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Notions of circuit complexity and cost play a key role in quantum computing and simulation where they
capture the (weighted) minimal number of gates that is required to implement a unitary. Similar notions also
become increasingly prominent in high energy physics in the study of holography. While notions of entanglement
have in general little implications for the quantum circuit complexity and the cost of a unitary, in this work, we
discuss a simple such relationship when both the entanglement of a state and the cost of a unitary take small
values, building on ideas on how values of entangling power of quantum gates add up. This bound implies that
if entanglement entropies grow linearly in time, so does the cost. The implications are two-fold: It provides
insights into complexity growth for short times. In the context of quantum simulation, it allows to compare digital
and analog quantum simulators. The main technical contribution is a continuous-variable small incremental
entangling bound.

Introduction

The circuit complexity of a computation captures the number
of elementary steps it minimally takes to determine its outcome.
A reading of the famous Church-Turing thesis states that all
reasonable models of computation give rise to the same class of
“easy” problems computable in polynomial time, a statement
that can presumably also be applied to processes occurring in
nature. Alas, ultimately the world is quantum. Indeed, notions
of quantum circuit complexity have long been considered in
quantum information science: They provide a quantitative
account on the shortest quantum computation that implements
a given unitary. Similarly, one can think of the complexity of a
quantum state as the circuit complexity of the quantum circuit
preparing it, starting from a given fiducial state. Such notions
play a similarly central role in quantum as classical circuit
complexities do in classical computing. Seminal work [1–4]
has introduced a geometric picture of circuit complexities,
showing that finding the shortest circuit amounts to identifying
the shortest path between two points in a curved geometry.
In fact, this program has become so successful that the cost
associated with a unitary in such a geometric picture has itself
been identified with a notion of circuit complexity.

Yet, it was relatively recently that notions of circuit including
those of costs rose to prominence outside the field of quan-
tum computing [5–15]. Again eluding to the physical Church
Turing thesis, such an approach is well motivated: One can
think of a quantum state – say, one that is being generated
by a quantum chaotic Hamiltonian evolution – being highly
complex if the quantum circuit that could have prepared it on
a quantum computer would have to be long. Since one can
argue about how many quantum gates one would have needed
to emulate a given Hamiltonian time evolution, such notions
also immediately allow to compare the effort in digital and ana-
log quantum simulation [16]. The possibly most compelling
application of quantum circuit complexity is in the realm of
high energy physics in the context of holography [5–15].

These thoughts provide fuel for a motivation to actually
compute quantum circuit complexities and circuit costs. Yet, to
actually quantitatively determine any variant of these quantities
is not obvious. After all, there are many ways to decompose

Figure 1. A schematic picture relating the cost of a circuit with the
entanglement over cuts for a system of n constituents. The dark grey
triangle represents the Lieb-Robinson cone [17–19] that depicts at
what rate one expects a linear growth of the entanglement entropy
over all cuts in non-equilibrium dynamics generated by a local Hamil-
tonian.

a given unitary into a quantum circuit, with the best known
algorithms for decomposing given circuits in Clifford and T -
gates featuring an exponential run-time in the circuit size [20],
and the computation of the complexity requires the optimiza-
tion over such decompositions. In any decomposition, one
may expect cancellations of some sort, with the impact of a
unitary gate being partially compensated by the later action
of another, rendering naive combinatoric arguments involved.
The geometrically motivated notion of a cost of a quantum
circuit substantially lessens the technical burden [1–4], but it
is still not obvious how to come up with meaningful lower
bounds.

This work provides a compellingly simple lower bound for
the cost of a quantum circuit that is tight for small values of the
cost. It has indeed rightfully been argued that complexity is not
entanglement [14], and neither is the cost of a circuit. No quan-
tity based on entanglement can accommodate the presumed
linear growth of state complexity until a time exponential in
the system size [5], for obvious reasons. That said, for small
values of the circuit cost and entanglement there is a simple
connection: One can basically add up – if properly put together
– potential entangling powers of quantum gates to arrive at tight
bounds. The bounds presented are rooted in notions of entan-
glement capabilities of quantum gates: The argument captures
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the insight that quantum gates that are close to the identity
in operator norm have little capability to create entanglement
from product states (which is very easy to show). They can also
add very little entanglement to a given entangled state (which
is less obvious to prove), but this can be grasped in terms of
the small incremental entangling property [21, 22], and which
is here freshly proven for Gaussian continuous-variable sys-
tems. As such, the simple bound applies both to spin systems
as to Gaussian bosonic continuous-variable settings, which
are specifically important when approximating non-interacting
bosonic quantum fields. Simple as the bound is, it is easily
stated and proven (with some of the arguments delegated to the
appendix). It can also straightforwardly be applied to important
cases of quantum evolutions, for which quenched Hamiltonian
many-body dynamics constitute an example.

Quantum circuit complexity and cost

The exact circuit complexity basically counts the number
of quantum gates from a given gate set that is needed to ex-
actly match the given unitary. An approximate reading thereof
merely asks for an approximation in operator norm to a given
small error. Lower bounds of the circuit complexity are pro-
vided by the cost of a given circuit, which is increasingly com-
monly seen as a notion of circuit complexity in its own right
[1, 2]. For n quantum systems of local dimension d (d = 2 for
spins or qubits), one chooses a collection of 2-local traceless
Hamiltonian terms O1, . . . , OJ , normalized in operator norm
as ‖Oj‖ = 1 for j = 1, . . . , J . We consider both the situation
in which {Oj} are geometrically local and the situation where
they are merely local in their support. For a given U ∈ SU(dn),
one regards the unitary as being generated by a path-ordered
integral

U = P exp

(
−i
∫ 1

0

dsH(s)

)
, (1)

with

H(s) =

J∑
j=1

yj(s)Oj , (2)

where yj : [0, 1] → R are appropriate continuous cost func-
tions. This path ordered integral can in operator norm arbitrar-
ily well approximated by

VN =

N∏
k=1

exp

− i

N

J∑
j=1

yj(k/N)Oj

 (3)

in the limit of N → ∞, as follows immediately from the
definition of the path-ordered integral. The cost of a unitary
U ∈ SU(dn) can then be defined in such terms [1, 2].

Definition 1 (Circuit cost [1]). For a given set {O1, . . . , OJ}
in the Lie algebra su(dn) of traceless Hermitian matrices nor-
malized as ‖Oj‖ = 1 for all j = 1, . . . , J , the cost of a

quantum circuit U ∈SU(dn) is the infimum

C(U) := inf

∫ 1

0

J∑
j=1

|yj(s)|ds (4)

over all continuous functions yj : [0, 1] → R so that Eqs. (1,
2) are satisfied. We call it the geometrically local circuit cost
Cg(U) if all {Oj} are geometrically local.

That is to say, the cost of a quantum circuit can be expressed
in terms of the limit

lim
N→∞

1

N

N∑
k=1

J∑
j=1

|yj(k/N)| (5)

of many time steps.

Potential entangling power

In what follows, the notion of a potential entangling power
of a quantum gate provides some useful intuition. It captures
the “coupling strength” and simply takes into account the fact
that quantum gates that are close to the identity cannot create
much entanglement. A somewhat related, but integer-valued,
notion of entangling power has been invoked in Ref. [23].

Definition 2 (Potential entangling power). A unitary
U ∈SU(d2) has the potential entangling power

e(U) := log(d) min
{
‖H‖ : U = e−iH , H = H†

}
. (6)

It is indeed perfectly meaningful to refer to this quantity as
the potential entangling power: If ρ = ρA ⊗ ρB , both ρA and
ρB being pure and supported on Cd each, then the resulting
degree of entanglement S(trB(UρU†)) as quantified in terms
of the von-Neumann entanglement entropy over the cut A : B
is expected to be small if e(U) is small, and converging to zero
for e(U)→ 0. Notions of entangling powers of quantum gates
have long been connected to coupling strengths of interactions
[24–27]. As is well-known, notions of entangling power of
unitary gates are altered depending on whether or not auxiliary
quantum systems are allowed for: The swap gate obviously
has no entangling power, if no auxiliary systems made use of,
while it has 2 log2(d) when auxiliary systems are included. It
is less obvious to see how much entanglement can be gener-
ated, however, if one initially already encounters an intricate
entangled state and the unitary acts only on a small subsystem
of the total system. The question of how much entanglement
can be generated in this fashion has been largely settled in Ref.
[21], however, which we can make use of here.

Entanglement bounds circuit costs

Such notions of potential entanglement power can be related
to tight bounds of circuit costs. In what follows, we denote for
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a pure state ρ defined on a spatially one-dimensional system of
n constituents for s ∈ {1, . . . , n− 1} with

E(ρ : s) := S(trB(ρ)) (7)

being the entanglement entropy over the cut A = {1, . . . , s}
and B = {s+ 1, . . . , n}.

Observation 1 (Entanglement lower bounds the cost). The ge-
ometrically local circuit cost of aU ∈SU(dn) is lower bounded
by

Cg(U) ≥ 1

c log(d)

n−1∑
s=1

E(U |φ〉〈φ|U† : s), (8)

for an absolute constant c > 0, where |φ〉 ∈ (Cd)⊗n is a
product state vector. For the cost, one finds

C(U) ≥ 1

c log(d)
max sE(U |φ〉〈φ|U† : s). (9)

The potential cancellation of gates in notions of complexity
is faithfully captured in this bound: If most gates in a circuit
commute, they will give rise to a lower circuit cost, but at
the same time also to a smaller entanglement. So even if the
bound is simple indeed, it does capture a key feature of the
relationship of the circuit cost to notions of entanglement.

Proof. The proof of this observation is straightforward, ac-
knowledging the results of Ref. [21]. We start by decomposing
the circuit in a convenient manner. Making use of a Trotter de-
composition, we find that U can in operator norm ‖U −WN‖
be arbitrarily well approximated as a product

WN :=

N∏
k=1

Vk (10)

with each term being given by

Vk := exp

− i

N

J∑
j=1

yj(k/N)Oj

 (11)

= lim
m→∞

(
V

1/m
k,1 . . . V

1/m
k,J

)m
where

Vk,j := exp

(
− i

N
yj(k/N)Oj

)
. (12)

Building upon this, let

|ψl〉 :=

l∏
k=1

Vk|ψ〉 (13)

be the state vector after l ∈ {1, . . . , N} temporal layers, with
|ψ0〉 := |φ〉. Then, for l = 1, . . . , N , using the time integrated
instance of Lemma 1, one finds that the entanglement growth

over the cut A = {1, . . . , s} and B = {s+ 1, . . . , n} in each
step can at most be

E(|ψl〉〈ψl| : s)− E(|ψl−1〉〈ψl−1| : s)
= E(Vl|ψl−1〉〈ψl−1|V †l : s)− E(|ψl−1〉〈ψl−1| : s)

≤ mc

N

J∑
j=1

1

m
yj(l/N)‖Oj‖ log(d) (14)

which gives

E(|ψl〉〈ψl| : s)− E(|ψl−1〉〈ψl−1| : s)

≤ c log(d)

N

J∑
j=1

|yj(l/N)|. (15)

Iterating this expression, one finds

E(U |φ〉〈φ|U† : s)− E(|φ〉〈φ| : s)

≤ c log(d)

N

N∑
k=1

J∑
j=1

|yj(l/N)|. (16)

Acknowledging that the right hand side approximates the cir-
cuit cost C(U) arbitrarily well, find finds the statement of
Observation 1, by applying the argument to the cut A =
{1, . . . , s} and B = {s + 1, . . . , n} providing the tightest
bound. For the geometrically local circuit cost Cg(U), the
argument can be applied to each such cut, leading to the state-
ment of Observation 1.

In the above statement, the following statement from Ref.
[21] has been made use of.

Lemma 1 (Small incremental entanglement [21]). For a pure
state ρ and a Hamiltonian h supported on a d× d-dimensional
subspace acting over the cut {1, . . . , s} and {s + 1, . . . , n},
the entangling rate defined as

Γ(h, ρ) :=
d

dt
E
(
e−ithρeith : s

)∣∣∣∣
t=0

(17)

is upper bounded by

Γ(h, ρ) ≤ c log(d)‖h‖. (18)

The constant presented in the proof is c = 22, but numerical
evidence is shown that rather c = 2 actually provides a tight
bound. Interpreted in terms of the above notion of an poten-
tial entangling power of a unitary X ∈ U(d2) acting on two
constituents connecting the subsystems over the cut, one can
argue that

|E(XρX† : s)− E(ρ : s)| ≤ ce(X), (19)

so that up to an absolute constant, the maximum increase of
entanglement is indeed nothing but the potential entangling
power: In each application, a quantum gate with a certain po-
tential entangling power can increase the value of entanglement
only to some extent, no matter how entangled the initial state
has been. From the above Trotter decomposition it also fol-
lows that the circuit cost is nothing but the weighted quantum
circuit complexity, weighted by the potential entangling power
of each quantum gate.
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Corollary 1 (Weighted quantum circuit complexity). For a
given U ∈SU(2n), the infimum of the sum of weights e(Uj) of
a circuit consisting of quantum gates {Uj} generated by {Oj}
is given by C(U).

Gaussian circuit cost

In fact, there is a small incremental entanglement bound
as well as a harmonic equivalent of the above relationship
between entanglement and quantum circuit cost for Gaus-
sian bosonic settings [11, 13], including ones motivated by
evolutions of non-interacting bosonic quantum fields. For
such bosonic systems, characterized by canonical coordinates
R = (x1, p1, x2, p2, . . . , xn, pn), the appendix presents the
proof of the following small incremental entanglement state-
ment for such continuous-variable systems.

Theorem 1 (Gaussian small incremental entanglement). For
a pure Gaussian state ρ and a Hamiltonian H = RhRT

supported on one of the modes each of A = {1, . . . , s} and
B = {s+ 1, . . . , n}, the entangling rate defined as

Γ(h, ρ) :=
d

dt
E
(
e−itHρeitH : s

)∣∣∣∣
t=0

(20)

is upper bounded by

Γ(h, ρ) ≤ ‖h‖f(‖γ(0)‖), (21)

where f : [1,∞)→ R is a monotone increasing function.

Interestingly, it is not the operator norm of the Hamiltonian
as such (which would make little sense anyway and would
not be finite) but that of the kernel matrix when expressed
as a polynomial in canonical coordinates that features in this
small incremental entanglement statement. In the same way as
above, and elaborated upon in the appendix, we can conclude
the following.

Observation 2 (Gaussian entanglement lower bounds Gaus-
sian circuit cost). The geometrically local Gaussian quantum
circuit cost of a bosonic Gaussian unitary U that prepares
U |φ〉 from the product state vector |φ〉 associated with the
covariance matrix γ(0) is lower bounded by

Gg ≥
1

f(‖γ(0)‖)

n−1∑
s=1

E(U |φ〉〈φ|U† : s). (22)

For the Gaussian quantum circuit cost one finds

G ≥ 1

f(‖γ(0)‖)
max sE(U |φ〉〈φ|U† : s). (23)

Making use of these statements, one can infer about non-
interacting bosonic theories in largely the same way as for spin
systems, despite unbounded operators featuring in the problem.

Quenched quantum many-body systems

Simple as the above bounds are, they provide tight and
relevant bounds to circuit costs and complexities for small
times in a number of settings. An interesting insight along these
lines of thought is the point that whenever a quantum many-
body system undergoing non-equilibrium dynamics leads to a
linear increase in the entanglement entropy over suitable cuts,
so does the quantum state complexity. This is in particular
true for quenched quantum many-body systems, for which the
linear growth of entanglement entropies is generic [28–30].
In fact, both upper [18, 19] and lower bounds [31] for the
entanglement entropy as a function of time have readily been
established. That is to say, whenever the right hand side of
Eq. (9) grows linearly in time, so does the left hand side, as
an immediate corollary (see Fig. 1). We state this explicitly
for the Ising Hamiltonian, but it should be clear that the same
behaviour is expected for any local Hamiltonian (not featuring
disorder).

Observation 3 (Growth of circuit cost in dynamics). For
any time T > 0 there exists a system size n for a transla-
tionally invariant Ising Hamiltonian such that the unitary dy-
namics e−itH applied to a product state vector |φ〉 leads to
C(e−iHt) > δt for an absolute constant δ > 0, for all times
t ∈ [0, T ].

The upper bound in time T is merely accommodating the
possibility of having a finite system of finitely many degrees
of freedom n, for which at some point, the respective entan-
glement entropies will no longer grow in time (rendering the
bound then uninteresting). The result stated here is a corollary
of Observation 1, together with the results of Ref. [32]. Since
the model is translationally invariant, any cut serves to show
the linear growth of the quantum state complexity in time. For
the geometrically local circuit cost, one also finds a growth
linear in time, but now the largest value of Cg(e−iHT ) attained
at intermediate times scales as Θ(n2) in the system size n,
instead of the essentially linear scaling Θ(n) in case of the
quantity C(e−iHT ).

Summary and outlook

In this work, we have carefully and quantitatively revisited
the connection between entanglement and notions of circuit
cost and complexity. While there is in general no tight connec-
tion between these quantities, for small values, there actually
is, as this work shows: Indeed, one arrives at compellingly
simple bounds. The usefulness of such bounds is manifest.
One can argue, for example, how deep a weighted quantum
circuit has to be to give rise to a given entanglement pattern
in a desired final state; this is true at least for pure states, but
it seems perfectly conceivable that similar techniques can be
established for mixed quantum states. Also, it helps assessing
the power and capabilities of analog quantum simulators [16].
Using such tools, one can argue that a digital quantum simu-
lator would have required a precisely defined computational
effort to produce the same results as a given analog quantum
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simulator. In this sense, it makes the computational effort of
digital and analog quantum simulators comparable. It is the
hope that this simple bound provides a useful and versatile tool
in various studies of this kind.
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APPENDIX

Preliminaries

Consider a quantum system of n bosonic modes,
equipped with the canonical coordinates R =
(x1, p1, x2, p2, . . . , xn, pn) reflecting positions and mo-
menta. For a quantum system comprising of n modes, the
canonical commutation relations give rise to a symplectic form

σ =

n⊕
j=1

[
0 1
−1 0

]
. (24)

We consider Gaussian states ρ [33, 34] with vanishing first
moments (which can be assumed to be the case without loss of
generality in the context considered) and second moments that
can be captured in the covariance matrix γ ∈ R2n×2n with
entries

γj,k = tr(ρ(RjRk +RkRj)). (25)

Covariance matrices always satisfy the Heisenberg uncertainty
principle γ + iσ ≥ 0: It takes a moment of thought that this
is nothing but the standard Heisenberg uncertainty principle
written in a way that is manifestly invariant under symplectic
transformations that preserve the symplectic form σ.

In the endeavour of bounding quantum circuit complexities,
the above quantification in terms of operator norms no longer
makes sense. However, when assessing notions of circuit
cost and complexity, similar bounds can still be derived when
appropriately evaluated for Hamiltonian terms. To this goal,
let {Oj : j = 1, . . . , J} be a collection of operators – with no
assumption on the cardinality J of the set being made – each
of which being of the form

Oj = (Xk, Pk, Xl, Pl)hj(Xk, Pk, Xl, Pl)
T , (26)

where k ∈ {1, . . . , s} and l ∈ {s + 1, . . . , n} are labels re-
ferring to modes in A and B, respectively. The fact that the
indices k, l are from the set of modes reflects the feature that

the operators are 2-local, but as before, geometric locality may
or may not be assumed. The matrices hj ∈ R2×2 satisfy

hj = hTj , ‖hj‖ = 1. (27)

That is to say, it is no longer the operators Oj as such that
have unit operator norm, but rather the kernels of quadratic
operators in the canonical coordinates. Equipped with this
preparation, we can again think of Hamiltonians

H(s) =

J∑
j=1

yj(s)Oj , (28)

with as before yj : [0, 1] → R being arbitrary continuous
functions. Just in the same way considered above, the Gaussian
circuit cost of a Gaussian unitary U becomes

G(U) = lim
N→∞

1

N

N∑
k=1

J∑
j=1

|yj(k/N)|, (29)

or analogously Gg(U), depending on whether the generators
have been chosen merely local or additionally geometrically
local. We are now in the position to prove Theorem 1.

Proof of Theorem 1

Proof. In what follows, we prove the Gaussian bosonic small
incremental entanglement statement summarized in Theorem
1 of the main text. As before, we consider a bi-partite system
consisting of parts A = {1, . . . , s} and B = {s + 1, . . . , n}
with a two-local Hamiltonian supported on modes labeled
k ∈ A and l ∈ B, with the rest of the systems

a = {1, . . . , s}\{k} (30)

and b = {s+ 1, . . . , n}\{l} acting as auxiliary systems. The
entanglement rate for a given state ρ is then

Γ(H, ρ) :=
d

dt
E(ρ(t) : s)

∣∣∣∣
t=0

(31)

where

ρ(t) = e−itHρeitH . (32)

On an abstract level, this entangling rate has been shown in
Ref. [21] to be given by

Γ(H, ρ) = −itr((Ia⊗H)[ρA,{l}, log(ρA)⊗ I{l}]). (33)

The Hamiltonian

H = RhRT , (34)

which is a quadratic polynomial in the bosonic operators R,
acts non-trivially on two modes in A and B each, so that h ∈
R2n×2n features non-vanishing elements only within a 4× 4
block reflecting pairs of canonical coordinates of two modes
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and has rank(h) = 4 (more common is a coupling in position
only, so that the respective block in the momentum sector is
proportional to I). The generalization to k-local Hamiltonians
with Hamiltonian kernels of rank 2k is immediate and only
omitted for notational convenience.

The subsequent steps can be proven entirely on the level of
level of second moments. The covariance matrix γ of a pure
Gaussian state ρ takes the form

γ =

[
γA Ξ
ΞT γB

]
, (35)

where the principal sub-matrices γA and γB reflect the reduced
quantum states of the sub-systems labeled A and B, respec-
tively. The entanglement entropy of ρ with respect to the split
of A versus B [35] can be computed as

E(ρ : s) =

s∑
k=1

[(
σk + 1

2

)
log

(
σk + 1

2

)
−
(
σk − 1

2

)
log

(
σk − 1

2

)]
, (36)

where σ1, . . . , σs ≥ 1 are the symplectic eigenvalues of the s
modes of γA. These symplectic eigenvalues are the positive
square roots of the eigenvalues of −(γAσA)2, where

σA :=

s⊕
j=1

[
0 1
−1 0

]
(37)

is the symplectic form of the s modes constituting A, so that
the entanglement entropy is found to be

SA(ρ) = tr

[(
M

1/2
A + I

2

)
log

(
M

1/2
A + I

2

)

−

(
M

1/2
A − I

2

)
log

(
M

1/2
A − I

2

)]
, (38)

where MA is the Hermitian s× s-matrix defined as

MA := γ
1/2
A (iσA)γA(iσA)γ

1/2
A (39)

in terms of matrix square roots of covariance matrices. In the
same way, MA(t) can be defined for all times t ≥ 0, derived
from the second moments of ρA(t) given by

γA(t) = e−σhtγeσht
∣∣
A
, (40)

σ denoting the symplectic form of the entire system involving
all n modes as defined in Eq. (24). Prepared in this fashion,

we can turn to actually upper bounding the incremental entan-
glement rate. An explicit calculation shows that

Γ(H, ρ) =
1

2
tr

[
d

dt
M

1/2
A (t)

∣∣∣
t=0

(41)

×

(
log

(
M

1/2
A + I

2

)
− log

(
M

1/2
A − I

2

))]
.

The rank

rank

[
d

dt
M

1/2
A (t)

∣∣∣
t=0

]
= rank

[
d

dt
MA(t)|t=0

]
≤ 3 rank(h) (42)

is upper bounded by an absolute constant, as is seen by explic-
itly computing the derivative in time. What is more, we find
the upper bound∥∥∥∥[ ddt M1/2

A (t)
∣∣∣
t=0

]∥∥∥∥ = ‖MA(0)‖−1/2
∥∥∥∥[ ddt MA(t)|t=0

]∥∥∥∥
≤ ‖MA(0)‖−1/2 d

dt
‖γA(t)‖|t=0, (43)

using the sub-multiplicativity of the operator norm several
times. Using the property that ‖MA(0)‖ ≥ 1, this gives∥∥∥∥[ ddt M1/2

A (t)
∣∣∣
t=0

]∥∥∥∥ ≤ d

dt
‖γA(t)‖|t=0. (44)

Introducing the projection π := IA⊕0B , from this, we can
upper bound the operator norm of the derivative and conclude
that ∥∥∥∥[ ddt M1/2

A (t)
∣∣∣
t=0

]∥∥∥∥ ≤ ‖π(σhγ − γσh)π‖ (45)

≤ ‖(σhγ(0)− γ(0)σh)π‖
≤ 2‖γ(0)‖‖h‖,

again using the sub-multiplicativity of the operator norm. Then,
the second term above can be bounded from above as∥∥∥∥∥log

(
M

1/2
A ± I

2

)∥∥∥∥∥ = log

(
‖MA‖1/2 ± 1

2

)

≤ log

(
‖γ(0)‖+ 1

2

)
. (46)

Putting these results together lets us arrive at the claim of
the theorem, giving rise to the monotone increasing function
f : [1,∞) → R that lets the small incremental entangling
bound depends only on the coupling strength ‖h‖.
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