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Signatures of Chaos in Non-integrable Models of Quantum Field Theory

Miha Srdinšek,1, ∗ Tomaž Prosen,1 and Spyros Sotiriadis1
1Faculty of Mathematics and Physics, University of Ljubljana, SI 1000 Ljubljana, Slovenia

We study signatures of quantum chaos in (1+1)D Quantum Field Theory (QFT) models. Our
analysis is based on the method of Hamiltonian truncation, a numerical approach for the construction
of low-energy spectra and eigenstates of QFTs that can be considered as perturbations of exactly
solvable models. We focus on the double sine-Gordon, also studying the massive sine-Gordon and
φ4 model, all of which are non-integrable and can be studied by this method with sufficiently high
precision from small to intermediate perturbation strength. We analyse the statistics of level spacings
and of eigenvector components, which are expected to follow Random Matrix Theory predictions.
While level spacing statistics are close to the Gaussian Orthogonal Ensemble as expected, on the
contrary, the eigenvector components follow a distribution markedly different from the expected
Gaussian. Unlike in the typical quantum chaos scenario, the transition of level spacing statistics
to chaotic behaviour takes place already in the perturbative regime. Moreover, the distribution
of eigenvector components does not appear to change or approach Gaussian behaviour, even for
relatively large perturbations. Our results suggest that these features are independent of the choice
of model and basis.

Introduction.—The physics of non-integrable quantum
systems has been successfully described by quantum
chaos theory, which states that their spectral statistics
are given by Random Matrix Theory (RMT) i.e. exhibit
the same behaviour as matrices whose elements are
randomly chosen from a Gaussian distribution. These
conjectures [1–3] have been verified for a broad class of
single-particle models, where they have been explained in
terms of semi-classical periodic orbit theory [4, 5]. More
recently research focus has shifted to many-body systems
[6–16], where RMT predictions have been verified
numerically and in certain cases even analytically [17, 18].
Chaoticity tests in quantum many-body models are,
however, almost exclusively limited to discrete (lattice)
models, leaving continuous models unexplored. Among
them, relativistic Quantum Field Theories (QFTs) and
their dynamics lie at the cornerstone of important open
questions of theoretical physics, like the black hole
information paradox [19], making the study of ergodicity
and chaos in QFT a topic of fundamental interest.

Significant progress in this direction has been made
based on new theoretical concepts and indicators [20–
22]. Nevertheless, the emergence of quantum chaos in
QFT remains poorly understood in terms of the more
traditional measures of level spacing and eigenvector
statistics [23]. Studying level spacing statistics is the
best way of detecting level repulsion, the characteristic
property of random matrix spectra. On the other hand,
a Gaussian distribution of eigenvector components is
an important indication of validity of the Eigenstate
Thermalisation Hypothesis (ETH) [24, 25], which
explains how thermalisation emerges from the dynamics
of non-integrable quantum systems [26].

The main obstacle in performing chaoticity tests in
QFT is that, unlike for lattice models of condensed
matter physics, QFT models are continuous and thus
live in an infinite dimensional Hilbert space. Therefore,
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FIG. 1. Statistics of level spacings and eigenvector
components in the double sine-Gordon (non-integrable) and
sine-Gordon (integrable) model. (a) Change in the r
distribution of DSG from (β1, β2) = (2.5, 2.5) (integrable SG
point) to (β1, β2) = (1.0, 2.5) (non-integrable point) compared
to the predictions for integrable models (dashed blue curve)
and to the RMT predictions (red curve), respectively. Inset
shows change in the average of r̃ when varying β1. (b)
Distribution of the absolute values of eigenvector components
|cij | for the same two points, in log scale and log-log scale
(inset). The GOE distribution of |cij | is Gaussian. Instead,
we observe that, although the level spacing statistics of DSG
is GOE-like, the statistics of |cij | is not.

exact computation of energy spectra is not an option
for non-integrable models, and we inevitably resort
to approximate numerical methods. The challenge
is then to achieve sufficiently high accuracy in a
sufficiently large part of the spectrum, so that a
statistical analysis is possible and reliable. An ideal
method for this task is the “Truncated Conformal
Space Approach” (TCSA) [27–29], more generally the
Hamiltonian truncation method [30, 31]. The TCSA is
based on the algebraic toolkit of Conformal Field Theory
(CFT) and insights from Renormalisation Group theory,
which can capture efficiently non-perturbative effects
in the low-energy spectrum, and is especially suitable
for (1+1)D models. A pioneering study of quantum
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chaos indicators using this method was presented in [32]
for the tricritical and tetracritical Ising field theories,
demonstrating that their level spacing statistics agree
with the theoretical expectations in both the integrable
and non-integrable case, and observing their crossover for
varying parameters.

In this Letter we study two independent and equally
important signatures of quantum chaos, the distribution
of level spacings as quantified by the consecutive
level spacing ratios r̃ [33, 34] and the distribution of
eigenvector components. We study a class of (1+1)D
models: the sine-Gordon model (SG), which is integrable,
and the double sine-Gordon (DSG), massive sine-Gordon
(MSG) a.k.a. Schwinger–Thirring, and φ4 model, which
are all non-integrable. We verify that level spacings
follow the expected Poisson distribution for SG and
GOE distribution for DSG, MSG and φ4 model to a
very good approximation. GOE behaviour is actually
observed already in the weakly perturbed CFT regime,
in contrast to what typically happens in single-particle
models. Surprisingly, we find that, even when the level
spacing distribution is close to GOE, the eigenvector
component distribution is markedly different from the
Gaussian found in RMT [35] (Fig. 1). On the contrary,
it exhibits at best exponential scaling followed by an
algebraically decaying tail, which contradicts the RMT
prediction. This last feature is robust and independent
of the model and parameter values. We validate our
observations by pushing the limits of TCSA’s potential
to achieve high accuracy and devising a reliable measure
of truncation error, which is crucial for distinguishing
physical behaviour from numerical artefacts.

Models, Method & Observables.— We
consider the following models: the SG
with Hamiltonian HSG = H0 + λVβ , the
DSG HDSG = H0 + λ1Vβ1

+ λ2Vβ2
, the MSG

HMSG = H0 + λVβ1 +m2U2, and the φ4 model
Hφ4 = H0 +m2U2 + λU4, where

H0 = 1
2

∫
[π2 − (∂xφ)2] dx, (1)

Un = 1
n!

∫
φn dx, Vβ = −

∫
cosβφdx.

The SG is a prototypical integrable QFT possessing
topological excitations [29, 36–38] and is equivalent to
the massive Thirring model [39, 40]. It has applications
in condensed matter and atomic physics [41] and has
been simulated experimentally [42, 43]. The DSG is
non-integrable and also topologically non-trivial [44–47].
Lastly, the MSG is equivalent to the Schwinger–Thirring
model, reducing to (1+1)D QED at β =

√
4π [48, 49].

All the above models can be seen as perturbations of
the free boson CFT H0 by relevant operators V and as
such they can be studied using TCSA. This method yields
numerical approximations of the low-energy spectrum of
H = H0 + λV based on the simple idea of computing
the matrix elements of V in an energy-truncated basis
{|Φ0

n〉 : E0
n ≤ Ecut} of H0 and diagonalising the resulting

finite matrix approximation of H. If V does not couple
significantly the low- with the high-energy spectrum of
H0, which is true for relevant perturbations, then the
numerical spectrum is expected to converge to the exact
upon increasing the truncation cutoff Ecut. TCSA has
been successfully applied to the SG [29, 37, 38, 50, 51],
DSG [45, 47] and recently also the Schwinger model, a
special limit of MSG [52], while a similar Hamiltonian
truncation method has been used for the φ4 model
[30, 53–56].

Using TCSA we compute a low-energy part of the
spectra En and eigenvectors |Φn〉 of the above models
for various parameter values and analyse their statistics.
More specifically, we compute the distributions of level
spacings sn = En+1 − En, of consecutive level ratios rn
and r̃n defined as [33]

rn = sn/sn−1, r̃n = min (rn, 1/rn) (2)

and of eigenvector components cij = 〈Φ0
i |Φj〉 in

the TCSA basis. Since all models are time-
reversal symmetric, the corresponding RMT
ensemble is the GOE where the r-distribution is
PGOE(r) ∝ (r + r2)/(1 + r + r2)5/2 and that of r̃ is
the restriction of the latter to the interval [0, 1],
with mean value 〈r̃〉GOE ≈ 0.536 [34]. Conversely, in
integrable models level spacings follow the Poisson
distribution [57] with 〈r̃〉P ≈ 0.386. Compared to other
tests of level spacing statistics, r̃ has the advantage of
being independent of the local level density, therefore
no ‘unfolding’ [23] is necessary. For the eigenvector
component distribution, the RMT prediction is Gaussian,
resulting in the Porter–Thomas distribution for their
absolute values [35], while for integrable models it is
expected to be algebraic [58].

To minimise numerical errors we use truncated bases
much larger than in previous studies (∼ 85000 states at
the highest cutoff). Moreover, to ensure our results are
sufficiently accurate, we verify convergence using rather
strict truncation error estimates, based on measures of
their correlations at successive cutoffs (see figure captions
and Supp. Mat. [59]).

Level spacing statistics.— We start by analysing the
statistics of r values. Fig. 1.a shows the distribution P (r)
for DSG at two different choices of parameter values,
one integrable (β1, β2) = (2.5, 2.5) (SG) and one non-
integrable (β1, β2) = (1.0, 2.5). The parameters λ1, λ2
have been chosen so that the energy gap between the
ground and first excited state is of the same order as
the inverse system size L−1 (more precisely, l1 = l2 = 1
where li = mβiL and mβ is the SG breather mass
[59]). These values are within the perturbative regime
where convergence is optimal. We observe that the two
distributions agree quite well with the Poisson and GOE
distributions, respectively. The change of statistics can
be demonstrated by the mean value 〈r̃〉 for varying β1
at fixed β2 (Fig. 1.a, inset). Starting from the Poisson
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FIG. 2. Density plot of 〈r̃〉 in DSG as a function of β1
and β2. The model is non-integrable with the exception of
the three lines β1 = 0, β2 = 0 and β1 = β2, where it reduces
to the SG. The 〈r̃〉 is indeed close to 〈r̃〉P (dark blue) along
the SG lines and in their vicinity, while it approaches 〈r̃〉GOE

(dark red) away from them. Plots for different truncation
cutoffs Ecut are included for comparison (right). (Parameters:
l1 = l2 = 1, energy window: 1000–3000 levels, Ecut reported
at the bottom right corner of each plot).
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FIG. 3. Dependence of 〈r̃〉 on the perturbation strength in
DSG. (a) Plot of 〈r̃〉 for λ1, λ2 → 0 as a function of the mixing
ratio x = λ1/(λ1 + λ2). (b) Density plot of 〈r̃〉 as a function
of λ1 and λ2. The SG lines correspond to λ1 = 0 and λ2 = 0.
Note that 〈r̃〉 ≈ 〈r̃〉GOE even in the immediate vicinity of the
unperturbed CFT model. (Parameters: (β1, β2) = (1, 2.5)).

value for β1 = 0, 〈r̃〉 increases towards the GOE value,
fluctuating close and below it. The complete dependence
of 〈r̃〉 on both β1 and β2 is shown in Fig. 2 in the form of a
“phase diagram”. The 〈r̃〉 is close to Poisson along the SG
lines (β1 = 0, β2 = 0 and β1 = β2), whereas it approaches
〈r̃〉GOE in the areas away from these lines.

By independently varying the perturbation strength
parameters λ1, λ2 at fixed (β1, β2) = (1, 2.5) (Fig. 3) we
find that 〈r̃〉 is close to 〈r̃〉GOE even in the immediate
vicinity of the unperturbed CFT model, i.e. for
λ1, λ2 → 0, as long as the ratio λ1/λ2 is kept fixed at
∼ 1. This is somewhat surprising given that chaoticity
typically emerges far from integrable points and outside
the perturbative regime. Chaotic 〈r̃〉 values can indeed
be verified from first-order perturbation theory results
(Fig. 3.a) [59]. The fluctuations of 〈r̃〉 can be partially

attributed to the relatively small energy window (2000
levels), as random matrices of the same size display
similar fluctuations. Nevertheless, we notice that 〈r̃〉 is
predominantly below 〈r̃〉GOE , meaning that this is still a
transitional, not completely chaotic behaviour.

The differences between 〈r̃〉 at different cutoffs (Fig. 2)
are negligible, with the best convergence achieved for
small β1, β2. However, even if 〈r̃〉 converges at some
cutoff to 〈r̃〉GOE , this does not necessarily mean that
this is the correct physical value, since a non-convergent
spectrum is also likely to be RMT-like. For this reason,
we check the convergence using an error estimate based
on the averaged absolute differences of r̃ values between
successive cutoffs and verifying that the error decreases
with increasing cutoff [59]. We empirically find that
increasing βi or li results in larger truncation errors,
making the numerical data less reliable. Moreover,
in TCSA convergence is achieved in the lowest part
of the computed spectra, with the truncation effects
increasing at higher levels. For the parameters of Fig. 1,
a sufficiently good level of convergence of r values is
achieved for the lowest ∼ 3000 levels at Ecut = 42 (in
units ε = π/L).

Eigenvector statistics.— Let us focus on the statistics
of eigenvector components cij in DSG. Fig. 1.b shows the
distribution of their absolute values in log scale for the
same choice of parameters as in Fig. 1.a, one exhibiting
Poisson and the other GOE level spacing statistics.
Despite the clear difference in the latter, the eigenvector
distributions are practically the same in both cases and
different from the Gaussian prediction of RMT. In the
bulk of the distribution the scaling is at best exponential
while the tails decay slower, like an algebraic function.
This is in strong contrast with theoretical expectations
for chaotic models [35]. To eliminate truncation effects,
we have again restricted the analysis to the convergent
low-energy part of the matrix cij .

To gain a deeper insight into this observation, we
look more closely into the structure of the matrix cij .
Fig. 4.a–e shows cij for DSG at increasing perturbation
strength l = l1 = l2. We observe that for small l, cij is
characterised by an approximately block-diagonal form,
which is easily explained by perturbation theory given
that the CFT spectrum is organised in degenerate energy
shells [59]. For increasing l this block structure fades
away and cij becomes more uniform, even though a
pattern of fine structure remains always visible.

Based on these observations, we analyse how the
DSG eigenvector distribution depends on l, whether
it approaches the RMT prediction when moving from
weak to strong perturbation, and how it changes from
one block to another. The distributions inside a
single block exhibit clearly exponential scaling in the
bulk, still with slower decaying tails (Fig. 4.g). The
slope of this exponential changes from block to block.
The distribution in Fig. 1, which corresponds to a
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FIG. 4. Dependence of spectral properties on perturbation strength. (a–e) Matrix plot of the eigenvector matrix |cij | of DSG
at different l = l1 = l2, in logarithmic scale. Only the low-energy part (top left corner) of the matrix is shown, which is fully
convergent for l ≤ 2, partially convergent for l ≈ 5 (lowest ∼ 3000 levels convergent), and poorly convergent for l ≈ 10. (f)
Plot of 〈r̃〉 as a function of l at different cutoffs (dotted: 38, dashed: 40, solid line: 42) for DSG (red) and SG (blue). (g)
Distributions of |cij | in the last four boxes shown in (a–e), labelled as 1–4. (h) Distribution of |cij | in the third largest box for
different l. (Parameters: (β1, β2) = (1.0, 2.5) for DSG, β = 2.5 for SG.)

FIG. 5. (a) Distribution of |cij | in SG in log and log-log
scale (inset) at different β from 0 (red) to 2.5 (blue). The
exponential scaling in the bulk is not a special property of the
non-integrable DSG but is also present in SG. (b) Comparison
of |cij | distributions in DSG (red), MSG (green) and φ4 model
(grey), always in windows with GOE spectral statistics. Even
though the φ4 model is expanded in a different and less
exceptional basis (KG), the distribution is still not GOE-
like but clearly algebraic. (Model parameters, 〈r̃〉 values:
DSG: (β1, β2) = (1.0, 2.5), l = 1, MSG: β = 2.8, m = 0.76,
l = 1 (〈r̃〉 = 0.519), φ4: λ = 1.0, m = 1, L = 7 (〈r̃〉 = 0.5)).

large window including many blocks, is actually a
superposition of many exponential distributions. There
is no significant change when l increases from 0 to ∼ 5,
the maximum value for which we achieved convergence
(Fig. 4.h). In fact, the distribution remains unchanged
even for larger l, where truncation effects are non-
negligible. At the same time, 〈r̃〉 ≈ 〈r̃〉GOE for any l & 1
and well convergent at least for l . 3 (Fig. 4.f).

Comparing the eigenvector statistics of different
models in windows with 〈r̃〉 ≈ 〈r̃〉GOE , we find that
they generally vary from model to model but are
always different from Gaussian and at best exponential
(Fig. 5.b). The φ4 model, in particular, deserves
special attention. In this case, using the CFT as the
unperturbed model to construct the truncation basis is
inconvenient, so the massive Klein-Gordon (KG) model
HKG = H0 +m2U2 is used instead [30]. In contrast
to the CFT basis, in KG there is no degenerate shell
structure. Nevertheless, the eigenvector distribution
is once again very different from Gaussian and
characterised by slowly decaying tails as in DSG. Lastly,
comparing the single-block eigenvector distributions in
SG at different β (Fig. 5.a), we find that they are
similar to those of DSG. These results clearly show that
the discrepancy between the eigenvector distributions
and RMT prediction, in particular the presence of
slowly decaying tails, is robust under variations of the
parameters, energy window, model and truncation basis.

Discussion.— We have shown that, while the level
spacing statistics of the above studied non-integrable
QFTs agree with RMT, their eigenvector component
statistics are markedly different from RMT predictions.
Both of the above features emerge already in the
weakly perturbed CFT regime and persist unchanged
beyond that, which suggests that they may be valid
for any perturbation strength. Indeed, there is no
indication that the scaling of the distributions changes
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with the perturbation, even when the CFT shell structure
disappears. Moreover, the qualitative characteristics
of the eigenvector distributions for different models
are similar, irrespectively of integrability and even for
quite different choices of truncation basis. The latter
observation particularly rules out an explanation based
on exceptional features of the CFT basis. An interesting
open question is how the observed discrepancy affects
the validity of ETH in (1+1)D QFT. Testing ETH using
Hamiltonian truncation methods is, however, a more
challenging problem, as it is supposed to hold in the
thermodynamic limit where the perturbation strength is
large and convergence of the spectra worsens. We hope
to investigate this question in the future.

The data presented in this work may be accessed at
[60].
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SIGNATURES OF CHAOS IN
NON-INTEGRABLE MODELS OF QUANTUM

FIELD THEORY:
SUPPLEMENTAL MATERIAL

In this Supplemental Material we present:

• definitions and detailed analysis of truncation error
estimates for the TCSA data,

• study of spectral statistics of the DSG in
the perturbative regime based on degenerate
perturbation theory at the lowest order,

• technical information on the implementation of the
Hamiltonian Truncation method,

• further plots showing the dependence of DSG
spectral statistics on the energy in a single shell.

A. Truncation Errors

The main challenge in TCSA is to achieve convergence
of the computed quantities for increasing values of
the energy cutoff Ecut. Generally, convergence of
the numerically computed energy levels is relatively
slow (algebraic) but it is possible that other quantities
of interest converge faster than the levels themselves.
Indeed, TCSA often gives correct results even when the
levels have not reached their limiting values, therefore
demanding convergence of the spectrum is a rather strict
criterion, following which a large amount of useful data
would be rejected. In the present study, in particular, the
statistical properties of spectra and eigenvectors are not
necessarily sensitive to the precise values of the individual
energy levels. Therefore, it seems reasonable to require

convergence of the statistical measures instead of the
pointwise spectra themselves.

However, such a criterion may be incorrect and
misleading when we compare spectral statistics,
especially 〈r̃〉, with RMT predictions. The problem lies
in the observation that the statistics of a non-convergent
spectrum may resemble those of random matrices.
Statistical measures may therefore appear to converge
with the cutoff to the RMT predictions due to truncation
errors instead of physical reasons. In fact, RMT-like
statistics may be observed even for the integrable
SG model, as 〈r̃〉 may show RMT-like behaviour for
relatively low cutoff values, but switch to Poisson-like
behaviour at higher cutoffs. This is indeed possible
if convergence of the spectrum in the energy window
under study has not been reached at a given cutoff
(Fig. 6.a: SG at mL = 40). The same can happen also
for the non-integrable DSG model at some parameter
values (Fig. 6.b–c). Conversely, it seems reasonable that
spectra whose statistics is Poisson-like have reached
convergence and are reliable, since otherwise they would
be RMT-like.

In order to test these statements in an unbiased way,
we introduce a measure of the truncation error for
spectral statistics and check how it varies for increasing
cutoff values. The simplest way to estimate the error of
the average of a quantity under study at a given cutoff
is by averaging the absolute change of each individual
contribution from one cutoff to the next. More explicitly,
considering the quantity 〈r̃〉, we define its error estimate
as

〈∆r̃〉 =
1

N

N∑
i=0

|r̃(2)i − r̃
(1)
i |, (3)

where the subscript denotes the index of the r̃ value
and the superscripts denote the two different energy
cutoffs E

(1)
cut and E

(2)
cut with E

(2)
cut > E

(1)
cut at which the

corresponding values are obtained. The sum is over the
energy window under study, and N is the number of r̃
values in that window. Based on the assumptions of
TCSA, the differences ∆r̃i = |r̃(2)i − r̃

(1)
i | should decay in

the limit of the cutoff going to infinity, and hence the
mean value 〈r̃〉 is expected to be quite accurate as long
as we have reached a sufficiently high cutoff E(2)

cut.
But there is more to this error estimate, which makes

it very reliable. First, 〈∆r̃〉 is bounded, taking its
maximum value when the two spectra under comparison
correspond to spectra of independent random matrices.
Second, it behaves analogously to the measure of
correlation between the two compared spectra (Fig. 7.g–
h). More specifically, when 〈∆r̃〉 increases then the
quantity 1− ρ, where ρ is the Pearson coefficient of
correlation between the two spectra, also increases. If the
spectra change with the cutoff so much that they are not
correlated at all, we can say that they are maximally non-
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FIG. 6. Convergence of 〈r̃〉 for increasing values of the
truncation cutoff Ecut/ε. (a) Plots of 〈r̃〉 as a function of
the cutoff in the DSG and SG model for different parameter
values (SG: β = 2.5, DSG: β1 = 1, β2 = 2.5). The mean 〈r̃〉 is
calculated in the energy window 1300–2000. Integrable sine-
Gordon model (SG l = 40) can converge to the RMT value,
due to non-convergence. The point used throughout the paper
(DSG l = 1) is clearly convergent with the cutoff. When
convergence is reached, the SG spectra are expected to reach
Poisson statistics and indeed do so for l = 1, 0.01. However
for the much larger value l = 40 the numerically computed
SG spectra show RMT-like behaviour even for the maximum
cutoff value 42. This is obviously due to non-convergence of
the spectra at this range of cutoff values. Even though the
absence of convergence can be seen in the fluctuations of 〈r̃〉
with the cutoff, such fluctuations cannot be used as a reliable
measure of error as they are suppressed when using a larger
energy window. (b–c) Density plot of 〈r̃〉 for the DSG as
a function of the two perturbation parameters l1, l2, at two
different cutoffs (β1 = 1, β2 = 2, energy window: 2000–3000).
When the cutoff increases (here from 30 to 32) the red region
in the upper part of the plot moves away, showing that the
apparent RMT-like behaviour is due to non-convergence of
the spectra. This is an indication that the values in the rest of
the plot which remains unchanged are reliable, and we want
a measure of truncation error that provides information on
whether the computed values are physical or artificial without
having to look at the whole parameter space at different
cutoffs. (d) The error estimate 〈∆r̃〉 given by (3) calculated
from the comparison of data for the cutoffs 30 and 32.

convergent. We can then estimate the maximum error by
calculating the average error between two uncorrelated
random matrices. This can be performed analytically for
3× 3 matrices by deriving the probability density of the
error

P (∆r̃) =

∫ 1

0

∫ 1

0

P (r̃1)P (r̃2)δ(|r̃1− r̃2|−∆r̃)dr̃1dr̃2 (4)

and finding its mean. The average error can then be

calculated to be 〈∆r̃〉RMT ≈ 0.29. We found numerically
that this distribution is very general and holds for
matrices of sizes at least up to 1000× 1000 and even for
spectra of matrices that differ only by a few additional
rows (Fig. 7.i).
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FIG. 7. (a–f) The distribution of errors ∆r̃i for the SG
model in an energy window of 1000 levels at increasing mean
energy (β = 0.000011, l = 1). The average error of each
distribution is stated in the legend. The black dashed line
corresponds to the distribution of ∆r̃ for uncorrelated random
matrices. In the case of small average error, the vast majority
of the levels change negligibly with the cutoff. At larger
average values, the distribution approaches the one of RMT.
(g) Moving average of error in spectra at randomly chosen
different values of the parameters. Window of size 1000.
(h) Moving Pearson’s correlation coefficient for the same
spectra as in (g). (i) The probability density distribution of
∆r̃ for 3× 3 random matrices calculated analytically (black
dashed), calculated numerically (red) and for 1000× 1000
random matrices calculated numerically (blue). The green
histogram corresponds to comparison of successive pairs of
random matrices of sizes 100× 100, 110× 110, 120× 120,
... up to 1090, such that each one is constructed from the
previous one by padding 10 additional rows and columns
of random elements, thus resulting in a sequence of not
completely uncorrelated matrices. This change is analogous
to a cutoff increase in TCSA, showing that even a relatively
small change in a random matrix results in a large error
estimate, thus demonstrating that 〈∆r̃〉 is a very sensitive
measure of convergence.

In the models under study we indeed observe that the
error estimate is maximal for the least convergent spectra
(Fig. 7.g–h). Using this error we can now distinguish
between spectra that exhibit RMT-like spectral statistics
due to physical reasons or due to truncation artefacts.
If the average error is close to the maximum value
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corresponding to the difference between two uncorrelated
random matrices, then the spectra must be random due
to non-convergence. If instead we observe very small
average errors of the order of, say, 10% of the maximum
value, then we can trust that the randomness is due
to genuine physical reasons. It should be noted that
this measure is still quite conservative, because, as the
r values are computed from differences of consecutive
levels, they are very sensitive to truncation errors
and converge much slower than the absolute spectra
themselves. Moreover, passing from one cutoff to the
next the ordering of a non-negligible number of levels
changes, which means that the corresponding differences
∆ri are larger than the actual values resulting in an
overestimation of the error.

0
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32 34 36 38 40
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1

0
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1
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1

0.0 2.5
1

0.0 2.5
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0.4

0.5

0.0

0.2

FIG. 8. Density plots of 〈r̃〉 for the DSGmodel as a function of
the parameters β1, β2; same as in Fig. 2 of the main text, but
showing also the estimated truncation error. Top: Plots for
increasing cutoffs, with the black dots indicating the region
where the error 〈∆r̃〉 is larger than 0.05. Bottom: Density
plots of the error estimate 〈∆r̃〉. We observe that as the cutoff
increases the error decreases at every point in parameter space
and the area where the error is smaller than the 0.05 threshold
expands from smaller to larger β1, β2.

Equipped with a reliable truncation error estimate,
we can now test quantitatively the quality of TCSA
convergence by analysing how the error changes for
increasing values of the cutoff (Fig. 8). We generally
find that, when the cutoff goes beyond a sufficiently large
value, ∆r̃ starts decreasing from the maximum value
that it has at lower cutoffs and keeps decreasing while at
the same time fluctuating as the cutoff increases further.
Based on this convergence tests we find that the best
convergence for 〈r̃〉 is achieved in the area around the
lower left corner of the phase diagram shown in Fig. 2.
Moreover, we find that 〈r̃〉 converges quite well for l . 3
in the DSG case and l . 1 in the SG case. Lastly, we
verify that convergence is achieved first at lower energy
windows (Fig. 7.g–h) with the lowest 3000 to 4000 levels
corresponding to well convergent r values at l . 1 in the
parameter range of Fig. 2. The spectra and eigenvectors
presented in the plots of this paper are sufficiently well
convergent with average errors of at most 〈∆r̃〉 = 0.05
and values of 〈r̃〉 that do not change significantly with
the cutoff, unless otherwise stated (Fig. 4, l & 5).

The proposed error measure improves considerably
our ability to confidently distinguish physical from
numerically artificial results. We now realise that the
intuitive guess that non-convergent spectra are RMT-like
is not always correct. Even though we do observe that
this behaviour is the typical case, we can also clearly find
exceptions to this rule: Poisson-like spectral statistics
can be observed even in the region with maximal non-
convergence (Fig. 6.c).

While we have so far focused on r values, we can
estimate in a similar way the convergence of eigenvector
statistics by comparing how much each eigenvector
changes from cutoff to cutoff. We empirically found
that a reliable test for the comparison of two vectors
can be based on the correlation between their cumulative
squared coefficients, which can be used as the fingerprint
of a vector. More explicitly, for each numerically
computed vector |Φj〉 we construct the list

∑i
k=1 |ckj |2

for i = 1, . . . , N where N is the length of the shortest
between the two compared vectors, and then compare
the two lists by computing the Pearson correlation
coefficient. It should be noted in passing that this
comparison function is also useful for tracking the
eigenvectors as we incrementally change a parameter
(physical parameter of the Hamiltonian or the cutoff) and
identifying changes in the energy level ordering between
two consecutive steps. To this end, we pairwise compare
all eigenvectors of one matrix with those of the other
and match them based on which pairs show the highest
correlation. Typically, such ordering changes are limited
to first or second neighbours. In this way we can correct
the order of the eigenvectors and therefore obtain a more
accurate estimate of the convergence error.

Using this error estimate we found that eigenvector
statistics are convergent for a wider range of parameter
values than r̃ values. This can be easily understood from
the fact that the r̃ values are more sensitive to small
changes in the energy level values. We found that, at
the maximum cutoff Ecut/ε = 42 used here and for the
values of βi as in Fig. 4, eigenvector statistics are well
convergent for up to ∼ 3000 levels at l = 5.

B. Quantum chaos and perturbed CFT

As shown in the main text, the emergence of chaotic
level spacing statistics in the DSG occurs already
at infinitesimal values of the perturbation strength,
as long as the two cosine perturbations are mixed
with approximately equal coefficients (Fig. 3.a). This
observation motivates us to study the problem using first
order perturbation theory. Like any CFT, the spectrum
of the free massless boson field theory, which is the
unperturbed model, exhibits extensive degeneracies, in
which case perturbation theory tells us that at first order
the perturbation affects each of the degenerate energy
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shells independently from the others. This means that
at first perturbative order we can analyse the spectral
statistics working on finitely dimensional Hilbert spaces
(those of the degenerate energy shells), that is, without
having to deal with the problems arising from an infinite
Hilbert space dimension and the need to truncate it in
an efficient way. This is especially convenient as it allows
us to derive exact spectra and statistics, reach higher
energy shells and study the changes in spectral statistics
for increasing shell number. In this appendix, we present
more detailed results for the statistics of level spacings
and eigenvectors of the DSG model at first order in
perturbation theory.

The Hamiltonian of the free massless boson field theory
with Dirichlet boundary conditions is (up to an irrelevant
additive constant)

H0 =

∞∑
n=1

Ena
†
nan (5)

where an, a†n are the ladder operators corresponding to
the sinusoidal harmonic eigenfunctions

√
2/L sin(knx)

with wavenumbers kn = nπ/L, n = 1, 2, . . ., satisfying
canonical commutation relations [an, a

†
n′ ] = δn,n′ , and

the single particle dispersion relation is En = kn (in
units where the speed of light is c = 1 and ~ = 1). The
eigenstates of H0 are therefore

|{νn}〉 =

∞∏
n=1

(a†n)νn√
νn!
|0〉 (6)

with eigenvalues

E({νn}) =
π

L

∞∑
n=1

nνn (7)

Evidently, owing to the linearity of the dispersion
relation, all energy eigenvalues ofH0 are integer multiples
of π/L and can be classified into shells of degenerate
levels with energy E = Nπ/L for all positive integers N
and degeneracy equal to the number P (N) of integer
partitions of N . For large N the number P (N)
increases rapidly (log(P (N)) ∝

√
N). For this reason

the dimensions of CFT degenerate shells increase with
the energy faster than in few-body quantum mechanical
systems (e.g. hydrogen atom). We will denote
the subspace corresponding to the shell with energy
E = Nπ/L as HN . Taking into account the additional
restriction to a single symmetry sector (see Sec. C), the
resulting shell sizes are listed in Tab. I.

Let us consider a perturbation of H0 by an operator V
that raises the degeneracy of the energy levels at first
order in the perturbation parameter λ. This is true
for the DSG interaction. From degenerate perturbation
theory we know that the perturbed energy eigenstates of

shell no. N number of states
10 22 505
11 24 793
12 26 1224
13 28 1867
14 30 2811
15 32 4186
16 34 6168
17 36 9005

TABLE I. Number of states of the degenerate energy shells.

H = H0 + λV corresponding to the shell HN are

|ΦN,j〉 =

P (N)∑
j=1

ci,j |Φ0
N,i〉+O(λ) (8)

with energy eigenvalues

EN,j = EN + λE
(1)
N,j +O(λ2) (9)

where |Φ(0)
N,i〉 ≡

∑P (N)
j=1 ci,j |Φ0

N,i〉 and E
(1)
N,j are the

eigenvectors and corresponding eigenvalues of the
restriction VN of V in the subspace HN . In the limit
λ→ 0 the perturbed eigenstates are linear combinations
of states of the shell they originate from and only those.
We will therefore focus on the eigenvectors |Φ(0)

N,i〉 and
eigenvalues E(1)

N,j of VN whose statistics are identical to
those of H in the subspace HN as λ→ 0. In the case
of the DSG model, λV = λ1V1 + λ2V2 therefore in the
above limit the spectrum is a function of the mixing
parameter x = λ1/(λ1 + λ2). For x = 0 or 1 the model
reduces to the SG.
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FIG. 9. Histograms of r̃ values for the DSG in-shell spectrum
for four different values of the mixing parameter x showing
the change from Poisson at x = 0 to GOE statistics at
x = 0.5. The histograms are computed from spectra of the
shell N = 36 (9005 levels).

In the following we will analyse the dependence of
spectral statistics on the mixing parameter x and shell
number N , keeping β1 and β2 fixed at the values used in
the main text, i.e. 1 and 2.5 respectively. Fig. 9 shows
histograms of r̃ based on in-shell spectra for the 17th

shell (N = 36) at various values of the mixing parameter,
demonstrating the transition from Poisson statistics at
x = 0 to GOE at x ≈ 1/2 where 〈r̃〉 is maximal. Owing
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FIG. 10. (a) Variation of 〈r̃〉 of the DSG in-shell spectra as
a function of the parameter x of mixing of the two cosine
perturbations. The curves correspond to the shells with
N = 22, 24, 26, . . . , 36 (10th to 17th shell). (b) A sample of
DSG energy levels for varying mixing parameter x from 0 to 1.
We observe the level repulsion for most values of x except close
to the edges where the DSG reduces to the SG model. The
sample corresponds to the 10th energy shell and the unfolding
procedure has been applied to uniform the level density.

to the larger spectrum size, the statistical fluctuations
of the histograms are reduced compared to Fig. 1 of the
main text, allowing a more accurate comparison with the
theoretical curves. In Fig. 10.a showing 〈r̃〉 as a function
of x in different shells, it is evident that as we move from
lower to higher shells, 〈r̃〉 approaches the GOE value
closer and in a broader window of x values expanding
from the middle x ≈ 1/2. This suggests that at higher
energy levels the RMT behaviour of level spacings not
only persists but also becomes more prominent. In-shell
eigenvector statistics exhibit identical scaling as that
shown in Fig. 4 in the main text, which is computed
from spectra at intermediate values of the perturbation
strength.

As pointed out in the main text, the above general
features of spectra and eigenvectors observed in the
limit λ→ 0 persist for all values of the perturbation
parameters for which convergence was achieved in our
study. Fig. 11 shows that the spectra exhibit a distinct
shell structure characteristic of first-order perturbation
theory for all l . 1, while the shells start sensing
each other at l ≈ 1 and visibly mix with each other
at larger l. In particular, at the maximum value
l = 5 for which we have achieved convergence of the
spectrum and eigenvectors (lowest ∼ 3000 levels), the
effects of the interaction are strong enough to result in

a spectral density that is clearly different from that of
first-order perturbation theory. Yet the level spacing
and eigenvector statistics for l = 5 exhibit the same
characteristics as for l→ 0.

C. Details of the Hamiltonian Truncation Method

As mentioned in the main text, Hamiltonian
truncation methods have been extensively used for the
derivation of the spectra of almost all of the models
studied in the present work. Details on the application
of TCSA to SG and DSG can be found in [29, 37, 38, 50]
and [45, 47] respectively, while the application to MSG
is a relatively straightforward extension of the method.
Details on Hamiltonian truncation in the φ4 model can
be found in [30, 53, 54, 56]. Here we provide further
information relevant for the analysis of spectral statistics
in these models. More specifically, we discuss the discrete
symmetries of the models and restriction to a single
symmetry sector, provide information on the size of
the truncated bases we used and hints on the efficient
construction of the Hamiltonian matrices. Lastly, we give
explicit formulas for the parameters of the models as used
here.

Massless free boson basis

We express the SG, DSG and MSG Hamiltonians in
the truncated free boson CFT eigenstate basis ordering
the states by their energy. We assume Dirichlet
boundary conditions in a box of length L. Both the
unperturbed and perturbed Hamiltonians are invariant
under two discrete Z2 transformations: field reflection
φ→ −φ and space reflection x→ L− x. For the study
of spectral statistics it is necessary to eliminate any
symmetries of the model by restricting the spectrum
to a single symmetry sector (energy levels belonging
to different symmetry sectors are independent and can
clearly cross with each other). Out of the four symmetry
sectors we choose the one containing the ground state.
The truncated basis sizes of the selected symmetry
sector are listed in Tab. II. The Hamiltonian matrix is
dense in this basis and to derive the spectra we use
exact diagonalisation. The construction time of the
Hamiltonian matrix can be reduced considerably using
simple parallelisation.

Klein Gordon basis

To achieve sufficiently good convergence the φ4

Hamiltonian should be expressed in the KG instead of
the massless free boson basis [30, 55]. The perturbation
operator U4 (more generally any Un operator) is sparse in
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FIG. 11. The cumulative spectral density of DSG (red lines) and SG (blue lines) at different values of l = l1 = l2. The spectra
correspond to the lowest 15 energy shells (5173 levels), rescaled from 0 to 1 for easier comparison. The insets show the spectral
density in a single shell (N = 26, levels: 2082–3305). The dashed lines correspond to the spectra of lowest-order perturbation
theory. The staircase form, which originates from the characteristic shell structure of CFT spectra, is present for all l . 1 for
both the DSG and SG spectra, whose densities are hardly distinguishable. For larger l the two spectral densities gradually
become visibly different from each other and from the perturbative spectra.

cutoff number of states CPU time [days]
32 12170 0.7
34 18338 2
36 27343 4
38 40369 8
40 59061 17
42 85674 36

TABLE II. Truncated basis sizes and corresponding
computing time for the construction of the Hamiltonian
matrices for the cutoff values Ecut/ε used in the present study.

this basis, and so the construction of the corresponding
matrix can be programmed efficiently with the use of
dictionaries associating each basis state with its order in
the basis. This way we can benefit from the logarithmic
lookup time and considerably speed up the calculation.
For easier comparison with earlier literature [30, 55] we
focused on the case of periodic boundary conditions.
This means that we now have translational invariance
symmetry, apart from the Z2 symmetry under field
reflection φ→ −φ. We again restrict ourselves to a single
symmetry sector, the one containing the ground state.
For the basis truncation we set the total momentum
cutoff at 42 and the system size is chosen to be mL = 7,
where m is the KG mass parameter. This choice
corresponds to a basis size of 1,504,767. To compute
the spectra and eigenstates of the φ4 Hamiltonian,
we employed sparse matrix diagonalisation techniques,
which allowed us to obtain the lowest ∼ 500 eigenvalues
and eigenstates.

Construction of the SG, DSG and MSG Hamiltonian
matrices

The free boson CFT Hamiltonian for a system of
length L with Dirichlet boundary conditions, expressed

in dimensionless form in units of a mass scale M , is

H0/M =
π

l

∞∑
n=1

na†nan (10)

where l = ML. The sine-Gordon Hamiltonian is defined
as

HSG = H0 + λVβ (11)

with

Vβ = −
∫ L

0

cosβφ(x)dx

= −π
L

1

2

∫ L

0

(V+β(x, t) + V−β(x, t)) dx (12)

where

Vβ(x, t) = eiβφ(x) (13)

is the vertex operator. As in the standard TCSA
notation, the perturbation strength λ has been re-
parametrised in favour of the first sine-Gordon breather
mass in units of the inverse system size l = mβL, which
is equal to the energy gap between the ground and first
excited state in the thermodynamic limit

λ(β, l) =
κ(p(β))

2

(π
l

) p(β)−1
p(β)+1

(14)

where

κ(p) =
2

π

Γ
(

p
p+1

)
Γ
(

1
p+1

) [√πΓ
(
p+1
2

)
2Γ
(
p
2

) ]2/(p+1)

, (15)

p(β) =
β2

8π − β2
, (16)

and

mβ = 2M sin(πp/2) (17)

is the first breather mass, where M is the soliton mass.
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To construct the double sine-Gordon Hamiltonian with
frequencies β1 and β2, we add the corresponding sine-
Gordon Hamiltonians. More explicitly, when we vary
β1,2 we adjust the coefficients so as to keep the values of
l1, l2 fixed and equal l1 = l2 = l, and compute the spectra
of the dimensionless Hamiltonian matrix

HDSG = 2H0(l) + λ(β1, l)Vβ1
+ λ(β2, l)Vβ2

When we vary l1 and l2 at fixed β1 and β2 (Fig. 6), we
use the Hamiltonian matrix

HDSG = l1H0(l1) + l2H0(l2)

+ l1λ(β1, l1)Vβ1
+ l2λ(β2, l2)Vβ2

When studying the massive Schwinger-Thirring model,
we write the Hamiltonian as

HMSG = lH0(l) + lλ(β, l)Vβ +
m2

2

∫ L

0

: φ2 : dx.

D. DSG spectral statistics in subsets of states
within one shell
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FIG. 12. Spectral statistics of the DSG model in subsets
of a single energy shell. (a–b) Mean 〈r̃〉 and mean entropy
〈S(E)〉/Smax in each subset as a function of the mean energy
〈E〉 of the subset. The dashed line in (b) corresponds to the
GOE value 〈S〉GOE = log(0.48D) for largeD. (c) Distribution
of |cij | in each subset in log-plot and log-log-plot in the
inset (colors as in (a–b) above). Despite the variations of
statistics when moving from the edges to the middle of the
shell, the tails of the eigenvector component distributions are
always different from Gaussian. Each subset consists of 186
consecutive levels of the 13th shell (N = 28, corresponding
roughly to the same energy window as in Fig. 1 and 2) and
the parameter values are l = 1, (β1, β2) = (1.0, 2.5).

To investigate the inner structure of the energy shells
of the DSG model presented in the main text (Fig. 4),

we focus on a single shell, divide it into non-overlapping
subsets of increasing energy levels and analyse the
statistics of eigenvector components in each of the
subsets. This way we can check whether the observed
deviation of the eigenvector component statistics from
RMT is due to the existence of a small number of
non-typical eigenstates concentrated at the edges of the
shell or if it is a general characteristic of the majority
of the eigenstates. As a measure of randomness of
the eigenvectors |Φj〉, we also compute the entropy
Sj = −

∑
i |cij |2 log |cij |2. The maximum value of the

entropy Smax = log(D) corresponds to a vector with all
components equal (where D is the length of the vector).
The expectation value of the entropy of a random vector
in GOE is 〈S〉GOE = log(0.48D) for large D [61].

The results are shown in Fig. 12. We observe that
the eigenstates close to the edges of the shell exhibit less
random characteristics. The mean eigenvector entropy
S(E) is lower than in the middle of the shell, and also
〈r̃〉 has a lower value at the low energy edge. Moreover,
there are variations in the distribution of eigenvector
components. In contrast to the middle of the shell,
the edges are characterised by non-exponential scaling
in the bulk of the distribution and a higher peak at zero.
However, the tails of the distributions are clearly non-
Gaussian in all subsets independently of their position
in the shell. We have verified that the same holds for
different parameter values and different shells. We thus
conclude that the deviations from RMT predictions are
present in the full energy range of each shell, and they are
not caused by a small number of non-typical eigenstates.


