analogously. The same estimates can be applied to the third term on the
RHS of (2.12), such that altogether we end up with

lim
ς→0

(µ(i)
x − µOU(i)

x ) = 0, in L1(R).

Note that we do not get convergence in L∞.

2.2.2 Construction of the Transition Rate Matrix

In Section 2.2.1 we considered the fast dynamics (2.7) restricted to a single
metastable set and approximated it by a simple OU process mimicking the
rapid mixing in each of these subsets prior to exiting. To address the ques-
tion of the essential dynamical structure in the entire (fast) state space we
consider the statistics of the exit times from the metastable sets and approx-
imate the transition events of the diffusion by jump times of an associated
continuous-time, finite state-space Markov chain (the double-well potential
implies a two-state Markov chain).
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If we know the location of the metastable basins, the mean exit times
can be easily estimated from MD simulations. These data can then be used
to construct a transition rate matrix Q that generates stochastic matrices
exp(tQ) for all times t > 0 allowing for a pathwise simulation of the tran-
sitions between the metastable components. However, the computational
effort of estimating the expected exit times can be avoided by resorting to
the rich literature on the derivation of asymptotic formulas for the jump
rates that are strongly connected to the dominant spectrum of the corre-
sponding generator, see e.g. [36, 8, 7, 2].

We present formulas for the expected inter-well transition times in the
asymptotic limit ς → 0, which are given for ε = 1 in (2.15)&(2.16). Then
we use the precise estimates to construct the transition rate matrix Q,
see (2.17). In addition, we link the transition rates to the dominant spectrum
of the corresponding generator, which reveals an equivalent representation
of Q in (2.20). We illustrate the validity of the asymptotic formulas through
results from appropriate numerical experiments. Finally, we incorporate the
smallness parameter ε and address the question of how to freeze the tran-
sitions on a time scale that is independent of ε. This can explicitly only
realized if ε scales like exp(−(2/ς2)∆V ) with ∆V denoting the potential
barrier that has to be crossed. Thus, fixing the potential barrier height, will
result in a logarithmic scaling of ς.

Let us fix the notation that will be used throughout Section 2.2.2. To
simplify notation we will omit the index x in V (x, ·) and assume that V (y)
is a strictly positive one-dimensional asymmetric double-well potential with
non-degenerate extrema, compare Assumption 2.2.1. We consider the cor-
responding Smoluchowski equation

ẏ = −DyV (y) + ς Ẇ , (2.14)

with stationary density µ = µ(y):

µ(y) =
1

Z
exp

(
− 2

ς2
V (y)

)
, Z =

∫
exp

(
− 2

ς2
V (y)

)
dy.

We identify the left and right wells by m1, m2, and the local maximum by
y0. In order to prevent a possible mix-up with the corresponding notations
in the two-dimensional case V = V (x, y), we prefer to use the index i ∈
{1, 2} without brackets, and whenever possible we put it at the bottom of
the parameters. The left and right potential barriers are denoted V 1

bar =
V (y0) − V (m1), V

2
bar = V (y0) − V (m2), and let

Vbar = min{V 1
bar, V

2
bar}

denote the minimal potential barrier. Without loss of generality we assume
that the saddle point is y0 = 0 (⇒ m1 ∈ R−, m2 ∈ R+), and Vbar = V 1

bar,
i.e., the shallow well is at the left side and the deep well at the right. An
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Figure 2.3: Asymmetric double-well potential with metastable decomposition R = B1∪B2.

illustration of the potential thus defined is shown in Figure 2.3. The pic-
ture shows the natural decomposition of the state space into the metastable
subsets B1 and B2:

B1 = {y ∈ R | y < y0 = 0}, B2 = {y ∈ R | y > y0 = 0}.

Metastability and Exit Times

Once having identified the metastable subsets, the question remains how to
compute the transition rates between them. The problem is attacked by
using some results concerning the expected exit time from a subset D of
the state space containing (exactly) one local minimum of the potential in
its interior (and some neighbourhood of the saddle point the process has
to cross). Whenever the diffusion term is small, the system will be with
overwhelming probability near the local minimum and far from ∂D. Never-
theless, the trajectories of the process will leave D with probability one. We
are interested in the asymptotic behaviour of the expected transition times
from one metastable subset of the system to the other. There is a variety of
works on this subject done by probabilists starting at least from Freidlin

& Wentzell, see [15]. The first papers only gave the asymptotic behaviour
of the logarithm of expected exit times. The main contribution of [36, 8, 7]
was to determine the main term in the prefactor. We will refer to [36] in
the following, where the prefactor is established for a double-well potential.

If the diffusion in (2.14) is small, the diffusion sample paths of the pro-
cess are located near the local minima of the potential wells, m1 and m2.
If we consider the new discrete-space process on {m1,m2}, it assigns infor-
mation about the inter-well dynamics of the diffusion. The intra-well small
fluctuations of the diffusion in the potential minima are now filtered out.
For small noise intensity ς, transitions between the potential wells occur
at Kramers’ time that is given up to exponential order by exp((2/ς2)∆V ),
where ∆V is the potential barrier that the process must cross to reach the
other potential well. Let us render the result more precisely introducing the
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first exit time of the Markov process y(t) from D started at y(0) = y

τD(y) = inf

{
t ∈ R+ :

∫ t

0
1D(y(s)) ds > 0, y(0) = y

}
.

This measures only exits that happen for some non-null time interval and
depends on the realization of the Markov process.

We are interested in the transition times between the metastable subsets
B1 and B2. If the noise intensity does not vanish, they are not identical
to the exit times τBi , i = 1, 2. Instead we have to modify the metastable
subsets slightly such that a (small) neighbourhood around the saddle point
is included, i.e., we consider B1 + δ = (−∞, δ) and B2 − δ = (−δ,∞)
instead with δ > 0 being a small parameter. We assume that O1 ⊂ B1

and O2 ⊂ B2 are some regions of attraction (excluding a neighbourhood
around the saddle point and including the potential minima, that is, yi ∈ Oi
for i = 1, 2). Then, it is natural that the first exit times from B1 + δ and
B2 − δ are basically independent for all starting points y ∈ O1 and y ∈ O2,
respectively. This enables us to assign the expected exit times from B1 + δ
and B2 − δ to the entire subsets O1 and O2 rather than to single points. An
application of [15] or [20, 40] yields the following asymptotes as ς → 0:

(i) for y ∈ O1 we have limς→0 ς
2 log Ey[τB1+δ] = 2V 1

bar;

(ii.) for y ∈ O2 we have limς→0 ς
2 log Ey[τB2−δ] = 2V 2

bar.

However, for our purpose we need a result from Pavlyukevich in [36] that
will give coincidence of the reducing Markov chain up to the sub-exponential
prefactors which do not appear in the large deviations’ statements. These
are expressed in terms of the curvature of the potential in the saddle point
and the minima:

DyyV (m1) = ω1, DyyV (m2) = ω2, DyyV (y0 = 0) = −ω0.

Now, the following result is obtained: Suppose that ς is sufficiently small
and denote the expected transition time from Bi to Bj with i 6= j by Ti→j,
then T1→2 and T2→1 are well approximated by

T1→2 = Ey∈O1 [τB1+δ] ' 2π√
w1 ω0

exp(
2

ς2
V 1

bar), (2.15)

T2→1 = Ey∈O2 [τB2−δ] ' 2π√
w2 ω0

exp(
2

ς2
V 2

bar). (2.16)

In [36], the result is obtained in terms of the lowest eigenvalue 6= 0 of the
associated infinitesimal generator, which corresponds (apart from suitable
weights) to the inverse of the expected diffusion exit times. We discuss the
connection in the next subsection.
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Remark 2.2.2 We emphasize again that in the following we will speak of
(metastable) transition times between B1 and B2 or metastable exit times
instead of exit times from Bi, i = 1, 2, for the precise asymptotic estimates
in (2.15)&(2.16) are given for the mean values of the first exit times from
B1 + δ and B2 − δ with δ > 0. In Table 2.1 (in this section) it actually
becomes apparent that the precise choice of the parameter δ is not impor-
tant, and that the transition problem for B1 to B2 is virtually equivalent to
considering the escape from a suitably chosen neighbourhood of m1, provided
this neighbourhood contains in its interior the relevant saddle point y0 con-
necting m1 and m2. Therefore, we could equivalently define the first hitting
time of a small (open) ball O2 around m2 (excluding a neighbourhood of the
saddle point) for the process y(t) starting in a small ball O1 around m1:

%O2(y) = inf{t > 0 | y(t) ∈ O2, y(0) = y ∈ O1}.

Transition Rate Matrix

Our goal is to build a two-state Markov chain on the state space S = {1, 2},
and view inter-well transitions of the diffusion as simple jumps of this chain.
In [41, 20] it is shown that exit times are asymptotically almost exponential
random variables. As a consequence, the asymptotic decay rate is specified
as the reciprocal of the expected exit time. This enables us to obtain the
jump rates for the reduced two-state Markov chain as the inverse of the
asymptotic formulas (2.15)&(2.16).

As the rate matrix Q = (qij)i,j∈S has to represent the infinitesimal gen-
erator for an approximating Markov chain, we have to consider the following
simple rules in the construction:

(i.) for every i ∈ S we have qii < 0;

(ii.) qij ≥ 0 for i 6= j;

(iii.)
∑

j∈S qij = 0 for all i ∈ S;

(iv.) Q generates a unique invariant density.

The second and the third condition guarantee that Q generates a stochastic
matrix exp(tQ) for all t ≥ 0, the entries of which are the respective transition
probabilities to jump from one state to the other at time t. In the case
considered here, the state-space is two-dimensional, S = {1, 2}, and the
transition rates from 1 → 2 and from 2 → 1 are easily obtained by the inverse
of the asymptotically derived mean transition times T1→2 and T2→1 specified
in (2.15)&(2.16). Therefore, we set q12 = 1/T1→2 and q21 = 1/T1→2, such
that the rate matrix Q is defined by

Q =

(
−1/T1→2 1/T1→2

1/T2→1 −1/T2→1

)
, Q

(
1
1

)
= 0. (2.17)
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The (assumed positive and unique) invariant density ψ = (ψ1, ψ2)
T is de-

termined as the (unique) solution of

QT ψ = 0 with ψ1 + ψ2 = 1.

It is natural to suppose that explicit values for the invariant density ψ
are derived by the weights of the respective potential wells, for the two-state
Markov chain copies the inter-well transition of the process (2.14). That is,
we expect the invariant density to be given by

ψ1 = µ(B1) =

∫

B1

µ(y) dy, ψ2 = µ(B2) =

∫

B2

µ(y) dy.

To establish the above expectation, we simply have to verify

µ(B2)

µ(B1)
=

T2→1

T1→2

(
⇒ QT

(
µ(B1)
µ(B2)

)
= 0

)
. (2.18)

To this end, we may apply Laplace’s method of asymptotic evaluation of
integrals depending on the parameter ς. According to Laplace (see Ap-
pendix D), we easily get the asymptotic estimates in the small noise limit

µ(B2)

µ(B1)
+

√
ω1

ω2
exp

(
− 2

ς2
(V (m2) − V (m1))

)
, (2.19)

and, by using V (m2)−V (m1) = −(V 2
bar−V 1

bar) together with (2.15)&(2.16),
we end up with

µ(B2)

µ(B1)
' T2→1

T1→2
.

To express the rate matrix in terms of the invariant density, we shall
investigate the second eigenvalue λ1 of the infinitesimal generator that cor-
responds to the diffusion process (2.14) for small values of ς. It is well known
that the dominant spectrum of the generator serves as a quantity for the ex-
change rates between metastable subsets of the system. Thus, the assumed
double-well structure of the potential V implies the dominant spectrum to
consist of two eigenvalues, λ0 = 0 and 0 ≈ λ1 ∈ R−, while the remainder
is bounded away by a large spectral gap. The informations about the be-
haviour of λ1 are again based on the results of Pavlyukevich in [36] who
derived the asymptotic formula of λ1 in the small noise limit by expanding
λ1 into a power series. The refinement for asymmetric double-well potential
gives the accurate asymptotics for λ1 in terms of quantities concerning the
shallow well of the potential:

|λ1| +

√
w1 ω0

2π
exp

(
− 2

ς2
V 1

bar

)
.
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This result has been derived for asymmetric double-well potentials, such
that the weight on the deep well is approximately 1, that is, µ(B2) ≈ 1.
This obviously is fulfilled for small values of ς due to µ(B2) → 1 as ς → 0.
However, to include the case of symmetric double-well potentials (then we
have µ(B2) = µ(B1) = 0.5) we prefer to rewrite the asymptotics of λ1

according to

|λ1|µ(B2) +

√
w1 ω0

2π
exp(− 2

ς2
V 1

bar),

which allows us due to (2.15) to express the transition rate q12 from 1 →
2 equivalently by q12 = |λ1|µ(B2). Using the invariant density ψ of the
transition rate matrix provides us with an alternative formulation for the
asymptotics of λ1 by using the curvature in the deep well (and the weight
over the shallow well):

|λ1|µ(B1) +

√
w2 ω0

2π
exp(− 2

ς2
V 2

bar).

Summarisingly, we have

T1→2 ' 1

|λ1|µ(B2)
, T2→1 ' 1

|λ1|µ(B1)
,

such that the transition rate matrix Q asymptotically is equivalently ex-
pressed as

Q '
(

−|λ1|µ(B2) |λ1|µ(B2)
|λ1|µ(B1) −|λ1|µ(B1)

)
. (2.20)

In this representation, the rate matrix exactly corresponds5 to the exchange
term (1.19) for the conditionally averaged system (1.21) that governs the
jumps of the two state Markov chain I(t, x). However, as will become ap-
parent in Section 3.5.1, the rate matrix given in (1.19) has to be considered
as the generator of the transition matrix propagating densities that are nor-

malized relative to
(
µ(B

(1)
x ), µ(B

(2)
x )
)T

. To help orient the reader, we close
this section with some general comments on the ensemble description of
finite state Markov chains.

Remark 2.2.3 The rate matrix Q is basically considered to be part of the
backward Kolmogorov equation ∂t~d = Q~d, ~d = (d1, d2, ..., dN )T ∈ RN ,
that is, it describes the evolution of the expectations of functions of the
state of the system. The evolution of (physical) probability vectors is de-
scribed by the forward Fokker-Planck equation ∂t~d = QT ~d with generator

5Apart form the x-dependence of the eigenvalue and the weights. Moreover, we do not
know yet, if B

(1)
x and B

(2)
x from (1.14) are given by the saddle point of the potential.
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QT . Let ψ = (ψ1, ..., ψN )T denote a probability vector (not necessarily in-
variant). Let us now switch to the equivalent description in the ψ-weighted
space l2(ψ) endowed with the ψ-weighted inner product 〈f, g〉ψ = fTDg with
f = (f1, f2, ..., fN )T , g = (g1, ..., gN )T and D defined by D = diag(ψ). The
evolution of expectations of functions in l2(ψ) still is given by ∂t~d = Q~d,
whereas the Fokker-Planck equation in the weighted space is obtained by
transforming Q according to

Q̂ = D−1QTD. (2.21)

With it the evolution of densities normalized relative to ψ is now described
by ∂t~d = Q̂~d, and we have Q = Q̂ iff Q is self-adjoint wrt. the inner product
〈·, ·〉ψ. As a necessary condition for Q = Q̂ we obtain that ψ has to be the
(assumed unique) invariant density of Q, hence QTψ = 0.

For S = {1, 2}, things are considerably easier to sort out. We define the
rate matrix Q by

Q =

(
−a a
b −b

)
, a, b > 0, (2.22)

and denote l2(ψ) with ψ = (ψ1, ψ2)
T the weighted space with inner product

〈·, ·〉ψ. As before, Q̂ is the generator that corresponds to the Fokker-Planck
equation in l2(ψ) and D = diag(ψ). According to (2.21) we now obtain

Q̂ =

(
−a b(ψ2/ψ1)

a(ψ1/ψ2) −b

)
,

which results in

Q̂ = Q ⇐⇒ ψ1

ψ2
=

b

a
⇐⇒ QTψ = 0.

Consequently, the generator Q̂ will take the form of a rate matrix if and
only if ψ is the stationary probability density of the transition process that
is generated by Q.

In the next subsection we illustrate the validity of the asymptotic for-
mulas (2.15)&(2.16) through results from numerical experiments that reveal
that the approximation is even valid for moderate values of ς.

Numerical Illustration of Exit Times/Rates

Here, we numerically compute the quantities from the last two subsections
that correspond to the diffusion process (2.14). To this end we use the
asymmetric double-well potential V = V (y) shown in Figure 2.3:

V (y) = 2.5 · (y2 − 1)2 − 1.6 y3 + 2.4,
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where the local minimum in the shallow well is m1 ≈ −0.7884 and the right
minimum is m2 ≈ 1.2684. For the potential barriers we have V 1

bar ≈ 1.3579
and V 2

bar ≈ 4.8383.

Table 2.1 shows the estimated mean exit times from B1 + δ for different
values of δ by means of N = 1000 realizations. The initial value is chosen
y(t = 0) = −0.78 ≈ m1. Comparing the computed values with the asymp-
totic estimate in formula (2.15) actually reveals that the formula rather
estimates the stopping times that are defined by exiting B1 and entering
some region of attraction to m2. This is equivalent to τ̄B1+δ with δ > 0.
These considerations will apply as well to the exits from the deep well at

ς = 1.5 ς = 1.0 ς = 0.8 ς = 0.7 ς = 0.65 ς = 0.6

T1→2 1.65 7.46 34.37 126 305 932

τ̄B1 1.06 5.30 22.5 83 202 605

τ̄B1+0.2 1.53 7.45 32.24 129 305 907

τ̄B1+0.4 1.84 8.58 36.66 130 320 961

τ̄B1+0.8 1.90 8.55 38.30 135 310 940

Table 2.1: Mean exit times from the shallow well for different values of ς: In the first row
we show the precise asymptotic estimate for the metastable exit times according to (2.15);
the rows below illustrate the computed mean exit times from B1 + δ for δ = 0, 0.2, 0.4, 0.8
by means of N = 1000 realizations.

the right side of the saddle point. Therefore, we choose a priori δ = 0.4 and
compute the mean exit times from B2 − δ for different values of ς by means
of N = 1000 realizations with starting point y(t = 0) = 1.2 ≈ m2. The
results displayed in Table 2.2 perfectly agree with the precise estimate via
formula (2.16) even for moderately small values of ς. Table 2.2 shows that

ς = 1.5 ς = 1.2 ς = 1.15 ς = 1.0 ς = 0.95

T2→1 28.70 322 586 6201 17640

T1→2µ(B2)/µ(B1) 27.58 300 544 5795 16561

τ̄B2−0.4 26.23 305 573 5690 18490

Table 2.2: Mean exit times from the deep well for different values of ς: In the first row we
show the precise asymptotic estimate for the metastable exit times according to (2.16); the
second row illustrates the values obtained by formula (2.15) and the numerically computed
weights; in the row below we compare these values to the numerically derived mean exit
times by means of N = 1000 realizations.

the metastable transitions from the deep to the shallow well are equally well
approximated by means of the stationary density ψ = (µ(B1), µ(B2))

T of
the rate matrix Q together with the mean transition from the shallow to the
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deep well.
Finally, we incorporate into our numerical considerations the second

eigenvalue λ1 for different values of ς. It is computed by means of discretiz-
ing the corresponding generator. Table 2.3 compares the asymptotic formu-
las (2.15)&(2.16) for T1→2 and T2→1 with the inverse of |λ1|µ(Bi), i = 1, 2.
It nicely illustrates that λ1 is obtained as well by using the the metastable

ς = 1.5 ς = 1.2 ς = 1.0 ς = 0.8 ς = 0.7 ς = 0.6

|λ1| 0.6147 2801 0.1203 0.0267 0.0074 0.0010

1/|λ1| 1.63 3.57 8.31 37.43 135 978

T1→2 1.65 3.25 7.46 34.37 126 932

1/(λ1µ(B2)) 1.72 3.61 8.32 37.43 135 978

T2→1 28.69 322 6201 1.4335e6 1.4673e8 1.8350e11

1/(|λ1|µ(B1)) 28.81 332 6466 1.4941e6 1.5214e8 1.8869e11

Table 2.3: Comparison of transition times by means of the asymptotic esti-
mates (2.15)&(2.16) with transition times obtained by second eigenvalue and correspond-
ing weights: The second eigenvalue λ1 is computed by discretizing the infinitesimal gen-
erator.

transition time T2→1 from the deep to the shallow well and the weight µ(B1)
over the shallow potential well:

T2→1 ≈ 1

|λ1|µ(B1)
=⇒ |λ1| ≈

1

T2→1µ(B1)
.

To provide pictures instead of numbers, we show a typical realization
of (2.14) for ς = 1.2 in Figure 2.4 below and compare it to the reducing
Markov chain model that mimics the inter-well transitions of the process.
At the top we show the original process and at the bottom the numerical
realization of the transition rate matrix Q according to (2.17). We clearly
observe distributional coincidence between the inter-well transitions of y(t)
and the jumps generated by Q.

Coupling Noise Intensity to Smallness Parameter ε

If we introduce the time scale transformation t 7→ t/ε, the Smoluchowski
equation (2.14) is rescaled to the stochastic differential equation

ẏε = −1

ε
DyV (y) +

1√
ε
ς Ẇ , (2.23)

and the results of the last subsections have to be modified wrt. the smallness
parameter ε. Therefore, we have to set τD 7→ τ εD = ε τD for the first exit
time from some subset D of the state space. The expected (metastable)
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Figure 2.4: Inter-well transitions of process (2.14) compared to sample paths of Markov
chain model corresponding to Q (bottom). Q seems to render satisfactorily the jumps
between the potential wells.

transition times between the potential wells are now given by the precise
asymptotic estimates

T ε
1→2 ' ε

2π√
w1 ω0

exp(
2

ς2
V 1

bar), (2.24)

T ε
2→1 ' ε

2π√
w2 ω0

exp(
2

ς2
V 2

bar), (2.25)

and the corresponding transition rate matrix Qε takes the form

Qε =
1

ε
Q =

(
−1/T ε

1→2 1/T ε
1→2

1/T ε
2→1 −1/T ε

2→1

)
.

The rate matrix Qε generates a Markov chain that is suitable to approximate
the inter-well transitions of the dynamics (2.23). The intra-well small fluctu-
ations of the diffusion in the potential minima can be approximated by OU
processes. Both approaches (inter-well and intra-well) are mathematically
justified in the limit of small noise intensity ς.

Therefore, the request for vanishing approximation errors suggests to
send ς to zero as ε → 0. This will effect another important concern of our
investigations. Recalling our primary goal of justifying the need of Condi-
tional Averaging, we recommend to freeze the fast scale effects on a time
scale of order ord(1) being expressed in (2.4). According to (2.24)&(2.25),
this can explicitly be realized only if exp(−(2/ς2)∆V ) scales like ε. Here, ∆V
denotes the barrier that has to be crossed, that is, ∆V = V 1

bar or ∆V = V 2
bar.

A natural way of deriving (2.4) was to rescale the potential energy barrier
in an appropriate manner (this will be done in Section 3.5.3). However, the
approximation of the fast dynamics by OU processes requires ς → 0, such
that we leave the potential untouched and rescale the diffusion ς instead.
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An easy calculation reveals the following situations:

T ε
1→2 ' C1 = ord(1) ⇐⇒ ς(ε) '

( 2V 1
bar

ln(K1/ε)

)1/2
, (2.26)

T ε
2→1 ' C2 = ord(1) ⇐⇒ ς(ε) '

( 2V 2
bar

ln(K2/ε)

)1/2
, (2.27)

for some Ki > 0, i = 1, 2. Note, that we really have to define ς by using
the asymptotic equality and not the (asymptotic) order ord6. To overcome
the problem of different potential barrier heights V 1

bar < V 2
bar, we basically

have two possibilities each of which means to accept a somehow unaestethic
modification: Firstly, we accept that ς will additionally depend on the at-
tractor basins of the process, that is ς = ς(ε, i) with i ∈ S = {1, 2}. This
allows us to obtain T ε

1→2 = ord(1) as well as T ε
2→1 = ord(1). If we want

to avoid the additional dependence of ς on the potential wells i = {1, 2},
we have to elect (2.26) or (2.27), such that we cannot comply with both
requirements. According to (1 + δ)V 1

bar = V 2
bar for some δ > 0, we then

get T ε
1→2 = ord(1) ⇒ T ε

2→1 = ord(ε−δ). Vice versa, for T ε
2→1 = ord(1) we

obtain T ε
1→2 = ord(εδ). However, as we want to freeze both transition times,

it is natural to use (2.26) instead of (2.27). Only in this case we obtain
λε1 = ord(1) for the most dominant eigenvalue λε1 < 0 of the corresponding
generator, because we asymptotically have

λε1 ' − 1

µ(B2)T ε
1→2

.

Consequently, we suggest to freeze the transitions from the shallow to the
deep well on a time scale t ∼ 1 to guarantee that the second eigenvalue λε1
asymptotically is part of the dominant spectrum.

2.2.3 Full Dynamics Approach

Let us now return to the full dynamics description according to (2.1)&(2.2).
The previous results allow us to reduce the essential dynamics of the fast
diffusion (2.2) in a double-well potential to a two-state Markov chain that
carries information about the inter-well transitions, whereas the intra-well
small fluctuations in the potential minima are approximated by an OU pro-
cess, respectively. The approach is justified for vanishing noise intensity

6For example, if we had

ς(ε) = k
“ 2V 1

bar

ln(K/ε)

”1/2

=⇒ ς(ε) = ord

„

“ 2V 1
bar

ln(K/ε)

”1/2
«

.

However, for 0 < k 6= 1 this implies

T ε
1→2 = ord(ε/εk) 6= ord(1).
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ς = ς(ε) → 0 as ε → 0. The final step is to incorporate the slow variable
dynamics (2.1) into the procedure. To this end, the only task is to adapt
the notation to the full dynamics situation where the fast process necessar-
ily depends on x such that the quantities (as exit times/rates, metastable
sets) from the last sections have to be indexed with the fixed variable x,
respectively.

Recapitulating: The system under consideration is the Smoluchowski
equation in a slow variable, x, and a fast one, y:

ẋε = −DxV (x, y) + σẆ1 (2.28)

ẏε = −1

ε
DyV (x, y) +

ς(ε)√
ε
Ẇ2, (2.29)

for a given potential V : Rm+1 → R+ satisfying Assumption 2.2.1 and
ς(ε) → 0 as ε → 0. Thus, the full dynamics state space can be basically
decomposed into two metastable subsets B(1)∪B(2), where the metastability
originates from the fast diffusion process due to the double-well structure

of V (x, ·). In this direction B
(i)
x denotes the restriction of B(i) to the fibre

Φ(x) = {(x, y) | y ∈ R}, such that B
(1)
x = {(x, y) | y < 0} and B(2) =

{(x, y) | y > 0} where the boundary is given by the saddle point y0 = 0.
Then, the full dynamics process (xε, yε) can be decomposed into two almost
irreducible subprocesses, such that the rare changes from one subprocess to
the other are induced by the y dynamics. In this case (when the transitions
do not happen along the x direction), we can reduce the transition process
to a continuous-time two-state Markov chain I(t, x) ∈ S = {1, 2} that is
generated by the rate matrix Qx = (qεij(x))ij∈S depending on the position of

the slow variable7. The entries of Qx are specified explicitly by the inverse
of the asymptotic inter-well mean transition times:

qε11(x) = −qε12(x), qε22(x) = −qε21(x), (2.30)

qε12(x) =
1

T ε
1→2(x)

=
1

ε

1

T1→2(x)
' 1

ε

√
ω(1)(x)ω0(x)

2π
exp(− 2

ς2
V

(1)
bar (x)),

qε21(x) =
1

T ε
2→1(x)

=
1

ε

1

T2→1(x)
' 1

ε

√
ω(2)(x)ω0(x)

2π
exp(− 2

ς2
V

(2)
bar (x)).

Note that the transition rate from 2 → 1 is asymptotically equally well
expressed as

qε21(x) ' qε12(x)
µx(B

(1)
x )

µx(B
(2)
x )

,

7We desist from indexing Qx with ε, for the averaging procedure in the next section is
performed without considering the ε-dependence of Q = Qx.
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with µ
(i)
x given in (2.11). For decreasing smallness parameter ε, the dynam-

ics (2.28)&(2.29) are well approximated by

ẋε = −DxV (x, yOU) + σẆ1 (2.31)

ẏεOU = −1

ε
ω(I(t,x))(x)

(
yOU −m(I(t,x))(x)

)
+
ς(ε)√
ε
Ẇ2, (2.32)

with I(t, x) ∈ S = {1, 2} denoting the x-dependent Markov chain model
which is described by the transition rate matrix Qx.

Coupling Noise Intensity to Potential Energy Barrier

In the last paragraph of Section 2.2.2 we pointed out how to couple the diffu-
sion term ς(ε) to ε such that metastability in the fast dynamics is preserved
for decreasing ε and fixed slow variable x. As an indicator for metastability
we use the second eigenvalue λε1 = λε1(x) of the corresponding generator for
fixed x. Equivalently we can consider the x-dependent transition times from
the shallow to the deep well of the potential V (x, ·). Thus, to freeze these
transition times for every x it is convenient to set

ς = ς(ε, x) =

(
2min{V (i)

bar(x) | i = 1, 2}
ln(K/ε)

)1/2

, K > 0, (2.33)

with V
(1)
bar (x) denoting the potential barrier in the left well, V

(2)
bar (x) denoting

the barrier in the right well.

Remark 2.2.4 The principal physical feature of functioning of biomolecules
is that they operate at ambient temperature and solvent condition, and most
biomolecular processes can only be understood in a thermodynamical context.
Therefore, most experiments on biomolecular systems are performed under
the equilibrium conditions of constant temperature T , particle number, and
volume. For the Smoluchowski system (2.28)&(2.29) this means to enforce
σ = ς (for fixed ε), such that experiments can be arranged with inverse tem-
perature β = −2/ς2. However, if the noise intensity ς depends on the slow
variable x by means of (2.33), it is hardly possible to interpret the model sys-
tem in the context of equilibrium ensembles. Therefore, the suggestion (2.33)
is not satisfactory as its application removes the system under consideration
from the context of mathematical modeling of biological processes. We will
show in Section 2.2.5 how to avoid coupling of the diffusion ς to x and still
obtain large time conformational changes in the asymptotic limit ε→ 0.

2.2.4 From Dynamics With OU Processes to OU-Averaged
Dynamics

By coupling the diffusion term ς in the fast dynamics (2.29) to the parameter
ε under (2.33), we obtain that the original dynamics exhibit three timescales:
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the fast scale of motion in y, the slow scale of motion in x, and the scale
of rare transitions between the metastable sets in y. In this case the stan-
dard averaging scheme will fail if we apply it to the original dynamics given
by (2.28)&(2.29). Insensitivity of the averaging procedure with respect to
the slow mixing between the metastable fast dynamics then can lead to an
underestimation of the metastable transitions of the slow dynamics. How-
ever, application of the averaging method to the system with OU processes
will not mix up the fast scale effects that are represented by the reducing
two-state Markov chain on the skeleton space S = {1, 2} for the inter-well
transitions. We will now show that multiscale asymptotics wrt. the small-
ness parameter ε leads to an averaged model which describes the effective
motion of the slow DOF statistically correct. As the method is applied to
ensemble instead of single dynamics we have to set up before the necessary
requirements concerning the evolution of probability densities.

Let us extend the fast-slow system with two OU processes to a finite
number of OU processes. Thus, we consider for x ∈ Rm, y ∈ R the following
SDE:

ẋε(t) = −DxV (x, yOU) + σẆ1, (2.34)

ẏεOU(t) = −1

ε
ω(I(t,x))(x) ·

(
yOU −m(I(t,x))(x)

)
+
ς(x)√
ε
Ẇ2, (2.35)

where I(t, x) is a right-continuous Markov chain on a probability space tak-
ing values in a finite state space S = {1, 2, ..., N} and ω(i)(x) takes values in
R+ for all i ∈ S. The noise intensity of the fast diffusion may depend on x,
but is assumed to be strictly positive, that is ς(x) ≥ c > 0. To simplify no-
tation we perform the asymptotic procedure without a possible dependence
of ς on the Markov chain I(t, x); a generalization in this direction had no
effect on the computation. The generator Qx = (qij(x))N×N of the switch-
ing chain I(t, x) depends on the slow variable x and contains the transition
rates qij = qij(x) > 0 from i to j if i 6= j while

qii(x) = −
∑

i6=j

qij(x). (2.36)

For fixed x ∈ Rm and i ∈ S the diffusion dynamics (2.35) is known as OU

process and consequently ergodic. The (unique) stationary density µ
OU(i)
x is

given by

µOU(i)
x (y) =

1

ς(x)

√
ω(i)(x)

π
exp

(
− ω(i)(x)

(
y −m(i)(x)

)2

ς(x)2

)
, (2.37)

which is a Gaussian with mean m(i)(x) and variance ς(x)2/(2ω(i)(x)), and
thus independent of ε.

The evolution of probability densities pε ∈ L1(Rm+1 × S) under the
dynamics given by (2.34)&(2.35) is described by the forward Fokker-Planck
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equation. Note that in contrast to (1.3) we are now working in unweighted
function spaces8, that is, the density pε gives the physical probability to
find the system in state (x, y) at time t, whereas ρε in (1.3) denotes the
density normalized relative to the invariant density µ. However, the full
dynamics (2.34)&(2.35) in general will not admit an invariant density, such
that we have to perform the procedure by means of the probability densities
in L1(Rm+1×S). For systems that admit a unique invariant density µ, a nice
description of the equivalent pictures is given in [19, Sections 1 and 2]. For
later use it may be helpful to slightly change notation for the densities pε:
The agreement pε(i)(t, x, y) := pε(t, x, y, i) enables us to represent pε as an N -

dimensional vector according to pε = (pε(1), ..., p
ε
(N)) with pε(i) ∈ L1(Rm+1).

Now, the Fokker-Planck equation is regarded on some suitable subspace of
L1(Rm+1 × S), and reads9

∂tp
ε = Aεpε

Aε =
1

ε
Ax + Ay + QT (2.38)

Ax =





A(1)
x 0 0 0

0 A(2)
x 0 0

0 0
. . . 0

0 0 0 A(N)
x




, Ay =





A(1)
y 0 0 0

0 A(2)
y 0 0

0 0
. . . 0

0 0 0 A(N)
y





where A(i)
x and A(i)

y are given for f ∈ L1(Rm+1) by

A(i)
x f(x, y) =

ς(x)2

2
∆yf(x, y) + Dy

(
ω(i)(x)

(
y −m(i)(x)

)
· f(x, y)

)

A(i)
y f(x, y) =

σ2

2
∆xf + Dx

(
DxV (x, y) · f(x, y)

)
.

According to Remark 2.2.3, we actually have to use QT in (2.38), for Q
is considered as the infinitesimal generator corresponding to the backward
Chapman-Kolmogorov equation. Consequently, the probability to be in
state (x, y) is given by

〈pε(t, x, y),1〉S =
∑

i∈S

pε(i)(t, x, y),

〈·, ·〉S denoting the Euclidean inner product in RN .
Our aim is to average with respect to the fast variable y and obtain an

averaged equation for the slow variable x alone. To this end, we will use

8Therefore, we prefer to change the notation for the functions as well as for the gener-
ators.

9We could also perform the procedure in L2(Rm+1 × S). For the Fokker-Planck equa-
tion (1.3) we prefer the weighted Hilbert space L2(µ) ⊂ L1(µ) instead of L1(µ), as this
renders the generator self-adjoint.
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multiscale analysis and give an idea of the proof in Appendix B which is
based on a theorem of Kurtz.

Projection Operator

We would like to derive an equation for the distribution function in x:

∫
〈pε(t, x, y),1〉S dy =

∑

i∈S

∫
pε(i)(t, x, y) dy,

which would be valid in the limit where ε becomes very small. To this end, we
introduce the vector pε(t, x) = (pε(1), ..., p

ε
(N))

T with densities pε(i) ∈ L1(Rm)
defined by

pε(i)(t, x) =

∫
pε(i)(t, x, y) dy.

It is expected that an approximate solution of the full dynamics would be

obtained by multiplying each pε(i)(t, x) by the stationary distribution µ
OU(i)
x

of the SDE (2.35) for fixed I(t, x) = i. We formalize this by defining a projec-
tion operator Π= diag(Π(1), ...,Π(N)) acting on functions f= (f1, ..., fN )T ∈
L1(Rm+1 × S) by

(Πf)(x, y) = diag(µOU(1)
x , ..., µOU(N)

x )

∫
f(x, y) dy.

It is obvious that Π projects any function into the subspace of all functions
which can be written in the form

f = (f1, ..., fN )T , fi(x, y) = f i(x) · µOU(i)
x (y), (2.39)

where f i is an arbitrary function of L1(Rm), thus f= (f1, ..., fN )T ∈ L1(Rm×
S). In the following we study the case where the initial condition pε(t =
0, x, y) can be expressed by

pε(t = 0, x, y) = (Πpε(t = 0))(x, y).

However, functions f of the form (2.39) are all solutions of

Axf = 0,

that is, the space into which Π projects is the kernel or nullspace of Ax

expressed by AxΠ = 0. Due to the properties of A(i)
x considered as an

operator acting on functions g in y, that is g = g(y) ∈ L1(R), we furthermore
have:

ΠAx = 0 = AxΠ. (2.40)
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This is easily seen by introducing the formal adjoint T (i)
x of A(i)

x , i.e., a
differential operator such that for all u ∈ L1(R), v ∈ L∞ (or u, v ∈ L2(R))
we have

〈A(i)
x u, v〉L2 = 〈u,T (i)

x v〉L2 , 〈u, v〉L2 :=

∫
u(y) · v(y) dy.

If we consider Π(i) –for fixed x– as an operator acting on functions in y, we
can rewrite it by

Π(i)u = 〈u,1〉L2 · µOU(i)
x .

Together with the well-known fact that T (i)
x 1 = 0 (see, e.g., [19, 42]) we

finally get the desired result (2.40).

Multiscale Analysis

We now make the following ansatz for the solution of the Fokker-Planck
equation with the initial conditions described above:

pε = p0 + ε p1 + ε2 p2 + ...

This ansatz is inserted into the Fokker-Planck equation (2.38) and then, by
comparison of coefficients of different powers of ε we get:

ε−1 : Ax p
0 = 0 (2.41)

ε0 : Ax p
1 + (Ay + QT ) p0 = ∂tp

0 (2.42)

ε1 : Ax p
2 + (Ay + QT ) p1 = ∂tp

1 (2.43)

1. step: (2.41) immediately yields that p0 ∈ N (Ax), i.e.,

Πp0 = p0, equivalently (2.44)

p0(t, x, y) = diag(µOU(1)
x , ..., µOU(N)

x ) · p0(t, x),

for a function p0 ∈ L1(Rm × S) depending only on x.

2. step: Let Π act on (2.42) and use (2.40). This time we get:

Π(Ay + QT )Πp0 = ∂tΠp
0. (2.45)

By using (2.44) simple calculations reveal for p0 = (p0
(1), ..., p

0
(N))

T :

∂tp
0 = (A + QT ) p0, (2.46)

with

A =





A(1)
0 0 0

0 A(2)
0 0

0 0
. . . 0

0 0 0 A(N)




,
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A(i)
=

σ2

2
∆x + Dx

(∫
DxV (x, y)µOU(i)

x (y) dy ·
)
,

A acting on L1(Rm×S). Thus p0 is determined by a Fokker-Planck equation,
and its solution gives us pε up to error O(ε). The associated SDE is given
by

ẋ0 = −
∫
DxV (x, y) · µOU(I(t,x))

x (y) dy + σẆ1, (2.47)

where I(t, x) ∈ S controls the switches between the different OU processes
due to the rate matrix Q = Qx. The SDE (2.47) describes the limit dynamics
of (2.34)&(2.35) in the sense that its solution satisfies xε → x0 as ε→ 0 either
pathwise [15], or in the distributional sense [25, 29]. We give a formal proof
of the distributional convergence in Appendix B by verifying the conditions
in [25].

2.2.5 Transition Times Considered in Full State Space

In this section we come back to the problem addressed in Remark 2.2.4. To
justify the approximation of the fast dynamics within each of the basins of
the double-well potential by OU processes, the noise intensity ς has to be
chosen very small. Therefore, we propose to relate ς to ε such that ς(ε) → 0
as ε→ 0. Simultaneously we want to attain the fast scale effects to happen
on time scale ord(1) or even larger resulting in the instruction (2.33).

A simple consideration may allow us to avoid coupling ς to the slow
variable dynamics x: Depending on the noise intensity σ in the slow variable
dynamics (2.28), the x trajectory will stay with overwhelming probability in
a bounded domain D(σ) of its state space10; if we choose V small

bar according
to the rule

V small
bar = min{V (i)

bar(x) |x ∈ D(σ), i = 1, 2},

and set

ς(ε) =

(
2V small

bar

ln(K/ε)

)1/2

, K > 0, (2.48)

we expect the metastable transitions to happen on a time scale t & 1. If the
potential energy barriers outside the domain D(σ) are smaller than V small

bar ,
the particle will for very small ε instantly jump over the barrier once it
has reached the complement of D(σ). Thus, the time of the metastable

10Note that σ is not related to ς, and we do not demand for small values of σ. However,
it should be clear that a choice of V small

bar should depend on the actual size of σ. This
becomes more clear by considering the right picture of Figure 2.5. Therefore, we write
D = D(σ) for the bounded region.
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transitions will be somehow connected to the expected exit time of the x
dynamics from D(σ).

The above idea can be mathematically justified by computing the ex-
pected transition times between the metastable decomposition B(1) ∪ B(2)

in the entire (x, y) state space, instead of considering the transition times
on every fibre of the fast state space for fixed x. Subsequently, we restrict
without loss of generality to the (metastable) expected transition time from
B(1) to B(2) denoted T ε

1→2. If we choose ς according to the rule (2.48), the

computation of T ε
1→2 will depend on the course of V

(1)
bar (x) as a function of

x. To illustrate the problem, we show in Figure 2.5 two possible situations
which are exemplary for the different approaches.

−4 −2 0 2 4
0

2

4

6

8

10

x

 V
ba

r
(1

)

−4 −2 0 2 4
0

2

4

6

8

10

x

 V
ba

r
(1

)

Figure 2.5: Example for the function V
(1)
bar (x). The dashed line indicates a point b that

can be used to realize (2.48) by defining V small
bar = V

(1)
bar (b).

For V
(1)
bar as illustrated at the left-hand side, we choose V small

bar = V
(1)
bar (x0)

with x0 = 0 and, according to (2.30), observe the following in the asymptotic
limit ε→ 0:

T ε
1→2(x) = ord(ε−δx), x 6= x0, V

(1)
bar (x) = (1 + δx)V

(1)
bar (x0), δx > 0,

T ε
1→2(x) = ord(1), x = x0.

In this situation, the metastable transition time T ε
1→2 can asymptotically be

derived by averaging the x-dependent transition rates11 against the invariant
probability distribution of the x dynamics restricted to the set B(1). The
metastable transition times are then derived by taking the inverse of the
averaged transition rates, that is, in the asymptotic limit ε → 0 we obtain
T ε

1→2 according to

T ε
1→2 ' 1

Eµ̄(1) [1/T ε
1→2(x)]

,

11Note, that we actually have to average the transition rates and not the transition
times.
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where the quantity Eµ̄(1) [1/T ε
1→2(x)] is given by

Eµ̄(1) [1/T ε
1→2(x)] =

∫
1/T ε

1→2(x) µ̄
(1)(x) dx, (2.49)

µ̄(1)(x) =
1

Z(1)
exp

(
− 2

σ2

(
− ς2

2
ln

∫

B
(1)
x

exp(− 2

ς2
V (x, y))dy

))
. (2.50)

Here, Z(1) denotes the normalization constant and depends on ς as well. The
derivation will become apparent later (in Chapter 3), when we justify the
approach by means of multiscale analysis for distinguished time scales. Then
the metastable transitions are assumed to happen on the longest time scale,
which requires the averaging of the metastable transition rates (represented
by the second eigenvalue of the corresponding generator) for fixed x wrt. the
invariant density of the conditionally averaged potentials (cf. Section 3.3.3).

The situation shown at the right-hand side of Fig. 2.5 is somewhat dif-

ferent. Here, V
(1)
bar (x) → 0 as x→ ∞, and there is no local minimum V small

bar

such that V small
bar ≤ V

(1)
bar (x) for all x. Therefore, let us set V small

bar = V
(1)
bar (b)

as indicated by the dashed line in the picture and use (2.48). Then we
asymptotically have

T ε
1→2(x) = ord(ε−δx), x < b, V

(1)
bar (x) = (1 + δx)V

(1)
bar (b), δx > 0,

T ε
1→2(x) = ord(1), x = x0,

T ε
1→2(x) = ord(ε+δx), x > b, V

(1)
bar (x) = (1 − δx)V

(1)
bar (b), δx > 0,

which implies T ε
1→2(x) → 0 for x > b. Here, the averaged transition rate

according to (2.49) cannot be used to obtain T ε
1→2. Its application would

lead to a capital underestimation of the effective transition times.

Averaged Exit Rates in the Limit of Vanishing Noise ς

To tackle the problem of evaluating the averaged transition rates, we show
how to treat (2.49) by using Laplace’s estimation in the limit of small noise
ς. First of all, we consider the averaged density µ̄(1)(x): Using standard
Laplacian asymptotics, we get for ς small

∫

B
(1)
x

exp
(
− 2

ς2
V (x, y)

)
dy + ς

√
π

ω(1)(x)
exp

(
− 2

ς2
V (x,m(i)(x))

)
,

and, exploiting (ς2/2) ln(ς
√
π/ω(1)(x)) → 0 as ς → 0, we end up with the

asymptotic limit (from (2.50))

µ̄(1)(x)
.
=

1

Z(1)
exp

(
− 2

σ2
V (x,m(1)(x))

)
.
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Therefore, the evaluation of (2.49) asymptotically reduces to

Eµ̄(1) [1/T ε
1→2(x)] ' (2.51)

1

ε

1

Z(1)

∫ √
ω(1)(x)ω0(x)

2π
exp(− 2

ς2
V

(1)
bar (x)) exp(− 2

σ2
V (x,m(1)(x))) dx.

With it we obtain for ε = ε∗ fixed 1/Eµ̄(1) [1/T ε∗
1→2] → ∞ in the asymptotic

limit ς → 0, which in turn implies T ε∗
1→2(x) → ∞ for almost every x. This

renders the metastable transitions to happen on a time scale t � 1, which
allows us to use the averaged transition rates instead for ς small.

Approach in the Limit ε → 0

In contrast, the situation of vanishing ε requires to carefully inspect the

rate at which ς goes to zero together with the evolution of the barrier V
(1)
bar

as a function of x. In so doing, we basically distinguish between the two
situations reflected in Fig. 2.5:

(i.) V
(1)
bar (x) attains its global minimum (within the accessible state space

of x) in a region where µ̄(1) is significantly larger than zero, that is,

V
(1)
bar (x0) = min{V (1)

bar (x) : x ∈ R} and µ̄(1)(x0) � 0. If we set V small
bar =

V
(1)
bar (x0) and couple ς to ε according to (2.48), we obtain

T ε
1→2 ' 1/Eµ̄(1) [1/T ε

1→2(x)] = ord(
√

ln(1/ε)).

(ii.) The complex situation includes the case where V
(1)
bar (x) is strictly mono-

tonically decreasing with V
(1)
bar (x) → 0 as x → ∞. Now we have the

following: No matter how V small
bar in (2.48) is chosen, we obtain in any

case T ε
1→2 6= 1/Eµ̄(1) [1/T ε

1→2(x)] → 0. In this case we will have to
incorporate the slow variable dynamics and use expected exit times
(from a subset that will depend on the choice of V small

bar ) instead to
derive the metastable transition times.

Situation 1: V
(1)
bar has a local minimum

Denote the minimum of V
(1)
bar by x0, i.e., V

(1)
bar (x0) = min{V (1)

bar (x) : x ∈ R},
and assume in addition V

(1)
bar tends to infinity as |x| → ∞. Let µ̄(1)(x0) be

significantly larger than zero. By using Laplace’s method, we get from (2.51)
for small ς

Eµ̄(1) [1/T ε
1→2(x)] '

√
ω(1)(x0)ω0(x0)

4π ∂2
xV

(1)
bar (x0)

1

Z(1)
exp(− 2

σ2
V (x0,m

(1)(x0)))
ς

ε
exp(− 2

ς2
V

(1)
bar (x0)),
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where we have to assume that the second derivative of V
(1)
bar (x) wrt. x is

non-null for x = x0. By setting V small
bar = V

(1)
bar (x0) and coupling of ς to ε

according to (2.48) we obtain 1/Eµ̄(1) [1/T ε
1→2(x)] = ord(1/ς) → ∞. In this

situation it is correct to set T ε
1→2 ' 1/Eµ̄(1) [1/T ε

1→2(x)]. The key point is
that following Laplace we asymptotically have

T ε
1→2 '

(∫

D(σ)
1/T ε

i→j(x) µ̄
(i)(x) dx

)−1

= ord(
√

ln(1/ε)),

ς(ε) =

(
2V

(1)
bar (x0)

ln(K/ε)

)1/2

, K > 0,

for any connected region D(σ) with the only assumption that x0 is contained
in the interior of D(σ) and µ̄(1)(x0) is larger than zero.

To determine the asymptotics of the metastable transitions times from

B(2) to B(1), we assume for simplicity that V
(2)
bar satisfies the same proper-

ties as V
(1)
bar , that is, there is one global minimum in the accessible x state

space with V
(2)
bar → ∞ as |x| → ∞. Without loss of generality we suppose

min{V (2)
bar : x ∈ R} = (1 + δ)V

(1)
bar (x

0) for some δ > 0. Then

T ε
2→1 ' ord(ε−δ

√
ln(1/ε)),

ς(ε) =

(
2V

(1)
bar (x0)

ln(K/ε)

)1/2

, K > 0.

Situation 2: V
(1)
bar strictly monotonically decreasing to zero

For ease of presentation, we prefer to put the elaboration for this scenario
in Appendix C.

2.2.6 OU-Averaged Dynamics and Conditional Averaging

To complete the discussion and re-establish the reference to the conditionally
averaged system (1.21) we finally examine its closeness to the OU-averaged
dynamics (2.47).

We basically have to compare the drift terms in (1.21) and (2.47) as well
as the transition rate matrices. As outlined in Section 2.2.2, the transition
rate matrix Qx with entries given in (2.30) is (in the asymptotic limit ς → 0)
equally well expressed as

Qx ' |λ1(x)|
ε

(
−µx(B(2)

x ) µx(B
(2)
x )

µx(B
(1)
x ) −µx(B(1)

x )

)

,

with λ1(x) denoting the first eigenvalue6= 0 of the generator that corre-
sponds to equation (2.29) for fixed x and ε = 1. In this representation, the
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matrix seems to be equal to Qx as given in (1.18). However, there still is
an obscurity concerning the metastable decomposition. According to (2.5),
the metastable subsets that are used in (1.19) are given by the zero of the
eigenfunction u1(x, ·) corresponding to λ1(x). It should be clear that the
zero z must be somewhere between the two potential minima m(1)(x) and
m(2)(x), but it is not clear that it asymptotically (ς → 0) approaches the
saddle point y0(x). We come back to this problem below.

Let us assume for the moment that the zero z of u1 approximates the
saddle point in the limit ς → 0. We compare the drift terms in (1.21)
and (2.47), which varies for fixed x in the probability density that is used
to obtain the averaged force on the slow variable x. To this end, we apply
standard Laplacian asymptotics in the limit of vanishing noise ς → 0. This
provides us for i = 1, 2 with the precise estimates

∫
DxV (x, y)µOU(i)

x (y) dy + DxV (x,m(i)(x)),
∫
DxV (x, y)µ(i)

x (y) dy + DxV (x,m(i)(x)),

which nicely shows that for decreasing ς the solution process of (2.47) comes
arbitrarily close to the solution of the conditionally averaged system (1.21).
Note that the derivative DxV (x,m(i)(x)) is taken wrt. the first component
solely.

We shortly demonstrate that it is of considerable interest to have some
knowledge about the zero of the eigenfunction u1, as choosing an arbitrary
point between the potential minima may lead to fatal approximation errors
–not only for the transition rates but also for the drift term. To this end,
consider the double-well potential V (x, ·) (for fixed x) illustrated in Fig-
ure 2.6. We assume without loss of generality the shallow well to be at the
left side, that is, min{m(1)(x),m(2)(x)} = m(2)(x). Denote y∗ the uniquely

−1.5 −1 −0.5 0 0.5 1 1.5 2
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1

2

3

4
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6

y

Figure 2.6: Asymmetric double-well potential. Any decomposition defined by a point
z∗ that is situated between the dashed lines leads to asymptotically wrong results if the
decomposition is used for the conditionally averaged dynamics.

determined point y0(x) < y∗ < m(2) such that V (x, y∗) = V (x,m(1)(x)),
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and choose a point z∗ with y∗ < z∗ < m(2)(x). The following considerations

are based on the decomposition B̂
(1)
x ∪ B̂(2)

x defined by

B̂(1)
x = (−∞, z∗) B̂(2)

x = (z∗,∞).

We again apply Laplace’s method to obtain µx(B̂
(1)
x ) and µx(B̂

(2)
x ) in the

asymptotic limit ς → 0:

µx(B̂
(1)
x ) =

∫
bB
(1)
x
e
− 2

ς2
V (x,y)

dy
∫
e
− 2

ς2
V (x,y)

dy
+

2ςω(2)(x)

DyV (x, z∗)
e
− 2

ς2

(
V (x,z∗)−V (x,m(2)(x))

)
,

µx(B̂
(2)
x ) =

∫
bB
(2)
x
e
− 2

ς2
V (x,y)

dy
∫
e
− 2

ς2
V (x,y)

dy
+ 1,

and, consequently, comparison to the metastable subsets defined by the
saddle point, yields

µx(B
(1)
x ) � µx(B̂

(1)
x ), µx(B

(2)
x ) ' µx(B̂

(2)
x ).

Therefore, assuming z ≈ z∗ for the zero of u1 would result in asymptotically

larger transition rates |λε1(x)|µx(B̂
(1)
x ) (λε1 = λ1/ε) from the deep to the

shallow well in comparison to the rates as given in (2.30). For the drift
terms this would imply for fixed x

∫

bB
(2)
x

DxV (x, y)µx(y) dy + DxV (x,m(2)(x)),

∫

bB
(1)
x

DxV (x, y)µx(y) dy + DxV (x, z∗(x)),

which obviously is not asymptotically equal to the drift term in (2.47) for
i = 1.

Asymptotics of Second Eigenfunction

We now demonstrate that the zero z of the second eigenvector u1(x, ·) ap-
proximates the saddle point y0(x) in the asymptotic limit ς → 0.

For the derivation of u1(x, ·) we follow the line of Pavlyukevich in [36].
He suggested to look for the solution of Lxu1(x, y) = λ1(x)u1(x, y) in form
of a power series in the parameter λ1(x), formally

u1(x, y) = u
(0)
1 (x, y) + λ1(x)u

(1)
1 (x, y) + (λ1(x))

2u
(2)
1 (x, y) + .... (2.52)

Substituting (2.52) into the eigenvalue equation induces ordinary differential

equations for u
(k)
1 . More precisely, u

(0)
1 satisfies the homogeneous equation

σ2

2
∆yu

(0)
1 (x, y) − DyV (x, ·)Dyu

(0)
1 (x, y) = 0, x ∈ Rm, y ∈ R, (2.53)
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whereas for k ≥ 1

σ2

2
∆yu

(k)
1 (x, y) − DyV (x, ·)Dyu

(k)
1 (x, y) = u

(k−1)
1 (x, y), x ∈ Rm, y ∈ R.

The results of the above equations are explicitly computed in [36]. For the
zeroth order approximation we obtain

u
(0)
1 (x, ·) = h0(x, ·)1(−∞,m(1)(x)](y)

+ f0(x, ·)1[m(1)(x),m(2)(x)](y) + g0(x, ·)1[m(2)(x),∞)(y), (2.54)

where the functions h0, f0 and g0 are defined by

h0(x, y) = a, x ∈ Rm, y ∈ (−∞,m(1)(x)],

f0(x, y) = a + (b− a)

∫ y
m(1)(x)

e
2
ς2
V (x,ỹ)

dỹ

∫m(2)(x)

m(1)(x)
e

2
ς2
V (x,ỹ)

dỹ
,

x ∈ Rm, y ∈ [m(1)(x),m(2)(x)],

g0(x, y) = b, x ∈ Rm, y ∈ [m(2)(x),∞),

where a, b ∈ R have to be determined in the small noise limit ς → 0 such
that 〈u1,1〉µx = 0 and u1(x, ·) ∈ L2(µx). To simplify notation, we desist
from normalizing the function u1(x, ·), simply put a = 1 and look for b.
Pavlyukevich presents in [36, Chapter 5.4] the constant b as a function of
ς according to

b = −ω
(2)(x)

ω(1)(x)
exp

(
− 2

ς2
(
V (x,m(1)) − V (x,m(2)(x))

))
(1 + O(ς2)).

Note, that V (x,m(1)(x))−V (x,m(2)(x)) = V
(2)
bar (x)−V

(1)
bar (x). Now, we easily

observe pointwise convergence for every x and y

lim
ς→0

f0(x, y) = a > 0, y ∈ (−∞, y0(x)),

lim
ς→0

f0(x, y) = b < 0, y ∈ (y0(x),∞),

and, together with the result (from [36])

max
y∈R

|u1(x, ·) − u
(0)
1 (x, ·)| .

= 0

from [36], we conclude that the zero z = z(x) of the eigenfunction u1(x, ·) is
asymptotically given by the saddle point, that is, z(x) = y0(x) in the limit
ς → 0.

Note that u
(0)
1 (x, ·) is not contained in the domain of Lx, cf. Remark 3.5.3.
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2.3 Numerical Experiments

In this section we illustrate the results from the preceding section by nu-
merical experiments with an appropriate test example.

2.3.1 Design of Appropriate Test System

We consider the Smoluchowski equation

ẋε = −DxV (x, y) + σ Ẇ1 (2.55)

ẏε = −1

ε
DyV (x, y) +

ς√
ε
Ẇ2, (2.56)

where the potential for the numerical analysis is given by:

V (x, y) = 2.5 · (y2 − 1)2 − 0.8x y3 + 0.005x4 + 1.6, (2.57)

which clearly satisfies Assumption 2.2.1. The potential energy surface is
shown in Figure 2.7. At the left hand side of Figure 2.8 we illustrate the
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Figure 2.7: Full potential V .

double-well potentials V (x, ·) for different values of x. The saddle point
always is y0(x) = 0 and takes the value V (x, 0) = 4.1+0.005x4 , the potential
minima are

m(i)(x) = 0.12x + (−1)i
√

0.0576x2 + 4, i = 1, 2.

The right side of Figure 2.8 shows the potential barriers V
(1)
bar (x) (the left

barrier) and V
(2)
bar (x) (the right barrier) as functions of x.

In Fig. 2.9 we show a typical realization of the dynamics (2.55)&(2.56)
with σ = 1.0, ς = 0.75 and ε = 0.0064. For the generation of the trajectories
we use the Euler-Maruyama scheme with internal time step dt = ε/100. We
clearly observe that jumps between the metastable decomposition B(1) =
{(x, y) | y < 0} and B(2) = {(x, y) | y > 0} induce metastable transitions
in the x dynamics between x < 0 and x > 0. Comparison with the averaged



2.3 Numerical Experiments 49

−2 0 2
0

5

10

y

x=
−

3.
00

−2 0 2
0

5

10

y
x=

−
2.

00
−2 0 2
0

5

10

y

x=
−

1.
00

−2 0 2
0

5

10

y

x=
0.

50

−2 0 2
0

5

10

y

x=
0.

00

−2 0 2
0

5

10

y

x=
0.

50

−2 0 2
0

5

10

y

x=
1.

00

−2 0 2
0

5

10

y

x=
2.

00

−2 0 2
0

5

10

y

x=
3.

00

−4 −2 0 2 4
0

2

4

6

8

10

x

 p
o

te
n

ti
a

l 
b

a
rr

ie
r

V
bar
(1)

V
bar
(2)

Figure 2.8: Left: Potentials V (x, ·) in y for different values of x. Right: potential barriers

V
(1)
bar (x) (full line) and V

(2)
bar (x) (dashed line).

0 500 1000 1500 2000
−4

−3

−2

−1

0

1

2

3

4

t

xε (t
) 

w
ith

 ε
=

0.
00

64
, ς

=
0.

75
, σ

=
1

0 500 1000 1500 2000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

yε (t
) 

w
ith

 ε
=

0.
00

64
, ς

=
0.

75
, σ

=
1

Figure 2.9: Typical realization of the original dynamics for σ = 1.0, ς = 0.75 and ε =
0.0064. Left: trajectories x cooridnate; right: trajectories y coordinate.

trajectory in Fig. 2.10 reveals inappropriateness of the standard averaging
procedure (1.8). In Fig. 2.10 right we illustrate the averaged potential V
that is associated with the realization at the left:

V (ς, x) = − ς
2

2
ln

∫
exp

(
− 2

ς2
V (x, y)

)
dy.

Using standard Laplace asymptotics provides us with the potential in the
limit ς → 0 of vanishing fast diffusion

V (x) = min{V
(
x,m(1)(x)

)
, V
(
x,m(2)(x)

)
}.

In Fig. 2.10 we additionally plotted V (x), which graphically is completely
identical to V (ς = 0.75, x).

Fig. 2.9 & 2.10 explicitly visualize the simply averaged dynamics to be in-
appropriate to describe the effective dynamical behaviour of xε(t) as ε→ 0.
For small ε diffusion in y is very fast compared to diffusion in x. How-
ever, the important (and only) barriers of the potential are barriers in y
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Figure 2.10: Left: Typical realization of the simply averaged dynamics (1.8) for σ =
1.0, ς = 0.75. Right: Fixman potential that corresponds to the trajectory at the left.

direction. Thus, for fixed ε, decreasing the noise intensity ς in the fast equa-
tion increases the metastability in y. Consequently, by choosing different
ς one can analyze the effect of increasing metastability on averaging. To
this end, it is convenient to use the x averaged values of the expected tran-
sition rates 1/T ε

i→j(x). As detailed in Section 2.2.5 this provides us in the

asymptotic limit ς → 0 with the expected transition times T ε
1→2 between the

metastable decomposition B(1)∪B(2) in the (x, y) state space. We generated
N = 2000 realizations of the original dynamics12 for ε = 0.0064, σ = 1.0
and ς = 0.75, 0.7, 0.65, 0.60, and waited for the first exit times from B(1).
Fig. 2.11 at the top illustrates the location of the trajectories x-coordinate
right before the transitions occurred; the pictures at the bottom display the
function under the integral in (2.51) (normalized to 1) and nicely illustrate
that the major contribution to the integral in (2.51) will move rightwards as

ς → 0, for V
(1)
bar (x) → 0 as x → ∞. Comparison of the upper and the lower

pictures reveals almost coincidence between the contribution to the integral
in (2.51) and the actual location in the x space of the jumps from B(1) to
B(2). Finally, we compare in Table 2.4 the averaged values of the transition
times (they are calculated by means of 2.49) to the numerically obtained
values by means of the N = 2000 realizations. We observe that ς has to be
chosen small to get closeness.

Discretization

The pathwise simulation of the dynamics consisting of the two state Markov
jump process I(t, x) is developed by using a specific stochastic particle
method ( [18]). To this end, recall the infinitesimal generator Qε

x = (qεij(x))i,j=1,2

that allows to calculate the hopping probabilities between the states S =

12Actually, we have not used the original dynamics (2.55)&(2.56), for it is not possible
to compute the realizations within a reasonable period of time. Instead we used the
conditionally averaged system (1.21) with I(t, x) = 1 and computed the transition time
to I(t, x) = 2. According to the considerations in Subsection 2.3.2 this yields perfect
coincidence with the original dynamics’ transitions from B(1) to B(2).
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Figure 2.11: Top: Transition location (from B(1) to B(2)) of the trajectories x-coordinate
computed by means of N = 2000 realizations of the conditionally averaged dynamics for
σ = 1.0, ε = 0.0064 fixed and ς = 0.75, 0.7, 0.65, 0.6. Bottom: Function under the integral
in (2.51) normalized to 1 by using the same parameters as above.

Mean transition times ς = 0.75 ς = 0.7 ς = 0.65 ς = 0.60

mean value from 2000 real. 213 462 1240 4285

averaged value T ε
1→2 119 323 1037 4157

Table 2.4: Expectation values of transition times from B(1) to B(2) corresponding to
Fig. 2.11.

{1, 2}. The transition matrix P ετ (x) = (pεij(τ, x)) at time τ is then obtained
by

P ετ (x) = exp(τQε
x).

A straightforward calculation reveals

pε12(τ, x) =
qε12(x)

qε12(x) + qε21(x)
(1 − e−τ(q

ε
12(x)+qε

21(x))),

pε21(τ, x) =
qε21(x)

qε12(x) + qε21(x)
(1 − e−τ(q

ε
12(x)+qε

21(x))).

The entries of Qε
x are given in (2.30) by the inverse of the precise estimates of

the expected transition times over the potential energy barrier in y direction.
The stochastic particle method requires two steps. We shortly demon-

strate it for the OU-averaged dynamics (2.47).

Step 1: Transport. The first step consists of determining an updated
position x(t+ dt) by solving

ẋ = −
∫
DxV (x, y) · µOU(i)

x (y) dy + σẆ1,

over [0,dt] with initial point x(t).
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Step 2: Exchange. The second step models the exchange between the
states I(t, x) = 1 and I(t, x) = 2. Thus, if i = 1, we set i = 2 with hopping
probability p1→2 = pε12(dt, x(t + dt)) and remain at i = 1 with probability
1 − p1→2. Vice versa, if i = 2, we set i = 1 with hopping probability
p2→1 = pε21(dt, x(t + dt)) and remain at i = 2 with probability 1 − p2→1.
Return to step 1 by setting x(t) = x(t+ dt).

Parameter Choice

Subsequently, we choose the noise intensity in the slow equation to be σ = 1,
and the smallness parameter is set to ε = 0.0064. Trajectories are illustrated
with ς = 0.75, whereas comparison of exit times suggests to use different
values of ς.

Recalling the coupling of ς to ε according to (2.48), some words seem
to be necessary concerning the comparison of the full dynamics to the OU-
approximated ones: Without loss of generality we can choose ς arbitrary
without considering the coupling, for the experiments are performed for a
fixed value of ε. Therefore, for fixed ε = ε∗ and fixed ς = ς∗ we can always
find a constant K = K∗ (or a barrier V small

bar = V small∗
bar ) such that ς(ε∗) = ς∗

under (2.48). Even if we take (2.33) as the basis of our computation, we
can desist from the coupling rule, for the constant K then can be chosen
dependent of x, such that we still arrive at ς(ε∗, x) = ς∗. Actually, the
postulation of relating ς to ε only serves as a formal justification of the OU
approximation. For the numerical implementation only the size of ς by its
own is of importance, not its relation to ε.

The motivation to choose σ = 1.0 and not σ = ς can be inferred from
Fig. 2.11. In case of smaller values of σ, say σ = 0.75, the x-coordinate of
the trajectory will hardly reach the region where the jumps mostly happen.
Then we had to choose ς larger, which on its part would result in a worse
OU approximation13.

2.3.2 Comparison Between Original Dynamics and Dynam-
ics with Fast OU Processes

Here, we carry out numerical studies in order to compare the Smoluchowski
dynamics (2.28)&(2.29) with those governed by system (2.31)&(2.32) with
fast OU processes and transition chain I(t, x) that controls the switches
between the two OU processes.

Typical realizations of both the original dynamics and the OU approx-
imated dynamics (2.31)&(2.32) are shown in Figure 2.12. The trajecto-
ries have been generated using the Euler-Maryuana scheme with time step
dt = ε/100 for both systems. Apparently, the transition rates between B(1)

13For small σ it is not possible to numerically compute the expected exit times within
a reasonable period of time.
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Figure 2.12: Typical realization of the original dynamics (top) and the approximated
dynamics with fast OU processes (bottom). At the left we see the x, at the right the y
coordinate. The realizations have been computed for the same realization of the white
noise (in the slow and in the fast equation).

and B(2) coincide to some extend and the oscillating motion (around the po-
tential minima in y) inbetween the transitions seems to be well approximated
by using OU processes in the fast equation. We clearly observe that jumps
induce metastable transitions in the x dynamics between x < 0 and x > 0.
However, for the trajectories being in B(1) we observe the x-coordinate of
the original dynamics to spread considerably further rightwards than the x
trajectory of the approximated system (and for the trajectories in B(2) the
original dynamics’ x-coordinate spreads further leftwards).

The above consideration concerning the x trajectories’ behaviour sug-
gests that the original dynamics have noticeable smaller transition times
between B(1) and B(2), for the original dynamics more often reaches a do-
main where the potential barriers (in y direction) are small. This is con-
firmed by Table 2.5, where we computed the expected transition times from
B(1) to B(2) by means of N = 2000 realizations for different values of ς and
σ = 1.0, ε = 0.0064 fixed. We come back to this problem in the next section

dynamical model ς = 0.8 ς = 0.75

original dynamics 113 210

dynamics with OU process 136 265

Table 2.5: Exit times from the set B(1) for the original dynamics and the OU-approximated
system.
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where we include the averaged dynamics into our numerical considerations.
Actually, it will turn out that ς has to be chosen very small to get perfect
coincidence of both the original and the approximated (full) system.

2.3.3 Results Including Averaged Dynamics

We now demonstrate pre-eminence of the OU-averaged dynamics (2.47). To
complete the representation we include the conditionally averaged dynam-
ics (1.21).

In Figure 2.13 we compare realizations of the averaged to the full dy-
namics’ x-coordinate. Every trajectory has been computed with the same
realization of white noise Ẇ1, Ẇ2, such that the internal time step has been
set to dt = ε/100 even for the averaged dynamics. The Markov jump pro-
cess I(t, x) is realized by using one realization of random numbers for every
concerned system. Concerning the systems with OU processes (full and OU-
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Figure 2.13: Realizations of the original dynamics x coordinate (top, left), the x coordinate
of the full OU-approximated system (top, right), the OU-averaged (bottom, right), and
the conditionally averaged system (bottom, left).

averaged), we observe pathwise convergence of the x trajectories, whereas
comparison of the original dynamics with the conditionally averaged system
reveals distributional coincidence.

In order to present numbers instead of pictures we want to compute the
expectation values of the metastable transition times from x < 0 to x > 0 for
different values of ς. It is natural to expect that this is realized by computing
the first exit times from the set S+δ with S = {x ∈ R |x < 0}, where δ > 0
has to be large enough to guarantee that the process effectively reaches
some (small) region of attraction in the complement of S. But Fig. 2.11
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nicely shows that the x-coordinate of the original dynamics (respectively
the conditionally averaged dynamics) can spread far into the positive region
even when it is restricted to the metastable set S. Thus, we suggest to
define the stopping time as the first exit from B(1) instead, respectively the
first jump from I(t, x) = 1 to I(t, x) = 2. At least for ς ≤ 7.5 (compare
Fig. 2.12) this is equivalent to the metastable transitions from x < 0 to
x > 0. From N = 2000 realizations for ε = 0.0064 and σ = 1.0 we get

dynamical model ς = 0.8 ς = 0.75 ς = 0.65

original dynamics 113 210 −−
cond. averaged dyn. 105 213 1240

OU-approx.full dyn. 136 265 −−
OU-averaged dyn. 135 265 1537

Table 2.6: Comparison of exit times from the metastable set S = {x ∈ R |x < 0}. For
ς = 0.65, it was not possible to compute the exit times of the full dynamics’ motion within
a reasonable period of time.

a very good agreement between the OU-approximated dynamics and the
OU-averaged dynamics, and a good agreement between the original and the
conditionally averaged dynamics.

However, there still remains the problem of diversity between the OU-
averaged and the conditionally averaged dynamics. To overcome the prob-
lem, we illustrate in Fig. 2.14 the potentials that correspond to the respective
trajectories for ς = 0.75, 0.60, 0.3. For I(t, x) = i ∈ {1, 2} and ς fixed, the
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Figure 2.14: Comparison of conditionally averaged (full line) to OU-averaged potentials
(dashed line).

conditionally averaged potential V
(i)

(ς, x) and the OU-averaged potential

V
OU(i)

(ς, x) are defined implicitly by

DxV
OU(i)

(ς, x) =

∫
DxV (x, y)µOU(i)

x (y) dy,

DxV
(i)

(ς, x) =

∫
DxV (x, y)µ(i)

x (y) dy,



56 Replacing Fast Dynamics by Coupled OU Processes

and we easily show that

V
(i)

(ς, x) = − ς
2

2
ln

∫

B
(i)
x

exp
(
− 2

ς2
V (x, y)

)
dy.

Exploiting the estimation method of Laplace we obtain asymptotical identity
of both potentials:

lim
ς→0

V
(i)

(ς, x) = lim
ς→0

V
OU(i)

(ς, x) = V (x,m(i)(x)).

Fig. 2.14 reveals V
(i)

(ς, x) ≈ V
OU(i)

(ς, x) for ς ≤ 0.3, whereas they differ
visibly for ς ≥ 0.60 in that region where the jumps from i = 1 to i = 2
mostly happen. This perfectly explains the significant difference concerning
the transition times in Tables 2.5 & 2.6.


