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For quantum spin systems in any spatial dimension with a local, translation-invariant Hamiltonian,
we prove that asymptotic state convertibility from a quantum state to another one by a thermodynam-
ically feasible class of quantum dynamics, called thermal operations, is completely characterized by
the Kullback-Leibler (KL) divergence rate, if the state is translation-invariant and spatially ergodic.
Our proof consists of two parts and is phrased in terms of a branch of the quantum information theory
called the resource theory. First, we prove that any states, for which the min and max Rényi diver-
gences collapse approximately to a single value, can be approximately reversibly converted into one
another by thermal operations with the aid of a small source of quantum coherence. Second, we prove
that these divergences collapse asymptotically to the KL divergence rate for any translation-invariant
ergodic state. We show this via a generalization of the quantum Stein’s lemma for quantum hy-
pothesis testing beyond independent and identically distributed (i.i.d.) situations. Our result implies
that the KL divergence rate serves as a thermodynamic potential that provides a complete charac-
terization of thermodynamic convertibility of ergodic states of quantum many-body systems in the
thermodynamic limit, including out-of-equilibrium and fully quantum situations.
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I. INTRODUCTION

Reversibility and irreversibility of dynamics in classical and quantum physics, especially in ther-
modynamics, is characterized thanks to the concept of entropy. It is a salient feature of macroscopic
equilibrium thermodynamics that entropy does not only have the non-decreasing property but also
provides a complete characterization of convertibility between thermal equilibrium states [1], which
is represented by the second law of thermodynamics. Lieb and Yngvason constructed an axiomatic
formulation of this phenomenology, and within their mathematical framework, rigorously proved
that entropy provides a necessary and sufficient condition for state conversion, and furthermore,
that such an entropy function is essentially unique [2].

The connection between microscopic information entropy and thermodynamic entropy has been
extensively studied both in terms of statistical mechanics [3, 4] and the thermodynamic resource
theory [5–7]. In the latter formalism which we adopt in this article, so-called one-shot entropy mea-
sures have provided tools to quantify resource costs of physical operations in quantum information
settings including quantum thermodynamics [5–17].

Our understanding of the macroscopic behavior of the entropy has been sharpened by fundamen-
tal theorems proving asymptotic equipartition properties (AEP). Rougly speaking, an AEP states
that in the long sequence limit of a stochastic process, some relevant quantities concentrate to defi-
nite values. For instance, the Shannon-McMillan theorem states that an ergodic process satisfies an
AEP with the Shannon entropy rate [18, 19]. This has been generalized to a stronger form known as
the Shannon-McMillan-Breiman theorem as well as to a relative version for an ergodic process with
respect to a Markov process [20]. A quantum version of the Shannon-McMillan theorem proves a
similar AEP for quantum ergodic processes with the von Neumann entropy rate [21–23].



3

Closely related to AEP theorems is Stein’s lemma, which relates the asymptotic error rate of hy-
pothesis testing for distinguishing two quantum states to the KL divergence rate. Classically, Stein’s
lemma is a straightforward consequence of the relative AEP. However, its quantum counterpart is
more involved [24–28]. Hiai and Petz [24] first addressed the quantum Stein’s lemma and provided
a partial proof for a completely ergodic quantum state with respect to an i.i.d. state. The proof of the
quantum Stein’s lemma was completed for the case where both states are i.i.d. by Ogawa and Na-
gaoka [25], by proving the strong converse of the Hiai-Petz theorem for that case. A more general
form of the quantum Stein’s lemma for an ergodic state with respect to an i.i.d. state was proved in
Ref. [26], which is regarded as a quantum analog of the relative AEP.

In this work, we go beyond the non-interacting or i.i.d. regime, and investigate an entropy func-
tion that provides a thermodynamic characterization of physically relevant, interacting many-body
quantum systems. We consider quantum spin systems on the lattice Z

d with an arbitrary number
d of spatial dimensions. Under certain general conditions, we rigorously prove that the necessary
and sufficient condition for asymptotic state conversion from one ergodic state to another state by
thermodynamically feasible quantum dynamics, called thermal operations [8], is characterized by
the Kullback-Leibler (KL) divergence rate of the state relative to the Gibbs state. The KL diver-
gence rate is shown to determine the work cost for state transformations, and thus plays a role
of the proper thermodynamic potential. Our central assumptions are that (i) the quantum state is
translation-invariant and spatially ergodic and (ii) the Hamiltonian is translation-invariant and local.
Physically, the assumption (i) implies that a quantum state does not exhibit any macroscopic fluctua-
tions if one looks at translation-invariant observables [19, 29–32], and the assumption (ii) guarantees
the sound thermodynamic limit of the Gibbs state. Importantly, a spatially ergodic state — in con-
trast to a temporarily ergodic state — is not necessarily a thermal equilibrium state, and thus our
result is applicable to out-of-equilibrium situations.

To achieve an operationally robust notion of a thermodynamic potential, we resort to the resource
theory of thermal operations. The resource theory of thermal operations is an established model for
thermodynamics in the quantum regime [5, 8, 11, 33]. This approach allows us to study the thermo-
dynamic behavior of arbitrary quantum states in a way that inherently accounts for the fluctuations
in the work requirement of state transformations. This model for thermodynamics is tightly related
to measures of information introduced in quantum information theory based on the quantum Rényi
divergences [34]. Two quantities in particular, the Rényi-0 divergence (or min-divergence) and
Rényi-∞ divergence (or max-divergence), play a special role in determining the work requirement
of state transformations [15, 35]. For instance, the work that can be extracted from any state that is
block-diagonal in the energy eigenspaces is given by the Rényi-0 divergence. For our main result,
we consider the asymptotic version of these quantities for large system sizes, which corresponds to
the thermodynamic limit. The asymptotic min and max Rényi divergences are also called the upper
and lower spectral divergence rates in the theory of information spectrum, and we will use both
terms interchangeably in this paper [36–43].

Main result Our main result is that ergodic states can be reversibly interconverted into one an-
other in the resource theory of thermal operations in the thermodynamic limit. Roughly speaking, if
the Hamiltonian is local and translation invariant, then there exists a thermodynamic potential F(ρ)
that is defined for all translation invariant and ergodic states ρ on a lattice of d spatial dimensions
with the following property: For any two translation invariant and ergodic states ρ ,ρ ′, there exists
a (generalized) thermal operation that can carry out the transformation ρ → ρ ′ by investing work at
a rate of F(ρ ′)−F(ρ) per subsystem and that uses a negligible amount of coherence per subsys-
tem. Furthermore, F(ρ) is given by the KL divergence rate between ρ and the Gibbs state σ of the
Hamiltonian, divided by the temperature of the heat bath.
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Our main result is proved in the following two steps. They are discussed in Section III and
Section IV, where the main theorems are Theorem 2 and Theorem 3, respectively. Both of them can
be of independent interest.

First, we prove that any state for which the min and max Rényi divergences coincide approxi-
mately [44, 45] can approximately be converted reversibly to and from the Gibbs state by thermal
operations, using a small source of quantum coherence [46]. In this case, the resource theory be-
comes reversible, i.e., the work required for a state transformation is equal to the negative work
required for the reverse transformation. In consequence, if these divergences coincide to a single
value in the asymptotic limit, then it defines a thermodynamic potential that completely character-
izes the possible state transformations in the fully quantum regime. This is a result that applies
broadly to the resource theory of thermal operations in general settings, even for states that are
non-classical, i.e., that are not block-diagonal in the energy basis. This intermediate result, which is
independent of the assumptions (i) and (ii), can be of independent interest.

Second, we prove that the min and max Rényi divergences indeed collapse to the KL divergence
rate under the assumptions (i) and (ii). To this end, we prove a generalization of the quantum Stein’s
lemma to the setting with (i) and (ii). The main idea of our proof, inspired by Refs. [26, 28], is to
construct typical projectors that are adapted to the assumptions (i) and (ii). Our formulation uses
semidefinite programming to simplify some parts of the proof.

Structure of the paper In Section II, we introduce preliminary definitions and notation, includ-
ing the relevant divergences and entropy measures. In Section III, we introduce our thermodynamic
framework of thermal operations, giving a rigorous meaning to the work cost of a transformation
from one state to another, and prove our first main theorem on asymptotic thermal operations (The-
orem 2). In Section IV, we rigorously formulate ergodicity, and prove our second main theorem on
the generalized quantum Stein’s lemma (Theorem 3). We conclude with remarks and an outlook
in Section V. In the appendices, we remark on some technical lemmas, Gibbs-preserving maps,
a more rigorous approach to ergodicity formulated using C∗-algebras, an alternative proof of our
second main theorem for the one dimensional case, and purely classical implications of our results.

II. PRELIMINARIES

Consider a Hilbert space H of finite dimension D, and let S (H ) be the set of density operators
(quantum states) on H , satisfying ρ̂ > 0 and tr[ρ̂ ] = 1 for ρ̂ ∈S (H ). We also define the set of
subnormalized states, which we denote by S≤(H ), and which is the set of all operators ρ̂ > 0
that satisfy tr[ρ̂] 6 1. For two Hilbert spaces HA and HB representing systems A and B, we write
A ≃ B when the Hilbert spaces are isomorphic; by convention, the identity mapping A→ B maps
the canonical basis of A onto the canonical basis of B.

The set of quantum states carries a natural metric given by the trace distance [47], defined as
D(ρ̂, ρ̂ ′) = (1/2)‖ρ̂ − ρ̂ ′‖1 for any ρ̂ , ρ̂ ′ ∈S (H ), where ‖·‖1 is the Schatten 1-norm. This metric
can be extended to subnormalized states ρ̂, ρ̂ ′ ∈S≤(H ) as the generalized trace distance [48, 49],
defined as

D(ρ̂, ρ̂ ′) =
1
2
‖ρ̂− ρ̂ ′‖1 +

1
2
|tr(ρ̂)− tr(ρ̂ ′)|. (1)

We also define the fidelity [47] as F(X̂ ,Ŷ ) = ‖X̂1/2Ŷ 1/2‖1 for any X̂ ,Ŷ > 0.
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A. Entropy and divergence

Thermodynamic properties of microscopic quantum systems can be described using entropy
measures that generalize the usual Shannon or von Neumann entropy to the so-called “one-shot”
regime [44, 45, 49]. More specifically, in the presence of thermodynamic reservoirs, we need to
consider a family of relative entropies, or divergences. For ρ̂ ∈S≤(H ) and σ̂ > 0, the KL diver-
gence (Rényi-1 divergence) is defined as:

S1(ρ̂ ‖ σ̂) = tr[ρ̂ ln ρ̂− ρ̂ ln σ̂ ] . (2)

Throughout this paper, we assume that the first argument of the divergences considered (here ρ̂) lies
within the support of the second argument (here σ̂ ). This assumption is physically justified when σ̂
is a Gibbs state, which necessarily has full rank. The min divergence (Rényi-0 divergence), or the
min relative entropy, is defined as

S0(ρ̂ ‖ σ̂ ) =− ln tr[P̂ρ σ̂ ] , (3)

where P̂ρ is the projection onto the support of ρ̂ . We also define an alternative measure of the min
divergence (Rényi-1/2 divergence) as

S1/2(ρ̂ ‖ σ̂) =− ln
∥∥ρ̂1/2σ̂ 1/2

∥∥2
1 , (4)

Finally, the max divergence (Rényi-∞ divergence), or the max relative entropy, is defined as

S∞(ρ̂ ‖ σ̂) = ln
∥∥σ̂−1/2 ρ̂ σ̂−1/2

∥∥
∞
= ln min

ρ̂6λσ̂
λ , (5)

where ‖·‖∞ is the operator norm.
These quantities are special cases of the Rényi-α divergences. Here, we avoid technicalities and

issues in the general definitions of the quantum Rényi divergences caused by the noncommutativity
of the arguments [45, 50, 51], by focusing on the quantities above which are sufficient for our
purposes. These divergences satisfy

− ln tr(σ̂)6 S0(ρ̂ ‖ σ̂)6 S1/2(ρ̂ ‖ σ̂)6 S1(ρ̂ ‖ σ̂)6 S∞(ρ̂ ‖ σ̂ ) . (6)

From these divergences we can define corresponding entropy measures as the divergence with
respect to the identity operator Î: For α = 0,1/2,1,∞ we define

Sα(ρ̂) := −Sα(ρ̂ ‖ Î) . (7)

We note the following explicit forms of the von Neumann entropy (Rényi-1 entropy) S1(ρ̂), the max
entropy (Rényi-0 entropy) S0(ρ̂), and the min entropy (Rényi-∞ entropy) S∞(ρ̂),

S1(ρ̂) =− tr[ρ̂ ln ρ̂] ; S0(ρ̂) = ln rank(ρ̂) ; S∞(ρ̂) =− ln‖ρ̂‖∞ . (8)

The entropies are ordered as

0 6 S∞(ρ̂)6 S1(ρ̂)6 S0(ρ̂)6 ln(D) . (9)

These divergences satisfy the data processing inequality, i.e., they are monotonous under the
action of a completely-positive (CP) and trace-preserving (TP) map E:

Sα(ρ̂ ‖ σ̂)> Sα(E(ρ̂)‖E(σ̂)) . (10)
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For α = 0,1, see for example Lemma 7 of Ref. [40]. The case of α = 1 is equivalent to the strong
subadditivity of the von Neumann entropy [47, 52]. Consequently, the entropies do not decrease
under the action of a CPTP map E that is unital, i.e., E(Î) = Î,

Sα(ρ̂)6 Sα(E(ρ̂)) . (11)

A useful property of these divergences is a monotonicity property for the semidefinite ordering
of the second argument: If σ 6 σ ′, then for each α = 0,1/2,1,∞,

Sα(ρ̂ ‖ σ̂ ′)6 Sα(ρ̂ ‖ σ̂) . (12)

The divergences obey a scaling property in the second argument. For α = 0,1/2,1,∞, we have
for any a > 0,

Sα(ρ̂ ‖aσ̂ ) = Sα(ρ̂ ‖ σ̂)− ln(a) . (13)

Under tensor product states, the divergences become additive. For α = 0,1/2,1,∞, we have for
any ρ̂ ∈S≤(H ), ρ̂ ′ ∈S≤(H ′), σ̂ > 0, σ̂ ′ > 0,

Sα(ρ̂⊗ ρ̂ ′‖ σ̂ ⊗ σ̂ ′) = Sα(ρ̂ ‖ σ̂)+Sα(ρ̂
′ ‖ σ̂ ′) . (14)

To ensure that the operational quantities represented by these entropies and divergences do not
significantly depend on events that only appear with vanishingly small probability, we “smoothe”
these entropies and divergences over a ball of states that are close to the original state [40, 44]. First,
we define the ε-ball of states around a subnormalized state ρ̂ ∈S≤(H ) as

Bε(ρ̂) := {τ̂ ∈S≤(H ) : D(τ̂ , ρ̂)6 ε} . (15)

Definition 1 (Smooth divergences [40]). The smooth divergences are defined as follows,

Sε
∞(ρ̂ ‖ σ̂) := min

τ̂∈Bε (ρ̂)
S∞(τ̂ ‖ σ̂) ; (16a)

Sε
0(ρ̂ ‖ σ̂) := max

τ̂∈Bε (ρ̂)
S0(τ̂ ‖ σ̂ ) ; (16b)

Sε
1/2(ρ̂ ‖ σ̂) := max

τ̂∈Bε (ρ̂)
S1/2(τ̂ ‖ σ̂) . (16c)

The smooth entropies are defined correspondingly as

Sε
0(ρ̂) :=−Sε

0(ρ̂ ‖ Î) ; Sε
∞(ρ̂) :=−Sε

∞(ρ̂ ‖ Î) . (17)

We introduce a further convenient divergence (relative entropy) that is based on hypothesis test-
ing [14, 53, 54]. This divergence allows to interpolate between the min- and max-divergences in
a different fashion than the Rényi entropies, along with a simple formulation and a collection of
useful properties. For a subnormalized state ρ̂ and σ̂ > 0, we define for any 0 < η 6 tr(ρ̂),

S
η
H(ρ̂ ‖ σ̂) := − ln

(
η−1 min

06Q̂6Î, tr[ρ̂Q̂]>η
tr[σ̂ Q̂]

)
. (18)

The hypothesis testing divergence owes its name to the fact that if ρ̂, σ̂ are two quantum states,
η exp(−S

η
H(ρ̂ ‖ σ̂)) represents the probability of mistakenly reporting ρ̂ in a hypothesis test between

the two states, if we carry out a strategy that mistakenly reports σ̂ with probability at most 1−η .
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The hypothesis testing divergence satisfies the data processing inequality [55]: For any subnor-
malized state ρ̂ , for any σ̂ > 0, for any CP and trace-nonincreasing map E , and for any 0 < η 6

tr(E(ρ̂)), the hypothesis testing divergence is monotonic,

S
η
H(ρ̂ ‖ σ̂)> S

η
H(E(ρ̂)‖E(σ̂)) . (19)

The hypothesis testing entropy also obeys a scaling property in the second argument: For any sub-
normalized state ρ̂ , for any σ̂ > 0, and for any 0 < η 6 tr(ρ̂),

S
η
H(ρ̂ ‖aσ̂ ) = S

η
H(ρ̂ ‖ σ̂ )− ln(a) , (20)

as can be directly seen from (18). Also, for any σ̂ , σ̂ ′ > 0 for which σ̂ 6 σ̂ ′, the hypothesis testing
entropy satisfies

S
η
H(ρ̂ ‖ σ̂ ′)6 S

η
H(ρ̂ ‖ σ̂) , (21)

for any subnormalized state ρ̂ and for any 0 < η 6 tr(ρ̂). Furthermore, if D(ρ̂ ′, ρ̂) 6 ε , then
ρ̂ ′ > ρ̂− ∆̂ for some ∆̂ > 0 with tr(∆̂)6 ε and hence for any 0 < η 6 η + ε 6 tr(ρ̂),

S
η+ε
H (ρ̂ ‖ σ̂)6 S

η
H(ρ̂

′ ‖ σ̂)+ ln
(η + ε

η

)
. (22)

A useful property of the hypothesis testing divergence is that it interpolates between the min
and max divergences, which are approximately recovered in the regimes η ≃ 0 and η ≃ 1, respec-
tively [54]:

Proposition 1. Let ρ̂ be a (normalized) quantum state and let σ̂ > 0. For any 0 < ε < 1/2,

S
1−ε2/6
H (ρ̂ ‖ σ̂)− ln

(
1− ε2/6

ε2/6

)
6 Sε

0(ρ̂ ‖ σ̂)6 S1−ε
H (ρ̂ ‖ σ̂)− ln(1− ε) ; (23a)

S2ε
H (ρ̂ ‖ σ̂ )− ln(2) 6 Sε

∞(ρ̂ ‖ σ̂ )6 S
ε2/2
H (ρ̂ ‖ σ̂) . (23b)

Proof. The proof of [14, Lemma 40] carries through even for the slightly different smoothing of S0

and S∞, except for the upper bound on S∞. There, we may apply [54, Proposition 4.1] directly.

Finally, we note a pair of inequalities which establishes the approximate equivalence of the two
kinds of min-divergences [45, 54, 56].

Proposition 2. Let ρ̂ be a normalized state and let σ̂ > 0. For any ε > 0,

S2ε
1/2(ρ̂ ‖ σ̂ )> S2ε

0 (ρ̂ ‖ σ̂)> Sε
1/2(ρ̂ ‖ σ̂)−6ln

(
3
ε

)
. (24)

Proof. The first inequality follows because of (6). For the second inequality, let ρ̂ ′ ∈ Bε(ρ̂)
such that Sε

1/2(ρ̂ ‖ σ̂ ) = S1/2(ρ̂
′ ‖ σ̂ ). Then from [54, Proposition 4.2], we have S1/2(ρ̂

′ ‖ σ̂) 6

S1−ε ′
H (ρ̂ ′ ‖ σ̂)− ln(ε ′2) for any ε ′ > 0; choosing ε ′ = ε2/6 and using Proposition 1, we find

S1/2(ρ̂
′ ‖ σ̂ )6 Sε

0(ρ̂
′ ‖ σ̂)+ ln[(1− ε ′)/ε ′]− ln(ε ′2). The claim follows by noting that Sε

0(ρ̂
′ ‖ σ̂)6

S2ε
0 (ρ̂ ‖ σ̂) along with (1− ε ′)/(ε ′3)6 (6ε−2)3 6 (3ε−1)6.
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B. Asymptotic spectral divergence rates

In statistical mechanics one is often interested in the thermodynamic limit, where the behavior of
the system as it becomes arbitrarily large often no longer depends on microscopic details. The action
of taking the thermodynamic limit is formalized by considering a sequence of states P̂ := {ρ̂n}n∈N,
where ρ̂n is a quantum state on H ⊗n.

The von Neumann entropy rate is defined as

S1(P̂) := lim
n→∞

1
n

S1(ρ̂n) , (25)

and the KL divergence rate with respect to the sequence of positive operators Σ̂ := {σ̂n}n∈N is
defined as

S1(P̂‖ Σ̂) := lim
n→∞

1
n

S1(ρ̂n ‖ σ̂n) . (26)

We note that these limits do not necessarily exist in general.
We now introduce the spectral divergence rates, which are natural extensions of the min and max

divergences to the thermodynamic limit.

Definition 2 (Spectral divergence rates). Let P̂ = {ρ̂n} be a sequence of states and let Σ̂ = {σn} be

a sequence of positive operators. We define the upper spectral divergence rate,

S(P̂‖ Σ̂) := lim
ε→+0

limsup
n→∞

1
n

Sε
∞(ρ̂n ‖ σ̂n) , (27)

and the lower spectral divergence rate,

S(P̂‖ Σ̂) := lim
ε→+0

liminf
n→∞

1
n

Sε
0(ρ̂n ‖ σ̂n) . (28)

These quantities have been introduced in Ref. [38] in an equivalent but different expression:

S(P̂‖ Σ̂) = inf
{

a : limsup
n→∞

tr
[
Proj{ρ̂n− enaσ̂n > 0} ρ̂n

]
= 0
}

, (29a)

S(P̂‖ Σ̂) = sup
{

a : liminf
n→∞

tr
[
Proj{ρ̂n− enaσ̂n > 0} ρ̂n

]
= 1
}

, (29b)

where Proj
{

X̂ > 0
}

represents the projector onto the eigenspaces of X̂ corresponding to nonnegative
eigenvalues. The equivalence of these two definitions has been proved in Theorems 2 and 3 of
Ref. [40]. We note that

S(P̂‖ Σ̂)6 S(P̂‖ Σ̂) . (30)

As a special case, we introduce the lower and the upper spectral entropy rates, which are respec-
tively given by

S(P̂) :=−S(P̂‖ ÎD) ; S(P̂) :=−S(P̂‖ ÎD) , (31)

where ÎD := {Î⊗n}n∈N is the sequence consisting of identity operators on H ⊗n.
We can also define the hypothesis testing divergence rate

S
η
H(P̂‖ Σ̂) := lim

n→∞

1
n

S
η
H(ρ̂n ‖ σ̂n) , (32)
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noting that the limit does not necessarily exist. From Proposition 1, in general, Sε
H(ρ̂ ‖ σ̂) and

S1−ε
H (ρ̂ ‖ σ̂) respectively give the same lower and upper spectral divergence rates as those given by

Sε
∞(ρ̂ ‖ σ̂) and Sε

0(ρ̂ ‖ σ̂):

lim
ε→+0

limsup
n→∞

1
n

Sε
H(ρ̂n ‖ σ̂n) = S(P̂‖ Σ̂) , (33a)

lim
ε→+0

liminf
n→∞

1
n

S1−ε
H (ρ̂n ‖ σ̂n) = S(P̂‖ Σ̂) . (33b)

III. ASYMPTOTIC STATE CONVERTIBILITY BY THERMAL OPERATIONS

In this section, we formulate thermal operations and prove our first main theorem on asymptotic
state convertibility (Theorem 2). Importantly, in the microscopic regime, state transformations are
not reversible in general, not even approximately. For general states ρ̂ , ρ̂ ′, it might happen that ρ̂ can
be approximately converted to ρ̂ ′ with work extraction w, but that an approximate transformation
from ρ̂ ′ to ρ̂ requires much more work than w [10].

Then we can ask the question, under which conditions is reversibility restored? This is an im-
portant question, because reversibility implies that the optimal work cost derives from a potential,
which in turn means that macroscopic thermodynamic behavior is restored. Here, we consider in
fact a marginally stronger property. Under which conditions is a state reversibly convertible to the
thermal state? Clearly, any two states that have this property can reversibly be converted into one
another. This slightly stronger statement ensures that the thermodynamic potential is well defined
for the thermal state itself, a desirable feature that allows the thermal state to take on the role of a
“reference state.”

A. Thermodynamic operations

We now introduce our thermodynamic framework. The simple model we introduce captures the
relevant features of thermodynamics at the microscopic scale, while providing a simple, abstract,
and general formalism for analyzing the resource cost of transforming one quantum state into an-
other [5].

The goal is the following. Given a system S, and two states ρ̂S, ρ̂
′
S, we would like to quantify

the resources required in order to convert ρ̂S to ρ̂ ′S in some reasonable thermodynamic model. The
resource theory of thermal operations is an established model that is particularly useful in such a
context. It specifies the set of transformations that can be carried out for free, without the involve-
ment of external resources such as thermodynamic work. In the model of thermal operations, one is
allowed to carry out for free any unitary on the system and a heat bath at fixed background temper-
ature, as long as the unitary commutes with the overall noninteracting Hamiltonian of the system
and the bath. Here we introduce a slightly generalized notion of thermal operations, where different
input and output systems are allowed.

Definition 3 ((Generalized) thermal Operation). Consider systems S,S′ with corresponding Hamil-

tonians ĤS,Ĥ
′
S′ . Then a CP and trace-nonincreasing map Φ

[TO]
S→S′(·) is a thermal operation at inverse

temperature β > 0 if it can be written as

Φ
[TO]
S→S′(·) = trB

[
V̂SB→S′B

(
(·)⊗ e−β ĤB

tr
(
e−β ĤB

)
)

V̂
†

SB←S′B

]
, (34)



10

for some ancilla system B of finite dimension with some corresponding Hamiltonian ĤB, and for

some partial isometry V̂SB→S′B such that V̂SB→S′B (ĤS + ĤB) = (Ĥ ′S′+ ĤB)V̂SB→S′B.

If there exists a thermal operation that maps ρ̂S to ρ̂ ′S′ , we write (ρ̂S,ĤS)−→
TO

(ρ̂ ′S′ ,Ĥ
′
S). We may

omit the Hamiltonians if they are clear from context.

Furthermore, a process that is achieved in the limit of processes of the form (34) with arbitrarily

large but finite bath systems, is also called a thermal operation.

The last condition is required to enable processes that decrease the rank of the input state, for
instance, a process consisting of Landauer erasure of a single bit compensated by a suitable energy
shift [10].

An operator V̂ is a partial isometry if it is an isometry on its support, or equivalently if V̂ †V̂ and
V̂V̂ † are projectors. We allow V̂ in the definition above to be a partial isometry instead of a unitary
as considered in Refs. [8, 10, 11] because they are more convenient when considering input and
output systems of different dimension. Physically, this corresponds to specifying only a part of the
process happening on an input subspace. Importantly, any partial isometry that conserves energy
can be dilated to a full unitary that conserves energy on a larger system [57], as illustrated in Fig. 1.
We prove a corresponding general statement as Proposition 13 in Appendix B.

FIG. 1. A schematic of a generalized thermal operation (Definition 3). The partial isometry V̂SB→S′B can be
embedded into the energy-conserving unitary ÛSS′BA of the composite system SS′B along with a 2-qubit aux-
iliary system A. The initial state of S′A is chosen as a pure state |i〉S′ |00〉 and the final state of SA is projected
onto |f〉S|11〉. Here, |i〉S′ and |f〉S can be arbitrary energy eingenstates of S′ and S, and the Hamiltonian of A

is chosen as a function of these energies to ensure the global energy conservation.

There are no known general conditions under which state transformations are possible with ther-
mal operations in the quantum regime. For semiclassical states, i.e. states that are block-diagonal in
energy, such conditions are provided in the form of thermomajorization, a generalization of matrix
majorization [10].

Now we introduce an alternative model known as Gibbs-preserving maps. This model has a
simple technical formulation which makes it more convenient to prove some properties. Because
any thermal operation is in particular a Gibbs-preserving map, all properties obeyed by Gibbs-
preserving maps are inherited by thermal operations. As for thermal operations, it is technically
more convenient to consider trace-nonincreasing maps; furthermore we allow these maps to be
Gibbs-sub-preserving in the sense of the following definition.
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Definition 4 (Gibbs-sub-preserving map). Consider systems S,S′ with corresponding Hamiltonians

ĤS,Ĥ
′
S′ . Then a CP and trace-nonincreasing map Φ

[GPM]
S→S′ (·) is said to be a Gibbs-sub-preserving

map for some fixed inverse temperature β if

Φ
[GPM]
S→S′

(
e−β ĤS

)
6 e−β Ĥ′

S′ . (35)

When there exists a Gibbs-sub-preserving map that maps ρ̂S to ρ̂ ′S, we write (ρ̂S;ĤS)−−−→
GPM

(ρ̂ ′S′ ;Ĥ ′S′).

We may omit the Hamiltonians if they are clear from context.

We note that any Gibbs-sub-preserving map can be dilated into a fully trace-preserving map on
a larger system which furthermore has the thermal state as a fixed point [14, Proposition 2].

Lemma 1. Any thermal operation is also a Gibbs-sub-preserving map.

Proof. A thermal operation Φ
[TO]
S→S′ can be written in the form (34). We abbreviate V̂SB→S′B as V̂ .

Then with ZB = tr(e−β ĤB), we have

Φ
[TO]
S→S′(e

−β ĤS) = Z−1
B trB

[
V̂ e−β(ĤS+ĤB)V̂ †]= Z−1

B trB

[
e−β V̂ (ĤS+ĤB)V̂

†]
6 e−β Ĥ′

S′ , (36)

where we have invoked Proposition 12 to see that V̂ †V̂ commutes with ĤS + ĤB (for the second
equality) and that V̂V̂ † commutes with Ĥ ′S′+ ĤB (for the final inequality).

While any thermal operation is a Gibbs-sub-preserving map as shown in Lemma 1, the converse
is not true [58]. A notable difference between thermal operations and Gibbs-preserving maps is the
way the two models handle coherent superpositions of energy states. Thermal operations cannot
create any coherent superpositions of energy levels because they commute with time evolution.
However, there exist Gibbs-preserving maps that can generate coherent superpositions of energy
levels [58].

The divergences defined above play an important role in our thermodynamic framework as they
are monotones under thermodynamic transformations. In the following, we exploit the scaling prop-
erty (13) of the divergences to write the expression Sα(ρ̂S ‖e−β ĤS/ZS)− ln(ZS) = Sα (ρ̂S ‖e−β ĤS)
more compactly by absorbing the system free energy into the divergence term.

Proposition 3 (Monotonicity of divergences [10, 11, 14, 45]). Consider systems S,S′ with corre-

sponding Hamiltonians ĤS,Ĥ
′
S′ . If ρ̂S, ρ̂

′
S′ are (normalized) quantum states that satisfy ρ̂S −→∗ ρ̂ ′S′ ,

where ∗ stands for either TO or GPM, then

Sα(ρ̂S ‖e−β ĤS)> Sα(ρ̂
′
S′ ‖e−β Ĥ′

S′ ) ; and S
η
H(ρ̂S ‖e−β ĤS)> S

η
H(ρ̂

′
S′ ‖e−β Ĥ′

S′ ) , (37)

where α may be any of 0, 1/2, 1, or ∞ and where 0 < η 6 1.

The proof of Proposition 3 is essentially an application of the data processing inequality (10).
The full proof requires a dilation of the trace-nonincreasing map into a trace-preserving one, and it
is presented in Appendix B.

Now that we have specified the free operations, we need to specify how we can provide resources
for thermodynamic operations that are not free, or how we can extract such resources from states.

Thermodynamic work can be provided with the help of an external work storage system, often
called a “battery.” This can be any system which starts in a definite energy level and finishes in a
different energy level; the difference in energy is then the amount of work furnished or extracted.
In fact, a large collection of different battery models are equivalent [11, 14].
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Thermal operations necessarily commute with the free time evolution, as can be seen from (34).
This means that it is impossible to create any state that has a coherent superposition of energy
levels, even with an arbitrary amount of work, without access to another resource that provides
coherence [46]. Coherence is thus a valuable resource that should be accounted for [46, 59–62].
Here, we adopt a rudimentary, ad hoc model. We suppose that we have access to an additional
system C initialized into a pure state of our choosing. Crucially, we assume that the range of energy
values that can be stored into the system C is bounded by some parameter η , i.e., ‖ĤC‖∞ 6 η where
ĤC is the Hamiltonian of C. The system C must be restored to a state that is close to a pure state.
The bound on the norm of the Hamiltonian forbids any embezzlement of work of more than of the
order of η [11]. The requirement that the final state on C is close to a pure state is necessary because
there is no constraint on the dimensionality of C; with a suitable highly degenerate system, starting
from a pure state and finishing in the maximally mixed state would allow to extract an arbitrary
amount of work that is not controlled by η .

This crude model for accounting for coherence suffices for our purposes, as the protocols we
construct only require an ancilla system C with a parameter η that is negligibly small compared to
the overall work cost of the transformation. Note that this scheme differs from catalysis [11, 63, 64]
as we do not require the final state to be related in any way to the initial state.

Definition 5 (Work/coherence-assisted process). Consider systems S,S′ with corresponding Hamil-

tonians ĤS,Ĥ
′
S′ and let ∗ stand for TO or GPM. We say that a CP and trace-nonincreasing map

ΦS→S′ is a (w,η)-work/coherence-assisted ∗ operation, if there exist systems W,C,W ′,C′ with re-

spective Hamiltonians ĤW ,ĤC,ĤW ′ ,ĤC′ satisfying ‖ĤC‖∞ 6 η , ‖ĤC′‖∞ 6 η , and if there exist two

energy eigenstates |E〉W , |E ′〉W ′ of ĤW ,ĤW ′ respectively whose energies E and E ′ satisfy E−E ′=w,

and if there exist two pure states |ζ 〉C, |ζ ′〉C′ , and if there exists a ∗ operation Φ̃
[∗]
SCW→S′C′W ′ , such

that

ΦS→S′(ρ̂S) = trC′W ′

[
|E ′〉〈E ′|W ′ ⊗|ζ ′〉〈ζ ′|C′ Φ̃

[∗]
SCW→S′C′W ′

(
ρ̂S⊗|E〉〈E|W ⊗|ζ 〉〈ζ |C

)]
. (38)

Here, we allow infinite-dimensional Hilbert spaces for C and C′ for technical reasons related to how

to construct |ζ 〉C states.

A (w,η)-work/coherence-assisted thermal operation is thus simply a free process that is assisted
by ancillas that provide an amount of work w and an “amount of coherence” that is at most η . If w

is negative, then this measures the amount of work that is extracted by the process.

Definition 6 (Approximate thermodynamic process using work and coherence). Consider systems

S,S′ with Hamiltonians ĤS,Ĥ
′
S′ and let ∗ stand for TO or GPM. We say that the state ρ̂S is (w,η ,ε)-

transformable into ρ̂ ′S′ by a ∗ process, which we denote by (ρ̂S;ĤS)
w,η ,ε−−−→
∗

(ρ̂ ′S;Ĥ ′S′), if there exists a

(w,η)-work/coherence-assisted ∗ process ΦS→S′ such that D(ΦS→S′(ρ̂S), ρ̂
′
S)6 ε . We may omit the

Hamiltonians if they are clear from context.

The hypothesis testing divergence is a relatively good (quasi) monotone under assisted ther-
modynamic operations: It can only decrease, except for correction terms that depend on w,η ,ε .
Because the proof is not particularly insightful, we defer it to Appendix B.

Proposition 4 (Quasi-monotonicity of the hypothesis testing divergence under resource-assisted
transformations). Consider systems S,S′ with respective Hamiltonians ĤS,Ĥ

′
S′ . For a quantum state

ρ̂S and a subnormalized state ρ̂ ′S′ , suppose ρ̂S
w,η ,ε−−−→
∗

ρ̂ ′S′ , where ∗ stands for TO or GPM. Then for
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any 0 < ξ 6 ξ + ε 6 tr(ρ̂ ′S′),

S
ξ
H(ρ̂S ‖e−β ĤS)+β (w+2η)+ ln

(
ξ + ε

ξ

)
> S

ξ+ε
H (ρ̂ ′S′ ‖e−β Ĥ′

S′ ) . (39)

Finally, we define asymptotic transformations. These are transformations in the thermodynamic
limit for which we are interested in the work cost rate, and which use only a sublinear amount of
coherence.

Definition 7 (Asymptotic thermodynamic process). Consider two sequences of states P̂ = {ρ̂n}
and P̂′ = {ρ̂ ′n} and two sequences of Hamiltonians Ĥ = {Ĥn}, Ĥ ′ = {Ĥ ′n}. Let ∗ stand for TO

or GPM. We say that P̂ can be asymptotically transformed into P̂′ by an asymptotic ∗ process at a

work rate w, which we denote by (P̂,Ĥ )
w−→
∗

(P̂′,Ĥ ′), if there exists sequences wn,ηn,εn such that

ρ̂n
wn,ηn,εn−−−−−→
∗

ρ̂ ′n for all n and such that

lim
n→∞

wn

n
= w ; lim

n→∞

ηn

n
= 0 ; and lim

n→∞
εn = 0 . (40)

The spectral rates are monotones under asymptotic transformations:

Proposition 5 (Monotonicity of spectral rates [41]). Consider two sequences of states P̂ = {ρ̂n}
and P̂′ = {ρ̂ ′n} and two sequences of Hamiltonians Ĥ = {Ĥn}, Ĥ ′ = {Ĥ ′n}. Define the sequences

of Gibbs weight operators Σ̂ = {e−β Ĥn} and Σ̂′ = {e−β Ĥ′n}. Let w ∈ R be such that P̂
w−→
∗

P̂′ where ∗
may stand for either TO or GPM. Then

S(P̂‖ Σ̂)+βw > S(P̂′ ‖ Σ̂′) ; and S(P̂‖ Σ̂)+βw > S(P̂′ ‖ Σ̂′) . (41)

Proof. This follows by applying Proposition 4 and taking the asymptotic limit using the expres-
sions (33) of the asymptotic divergences.

The monotonicity of the spectral rates implies that if a transformation is reversible at a given
work cost rate, then that rate is necessarily optimal:

Proposition 6. Consider two sequences of states P̂ = {ρ̂n} and P̂′ = {ρ̂ ′n} and two sequences of

Gibbs weight operators Σ̂ = {e−β Ĥn} and Σ̂′ = {e−β Ĥ′n}. Then if w ∈ R is such that P̂
w−→
∗

P̂′ and

P̂′
−w−−→
∗

P̂, then for all w′ < w, P̂
✓
✓✓w′−→
∗

P̂′.

This is an expression of the second law of thermodynamics, or Kelvin’s principle, which states
that one cannot extract a positive amount of work from a single heat bath by a cyclic protocol.

B. State convertibility by thermal operations

We now describe our main theorem for state convertibility by thermal operations. We first derive
a sufficient condition for state conversion which is applicable to non-asymptotic cases. We then take
the asymptotic limit and obtain a necessary and sufficient condition for asymptotic state conversion.
The proofs of these theorems will be provided in the next subsection because of their technical
nature.

First, we provide a new sufficient criterion for when a general non-semiclassical state can be
approximately reversibly converted to the thermal state using thermal operations. Because ther-
mal operations cannot create superpositions of energy eigenstates, arbitrary state transformations
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generally require a source of coherence. Here, we show that for any state whose min- and max-
divergences are close, only a small source of coherence is needed to carry out a transformation to
Gibbs state.

Theorem 1. Let ρ̂ be any quantum state on a system with Hamiltonian Ĥ, and denote by ∆(Ĥ)
the spectral range of Ĥ, i.e., the difference between the maximum and minimum eigenvalue of Ĥ.

Let γ̂ ′′ = 1 be the trivial thermal state on a trivial system with Hilbert space C with Hamiltonian

Ĥ ′′ = 0. Let 0 6 ε < 1/100. Suppose that there exists S ∈R and ∆ > 0 such that

Sε
∞(ρ̂ ‖e−β Ĥ)6 S+∆ ; and Sε

0(ρ̂ ‖e−β Ĥ)> S−∆ . (42)

Let δ > 0, q > 2, and m = ⌈∆(Ĥ)/δ⌉. Then we have

ρ̂
w=β−1(−S+∆)+δ+β−1 ln(2m2(36/ε)3) , η=3q2δ , ε̄=11

√
ε+2/q−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

TO
γ̂ ′′ , (43)

and

γ̂ ′′

w′=β−1(S+∆)+δ+β−1 ln(2qm3)+16q(∆+βδ+ln(2m))2/(β 2δ ) ,
η ′=32q3(∆+βδ+ln(2m))2/(β 2δ ) ,

ε̄ ′=10
√

ε+7/(2q)+m2e−(∆+βδ+ln(m))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
TO

ρ̂ . (44)

Theorem 1 allows us to prove the emergence of a thermodynamic potential in the macroscopic
regime. That is, there is a single quantity that characterizes exactly when a transformation by an
asymptotic thermal operation is possible.

Theorem 2. For sequences of states P̂ = {ρ̂n}, P̂′ = {ρ̂ ′n} and sequences of Hamiltonians Ĥ =

{Ĥn}, Ĥ ′ = {Ĥ ′n}. Suppose that the spectral rates collapse for these states into a single monotone,

i.e.:

S(P̂‖ Σ̂) = S(P̂‖ Σ̂) =: S(P̂‖ Σ̂) ; S(P̂′ ‖ Σ̂′) = S(P̂′ ‖ Σ̂′) =: S(P̂′ ‖ Σ̂′) , (45)

with the sequences Σ̂ = {e−β Ĥn} and Σ̂′ = {e−β Ĥ′n}. Then

P̂
β−1[S(P̂′ ‖ Σ̂′)−S(P̂‖ Σ̂)]−−−−−−−−−−−−−→

TO
P̂′. (46)

Equivalently, P̂−→
TO

P̂′ if and only if S(P̂‖ Σ̂)> S(P̂′ ‖ Σ̂′).

Crucially, these theorems are applicable even if the state is fully quantum. On the other hand,
if the state is semiclassical, i.e., if it is block-diagonal in the energy basis, then the condition for
state convertibility in Theorem 1 reduces to the known conditions of Refs. [9, 10] in terms of state
preparation and work distillation as characterized, e.g., by thermo-majorization. In such cases, no
source of coherence is required.

Indeed, for semiclassical states, the min-divergence quantifies the amount of work that can be
extracted from a state when transforming it to the thermal state and the max-divergence quantifies
the amount of work that is required to prepare the state out of the thermal state. If these divergences
collapse, the state is reversibly convertible to and from the thermal states. For quantum states that
are not semiclassical, the proof cannot proceed in the same way: Preparing a general state ρ̂ starting
from the thermal state requires an external source of coherence, and thus the work requirement of
state preparation cannot be given by the max-divergence in same way as for semiclassical states.
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For the proof of Theorem 1 we need the fact that the min and the max divergences collapse approx-
imately in order to conclude that the state can be approximately reversibly transformed to and from
the thermal state.

Theorem 2 generalizes and unifies several known situations. For i.i.d. states and Gibbs-
preserving maps, our theorem reproduces the results of Ref. [65]. In the case of a trivial Hamilto-
nian, we recover the results of Ref. [66]. Our theorem also provides a concrete application of the
general results provided in Refs. [15–17], in the context of the axiomatic thermodynamic framework
of Lieb and Yngvason [2, 35].

We note that reversibility only applies to the leading order of the work cost rate and coherence
rate. Consider two sequences of states P̂, P̂′ that satisfy S(P̂‖ Σ̂) = S(P̂‖ Σ̂) = S(P̂′ ‖ Σ̂) = S(P̂′ ‖ Σ̂),
which are asymptotically reversibly interconvertible thanks to Theorem 2. It is still in general nec-
essary to invest a sublinear amount of work and coherence in the transformation P̂→ P̂′ which
cannot be recovered in general in the reverse transformation P̂′→ P̂. In our definition of an asymp-
totic transformation (Definition 7) we deliberately allow sublinear work and coherence costs for
this reason, noting that these quantities are negligible with respect to the overall work cost of the
transformation.

C. Proof of Theorems 1 and 2

Here we provide the proof of Theorem 1 and its asymptotic counterpart, Theorem 2. We pro-
ceed in sequential steps through several lemmas: Theorem 1 is proved through Section III C 1 to
Section III C 4, and Theorem 2 is proved in Section III C 5.

In order to simplify the notation and ease readability, we omit the hat symbols on operators in
this subsection.

1. Discretizing the Hamiltonian

The first simplification that we do is to change the Hamiltonian from H to a slightly different
Hamiltonian H ′ where the eigenvalues are “coarse-grained” into blocks. That is, given δ > 0, we
subdivide the spectrum of H into m = ⌈∆(H)/δ⌉ bins of width δ , where ∆(H) is the spectral range
of H , and we then clamp all eigenvalues in the bin to a single value which is a multiple of δ . This
yields a Hamiltonian H ′ with [H,H ′] = 0 and ‖H−H ′‖∞ 6 δ . Furthermore, H ′ only has m distinct
eigenvalues, which we denote by {Ek}; let also {Pk} denote the projectors onto the corresponding
eigenspaces. We may thus write

H ′ =
m−1

∑
k=0

Ek Pk , (47)

with Ek = (k+ k0)δ for some fixed k0 ∈ Z.
Physically, the transformation H→H ′ can be done by turning on a perturbation of magnitude at

most δ . Furthermore, the perturbation commutes with the original Hamiltonian.
We note that e−βH 6 e−βH′+βδ and e−βH′ 6 e−βH+βδ , where the operator inequalities hold

because both sides commute with each other. This implies that, for any ρ and for any ε > 0, we
have

Sε
1/2(ρ ‖e−βH′)> Sε

1/2(ρ ‖e−βH)−βδ ; (48)

Sε
∞(ρ ‖e−βH′)6 Sε

∞(ρ ‖e−βH)+βδ ; (49)
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We also define the dephasing operation for any Hermitian operator X as a pinching in the energy
blocks:

DH′(X) = ∑
k

PkXPk . (50)

The following proposition asserts that this perturbation HS → H ′S can be carried out with a
(0,(q2 + 1)δ )-work/coherence-assisted thermal operation, for any value of q > 0 which impacts
the accuracy of the process as 1/q.

Proposition 7. Consider a system S with Hamiltonian HS and a copy S′ ≃ S with a Hamiltonian

H ′S′ . Suppose that [H ′S′, idS→S′(HS)] = 0 and let δ > 0 such that
∥∥idS→S′(HS)−H ′S′

∥∥
∞
6 δ . Then for

any q > 0 there exists a (0,(q2 +1)δ )-work/coherence-assisted transformation ΦS→S′ such that for

any state ρSR (with any reference system R), we have

D(ρSR,ΦS→S′(ρSR))6
1
q
. (51)

Proof. Let |k〉S be a simultaneous eigenbasis of idS′→S(H
′
S′) and of HS, and write |k〉S′ =

idS→S′(|k〉S). Then HS|k〉S = Ek|k〉S and H ′S′|k〉S′ = E ′k|k〉S′ for corresponding eigenvalues Ek

and E ′k including multiplicities, i.e., the Ek (resp. E ′k) need not be all different. The condition
‖idS→S′(HS)−H ′S′‖∞ 6 δ implies that |Ek−E ′k|6 δ .

Let L := q2δ . Let C, C′ be a particle on the intervals [0,L], [−δ ,L + δ ] in R, respectively,
which are described by the Hilbert spaces L2([0,L]), L2([−δ ,L+δ ]). There are natural embeddings
L2([0,L]) ⊂ L2([−δ ,L+δ ])⊂ L2(R).

Let χI(x) be the indicator function for a closed interval I ⊂ R. We define the Hamiltonians of
C and C′ by HC := xχ[0,L](x) and HC′ := xχ[−δ ,L+δ ](x), which are regarded as self-adjoint operators
acting on L2([0,L]) and L2([−δ ,L+δ ]), respectively. Obviously, ‖HC‖∞ = L, ‖HC′‖∞ = L+δ .

We also define the initial state of C by ζ (x) := χ[0,L](x)/
√

L ∈ L2([0,L]). We can also regard
ζ (x) as an element of L2([−δ ,L+δ ]), for which we use the same notation.

For a ∈ R with |a| 6 δ , we define the translation operator V (a) : L2([0,L])→ L2([−δ ,L+ δ ])
by V (a)ϕ(x) := ϕ(x−a). This is an isometry, where its adjoint V (a)† is defined on L2([−δ ,L+δ ])
by V (a)†ψ(x) = χ[0,L](x)ψ(x+a) for ψ(x) ∈ L2([−δ ,L+δ ]), because

∫ L+δ

−δ
ψ∗(x)ϕ(x−a)dx =

∫ L

0
ψ∗(x+a)ϕ(x)dx. (52)

Now we define the isometry

VSC→S′C′ := ∑
k

|k〉S′〈k|S⊗V (Ek−E ′k). (53)

We can show that VSC→S′C′(HS +HC) = (H ′S′+HC′)VSC→S′C′ by acting with VSC→S′C′ on |k〉S⊗ϕ(x)
for any ϕ(x) ∈ L2([0,L]). Then, we define the CP and trace-nonincreasing map

ΦS→S′(·) := trC′
[
|ζ 〉〈ζ |VSC→S′C′ ((·)⊗|ζ 〉〈ζ |)V

†
SC←S′C′

]
. (54)

By construction, ΦS→S′ is a (0,(q2 +1)δ )-work/coherence-assisted thermal operation.
Let ρSR be any state with any reference system. Without loss of generality, assume that ρSR is in

fact a pure state (or consider a larger reference system R; the statement will still hold because trace
distance can only decrease under partial trace). We remark that the fidelity and the trace distance can
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be defined for infinite-dimensional and Hilbert spaces, and satisfy the same fundamental properties
as in finite dimensions [67, 68]. Then, with ρS′R = idS→S′(ρSR),

F2(VSC→S′C′(|ρ〉SR⊗|ζ 〉), |ρ〉S′R⊗|ζ 〉)
> Re

{
(〈ρ |S′R⊗〈ζ |)VSC→S′C′ (|ρ〉SR⊗|ζ 〉)

}

= ∑
k

Re
{[
〈ρ |S′R |k〉S′〈k|S |ρ〉SR

]
〈ζ |V (Ek−E ′k) |ζ 〉

}

= ∑
k

〈k|SρS|k〉S 〈ζ |V (Ek−E ′k) |ζ 〉 , (55)

where the term on C is real because ζ (x) is real. We can calculate for |a|6 δ

〈ζ |V (a) |ζ 〉=
∫

R

dxζ (x)ζ (x−a) > 1− δ

L
. (56)

Hence, since |Ek−E ′k|6 δ ,

(55) >
(

1− δ

L

)
∑
k

〈k |ρ |k〉> 1− δ

L
. (57)

Recalling that D(ρ ,ρ ′)6
√

1−F2(ρ ,ρ ′), and that the fidelity can only increase under partial trace,
we have

D(ΦS(ρSR),ρSR)6

√
δ

L
.

2. Manipulating coherence in the state

For any state ρ on any system with any Hamiltonian H , we can decompose ρ into modes of
coherence [46] as

ρ =∑
ω

ρ (ω) , (58)

where ρ (ω) are general operators satisfying

e−iHt ρ (ω)eiHt = e−iωtρ (ω) , (59)

for all t. The ρ (ω) are simply the off-diagonal elements of ρ that connect two energy levels that
differ by ω . For the Hamiltonian H ′ constructed in (47), with only energies that are multiples of
δ , we have that the ω in (58) range over all possible differences of energies in H ′, i.e., over all
multiples of δ .

The following lemma states that if the large coherence modes in the state are suppressed, then
it is possible to carry out the dephasing operation by mixing only a few differently time-evolved
versions of ρ .

Lemma 2. Let ρ be any state on any system with a Hamiltonian H ′ whose energies are multiples of

δ as in (47). Let ρ (ω) denote the coherence modes in the decomposition of ρ as above. Let K′ > 0.

Suppose that there exists ξ > 0 such that for all k with |k|> K′ we have

∥∥ρ (kδ )
∥∥

1 6 ξ . (60)
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Define

ρ̄ =
1
K′

K′−1

∑
n=0

e−
2πin
K′δ H′ρe

2πin
K′δ H′ . (61)

Then, if m denotes the number of distinct eigenvalues of H ′, we have that

D(ρ̄,DH′(ρ))6
1
2

mξ . (62)

Proof. For any t > 0, we write

ρ(t) = e−iH′t ρ eiH′t , (63)

such that

ρ̄ =
1
K′

K′−1

∑
n=0

ρ

(
2πn

K′δ

)
. (64)

Recall that ω in the modes decomposition of ρ is a multiple of δ and ranges over all off-diagonals
of ρ ; i.e., ω = kδ for k =−m+1, . . . ,m−1. Furthermore, we may split the sum over the modes as
a sum over modes in k = −K′+ 1, ...,K′− 1 and a separate sum over the higher order modes. We
can thus calculate:

ρ̄ =
1
K

∑
ω

K′−1

∑
n=0

e−iω 2πn
K′δ ρ (ω)

=
1
K

K′−1

∑
k=−K′+1

(
K′−1

∑
n=0

e−2πi nk

K′

)
ρ (kδ )+ ∑

|k|>K′

1
K

K′−1

∑
n=0

e−2πi nk

K′ ρ (kδ )

=
1
K

K′−1

∑
k=−K′+1

δk,0 ρ (kδ )+ ∑
|k|>K′

1
K

K′−1

∑
n=0

e−2πi nk
K′ ρ (kδ )

= DH′(ρ)+G , (65)

where we recall that DH′(ρ) = ρ (ω=0) and where we have defined G as the second sum in the
before-to-last line. We can bound the norm of G as follows:

∥∥G
∥∥

1 6 ∑
|k|>K′

1
K

K′−1

∑
n=0

∥∥ρ (kδ )
∥∥

1 6 mξ , (66)

where m is a crude upper bound for the total number of terms in the first sum, and where each
term ‖ρ (kδ )‖1 is individually bounded thanks to the assumption (60). We may conclude that ρ̄ and
DH′(ρ) are close in trace distance:

D
(
ρ̄ ,DH′(ρ)

)
=

1
2

∥∥ρ̄−DH′(ρ)
∥∥

1 6
1
2

mξ .

Importantly, the min- and max-divergences are only known to quantify the extractable work and
the work cost of formation for semiclassical states, i.e., those that commute with the Hamiltonian.
For states that are not semiclassical, we need a more general statement. Here, we show a lemma
that shows that the min- and max-divergences also accurately quantify the extractable work and
the work cost of formation for general quantum states, as long as their large coherence modes are
suppressed.
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Lemma 3. Let ρ be any quantum state on a system with a Hamiltonian H ′ whose energies are

multiples of δ as in (47), and let c > βδ . Let γ̂ ′′ = |0〉〈0| be the thermal state of a trivial system with

Hamiltonian H ′′ = 0 as in Theorem 1. Suppose that there exists ξ ′ > 0 such that for any k,k′ with

β |Ek−Ek′ |> c we have

∥∥Pk ρ Pk′
∥∥

1 6 ξ ′ . (67)

Then, for any ε ′ > m2ξ ′, we have

ρ
β−1[−S1/2(ρ ‖e−βH′ )+ln(m(6/ε ′)6)], 0, ε ′

−−−−−−−−−−−−−−−−−−−−−−−→
TO

γ ′′ . (68)

Conversely, for any integer q > 0, we have

γ ′′
β−1S∞(ρ ‖e−βH′ )+4qc2/(β 2δ )+β−1 ln(qm2), 4q(q2+2)c2/(β 2δ ), 3/(2q)+mξ ′/2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

TO
ρ . (69)

Proof. First, note that (67) asserts that the coherence modes ρ (ω) of ρ are small for large ω . More
precisely: Let K = ⌈c/(βδ )⌉, such that (|k− k′| > K)⇒ (β |Ek−Ek′| > c). Then for all ω = kδ
such that |k|> K, we have

∥∥ρ (ω)
∥∥

1 6 mξ ′ , (70)

because the coherence modes are simply the combination of all the blocks in the k-th off-diagonal of
ρ , whose individual norm is bounded by our assumption (67). We may invoke Lemma 2 to deduce
that

D
(
ρ̄,DH′(ρ)

)
6

1
2

m2ξ ′ , (71)

where ρ̄ is defined in Lemma 2 with K′ = K and ξ = mξ ′.
Work extraction from ρ . Now we construct a strategy to transform ρ into the trivial thermal state

γ ′′. First, we decohere the state in the energy blocks, effecting the transformation ρ→DH′(ρ) at no
work nor coherence cost (this can be done by averaging over time, which is a thermal operation).
Then we apply the incoherent work extraction protocol (Proposition 15 in Appendix B) to transform
DH′(ρ)→ γ ′′ with an error parameter ε ′ > m2ξ ′, while extracting an amount of work equal to

Sε ′
0 (DH′(ρ)‖e−βH′), and at no coherence cost. Hence, we have ρ

−β−1Sε ′
0 (DH′(ρ)‖e−βH′ ), 0, ε ′−−−−−−−−−−−−−−−−−→

TO
γ ′′.

Using Proposition 2, observe that

Sε ′
0 (DH′(ρ)‖e−βH′)> S

ε ′/2
1/2 (DH′(ρ)‖e−βH′)−6ln

(
3(ε ′/2)−1)

> S1/2(ρ̄ ‖e−βH′)−6ln
(
6ε ′−1) , (72)

since ρ̄ is a candidate in the optimization that defines the smooth min-divergence. Then we invoke
the property of the fidelity that F(A+B,C)6 F(A,C)+F(B,C) (cf. [69, Lemma 4.9]), to see that

S1/2(ρ̄ ‖e−βH′) =−2lnF
(
ρ̄,e−βH′)

>−2ln
K−1

∑
n=0

F

(
1
K

ρ
(2πn

Kδ

)
,e−βH′

)

=−2ln
K−1

∑
n=0

1√
K

F
(

ρ ,e−βH′
)

=− ln(K)+S1/2(ρ ‖e−βH′) . (73)
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With the crude bound K 6 m we finally see that

Sε ′
0 (DH′(ρ)‖e−βH′)> S1/2(ρ ‖e−βH′)− ln

(
m(6/ε ′)6) , (74)

which shows (68).
Formation of the state ρ . We now devise a procedure to construct the state ρ starting from the

trivial thermal state γ ′′. In the following, we refer to the system as S, and write ρ and H ′ as ρS and
H ′S.

The full protocol consists in three steps. The strategy will be to prepare a completely incoherent
state DH′S+HC

(ρS⊗ηC) on the system S along with an ancilla system C in such a way that the system
C serves as a reference frame that can be used to induce coherence in S. Then, in the second and
third steps, we “externalize” the reference frame by using C to “induce” the necessary coherence
modes in S [70].

Let q > 0 be an integer. Let C be an ancilla system of dimension dC = qK2 and with a Hamilto-
nian consisting of evenly δ -spaced levels, i.e., HC = ∑

dC−1
ℓ=0 ℓδ |ℓ〉〈ℓ|C. Define the state ηC = |η〉〈η |C

by

|η〉C =
1√
dC

dC−1

∑
ℓ=0
|ℓ〉C . (75)

By DH′S+HC
we will denote the joint dephasing operation on S and C, i.e., the dephasing in the

common global energy eigenspaces of H ′S +HC.
In the first step of the protocol, starting from the trivial thermal state on S⊗C, we prepare the

state DH′S+HC
(ρS⊗ηC) at a cost given by the max-divergence

S∞(DH′S+HC
(ρS⊗ηC)‖e−β(H′S+HC)) . (76)

We can bound this as follows. The max-divergence can only decrease under the dephasing opera-
tion; we have e−β(H′S+HC) = e−βH′S ⊗ e−βHC > e−βdCδ e−βH′S ⊗ IC because HC 6 dCδ IC with IC being
the identity operator of C; finally, the max-divergence is additive for tensor product states. This
gives us

(76) 6 S∞(ρS⊗ηC ‖e−β(H′S+HC))

6 S∞(ρS⊗ηC ‖e−βH′S ⊗ IC)+βdCδ

= S∞(ρS ‖e−βH′S)+βdCδ , (77)

noting that S∞(ηC ‖ IC) = 0 because ηC is a pure state. Therefore:

γ ′′
β−1S∞(ρS ‖e

−βH′
S )+dCδ , 0, 0−−−−−−−−−−−−−−−−→

TO
DH′S+HC

(ρS⊗ηC) . (Formation protocol, Step I)

The next steps are to “consume” C in order to induce ρS on the system S (we need to externalize
the reference frame). This is done as follows.

In preparation for the further steps, we first note that if we post-select the reference frame in
being in the state |η〉C, then we induce the correct state on S, approximately. This is shown as
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follows:

〈η |C DH′S+HC
(ρS⊗ηC) |η〉C = ∑

ω ,ω ′
trC

{
ρ
(ω)
S ⊗

(
η
(−ω)
C η

(ω ′)
C

)}

= ∑
ω

tr
(
η
(−ω)
C η

(ω)
C

)
ρ
(ω)
S

= ∑
k

1
dC

(
1− |k|

dC

)
ρ
(kδ )
S

=
1

dC

(
ρS−∑

k

|k|
dC

ρ
(kδ )
S

)
, (78)

where we used the fact that tr(A(ω)B(ω ′)) = 0 unless ω = −ω ′, and that tr
(
η
(−kδ )
C η

(kδ )
C

)
= (dC−

|k|)/d2
C since η

(kδ )
C is the matrix of all zeros except for the k-th off-diagonal in which all entries are

equal to 1/dC. Then

1
2

∥∥∥ρS−dC〈η |C DH′S+HC
(ρS⊗ηC) |η〉C

∥∥∥
1
=

1
2

∥∥∥∥∑
k

|k|
dC

ρ
(kδ )
S

∥∥∥∥
1

6
1
2

∥∥∥∥ ∑
|k|<K

|k|
dC

ρ
(kδ )
S

∥∥∥∥
1
+

1
2 ∑
|k|>K

|k|
dC

∥∥ρ
(kδ )
S

∥∥
1

6
1
2

∥∥∥∥ ∑
|k|<K

|k|
dC

ρ
(kδ )
S

∥∥∥∥
1
+

1
2

m2ξ ′ , (79)

where in the last line we used (70). Let M(K) be the matrix in which the k-th off-diagonal is filled
with the entries equal to |k|, up to the (K− 1)-th off-diagonal, and the remaining matrix elements
are zero. Then we note that

∑
|k|<K

|k|ρ (kδ )
S = M(K) ∗ρS , (80)

where A ∗B denotes the Hadamard (entry-wise) product. We note that ‖A∗B‖1 6 ‖A‖∞‖B‖1, and
that ‖M(K)‖∞ 6 K2 (Suppl. Lemmas 3 and 4 of [59], originally from [71]). Hence, ‖M(K) ∗ρS‖1 6

K2 and we finally have

1
2

∥∥∥ρS−dC〈η |C DH′S+HC
(ρS⊗ηC) |η〉C

∥∥∥
1
6

K2

2dC

+
1
2

mξ ′ 6
1

2q
+

1
2

m2ξ ′ . (81)

We also note that |η〉C passes through orthogonal states for each time steps 2π/(dCδ ). Actually,

for n = 0, . . . ,dC−1, the set
{
|n〉C

}
n

forms an orthonormal basis of C, where |n〉C = e
−i 2πn

dCδ HC |η〉C.
Indeed,

〈η |ei 2πn
dCδ HCe

−i 2πn′
dCδ HC |η〉C =

1
dC

dC−1

∑
ℓ,ℓ′=0

〈ℓ′ |ei
2π(n−n′)

dCδ HC |ℓ〉C

=
1

dC

dC−1

∑
ℓ=0

e
i

2π(n−n′)ℓ
dC = δn,n′ . (82)

Step 2 of our protocol consists in flattening the Hamiltonian of C so that we can perform nontriv-
ial unitaries without worrying about coherences. From the state DH′S+HC

(ρS⊗ηC) with Hamiltonian
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H ′S +HC, we “flatten” the Hamiltonian of the ancilla system C using [57, Lemma 8.1] and consum-
ing an additional ancilla C′ of dimension dC(q

2 + 2), with the Hamiltonian HC′′ being bounded as
‖HC′‖ 6 dC(q

2 +2)δ and with the original state surviving up to precision 1/q. That is, we achieve
the following Hamiltonian transformation

(
DH′S+HC

(ρS⊗ηC) ; H ′S +HC

)
0, dC(q

2+2)δ , 1/q−−−−−−−−−−→
TO

(
DH′S+HC

(ρS⊗ηC) ; H ′S +(∆(HC)/2)IC
)
.

(Formation protocol, Step II)

Finally, in Step 3 we carry out the following energy-conserving unitary controlled on the system
C:

USC =
dC−1

∑
n=0

e
i 2πn

dCδ H′S ⊗|n〉〈n|C , (83)

and we then use Landauer erasure to reset C to a pure state and to trace it out.
Note that e−iH′St DH′S+HC

(ρS ⊗ ηC)eiH′St = e−iH′St ei(H′S+HC)t DH′S+HC
(ρS ⊗ ηC)e−i(H′S+HC)t eiH′St =

eiHCt DH′S+HC
(ρS⊗ηC)e−iHCt because the dephased state is invariant under time evolution. Then,

the application of the unitary USC to DH′S+HC
(ρS⊗ηC), and tracing out C, yields

trC

[
USCDH′S+HC

(ρS⊗ηC)U
†
SC

]
=

dC−1

∑
n=0

(
e

i 2πn
dCδ

H′S ⊗〈n|
)
DH′S+HC

(ρS⊗ηC)
(
e
−i 2πn

dCδ
H′S ⊗|n〉

)

=
dC−1

∑
n=0
〈n|C e

−i 2πn
dCδ

HC
DH′S+HC

(ρS⊗ηC)e
i 2πn

dCδ
HC |n〉C

= dC〈η |C DH′S+HC
(ρS⊗ηC) |η〉C . (84)

Recalling (81), we know that this state is close to the required ρS. Noting that we need β−1 ln(dC)
work to reset C to a pure state, we find:

(
DH′S+HC

(ρS⊗ηC) ; H ′S +(∆(HC)/2)IC
)

β−1 ln(dC),0,1/(2q)+mξ ′/2−−−−−−−−−−−−−−−→
TO

(
ρS ; H ′S

)
.

(Formation protocol, Step III)

Note that the final uniform Hamiltonian on the system C can be restored to the original Hamiltonian
at no work or coherence cost, by keeping the state of C at a pure state of constant energy and
changing the other levels to match those of the original Hamiltonian HC.

Combining together these three steps, we see that

γ ′′
β−1S∞(ρS ‖e

−βH′
S )+qK2δ+β−1 ln(qK2), qK2(q2+2)δ , 3/(2q)+m2ξ ′/2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

TO
ρS . (85)

Recalling K = ⌈c/(βδ )⌉ 6 2c/(βδ ) while assuming c > βδ , we obtain (69).

3. Collapse of the min and max divergences suppresses coherence

Here we show that the difference between (alternative) min-divergence and the max-divergence
is a quantity that provides a characterization of how much coherence there is in the state. Namely,
if the divergences do not differ by more than 2∆′, then the one-norm of off-diagonal energy blocks
Pkρ̂Pk′ is exponentially suppressed in |Ek−Ek′| as long as |Ek−Ek′ |& ∆′.
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Lemma 4. Let ρ be a quantum state. Suppose there are S ∈ R and ∆′ > 0 such that

S∞(ρ ‖e−βH′)6 S+∆′ ; and S1/2(ρ ‖e−βH′)> S−∆′ . (86)

Then for any k,k′, we have

‖PkρPk′‖1 6 e−β |Ek−Ek′ |/2+∆′ . (87)

Proof. Using Hölder’s inequality, we have
∥∥PkρPk′

∥∥
1 6

∥∥Pkρ1/2
∥∥

1

∥∥Pk′ρ
1/2
∥∥

∞
. (88)

By definition of the Rényi-1/2 divergence, we have for any k,

S1/2(ρ ‖e−βH′) =−2ln tr
√

ρ1/2e−βH′ρ1/2

6−2ln
[
e−βEk/2 tr

√
ρ1/2Pkρ1/2

]

= βEk−2ln
∥∥Pkρ1/2

∥∥
1 , (89)

and hence
∥∥Pkρ1/2

∥∥2
1 6 exp

{
−S1/2(ρ ‖e−βH′)+βEk

}
6 exp

{
−S+∆′+βEk

}
. (90)

On the other hand, we have

∥∥Pk′ρ
1/2
∥∥2

∞
=
∥∥Pk′ρPk′

∥∥
∞
6 eS∞(ρ ‖e−βH′ )

∥∥Pk′e
−βH′Pk′

∥∥
∞
6 exp

{
S+∆′−βEk′

}
, (91)

recalling that the square of the largest singular value of a matrix A is the maximum eigenvalue of
AA†. Putting these together, and noting that the same argument holds if we exchange k and k′, we
obtain

∥∥PkρPk′
∥∥

1 6 e−β |Ek−Ek′ |/2+∆′ , (92)

as claimed.

4. Proof of Theorem 1

Finally, we can prove Theorem 1. If the smooth min and max Rényi divergences coincide ap-
proximately, we use the above lemmas to conclude that there exist protocols for work distillation and
state formation with approximately matching work costs. The difficult part of the proof is to show
that there is a single state that is a good enough smoothing candidate simultaneously in both (16a)
and (16b).

Proof. First, we need to connect the assumption on the smoothed entropy measures to a specific
state which has a small gap between its non-smoothed min and max-divergences. Our specific goal
below is to construct a state ρ̃ that satisfies the conditions of Lemma 4 and is sufficiently close to ρ .

Because H ′ 6 H +δ and H 6 H ′+δ , we have

Sε
1/2(ρ ‖e−βH′)> Sε

1/2(ρ ‖e−βH)−βδ > Sε
0(ρ ‖e−βH)−βδ > S−∆−βδ ;

Sε
∞(ρ ‖e−βH′)6 Sε

∞(ρ ‖e−βH)+βδ 6 S+∆+βδ . (93)
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Both protocols, work extraction and state formation, start by shifting the Hamiltonian H → H ′,
and at the end shifting the Hamiltonian back H ′→ H . Thanks to Proposition 7, this can be done at
a cost in the total coherence parameter of (q2 +1)δ and at a precision cost 1/q in each way.

Let ρ ′ be the optimal subnormalized quantum state for Sε
1/2(ρ ‖e−βH′) = S1/2(ρ

′ ‖e−βH′), satis-
fying D(ρ ,ρ ′)6 ε and tr(ρ ′)> 1− ε .

Let γ ′ = e−βH′/ tr(e−βH′) and write

S2ε
∞ (ρ ′ ‖γ ′) = min ln(α)

s.t. : ρ ′′ 6 αγ ′

D(ρ ′′,ρ ′)6 2ε .

> min ln(α)
s.t. : ρ ′ 6 αγ ′+F

tr(F)6 2ε and F > 0 .

(94)

Let α , F denote optimal choices in the last optimization. Let

G = γ ′1/2(γ ′+α−1
DH′(F)

)−1/2
, (95)

where DH′(·) denotes the dephasing operation in the eigenspaces of H ′. Then, using the pinching
inequality, and because G commutes with time evolution,

Gρ ′G† 6 G
(
αγ ′+F

)
G† 6 mDH′

[
G
(
αγ ′+F

)
G†]= mGDH′

[
αγ ′+F

]
G†

= mG
(
αγ ′+DH′ [F ]

)
G† = mα γ ′ , (96)

and thus S∞(Gρ ′G† ‖γ ′)6 ln(m)+ ln(α)6 ln(m)+S2ε
∞ (ρ ′ ‖γ ′). Shifting back the normalization of

the second argument gives

S∞(Gρ ′G† ‖e−βH′)6 ln(m)+S2ε
∞ (ρ ′ ‖e−βH′)6 ln(m)+Sε

∞(ρ ‖e−βH′)

6 S+∆+βδ + ln(m) , (97)

because the optimal state in the last max-divergence is a candidate in the optimization for
S2ε

∞ (ρ ′ ‖e−βH′). Also, taking the trace of the constraint ρ ′ 6 αγ ′+F we obtain α > 1− 4ε , and
then using [54, Lemma A.4], we have P(Gρ ′G†/ tr(ρ ′),ρ ′/ tr(ρ ′)) 6

√
2tr(α−1D [F ])/ tr(ρ ′) 6

2
√

ε/[(1−4ε)(1− ε)] 6 4
√

ε (using ε 6 1/8), where P(σ ,σ ′) :=
√

1−F(σ ,σ ′)2 > D(σ ,σ ′)
is the purified distance for σ ,σ ′ ∈ S (H ). Hence, D(Gρ ′G†/ tr(ρ ′),ρ ′/ tr(ρ ′)) 6 4

√
ε and thus

D(Gρ ′G†,ρ ′)6 4tr(ρ ′)
√

ε 6 4
√

ε .
On the other hand, we have

F
(
Gρ ′G†,γ ′

)
= tr

√
γ ′1/2Gρ ′G†γ ′1/2 =

∥∥ρ ′1/2G†γ ′1/2
∥∥

1 6
∥∥ρ ′1/2γ ′1/2

∥∥
1

∥∥γ ′−1/2G†γ ′1/2
∥∥

∞
, (98)

using Hölder’s inequality. Conveniently, [G,γ ′] = 0 by construction, and thus also [G,γ ′1/2] = 0 and
[G,γ ′−1/2] = 0, and

∥∥γ ′−1/2G†γ ′1/2
∥∥

∞
=
∥∥G
∥∥

∞
6 1, since G is a contraction (because G†G 6 I).

Hence

S1/2(Gρ ′G† ‖γ ′) =− lnF2(Gρ ′G†,γ ′
)
>− lnF2(ρ ′,γ ′

)
= S1/2(ρ

′ ‖γ ′) , (99)

and thus

S1/2(Gρ ′G† ‖e−βH′)> S1/2(ρ
′ ‖e−βH′) = Sε

1/2(ρ ‖e−βH′)> S−∆−βδ . (100)

Finally, we define

ρ̃ =
Gρ ′G†

tr
(
Gρ ′G†

) . (101)



25

We have tr(Gρ ′G†)> 1− ε−4
√

ε > 1−5
√

ε , and thus

D
(
ρ̃,Gρ ′G†)= 1− tr

(
Gρ ′G†)6 1− (1− ε−4

√
ε) = ε +4

√
ε , (102)

and by a chain of triangle inequalities

D
(
ρ̃ ,ρ

)
6 D

(
ρ̃,Gρ ′G†)+D

(
Gρ ′G†,ρ ′

)
+D

(
ρ ′,ρ

)
6 2ε +8

√
ε 6 10

√
ε . (103)

We can define ∆′ = ∆+βδ + ln(m)− ln(1−5
√

ε), while noting that − ln(1−5
√

ε)6 ln(2) as
ε < 1/100. Then, the state ρ̃ satisfies

S∞(ρ̃ ‖e−βH′)6 S+∆+βδ + ln(m)− ln tr(Gρ ′G†)6 S+∆′ ; (104)

S1/2(ρ̃ ‖e−βH′)> S−∆−βδ + ln tr(Gρ ′G†)> S−∆′ . (105)

We then have ∆′ 6 ∆+βδ + ln(2m) and ∆′ > ∆+βδ + ln(m).
Then, the conditions of Lemma 4 are fulfilled, and for any k,k′, we have that

∥∥Pkρ̃Pk′
∥∥

1 6 exp
(
−|k− k′|βδ +∆′

)
. (106)

Now, for any r > 1 we set c = r∆′. For any k,k′ with |k− k′|βδ > c, Equation (106) tells us that∥∥Pkρ̃Pk′
∥∥

1 6 e−(r−1)∆′ =: ξ ′. We set r = 2 in the following for convenience.
The conclusions of Lemma 3 apply to the interconversion of ρ̃ to and from the thermal state.
Distilling work from ρ . Work can be distilled, i.e., the transition ρ → γ ′′ is possible, with the

parameters (we have set ε ′ =
√

ε in Lemma 3)




w = β−1 [−S+∆]+δ +β−1 ln(2m2(36/ε)3)

η = 2(q2 +1)δ

ε = 11
√

ε +2/q .

(107)

Preparing the state ρ . The state ρ can be prepared, i.e., the transition γ ′′→ ρ is possible, with
the parameters





w = β−1 [S+∆]+δ +β−1 ln(2qm3)+16q(∆+βδ + ln(2m))2/(β 2δ )

η = 16q(q2 +2)(∆+βδ + ln(2m))2/(β 2δ )

ε = 10
√

ε +7/(2q)+m2e−(∆+βδ+ln(m)) .

(108)

Finally, letting q > 2, we obtain the slightly simplified parameters in Theorem 1.

5. Proof of Theorem 2

We now present the proof of Theorem 2, the main theorem of the first part of our main result.
The proof proceeds by applying Theorem 1 in the thermodynamic limit.

Proof. We use Theorem 1 to show asymptotic convertibility of P̂ (relative to Σ̂) to and from the
Gibbs state γ ′′ on a trivial system at zero energy. We write Σ̂′′ = {γ ′′} the trivial sequence of trivial
Gibbs states. For ε > 0, let

Sn,ε :=
1
2

{
Sε

∞(ρn ‖e−βHn)+Sε
0(ρn ‖e−βHn)

}
, (109)

∆n,ε := max
{

Sε
∞(ρn ‖e−βHn)−Sε

0(ρn ‖e−βHn),
√

n
}
> 0 ; (110)
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and let ∆∞,ε := limsupn→∞ ∆n,ε/n. We have

lim
ε→0

limsup
n→∞

1
n

Sn,ε = lim
ε→0

limsup
n→∞

1
2n

{
Sε

∞(ρn ‖e−βHn)+Sε
0(ρn ‖e−βHn)

}
=: S̄ ; (111)

lim
ε→0

limsup
n→∞

1
n

∆n,ε 6 max
{

lim
ε→0

limsup
n→∞

1
n

[
Sε

∞(ρn ‖e−βHn)−Sε
0(ρn ‖e−βHn)

]
,0
}
= 0 . (112)

For ε > 0 and for each n, we apply Theorem 1 with the choices S = Sn,δ , ∆ = ∆n,δ , δ = β−1∆n,ε

and q = (∆∞,ε)
−1/4. Then m = O(poly(n))/∆n,ε . Observe that ∆n,ε = O(n) and that ∆n,ε increases

at least as fast as
√

n by definition; thus m = O(poly(n)). Let wn,ε ,ηn,ε , ε̄n,ε be the parameters of the
work extraction process given by Theorem 1 for these choices. Then

lim
ε→0

limsup
n→∞

wn,ε

n
=−β−1S̄ ; lim

ε→0
limsup

n→∞

ηn,ε

n
= lim

ε→0
3(∆∞,ε )

1/2 = 0 ;

lim
ε→0

limsup
n→∞

ε̄n,ε = 0+ lim
ε→0

(∆∞,ε)
1/4 = 0 ,

and we can apply Lemma 13 in Appendix A to conclude that P̂
−β−1S̄−−−−→

TO
Σ̂′′.

For the work extraction process, we define S′n,ε , S̄′, ∆′n,ε , and ∆′∞,ε similarly. Then the parameters
w′n,ε , η ′n,ε , ε̄

′
n,ε given by Theorem 1 satisfy

lim
ε→0

limsup
n→∞

w′n,ε
n

= β−1S̄′ ; lim
ε→0

limsup
n→∞

η ′n,ε
n

= lim
ε→0

32β−2(∆′∞,ε)
−3/4∆′∞,ε = 0 ;

lim
ε→0

limsup
n→∞

ε̄ ′n,ε = 0 ,

where we used the fact that sublinear terms are suppressed, that limsupn→∞[∆
′
n,ε + βδ +

ln(amb)]/n = 2∆′∞,ε for any a,b > 0, and that limsupn→∞ m2e−(∆+δ+ln(m))/n = 0 because ∆′n,ε +
δ + ln(m) grows at least as fast as

√
n and the exponential takes over the polynomial. Thus from

Lemma 13 in Appendix A we see that Σ̂′′
β−1 S̄−−−→
TO

P̂. Combining these two processes for different

states immediately yields P̂
β−1[S(P̂′ ‖ Σ̂′)−S(P̂‖ Σ̂)]−−−−−−−−−−−−−→

TO
P̂′.

It is clear that if S(P̂‖ Σ̂)> S(P̂′ ‖ Σ̂′), then P̂−→
TO

P̂′ from the above, using Property (e) of Propo-

sition 14 in Appendix A. Also, if P̂ −→
TO

P̂′, then monotonicity of the spectral rates imply that

S(P̂‖ Σ̂)> S(P̂′ ‖ Σ̂′).

IV. COLLAPSE OF THE MIN AND MAX DIVERGENCES FOR ERGODIC STATES RELATIVE

TO LOCAL GIBBS STATES

In this section, we prove the second main theorem of our main result (Theorem 3): For any P̂

that is translation-invariant ergodic and for any local translation-invariant Gibbs state Σ̂, then we
have S(P̂‖ Σ̂) = S(P̂‖ Σ̂) = S1(P̂‖ Σ̂). Combined with Theorem 2, this implies that all such states
can be reversibly converted into one another with thermal operations and a negligible amount of
coherence.

We prove this assertion in two steps. First, we formulate a generalized version of Stein’s
lemma [25–28, 38]. We derive a sufficient condition for the min and max divergence converge
to the same value that is heavily inspired by these references. The condition is the existence of an
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operator obeying a simple set of properties, that plays the role of a typical projector. In a second
step, we prove that for ergodic states and local Gibbs translation-invariant states, this condition is
fulfilled.

A. A sufficient condition for quantum Stein’s lemma

The quantum Stein’s lemma relates to a hypothesis test between two states ρ̂n and σ̂n using a sin-
gle measurement. If we employ the optimal strategy that correctly reports ρ̂n with probability at least
η , then the probability of erroneously reporting ρ̂n decreases exponentially as exp(−nS1(ρ̂n ‖ σ̂n)),
with the rate being given by the KL divergence. This statement holds in several known cases, such
as for i.i.d. states, or if ρ̂n is ergodic and σ̂n is i.i.d. [26].

Quantum Stein’s lemma can be formulated in terms of the hypothesis testing divergence. For
sequences P̂, Σ̂, a quantum Stein’s lemma would state that for all 0 < η < 1,

S
η
H(P̂‖ Σ̂) = S1(P̂‖ Σ̂) . (113)

Because the hypothesis testing divergence is monotonic in η , and because it interpolates between
the min and max divergences [cf. Eq. (33)], we see that the hypothesis testing divergence converges
to the KL divergence as per (113), if and only if the min and max divergences converge to the KL
divergence,

S(P̂‖ Σ̂) = S(P̂‖ Σ̂) = S1(P̂‖ Σ̂) . (114)

Therefore, to prove (114) for a class of states it suffices to prove (113).
A simplest situation where the quantum Stein’s lemma holds is the i.i.d. setting, i.e., P̂ := {ρ̂⊗n}

and Σ̂ := {σ̂⊗n}. In this situation, for any 0 < η < 1,

S
η
H(P̂‖ Σ̂) = S1(ρ̂ ‖ σ̂) , (115)

and consequently,

S(P̂‖ Σ̂) = S(P̂‖ Σ̂) = S1(ρ̂ ‖ σ̂) , (116)

as was proved in [38, Theorem 2].
We now derive a sufficient condition for the convergence (113), providing a generalization of

the quantum Stein’s lemma beyond i.i.d. states.

Lemma 5. Let P̂ and Σ̂ be any sequences of states. Suppose that there exists c ∈ R such that for

any ε > 0, there exists a sequence of operators Ŵ ε
n that satisfy, for sufficiently large n,

Ŵ ε†
n Ŵ ε

n 6 Î ; (117a)

tr
[
Ŵ ε

n σ̂nŴ ε†
n

]
6 e−n(c−2ε) ; (117b)

Ŵ ε†
n ρ̂nŴ ε

n 6 en(c+2ε)σ̂n ; (117c)

lim
n→∞

Re
(
tr
[
Ŵ ε

n ρ̂n

])
= 1 . (117d)

Then, for any 0 < η < 1, we have

S
η
H(P̂‖ Σ̂) = c . (118)
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Our proof is based on tools from semidefinite programming [14, 54, 72], which imply that the
hypothesis testing divergence is equivalently expressed using two different optimizations:

S
η
H(ρ̂ ‖ σ̂) =− ln min

06Q̂6Î

tr[Q̂ρ̂ ]>η

{
η−1 tr

[
Q̂σ̂
]}

=− ln sup
µ>0, X̂>0
µρ̂6σ̂+X̂

{
µ− tr[X̂ ]

η

}
. (119)

The optimizations are called the primal problem and dual problem respectively. We note that our
proof below only requires the so-called weak duality between the minimization and the maximiza-
tion, which states that the optimal value of the minimization problem is an upper bound to the
optimal value of the maximization problem.

The reason that we have equality in (119) is that for the hypothesis testing divergence, the
stronger notion of strong duality holds, which states that both optimization problems have the same
optimal value. We note that the reason we write a supremum for the dual problem is that for η = 1,
even as strong duality holds, we are not guaranteed that the supremum is achieved by a specific
choice of µ and X̂ . In the primal problem the minimum is always achieved. This can be seen using
Slater’s conditions [72], noting that we can restrict the optimization to the support of σ̂ .

Proof of Lemma 5. Our proof proceeds by exhibiting explicit candidates in both optimizations
in (119), yielding upper and lower bounds that both converge to c as n→ ∞.

Let Q̂ε
n := Ŵ ε

n
†Ŵ ε

n . From condition (117d) and Lemma 9 (a) in Appendix A, we have

lim
n→∞

tr
[
Q̂ε

nρ̂n

]
= 1 , (120)

which implies that for any 0 < η < 1, we have tr
[
Q̂ε

nρ̂n

]
> η for sufficiently large n, and Q̂n is a

valid optimization candidate in (119). Using (117b), the value attained by this candidate is

e−S
η
H(ρ̂n ‖ σ̂n) 6 η−1 e−n(c−2ε) , (121)

and thus
1
n

S
η
H(ρ̂n ‖ σ̂n)> c−2ε +

1
n

ln(η) . (122)

By taking n→ ∞ and then ε →+0, we conclude that S
η
H(P̂‖ Σ̂)> c.

Now we consider the second optimization in (119). First, we note that using a generalization of
the Pinching inequality (Lemma B.1 of Ref. [57]),

ρ̂n 6 2
[
Ŵ ε†

n ρ̂nŴ
ε

n +(Î−Ŵ ε†
n )ρ̂n(Î−Ŵ ε

n )
]
. (123)

Let µ := e−n(c+2ε)/2 > 0 and X̂ := 2µ(Î−Ŵ ε
n

†)ρ̂n(Î−Ŵ ε
n ) > 0. From inequality (123) and con-

dition (117c), we have µρ̂ 6 σ̂ + X̂ , and hence µ , X̂ are valid optimization candidates in the max-
imization in (119). From Lemma 9 (b) in Appendix A, we have tr

[
(Î−Ŵ ε†

n )ρ̂n(Î−Ŵ ε
n )
]
→ 0 as

n→ ∞, and therefore, for sufficiently large n, we have tr
[
(Î−Ŵ ε†

n )ρ̂n(Î−Ŵ ε
n )
]
> η/4. Therefore,

for sufficiently large n,

µ− tr[X̂ ]

η
= µ

(
1− 2tr

[
(Î−Ŵ ε†

n )ρ̂n(Î−Ŵ ε
n )
]

η

)
>

µ

2
. (124)

The value attained by the maximization is then

S
η
H(ρ̂n ‖ σ̂n)6− ln

{
µ− tr[X̂ ]

η

}
6− ln

{
1
4

e−n(c+2ε)

}
. (125)

Dividing by n, taking n→ ∞ and then ε →+0, we deduce that S
η
H(P̂‖ Σ̂)6 c.
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In fact, one can see that the product of two typical projectors constructed in Ref. [28] for the
i.i.d. case satisfies the conditions (117a)–(117d) above, with c = S1(ρ̂ ‖ σ̂).

B. Formulation of ergodic states and local Gibbs states

In a second step of our main result, we consider ergodic states and local Gibbs states. Here
we show that for these states, it is possible to construct an operator that satisfies the conditions in
Lemma 5, in turn proving the collapse of the min and max divergences to the KL divergence.

The standard way to rigorously formulate ergodicity invokes infinite-dimensional C∗-
algebras [29, 30, 32]. Here, for the sake of broad readability, we introduce the relevant concepts
directly in an equivalent — albeit perhaps less elegant — formulation that does not require the use
of C∗ algebras. For completeness, we provide the construction based on C∗ algebras in Appendix C.

We consider a spatially d-dimensional system on the lattice Z
d . To each site i ∈ Z

d, we assign a
copy Hi of a finite-dimensional Hilbert space, such that the Hilbert spaces for all sites are isomor-
phic. We denote the set of operators acting on Hi by Ai. For a bounded region Λ ⊂ Z

d, we define
HΛ :=

⊗
i∈Λ Hi and AΛ :=

⊗
i∈Λ Ai. We note that these are finite-dimensional spaces because Λ is

bounded.
For a bounded region Λ ⊂ Z

d, we consider a density operator ρ̂Λ whose support is Λ, i.e.,
ρ̂Λ ∈S (HΛ). We assume that we are given a collection {ρ̂Λ} for all bounded subregions of the
lattice, which furthermore obey the consistency condition, namely,

ρ̂Λ = trΛ′\Λ[ρ̂Λ′ ] . (126)

This condition is necessary to ensure that all ρ̂Λ are obtained from a common global state defined
on the entire infinite lattice (see Appendix C).

Consider now a sequence of bounded regions of the lattice defined as follows. For any ℓ ∈ N,
let [−ℓ,ℓ] := {−ℓ,−ℓ+ 1, · · · , ℓ− 1, ℓ} ⊂ Z and Λℓ := [−ℓ,ℓ]d ⊂ Z

d . We define the sequence of
quantum states P̂ = {ρ̂n} by ρ̂n := ρ̂Λℓ

, where we set n := (2ℓ+ 1)d = |Λℓ|. While n = (2ℓ+ 1)d

with ℓ= 1,2, · · · does not run over all of the elements of N, it does not affect our following argument;
indeed, it is straightforward to complete the sequence with intermediate states for all n ∈ N such
that the limits that we derive are unaffected.

Before we can formulate ergodicity, we consider the shift superoperator. The shift superoperator
Ti is defined such that for any local operator Â j whose support is j ∈ Z

d, it is mapped by Ti to the
same operator at site j + i ∈ Z

d , i.e., Ti(Â j) = Â j+i, where we regard i ∈ Z
d as a d-dimensional

vector with the standard addition for such vectors.

Definition 8 (Translation invariance). A sequence P̂ of the form above is translation invariant, if it

satisfies the consistency condition (126), and for all n= (2ℓ+1)d , all Â∈AΛ with Λ being bounded,

and all i ∈ Z
d satisfying Ti(Â) ∈AΛl

, we have

tr
[
ρ̂nTi(Â)

]
= tr

[
ρ̂nÂ
]
. (127)

We note that “translation invariant” is often referred to as “stationary” in the context of ergodic
theory. In our setup, we interpret i ∈ Z

d as a coordinate of the spatial potition instead of time, and
therefore we prefer the denomination “translation invariant.”

Translation invariance is a central ingredient for the definition of ergodicity:
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Definition 9 (Ergodicity). A sequence P̂ is translation-invariant and ergodic, if it is translation

invariant, and for all self-adjoint Â ∈AΛ for a bounded region Λ we have

lim
m→∞

tr


ρ̂n

(
1

(2m+1)d ∑
i∈Λm

Ti(Â)

)2

= lim

n→∞

(
tr
[
ρ̂nÂ
])2

, (128)

where n = (2ℓ+1)d on the left-hand side is taken such that Ti(Â) ∈AΛℓ
for all i ∈ Λm.

The limit on the right-hand side of (128) is not actually necessary, because the consistency
condition (126) implies that tr[ρ̂nÂ] does not depend on n for large n = (2ℓ+1)d satisfying Λ⊂ Λℓ.
The equivalence of this definition and the standard definition is proved in Appendix C.

This definition implies that the variance of the shift average (i.e., the spatial average) of any local
observable vanishes in the thermodynamic limit. We emphasize that an ergodic state can be out of
equilibrium, because ergodicity is defined with respect to the spatial shift instead of time evolution.

We now define the Hamiltonian of the system which determines the Gibbs state. Let ĥi be a
local operator describing interaction, whose support is a bounded region around site i ∈ Z

d. More
precisely, we assume that the support of ĥi is in { j : | jk− ik|6 r, ∀k} ⊂ Z

d , where 0 6 r < ∞ is an
integer and ik, jk describe the k-th components of i, j ∈ Z

d (k = 1, · · · ,d). We note that r represents
the interaction length, where r = 0 describes non-interacting cases.

Then, for a bounded region Λ⊂ Z
d , the truncated Hamiltonian is given by

ĤΛ := ∑
i∈Λ

ĥi . (129)

A Hamiltonian of this form is referred to as a local Hamiltonian. The Hamiltonian is translation

invariant, if it can be written in the form

ĤΛ = ∑
i∈Λ

Ti(ĥ0) , (130)

for some fixed operator h0.
Let β > 0 be the inverse temperature. The truncated Gibbs state on a bounded region Λ is given

by the density operator

σ̂�
Λ := exp(β (FΛ− ĤΛ)), (131)

where FΛ :=−β−1 ln tr[exp(−β ĤΛ)] is the truncated free energy. We note that σ̂�
Λ does not satisfy

the consistency condition (126), because of the effects on the edges of the region Λ where we have
truncated the Hamiltonian.

We consider a sequence of the truncated Gibbs states: We define Σ̂� := {σ̂�
n } with σ̂�

n := σ̂�
Λm

,
where n := (2ℓ+ 1)d and m := ℓ− r. We note that, with this definition, the supports of σ̂�

n and ρ̂n

are the same. In the following we use the shorthands Ĥn := ĤΛm
and Fn := FΛm

.

C. Generalized Stein’s lemma for ergodic states relative to local Gibbs states

We now consider a proof of a generalization of the quantum Stein’s lemma for ergodic states
relative to local Gibbs states. We begin by proving that the limiting KL divergence is well defined:

Lemma 6. Suppose that P̂ is translation invariant and Σ̂� is the truncated Gibbs state of a local

and translation-invariant Hamiltonian in any dimensions. Then S1(P̂‖Σ̂�) exists.
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Proof. This follows from the following well-known facts. From Eq. (131),

1
|Λ|S1(ρ̂Λ ‖ σ̂�

Λ ) =− 1
|Λ|S1(ρ̂Λ)−β

FΛ

|Λ| +β
tr
[
ĤΛρ̂Λ

]

|Λ| . (132)

The first term on the right-hand side converges to S1(P̂) because P̂ is translation invariant (Proposi-
tion 6.2.38 of Ref. [30]). It is also known that the second term converges to the free energy density
(Theorem 6.2.40 of Ref. [30]). The third term also converges, because ĤΛ is local and translation
invariant, and P̂ is translation invariant.

One important ingredient in the proof of our generalization of the quantum Stein’s lemma is the
following typical projector for ergodic states (Theorem 2.1 of Ref. [21]; see also Theorem 5.1 of
Ref. [22] and Theorem 1.4 of Ref. [23]).

Proposition 8 (Quantum Shannon-McMillan Theorem). Suppose that P̂ is ergodic. Then for any

ε > 0 there exists a sequence of projectors Π̂ε
P̂,n

(called typical projectors) that satisfy, for sufficiently

large n,

e−n(s+ε)Π̂ε
P̂,n

6 Π̂ε
P̂,n

ρ̂n Π̂ε
P̂,n

6 e−n(s−ε)Π̂ε
P̂,n

; (133)

en(s−ε) 6 tr
[
Π̂ε

P̂,n

]
6 en(s+ε) , (134)

lim
n→∞

tr
[
Π̂ε

P̂,n
ρ̂n

]
= 1 , (135)

where s := S1(P̂).

We now consider our main theorem for ergodic states and for the truncated Gibbs state.

Theorem 3 (Collapse of the spectral rates for the truncated Gibbs state). Consider a lattice Z
d of

spatial dimension d and suppose that P̂ is translation invariant and ergodic, as in Section IV B. Let

Σ̂� be the sequence of truncated Gibbs states of a local and translation invariant Hamiltonian on

the lattice. Then, for any 0 < η < 1,

S
η
H(P̂‖ Σ̂�) = S1(P̂‖ Σ̂�) , (136)

and as a consequence,

S(P̂‖ Σ̂�) = S(P̂‖ Σ̂�) = S1(P̂‖ Σ̂�) . (137)

Proof. From the proof of Lemma 6, the following limit exists,

m := lim
n→∞

1
n

(
− tr[ρ̂n ln σ̂�

n ]
)
. (138)

Let s := S1(P̂). We define relative typical projectors (as inspired by Refs. [26, 28]) as

Π̂ε
P̂|Σ̂�,n

:= Proj
{
−1

n
ln σ̂�

n ∈ [m− ε ,m+ ε ]

}
, (139)

which satisfy by definition

e−n(m+ε) Π̂ε
P̂|Σ̂�,n

6 Π̂ε
P̂|Σ̂�,n

σ̂�
n Π̂ε

P̂|Σ̂�,n
6 e−n(m−ε) Π̂ε

P̂|Σ̂�,n
. (140)
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We then define

Ŵ ε
n := Π̂ε

P̂,n
Π̂ε

P̂|Σ̂�,n
. (141)

The remainder of the proof is devoted to showing that the operator Ŵ ε
n satisfies the four conditions

(117a)–(117d) in Lemma 5 with

c :=−s+m = S1(P̂‖ Σ̂�) . (142)

These conditions then immediately imply Eq. (136), as discussed in Section IV A.
The condition (117a) is clear by definition. Condition (117b) is obtained from inequalities (134)

and (140) as

tr
[
Π̂ε

P̂,n
Π̂ε

P̂|Σ̂�,n
σ̂�

n Π̂ε
P̂|Σ̂�,n

Π̂ε
P̂,n

]
6 e−n(m−ε) tr

[
Π̂ε

P̂,n
Π̂ε

P̂|Σ̂�,n
Π̂ε

P̂,n

]

6 e−n(m−ε) tr
[
Π̂ε

P̂,n

]

6 e−n(m−s−2ε) . (143)

The third condition (117c) is obtained from inequalities (133) and (140) as

Π̂ε
P̂|Σ̂�,n

Π̂ε
P̂,n

ρ̂n Π̂ε
P̂,n

Π̂ε
P̂|Σ̂�,n

6 e−n(s−ε) Π̂ε
P̂|Σ̂�,n

Π̂ε
P̂,n

Π̂ε
P̂|Σ̂�,n

6 e−n(s−ε) Π̂ε
P̂|Σ̂�,n

6 e−n(s−ε)e+n(m+ε) Π̂ε
P̂|Σ̂�,n

σ̂�
n Π̂ε

P̂|Σ̂�,n

6 e+n(m−s+2ε) σ̂�
n . (144)

The final condition (117d) follows from Lemma 8 in Appendix A, Eq. (135) in Proposition 8, and
from

lim
n→∞

tr
[
Π̂ε

P̂|Σ̂�,n
ρ̂n

]
= 1 . (145)

To show Eq. (145), we use the assumption of ergodicity of P̂. Since the Hamiltonian is local and
translation invariant, we have

Ĥn = ∑
i∈Λℓ

Ti(ĥ0) , (146)

where Ti is the shift operator. Then, denoting by Proj{· · ·} the projection operator onto a subspace
satisfying the corresponding condition, we have

Π̂ε
P̂|Σ̂�,n

= Proj

{
1
n

∑
i∈Λℓ

Ti(ĥ0)−
Fn

n
∈ [h− f − ε ,h− f + ε ]

}
, (147)

where h := limn→∞
1
n

tr
[
ρ̂nĤn

]
and f := limn→∞

Fn

n
. For sufficiently large n, we have |Fn

n
− f | < ε

2 ,
and therefore,

Π̂ε
P̂|Σ̂�,n

> Proj

{
1
n

∑
i∈Λℓ

Ti(ĥ0) ∈ [h− ε/2,h+ ε/2]

}
. (148)

By definition of ergodicity, observables of the form (146) converge in probability; we have proven
Eq. (145).
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The above proof reduces to the main theorem of Ref. [26] in the special case where Σ̂� is i.i.d.,
i.e., if the system has a strictly local Hamiltonian with no interaction terms (r = 0).

Finally, we can ask whether the same theorem holds also for the sequence Σ̂ of reduced states
of the full Gibbs state on the infinite lattice. We show that this is indeed the case. Because this
theorem requires a rigorous formulation in terms of C∗-algebras, we defer the precise claim and
proof to Theorem 4 in Appendix C .

D. Remarks on ergodicity, mixtures, and the KL divergence

1. The mixing property

A local Gibbs state with a mixing (or clustering) property is ergodic. However, we emphasize
that the converse is false; ergodicity does not necessarily imply that the state can be written as a
Gibbs state of a local Hamiltonian.

Definition 10 (Mixing). Let T(k) := T(0,··· ,0,1,0,··· ,0) be the shift operator corresponding to the one-

step shift to the k-th direction (k = 1,2, · · · ,d). A sequence P̂ has the mixing (or clustering) property,

if it satisfies the consistency condition (126), and if for all Â, B̂ ∈AΛ with Λ being bounded and if

for all k, we have

lim
m→∞

tr
[
ρ̂nT m

(k)(Â) B̂
]
= lim

n→∞
tr
[
ρ̂nÂ
]

tr
[
ρ̂nB̂
]
, (149)

where n = (2ℓ+1) on the left-hand side is taken such that the supports of T m
(k)(Â) and B̂ are included

in Λℓ.

The equivalence of this definition and the standard definition is proven in Appendix C. It is
well-known that mixing implies ergodicity (cf. Ref. [32]):

Proposition 9. Any translation-invariant and mixing state is ergodic.

For local operators and the Gibbs state of a local and translation-invariant Hamiltonian, a
stronger property called the exponential clustering property has been proven for any β > 0 in one di-
mension [73] and in higher dimensions for sufficiently high temperature (see, for example, Ref. [74]
and references therein). Therefore, the quantum Stein’s lemma is proved for two local Gibbs states
P̂ and Σ̂ at least for sufficiently high temperature.

2. Mixtures of ergodic states

Consider now the situation in which the state is a mixture of different ergodic states. In this set-
ting, ergodicity is broken, and the existence of a thermodynamic potential is no longer guaranteed.

Let P̂(k) := {ρ̂ (k)
n } be ergodic states (k = 1,2, · · · ,K < ∞), and consider their mixture P̂ := {ρ̂n}

with ρ̂n := ∑k rkρ̂
(k)
n , where rk > 0 and ∑k rk = 1. We continue to suppose that Σ̂ is given by the

Gibbs state of a local and translation-invariant Hamiltonian. In this setting, we can show that the
min and max divergences are given by the minimal and maximal value of the KL divergence of the
states in the mixture, respectively:
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Lemma 7. The spectral divergence rates are split as

S(P̂‖ Σ̂) = min
k
{S1(P̂

(k) ‖ Σ̂)} ; S(P̂‖ Σ̂) = max
k
{S1(P̂

(k) ‖ Σ̂)} , (150)

while the KL divergence rate is given by

S1(P̂‖ Σ̂) = ∑
k

rkS1(P̂
(k) ‖ Σ̂) . (151)

Proof. Equation (150) immediately follows from Proposition 11 in Appendix A. To prove (151),
we note that − tr

[
ρ̂
(k)
n ln σ̂n

]
is additive with respect to k, and thus we only need to show S1(P̂) =

∑k rkS1(P̂
(k)). This in turn follows from the fact that the von Neumann entropy satisfies the follow-

ing inequalities, ∑k rkS1(ρ̂
(k)
n )6 S1(ρ̂n)6 ∑k rkS1(ρ̂

(k)
n )+S1({rk}).

3. The role of the KL divergence for the thermodynamic potential

Usually, we have that if the min and max divergences coincide, then the limiting values coin-
cide with the limiting value of the KL divergence. This is because in usual cases, the asymptotic
divergences obey

S(P̂‖ Σ̂)6 S1(P̂‖ Σ̂)6 S(P̂‖ Σ̂) . (152)

Indeed, this inequality follows in usual cases from the fact that S0(ρ̂ ‖ σ̂) 6 S1(ρ̂ ‖ σ̂) 6 S∞(ρ̂ ‖ σ̂)
combined with a continuity argument of the KL divergence in ρ̂ which ensures the inequality per-
sists after smoothing with ε > 0. Indeed, for D(ρ̂ ′, ρ̂) 6 ε , we have |S1(ρ̂ ‖ σ̂)−S1(ρ̂

′ ‖ σ̂)| 6
|S1(ρ̂)−S1(ρ̂

′)|+2ε‖ln σ̂‖∞, where the first term can be bounded using the Fannes-Audenaert in-
equality [75, 76] and where the second term behaves as O(εn) as long as ‖ln σ̂‖∞ is at most linear
in n. In this case, 1

n
Sε

0(ρ̂n ‖ σ̂n) 6
1
n
S1(ρ̂n ‖ σ̂n) + O(ε) and 1

n
S1(ρ̂n ‖ σ̂n)−O(ε) 6 1

n
Sε

∞(ρ̂n ‖ σ̂n),
which ensures that (152) holds. Notably, while this is the case in most usual settings such as the
one considered in the present paper, this continuity argument does not hold in general for arbitrary
sequences of states and operators.

As a simple toy example, consider a two-level system with states |0〉, |1〉, fix an inverse tempera-
ture β > 0, and let {εn} be a sequence of small positive nonzero reals with limn→∞ εn = 0. We con-
sider the sequence of states P̂ with ρ̂n = εn|1〉〈1|+(1−εn)|0〉〈0| and a sequence of Hamiltonians Ĥ

with Ĥn = (n/εn)|1〉〈1|. (The sequence is defined on a single copy of the Hilbert space; it is straight-
forward to embed these operators in H ⊗n, though perhaps not in a local and translation-invariant
way.) The corresponding sequence Σ̂ of Gibbs weights is σ̂n = e−β Ĥn = e−(βn/εn)|1〉〈1|+(Î−|1〉〈1|).
We can calculate

S1(P̂‖ Σ̂) = lim
n→∞

1
n

S1(ρ̂n ‖ σ̂n) = lim
n→∞

{
−1

n
S1(ρ̂n)+

β

εn

tr
[
ρ̂ |1〉〈1|

]}
= β . (153)

For the min divergence and for any ε > 0 we have

1
n

Sε
0(ρ̂n ‖ σ̂n)>

1
n

S0(ρ̂n ‖ σ̂n) =−
1
n

ln
(
1+ e−βn/εn

)
>

1
n

ln(2)
n→∞−−−→ 0 , (154)

and hence S(P̂‖ Σ̂) > 0. On the other hand, for any ε > 0 we have that εn 6 ε for n large enough;
then for n large enough, D

(
|0〉〈0|, ρ̂n

)
6 ε and

1
n

Sε
∞(ρ̂n ‖ σ̂n)6

1
n

ln
∥∥σ̂
−1/2
n |0〉〈0| σ̂−1/2

n

∥∥
∞
= 0 , (155)
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and hence S(P̂‖ Σ̂)6 0. Finally, recalling (30), we find

S(P̂‖ Σ̂) = S(P̂‖ Σ̂) = 0 . (156)

Crucially, the operator σ̂n has an eigenvalue that is at least exponentially small in n, and ‖ln σ̂‖∞ is
superlinear in n. This invalidates the usual continuity argument described above. Having ‖ln σ̂‖∞

with such a behavior amounts to having a Hamiltonian (such as Ĥn in our example) with an energy
level that scales superlinearly in n. Physically, this means that the system does not have a sound
thermodynamic limit; in practice, for instance in the case of all-to-all coupling, one prefers to nor-
malize the full Hamiltonian to ensure a good behavior in the thermodynamic limit. Nevertheless,
our toy example shows that in full generality, the min- and max-divergences can collapse to a single
value and define a thermodynamic potential which does not coincide with the KL divergence in the
thermodynamic limit.

We emphasize that this issue does not appear in usual settings such as the one considered in
the present paper, where the energy is extensive. Also, this issue cannot appear with the spectral
entropy rates (i.e., if σ̂ = Î), because of the argument above, or alternatively, thanks to Lemma 3 of
Ref. [42]. In those cases, the Kullback-Leibler divergence (or the von Neumann entropy rate) is the
relevant thermodynamic potential that emerges from the reversibility of the resource theory.

V. DISCUSSION

Our results provide new insight on the role of ergodicity and typicality in many-body sys-
tems [77, 78]. Our two main theorems on one hand advance our understanding of the possible
interconversion of states with thermal operations and a limited source of coherence, and on the other
hand establish a generalized quantum Stein’s lemma for lattice systems with local and translation-
invariant Hamiltonians. Together, these theorems prove our main result, namely, that a thermody-
namic potential emerges in the resource theory of thermal operations for all ergodic states in lattices
with a translation-invariant local Hamiltonian.

Thermal operations involving nonsemiclassical states. While the possible state transforma-
tions under thermal operations are well understood for semiclassical states thanks to the notion of
thermomajorization [10], the picture becomes significantly more involved if we consider states that
present coherences between energy eigenspaces [12, 46]. The min- and max-divergence no longer
represent the distillable work and the work cost of formation of a state, because in general one re-
quires a suitable reference frame to accurately carry out those transformations [12, 60, 70, 79]. Our
Theorem 2 shows, however, that if the two divergences coincide approximately, then the coherences
that are present in the state are necessarily small in a suitable sense, such that these transformations
become approximately possible after all with only a small reference frame. In the thermodynamic
limit, the size of the reference frame becomes negligible.

Our theorem provides a conceptually clear characterization of which states can be reversibly
converted to the thermal state, and hence, for which class of states the thermodynamic potential
emerges. Namely, approximately reversible conversion to the thermal state is possible if and only if
the min and max divergences coincide approximately (although the error terms have to be adjusted
in each direction of the proof).

We resort to a crude metric for the amount of coherence that was used in a process: We allow
the use of an ancilla whose Hamiltonian is suitably bounded. Recently, more refined methods of
accounting for coherence have been introduced, such as via coherent work [80] or with a more
traditional resource-theoretic approach [62]. Using an improved measure of coherence would allow
to clarify the amount of coherence used in the processes of Theorem 2.
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One could ask for a characterization of which classes of states can be reversibly converted into
one another, without being necessarily reversibly convertible to the thermal state. Consider for
instance two states with the same spectrum that is not uniform, both living within a fixed energy
subspace: They can be related by an energy-conserving unitary, but they cannot be reversibly con-
verted to the thermal state. In this paper, we have adopted the convention that a thermodynamic
potential should be well defined for the thermal state itself. Curiously however, it is also possible to
define some kind of “alternative thermodynamic potentials” for such classes of states which cannot
include the thermal state. It is not clear to us what the physical relevance of such classes of states
would be.

We also note that ergodic states have off-diagonal elements that vanish exponentially, similarly
to the behavior encountered in states obeying the eigenstate thermalization hypothesis (Lemma 4
combined with Theorem 3). It is then natural to ask whether there are properties of states that obey
the eigenstate thermalization hypothesis (such as error-correcting properties [81]) that can be carried
over to ergodic states.

Asymptotic Equipartition, the Shannon-McMillan theorem, and Stein’s lemma The classical
Shannon-McMillan theorem along with its quantum counterparts provide a collection of AEP state-
ments that play an important role in information theory, statistics, and statistical physics, where
ergodic processes are naturally encountered. Because of the stark formal differences between the
quantum and the classical definitions of Markovianity, the quantum versions of these AEP theorems
do not follow directly from their classical counterparts. Building on earlier proofs of the quantum
Shannon-McMillan theorem [21–23] and a relative AEP theorem with respect to product states [26],
we finally provide the full quantum version of the classical relative AEP theorem mentioned above,
which applies to ergodic states relative to Gibbs states of a local Hamiltonian.

A main component of the proof of our main result is a generalized version of Stein’s lemma
which is tightly related to the proof techniques of Ref. [28]. Namely, it suffices to find an operator
obeying a set of simple conditions to conclude that the min and max divergences collapse, which
can be seen partly thanks to ideas from semidefinite programming [53, 54]. By constructing suitable
typical projectors using the ergodicity property of the state, our Theorem 3 exploits this character-
ization and provides a new version of Stein’s lemma. The latter applies to situations beyond i.i.d.
states, since we may consider any ergodic state with respect to any Gibbs state that arises from a
local Hamiltonian.

Crucially, the states we consider are spatially ergodic, rather than ergodic with respect to time
evolution. Spatially ergodic states can have a nontrivial time evolution, even producing signifi-
cant changes of macroscopic quantities in time [82]. Importantly, this shows that one can define a
thermodynamic potential that has a operational interpretation even for certain states that are not in
thermodynamic equilibrium.

By endowing a new class of states with a rigorous, well-justified thermodynamic potential, one
may ask whether or not it is possible to find even larger classes of states that can be reversibly
converted into one another. Thanks to Lemma 7, the thermodynamic potential also emerges for all
finite mixtures of ergodic states with the same thermodynamic potential. Whether there are more
translation-invariant states that have a well-defined thermodynamic potential in the sense of the
present paper is an open question.

One may ask whether or not our results could be generalized to systems that violate translation-
invariance. It might be possible to treat a weak violation by adapting the present argument with
a suitable control of the relevant error terms. For systems that are fundamentally not translation-
invariant, one could instead ask whether ideas from entropy accumulation could be leveraged to
prove bounds on the min and max spectral rates in the thermodynamic limit, using local properties
of the state (or of the local process that generates the state) rather than symmetry considerations [83,
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84]. Conversely, insights gained from the behavior of the spectral rates in statistical mechanical
systems might provide new ways of proving more general entropy accumulation theorems which
might involve the divergence, the mutual information, or a channel capacity.

A further natural extension of our work would be to lift our results from transformations of
quantum states to transformations of quantum channels, in line of the results of Ref. [85]. Can
non-i.i.d. quantum channels that have a suitable ergodic property be reversibly converted into one
another?

The quantum Shannon-McMillan theorem moreover holds in a more general and abstract opera-
tor algebra context [23]. We might expect that additional AEP results in such settings can be shown
using ideas put forward in the present paper.

Finally, one could attempt to further characterize the min and max divergence rates in natural
situations where they do not coincide. These quantities are known to bound any extension of the
thermodynamic potential outside of the set of reversibly interconvertible states [35], and as such,
the interval [S(P̂‖ Σ̂),S(P̂‖ Σ̂)] provides a “best possible characterization” of the thermodynamic be-
havior of such states that takes into account the fluctuations in thermodynamic quantities that persist
in the thermodynamic limit. We expect this to be the case, for instance, for many-body-localized
states, or for states at critical points immediately before spontaneous symmetry breaking. The tech-
niques put forward in the present paper might help derive bounds in such cases, which, while falling
short of a collapse of the min and max divergences, would still provide a useful characterization for
a greater class of states that are far out of equilibrium.
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Appendix A: General technical lemmas

The following gentle measurement lemma states that a measurement effect that is almost certain
to appear does not disturb the state much [86, 87].

Proposition 10. For a state ρ̂ and any operator with 0 6 Q̂ 6 Î, if tr[ρ̂Q̂]> 1− ε , then

∥∥ρ̂− Q̂1/2 ρ̂ Q̂1/2
∥∥

1 6 2
√

2ε . (A1)

The following technical lemmas provide a few variations around the gentle measurement lemma,
dealing with operators that capture most of the weight of a state.

Lemma 8. Let Q̂ and Q̂′ be projectors. Suppose that a state ρ̂ satisfies tr
[
Q̂ρ̂
]
> 1−ε and tr

[
Q̂′ρ̂

]
>

1− ε ′ for ε > 0, ε ′ > 0. Then,

Re
(
tr
[
Q̂Q̂′ρ̂

])
> 1− ε−

√
ε ′ . (A2)
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Proof. We first note that

Retr
[
Q̂Q̂′ρ̂

]
= tr

[
Q̂ρ̂
]
−Retr

[
Q̂(Î− Q̂′)ρ̂

]
> 1− ε−Retr

[
Q̂(Î− Q̂′)ρ̂

]
. (A3)

From the Schwarz inequality, we have

Retr
[
Q̂(Î− Q̂′)ρ̂

]
6

√
tr[Q̂ρ̂] tr[(Î− Q̂′)ρ̂ ]6

√
ε ′ , (A4)

where we used that Q̂ and Î− Q̂′ are projectors. Therefore, we obtain Eq. (A2).

Lemma 9. Let Ŵ be an operator with ‖Ŵ‖∞ 6 1. Suppose that a subnormalized state ρ̂ ∈S≤(H )
satisfies Re

(
tr
[
Ŵ ρ̂

])
> 1− ε with ε > 0. Then, both following statements are true:

(a) tr
[
Ŵ †Ŵ ρ̂

]
> 1−2ε and tr

[
ŴŴ †ρ̂

]
> 1−2ε ;

(b) tr
[
(Î−Ŵ )(Î−Ŵ †)ρ̂

]
6 2ε .

Proof. (a) From the Cauchy-Schwarz inequality,

tr
[
Ŵ †Ŵ ρ̂

]
> tr[ρ̂] · tr

[
Ŵ †Ŵ ρ̂

]
>
(
Retr[Ŵ ρ̂]

)2
> 1−2ε . (A5)

We can show the second inequality in the same manner.

(b) This follows from

tr
[
(Î−Ŵ )(Î−Ŵ †)ρ̂

]
= 1−2Retr[Ŵ ρ̂ ]+ tr[ŴŴ †ρ̂]6 1−2(1− ε)+1 = 2ε , (A6)

where we used ‖Ŵ‖∞ 6 1.

Next we show that for a mixture of states, the min and max spectral rates are given by the
smallest or largest spectral rate in the mixture, respectively.

Proposition 11. Consider a sequence of states P̂ := {ρ̂n} where each state is given by a mixture

ρ̂n = ∑K
k=1 rkρ̂

(k)
n for a given probability distribution {rk}K

k=1 independent of n, and consider the

individual sequences P̂(k) = {ρ̂ (k)
n }. Then, the lower and the upper divergence rates of P̂ relative to

a sequence of positive operators Σ̂ are given by

S(P̂‖ Σ̂) = min
k

{
S(P̂(k) ‖ Σ̂(k))

}
; S(P̂‖ Σ̂) = max

k

{
S(P̂(k) ‖ Σ̂(k))

}
. (A7)

This proposition immediately follows from the following three lemmas.

Lemma 10. Consider a mixture of states ρ̂ = ∑rkρ̂ (k) with a probability distribution {rk}. Let τ̂ be

a quantum state such that F2(ρ̂ , τ̂)> 1− ε2. Then there exists a probability distribution {r′k} and a

collection of states τ̂ (k)′ such that

τ̂ =∑
k

r′kτ̂ (k) ; D
(
{rk},{r′k}

)
6 ε ; D

(
ρ̂ (k), τ̂ (k)

)
6

2ε

rk

. (A8)
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Proof. Call our system of interest A, and consider a copy B≃ A. Let {| j〉A},{| j〉B} be orthonormal
bases of A and B, respectively, and let |Φ〉 := ∑ j| j〉A| j〉B be the reference unnormalized maximally
entangled state. Consider the following purification of ρ̂ (k),

|ρ̂ (k)〉AB =
((

ρ̂
(k)
A

)1/2⊗ ÎB

)
|Φ〉AB . (A9)

Let C be a register with an orthonormal basis {|k〉C} and consider the following purification of ρ̂C,

|ρ̂〉AB = ∑
k

√
rk |ρ (k)〉|k〉C . (A10)

From Uhlmann’s theorem, there exists a purification |τ̂〉ABC of τ̂A such that

F(|ρ̂〉, |τ̂〉) = F(ρ̂ , τ̂)>
√

1− ε2 . (A11)

Invoking the Fuchs-van de Graaf relations between the fidelity and the trace distance [47, 88],
1−F(·, ·)6 D(·, ·)6

√
1−F2(·, ·), we find that D(|ρ̂〉, |τ̂〉)6 ε . Now, define

r′k := tr
(
|k〉〈k|C |τ̂〉〈τ̂|ABC

)
; τ̂ (k) :=

1
r′k

trBC

(
|k〉〈k|C |τ̂〉〈τ̂|ABC

)
. (A12)

From the monotonicity of the trace norm under CPTP maps, we have D({rk},{r′k})6 ε , where here
the trace distance is calculated between the two classical probability distributions, which is known
as the total variational distance. Furthermore, the trace norm cannot increase under any CP and
trace-nonincreasing maps, and hence,

1
2

∥∥rkρ̂ (k)− r′kτ̂ (k)
∥∥

1 6
1
2

∥∥|ρ̂〉〈ρ̂ |− |τ̂〉〈τ̂ |
∥∥

1 = D(|ρ̂〉, |τ̂〉)6 ε . (A13)

This implies

D
(
ρ̂ (k), τ̂ (k)

)
=

1
2rk

∥∥rkρ̂ (k)− rkτ̂ (k)
∥∥

1

6
1
rk

(
1
2

∥∥rkρ̂ (k)− r′kτ̂ (k)
∥∥

1 +
|r′k− rk|

2

∥∥τ̂ (k)
∥∥

1

)
6

2ε

rk

, (A14)

which completes the proof.

Lemma 11. Consider a mixture of states ρ̂ = ∑K
k=1 rkρ̂ (k) with a probability distribution {rk}. Let

ε > 0 be such that 2
√

ε < rk for all k. Then

Sε
∞(ρ̂ ‖ σ̂)6 max

k
Sε

∞(ρ̂
(k) ‖ σ̂ ) ; (A15)

Sε
∞(ρ̂ ‖ σ̂)> max

k

{
S2
√

2ε/rk
∞ (ρ̂ (k) ‖ σ̂)+ ln(rk−2

√
ε)
}

. (A16)

Proof. We first show inequality (A15). For each k, there exists τ̂ (k) ∈ Bε(ρ̂ (k)) such that
Sε

∞(ρ̂
(k) ‖ σ̂) = S∞(τ̂

(k) ‖ σ̂). Let τ̂ := ∑k rkτ̂ (k), which is a candidate for minimization in Sε
∞(ρ̂ ‖ σ̂),

because D(τ̂ , ρ̂)6 ∑k rkD(τ̂ (k), ρ̂ (k))6 ε , using the joint convexity of the trace distance. Then,

Sε
∞(ρ̂ ‖ σ̂)6 S∞(τ̂ ‖ σ̂)6 ln∑

k

rk‖σ̂−1/2τ̂ (k)σ̂−1/2‖∞

6 max
k

ln‖σ̂−1/2τ̂ (k)σ̂−1/2‖∞ = max
k

Sε
∞(ρ̂

(k) ‖ σ̂) . (A17)
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We next show inequality (A16). There exists τ̂ ∈ Bε(ρ̂) such that Sε
∞(ρ̂ ‖ σ̂ ) = S∞(τ̂ ‖ σ̂ ). By the

Fuchs-van de Graaf inequalities [47, 88], we have F(ρ̂, τ̂)> 1−D(ρ̂ , τ̂) and thus F2(ρ̂, τ̂)> 1−2ε .
Let {τ̂ (k)} be quantum states and {r′k} be a probability distribution that are given by Lemma 10, such
that D({rk},{r′k})6

√
2ε and D(ρ̂ (k), τ̂ (k))6 2

√
2ε/rk. Noting that r′kτ̂ (k) 6 τ̂ , we have

S∞(τ̂ ‖ σ̂)> ln
∥∥σ̂−1/2r′kτ̂ (k)σ̂−1/2

∥∥
∞
= S∞(τ̂

(k) ‖ σ̂)+ lnr′k

> S2
√

2ε/rk
∞ (ρ̂ (k) ‖ σ̂)+ ln(rk−2

√
ε) , (A18)

which implies inequality (A16).

Lemma 12. Consider a mixture of states ρ̂ = ∑K
k=1 rkρ̂ (k) with a probability distribution {rk}, and

let ε > 0. Then

Sε
0(ρ̂ ‖ σ̂ )> min

k

{
Sε

0(ρ̂
(k) ‖ σ̂)− lnK

}
. (A19)

Sε
0(ρ̂ ‖ σ̂)6 min

k
S

2
√

2ε/rk

0 (ρ̂ (k) ‖ σ̂) . (A20)

Proof. We first show inequality (A19). For each k, there exists τ̂ (k) ∈ Bε(ρ̂ (k)) such that
Sε

0(ρ̂
(k) ‖ σ̂) = S0(τ̂

(k) ‖ σ̂). Let τ̂ := ∑k rkτ̂ (k), which is a candidate for maximization in Sε
0(ρ̂ ‖ σ̂).

We note that P̂τ̂ 6 ∑k P̂τ̂ (k) , because the kernel of τ̂ is larger than the intersection of the kernels of
τ̂ (k)’s. Therefore,

Sε
0(ρ̂ ‖ σ̂)> S0(τ̂ ‖ σ̂) =− ln tr[P̂τ̂ σ̂ ]>− ln∑

k

tr[P̂τ̂ (k)σ̂ ]

>− ln
(

K max
k

tr[P̂τ̂ (k)σ̂ ]

)
= min

k

{
Sε

0(ρ̂
(k) ‖ σ̂)− lnK

}
. (A21)

We next show inequality (A20). There exists τ̂ ∈ Bε(ρ̂) such that Sε
0(ρ̂ ‖ σ̂ ) = S0(τ̂ ‖ σ̂). By the

Fuchs-van de Graaf inequalities, we have F2(ρ̂ , τ̂)> 1−2ε as above. Let {τ̂ (k)} be states and {r′k}
be a probability distribution given by Lemma 10. For all k,

tr[P̂τ̂ σ̂ ]> tr[P̂τ̂ (k)σ̂ ] , (A22)

and therefore

S0(τ̂ ‖ σ̂)6 S0(τ̂
(k) ‖ σ̂)6 S

2
√

2ε/rk

0 (ρ̂ (k) ‖ σ̂) , (A23)

which implies inequality (A20).

Appendix B: Properties of our thermodynamic framework and convertibility proof for

Gibbs-preserving maps

In this section we derive a collection of useful properties of thermodynamic transformations that
were introduced in Section III A, and provide a simplified version of Theorem 1 that is specialized
to Gibbs-preserving maps.

The partial isometry in the definition of a thermal operation commutes with the system-and-bath
Hamiltonian in the following sense.
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Proposition 12. Let K,L be systems with Hamiltonians ĤK ,ĤL and let V̂K→L be a partial isometry

such that V̂K→LĤK = ĤLV̂K→L . Then

[V̂ †
K←LV̂K→L,ĤK ] = 0 ; [V̂K→LV̂

†
K←L,ĤL] = 0 . (B1)

In consequence, V̂K→L is a mapping of a subset of initial energy eigenstates on K to some final

energy eigenstates on L.

Proof. We compute directly [V̂ †
K←LV̂K→L,ĤK ] = V̂

†
K←L(V̂K→LĤK − ĤLV̂K→L) + (V̂ †

K←LĤL −
ĤKV̂

†
K←L)V̂K→L = 0 and similarly [V̂K→LV̂

†
K←L,ĤL] = 0.

Now we show that any partial isometry that is compatible with the system Hamiltonian (i.e., one
that maps the input Hamiltonian to the output Hamiltonian on the range of the partial isometry) can
be dilated into a full energy-conserving unitary on a larger system from which the partial isometry
is recovered by preparing an ancilla in a pure state and post-selecting on a specific measurement
outcome of an ancilla on the output of the unitary. The present proof is partly adapted from [57,
Proposition C.2].

Proposition 13 (Dilation of a partial energy-conserving isometry). Consider systems K,L with

Hamiltonians ĤK,ĤL. Let V̂K→L be a partial isometry such that V̂K→LĤK = ĤLV̂K→L. Let M be

a system with Hamiltonian ĤM, and suppose that there exist nontrivial systems K̄ and L̄ with re-

spective Hamiltonians ĤK̄ , ĤL̄ along with unitaries Û ′
KK̄→M

, Û ′
LL̄→M

such that Û ′
KK̄→M

(ĤK + ĤK̄) =

ĤMÛ ′
KK̄→M

and Û ′′
LL̄→M

(ĤL + ĤL̄) = ĤMÛ ′′
LL̄→M

. Let |i〉K̄ , |f〉L̄ be two eigenstates of ĤK̄ and ĤL̄

of the same energy ei = 〈i |ĤK̄ | i〉K = ef = 〈f |ĤL̄ |f〉L̄. Then there exists a unitary ÛM such that

[ÛM,ĤM] = 0 and

(ÎL⊗〈f|L̄) Û
′′†
LL̄←M

ÛM Û ′
KK̄→M

(ÎK⊗|i〉K̄) Π̂K = V̂K→L , (B2)

where Π̂K = V̂ †V̂ is the projector onto the support of V̂ .

Furthermore, we can remove Π̂K from (B2) under the following additional assumption. Let

{(α j,µ j)}J
j=1 be the energy eigenvalues with the corresponding multiplicities of all energy eigen-

states of K that are in the kernel of V̂ . Let {(βℓ,νℓ)}ℓ be the energy eigenvalues with the correspond-

ing multiplicities of all energy eigenstates |β 〉LL̄ of ĤL + ĤL̄ that have no overlap with ÎL⊗|f〉〈f|L̄,

i.e., for which (ÎL⊗|f〉〈f|L̄) |β 〉LL̄ = 0. Suppose that for each (α j,µ j) (for j = 1, . . . ,J), there exists

a corresponding ℓ with βℓ = ei +α j and νℓ > µ j. Then there exists a unitary operator ÛM with

[ĤM,ÛM] = 0 and such that

(ÎL⊗〈f|L̄) Û
′′†
LL̄←M

ÛM Û ′
KK̄→M

(ÎK⊗|i〉K̄) = V̂K→L . (B3)

Before delving into the proof of Proposition 13 we issue a few remarks to provide a better picture
of the consequences of this general proposition and to identify a few interesting special cases.

(a) The operator Π̂K in (B2) can be replaced by an operator Π̂′L acting after the unitaries, where
Π̂′L = V̂V̂ † is the projector onto the range of V̂ .

(b) If K = L and HK = HL, we can choose M = K = L with trivial systems K̄, L̄. With this choice
of M, the projector in (B2) is always necessary unless V̂K→L is already unitary. (The projector
can be removed by choosing a larger system M, see below.)
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(c) The additional assumption in the second part of the proposition amounts to requiring that,
for the given |i〉K̄ , |f〉L̄, it is possible to map the support of (ÎK− Π̂K)⊗|i〉〈i|K̄ (i.e., the space
spanned by all eigenstates outside of the support of V̂K→L and tensored with |i〉K̄), into a
space of the global output system such that the mapping is energy conserving and such that
the resulting space has no overlap with |f〉L̄. As long as the input state on K̄ is initialized in
the state |i〉K̄ , then projecting the output onto |f〉L̄ automatically ensures that the input state
already lies within the projector Π̂′L. (Equivalently, the projector Π̂K on the input becomes
redundant.)

(d) For any K,L and for a general choice of M, K̄, L̄ with corresponding Hamiltonians along with
energy-preserving embedding unitaries Û ′

KK̄→M
, Û ′′

LL̄→M
, there always exists a qubit system

Q with some Hamiltonian HQ such that there exist |i〉K̄Q and |f〉L̄Q with the same eigenenergy.

This statement is shown as follows. We first pick any two energy eigenstates |i0〉K̄ and |f0〉L̄
of respective energies ei and ef. We then introduce a qubit Q with the Hamiltonian HQ =
q0|0〉〈0|+q1|1〉〈1|, with q0 = c− ei and q1 = c− ef for any chosen constant c. Define M′ =
M⊗Q, K̄′ = K̄⊗Q, L̄′ = L̄⊗Q, etc., along with |i〉K̄′ = |i0〉K̄⊗|0〉Q and |f〉L̄′ = |f0〉L̄⊗|1〉Q,
observing that |i〉K̄′ and |f〉L̄′ are both energy eigenstates with energy c.

(e) For any M,K,L, K̄, L̄, |i〉K̄ , |f〉L̄ satisfying the first part of the proposition, we can always intro-
duce a qubit system Q′ with a degenerate Hamiltonian HQ′ = c′ for some arbitrary constant c′,
and define M′′ = M⊗Q′, K̄′′ = K̄⊗Q′, L̄′′ = L̄⊗Q′, etc., along with |i′〉K̄′′ = |i〉K̄⊗|0〉Q′ and
|f′〉L̄′′ = |f〉L̄⊗|1〉Q′ , such that the additional condition of the second part of the proposition
is satisfied. Indeed, from the unitary ÛM given by the proposition without the extra qubit, we
can define ˆ̃UMQ′ = (ÛM⊗ ÎQ′)((Π̂K ⊗ ÎK̄⊗ (|0〉〈1|+ |0〉〈1|)Q′ +((ÎK− Π̂K)⊗ ÎK̄Q′), i.e., ˆ̃UMQ′

conditionally flips the bit Q′ if the input on K is in the support of V̂K→L , before applying ÛM.
The effect of ˜̂UM′ is to map all states of the form |ψ ′〉K ⊗|i〉K̄ ⊗|0〉Q′ onto states with the Q′

system remaining in the state |0〉Q′ , ensuring that there is no overlap with |f′〉L̄′ .

(f) The qubits introduced in Points (d) and (e) may evidently be chosen to be larger systems that
contain such qubits as subspaces.

(g) For any K,L and for a general choice of M, K̄, L̄ with corresponding Hamiltonians along
with energy-preserving embedding unitaries Û ′

KK̄→M
, Û ′′

LL̄→M
, there might not always exist

|i〉K̄ and |f〉L̄ with the same eigenenergy, even if V̂K→L 6= 0. As a counterexample, consider
systems K,L, K̄, L̄ where the system K has energy levels {0,1}, the system K̄ has levels
{0,1}, the system L has levels {−2,−1,−1,0}, and the system L̄ is trivial with the single
level {2}. In both cases, the joint energy levels are {0,1,1,2}, and V̂K→L can be nonzero by
mapping the 0 level of K to the 0 level of L. Yet, K̄ and L̄ do not share an energy level of
same energy.

(h) For arbitrary K,L, a simple choice for the system M is M = K⊗ L with K̄ = L, ĤK̄ = ĤL,
L̄ = K, ĤL̄ = ĤK , along with the trivial identity embedding maps Û ′

KK̄→M
= ÎKL→M , Û ′

LL̄→M
=

ÎKL→M . There always exist |i〉K̄ and |f〉L̄ with the same eigenenergy (as long as V̂K→L 6= 0),
by picking an eigenstate in the support of V̂K→L along with its associated image under V̂K→L.

Furthermore, with this choice it is always possible to satisfy our additional condition leading
to (B3). This can be seen as follows. Let m = rank(V̂ ). We choose energy eigenbases
{|u j〉K}dK

j=1 of K and {|v j′〉L}dL

j′=1 of L, with {|u j〉K}m
j=1 spanning the support of V̂ and with

|v j〉L = V̂K→L |u j〉K for those j = 1, . . . ,m. Then we choose |i〉L = |v1〉L and |f〉K = |u1〉L
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(assuming V̂ 6= 0), noting that they must have the same energy. We see that all states of the
form |u j〉K⊗|i〉L for j > m can be mapped onto themselves, with clearly (〈f|K⊗ ÎL)(|u j〉K⊗
|i〉L) = 0 because |f〉K = |u1〉K ⊥ |u j〉K .

(i) In the case of the generalized thermal operation depicted in Fig. 1, we have K = SB and
L = S′B, with a given energy-conserving partial isometry V̂SB→S′B. In this case, we may
choose M = SS′B, with K̄ = S′ and L̄ = S. If necessary, we can enlarge K̄ and L̄ to include
qubit systems Q and/or Q′ as per Points (d) and (e) to ensure that all the conditions of Propo-
sition 13 are satisfied. Then there exists |i〉K̄ , |f〉L̄, along with an energy-conserving unitary
ÛSBK̄→S′BL̄, such that

V̂SB→S′B = (ÎS′B⊗〈f|L̄) ÛSBK̄→S′BL̄ (ÎSB⊗|i〉K̄) . (B4)

We now turn to the proof of the proposition.

Proof of Proposition 13. First we compute as in Proposition 12 the commutators [V̂ †V̂ ,ĤK] =
V̂ †V̂ ĤK− ĤKV̂ †V̂ = V̂ †(ĤL− ĤL)V̂ = 0 and [V̂V̂ †,ĤL] = V̂V̂ †ĤL− ĤLV̂V̂ † = V̂ (ĤK− ĤK)V̂

† = 0,
as well as [V̂ †ĤLV̂ ,ĤK ] = V̂ †ĤLV̂ ĤK − ĤKV̂ †ĤLV̂ = V̂ †(Ĥ2

L − Ĥ2
L)V̂ = 0 and [V̂ †ĤLV̂ ,V̂ †V̂ ] =

V̂ †ĤLV̂V̂ †V̂ − V̂ †V̂V̂ †ĤLV̂ = V̂ †[ĤL,V̂V̂ †]V̂ = 0.
Because Û ′

KK̄→M
and Û ′′

LL̄→M
are unitary we must have dKdK̄ = dM = dLdL̄. Also, the operator

Û
′′†
LL̄←M

Û ′
KK̄→M

is an energy-conserving unitary operator from KK̄ to LL̄; therefore, the Hamiltonians
HK +HK̄ and HL +HL̄ must have the same eigenvalues and with the same multiplicity.

Let ŴM = Û ′′
LL̄→M

(V̂K→L⊗|f〉L̄〈i|K̄)Û
′†
KK̄←M

, noting that ŴM is a partial isometry. Furthermore,

ŴMĤM = Û ′′
LL̄→M

(V̂K→L⊗ |f〉L̄〈i|K̄)(ĤK + ĤK̄)Û
′†
KK̄←M

= . . . = ĤMŴM , recalling that |i〉K̄ and |f〉L̄
have the same eigenvalue with respect to ĤK and ĤL̄, respectively; therefore [ŴM ,HM] = 0.

We can complete ŴM into a fully energy-conserving unitary ÛM by assigning to each input
energy eigenstate an energy eigenstate of same energy at the output; this association is possible since
the eigenvalues of the input and output systems coincide including with multiplicity. Then (B2) is
satisfied by construction, as can be checked by verifying the action of both sides of the equation on
an energy eigenbasis spanning the support of V̂K→L.

Now we assume that the additional condition stated in the claim holds, in order to prove (B3).
Let {|φ j〉M}dM

j=1 be a basis of M that is a simultaneous eigenbasis of ĤM, Û ′
KK̄→M

(V̂ †V̂ ⊗
|i〉〈i|K̄)Û

′†
KK̄←M

, and Û ′
KK̄→M

(V̂ †ĤLV̂ ⊗ |i〉〈i|K̄)Û
′†
KK̄←M

, and furthermore chosen such that (i) the

states {|φ j〉M}rank(V̂ )
j=1 span the support of Û ′

KK̄→M
(V̂K ⊗ |i〉〈i|K̄)Û

′†
KK̄←M

, and (ii) the set

{|φ j〉M}dK

j=rank(V̂)+1
spans the subspace supported by Û ′

KK̄→M

(
(ÎK− Π̂K)⊗|i〉〈i|K̄

)
Û
′†
KK̄←M

.

Let {|χ j′〉M}dM

j′=1 be another basis of M that is a simultaneous eigenbasis of ĤM and

Û ′′
LL̄→M

(V̂V̂ † ⊗ |f〉〈f|L̄)Û
′′†
LL̄←M

, and furthermore chosen such that (i) we have |χ j′〉M =

Û ′′
LL̄→M

(V̂K→L|φ j′〉M⊗|f〉L̄) for all j′ = 1, . . . , rank(V̂ ), (ii) we have that the set {|χ j′〉M}dK

j′=rank(V̂)+1

is orthogonal to Û ′′
LL̄→M

(ÎL⊗ |f〉〈f|L̄)Û
′′†
LL̄→M

and (iii) we also have that |χ j〉M for j = rank(V̂ )+
1, . . . ,dK is an energy eigenstate with the same energy as |φ j〉M, which we can ensure thanks to our
additional assumption stated in the claim.

Then we define ÛM as

ÛM = ∑
j

|χ j〉〈φ j|M . (B5)
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The operator ÛM is unitary and commutes with ĤM, since it maps an energy eigenbasis onto an
energy eigenbasis. If the state |ψ〉K is in the support of V̂ , we have that Û ′

KK̄→M
(|ψ〉K ⊗ |i〉K̄) =

∑
rank(V̂)
j=1 c j|φ j〉M for suitable complex coefficients c j. Then

(ÎL⊗〈f|L)Û
′′†
LL̄←M

ÛMÛ ′
KK̄→M

(|ψ〉K⊗|i〉K̄) =
rank(V̂ )

∑
j=1

c j (ÎL⊗〈f|L)Û
′′†
LL̄←M

|χ j〉M

= V̂K→L|ψ〉M⊗|f〉L̄ . (B6)

If the state |ψ ′〉K lies outside the support of V̂ , we have that Û ′
KK̄→M

(|ψ ′〉K ⊗ |i〉K̄) =

∑
dK

j=rank(V̂)+1
c′j|φ j〉M for suitable complex coefficients c′j, and

(ÎL⊗〈f|L)Û
′′†
LL̄←M

ÛMÛ ′
KK̄→M

(|ψ ′〉K⊗|i〉K̄) =
dK

∑
j=rank(V̂)+1

c′j (ÎL⊗〈f|L)Û
′′†
LL̄←M

|χ j〉M = 0 . (B7)

We have therefore proven (B3).

Now we present some general properties of the thermodynamic operations introduced in Sec-
tion III A.

Proposition 14 (Elementary properties of thermodynamic operations). Consider systems S,S′ with

corresponding Hamiltonians ĤS,Ĥ
′
S′ . Let ∗ denote either TO or GPM. The following hold:

(a) If S ≃ S′ and H ′S′ = HS + c for some c ∈ R, the identity process is a (c,0)-work/coherence-

assisted process in either model TO or GPM;

(b) For two energy eigenstates |E〉S, |E ′〉S′ , we have |E〉S
w,0,0−−−→
∗
|E ′〉S′ if and only if w > E ′−E;

(c) For any w ∈ R,η > 0,ε > 0, we have ρ̂S⊗|E〉〈E|A
w,η ,ε−−−→
∗

ρ̂ ′S′ ⊗|E ′〉〈E ′|A′ for energy eigen-

states on ancillas A,A′ if and only if ρ̂S
E+w−E ′,η ,ε−−−−−−−→

∗
ρ̂ ′S′;

(d) We have γ̂
F ′−F,0,0−−−−−→
∗

γ̂ ′, where γ̂ = eβ(F−Ĥ), γ̂ ′ = eβ(F ′−Ĥ′) with F = −β−1 ln tr(e−β Ĥ), F ′ =

−β−1 ln tr(e−β Ĥ′);

(e) ρ̂
w,η ,ε−−−→
∗

ρ̂ ′ implies ρ̂
w′,η ′,ε ′−−−−→
∗

ρ̂ ′ for any w′ > w, η ′ > η and ε ′ > ε;

(f) If ρ̂
w,η ,ε−−−→
∗

ρ̂ ′ and ρ̂ ′
w′,η ′,ε ′−−−−→
∗

ρ̂ ′′, then ρ̂
w+w′,η+η ′,ε+ε ′−−−−−−−−−−→

∗
ρ̂ ′′.

Proof. Property (a) for H ′ = H is obvious because the identity process is itself both a thermal oper-
ation and a Gibbs preserving map. For H ′S′ = HS + cÎ with c 6= 0 we use a two-level battery W with
energy eigenstates |0〉W , |c〉W and HW = c |c〉〈c|W ; then ÎS→S′⊗|0〉〈c| is an energy-conserving partial
isometry, and thus a thermal operation, on the system S and the battery W with c work expended.
The statement in the GPM model follows from Lemma 1. Property (b) is clear; the only nontrivial
aspect is that we may have strict inequality. That a thermal operation can perform this transforma-
tion can be seen using thermo-majorization [10]. The statement for GPM follows because a thermal
operation is also Gibbs-preserving. Property (c) holds by definition of a (w,η)-work/coherence-
assisted process; the systems A,A′ may be combined together with the battery system W in the
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transformation. Property (d) holds because the thermo-majorization curve of the thermal state is the
line connecting (0,0) to (eβF ,1) [10]. Property (e) follows from (b). To show Property (f), let Φ (re-
spectively Φ′) be a work/coherence-assisted-process with parameters (w,η) (respectively (w′,η ′)).
Then Φ′ ◦Φ is a (w+w′,η +η ′)-work/coherence-assisted process, and we have D(Φ′(Φ(ρ̂)), ρ̂ ′′)6
D(Φ′(Φ(ρ̂)),Φ′(ρ̂ ′))+D(Φ′(ρ̂ ′), ρ̂ ′′)6 D(Φ(ρ̂), ρ̂ ′)+D(Φ′(ρ̂ ′), ρ̂ ′′)6 ε + ε ′.

Now we present the proofs of Propositions 3 and 4 stated in Section III A regarding the mono-
tonicity of the various divergences under thermodynamic operations.

Proof of Proposition 3. We have ρ̂S −−−→
GPM

ρ̂ ′S′ (invoking Lemma 1 if necessary); let Φ[GPM] be the

corresponding Gibbs-sub-preserving map. The monotonicity of the hypothesis testing divergence
follows directly from the properties (19) and (21).

The monotonicity of the Rényi divergences is trickier to prove because the corresponding data
processing inequality only holds for trace-preserving mappings. Using [14, Proposition 2], there
exists a qubit system Q with a basis {|i〉Q, |f〉Q} and with a Hamiltonian HQ = qi|i〉〈i|+qf|f〉〈f|Q, as

well as eigenstates |i〉S′ , |f〉S of ĤS,Ĥ
′
S′ , and a trace-preserving map K

[GPM]
SS′Q→SS′Q such that

Φ
[GPM]
S→S′ (·) =

〈
f, f
∣∣
SQ

K
[GPM]

(
(·)⊗|i, i〉〈i, i|S′Q

)∣∣f, f
〉

SQ
; (B8a)

K
[GPM]

SS′Q→SS′Q(e
−β(ĤS+Ĥ′

S′+ĤQ)) = e−β(ĤS+Ĥ′
S′+ĤQ) ; and (B8b)

qi + 〈i |Ĥ ′S′ | i〉= qf + 〈f |ĤS |f〉 . (B8c)

Since tr(Φ[GPM](ρ̂S)) = tr(ρ̂ ′S′) = 1, we can invoke [14, Corollary 3(b)] to see that

K
[GPM]

(
ρ̂S⊗|i, i〉〈i, i|S′Q

)
= Φ

[GPM]
S→S′ (ρ̂S)⊗|f, f〉〈f, f|SQ . (B9)

Also, using [14, Proposition 17] and (B8c), we have that

Sα(|i, i〉〈i, i|S′Q ‖e−β(Ĥ′
S′+ĤQ)) = Sα(|f, f〉〈f, f|SQ ‖e−β(ĤS+ĤQ)) =: C . (B10)

Then using the property (14) of the Rényi α-entropies and the above identities, we have

Sα(ρ̂
′
S′ ‖e−β Ĥ′

S′ ) = Sα(Φ
[GPM](ρ̂S)⊗|f, f〉〈f, f|SQ ‖e−β(ĤS+Ĥ′

S′+ĤQ))−C

= Sα(K
[GPM](ρ̂S⊗|i, i〉〈i, i|S′Q)‖K [GPM](e−β(ĤS+Ĥ′

S′+ĤQ)))−C

6 Sα(ρ̂S⊗|i, i〉〈i, i|S′Q ‖e−β(ĤS+Ĥ′
S′+ĤQ))−C

= Sα(ρ̂S ‖e−β ĤS ) , (B11)

where the inequality holds by the data processing inequality (10).

Proof of Proposition 4. We prove the statement for the GPM model, invoking Lemma 1 if neces-
sary. Let C,C′,W,W ′ be systems with Hamiltonians ĤC,ĤC′ ,ĤW ,ĤW ′ from Definition 5 and let
Φ̃

[GPM]
SCW→S′C′W ′ be the GPM operation in (38). Let ˆ̃ρS′C′W ′ = Φ̃

[GPM]
SCW→S′C′W ′(ρ̂S⊗ |E〉〈E|W ⊗ |ζ 〉〈ζ |C),

with D
(
〈E ′,ζ ′|W ′C′ ˆ̃ρS′C′W ′ |E ′,ζ ′〉W ′C′ , ρ̂ ′S′

)
6 ε . Using property (22) we have

S
ξ+ε
H (ρ̂ ′S′ ‖e−β ĤS′ )− ln

(ξ + ε

ξ

)
6 S

ξ
H(〈E ′,ζ ′|W ′C′ ˆ̃ρS′C′W ′ |E ′,ζ ′〉W ′C′ ‖e−β ĤS′ ) . (B12)
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Now compute

trC′W ′
[
|E,ζ ′〉〈E,ζ ′|W ′C′ e−β(ĤS′+ĤC′+ĤW ′ )

]
= e−β ĤS′ e−βE ′ 〈ζ ′ |e−βHC |ζ ′〉

> e−β(E ′+η) e−β ĤS′ , (B13)

because 〈ζ ′ |e−βHC |ζ ′〉 > λmin(e
−βHC) > e−β‖HC‖∞ > e−βη where λmin(·) denotes the smallest

eigenvalue of its argument. Observe that the operation trC′W ′
[
|E ′,ζ ′〉〈E ′,ζ ′|W ′C′ (·)

]
is a completely

positive, trace-nonincreasing map. Then thanks to (19) and (B13) along with the scaling prop-
erty (20),

(B12) 6 S
ξ
H(

ˆ̃ρS′C′W ′ ‖eβ(E ′+η)e−β(ĤS′+ĤW ′+ĤC′))

= S
ξ
H(

ˆ̃ρS′C′W ′ ‖e−β(ĤS′+ĤW ′+ĤC′ ))−β (E ′+η)

6 S
ξ
H(Φ̃

[GPM]
(
ρ̂S⊗|E,ζ〉〈E,ζ |WC

)
‖Φ̃[GPM]

(
e−β(ĤS+ĤW+ĤC)

)
)−β (E ′+η)

6 S
ξ
H(ρ̂S⊗|E,ζ 〉〈E,ζ |WC ‖e−β(ĤS+ĤW+ĤC))−β (E ′+η) , (B14)

where the two last inequalities hold using respectively (21) noting that Φ̃
[GPM]
SCW→S′C′W ′ is Gibbs-sub-

preserving, and the data processing inequality (19).
Let Q̂SCW with 0 6 Q̂SCW 6 Î be an optimal choice for the last divergence term in (B14),

such that S
ξ
H(ρ̂S ⊗ |E,ζ 〉〈E,ζ |WC ‖e−β(ĤS+ĤW+ĤC)) = − ln tr(Q̂SCW e−β(ĤS+ĤW+ĤC)). Let Q̂′S =

〈E,ζ |WC Q̂SCW |E,ζ 〉WC, noting that 0 6 Q̂′S 6 ÎS. Then we have tr(Q̂′Sρ̂S) = tr
(
Q̂SCW (ρ̂S ⊗

|E,ζ 〉〈E,ζ |WC)
)
> ξ , and thus

S
ξ
H(ρ̂S ‖e−β ĤS)>− ln

(
1
ξ

tr
(
Q̂′S e−β ĤS

))

=− ln
(

1
ξ

tr
(
Q̂SCW

(
e−β ĤS ⊗|E,ζ〉〈E,ζ |WC

)))

>− ln
(

eβ(E+η) 1
ξ

tr
(
Q̂SCW e−β(ĤS+ĤC+ĤW )

))

= S
ξ
H(ρ̂S⊗|E,ζ〉〈E,ζ |WC ‖e−β(ĤS+ĤW+ĤC))−β (E +η) , (B15)

where in the last inequality we used e−β ĤC > λmin(e
−β ĤC)|ζ 〉〈ζ |C > e−β‖ĤC‖∞ |ζ 〉〈ζ |C > e−βη |ζ 〉〈ζ |C

and e−β ĤW > e−βE |E〉〈E|W which imply together that |E,ζ 〉〈E,ζ |WC 6 eβ(E+η) e−β(ĤC+ĤW ). Rewrit-
ing (B15), we have

S
ξ
H(ρ̂S⊗|E,ζ〉〈E,ζ |WC ‖e−β(ĤS+ĤW+ĤC))6 S

ξ
H(ρ̂S ‖e−β ĤS)+β (E +η) , (B16)

and finally,

(B14) 6 S
ξ
H(ρ̂ ‖e−β ĤS)+β (E +η)−β (E ′+η)6 S

ξ
H(ρ̂ ‖e−β ĤS)+β (w+2η) . (B17)

Following the chain of inequalities proves the claim.

We present a convenient lemma that can ensure asymptotic convertibility if good enough asymp-
totic convertibility can be achieved for any fixed ε > 0. We first note that, thanks to Property (e) of
Proposition 14, we may equivalently replace all limits “limn→∞” in Definition 7 by “limsupn→∞”.



47

Lemma 13. For sequences of states P̂ = {ρ̂n}, P̂′ = {ρ̂ ′n} and sequences of Hamiltonians Ĥ =

{Ĥn}, Ĥ ′ = {Ĥ ′n}, suppose that for all ε > 0 there exists wn,ε ,ηn,ε , ε̄n,ε such that ρ̂n

wn,ε ,ηn,ε , ε̄n,ε−−−−−−−→
∗

ρ̂ ′n
for all n, where ∗ denotes TO or GPM. If r ∈R is such that

lim
ε→0

limsup
n→∞

wn,ε

n
= r ; lim

ε→0
limsup

n→∞

ηn,ε

n
= 0 ; lim

ε→0
limsup

n→∞
ε̄n,ε = 0 , (B18)

then P̂
r−→
∗

P̂′.

Proof. Let wε := limsupn→∞ wn,ε/n, ηε := limsupn→∞ ηn,ε/n, and ε̄ε := limsupn→∞ ε̄n,ε . Define

N(ε) := min
{

N : ∀n > N,
wn,ε

n
6 wε + ε and

ηn,ε

n
6 ηε + ε and ε̄n,ε 6 ε̄ε + ε

}
. (B19)

Now let ε(n) := inf{ε : N(ε) 6 n} and observe that limn→∞ ε(n) = 0 because N(ε) is finite for
any small ε > 0 thanks to the existence of the limit superior defining wε , ηε and ε̄ε . Then let

wn := wn,ε(n), ηn := ηn,ε(n), and ε̄n := ε̄n,ε(n), such that ρ̂n
wn,ηn, ε̄n−−−−−→
∗

ρ̂ ′n for all n. We have wn/n =

wn,ε(n)/n 6 wε(n) + ε(n) by definition of ε(n) and hence limsupn→∞ wn/n 6 limsupn→∞[wε(n) +
ε(n)] = r. Similarly, ηn/n=ηn,ε(n)/n6ηε +ε and thus limn→∞ ηn/n= 0. Also, ε̄n = ε̄n,ε(n) 6 ε̄ε +ε
and thus limn→∞ ε̄n = 0.

An important known result is the fact that the min and max divergences quantify the amount of
work that is necessary to convert a semiclassical state ρ̂ to and from the thermal state.

Proposition 15 (Work distillation and state formation for semiclassical states [9, 10]). Let ρ̂ be a

quantum state on a system with Hamiltonian Ĥ, and suppose that [ρ̂ ,ĤS] = 0. Let γ ′′ = 1 denote the

trivial thermal state on the trivial system C with the trivial Hamiltonian Ĥ ′′ = 0. Then

ρ̂
−β−1Sε

0(ρ̂ ‖e−β Ĥ ),0,ε−−−−−−−−−−−−→
TO

γ ′′ ; and γ ′′
β−1Sε

∞(ρ̂ ‖e−β Ĥ ),0,ε−−−−−−−−−−−→
TO

ρ̂ . (B20)

We now present a central proposition of this appendix, namely a simplified form of Theorem 1
that is specific to Gibbs-preserving maps. The error terms as well as the proof itself are significantly
simpler than the full result for thermal operations.

Proposition 16 (Work distillation and state formation [10, 14]). Let ρ̂ be a quantum state on a

system with a Hamiltonian Ĥ. Let γ ′′ = 1 denote the trivial thermal state on the trivial system C

with the trivial Hamiltonian Ĥ ′′ = 0. Then for any ε > 0 we have

ρ̂
−β−1Sε

0(ρ̂ ‖e−β Ĥ ),0,ε−−−−−−−−−−−−→
GPM

γ̂ ′′ ; and γ̂ ′′
β−1Sε

∞(ρ̂ ‖e−β Ĥ ),0,ε−−−−−−−−−−−→
GPM

ρ̂ . (B21)

Consequently, for any ρ̂ , ρ̂ ′, and for any Hamiltonians Ĥ,Ĥ ′,

ρ̂
β−1[Sε

∞(ρ̂
′ ‖e−β Ĥ′ )−Sε

0(ρ̂ ‖e−β Ĥ )],0,2ε−−−−−−−−−−−−−−−−−−−−−−→
GPM

ρ̂ ′ . (B22)

For asymptotic sequences of states P̂= {ρ̂n}, P̂′= {ρ̂ ′n} and sequences of Hamiltonians Ĥ = {Ĥn},
Ĥ ′ = {Ĥ ′n}, we have

P̂
β−1[S(P̂′ ‖ Σ̂′)−S(P̂‖ Σ̂)]−−−−−−−−−−−−−→

GPM
P̂′ , (B23)

where we denote by Σ̂ (respectively Σ̂′) the sequence {e−β Ĥn} (respectively {e−β Ĥ′n}).
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Proof. The statements (B21) are proven in Ref. [14]. The result for semiclassical states and thermal
operations was shown in the earlier Ref. [10]. The statement (B22) follows directly by combining
the processes in (B21). To prove (B23), observe that for any ε > 0, we have for sufficiently large
n that [Sε

∞(ρ̂
′
n ‖ σ̂ ′n)−Sε

0(ρ̂n ‖ σ̂n)]/n 6 S(P̂′ ‖ Σ̂′)−S(P̂‖ Σ̂)+g(ε) where g(ε) is some function of ε
with g(ε)→ 0 as ε→ 0. Then (B23) follows from (B22) and Lemma 13.

For completeness, we prove (B22) directly with an explicit transformation (see also Theorem
6.3 of [7]).

Alternative direct proof of (B22). We prove the following equivalent statement: Assuming that
Sε

0(ρ̂ ‖e−β Ĥ) > Sε
∞(ρ̂

′ ‖e−β Ĥ′), we explicitly construct a Gibbs-preserving operation that performs
the given transformation using a hypothesis test. The equivalence with (B22) follows from Propo-
sition 14 (c), the scaling property (13) of the divergences, and their additivity under tensor prod-
ucts (14). Without loss of generality we may assume that tr(e−β Ĥ) = tr(e−β Ĥ′) = 1; otherwise,
shift the Hamiltonians by suitable constants and apply Proposition 14 (a) whose cost cancels the
shift (13). Let σ̂ = e−β Ĥ and σ̂ ′ = e−β Ĥ′ , which are now quantum states.

First, consider the case of ε = 0. We explicitly construct a CPTP map E that maps (ρ̂ , σ̂) to
(ρ̂ ′, σ̂ ′), by using a “measure-and-prepare” method. Let c := e−S0(ρ̂ ‖ σ̂ ), and let P̂ρ be the projection
onto the support of ρ̂ . If c = 1, the situation becomes trivial, because ρ̂ = σ̂ and ρ̂ ′ = σ̂ ′. If c 6= 1,
we can construct the desired CPTP map E as

E(•) := tr[P̂ρ•]ρ̂ ′+
(
1− tr[P̂ρ•]

) σ̂ ′− cρ̂ ′

1− c
, (B24)

where the condition S0(ρ̂ ‖ σ̂ )> S∞(ρ̂
′ ‖ σ̂ ′) is used to guarantee that σ̂ ′− cρ̂ ′ > 0.

We next consider the case of ε > 0. By definition of the smooth entropies, there exist τ̂ , τ̂ ′ such
that Sε

∞(ρ̂
′ ‖ σ̂ ′) = S∞(τ̂

′ ‖ σ̂ ′) and Sε
∞(ρ̂ ‖ σ̂) = S∞(τ̂ ‖ σ̂), with D(τ̂ , ρ̂)6 ε , D(τ̂ ′, ρ̂ ′)6 ε . From the

case ε = 0 we have that τ̂ −−−→
GPM

τ̂ ′ with respect to the thermal states σ̂ , σ̂ ′. By triangle inequality

and because quantum operations can only decrease the trace distance, we have that D(E(ρ̂), ρ̂ ′) 6

D(E(ρ̂),E(τ̂))+D(E(τ̂), ρ̂ ′)6 D(ρ̂ , τ̂)+D(τ̂ ′, ρ̂ ′)6 2ε . Hence ρ̂
0,0,2ε−−−→
GPM

ρ̂ ′.

As an immediate consequence, any state that satisfies S0(ρ̂ ‖e−β Ĥ) = S∞(ρ̂ ‖e−β Ĥ) can be re-
versibly converted to and from the thermal state e−β Ĥ/ tr(e−β Ĥ) with Gibbs-preserving operations.
The same holds for thermal operations if the state is semiclassical. Consequently, the common value
of the divergences, which we can denote as S(ρ̂), is the thermodynamic potential: It characterizes
exactly which state transformations are possible within this class of states.

Appendix C: C∗-algebra formulation

In this appendix, we provide an overview of the standard formulation of ergodicity with C∗-
algebras [29, 30, 32], and prove that it is equivalent to our formulation in Section IV. Furthermore,
we prove Theorem 3 in the alternative setting where we consider a sequence of reduced states of
the infinite Gibbs state, rather than a sequence of finite Gibbs states corresponding to Hamiltonians
truncated to finite regions. In the following, we use the notation of Section IV.

The set of local operators is given by Aloc := ∪ΛAΛ for a bounded lattice region Λ ⊂ Z
d.

Then, the C∗-algebra A is defined as the C∗-inductive limit of Aloc, which is often written as
A =

⊗
i∈Zd Ai.
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We consider a (normal) state Ψ : A → C, where Ψ(Â) ∈ C is interpreted as the expectation
value of observable Â. We consider a reduced state to a bounded region Λ⊂ Z

d . By definition, the
reduced density operator on this region, written as ρ̂Λ, satisfies

Ψ(Â) = tr[ρ̂ΛÂ] , (C1)

for all Â ∈AΛ. We note that the consistency condition (126) is automatically satisfied for this {ρ̂Λ}.
By using the shift superoparator Ti introduced in Section IV B, we first define translation invari-

ance.

Definition 11 (Translation invariance). A state Ψ is translation invariant, if for all Â ∈A and for

all i ∈ Z
d,

Ψ(Ti(Â)) = Ψ(Â) . (C2)

The above definition of translation invariance is equivalent to the definition in Section IV B; this
is guaranteed by the following lemma, which states that it is sufficient to take Â above to be local.

Lemma 14. If Eq. (C2) is satisfied for all Â ∈Aloc and all i ∈ Z
d, then Ψ is translation invariant.

Proof. Suppose that Eq. (C2) is satisfied for all Â ∈ Aloc. For any Â ∈A , there exists a sequence
{Âm}m∈N ⊂Aloc such that Âm ∈AΛm

and limm→∞‖Â− Âm‖∞ = 0. Let ∆̂m := Â− Âm. Then we have
∣∣Ψ(Ti(Â))−Ψ(Â)

∣∣6
∣∣Ψ(Ti(Âm))−Ψ(Âm)

∣∣+
∣∣Ψ(Ti(∆̂m))−Ψ(∆̂m)

∣∣ . (C3)

The first term on the right-hand side vanishes. The second term is bounded as
∣∣Ψ(Ti(∆̂m))−Ψ(∆̂m)

∣∣6 2‖∆̂m‖∞ , (C4)

which goes to zero as m→ ∞.

We now define ergodicity in a more standard and mathematically elegant way [29, 32] (see also
Refs. [21, 22]).

Definition 12 (Ergodicity). A state Ψ is translation-invariant and ergodic, if it is an extremal point

of the set of translation-invariant states.

Physically, an ergodic state corresponds to a “pure thermodynamic phase” without phase mix-
ture, which is consistent with this mathematical definition.

The following theorem establishes the equivalence of the definition above with the defini-
tion presented in Section IV B. This is a reformulation of Theorem 6.3.3, Proposition 6.3.5, and
Lemma 6.5.1 of Ref. [32]; see also Ref. [22].

Lemma 15. Using the notation of Section IV, the following are equivalent for any translation-

invariant state Ψ:

(a) Ψ is ergodic;

(b) For all self-adjoint Â ∈A ,

lim
ℓ→∞

Ψ



(

1
(2ℓ+1)d ∑

i∈Λℓ

Ti(Â)

)2

=

(
Ψ(Â)

)2 ; (C5)
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(c) For all Â, B̂ ∈A ,

lim
ℓ→∞

1
(2ℓ+1)d ∑

i∈Λℓ

Ψ
(
Ti(Â)B̂

)
= Ψ(Â)Ψ(B̂) ; (C6)

(d) Equation (C5) is satisfied for all self-adjoint Â ∈Aloc.

For completeness, we prove the equivalence of (d) with the other points.

Proof. It suffices to check that (d)⇒ (b). The proof is similar to that of Lemma 14, and we use the
same notation: For any Â ∈ A , there exists a sequence {Âm}m∈N ⊂ Aloc such that Âm ∈ AΛm

and
limm→∞‖Â− Âm‖∞ = 0; let ∆̂m := Â− Âm. Now suppose that Eq. (C5) is satisfied for all self-adjoint
Â ∈Aloc. We first note that

(
∑

i∈Λℓ

Ti(Â)

)2

=

(
∑

i∈Λℓ

Ti(Âm)

)2

+ ∑
i, j∈Λℓ

(
Ti(Âm)Tj(∆̂m)+Ti(∆̂m)Tj(Âm)

)

+

(
∑

i∈Λℓ

Ti(∆̂m)

)2

. (C7)

We then have

∣∣∣∣∣Ψ
((

1
(2ℓ+1)d ∑

i∈Λℓ

Ti(Â)

)2)
−Ψ(Â)

∣∣∣∣∣

6

∣∣∣∣∣Ψ
((

1
(2ℓ+1)d ∑

i∈Λℓ

Ti(Âm)

)2)
−Ψ(Âm)

∣∣∣∣∣+4‖Âm‖∞‖∆̂m‖∞ +2‖∆̂m‖2
∞ . (C8)

From Eq. (C5) for Âm ∈Aloc, we have, for a fixed m,

lim
ℓ→∞

∣∣∣∣∣Ψ
((

1
(2ℓ+1)d ∑

i∈Λℓ

Ti(Â)

)2)
−Ψ(Â)

∣∣∣∣∣6 4‖Âm‖∞‖∆̂m‖∞ +2‖∆̂m‖2
∞ . (C9)

Since m can be taken arbitrarily large, the right-hand side above can be arbitrarily small. Therefore,
Eq. (C5) is satisfied for all Â ∈A .

We now provide a definition of mixing that is suited to the formalism in this section.

Definition 13 (Mixing). Let T(k) be the shift operator in Definition 10 in Section IV. A state Ψ has

the mixing property, if for all Â, B̂ ∈A and all k,

lim
ℓ→∞

Ψ
(
T ℓ

k (Â)B̂
)
= Ψ(Â)Ψ(B̂) . (C10)

Definition 14 (Weak mixing). A state Ψ has the weak mixing property, if for all Â, B̂ ∈A ,

lim
ℓ→∞

1
(2ℓ+1)d ∑

i∈Λℓ

∣∣Ψ(Ti(Â)B̂)−Ψ(Â)Ψ(B̂)
∣∣= 0 . (C11)
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Mixing implies weak mixing, and weak mixing implies ergodicity. However, the converses of
them are not true. In particular, the weak mixing in the above sense should not be confused with
Eq. (C6).

The following lemma guarantees that the above definition of mixing is equivalent to Defini-
tion 10 in Section IV.

Lemma 16. In the definitions of mixing and weak mixing above, it is sufficient to take Â, B̂ ∈Aloc.

Proof. The proof of (d)⇒(b) in Lemma 15 provided above can be straightforwardly adapted to
prove this lemma.

We next consider the concept of local Gibbs states for the infinite-dimensional setup [30]. We
here assume that the Kubo-Martin-Schwinger (KMS) state is unique at β , which physically im-
plies no phase coexistence. This is provable for any β > 0 in one dimension [89], but is true at a
sufficiently high temperature in higher dimensions [30].

Let ϕ�
Λ : A → C be the Gibbs state corresponding to the truncated Hamiltonian associated with

the region Λ, and represented by the density operator σ̂�
Λ in Eq. (131) of Section IV B. Then, it is

known that a state

Φ := lim
ℓ→∞

ϕ�
Λℓ

(C12)

exists, where the limit is given by the weak-∗ (or ultraweak) topology of the dual of A (cf. Propo-
sition 6.2.15 of Ref. [30]). We can then define the global Gibbs state on the entire lattice by Φ. This
global state satisfies the following condition for any Â ∈Aloc,

Φ(Â) = lim
ℓ→∞

ϕ�
Λℓ
(Â) . (C13)

Then, we define the reduced state of Φ on a bounded region Λ, which is written as ϕΛ. Let σ̂Λ

be the corresponding reduced density operator. For any observable Â ∈AΛ, we have

Φ(Â) = ϕΛ(Â) = tr[σ̂ΛÂ]. (C14)

In the following, let Σ̂ := {σ̂n} be the sequence of the reduced Gibbs states, where σ̂n := σ̂Λℓ
and

n = (2ℓ+1)d . We note that the reduced state σ̂Λ and the truncated state σ̂�
Λ are different in general,

where only σ̂Λ satisfies the consistency condition (126).
We now prove another version of Theorem 3 in Section IV, where Σ̂ is the sequence of reduced

states of the full Gibbs state on the infinite lattice, instead of the sequence Σ̂� of Gibbs states
corresponding to truncated Hamiltonians associated with a sequence of finite regions.

Our proof strategy is to show that the asymptotic min divergence rate, the max divergence rate
and the KL divergence rate remain unchanged if we substitute Σ̂� by Σ̂. For this, we invoke the fol-
lowing result, given as Theorem 3.11 in Ref. [90] (see in particular the second proof provided in that
reference, which holds for observables that are not necessarily positive and proves the uniformity of
the convergence).

Proposition 17 (Lenci and Rey-Bellet [90, Theorem 3.11]). Suppose that the KMS state is unique.

For any observable ÂΛ ∈AΛ for a bounded region Λ⊂ Z
d, we have

lim
Λ→Zd

1
|Λ|
∣∣∣ln tr

[
ÂΛσ̂Λ

]
− ln tr

[
ÂΛσ̂�

Λ

]∣∣∣= 0 , (C15)

where the convergence is uniform in ÂΛ.
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The above result allows us to prove that the KL divergence rate does not change if we replace
the Gibbs state of the truncated Hamiltonian by the reduced state of the infinite Gibbs state.

Lemma 17. Suppose that the KMS state is unique and that S1(P̂‖ Σ̂�) exists. Then S1(P̂‖ Σ̂) exists

and equals S1(P̂‖ Σ̂�).

Proof. Proposition 17 implies that

lim
Λ→Zd

1
|Λ|
∣∣∣tr[ρ̂Λ ln σ̂Λ]− tr[ρ̂Λ ln σ̂�

Λ ]
∣∣∣= 0 , (C16)

which implies S1(P̂‖ Σ̂) = S1(P̂‖ Σ̂�).

Similarly, we may use Proposition 17 to show that the min and max divergence rates (via the
hypothesis testing divergence rate) remain unchanged if we replace Σ̂� by Σ̂.

Lemma 18. Suppose that the KMS state is unique and that S
η
H(P̂‖ Σ̂�) exists for any 0 < η < 1.

Then, for any 0 < η < 1, the rate S
η
H(P̂‖ Σ̂) exists and equals S

η
H(P̂‖ Σ̂�).

Proof. From Eq. (C15) in Proposition 17, there exists δn > 0 satisfying limn→∞
δn

n
= 0 such that for

any Ân ∈AΛℓ
,

e−δn tr[Ânσ̂�
n ]6 tr[Ânσ̂n]6 e+δn tr[Ânσ̂�

n ] . (C17)

Combined with Eq. (18), this implies that

S
η
H(ρ̂n ‖ σ̂�

n )−δn 6 S
η
H(ρ̂n ‖ σ̂n)6 S

η
H(ρ̂n ‖ σ̂�

n )+δn . (C18)

The claim follows by dividing this equation by n and taking the limit n→ ∞.

It is now straightforward to combine Lemmas 17 and 18 to prove another version of Theorem 3
for the infinite Gibbs state, rather than the limit of Gibbs states of the truncated Hamiltonian of
increasingly large finite regions.

Theorem 4 (Collapse of the spectral rates for the reduced Gibbs state). Suppose that P̂ is trans-

lation invariant and ergodic, and Σ̂ is the reduced Gibbs state of a local and translation invariant

Hamiltonian in any dimensions, where the KMS state is unique. Then, for any 0 < η < 1,

S
η
H(P̂‖ Σ̂) = S1(P̂‖ Σ̂) , (C19)

and as a consequence,

S(P̂‖ Σ̂) = S(P̂‖ Σ̂) = S1(P̂‖ Σ̂) . (C20)

Appendix D: An alternative proof of Theorem 4

Here we provide an alternative proof of Theorem 4 presented above, in the case of a one-
dimensional chain, by combining a known result by Hiai, Mosonyi, and Ogawa [91] with the ergodic
theorem of Bjelaković [26]. We state these results here:
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Proposition 18 (Hiai, Mosonyi, and Ogawa [91, Lemma 4.2]). Let σ̂n be the reduced local Gibbs

state on n sites in one dimension. There exist α1,α2 > 0 and m0 ∈ N such that for all m > m0 and

k ∈ N we have

αk−1
1 σ̂⊗k

m 6 σ̂km 6 αk−1
2 σ̂⊗k

m . (D1)

Proposition 19 (Bjelaković and Siegmund-Schultze [26, Theorem 2.1]). Suppose that P̂ is

translation-invariant and ergodic, and Σ̂ = {σ⊗n} is i.i.d. Then, for any 0 < η < 1,

S
η
H(P̂‖ Σ̂) = S1(P̂‖ Σ̂) . (D2)

The proof strategy is thus to use Proposition 18 to reduce the problem for a local Gibbs state to
a problem with a tensor product Gibbs state, by coarse-graining the n-site chain into k blocks of m

sites. The problem then falls in the scope of Proposition 19 which gives the desired result.

Alternative proof of Theorem 4 in one dimension. We fix m ∈ N, and let n = km+ r with 1 6 r 6

m−1. First we argue that we can essentially ignore the r remaining sites and focus on the km sites.
From the monotonicity of the hypothesis testing divergence under CPTP maps, and therefore under
the partial trace, we have for any 0 < η < 1,

S
η
H(ρ̂n ‖ σ̂n)> S

η
H(ρ̂km ‖ σ̂km) . (D3)

Fix 0 < η < 1 and let Q̂km denote an optimal operator in (18) such that η−1 tr
(
Q̂kmσ̂km

)
=

exp
(
−S

η
H(ρ̂km ‖ σ̂⊗k

m )
)
. Then, from Proposition 18,

S
η
H(ρ̂km ‖ σ̂km)>− ln

(
η−1 tr[Q̂kmσ̂km]

)

>− ln
(
η−1 tr[Q̂kmσ̂⊗k

m ]
)
− (k−1) lnα2

= S
η
H(ρ̂km ‖ σ̂⊗k

m )− (k−1) lnα2 . (D4)

Therefore,

S
η
H(ρ̂n ‖ σ̂n)> S

η
H(ρ̂km ‖ σ̂⊗k

m )− (k−1) lnα2 . (D5)

From Proposition 19, we have for large k and at fixed m,

1
k

S
η
H(ρ̂km ‖ σ̂⊗k

m ) =
1
k

S1(ρ̂km ‖ σ̂⊗k
m )+δk , (D6)

where limk→∞ δk = 0. Using the fact that the logarithm is an operator monotone and with (D1),

S1(ρ̂km ‖ σ̂⊗k
m )> S1(ρ̂km ‖ σ̂km)+ (k−1) lnα1 . (D7)

Hence, we obtain

1
n

S
η
H(ρ̂n ‖ σ̂n)>

1
n

S1(ρ̂km ‖ σ̂km)+
k−1

n
ln

α1

α2
+

k

n
δk . (D8)

Taking liminfn→∞ while fixing m, we obtain

liminf
n→∞

1
n

S
η
H(ρ̂n ‖ σ̂n)> S1(P̂‖ Σ̂)+

1
m

ln
α1

α2
, (D9)
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where we used Lemma 17 to get the first term on the right-hand side. Since m can be taken arbitrarily
large, we obtain

liminf
n→∞

1
n

S
η
H(ρ̂n ‖ σ̂n)> S1(P̂‖ Σ̂) . (D10)

We next show the opposite direction. Again from the monotonicity of the hypothesis testing
divergence under partial trace,

S
η
H(ρ̂n ‖ σ̂n)6 S

η
H(ρ̂(k+1)m ‖ σ̂(k+1)m) . (D11)

Fix 0<η < 1 and let Q̂′(k+1)m denote an optimal operator in (18) such that η−1 tr
(
Q̂(k+1)mσ̂(k+1)m

)
=

exp
(
−S

η
H(ρ̂(k+1)m ‖ σ̂(k+1)m)

)
. Then, using Proposition 18,

S
η
H(ρ̂(k+1)m ‖ σ̂(k+1)m) =− ln

(
η−1 tr[Q̂′(k+1)mσ̂(k+1)m]

)

6− ln
(
η−1 tr[Q̂′(k+1)mσ̂

⊗(k+1)
m ]

)
− k lnα1

6 S
η
H(ρ̂(k+1)m ‖ σ̂

⊗(k+1)
m )− k lnα1 . (D12)

Therefore,

S
η
H(ρ̂n ‖ σ̂n)6 S

η
H(ρ̂(k+1)m ‖ σ̂

⊗(k+1)
m )− k lnα1 . (D13)

From Proposition 19, we have for large k and for fixed m,

1
k+1

S
η
H(ρ̂(k+1)m ‖ σ̂

⊗(k+1)
m ) =

1
k+1

S1(ρ̂km ‖ σ̂
⊗(k+1)
m )+δ ′k , (D14)

where limk→∞ δ ′k = 0. Since the logarithm is an operator monotone, we have from inequality (D1),

S1(ρ̂(k+1)m ‖ σ̂
⊗(k+1)
m )6 S1(ρ̂(k+1)m ‖ σ̂(k+1)m)+ k lnα2 . (D15)

Therefore, we obtain

1
n

S
η
H(ρ̂n ‖ σ̂n)6

1
n

S1(ρ̂(k+1)m ‖ σ̂(k+1)m)+
k

n
ln

α2

α1
+

k+1
n

δ ′k . (D16)

By taking limsupn→∞ while fixing m, we obtain

limsup
n→∞

1
n

S
η
H(ρ̂n ‖ σ̂n)6 S1(P̂‖ Σ̂)+

1
m

ln
α2

α1
, (D17)

where we again used Lemma 17. Since m can be taken arbitrarily large, we obtain

limsup
n→∞

1
n

S
η
H(ρ̂n ‖ σ̂n)6 S1(P̂‖ Σ̂) . (D18)

Equation (C19) then follows from inequalities (D10) and (D18).
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Appendix E: The classical case

If we restrict the C∗-algebra A in one dimension to a commutative subalgebra, we obtain a
classical stochastic process. Here, we flesh out explicitly the classical ergodic theorem that our
argument in Section IV and Appendix C reduces to in the classical case.

The classical counterpart of the setup in these sections is a two-sided stochastic process over Z
with finite alphabets. Let {xℓ}ℓ∈Z be the stochastic process, where xl ∈ B with B being a finite set of
alphabets, and let Xn := (x−ℓ,x−ℓ+1, · · · ,xℓ) with n := 2ℓ+1. We consider sequences of probability
distributions P̂ := {ρn(Xn)}n∈N and Σ̂ := {σn(Xn)}n∈N.

First of all, we briefly comment on mathematical details about the correspondence between the
classical case and the quantum case (see also Refs. [21, 26]). Let A be the C∗-algebra of an infinite
spin chain. We consider a unital Abelian C∗-subalgebra B ⊂ A , which is interpreted as a set of
classical observables. Let Φ be a quantum state on A , and Φ|B be its restriction to B. From
the Gelfand-Naimark theorem, B is identified with the Banach space C0(K), which is the space of
C-valued continuous functions on a compact Hausdorff space K. In our setup, K = BZ, which is
compact from the Tychonoff’s theorem. From the Riesz-Markov-Kakutani representation theorem,
the dual of C0(K) is the space of regular Borel measures on K. Thus Φ|B is identified with a
probability measure on K (i.e., a stochastic process over Z).

Classical ergodicity can be defined in the same manner as in the quantum case (Definition 9),
i.e., as a commutative case of quantum ergodicity. On the other hand, the standard definition of
classical ergodicity is that any subset of trajectories in a stochastic process that is invariant under
T has measure 0 or 1. These definitions are equivalent for the finite-alphabet case. In fact, a
classical stochastic process is translation-invariant ergodic if and only if it is an extremal point of
the set of translation-invariant processes. Also, as mentioned before, Definition 9 is equivalent to
the definition by extremality for quantum spin systems [22, 32].

All the quantum divergences introduced in Section II can be computed using as arguments a
probability distribution and a vector of positive entries of same length, by embedding both classical
vectors into the diagonal entries of an operator in a Hilbert space whose dimension is the same as
the number of entries in the vectors.

In the following, we argue that, explicitly for the classical case, if P̂ and Σ̂ satisfy a relative
asymptotic equipartition property (relative AEP), then the lower and the upper divergence rates
coincide, and they must equal the KL divergence. We first define the relative AEP in the form of a
convergence in probability, a classical counterpart of our quantum formulation in Section IV.

Definition 15 (Relative asymptotic equipartition property (relative AEP)). We say that P̂ and Σ̂

satisfy the relative AEP if the KL divergence rate S1(P̂‖ Σ̂) exists and if 1
n

ln ρn(Xn)
σn(Xn)

converges to

S1(P̂‖ Σ̂) in probability by sampling Xn according to ρn.

This is equivalently formulated as follows (see, for example, Theorem 11.8.2 of Ref. [19]):

Proposition 20. Suppose that S1(P̂‖ Σ̂) exists. The sequences P̂ and Σ̂ satisfy the relative AEP if and

only if for any ε > 0, there exists a set Qn ⊂ {Xn} (the relative typical set) such that for sufficiently

large n:

(a) For any Xn ∈ Qn,

exp(n(S1(P̂‖ Σ̂)− ε))6
ρn(Xn)

σn(Xn)
6 exp(n(S1(P̂‖ Σ̂)+ ε)) ; (E1)

(b) ρn[Qn]> 1− ε; and
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(c) (1− ε)exp(−n(S1(P̂‖ Σ̂)+ ε))< σn[Qn]< exp(−n(S1(P̂‖ Σ̂)− ε)).

Here, ρn[Qn] and σn[Qn] represent the probability of Qn according to distributions ρn and σn, re-

spectively.

The relative AEP ensures that the min and max divergence rates converge to the KL divergence
rate:

Proposition 21. If P̂ and Σ̂ satisfy the relative AEP, we have

S(P̂‖ Σ̂) = S(P̂‖ Σ̂) = S1(P̂‖ Σ̂) . (E2)

Proof. Although this proposition follows easily from Eqs. (29a) and (29b), we here note an alter-
native proof based on Definition 2 with a slightly different intuition. We consider a subnormalized
probability distribution τn(Xn) defined by τn(Xn) := ρn(Xn) for Xn ∈Qn and τn(Xn) := 0 for Xn /∈Qn.
From tr[τn] > 1− ε and with Proposition 10, we see that τn is a candidate for the maximization in

S
2
√

ε
0 (ρn ‖σn). Therefore,

S
2
√

ε
0 (ρn ‖σn)> S0(τn ‖σn)>− lnσn[Qn] , (E3)

where we used that Qn cannot be smaller than the support of τn to obtain the right inequality. From
the right inequality of (c) in Proposition 20, we have

S
2
√

ε
0 (ρn ‖σn)> n(S1(P̂‖ Σ̂)− ε) . (E4)

By taking the limit n→ ∞, we obtain

S(P̂‖ Σ̂)> S1(P̂‖ Σ̂) . (E5)

Similarly, we have

S2
√

ε
∞ (ρn ‖σn)6 S∞(τn ‖σn) = ln max

Xn∈Qn

ρn(Xn)

σn(Xn)
. (E6)

From the right hand side of Proposition 20 (a), we have

S2
√

ε
∞ (ρn ‖σn)< n(S1(ρn ‖σn)+ ε) . (E7)

By taking the limit, we obtain

S(P̂‖ Σ̂)6 S1(P̂‖ Σ̂) . (E8)

By combining Eqs. (E5) and (E8), we obtain (E2).

In the following, we assume that P̂ := {ρn} is translation-invariant (i.e., stationary) and ergodic.
In this case the non-relative AEP (i.e., the classical counterpart of Proposition 8) is satisfied, as a
consequence of the Shannon-McMillan theorem.

As in the quantum case, we define the reduced state Σ̂ := {σn} of the global Gibbs state σ of a
local and translation-invariant Hamiltonian in one dimension, where σn(Xn) := σ(Xn) (i.e., σn is a
marginal distribution of σ ). We can also define the truncated Gibbs state Σ̂� := {σ�

n }. The global
Gibbs state σ is obtained as the limit of the truncated Gibbs states [92]:

σ := lim
n→∞

σ�
n , (E9)
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where convergence is given by the weak-∗ topology (or the vague topology) of the dual of the
Banach space C0(K).

We remark that the case of the reduced Gibbs state Σ̂ can also be obtained from a well-known
fact that the relative AEP is satisfied for a translation-invariant ergodic process with respect to a
translation-invariant Markov process. (The relative AEP has also been proved in a stronger sense
(i.e., almost surely convergence). See Ref. [20] and references therein. For our purpose here,
however, convergence in probability is enough.) In fact, we have the following lemma.

Lemma 19. The global Gibbs state σ of a local and translation-invariant Hamiltonian in one

dimension is translation-invariant Markovian.

Proof. From the Hammersley-Clifford theorem [93] (see also Ref. [94]), it is known that the Gibbs
state of a local Hamiltonian on an arbitrary finite graph is Markovian. On the other hand, here we
directly prove this lemma by explicitly calculating the global Gibbs distribution σ , without using
the Hammersley-Clifford theorem.

For simplicity, we assume that the local interaction is given in the form of hi = h(xi,xi+1) and
satisfies h(x,y) = h(y,x). We introduce the transfer matrix T , whose (xi,xi+1)-element is given by

〈xi |T |xi+1〉 := exp(−βh(xi,xi+1)) . (E10)

Here, we used the bra-ket notation to represent the classical probability vectors. We denote the
spectral decomposition of T as

T = ∑
λ

eλ |λ 〉〈λ | . (E11)

We also assume that T has a non-degenerate maximum eigenvalue eλ∗ .
For the truncated Hamiltonian H[−ℓ,ℓ] := ∑ℓ

i=−ℓ h(xi,xi+1), the truncated Gibbs distribution is
given by

σ�
[−ℓ,ℓ](x−ℓ, · · · ,xℓ,xℓ+1) =

∏ℓ
i=−ℓ〈xi |T |xi+1〉
〈1|T 2ℓ+1 |1〉 , (E12)

where |1〉 := ∑xi
|xi〉 is the column vector whose entries are all unity. Its marginal distribution for an

interval [−ℓ′,n] with ℓ′ < ℓ, n < ℓ is given by

σ�
[−ℓ,ℓ](x−ℓ′ , · · · ,xn) =

〈1|T ℓ−ℓ′ |x−ℓ′〉∏n−1
i=−ℓ′〈xi |T |xi+1〉〈xn |T ℓ−n |1〉
〈1|T 2ℓ+1 |1〉 . (E13)

The conditional probability is then given by

σ�
[−ℓ,ℓ](xn |xn−1, · · · ,x−ℓ′) =

〈1|T ℓ−ℓ′ |x−ℓ′〉∏n−1
i=−ℓ′〈xi |T |xi+1〉〈xn |T ℓ−n |1〉

〈1|T ℓ−ℓ′ |x−ℓ′〉∏n−2
i=−ℓ′〈xi |T |xi+1〉〈xn−1 |T ℓ−n+1 |1〉

=
〈xn |T ℓ−n |1〉
〈xn−1 |T ℓ−n+1 |1〉 〈xn−1 |T |xn〉 , (E14)

which depends only on xn−1 and xn — as expected from the Hammersley-Clifford theorem — with
also an explicit dependency on n. From (E11),

σ�
[−ℓ,ℓ](xn |xn−1, · · · ,x−ℓ′) =

∑λ eλ(ℓ−n)〈xn |λ 〉〈λ |1〉
∑λ eλ(ℓ−n+1)〈xn−1 |λ 〉〈λ |1〉

〈xn−1 |T |xn〉 . (E15)
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By taking the limit of ℓ while fixing ℓ′ and n, we obtain

lim
ℓ→∞

σ�
[−ℓ,ℓ](xn |xn−1, · · · ,x−ℓ′) =

〈xn |λ∗〉
eλ∗〈xn−1 |λ∗〉

〈xn−1 |T |xn〉 , (E16)

where the right-hand side depends only on xn and xn+1 and no longer explicitly depends on n.
Therefore, the global Gibbs distribution σ satisfies

σ(xn |xn−1, · · · ,x−ℓ′) = σ(xn |xn−1) . (E17)

We note that it is straightforward to remove the assumption that T has a non-degenerate maximum
eigenvalue. In fact, we can just replace the right-hand side of (E16) by multiple eigenvectors with
the maximum eigenvalue of T .

In general, a stochastic process σ is defined as Markovian, if for any n

σ(xn |xn−1,xn−2, · · ·) = σ(xn |xn−1) (E18)

holds almost surely (see, for example, Chapter 2 of Ref. [95]). Also, from the Levy’s martin-
gale convergence theorem, limℓ′→∞ σ(xn |xn−1, · · · ,x−ℓ′) = σ(xn |xn−1, · · ·) holds almost surely. The
claim then follows from Eq. (E17).
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