
Chapter 2

Solution of the Schrödinger

equation for the nuclear motions:

methods and techniques

The time evolution of a quantum mechanical system in the absence of dissipation

(e.g. molecules or clusters in gas phase) is described by a Schrödinger equation in

the Born-Oppenheimer approximation 1

i
∂

∂t
Ψ(x1, ..., xn; t) = Ĥ(x1, ..., xn; t)Ψ(x1, ..., xn, t). (2.1)

The wave function Ψ, as well as the Hamilton operator Ĥ, are dependent on n

nuclear coordinates xi; i = 1, n and time. The Hamilton operator can be separated

into the molecular and interaction parts as follows

Ĥ(x1, ..., xn; t) = Ĥmol(x1, ..., xn) + Ĥint(x1, ..., xn; t). (2.2)

The molecular Hamiltonian Ĥmol consists of the kinetic and potential energy oper-

ators:

Ĥmol(x1, ..., xn) = T̂ + V̂(x1, ..., xn). (2.3)

1Throughout this chapter, the atomic units (~ = 1) will be used for the sake of simplicity.
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The kinetic energy operator T̂ in the simplest case, e.g. when xi are Cartesian

coordinates, is given by

T̂ = −
1

2m1

∂2

∂x2
1

−
1

2m2

∂2

∂x2
2

− ...−
1

2mn

∂2

∂x2
n

, (2.4)

and contains the mass-weighed sum of squares of quantum mechanical momenta

conjugate to each of the nuclear coordinates. Corresponding masses are designated

mi. This form of the kinetic energy operator is not restricted to Cartesian coor-

dinates; other coordinate systems such as normal coordinates (see Chapter 3) and

Jacobi coordinates [41–43] also have the form of the kinetic energy operator given

by equation (2.4). In many cases, however, the kinetic energy operator can have

a much more complicated structure, for example, if so-called kinetic couplings –

terms in the kinetic energy operator containing products of momenta operators cor-

responding to different coordinates – are present. Examples of such Hamiltonians

will be presented in Chapters 4 and 5.

The potential energy operator V̂(x1, ..., xn) in equation (2.3) is usually obtained

from ab initio quantum chemistry calculations, in the form of potential energy sur-

face (PES), represented in the coordinates, in which the dynamics calculations are

to be performed.

The interaction Hamiltonian Ĥint is treated in the semiclassical dipole interaction

approximation, which is sufficient for the majority of systems of interest to the

femtosecond chemistry. It is defined by the formula

Ĥint = −~µ(x1, ..., xn) · ~E(t), (2.5)

where ~µ is the dipole moment function, defined either ab initio together with the

potential energy surface, or approximated by a model function. Dipole moment

is a vector quantity, and it is usually defined in a laboratory plane of reference

perpendicular to the wave vector of the incident light.

So far no assumptions were made for the representation of the wave functions

and operators in the Schrödinger equation (2.1). In this work the time dependent

wave packet method of its solution will be utilized, which consists of the following

steps:
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I Representing the initial wave function and operators on a finite discrete spatial

grid.

II Propagating the discretized wave function in time.

III Analyzing the wave function taken at certain characteristic times for quantities

of interest.

Let us consider these steps, the first of which concerns the representation of the wave

function and operators on a grid. The grid in question does not necessarily have to

be equidistant, in fact, some methods (e.g. discrete variable representation (DVR)

[44, 45]) operate with nonuniform grids, gaining advantages of better sampling of

the wave function in the regions of interest. However, the majority of propagation

methods operate on equidistant grids, with sampling criteria varying greatly from

one method to the other. Such equidistant grids are defined as follows:

xji = xmin
i + (j − 1)∆xi, i = 1, ..., n; j = 1, ..., Ni. (2.6)

Here the index i refers to the nuclear coordinate, and index j to the grid point. The

number of grid points in each coordinate is given by Ni, and the grid spacing ∆xi

is given by

∆xi = (xmax
i − xmin

i )/(Ni − 1). (2.7)

The values xmax
i and xmin

i define the coordinate values for the upper and lower grid

boundaries, respectively, in each of the coordinates xi.

The initial wave function Ψ(x1, ..., xn; 0) is often defined analytically, e.g. in the

models utilizing the well-known model potential functions like the Morse potential

[46]. For problems involving reactive scattering [47, 48] or association [14, 49], it is

customary to take a Gaussian wave packet

Ψ(x1, ..., xn; 0) = C

n∏
i=1

e−βi(xi−x
0
i )2

, (2.8)

as the initial wave function (here C is chosen such that the product wave functions is

normalized, βi and x0
i are the width parameters and positions of the maximum of the
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distribution in each nuclear coordinate, respectively). When the initial wave function

and/or operators are defined analytically, the discretization is trivial. However, for

many processes, e.g. pump-probe spectroscopy [50], photodissociation [13], selective

preparation of states and control [14], vibrational eigenstates have to be taken as

initial wave functions. In this case one has to solve the time-independent eigenvalue

problem, choosing the grid that will be later used for propagation, or to employ

interpolation techniques to recast the eigenfunctions to different grids [51].

For the propagation step there exists a variety of different approaches. For a

comprehensive survey of the methods and their efficiency, the reader is refered to

the review of Balakrishnan et al. [47]. The main criterion for the evaluation of the

methods is the scaling properties. However, the issues of accuracy, convergence,

conservation of norm during the propagation also have to be taken into account.

Historically, the first methods for solution of the time-dependent Schrödinger

equation (2.1) have been the finite difference methods [52], the most widely used

variant being the second order difference (SOD) [53] method. The SOD propagator

is the easiest one to implement in an actual program, however, it has several fun-

damental flaws: for the reasons of convergence the time steps of propagation have

to be chosen very small, which severely limits the ability of this method to treat

multidimensional long-time dynamics, and the fact that it fails in the presence of

imaginary optical potentials, which are used to dampen the wave function at grid

boundaries. Due to these reasons, the SOD schemes are rarely used nowadays for

time dependent wave packet simulations.

The breakthrough in the solution of wave packet propagation problems was

achieved, when the fast Fourier transformation (FFT) technique was applied by

Feit and Fleck [54, 55] and Kosloff and Kosloff [56] for evaluation of the kinetic

energy part of the Hamiltonian. The essence of the method is the fact that the

quantum mechanical momentum operators, nonlocal in the coordinate representa-

tion, are local in the momentum representation, where their action can be evaluated

by simple multiplication. For example, in our case the image of the wave function
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in the momentum space is given by

Ψ̃(k1, ..., kn) =

(
1
√

2π

)n ∫ ∞
−∞

...

∫ ∞
−∞

Ψ(x1, ..., xn)e
−i(k1x1+...+knxn)dx1...dxn, (2.9)

and the transformation back to the coordinate space is defined as follows:

Ψ(x1, ..., xn) =

(
1
√

2π

)n ∫ ∞
−∞

...

∫ ∞
−∞

Ψ̃(k1, ..., kn)e
i(k1x1+...+knxn)dk1...dkn. (2.10)

Let us consider the action of the kinetic energy operator on the wave function given

by equation (2.9):

T̂Ψ(x1, ..., xn) = −
n∑
i=1

1

2mi

∂2Ψ(x1, ..., xn)

∂x2
i

=

=

(
1
√

2π

)n ∫ ∞
−∞

...

∫ ∞
−∞

Ψ̃(k1, ..., kn)(k
2
1 + ...+ k2

n)e
−i(k1x1+...+knxn)dx1...dxn.

(2.11)

As we can see, in the momentum space (or k-space) the action of the kinetic energy

operator is reduced to multiplication with the sum of squares of wave numbers

corresponding to each coordinate.

The FFT method has many valuable advantages. In this technique, the operators

are applied in the representations, in which they are local, making their evaluation

very accurate. It can also be proven [56], that for a comparable accuracy, the FFT

method does not require so fine a mesh of points as the finite differencing methods.

Also, especially for multidimensional problems, the scaling properties of the Fourier

method (where the computational effort scales as N logN with respect to the number

of grid points N) give it an enormous advantage over other methods, allowing the

treatment of larger systems.

The DVR methods are also a powerful and promising tool for time-dependent

wave packet propagation, despite of the fact that the DVR technique was originally

designed for time-independent problems. The application of these methods to dy-

namics is beyond the scope of this work. However, the DVR method was utilized in

Chapter 4 for the solution of an eigenvalue problem. The technique used is described

in Appendix B.
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A very efficient and accurate propagation scheme for the Scrödinger equation

(2.1) was introduced by Feit and Fleck [54, 55]. This technique, called the split-

operator method , has been used throughout this work. It was originally intended

for determining the modes of optical wave guides, where the wave equations are

similar to the Schrödinger equation [57]. This method was then successfully applied

to the quantum dynamics problems. The underlying logic behind this method shall

be outlined below.

Assuming that the Hamilton operator in equation (2.1) is explicitly time-independent

(which is true for the molecular Hamiltonian Ĥmol), its formal solution can be written

in the following form (for now, we assume Ĥint = 0):

Ψ(t) = e−iĤtΨ(0) = e−i(T̂+V̂)tΨ(0). (2.12)

If we consider the evolution of the wave function during one time step, the equation

(2.12) then becomes

Ψ(t+ ∆t) = e−i(T̂+V̂)∆tΨ(t) (2.13)

Since the potential and kinetic energy operators do not commute, we cannot rewrite

the exponential of the sum of operators in (2.13) as a product of exponentials of

each. Were such factorization to be performed, the error of the order of ∆t2 would be

introduced in the energy. However, a certain arrangement of terms in the Hamilton

operator allows to achieve higher accuracy. Let us consider the Baker-Campbell-

Hausdorf theorem, applied to three operators Â, B̂, Ĉ.

exp
(
Â
)

exp
(
B̂
)

exp
(
Ĉ
)

= exp

(
Â+ B̂ + Ĉ +

1

2
[Â, B̂] +

1

2
[Â, Ĉ] +

1

2
[B̂, Ĉ]

+
1

12
[[Â, B̂], Â+ B̂ + Ĉ] + ...

)
(2.14)

Let us define the operators Â, B̂ and Ĉ as follows:

Â = Ĉ = −i
T̂

2
∆t B̂ = −iV̂∆t. (2.15)

Substituting these into the equation (2.14) yields

e−i T̂
2

∆te−iV̂∆te−i T̂
2

∆t = e−i( T̂
2

+V̂+ T̂
2

)∆t+O(∆t3) ≈ e−iĤ∆t. (2.16)
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Combining the equations (2.13) and (2.16), we obtain the split-operator propagator

in the final form:

Ψ(t+ ∆t) = e−i T̂
2

∆te−iV̂∆te−i T̂
2

∆tΨ(t). (2.17)

Obviously, the procedure of dividing the kinetic energy operator in two equal parts,

as defined by equations (2.15), could be performed instead on the potential en-

ergy operator without affecting the accuracy. One can choose either form of the

split-operator, depending on the implementation of the programs of wave packet

propagation. The split-operator method is accurate to the second term in the ∆t,

and the error is proportional to ∆t3[[T̂, V̂], Ĥ] as can be seen from the equation

(2.14).

Practical implementation of the split operator propagation requires the use of

the FFT method, so that the actions of the operators will be evaluated in their

respective local representations. Since the kinetic and potential energy operators

in (2.17) are arguments of exponential functions, this procedure works only when

the kinetic energy operator is diagonal in momentum space, for example, if it is

given in Cartesian coordinates. However, certain modifications of the technique

allow to use the split operator technique even for operators which do not satisfy this

requirement [58].

In order to derive the expression for the split-operator propagator an assump-

tion was made, that the Hamilton operator is not explicitly time-dependent. If

the Hamilton operator contains the interaction part given by equation (2.5), this as-

sumption does not hold. However, Kouri and coworkers [59,60] have shown, that it is

possible to write an expression for the split-operator, which accomodates the explic-

itly time-dependent Hamiltonians correctly, retaining the accuracy of the method.

In this case the potential-type splitting has to be used, and the final expression for

the propagator reads

Ψ(t+ ∆t) = e−i V̂(t+∆t)
2

∆te−iT̂∆te−i V̂(t)
2

∆tΨ(t). (2.18)

Other methods of time dependent wave packet propagation, e.g. the Chebyshev

polynomial expansion method [61, 62], or (t, t′) method of Moiseyev et. al [63, 64]
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shall not be considered here.

In the course of the propagation, a quantum wave packet may approach the end

of the grid, on which it is defined, whether by design, as in the dissociation problems,

or by accident. In this case the FFT method will give rise to the reflection of the wave

packet from the grid boundary, since the FFT method requires the wave functions

to be either band-limited or periodic. To prevent the unphysical behavior of the

wave packet, one has to dampen the wave function near the grid boundaries. A way

to achieve this is to multiply the propagated wave function at each time step by a

function, which is equal to one in the grid regions where the dynamics takes place,

and rapidly goes to zero in the certain predefined region in the immediate vicinity

of the boundary. This approach was suggested by Bisseling et al. [65], and termed

an absorbing boundary condition approach.

Alternatively, one can implement an absorbing boundary condition by adding

to the Hamiltonian an artificial purely imaginary potential-type term. Drawing

parallels from optics, such a term is often called imaginary optical potential. With

exponential-type propagators, like split-operator, these terms lead to efficient damp-

ing of the wave function in the regions, where this imaginary optical potential is

defined. In contrast with the previous approach, this term has to be added to the

potential only once before the propagation, which leads to considerable speedup in

computation. There exist many varieties of the imaginary optical potentials, dif-

fering by the damping function used. Given below is one of the most widely used

imaginary optical potentials, the linear ramp of Neuhauser and Baer [66](in 1-D case

for the sake of simplicity):

Uopt =

 −iU0
x−xopt

∆xopt
xopt < x ≤ xopt + ∆xopt

0 x ≤ xopt

(2.19)

Here U0 is the magnitude of the absorbing potential, xopt is the position of the begin-

ning of the absorbing boundary, and ∆xopt is its width. The width and magnitude

of the imaginary optical potentials have to be chosen by careful experimentation, so

that the damping is not too weak to allow a portion of the wave packet penetrate

it, and not too strong to cause reflections of the wave packet from the beginning of
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the absorbing boundaries. Reasonable initial guesses for these values can be esti-

mated, if the energetics of the system is known [66], but some fine tuning is almost

always required. Another variant of the imaginary optical potential with exponen-

tial damping will be shown in Chapter 4. The imaginary optical potentials are also

called gobbler functions .

The third step of the time dependent wave packet method is the analysis of the

evolving wave functions, and extraction of the information relevant to the physics

of the process. There exist several standard approaches to the analysis of the wave

functions, which are applied. The dynamics of the system is elucidated by means of

the snapshots of the density of the wave function (the plots of its squared absolute

value as a function of coordinate). Autocorrelation functions help to establish the

recurring patterns in the evolution of the wave packets. Time-dependent populations

of different vibrational and rotational states can be evaluated by projection of the

wave function on the respective eigenstates. A brief outline of these and other

techniques follows.

Analysis of the snapshots of the wave function is a very illustrative approach.

It allows to construct a “movie” of the wave packet evolution, and to gain insight

on the fundamental microscopic dynamics of a system. The snapshots are easy to

generate and understand, when the number of degrees of freedom is less or equal to

two. If we study the systems with greater dimensionality, this approach encounters

problems. For example, a 3-D wave function can be represented as a 3-D equidensity

contour plot, and if there are more than two or free contours, they are not anymore

distinguishable. For problems of higher dimensionality, the contour plots are no

longer an option.

The difficulties of visualization of multidimensional wave functions are resolved

by projecting the n-dimensional picture on a subspace with lower dimensionality by

integrating over several degrees of freedom, which are not of interest for the partic-

ular visualization. For example, a two-dimensional projection of the n-dimensional
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wave function on the (xk, xl) coordinate plane is defined as (assuming k < l < n):

ψ(xk, xl; t) =

∫
...

∫ ∫
...

∫ ∫
...

∫
|Ψ(x1, ..., xn)|

2 ×

× dx1...dxk−1dxk+1...dxl−1dxl+1...dxn.

(2.20)

This approach was used to generate the 2-D snapshots of 3-D wave functions in

Chapter 3, by integrating over one of the coordinates.

Some valuable information can be gained from the analysis of the autocorrelation

functions of wave packet propagations, which are defined as overlap integrals between

the wave function at a given moment of time and the initial wavefunction:

I(t) = 〈Ψ(0)|Ψ(t)〉 =

∫ xmax
1

xmin
1

...

∫ xmax
n

xmin
n

Ψ∗(0)Ψ(t)dx1...dxn. (2.21)

The more different the wave function is from itself at t = 0, the less the absolute

value of the correlation function. Thus one can establish the recurring patterns in

the dynamics of the wave function, and obtain the information on the timescales

of the processes occuring during the time evolution. The Fourier transformation of

autocorrelation function allows us to obtain the linear absorption [67] and Raman

spectra [68].

If one is interested in the state-selectivity of the process, that is, how different

vibrational (or vibrational-rotational) states of a molecule are being prepared and

evolve, the time-dependent populations of the respective eigenstates have to be

considered. For an eigenstate with the quantum number v, the population is defined

as follows:

Pv(t) = |〈ψv|Ψ(t)〉|2 =

∫ xmax
1

xmin
1

...

∫ xmax
n

xmin
n

|ψ∗vΨ(t)|2dx1...dxn, (2.22)

where ψv is the eigenfunction corresponding to the state v. The wave functions ψv

and Ψ have to be normalized to unity. In that case, the maximum value of the Pv

is one, in case when the wave function Ψ becomes the v-th eigenstate. Norm of the

wave function is calculated as follows

N (t) =

∫ xmax
1

xmin
1

...

∫ xmax
n

xmin
n

|Ψ(t)|2dx1...dxn, (2.23)
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and it is also a useful benchmark for the stability of the propagator.

So far no limitation was placed on the number of degrees of freedom of the system.

However, even with the extremely favorable scaling properties of the FFT method,

simulations of the time-dependent wave packet dynamics of three-dimensional sys-

tems are a very demanding task, both with respect to the storage space required

and to the computation time. For example, the 3-D grid used for the studies of

silver trimers in Chapter 3 has more than 8,000,000 elements, which means that

every storage array containing the wave function has the size of 150 MByte. The

extremely large size of the propagation grids for Ag3 is due to the importance of large

amplitude motions for this system. If large amplitude motions do not occur in the

system under investigation, the grid sizes, and hence the computational effort can

be significantly reduced, allowing easier and/or more rigorous treatment of three-

dimensional [69–71] problems, and also making quantum dynamical simulations with

higher dimensionality possible, as manifested by the reports on four- [27, 28], five-

[29], six- [30] and even 24-dimensional [31] simulations. Nevertheless, for most of

the calculations in more than three dimensions certain approximations have to be

introduced, in order to make the problems tractable.

A possible way to overcome the difficulties caused by the insufficient computer

resources is to take advantage of the possibilities provided by the new computer

architectures. In this work the 3-D calculations have been performed on a massively

parallel supercomputer Cray T3E, which enabled to overcome the storage and speed

constraints of a typical workstation. However, performing the calculation on a mas-

sively parallel machine requires extensive adaptation of the simulation programs.

The outline of the issues involved can be found in Appendix A.

So far, the solution of the time-dependent Schrödinger equation (2.1) has been

discussed, since it is the heart of the wave packet propagation methods. However,

it is also essential to be able to solve the corresponding time-independent problem

Ĥmol(x1, ..., xn)Ψ(x1, ..., xn) = EΨ(x1, ..., xn), (2.24)

that is, to find the eigenfunctions and eigenvalues of the molecular Hamilton opera-

tor, defining the energetics of the systems by finding the energies of the stationary
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states {Ei}, and obtaining the corresponding stationary state wave functions {ψi},

to serve as initial states for propagation and to be used in the analysis of the time-

dependent wave packets.

A powerful technique for the solution of the time-independent Schrödinger equa-

tion is the Fourier grid Hamiltonian (FGH) technique of Marston and Balint-Kurti

[72], which can also be extended for multidimensional problems [73]. The limitation

of the FGH method is the fact that in its original form it is applicable only to the

Cartesian-like kinetic energy operators, where the kinetic couplings and first order

coordinate derivatives are absent.

Another set of methods for the solution of the eigenvalue problem of the Schrödinger

equation are the DVR methods, which do not impose limitations on the form of the

Hamilton operator. In fact, the FGH method is a special case of discrete variable

representation. The description of the DVR technique can be found in the Appendix

B.

For the problems of high dimensionality, especially when only a few of the eigen-

functions are needed, a good alternative method for solution of the time-independent

problem was presented by Tal-Ezer and Kosloff [74]. This technique, called direct

relaxation method, or propagation in imaginary time, is easy to implement, and can

be used in conjunction with the existing propagation programs.

The direct relaxation method is implemented as follows. The time is redefined

as imaginary (τ = it). The formal solution of the Schrödinger equation (2.12) then

takes the form:

Ψ(τ) = e−ĤτΨ(0). (2.25)

The initial wave function Ψ(0) can be expanded in the basis of the eigenstates of

the Hamilton operator Ĥ:

Ψ(0) =
∑

Ck|ψk〉, where Ĥ|ψk〉 = Ek|ψk〉. (2.26)

Substituting this expansion into the propagator (2.25), one obtains:

Ψ(τ) = e−Ĥτ
∑

Ck|ψk〉 =
∑

Cke
−Ekτ |ψk〉. (2.27)
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With the increase in (imaginary) time τ , the contributions of the eigenstates with

higher energy decrease exponentially with respect to the ones with lower energy,

and the sum converges to the eigenstate with the lowest energy (the ground state

ψ0). To implement the propagation, the split-operator method is suitable. However,

since the norm of the wave function decreases exponentially, the wave function has

to be renormalized after each few timesteps.

To obtain the eigenstates other than the ground vibrational state, one can remove

the state with the lowest energy from the Hilbert space by projection after each time

step:

ψ
(j+1)
k =

(
Î−

k−1∑
l=0

〈ψl|ψ
(j)
k 〉

)
ψ

(j)
k , (2.28)

where Î is the identity operator, and the index j denotes the time step.

As an initial state for the propagation in imaginary time any arbitrary wave

function can be taken, but the fastest convergence is achieved by taking a reasonable

initial guess, for example, a Gaussian wave packet defined by equation (2.8).

This method is easy to implement and, due to the excellent scaling properties

for the lowest lying eigenstates, has few alternatives for three-dimensional problems.

However, the projection operation is costly, and the error in the wave functions is

accumulated, since the calculation of each of the higher lying eigenfunction relies

on the previously computed lower ones. For the detailed discussion of the ways to

overcome these difficulties, see [75]. Still, the method gives very reasonable results

for three-dimensional problems, and was used for the calculation of eigenfunctions

in Chapter 3.


