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Multimode Metrology via Scattershot Sampling

Joshua J. Guanzon,1, ∗ Austin P. Lund,1, 2 and Timothy C. Ralph1

1Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics,
The University of Queensland, St Lucia, Queensland 4072, Australia

2Dahlem Center for Complex Quantum Systems,
Freie Universität Berlin, 14195 Berlin, Germany

(Dated: August 19, 2021)

Scattershot photon sources are known to have useful properties for optical quantum computing
and boson sampling purposes, in particular for scaling to large numbers of photons. This paper
investigates the application of these scattershot sources towards the metrological task of estimating
an unknown phase shift. In this regard, we introduce three different scalable multimode interferom-
eters, and quantify their quantum Fisher information performance using scattershot sources with
arbitrary system sizes. We show that two of the interferometers need the probing photons to be
in certain input configurations to beat the classical shot-noise precision limit, while the remaining
interferometer has the necessary symmetry which allows it to always beat the classical limit no
matter the input configuration. However, we can prove all three interferometers gives the same
amount of information on average, which can be shown to beat the classical precision limit. We
also perform Monte Carlo simulations to compare the interferometers in different experimentally
relevant regimes, as a function of the number of samples.

I. INTRODUCTION

The science of measurement, or metrology, is the study
of measurement accuracy and precision in a broad range
of experimental contexts. Quantum metrology considers
these factors in situations which can only be described
by quantum mechanics. Measurement probes that ex-
hibit non-classical properties, such as quantum entangle-
ment, can in principle have advantages in measurement
precision [1, 2]. In terms of optics, non-classical states
of light can be used to estimate system parameters (e.g.
phase shifts) with greater precision than can be achieved
classically, given the same amount of probe energy [3–5].
This could be useful for many situations, for example, if
a sample is highly photosensitive, or the number of prob-
ing measurements is limited. There is an enormous range
of possibilities to consider and finding the best architec-
ture, with an easy to create probe state, is a problem of
continued research and interest.

The concept of non-classicality is not one that has a
universal definition across the fields of study based on
quantum mechanics. In the field of quantum comput-
ing, a quantum resource that can be used to exhibit a
computational speed-up of the same problem using clas-
sical resources would be considered “non-classical.” In
optical quantum computing, the surprisingly simple sys-
tem of passive linear optical networks with multiple sin-
gle photon inputs and detection exhibits such an advan-
tage [6–8]. This task is called boson sampling, where
it is computationally difficult for classical computers to
approximately reproduce samples from a randomly cho-
sen passive linear optical network [9]; this is due to the
quantum photon number-path entanglement. The lat-
est experimental boson sampling type devices have now

∗ joshua.guanzon@uq.net.au

reached system sizes where the quantum computational
advantage is overwhelming in comparison to the state-of-
the-art classical simulation strategies and supercomput-
ers [10].

Evidently, it would be fruitful to consider whether bo-
son sampling-like systems are useful for metrology. In
this regard, there has been recent papers which studied a
multimode metrology scheme based on Quantum Fourier
Transformation (QFT) interferometers, which shows a
quantum advantage up to certain network sizes [11, 12].
Like boson sampling, these devices use single photon in-
puts where the QFT induces number-path entanglement
to beat the classical precision limit. This scheme with
QFT interferometers has been implemented experimen-
tally in various small sizes [13].

The technical demands on the photonic sources re-
quired for boson sampling experiments was eased with
the development of scattershot boson sampling. This re-
moves the strict resource requirement of single photon
inputs into particular modes, and instead allowed ran-
dom configurations of photonic inputs [14–16]. Scatter-
shot boson sampling is still a computationally hard prob-
lem for classical computers, while being efficiently imple-
mentable on a quantum optical device that employs a
source with much improved scalability to higher modes
compared to regular boson sampling using single pho-
tons. The main building block of this source is a standard
two-mode squeezed vacuum with a heralding photon de-
tector in one of the modes, as shown in Fig. 1(a). The
scattershot source is then built from an array of these
components as shown in Fig. 1(b), whose photonic emis-
sions are then fed into a boson sampling circuit for quan-
tum computation purposes, or, as in our case, fed into
a multimode interferometer for quantum metrology pur-
poses.

In essence, similar to how Ref. [11] translated the
ideas from boson sampling for multimode metrology pur-
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FIG. 1. (a) A two-mode squeezer, characterised by a χ
squeezing parameter, has a chance of creating pairs of pho-
tons via spontaneous parametric down-conversion of pump
photons. This means if we detect ni photons in the red upper
mode, we expect to find ni photons in the blue lower mode.
(b) By stacking anm array of χ strength squeezers and herald-
ing photo-detectors (here for m = 4), we can create a scat-
tershot source which allows us to quickly perform metrology
experiments with good potential for scaling to higher modes.

poses, this paper aims to translate the ideas from scatter-
shot boson sampling for scattershot multimode metrol-
ogy purposes. We note that there has been some numer-
ical analysis of scattershot sources for metrology in one
section of Ref. [17], in the context of multi-parameter
estimation with QFT interferometers. In contrast, our
paper has scattershot sources as the main stage of our
single-parameter estimation scheme, with different phase
shift scaling considerations, and analysis of different mul-
timode interferometers beyond that of QFTs.

We begin in Section II, where we will outline the struc-
ture of the metrology interferometers which we are inves-
tigating. We also give background information on passive
linear optical networks and the Quantum Fisher Infor-
mation (QFI). In Section III, we analyse the separable
interferometer, which we will argue is the most natural
baseline to compare other multimode interferometers of
similar structure. We then show in Section IV that the
uniform interferometer, which uses QFTs in the manner
like that to the previously mentioned papers, actually
doesn’t lead to the required symmetry that maximises
the benefits of using scattershot sources. In Section V,
we outline how to construct the symmetric interferome-
ter, and prove that the overall network symmetry means
that all possible photon input configurations lead to a
quantum enhancement from scattershot sources. We cal-
culate the QFI for all three interferometers, which shows

all three can beat the classical shot-noise precision limit,
and in the asymptotic limit of large numbers of sam-
ples all three will give the same amount of information.
Finally, in Section VI, we implement Monte Carlo simu-
lations to contrast the interferometers with finite sample
sizes, and in particular regimes that may be of experi-
mental interest.

II. CHARACTERISING THE METROLOGY
APPARATUS

A. Passive Linear Optical Networks

The way a particular linear optical network evolves
photonic inputs can be described simply by an m × m
unitary matrix Um, where m is the number of modes or
optical ports that the network contains. More precisely,
this matrix describes how the bosonic creation operators
of the input modes ~a† are linearly combined to give the
bosonic creation operators of the output modes

~b† = Um~a
†. (1)

In other words, Um describes how the photons are scat-
tered and interfered within the network, such that the
number of photons and energy are conserved (assuming
a lossless network).

There are various convenient methods of decompos-
ing any unitary Um into a maximum of m(m − 1)/2
elementary beam-splitters [18–20]. Hence linear optical
networks are accessible systems to study, as they can be
implemented experimentally using just conventional one-
and two-mode linear optical elements. We are also not
considering networks with internal active components,
which is where inter-network measurements are taken to
change the configuration of other optical elements else-
where within the network. This makes the passive net-
works we describe in this paper amenable to implemen-
tation on miniaturised optical interferometers and inte-
grated optical circuits in the near-term.

B. Multimode Interferometers

In a metrology experiment, we want to maximise our
knowledge of a fixed unknown phase shift φ, while min-
imising the amount of resources it takes to get that
information. First, consider the standard two-mode
Mach–Zehnder interferometer (MZI) given by the uni-
tary

Y2(φ) ≡ X2Z2(φ)X†2 =

[
cos(φ/2) sin(φ/2)
− sin(φ/2) cos(φ/2)

]
, (2)

where the unknown phase shift Z2(φ) is applied to only
one of the modes, and is conjugated by fixed 50:50 sym-
metric beam-splitters X2. This is shown visually in
Fig. 2(a), where we have included a controllable known
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FIG. 2. (a) A standard metrology experiment to determine φ, using a Mach–Zehnder interferometer, photon inputs and photon
counting detectors. (b) We explore the natural multimode version of this standard setup, where we investigate interferometers
with phase shifts applied to half of the m modes. (c) One multimode interferometer of this type is made from stacking together
m/2 copies of Mach-Zehnder interferometers. However, the amount of information gathered about φ depends on which ports
the photons are injected into. (d) We will show that we can create a symmetrising transformation Tm, which results in all
mode being treated equally, just like in the standard two-mode metrology experiment.

phase shift θ [21], as a reminder that the overall phase
shift could always be tuned close to an experimentally
convenient value (e.g. φ + θ ≈ 0 such that the overall
scattering is close to the identity Y2(0) = I2). However,
for mathematical convenience, we will set θ = 0 and just
remember we can always tune the phase shift.

Now, consider the m-mode extension of this interfer-
ometer

Ym(φ) ≡ XmZm(φ)X†m, (3)

where the phase shift Zm(φ) is over half of the modes,
and Xm is a fixed linear optical network, analogous to the
50:50 beam-splitters in the two-mode MZI, but Xm could
potentially mix between all modes. This arrangement is
shown in Fig. 2(b). Using this network construction we
will explore different Xm networks which will allows us to
extend particular properties of the standard MZI to mul-
tiple modes. It is important to note that the treatment of
the phase shift Zm(φ) as a resource is different to the pre-
viously mentioned Ref. [12], where they consider the best
way to divide up a fixed total amount of phase amongst
many modes (i.e. the phase shift can be different on

each mode depending on the strategy employed). In our
case, the phase shift applied on the modes is the same;
physically, we are just considering a straight-forward sce-
nario where the sample being measured, such as a piece
of glass or ampule of gas, is uniform and simply overlaid
upon half of the modes.

One benefit of investigating interferometers of this type
is that a separable stack of m/2 MZIs

Y (sep)
m (φ) ≡ ⊕m/2j=1 Y2(φ), (4)

is an interferometer that fits the phase structure as shown

in Fig. 2(c), where effectively X
(sep)
m = ⊕m/2j=1X2 with

some trivial rearrangement of the modes. It is known
that photon inputs into a MZI can show quantum en-
hanced detection, as long as the photons are not all in one
port [22]; hence scaling this system by m/2 copies effec-

tively expedites determining φ. Alternatively, Y
(sep)
m (φ)

can be thought of as being separated temporally, in other
words just using one standard MZI with m/2 samples.
Given independent samples, the total information will
be just the sum of the individual measurements; the pre-
cise QFI is calculated in Section III. It is this intuitive
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interpretation which we use to fairly compare different
sized multimode interferometers with the same structure,
as we can use separable interferometers with equivalent
number of phase shifts as a standard metric.

For our metrology considerations, the two input ports
of an MZI are permutationally invariant, in the sense
that the inputs |n1n2〉 and |n2n1〉 will provide the same
amount of extractable information about φ; this is the
natural consequence of the 50:50 beam splitters X2. In
our multimode case, let us suppose the scattershot source
gave a particular input of |~n〉 ≡ |n1 · · ·nm〉, input invari-
ance would mean the QFI remains the same if we switch
any two modes nj ↔ nk,∀j, k. Since the scattershot
source generates photons at random inputs with equal
chance in all modes, it would be advantageous if we find
a Ym(φ) interferometer which has this input invariance

property for all modes. Clearly for Y
(sep)
m (φ) the first

mode interacts with the second mode, but doesn’t inter-
act with the third mode, hence it does not have input
invariance. One may speculate that this property exists
for

Y (uni)
m (φ) ≡ FmZm(φ)F †m, (5)

where we replace X
(uni)
m = Fm in Fig. 2(b) with a uni-

form scattering device such as the QFT or Hadamard
(Sylvester) transformation. These are optical devices in
which the associated scattering matrix has elements of
the same uniform magnitude, which means if a single
photon is injected into any of the input ports, there is
an equal chance of measuring it in any of the output
ports. However, we will show in Section IV that uniform
interferometers do not result in the symmetry which we
are looking for; hence finding an interferometer with in-
put invariance is not an immediately obvious problem to
solve.

We propose using a symmetrising transformation Tm,
which is used to create the interferometer

Y (sym)
m (φ) ≡ Tm[⊕m/2i Y2(φ)]TTm, (6)

that has a symmetrical scattering matrix with very sim-
ilar properties as Y2(φ). This construction is shown in
Fig. 2(d), where the symmetric interferometer clearly has
the same overall phase structure as the other interfer-

ometers, however with X
(sym)
m = Tm(⊕m/2j=1X2) and some

trivial rearrangement of the modes. We detail this in Sec-
tion V, and show that this is an optimal way of mixing
the modes such that it is input invariant. In other words,
we can show that the symmetric interferometer will al-
ways give a quantum enhanced detection using scatter-
shot sources. As a consequence of this, we show in Sec-

tion VI that Y
(sym)
m (φ) is more likely to give more infor-

mation than Y
(sep)
m (φ) for finite sample sizes. Finally, we

note that the symmetric interferometer can actually be
implemented with temporal modes and one MZI, where
Tm describes how the different temporal modes should in-
teract together; hence the experimental implementation
of this scheme to large mode numbers is feasible.

C. Quantum Fisher Information

The Cramer-Rao bound constrains the achievable pre-
cision of an unknown variable φ as follows

(∆φ)2 ≥ 1

F
, (7)

where F is the QFI [23]. Classical interferometers cannot
beat the shot-noise limit (SNL) of (∆φ)2 ≥ 1/n, where n
here is the total number of probes or photons in our case.
In contrast, it is known that quantum interferometers can
achieve the higher precision Heisenberg limit of (∆φ)2 ≥
1/n2, through quantum entangled photons or squeezed
states [24, 25].

Suppose we know that an interferometer is described
by the unitary operator Û(φ), where an input state ρ is
acted upon as follows

ρ(φ) = Û(φ)ρÛ†(φ), Û(φ) = e−iĤφ, (8)

in which Ĥ is the generating Hermitian operator for Û .
We can then use the following equation to calculate the
QFI

F = 4(∆Ĥ)2 = 4(〈~n|Ĥ2|~n〉 − 〈~n|Ĥ|~n〉2), (9)

since our input from the scattershot source is a pure
state [26], as a tensor product of Fock states

|~n〉 ≡ |n1〉 ⊗ · · · ⊗ |nm〉 ≡ |n1 · · ·nm〉. (10)

This computation is convenient as it allows us to deter-
mine the QFI just from the input state, seemingly inde-
pendent of the detection scheme at the output. However,
since it in some sense optimises over all possible mea-
surement schemes, it may include schemes which requires
prior knowledge of φ. Therefore, in order to be certain
that this calculation is realistic, we will also describe a
specific measurement procedure which can independently
be shown to achieve the same QFI, and hence the same
precision bound on φ.

III. THE SEPARABLE INTERFEROMETER

A. General Fisher Information

The Hermitian operator which describes a single MZI

is given by Ĥ(mzi) = − i
2 (a†1a2 − a†2a1), since Eq. (2) is

just the beam-splitter action with an extra 1/2. Thus a
separable system of m/2 MZIs performs the action

Ĥ(sep) = − i
2

m/2∑
j=1

(a†2j−1a2j − a†2ja2j−1). (11)

To calculate the QFI using Eq. (9), we need an expression

for 〈~n|Ĥ(sep)|~n〉 and 〈~n|(Ĥ(sep))2|~n〉. All the terms in
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TABLE I. Summary of the Quantum Fisher Information associated with the three multimode interferometers under investi-
gation. We also include the example of two single photons into four modes m = 4, which emphasises the input invariance of
the symmetric interferometer, and that on average all three will give the same amount of information.

Input |~n〉 ≡ |n1 · · ·nm〉 |1100〉 |1010〉 |1001〉 |0110〉 |0101〉 |0011〉 Avg.

Separable n+ 2
∑m/2
j=1 n2j−1n2j 4 2 2 2 2 4 8/3

Uniform n+ 8
m2

∑m/2
j=1

∑m/2
k=1 n2j−1n2k/ sin2

(
π(2k−2j+1)

m

)
3 2 3 3 2 3 8/3

Symmetric n+ 1
m−1

∑m
j=1

∑m
k 6=j njnk 8/3 8/3 8/3 8/3 8/3 8/3 8/3

Ĥ(sep) will not preserve |~n〉 and thus will give zero, for

example 〈n1n2|a†1a2|n1n2〉 ∝ 〈n1n2|(n1 +1)(n2−1)〉 = 0,

hence 〈~n|Ĥ(sep)|~n〉 = 0. In contrast, the square of this
Hermitian operator

(Ĥ(sep))2 =
1

4

m/2∑
j=1

(a†2j−1a2j−1a2ja
†
2j

+ a2j−1a
†
2j−1a

†
2ja2j)

+ non-state-preserving terms, (12)

contains important state preserving terms which con-

tribute to the QFI, such as 〈n1n2|a†1a1a2a
†
2|n1n2〉 =

n1(n2 + 1). Thus, this means that

〈~n|(Ĥ(sep))2|~n〉 =
1

4

m/2∑
j=1

[n2j−1(n2j + 1)

+ n2j(n2j−1 + 1)]. (13)

Now, substituting this into Eq. (9) results in a QFI of

F (sep) =

m/2∑
j=1

[n2j−1 + n2j + 2n2j−1n2j ],

= n+ 2

m/2∑
j=1

n2j−1n2j , (14)

where we define n =
∑m
j=1 nj as the total number of

photons. So this means that this separable interferometer
beats the shot-noise limit of n, as long as some of the pho-
tons land together in one of the MZIs. We note that this
QFI calculation matches the results from Ref. [27], which
analysed an analogous system of a multimode, temporal-
spaced Fock input state injected into a single MZI. This
only emphasises how we can interpret this result as effec-
tively repeating a single standard MZI experiment m/2
times, and hence is the natural baseline to compare with
other multimode interferometers of similar phase struc-
ture. Evidently, for m = 2 we can see this result reduces
down to

F (mzi) = F (sep)(m = 2) = n1 + n2 + 2n1n2, (15)

the QFI for arbitrary Fock states into a single MZI, which
matches known results from similar scenarios [28, 29].
Note that the QFI for all multimode interferometers we
consider are summarised in Table I.

B. Specific Measurement Procedure

In this section, we detail a concrete measurement
procedure, in particular for single photon input states
|~n〉 ≡ |n1 · · ·nm〉, ni ∈ {0, 1}, which saturates the pre-
vious F (sep) result. The Fisher information from single
photons into an individual MZI Y2 is given by

F (mzi)(|10〉) = F (mzi)(|01〉) = 1, (16)

F (mzi)(|11〉) = 4. (17)

We get Eq. (17) from previous known results of Holland-
Burnett states [30, 31], in which Ref. [31] in particular
describes a measurement procedure with photon num-
ber resolving detectors. We can use this knowledge and
counting to determine the Fisher information received
from n single photons randomly allocated into the m

ports of Y
(sep)
m ≡ ⊕m/2j=1 Y2. Suppose that out of n sep-

arate photons, there are x pairs which land together into
one sub-experiment as Y2|11〉. This translates to a QFI
of the following

F (sep)(|~n〉, x) = xF (mzi)(|11〉) + (n− 2x)F (mzi)(|10〉),
= n+ 2x, ni ∈ {0, 1}. (18)

This result matches the general QFI calculation in

Eq. (14), where x =
∑m/2
j=1 n2j−1n2j for single photons.

Since the scattershot source treats all modes equally,
there is an equal chance of generating any of the

(
m
n

)
cases. We show in Appendix A that the probability x
pairs occurs is

P(x) =

(
m

n

)−1(
m/2

x

)(
m/2− x
n− 2x

)
2n−2x, (19)

where
∑n/2
x=0 P(x) = 1. We can then calculate the ex-

pected Fisher information for our separable circuit with
single photons as

〈F (sep)〉 =

n/2∑
x=0

F (sep)(x)P(x) = n+
n(n− 1)

m− 1
, (20)

hence on average we expect that the separable interfer-
ometer coupled with a scattershot source will provide a
quantum advantage. We will show in Section V that
this expression is equivalent to the QFI of the symmetric
interferometer F (sym), if we also assume single photon
inputs.
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IV. THE UNIFORM INTERFEROMETER

Here we calculate the QFI using uniform scattering
devices, and show that it isn’t input invariant. Firstly,
note that if we replace Xm with a Hadamard transform,
we get back the separable circuit but with the modes
switched around; so instead we will focus on the non-

trivial QFT based interferometer X
(uni)
m = Fm. We show

in Appendix B the scattering matrix which describes the
overall uniform interferometer is

(Y (uni)
m )j,k =


cos(φ/2), j = k,

0, k − j ∈ even/{0},
4i sin(φ/2)

m

(
1−e

2iπ(k−j)
m

) , k − j ∈ odd,

(21)

and the corresponding Hermitian operator is

Ĥ(uni) =
2

m

m/2∑
j=1

m/2∑
k=1

[
a†2j−1a2k

1−e
2iπ(2k−2j+1)

m

+
a†2ka2j−1

1−e−
2iπ(2k−2j+1)

m

]
.

(22)

Firstly note that 〈~n|Ĥ(uni)|~n〉 = 0 because there are no
state preserving terms. The Hermitian operator squared
is given by

(Ĥ(uni))2 =
1

m2

m/2∑
j=1

m/2∑
k=1

a†2j−1a2j−1a2ka
†
2k+a2j−1a

†
2j−1a

†
2ka2k

sin2(π(2k−2j+1)
m )

+ non-state-preserving terms. (23)

Hence we can calculate the expected value as

〈~n|(Ĥ(uni))2|~n〉 =
1

m2

m/2∑
j=1

m/2∑
k=1

n2j−1(n2k+1)+n2k(n2j−1+1)

sin2(π(2k−2j+1)
m )

.

(24)

There is a simplified expression for this type of cose-
cant summation [32], which we use to show that∑m/2
k=1

1

sin2(π(2k−2j+1)
m )

= m2/4. Finally, the QFI is

F (uni) =
4

m2

m/2∑
j=1

m/2∑
k=1

n2j−1+n2k+2n2j−1n2k

sin2(π(2k−2j+1)
m )

,

=

m/2∑
j=1

n2j−1 +

m/2∑
k=1

n2k

+
8

m2

m/2∑
j=1

m/2∑
k=1

n2j−1n2k

sin2(π(2k−2j+1)
m )

,

= n+
8

m2

m/2∑
j=1

m/2∑
k=1

n2j−1n2k

sin2(π(2k−2j+1)
m )

. (25)

We can see that this interferometer can beat shot-noise,
however the input must have at least one photon in an
odd mode and at least one photon in an even mode. In
other words, if the scattershot source happens to generate
photons which are all in the odd modes, then the amount
of information will just be equivalent to shot-noise (and
likewise if they are all in the even modes).

We can gain a good sense of the possible magnitudes
of the coefficients in front of the enhancement terms in
Eq. (25), by noting that the denominator is smallest when
k−j = 0 and that sin2 (π/m) ≈ π2/m2 assuming our sys-
tem has modes m� π. Therefore, the coefficients should
be between (8/m2, 8/π2 ≈ 0.81), clearly smaller than the
fixed 2 coefficient in front of the enhancement terms for
the separable interferometer. However, considering the
scattershot source gives a random input, this means that
the uniform interferometer has a much higher probabil-
ity of beating the shot-noise limit. In the next section,
we will detail the existence of a symmetric interferometer
that will always beat the shot-noise limit, no matter the
location of the photons.

V. THE SYMMETRIC INTERFEROMETER

A. Creating the Symmetrising Transformation

Consider a metrology apparatus Y
(sym)
m which gives

the same amount of information about φ irrespective of
where we probe it with photons; intuitively, we expect
there to be symmetry associated with how the photons

are scattered within Y
(sym)
m . It will be shown that the

necessary network symmetry is encapsulated by a type
of skewed-symmetric matrix, that was used in a differ-
ent context in Ref. [33]. But first, we will describe one
method of creating the symmetrising transformation Tm,

which acts on ⊕m/2j=1 Y2 and gives us this overall network
symmetry.

The m mode symmetrising transformation Tm is rep-
resented by a m×m real orthogonal matrix, and can be
built using two smaller 2× 2 submatrices as follows

Tm ≡

m/2 columns︷ ︸︸ ︷
A2 B2 B2 B2 · · ·
−B2 A2 −B2 B2 · · ·
−B2 B2 A2 −B2 · · ·
−B2 −B2 B2 A2 · · ·

...
...

...
...

. . .





m
/
2

ro
w

s

, (26)

A2(m) ≡

 0 1√
2√

m−
√

(m−1)(m−2)√
2m(m−1)

−
√

m−2
2m(m−1)

 , (27)

B2(m) ≡

 1√
2(m−1)

√
m

2(m−1)(m−2)√
m(m−2)+2

√
m−1√

2m(m−1)(m−2)
−
√

m−2
2m(m−1)

 . (28)
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Notice in Eq. (26) that some of the off-diagonal entries
are negative (i.e. −B2). We purposefully set these neg-
ative entries such that Tm has lower-resolution orthogo-
nality and off-diagonal skew-symmetry in 2 × 2 blocks.
We can use other orthogonal and skew-symmetric matri-
ces to help us determine which entries need to be nega-
tive. Specifically in our case, we can construct the fol-
lowing helper matrices H2n, for all powers of two sizes
∀n = 2k, k ∈ N as follows

H2n ≡
√
n− 1√
2n− 1

[
Hn Hn + In√

n−1

Hn − In√
n−1

−Hn

]
, (29)

in which the first two sizes will be

H2 ≡

[
0 1

−1 0

]
⇒ H4 =

1√
3


0 1 1 1

−1 0 −1 1

−1 1 0 −1

−1 −1 1 0

 . (30)

Notice that we used the location of the negative entries in
H4 for the first few entries of Tm in Eq. (26). By construc-
tion, these H2n matrices are orthogonal H2nH

T
2n = I2n,

skew-symmetric HT
2n = −H2n and have equal magnitude

off-diagonal elements |(H2n)i,j | = 1/
√

2n− 1,∀i 6= j [33].
Note that Hn is effectively a modified skew Hadamard
matrix, and it’s possible to instead use the position of the
negatives from any other m/2-sized skew Hadamard ma-
trix to create Tm. It is roughly a century old conjecture in
mathematics that Hadamard matrices exist for 1, 2 and
4k sizes [34]. Hence it is reasonable to assume that these
Tm transformations are possible only for m ∈ {4, 8k}
modes, in which we showed by H2n an explicit method
to construct these matrices for powers of two.

Due to the above defined properties of Tm, we can
calculate the following

TmT
T
m =


I2 02 02 02 · · ·
−02 I2 −02 02 · · ·
−02 02 I2 −02 · · ·
−02 −02 02 I2 · · ·

...
...

...
...

. . .

 , (31)

I2 = A2A
T
2 + (m/2− 1)B2B

T
2 , (32)

02 = B2A
T
2 −A2B

T
2 . (33)

In particular, notice in Eq. (33) that all but two of the
terms cancelled each other out due to the imposed nega-
tives and 2× 2 block orthogonality condition. By direct
substitution of the definitions of A2 and B2, we can show
that in fact Eq. (32) and Eq. (33) resolves to the iden-
tity and zero matrix, respectively. Hence TmT

T
m = Im,

and thus Tm is actually completely orthogonal, which
means it can be implemented using simple linear op-
tics. For completeness, we decomposed the four mode
T4 symmetrising transformation into elementary optical
elements in Appendix C.

Finally, we find that conjugation of an array of MZIs

⊕m/2j=1 Y2 with the symmetrising transformation Tm, as

given in Eq. (6), results in the following matrix

Y (sym)
m =


D2 G2 G2 G2 · · ·
−G2 D2 −G2 G2 · · ·
−G2 G2 D2 −G2 · · ·
−G2 −G2 G2 D2 · · ·

...
...

...
...

. . .

 , (34)

D2 = A2Y2A
T
2 +

(
m
2 − 1

)
B2Y2B

T
2 =

[
c −s
s c

]
, (35)

G2 = B2Y2A
T
2 −A2Y2B

T
2 =

[
s s

s −s

]
, (36)

c = cos(φ/2), s =
sin(φ/2)√
m− 1

, (37)

where we solved D2 and G2 by direct substitution of
Eq. (27) and Eq. (28). Explicitly, we have shown the
overall metrology apparatus is associated with a scatter-
ing matrix with the form

Y (sym)
m =

m columns︷ ︸︸ ︷
c −s s s · · ·
s c s −s · · ·
−s −s c −s · · ·
−s s s c · · ·
...

...
...

...
. . .





m
ro

w
s

. (38)

The 2 × 2 block off-diagonal skew-symmetry from Tm
transferred to Eq. (34), hence it is clear by substituting

D2 and G2 that the entire off-diagonals of Y
(sym)
m must

be skew-symmetric. Note the striking similarity between
the scattering matrix of this symmetric interferometer
and the MZI in Eq. (2), in contrast to the uniform inter-
ferometer in Eq. (21). We will use this skew-symmetry
to prove the input location invariance of this metrology
experiment.

B. General Fisher Information

By taking the matrix logarithm of Y
(sym)
m , the gen-

erating Hermitian matrix is given by (H
(sym)
m )j,k =

− i
2
√
m−1

sgn[(Y
(sym)
m )j,k](1− δj,k), where sgn[(Y

(sym)
m )j,k]

is the sign of the matrix element (j, k) in Y
(sym)
m . Hence

the associated Hermitian operator performs the following
action

Ĥ(sym) = − i

2
√
m− 1

m∑
j=1

m∑
k 6=j

sgn[(Y (sym)
m )j,k]a†jak. (39)

As with the other cases, the expectation value of this
operator is zero 〈~n|Ĥ(sym)|~n〉 = 0, as there are no state
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preserving terms. We can calculate the square of this
operator as

(Ĥ(sym))2 = − 1

4(m− 1)

 m∑
j=1

m∑
k 6=j

sgn[(Y (sym)
m )j,k]a†jak


×

 m∑
p=1

m∑
q 6=p

sgn[(Y (sym)
m )p,q]a

†
paq

 ,
=

1

4(m− 1)

m∑
j=1

m∑
k 6=j

a†jajaka
†
k

+ non-state-preserving terms. (40)

Since the state preserving terms are when p = k and q =

j, we calculated that sgn[(Y
(sym)
m )j,k]sgn[(Y

(sym)
m )k,j ] =

−1 because of the off-diagonal skew-symmetry properties

of Y
(sym)
m . The associated expectation value is then

〈~n|(Ĥ(sym))2|~n〉 =
1

4(m− 1)

m∑
j=1

m∑
k 6=j

nj(nk + 1), (41)

and hence the Fisher information can be summarised as

F (sym) =
1

m− 1

m∑
j=1

m∑
k 6=j

(nj + njnk),

=
1

m− 1

m∑
j=1

nj(m− 1) +

m∑
k 6=j

njnk

 ,

= n+
1

m− 1

m∑
j=1

m∑
k 6=j

njnk. (42)

As we have shown, as long as the probing photons gener-
ated by the scattershot source are located in two or more
modes, this interferometer will always beat the shot-noise
limit. However, clearly the 1/(m− 1) coefficient in front
of the enhancement term is smaller than the 2 for the
separable interferometer, and is in between the approxi-
mate range (8/m2, 8/π2) for the uniform interferometer.
In fact, the average scattershot probe into the separable
and uniform interferometers will give the same informa-
tion as the symmetric interferometer

F (sym) = 〈F (sep)〉 = 〈F (uni)〉. (43)

The averages were determined by adding up the QFI from
all the m! equiprobabilistic permutations of |n1 · · ·nm〉
and multiplying by the probability 1/m!, as shown in
detail in Appendix D. Hence, in the long run with mul-
tiple scattershot samples, all three interferometers are
expected to give the same amount of QFI.

The double sum over all modes in Eq. (42) means that
if any of the input modes were switched, the amount of in-
formation from the symmetric interferometer will remain
the same. Hence we have shown that this interferometer
holds the same input invariance property that the stan-
dard MZI has, where each mode is treated equally from a

metrological sense. Interestingly, in Appendix E we can

prove the input invariance of the four mode case Y
(sym)
4

using a completely different method via similarity trans-
formations. To reinforce this QFI result, we will now
describe a specific measurement procedure using single
photons which we show can saturate this bound.

C. Specific Measurement Procedure

In this section, we will consider inputs where each
mode can have up to one photon ni ∈ {0, 1}, which for
scattershot sources corresponds to n single photons being

injected into random input ports of Y
(sym)
m with uniform

probability. We do this as the single photon case is easier
to verify mathematically. Furthermore, the single pho-
tons case is more experimentally practical in the near
term, as it only needs small amounts of squeezing for
the photon source and doesn’t require number resolving
detectors for the measurement.

We consider a measurement procedure where we are
tuning θ to approximately −φ (recall from Fig. 2 that
θ is a known reference phase), which turns the entire

interferometer into approximately the identity Y
(sym)
m (θ+

φ = 0) = Im. For simplicity, we will again ignore θ and
assume φ ≈ 0. We can identify how close φ is to 0 by
probing the interferometer with photons, and counting
the number of times the input is equal to the output.
This is associated with the probability

P= = |p=|2, p= = 〈~n|Y (sym)
m |~n〉. (44)

We show in Appendix F the probability amplitude is

p= = cn −
(
n

2

)
cn−2s2 +

bn/2c∑
j=2

kn,2jc
n−2js2j , (45)

where the first two terms are always the same irrespec-
tive of which modes the photons are injected into, and
kn,2j are unimportant coefficients. We will show that
these first two terms are the only terms which con-
tribute to the QFI near φ ≈ 0. Intuitively, this is be-
cause limφ→0 s = limφ→0[sin(φ/2)/

√
m− 1] = 0, there-

fore terms containing higher orders of s are irrelevant
when determining F (sym)(φ ≈ 0).

We will simplify our Fisher information equation based
on the measurement procedure we are considering

outcome: input = output⇒ P=(φ), (46)

outcome: input 6= output⇒ P6=(φ) = 1− P=(φ). (47)

This means that the derivative of each outcome’s proba-
bility is related P ′6=(φ) = −P ′=(φ), so we can simplify

F (sym) ≡
∑
o

(P ′o)
2

Po
=

(P ′=)2

P=
+

(P ′6=)2

P6=
=

(P ′=)2

P=(1− P=)
.



9

Since the probability amplitude p= is real, we note that
P= = (p=)2 means P ′= = 2p=p

′
= hence we can get a

simple equation for the Fisher information

F (sym) =
4(p′=)2

1− p2
=

. (48)

Now, to get the required expressions for p2
= and (p′=)2,

we will change s to be

t = sin(φ/2) = s
√
m− 1, (49)

this way we can keep track of the m factors, as well as
simplify the derivatives to t′ = c/2 and c′ = −t/2. This
means we can represent

p= = cn − (n2)
m−1c

n−2t2 +

bn/2c∑
i=2

k
(1)
n,2ic

n−2it2i, (50)

where we will be using these k variables to absorb the
coefficients in front of irrelevant terms, where the super-
script in brackets is just to label different k values. The
squared of the above expression will be

p2
= = c2n − 2(n2)

m−1c
2n−2t2 +

2bn/2c∑
i=2

k
(2)
n,2ic

2n−2it2i. (51)

The derivative can be calculated to be

p′= = −
(
n
2 +

(n2)
m−1

)
cn−1t+

bn/2c∑
i=2

k
(3)
n,2ic

n−2i+1t2i−1,

(p′=)2 =
(
n
2 +

(n2)
m−1

)2

c2n−2t2 +

2bn/2c−1∑
i=2

k
(4)
n,2ic

2n−2it2i.

Finally, we can calculate the Fisher information as follows

F (sym) =
4

(
n
2 +

(n2)
m−1

)2

c2n−2t2+
∑2bn/2c−1
i=2 k

(5)
n,2ic

2n−2it2i

1−c2n+
2(n2)
m−1 c

2n−2t2+
∑2bn/2c
i=2 k

(6)
n,2ic

2n−2it2i

1/t2

1/t2 ,

=
4

(
n
2 +

(n2)
m−1

)2

c2n−2+
∑2bn/2c−1
i=2 k

(5)
n,2ic

2n−2it2i−2

1−c2n
t2 +

2(n2)
m−1 c

2n−2+
∑2bn/2c
i=2 k

(6)
n,2ic

2n−2it2i−2

,

(52)

where we added the 1/t2 factor because we want a non-
zero term in the numerator upon taking the limit. We
note that limφ→0 t = 0, limφ→0 c = 1 and limφ→0(1 −
c2n)/t2 = n, hence we can calculate the Fisher informa-
tion as φ approaches 0 as follows

lim
φ→0
F (sym)(φ) =

4
(
n
2 +

(n2)
m−1

)2

n+
2(n2)
m−1

= n+
n(n− 1)

m− 1
. (53)

All terms with k coefficients are irrelevant in this limit,
hence the Fisher information is the same irrespective of

where the n single photons were launched. Furthermore,
this metrology apparatus clearly beats the classical shot-
noise limit of n. This result matches our general QFI
calculation in Eq. (42) and hence saturates the precision
bound, considering for this single photons scenario that
nj ∈ {0, 1} ⇒

∑m
j=1

∑m
k 6=j njnk = 2

(
n
2

)
= n(n− 1).

It is clear that the Y
(sym)
m scattering matrix has the

appropriate symmetry which equalises the amount of in-
formation about the unknown phase amongst all modes,
such that it will always give a quantum enhanced de-
tection. However, these results also suggests multimode
interferometers with similar phase structure will give
roughly the same amount of information after many sam-
ples. That said, since the probability of quantum advan-
tage events in the separable interferometer is unlikely, we
can expect that the symmetric interferometer will have a
statistical advantage at certain finite sample sizes, which
we investigate in the next section.

VI. CONTRASTING THE INTERFEROMETERS

Here we aim to quantify the relative performance of the
symmetric interferometer in comparison to the separable
interferometer, as a function of the sample size. To do
this, we implement a Monte Carlo simulation where we
randomly generate inputs from an m mode scattershot
source, which has the same amount of squeezing χ ∈ [0, 1]
in each mode as shown in Fig. 1. The j-th mode squeezer
creates the following two-mode squeezed state

|ψj〉 =
√

1− χ2

∞∑
nj=0

χnj |njnj〉, (54)

Qnj = (1− χ2)χ2nj , (55)

where Qnj is the probability of generating nj photons.
We use this probability distribution to generate a random
sample |n1 · · ·nm〉, and calculate the following

∆F ≡ F (sep) −F (sym),

= 2

m/2∑
j=1

n2j−1n2j −
1

m− 1

m∑
j=1

m∑
k 6=j

njnk, (56)

which is the difference between the information from the
separable and symmetric interferometers. We sequen-
tially generate more random scattershot samples, each
time adding to a running total of information difference

∆Ftot(k) ≡
k∑
j=1

∆Fj . (57)

We repeat this entire process multiple times as separate
Markov chains or random walkers, which are treated as
independent experiments with the same (m,χ) parame-
ters. From this, we can infer the probability P(∆Ftot >
0|k) in which the separable interferometer will give more
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FIG. 3. (a) The upper graph is the cumulative probability distribution of 104 random walkers. Each individual walker

tracks the total Fisher information difference ∆Ftot(k) = F (sep)
tot (k) − F (sym)

tot (k), between the separable Y
(sep)
m and symmetric

interferometers Y
(sym)
m , as more random samples are generated. The lower graph distills the probability that the separable

experiment gave more information P[F (sep)
tot (k) > F (sym)

tot (k)], for a given sample size k; the maximum sample size in which

Y
(sym)
m still has an advantage kadv is indicated. The shaded regions with labels ≥ 1, ≥ 2, etc, refers to the number of quantum

enhanced measurements required by the separable interferometer to beat the symmetric interferometer. These graphs were
constructed using a system with m = 216 modes and samples from a scattershot source with χ ≈ 0.0247 squeezers. (b) The
same graphs as (a), however with more modes m = 218 and weaker squeezing χ ≈ 0.0107. (c) The photon statistics of the
samples, which shows that these particular m and χ parameters translates to an average of 〈n〉 = 40 photons for (a) and
〈n〉 = 30 photons for (b). We plot an analytically derived expression for the maximum sample size advantage of the symmetric
interferometer kadv, which shows that it (d) increases linearly as we increase the number of modes m in the system, while (e)
decreases inversely as we increase the average number of photons 〈n〉.

information than the symmetric interferometer, for a
given k sample size.

The upper graphs of Fig. 3(a) and (b) show the dis-
tribution of 104 information difference random walkers,
while the lower graphs show the probability that the sep-
arable interferometer gave more information. We note
Fig. 3(a) was run with a parameter set of (m = 216, χ ≈
0.0247) such that the average sample had 〈n〉 = 40
photons, while Fig. 3(b) had a parameter set of (m =
218, χ ≈ 0.0107) so that 〈n〉 = 30, with the full photon
distribution of the samples R(n) shown in Fig. 3(c). We
chose this parameter set in consideration to temporal im-
plementations where creating many modes are inexpen-
sive, since a single source with m time bins can emulate
m spatial sources [35, 36]. Furthermore, we only accepted
single photon per mode inputs such that the experiment
effectively needs just on-off detectors as we only need to
identify the outcomes where the input is equal to the out-
put; with low squeezing χ values, single photons are the
most likely outcome in any case. As we will show, this
multiple single photons restriction means we can analyt-
ically analyse these Monte Carlo results, and ultimately
derive an expression for how the symmetric interferome-
ter advantage scales with the experimental parameters.

There is a clear oscillatory behaviour to the graphs
of the ∆Ftot(k) walker distributions and the P(∆Ftot >
0|k) probabilities. This can be explained because the

separable interferometer needs a certain number x of en-
hanced detection events (i.e. Y2|11〉) to beat the sym-
metric interferometer, for a given range of sample sizes
k. This is shown in the lower graphs of Fig. 3(a) and (b),
where the numbers ≥ 1,≥ 2, etc, associated with the
shaded regions are explicitly pointing out the minimum

x required such that ∆Ftot = F (sep)
tot − F (sym)

tot > 0. We
analytically calculate these regions as follows

F (sep)
tot > F (sym)

tot , (58)

k〈n〉+ 2

k∑
j=1

xj > k

(
〈n〉+

〈n〉(〈n〉 − 1)

m− 1

)
, (59)

x >
k〈n〉(〈n〉 − 1)

2(m− 1)
, (60)

where x ≡
∑k
j=1 xj . This inequality expression is true

for the first region x ≥ 1 when the number of samples

is between k ∈
[
1, 2(m−1)
〈n〉(〈n〉−1)

]
, which is k ∈ [1, 84] and

k ∈ [1, 603] for the parameter set chosen in Fig. 3(a) and
(b), respectively.

The maximum sample size in which the symmetric in-
terferometer still has an advantage kadv, exists in this
first x ≥ 1 region when P(∆Ftot > 0|kadv) = 0.5, and
is labelled with dashed vertical lines in the lower graphs.
The probability that x ≥ 1 occurs is equivalent to unity
minus the probability that x = 0 occurs, which we know
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from Eq. (19) as P(x = 0) =
(
m
n

)−1(m/2
n

)
2n for one sam-

ple. Hence this means that

P(∆Ftot > 0|k) = 1−

((
m

〈n〉

)−1(
m/2

〈n〉

)
2〈n〉

)k
,

0.5 = 1−

((
m

〈n〉

)−1(
m/2

〈n〉

)
2〈n〉

)kadv
,

⇒ kadv =
log 0.5

log
(

2〈n〉
(
m/2
〈n〉
))
− log

(
m
〈n〉
) . (61)

We plot this kadv in Fig. 3(d) and (e), for different m and
〈n〉 values, which shows that there are certain parame-
ter regimes in which the symmetric interferometer can
have a significant advantage over the separable interfer-
ometer. While the separable interferometer is easier to
implement experimentally, there are situations where the
symmetric interferometer is preferable if the number of
measurements one can take is limited, such as with pho-
tosensitive samples.

For completion we have also simulated this experiment
with a small amount of modes and with inputs that can
have more than one photon per mode nj ∈ N. This
more closely corresponds to an experimental apparatus
with spatial modes, and has good squeezing sources with
photon number resolving detectors [37]. These results are
given in Appendix G, where we show that the oscillating
feature is not as prominent given high enough squeezing,
however it has similar scaling features in comparison to
the multiple single photons case.

Finally, we also compare the uniform and symmetric
interferometers using a similar Monte Carlo simulation.
This is shown in Appendix H, in which we calculated the
total information difference between these two interfer-
ometers ∆F ′tot = F (uni)

tot − F (sym)
tot > 0. It can be seen

that the symmetric interferometer also has an advantage
over the uniform interferometer, though to a lesser de-
gree in comparison to the the separable interferometer.
This confirms what was expected, since the probability of
quantum enhanced detection events is the lowest for the
separable interferometer, better for the uniform interfer-
ometer, and unity for the symmetric interferometer.

VII. CONCLUSION

In this article, we investigated how a random pho-
tonic (scattershot) source, which has good photon num-
ber scaling properties, may be used for quantum metrol-
ogy purposes. To do this, we introduced three different
scalable interferometers with m modes, that all have the
same distribution of phase resources. We firstly consider
the separable interferometer, which consists of stacking
together m/2 standard two-mode Mach-Zehnder inter-
ferometers. This separable interferometer is a natural
baseline to compare other similar interferometers, even
at different sizes, as we show that it is metrologically
equivalent to just repeat sampling m/2 times using a sin-
gle Mach-Zehnder interferometer. We proved that both
the uniform interferometer (made from quantum Fourier
transformation devices) and the separable interferometer
require the photons to be injected into particular input
ports to experience a quantum enhanced detection. In
contrast, we show that the symmetric interferometer can
always beat the shot-noise limit, irrespective of the input
from the scattershot source. However, due to the mag-
nitude of the enhancement, we prove that the amount
of information from all three multimode interferometers
will be asymptotically (in samples) the same and more
than the classical shot-noise limit. To reinforce these re-
sults, we detail a specific measurement using single pho-
tons that can saturate the same quantum enhanced ∆φ
precision bound. Finally, we employed Monte Carlo sim-
ulations which contrasts all three interferometers for fi-
nite sample sizes and in various different experimental
regimes; this showed that there are regimes where the
symmetric interferometer provides an advantage.
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Appendix A: The Separable Interferometer -
Combinatorics of n Single Photons into m Modes

We can count the number of ways that n single pho-

tons can be injected into the separable system Y
(sep)
m ≡

⊕m/2j=1 Y2 with arbitrary m sizes. The combinatorics are
summarised for the first few n values in Table II, where
we are separating the

(
m
n

)
possible cases based on how

many of the n photons land together as a pair x into one
of the separated systems. The last column of Table II
shows how many of these cases exist. For example, the
expression for four photons n = 4, with one pair x = 1, is
determined by multiplying together the following factors

1.
(
m/2

1

)
is the number of ways that the one Y2|11〉

can occur in the total ⊕m/2j=1 Y2 system.

2.
(
m/2−1

2

)
is the number of ways that two Y2|10〉 can

occur, minus the one Y2 taken in step 1 already.

3. 22 accounts for the fact that Y2|01〉 can occur in-
stead of Y2|10〉.

TABLE II. The combinatorics and Fisher information associ-
ated with n single photons injected into the m ports of the

separable circuit Y
(sep)
m ≡ ⊕m/2j=1 Y2. By considering how many

of these photons land together in one Y2, the
(
m
n

)
possible

cases can be separated based on Fisher information.

No. of No. of No. of Fisher No. of

Photons Y2|11〉 Y2|10〉 or Info. Cases

n x Y2|01〉 F (sep)

1 0 1 1
(
m/2
0

)(
m/2−0

1

)
21

2 0 2 2
(
m/2
0

)(
m/2−0

2

)
22

1 0 4
(
m/2
1

)(
m/2−1

0

)
20

3 0 3 3
(
m/2
0

)(
m/2−0

3

)
23

1 1 5
(
m/2
1

)(
m/2−1

1

)
21

4 0 4 4
(
m/2
0

)(
m/2−0

4

)
24

1 2 6
(
m/2
1

)(
m/2−1

2

)
22

2 0 8
(
m/2
2

)(
m/2−2

0

)
20

5 0 5 5
(
m/2
0

)(
m/2−0

5

)
25

1 3 7
(
m/2
1

)(
m/2−1

3

)
23

2 1 9
(
m/2
2

)(
m/2−2

1

)
21

http://functions.wolfram.com/01.10.23.0004.01
http://functions.wolfram.com/01.10.23.0004.01
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Hence the pattern generated in the last column implies
the following

(
m

n

)
=

n/2∑
x=0

(
m/2

x

)(
m/2− x
n− 2x

)
2n−2x, (A1)

which we can verify is always mathematically true, in-
dependent of the physical basis in which this expression
was derived. Now, if we assume that the photon source
treats all modes equally, where it has an equal chance of
generating any of the

(
m
n

)
cases, then we can say that the

probability that x pairs occur is

P(x) =

(
m

n

)−1(
m/2

x

)(
m/2− x
n− 2x

)
2n−2x, (A2)

where clearly
∑n/2
x=0 P(x) = 1 according to Eq. (A1).

Appendix B: The Uniform Interferometer -
Calculating the Unitary and Hermitian Operator

We first need to calculate the overall unitary matrix
and then determine the generating Hermitian operator
which dictates the action of this interferometer. By def-
inition, the QFT is given by

(Fm)j,k ≡
1√
m
e−

2iπ(j−1)(k−1)
m . (B1)

The phase shift is applied to the top half of modes in Zm
as follows

(Zm)j,k ≡


0, j 6= k,

e
iφ
2 , j = k ≤ m/2,

e−
iφ
2 , j = k > m/2,

(B2)

where we introduced a physically inconsequential global

phase shift of e−
iφ
2 to simplify the computation. Com-

bining these two unitaries will give

(FmZm)j,k =

{
1√
m
e−

2iπ(j−1)(k−1)
m + iφ

2 , k ≤ m/2,
1√
m
e−

2iπ(j−1)(k−1)
m − iφ2 , k > m/2.

(B3)

Thus, the full conjugation of the phase shifts Zm with
QFTs Fm will give us

(Y (uni)
m )j,k =

m∑
p=1

(FmZm)j,p(F
†
m)p,k

=

m/2∑
p=1

e−
2iπ(j−1)(p−1)

m + iφ
2 +

2iπ(p−1)(k−1)
m

m

+

m∑
p=m/2+1

e−
2iπ(j−1)(p−1)

m − iφ2 +
2iπ(p−1)(k−1)

m

m

=
e
iφ
2

m

m/2∑
p=1

e
2iπ(k−j)(p−1)

m

+
e−

iφ
2

m

m∑
p=m/2+1

e
2iπ(k−j)(p−1)

m

=
e
iφ
2 + e−

iφ
2 eiπ(k−j)

m

m/2∑
p=1

e
2iπ(k−j)(p−1)

m

=

cos(φ/2), j = k,

e
iφ
2 +e−

iφ
2 eiπ(k−j)

m
1−eiπ(k−j)

1−e
2iπ(k−j)

m

, j 6= k.

(B4)

We can simplify this further by looking for patterns in
the jth row and kth column elements. In particular, if
k − j is an even number other than 0 then eiπ(k−j) = 1,
however if k − j is odd then eiπ(k−j) = −1. This means
the scattering matrix which describes the overall uniform
interferometer can be written as

(Y (uni)
m )j,k =


cos(φ/2), j = k,

0, k − j ∈ even/{0},
4i sin(φ/2)

m

(
1−e

2iπ(k−j)
m

) , k − j ∈ odd.

(B5)

Using the matrix logarithm, the associated generator ma-
trix is given by

(H(uni)
m )j,k = − i

φ
(ln[Y (uni)

m ])j,k,

=

0, k − j ∈ even,
2

m

(
1−e

2iπ(k−j)
m

) , k − j ∈ odd, (B6)

and the corresponding Hermitian operator is

Ĥ(uni) =
2

m

m/2∑
j=1

m/2∑
k=1

[
a†2j−1a2k

1−e
2iπ(2k−2j+1)

m

+
a†2ka2j−1

1−e−
2iπ(2k−2j+1)

m

]
.

(B7)
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FIG. 4. One possible decomposition of the four mode sym-
metrising transformation. The blue V2 beam-splitters have a

reflectivity of η1 = 1/
√

50 + 20
√

6 ≈ 0.10, η2 =
√

2/5 ≈ 0.63,

η3 = 1/
√

251− 100
√

6 ≈ 0.41, and η4 = 1/
√

300 + 120
√

6 ≈
0.04, while the red π phase shifters induces a relative −1 phase
difference in the indicated modes.

Appendix C: The Symmetric Interferometer -
Optical Circuit Decomposition for T4 Symmetrising

Transformation in Four Modes

In Fig. 4 we give one possible decomposition, into base
optical elements, of the m = 4 mode symmetrising trans-
formation T4 given by

T4 =


0 1√

2
1√
6

1√
3

− 1
2 + 1√

6
− 1

2
√

3
1
2 + 1√

6
− 1

2
√

3

− 1√
6

− 1√
3

0 1√
2

− 1
2 −

1√
6

1
2
√

3
− 1

2 + 1√
6
− 1

2
√

3

 , (C1)

as defined for general m in Eq. (26). This particular
decomposition is based upon Clements et al. 2016 paper
on the rectangular design of multiport interferometers
[20]. The blue two-mode beam-splitters are defined as

V2(ηi) ≡

[
ηi −

√
1− η2

i√
1− η2

i ηi

]
, (C2)

where ηi is the beam-splitter’s particular reflectivity
ηi ∈ [0, 1],∀i; the actual values for this decomposition
are given in the caption of Fig. 4. The red single-mode
π phase shift elements applies a exp(iπ) = −1 relative
phase to the indicated modes.

Appendix D: The Symmetric Interferometer -
Comparison of QFI using Other Interferometers

In this appendix we prove that the average information
gained from the separable 〈F (sep)〉 and uniform 〈F (uni)〉
interferometers are equivalent to the information gained
from the symmetric interferometer F (sym). To do this,
we will perform a calculation similar in spirit to the two
photon example given in Table I, where the average is

calculated directly by summing up the QFI from all pos-
sible cases and dividing by the total number of cases.
Note that the scattershot source has an equal chance of
generating |n1n2n3 · · ·nm〉 or |n2n1n3 · · ·nm〉, or any of
the m! different possible permutations. Hence, all we
need to do is add up the QFI from all the m! cases and
divide the total by m! (i.e. multiply by the probability
1/m!) to get the average QFI. We will simplify the follow-
ing calculations by just looking at the QFI excess above
SNL.

1. Average QFI using the Separable Interferometer

From Eq. (14), the QFI excess above SNL provided by
the separable interferometer is

F (sep) − n = 2

m/2∑
j=1

n2j−1n2j . (D1)

For now, we will focus on counting the information con-
tribution just from the first Y2 sub-experiment in the
separable interferometer. Firstly, consider all the cases
where n1 is in the first mode and n2 is in the second mode
of the separable interferometer. These cases contributes
an QFI excess of at least

(m− 2)!× 2n1n2, (D2)

where (m − 2)! is due to all the other permutations in
the remaining m− 2 modes. Next, consider all the cases
where n1 is in the first mode, then the contributing QFI
from all these cases are

2(m− 2)!

m∑
k=2

n1nk. (D3)

Finally, consider all possible permutations, the first Y2

must have contributed a QFI excess of

2(m− 2)!

m∑
j=1

m∑
k 6=j

njnk. (D4)

However, there are m/2 of these Y2’s in the separable
interferometer, hence the total QFI excess from all m!
possible permutations must be

m(m− 2)!

m∑
j=1

m∑
k 6=j

njnk. (D5)

Now, we can get the average by dividing this result by
the total number of case m! as follows

〈F (sep)〉 − n =
1

m− 1

m∑
j=1

m∑
k 6=j

njnk, (D6)

⇒ 〈F (sep)〉 = F (sym). (D7)

We have hence shown that the QFI from the average scat-
tershot sample in the separable interferometer is equal to
the QFI from the symmetric interferometer.
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2. Average QFI using the Uniform Interferometer

We will now show the same for the uniform interferom-
eter, where according to Eq. (25) the QFI excess above
SNL is

F (uni) − n =
8

m2

m/2∑
j=1

m/2∑
k=1

n2j−1n2k

sin2
(
π(2k−2j+1)

m

) . (D8)

Now, we consider all the cases where n1 is in the first
mode and n2 is in the second mode, these cases contribute
a QFI excess of at least

(m− 2)!
8

m2
n1n2

1

sin2
(
π
m

) , (D9)

where (m− 2)! factor accounts for the possible permuta-
tions in the other m− 2 modes. Now, consider the cases
where n1 is in any odd mode and n2 is in any even mode,
these cases add up to a QFI excess of

(m− 2)!
8

m2
n1n2

m/2∑
j=1

m/2∑
k=1

1

sin2
(
π(2k−2j+1)

m

)
= m(m− 2)!n1n2. (D10)

Note that we simplified the summation via the following∑m/2
j=1

∑m/2
k=1 1/ sin2

(
π(2k−2j+1)

m

)
=
∑m/2
j=1

m2

4 = m3

8 , in

which the first equality is due to a cosecant summation
identity [32]. Now, the previous expression represents all
the QFI contribution of n1 in the odd modes and n2 in
the even modes. Hence to get the total QFI contribution
we sum over all possible cases as follows

m(m− 2)!

m∑
j=1

m∑
k 6=j

njnk. (D11)

Finally, by dividing this expression by the total number
of cases m! we can get the average QFI received using
the uniform interferometer

〈F (uni)〉 − n =
1

m− 1

m∑
j=1

m∑
k 6=j

njnk, (D12)

⇒ 〈F (uni)〉 = F (sym). (D13)

Hence we have just shown that the QFI gained from the
average scattershot sample using the uniform interferom-
eter is equivalent to the QFI gained from any scattershot
sample using the symmetric interferometer.

Appendix E: The Symmetric Interferometer -
Multiphoton Mode Invariance in Four Modes

We will prove here that our four mode metrology ex-
perimental apparatus, represented by

Y
(sym)
4 (φ) =


c −s s s

s c s −s
−s −s c −s
−s s s c

 , (E1)

c = cos(φ/2), s(m = 4) =
sin(φ/2)√

3
, (E2)

will give the same Fisher information irrespective of
which input ports the photons are injected into, using
completely arbitrary photon states |n1n2n3n4〉, ni ∈ N.

First, to get an idea of how this is going to be done,
consider the following example transformation

M4 =


0 1 0 0

0 0 −1 0

1 0 0 0

0 0 0 −1

 , (E3)

which permutes the modes (2, 3, 1). The negative phase
factors at certain modes means that the following self-
similarity transformation

M−1
4 Y

(sym)
4 (φ)M4 = Y

(sym)
4 (φ) (E4)

is true, which we can show by direct computation. This
is a very useful relationship, as it allows us to make
statements about the input invariance as summarised in
Fig. 5. In other words, we can show that

Y
(sym)
4 (φ)|n1n2n3n4〉 = M−1

4 Y
(sym)
4 (φ)M4|n1n2n3n4〉,

= M−1
4 Y

(sym)
4 (φ)|n3n1n2n4〉,

⇔ Y
(sym)
4 (φ)|n3n1n2n4〉. (E5)

The last step just means that the number measure-

ment outcomes from Y
(sym)
4 |n3n1n2n4〉 will be the

same as M−1
4 Y

(sym)
4 |n3n1n2n4〉, however which out-

put port these outcomes occur in is different due to
M−1

4 . Since the Fisher information can be calcu-
lated by the summation over all outcomes, we can
conclude that the Fisher information is the same in
both cases Y

(sym)
4 |n3n1n2n4〉 ⇔ M−1

4 Y
(sym)
4 |n3n1n2n4〉.

Finally, due to the self-similarity transformation, we

can ultimately conclude that Y
(sym)
4 |n3n1n2n4〉 ⇔

Y
(sym)
4 |n1n2n3n4〉; in other words, the Fisher informa-

tion with an input of |n1n2n3n4〉 will be the same as
|n3n1n2n4〉.

If we find more self-similarity transformations like M4,
we can make similar input invariance statements for all
possible permutations of the modes. In fact, we only
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FIG. 5. An example of how a particular mode permutation M4 can be used to make input invariant statements. At the

first step, the arbitrary input state is simply permuted M−1
4 Y

(sym)
4 M4|n1n2n3n4〉 = M−1

4 Y
(sym)
4 |n3n1n2n4〉. Then, it must be

recognised that M−1
4 Y

(sym)
4 |n3n1n2n4〉 and Y

(sym)
4 |n3n1n2n4〉 have the same number measurement outcomes but at different

modes, which means they have the same Fisher information as it’s a sum over all outcomes. If there is a self-similarity

transformation Y
(sym)
4 = M−1

4 Y
(sym)
4 M4, then it follows that Y

(sym)
4 |n1n2n3n4〉 and Y

(sym)
4 |n3n1n2n4〉 also have the same

Fisher information.

really need to show self-similarity using the following two
permutations

M4,1 =


0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 1

 , M4,2 =


0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

 . (E6)

The first one switches the first two modes (1, 2), while the
second is a permutation over all modes (2, 3, 4, 1); these
two transformations are sufficient to generate all other
possible permutations. We can show by direct computa-
tion that

M−1
4,aY

(sym)
4 (φ)M4,a = [Y

(sym)
4 (φ)]T = Y

(sym)
4 (−φ),

for a ∈ {1, 2} where these similarity transforma-

tions gives the transpose of Y
(sym)
4 (φ), rather than it-

self. However, this is effectively the same as the self-
similarity transformation in Eq. (E4) due to the prop-

erty [Y
(sym)
m (φ)]T = Y

(sym)
m (−φ) (as the off-diagonals are

∝ sin(φ/2)), and since the measurement procedure we
are conducting is near φ ≈ 0. Hence we can use the same
logic as in Fig. 5 with not only with M4,1 and M4,2, but
with all multiplicative combinations M4,x =

∏
jM4,aj of

these two transformations, which can produce all possi-
ble mode permutations. Hence we know that the Fisher
information with an input of |n1n2n3n4〉 will be the
same even if an arbitrary permutation was performed
M4,x|n1n2n3n4〉 for any x, therefore we have proven

which input ports of Y
(sym)
4 the photons are injected into

is metrologically irrelevant.

Appendix F: The Symmetric Interferometer -
Determining Outcome Probabilities for Single

Photon Inputs

The probability that the input is equal to the output
is given by

P= = |p=|2, p= = 〈~n|Y (sym)
m |~n〉 = Per(Yn), (F1)

where Yn = (Y
(sym)
m )j,k is an n× n submatrix of Y

(sym)
m ,

composed of all the jth row and kth column elements in
which nj = nk = 1, and Per is the matrix permanent
function. As a concrete example, consider the following
four mode metrology experiment

Y
(sym)
4 =


c −s s s

s c s −s
−s −s c −s
−s s s c

 . (F2)

The probability amplitude for the input |~n〉 = |1110〉 is
the permanent of

Y3(1110) = (Y
(sym)
4 )j∈{1,2,3},k∈{1,2,3} =

 c −s s

s c s

−s −s c

 ,
however the probability amplitude for the input |~n〉 =
|1011〉 is the permanent of

Y3(1011) = (Y
(sym)
4 )j∈{1,3,4},k∈{1,3,4} =

 c s s

−s c −s
−s s c

 .
Hence, the probability amplitude associated with a single
photon input |~n〉 is always related to the permanents of
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the following matrices

Yn =

n columns︷ ︸︸ ︷
c −r1s −r2s · · ·
r1s c −r3s · · ·
r2s r3s c · · ·
...

...
...

. . .




n
ro

w
s

,

=


0 −r1s −r2s · · ·
r1s 0 −r3s · · ·
r2s r3s 0 · · ·
...

...
...

. . .

+


c 0 0 · · ·
0 c 0 · · ·
0 0 c · · ·
...

...
...

. . .

 ,
= Sn + Cn, rj ∈ {−1, 1}, (F3)

where we abstracted the location of the off-diagonal neg-
atives via rj . This abstraction allows us to make general
statements irrespective of where the photons have en-
tered Ym. Note that Cn = cos(φ/2)In contains the diago-
nal elements, while Sn contains the off-diagonal elements
in which the skew-symmetric property holds Sn = −STn .

It is known that given two n × n square matrices An
and Bn, we can expand the permanent as follows

Per(An +Bn) =
∑
x,y

Per(An)j∈x,k∈yPer(Bn)j∈x̄,k∈ȳ,

where x and y are same sized subsets of {1, · · · , n}, while
x̄ and ȳ are the complementary subsets [38]. However,
since Cn is proportional to the identity, we actually have
a simplified equation in our case

Per(Yn) = Per(Sn + Cn),

=
∑
x

Per(Sn)j∈x,k∈xPer(Cn)j∈x̄,k∈x̄, (F4)

where there is just one sum over all the possible subsets
x ⊆ {1, · · · , n}, and x̄ = {1, · · · , n}\x is the complement
set. We will show that this permanent expansion equa-
tion leads to a straightforward pattern as we increase n.

Firstly, consider the expansion of the permanent for
n = 2, which corresponds to taking the permanent of the
submatrices x ∈ {{ }, {1}, {2}, {1, 2}} in S2, and multi-
plying it with the permanent of the complementary sub-
matrices in C2, as follows

Per(Y2) = Per(S2 + C2),

= Per

([
0 −r1s

r1s 0

]
+

[
c 0

0 c

])
,

= Per[ ]Per

[
c 0

0 c

]
+

(
2

1

)
Per[0]Per[c]

+ Per

[
0 −r1s

r1s 0

]
Per[ ],

= c2 − s2. (F5)

where we define Per[ ] = 1. We note from above that
Per(S2) = −s2, however since r2

j = 1 for all sign place-
holders, we can state generally

Per

[
0 −rjs
rjs 0

]
= −s2, ∀j. (F6)

It is also apparent that the only contribution of Cn to
each term will only be

Per(Cd) = Per(cId) = cd, (F7)

where d is the size of the matrix at each term.
Next, consider the expansion for n = 3 photons,

which likewise is associated with the submatrices x ∈
{{ }, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} in S3,
and the complementary submatrices in C3, as follows

Per(Y3) = Per(S3 + C3),

= Per


 0 −r1s −r2s

r1s 0 −r3s

r2s r3s 0

+

c 0 0

0 c 0

0 0 c




= Per[ ]Per

c 0 0

0 c 0

0 0 c

+

(
3

1

)
Per[0]Per

[
c 0

0 c

]

+

(
3

2

)
Per

[
0 −ris
ris 0

]
Per[c]

+ Per

 0 −r1s −r2s

r1s 0 −r3s

r2s r3s 0

Per[ ],

= c3 −
(

3

2

)
cs2. (F8)

It is obvious that Per(S1) = Per[0] = 0, and one can cal-
culate directly that Per(S3) = 0, however a more general
statement can be made if we consider

Per(Sd) = Per(−STd ) = (−1)dPer(Sd), (F9)

in which we are taking advantage of the skew-symmetry
property and invariance of the permanent under trans-
position. Hence this means that if d is odd then

Per(Sd) = −Per(Sd)

⇒ Per(Sd) = 0, ∀ odd d. (F10)

This means we can ignore all terms which contribute to
odd powers of s in our expansion.

If we continue to expand to higher orders of n, we can
get the following equations

Per(Y4) = c4 −
(

4

2

)
c2s2 + k4,4s

4, (F11)

Per(Y5) = c5 −
(

5

2

)
c3s2 + k5,4cs

4, (F12)

Per(Y6) = c6 −
(

6

2

)
c4s2 + k6,4c

2s4 + k6,6s
6, (F13)
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where these kn,d coefficients actually depend on the par-
ticular off-diagonal signs rj contained within the matrix.
Based on this permanent expansion technique, and per-
manents of Sd and Cd, it is clear that for arbitrary n we
have the following polynomial expansion

p= = Per(Yn) =

bn/2c∑
j=0

kn,2jc
n−2js2j

= cn −
(
n

2

)
cn−2s2 +

bn/2c∑
j=2

kn,2jc
n−2js2j . (F14)

We can use this probability amplitude expression to cal-
culate the QFI, as it is not necessary with certain mea-
surement schemes to know all the terms.

Appendix G: Monte Carlo Simulation using
Bunched Photons and Low Modes

We perform the same Monte Carlo simulation as de-
scribed in Section VI, however allowing for multiple pho-
tons per mode nj ∈ N for the random scattershot inputs.
We are also considering smaller systems, where Fig. 6(a)

was run with the parameters (m = 25, χ = 0.25) and
Fig. 6(b) was run with (m = 26, χ = 0.125). We can
see in Fig. 6(b) that weaker squeezing results in the os-
cillating features appearing, however not as prominently
as in Fig. 3. This reasoning is reinforced by the Fock
basis measurement statistics of the samples R given in
Fig. 6(c), which shows that for the (b) parameter set sin-
gle photons are the most likely outcome. This figure also
shows how decreasing the number of photons, or increas-
ing the number of modes, will increase the sample size
advantage of the symmetric interferometer as shown in
the lower P(∆Ftot(k) > 0) graphs. Based on this nu-
merical analysis, the overall features due to scaling the
parameters are expected to be the same as the single
photon situation described in Section VI.

Appendix H: Monte Carlo Simulation Comparing
the Uniform and Symmetric Interferometers

We perform the same Monte Carlo simulation as de-
scribed in Section VI, however we are instead comparing
the uniform interferometer with the symmetric interfer-
ometer as summarised in Fig. 7. Note that this is with
multiple single photons and large mode sizes.
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FIG. 6. (a) Similar to Fig. 3, where the upper graph is the cumulative probability distribution of 104 random walkers that

individually track the running total QFI difference ∆Ftot(k) = F (sep)
tot (k)−F (sym)

tot (k) as more random samples are taken. The

lower graph is the probability that the separable experiment gave more information P[F (sep)
tot (k) > F (sym)

tot (k)], for a given sample
size k. This was done using a small system with m = 25 modes and random samples from a scattershot source with χ = 0.25
squeezers. (b) The same graphs as (a), however with more modes m = 26 and weaker squeezing χ = 0.125. (c) The photon
statistics of the samples.

FIG. 7. (a) Similar to Fig. 3, where the upper graph is the cumulative probability distribution of 104 random walkers that

individually track the running total QFI difference ∆F ′tot(k) = F (uni)
tot (k)−F (sym)

tot (k) as more random samples are taken. The

lower graph is the probability that the uniform experiment gave more information P[F (uni)
tot (k) > F (sym)

tot (k)], for a given sample
size k. This was done using a system with m = 216 modes and samples from a scattershot source with χ ≈ 0.0247 squeezers.
(b) The same graphs as (a), however with more modes m = 218 and weaker squeezing χ ≈ 0.0107. (c) The photon statistics of
the samples, which shows that these particular m and χ parameters translates to an average of 〈n〉 = 40 photons for (a) and
〈n〉 = 30 photons for (b).


