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Gaussian models provide an excellent effective descrip-
tion of many quantum many-body systems ranging from
condensed matter systems [1, 2] all the way to neutron
stars [3]. Gaussian states are common at equilibrium
when the interactions are weak. Recently it was pro-
posed that they can also emerge dynamically from a non-
Gaussian initial state evolving under non-interacting dy-
namics [4–11]. In this work, we present the experimental
observation of such a dynamical emergence of Gaussian
correlations in a quantum many-body system. This non-
equilibrium evolution is triggered by abruptly switching
off the effective interaction between the observed collective
degrees of freedom, while leaving the interactions between
the microscopic constituents unchanged. Starting from
highly non-Gaussian correlations, consistent with the sine-
Gordon model [12], we observe a Gaussian state to emerge
over time as revealed by the decay of the fourth and sixth
order connected correlations in the quantum field. A de-
scription of this dynamics requires a novel mechanism
for the emergence of Gaussian correlations, which is rel-
evant for a wide class of quantum many-body systems. In
our closed system with non-interacting effective degrees
of freedom, we do not expect full thermalization [13–19].
This memory of the initial state is confirmed by observing
recurrences [20] of non-Gaussian correlations.

Non-Gaussian states arise from the presence of interactions
between the considered degrees of freedom. Conversely, one
often equates the Hamiltonian being non-interacting with the
state being Gaussian. However, this connection is not nec-
essarily true if interactions have been present in the past. In
this case, Gaussian correlations would have to emerge dynam-
ically from non-Gaussian states. Such a scenario is very rel-
evant for the emergence of statistical physics considering that
the maximum entropy states of effectively non interacting sys-
tems are Gaussian. The results shown in this work represent
the equilibration from a strongly correlated to such a Gaussian
maximum entropy state.

However, despite its importance for quantum equilibra-
tion, the general phenomenon of the dynamical emergence of
Gaussian correlations has only been studied theoretically, on
the basis of a single type of mechanism. The previous theoret-
ical work [4–11] is concerned with the dephasing to a Gaus-

sian state as a result of intricate spatial mixing of correlations.
This mechanism will turn out to be insufficient to explain our
experimental observations. Instead, the theoretical explana-
tion for our experimental results will rely on a different kind
of correlation mixing.

An ideal model to study the emergence of Gaussian states
is the sine-Gordon model [21], which can be quantum simu-
lated [22, 23] by two tunnel-coupled one-dimensional (1D)
superfluids [24]. Changing the tunnel-coupling one can
switch from a strongly correlated system with non-Gaussian
correlations [12] to weakly or even non-interacting effective
degrees of freedom. The ability to change the tunneling rate,
therefore, enables us to perform a sudden quench [25] in the
interaction strength of the effective model.

In our experimental system, the superfluids are realized
with ultracold bosons (87Rb atoms) trapped in a double-well
potential on an atom chip [26]. The double-well is created
through dressing with radio frequency magnetic fields [27].
The height of the double-well barrier can be tuned by chang-
ing the amplitude of this dressing fields, thus allowing for dif-
ferent tunneling rates between the wells. Using matter-wave
interference, we can extract the spatially resolved phase dif-
ference ϕ(z) between the superfluids. We use a harmonic or
a box-like trap for the 1D confinement of the superfluids. A
schematics of the experimental system and the quench proce-
dure (see discussion in the following paragraphs) is depicted
in fig. 1.

As discussed in ref. [12], we can prepare states with dis-
tinctly non-Gaussian fluctuations of the relative phase ϕ(z)
between the superfluids through slow evaporative cooling
(aiming to create a thermal equilibrium state) in the double-
well potential with tunneling. We found that the phase cor-
relations of such states can be well described by the thermal
fluctuations of the sine-Gordon model

HSG =

∫
dz

[
g1D(z) δρ2(z) +

h̄2n1D(z)

4m

(
∂ϕ(z)

∂z

)2

− 2h̄J n1D(z) cos (ϕ(z))

]
(1)

in the classical field approximation. In addition to the rel-
ative phase fluctuations ϕ(z), the Hamiltonian also contains
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FIG. 1. Schematic of the experimental procedure. We investigate
the non-equilibrium dynamics of two 1D superfluids in a double-
well potential. Each of the superfluids is described through the den-
sity fluctuations δρ1,2(z) around their common mean density profile
n1D(z) as well as their phase fluctuations θ1,2(z). From the quan-
tities for the single superfluids, we define the relative phase fluctua-
tions ϕ(z) and the relative density fluctuations δρ(z) as the respec-
tive differences. We initially prepare the system through evaporative
cooling in a double-well potential with tunneling. Employing a slow
cooling rate, we aim at creating a thermal equilibrium state. Sub-
sequently, we switch off the tunneling J by ramping up the barrier
separating the two wells and investigate the independent time evolu-
tion of the two superfluids.

the conjugate field, the relative density fluctuations δρ(z),
which are not accessible in the experiment via direct mea-
surement. In eq. (1),m represents the mass of the 87Rb atoms,
n1D(z) the 1D mean density profile, g1D(z) the 1D interaction
strength, and J the single particle tunneling rate. Note that
eq. (1) is an effective model, representing a low energy ap-
proximation of the interacting microscopic Hamiltonian [24].

The degree of non-Gaussianity of the state prepared by
evaporative cooling depends on the phase-locking (higher for
larger tunneling rate) between the superfluids. We quantify
the phase-locking strength by the coherence factor 〈cos(ϕ)〉.
For very weak (〈cos(ϕ)〉 ≈ 0) and very strong phase-locking
(〈cos(ϕ)〉 ≈ 1) the fluctuations follow a Gaussian distribu-
tion, while for intermediate phase-locking we observe non-
Gaussian states. In our experimental protocol we start from
such a non-Gaussian state and subsequently switch off the tun-
neling by ramping up the double-well barrier in approximately
2 ms. Afterwards, the two superfluids evolve independently in
the double-well without tunneling. This corresponds to free
evolution of the collective degrees of freedom ϕ(z) and δρ(z)
according to eq. (1) with J = 0 (see discussion of the theo-
retical model below). During the evolution, the relative phase
is measured. Since the measurement procedure is destructive,
only one spatially resolved phase profile at a certain evolution
time is recorded per experimental realization.

From the extracted relative phase profiles ϕ(z), we calcu-

late correlation functions using the same procedure as was
used in ref. [12]. Note that only phase differences between
two spatial points are defined unambiguously. Therefore, we
reference the relative phase to the center of the superfluids and
calculate correlation functions of ϕ̃(z) = ϕ(z) − ϕ(0). The
N -th order equal-time phase correlation function is defined as

G(N)(z, t) = 〈ϕ̃(z1, t) . . . ϕ̃(zN , t)〉 , (2)

where z = (z1, . . . , zN ) and the expectation value is calcu-
lated by averaging over many experimental realizations. The
full correlation function, G(N), can be decomposed into [28]

G(N)(z, t) = G
(N)
dis (z, t) +G(N)

con (z, t). (3)

The first term,G(N)
dis , is the disconnected part of the correlation

function. It is fully determined by all the lower-order corre-
lation functions, G(N ′) with N ′ < N , and therefore does not
contain new information at order N . The second term, G(N)

con ,
is the connected part of the correlation function, and contains
genuine new information about the system at order N . An
explicit formula for G(N)

con is given in eq. (8).
For Gaussian states, all higher-order correlations, G(N)

with N > 2, fully factorize, i.e., all G(N)
con for N > 2 van-

ish. As a measure of non-Gaussianity of the relative phase
fluctuations, we calculate the relative size of the fourth-order
connected correlation function,

M (4)(t) =
S
(4)
con(t)

S
(4)
full(t)

=

∑
z

∣∣∣G(4)
con(z, t)

∣∣∣∑
z

∣∣G(4)(z, t)
∣∣ . (4)

A non-zero value of this quantity implies that the fourth-order
correlation function is not simply determined by the second
moments via Wick’s theorem [28]. Note that the experimental
z-values lie on a discrete grid with a spacing of approximately
2 µm, which is determined by the pixel-size of the camera used
for absorption imaging. The sums in eq. (4) run over all dis-
tinct combinations of z1, . . . , z4 contained in a central region
of the superfluids. While we only present the results for the
fourth order correlation function in the main text, we give ad-
ditional plots for the sixth order correlation function in the
supplementary information. Note that correlation functions of
odd N vanish due to symmetry.

The experimental results for the time evolution of M (4) as
well as S(4)

full and S(4)
con are presented in fig. 2. We observe a

fast decrease in M (4) driven by an increase in the magnitude
of the phase fluctuations (increase in S(4)

full) and a decrease in
the fourth-order connected correlation functions (decrease in
S
(4)
con). Considering the finite experimental statistics, the re-

sulting final state is indistinguishable from Gaussian fluctua-
tions. The Gaussian model that we compare with in the fig-
ures is simply given by the experimental mean values 〈ϕ̃(z, t)〉
and covariance matrix 〈ϕ̃(z, t)ϕ̃(z′, t)〉 at the particular evo-
lution time t. Note that the increase in the overall fluctua-
tions corresponds to a decrease in the integrated interference
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FIG. 2. Time evolution of the relative size of the fourth-order
connected correlation functions. The experimental results for the
measureM (4) (upper plot, red bullets) as well as for S(4)

full (lower plot,
purple squares) and S(4)

con (lower plot, blue triangles) are shown as a
function of the evolution time, t. The first point at t = −2ms rep-
resents the initial state with a coherence factor 〈cos(ϕ)〉init = 0.74.
Between t = −2 and 0ms, the amplitude of the dressing fields is
ramped up, leading to a decoupling of the two wells. The shaded
area represents the theory prediction for the respective quantities,
considering the finite statistics and uncertainty in the decoupling time
(between −2 and 0ms), but not the uncertainty in the initial thermal
coherence length, λT , and single particle tunneling rate J (see Meth-
ods). The green rectangles represent the predictions for M (4) (upper
subplot) and S(4)

con (lower subplot) following from Gaussian fluctua-
tions considering the finite experimental sample size. All error bars
as well as the vertical extension of the shaded areas and green rect-
angles represent 80% confidence intervals. We used bootstrapping
(bias-corrected and accelerated method [31]) to calculate the confi-
dence intervals for the experimental data. The horizontal extension
of the green rectangles was chosen arbitrarily. The experimental re-
sults have been obtained for a harmonic 1D trapping potential. The
central 50 µm of the system are analyzed in experiment and theory,
with the experimental system length being roughly 120 µm.

contrast as previously observed [13, 14, 20] and can be ex-
plained by dephasing of non-interacting eigenmodes [29, 30].
Additional measurements for different initial phase-locking
strengths show similar behavior (see fig. E1).

Let us now discuss our theoretical model in more detail.
As already mentioned above, we know that the relative phase
fluctuations of the initial state can be well described with the
sine-Gordon model (1) in thermal equilibrium and classical

fields approximation [32]. We use this description for both the
initial relative density and phase fluctuations. Our model for
the initial state, therefore, leads to non-Gaussian phase fluctu-
ations whose magnitude gets suppressed with increased tun-
neling. The non-Gaussianity is a direct consequence of the
beyond quadratic tunneling term in HSG (last term in eq. (1)).
The suppression with increased tunneling can be understood
from an energy argument and is explicitly discussed in the
supplementary information. Meanwhile, the density fluctu-
ations are Gaussian and independent of the tunneling rate
since there is only a quadratic, J independent term of δρ in
HSG. Cross-correlations between density and phase fluctua-
tions vanish since there are no cross terms in eq. (1).

For the time evolution we simply set J in eq. (1) to zero giv-
ing the Luttinger liquid model. As already discussed, this is
a non-interacting model for the collective degrees of freedom,
the relative phase and density fluctuations. The quadratic ef-
fective Hamiltonian can be diagonalized in terms of its eigen-
modes. We get

ϕ̃n(t) = ϕ̃n(0) cos (εnt/h̄)− Cn δρ̃n(0) sin (εnt/h̄) (5)

for the eigenmode expansion of the phase (ϕ̃n) and density
(δρ̃n) fluctuations. Here, we denote the eigenenergies by εn
and Cn is a constant depending on the mode number n. From
eq. (5), one can intuitively understand the experimental re-
sults. The large Gaussian density fluctuations of the initial
state rotate into the phase quadrature while the small initial
non-Gaussian phase fluctuations (suppressed by the tunnel-
ing) rotate out. Focusing only on a single eigenmode, this ro-
tation would lead to an oscillatory behavior for the degree of
non-Gaussianity. However, several eigenmodes contribute to
a typical local or global observable. Dephasing between the
contributing modes leads to a suppression of the oscillatory
behavior. Together, rotation and dephasing result in a fast de-
crease of the relative size M (4) of the fourth-order connected
correlation function.

In other words, the emergence of the Gaussian phase cor-
relations relies on the mixing between the initially suppressed
non-Gaussian phase fluctuations and the non-suppressed ini-
tial Gaussian density fluctuations. This is in contrast to for-
mer theoretical work relying on spatial mixing of the correla-
tions [4–11]. Since in our case the dynamics is not delocal-
izing (see supplementary information), spatial mixing cannot
explain the experimental results. Instead, the initial Gaussian
density fluctuations are crucial for observing the dynamical
emergence of Gaussian phase correlations in our model. In
theory calculations with initial density fluctuations set to zero,
a statistically significant fourth-order connected part remains
at all times (see supplementary information).

The 1D mean density profile n1D, and, as a consequence,
also the 1D interaction strength g1D (see eq. (9)) are position
(z) dependent for a non-homogeneous system. The form of
the eigenmodes, the eigenenergies εn and the constant Cn in
eq. (5) depend on the form of this spatial dependencies (de-
termined by the trapping geometry) and the choice of bound-
ary conditions. A harmonic trapping potential leads to an in-
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commensurate set of eigenenergies [33]. The different eigen-
modes dephase with respect to each other leading to an ap-
parent equilibration with the initial phase (density) fluctua-
tions being distributed to both the phase and density quadra-
tures [13, 29]. No rephasing is expected and the phase corre-
lations should remain Gaussian after the initial dephasing. It
appears like a maximum entropy state has been reached [15].

For a homogeneous system on the other hand, the eigenen-
ergies are equally spaced, the eigenmodes are given by sine
and/or cosine functions depending on the boundary condi-
tions. After the initial dephasing of the eigenmodes, we ex-
pect a rephasing at a later time with the system returning to
its initial state. Indeed, we observed a recurrence of phase co-
herence in ref. [20] where a box-like confinement leading to
a fairly homogeneous system was used. Using the same kind
of confinement, but starting from a strongly non-Gaussian ini-
tial state, we now also observe a recurrence of non-Gaussian
phase fluctuations as presented in fig. 3. At the recurrence
time, the dominant Gaussian fluctuations get rotated back—
simultaneously for all eigenmodes—into the density fluctua-
tion sector and the non-Gaussianity reappears.

The experimental results presented in figs. 2 and 3 are in
good agreement with the predictions of our theoretical model
(see Methods for details of the calculations). Note that the
evolution times presented in fig. 2 are rather short compared
to the system size divided by the speed of sound (≈ 2 µm/ms).
Therefore, the exact trapping geometry does not matter too
much as long as we analyze the approximately homogeneous
central part of the system only. For simplicity, we therefore
perform the theory calculations presented in fig. 2 for a large
homogeneous system in order to avoid any boundary effects.
Meanwhile, the calculations shown in fig. 3 are done for a
homogeneous system of the same length as the experimental
box-like confinement and Neumann boundary conditions for
the phase ϕ. This represents an ideal hard-walled box. Here,
the boundary and finite size effects are crucial for correctly
describing the recurrences.

While our experiment has uncovered a mechanism for the
dynamical emergence of Gaussian correlations distinct from
the previously studied spatial mixing phenomena [4–11] it
is instructive to also stress their similarities: In both cases
there is initially a Gaussian component of the system’s state
that plays the role of a Gaussian ‘bath’ into which the non-
Gaussian component gets diluted by dephasing. In our case
the Gaussian bath is clearly separated in the density sector,
while in the case of spatial mixing it can be identified as the
prevalence of Gaussian correlations at distant points due to
clustering.

For our experiment, before decoupling, the phase fluctua-
tions enter with a large weight into the definition of the cre-
ation and annihilation operators for the eigenmodes diagonal-
izing the effective Hamiltonian. At the moment when the tun-
neling is switched off, the effective Hamiltonian changes and
the relative weight of the phase fluctuations gets reduced with
respect to the weight of the density fluctuations. While the
correlations are not changed during the quench and no addi-

tional Gaussian fluctuations are produced, the reduced impor-
tance of the non-Gaussian phase fluctuations compared to the
Gaussian density fluctuations can be interpreted as the cre-
ation of the Gaussian bath.

In addition to the dephasing of the phononic modes dis-
cussed above, further equilibration might occur in our sys-
tem due to additional terms beyond second order not consid-
ered in the low energy effective model stated in eq. (1). Such
terms lead to the damping of the recurrence heights observed
in ref. [20]. We expect that the additional terms also lead to a
damping of the recurrences ofM (4) when investigating longer
evolution times or bigger sample sizes. The investigation of
such a damping will be the objective of future studies. Para-
doxically, it is typically such weak non-quadratic terms that
bring about irreversibility in the dynamics towards the final
approximately Gaussian steady state, similarly to the classi-
cal statistical mechanics of the ideal gas, where infinitesimal
scattering is necessary to reach thermal equilibrium.

Finally, let us discuss the broad applicability of our new
mechanism for the emergence of Gaussian correlations be-
yond the specifics of the actual system considered. Firstly,
note that the sine-Gordon model is a special case of a generic
scalar field theory in 1D described by the Hamiltonian

H =

∫
dz

[
a π(z)2 + b

(
∂φ(z)

∂z

)2

+ V (φ(z))

]
. (6)

Here we denote the canonically conjugate fields by φ and
π following the standard notation found in field theory text-
books. Equation (6) represents the general form of a renor-
malizable scalar field theory [34] and is of great importance
for the effective description of a large variety of quantum
many-body systems [28].

All the ingredients necessary for the mechanism explain-
ing our experimental results with the sine-Gordon theory are
also present for the more general Hamiltonian eq. (6) when
performing the same kind of quench procedure. I.e., we start
with a thermal equilibrium state in the high temperature limit
with a beyond quadratic V (φ) and subsequently set V (φ) to
zero. During the following evolution, the previously strongly-
correlated φ sector has an influx of thermal Gaussian π fluctu-
ations, which dominate because, unlike those of φ, they were
not suppressed by the energetic penalty V (φ) (see the sup-
plementary information for a more formal argument). This is
exactly the generalization of what has been discussed above
for the specific case of the sine-Gordon model. Moreover, we
conjecture that our mechanism is not restricted to theories of
the form of eq. (6), but also present in other theoretical models
where non-Gaussian and Gaussian fluctuations are present in
different sectors. However, to identify the full range of appli-
cability of our new mechanism goes beyond the scope of the
present work.

To conclude, we uncover a pathway for the dynamical
emergence of Gaussian correlations. This phenomenon has
received too little attention so far, considering its paramount
importance in the wider context of quantum equilibration and
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FIG. 3. Recurrence of the non-Gaussian phase fluctuations. As for fig. 2 (see there for the meaning of the plotted quantities and error bars),
but for a 50 µm long near-homogeneous system (box-like 1D confinement) and several different initial phase-locking strengths quantified
by 〈cos(ϕ)〉init. In all cases a recurrence of coherence [20] can be observed around 25 ms, indicated by a dip in the value of S(4)

full. In the
measurements with 〈cos(ϕ)〉init = 0.63 or 0.75, the initial state exhibits non Gaussian phase correlations, and we also observe a recurrence in
the relative (M (4)) and absolute (S(4)

con) size of the connected fourth-order correlation function. In the measurement with 〈cos(ϕ)〉init = 0.93,
the initial phase fluctuations are Gaussian, and no such peak in M (4) occurs. This supports the picture that the recurrences of non-Gaussian
fluctuations are due to memory of the initial state being preserved. The central 38 µm of the system are analyzed in experiment and theory. To
get better statistics for the presented times we decided not to measure at intermediate times between the initial dephasing and the recurrence.

the emergence of statistical mechanics from an underlying mi-
croscopic quantum evolution. On a broader level, our work
highlights the power of precise and quantitative experimental
studies to unveil the foundations of statistical mechanics at the
border to the quantum world.

METHODS

Details of the experimental realization

The (tunnel-coupled) 1D superfluids are realized using ul-
tracold gases of 87Rb in a double-well potential on an atom
chip [26]. Each well consists of a highly elongated cigar-
shaped trap (two tightly confined directions, one direction
with weak confinement, corresponding to the 1D direction z).
The wells are separated along one of the tightly confined di-
rections (see fig. 1). The separation is horizontal, avoiding the
influence of gravity. By tuning the height of the barrier sep-
arating the wells we can change the tunnel-coupling between
the two superfluids.

The clouds are initially prepared by evaporatively cooling
the atoms whilst keeping the double-well trap static. The rel-
ative evaporation rates at the end of the cooling ramp amount
to a few percent per 10 ms. Right after the end of the evap-
orative cooling, the double-well barrier is ramped up to start
the non-equilibrium evolution (see discussion in the main text
and fig. 1). We do not expect any substantial heating due to
technical noise during the non-equilibrium evolution [20, 35].

The measured harmonic frequency for the weakly confined
direction is ωz ≈ 2π × 7 Hz, leading to clouds of approxi-
mately 120 µm length. In addition to this harmonic magnetic

confinement we superimpose a box-shaped optical potential
for some of the measurements. For the results presented in
fig. 3, the optical potential was created by a laser with 660 nm
wavelength (blue detuned) and shaped by a digital micromir-
ror device (DMD) [36]. For the measurements presented in
fig. E1, a 767 nm (blue detuned) laser was used together with
a simple mask [20, 37].

Calculation of the correlation functions and their connected
parts

As defined in eq. (2) in the main text, we evaluate the phase
correlation functions as

G(N)(z, t) = 〈[ϕ(z1, t)− ϕ(0, t)] . . . [ϕ(zN , t)− ϕ(0, t)]〉 ,
(7)

where the brackets denote the averaging over different ex-
perimental realizations and ϕ(z) is extracted via matter-wave
interference. Similarly, we calculate the connected part us-
ing [38]

G(N)
con (z, t) =

∑
π

[
(|π| − 1)! (−1)|π|−1

∏
B∈π

〈∏
i∈B

[ϕ(zi, t)− ϕ(0, t)]

〉]
.

(8)

Here the sum runs over all possible partitions π of {1, . . . , N},
the first (left) product runs over all blocks B of the partition
and the second (right) product runs over all elements i of the
block. |π| is the number of blocks in the partition. Note that
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eq. (8) does not represent an unbiased estimator of the con-
nected correlation function. However, for our large sample
sizes the bias should be negligible.

Details of the theory calculation

The theoretical calculations are performed numerically.
Moreover, a homogeneous system is assumed. For sampling
the phase fluctuations of the initial state (thermal fluctuations
of the sine-Gordon model), we use the method discussed in
refs. [12, 32]. This method produces numerical realizations
of a certain length, which represents a part of an infinite sys-
tem. The thermal fluctuations for the sine-Gordon model in
classical fields approximation are determined by the thermal
coherence length, λT , and the single particle tunneling rate,
J [12, 39]. Self consistently fitting both λT and J from the
initial state is very challenging since the parameters are cor-
related for the attempted fitting procedures [40]. In order to
avoid overfitting or large fitting errors, we use λT = 11 µm
as a reasonable value for all theoretical calculations presented
in the paper and supplementary information. Having set the
value of λT , we self consistently fit J from the initial values
of 〈cos(ϕ)〉 leading to the different values of J used in the the-
ory calculations for the different measurements. The experi-
mental value of 〈cos(ϕ)〉init used for the fit is obtained by av-
eraging over the experimental realizations as well as the same
central interval of the superfluids used also for all other anal-
ysis. Note that both the evolution of M (4) and S(4)

con is rather
insensitive to the value of λT . In other words, the conclu-
sions concerning the dynamical emergence of Gaussian cor-
relations and the recurrence of non-Gaussian correlations are
insensitive to the particular choice of λT . In contrast, the evo-
lution of S(4)

full strongly depends on λT . Given our choice of
λT , the experimental results and theory predictions for S(4)

full

agree fairly well in most cases.
Numerical sampling of the thermal density fluctuations is

straightforward as the fluctuations are Gaussian. The ther-
mal density fluctuations for the sine-Gordon model in clas-
sical fields approximation are determined by the 1D inter-
action strength, g1D, and again by the thermal coherence
length, λT . We use the density broadened 1D interaction
strength [20, 37, 40]

g1D = h̄ω⊥as
2 + 3asn1D

(1 + 2asn1D)
3/2

, (9)

for both the initial state and the time evolution. In eq. (9),
as = 5.2 nm [41] is the 3D scattering length. The transverse
trapping frequency is ω⊥ = 2π × 1.4 kHz for the results pre-
sented in fig. 2 and the supplementary information. For fig. 3
on the other hand, we use ω⊥ = 2π × 1.45 kHz. For the
homogeneous 1D atomic density, n1D, we use the value aver-
aged over the analyzed central part of the superfluids.

Having obtained numerical realizations for the initial state,
we numerically evolve them with the discretized version of

eq. (1) and J = 0. We use Neumann boundary conditions and
a homogeneous system, i.e., a constant n1D and g1D. For the
results presented in fig. 2 and the supplementary information,
we use a theoretical system size of L = 200 µm. Therefore,
as desired, we do not get any influence of the boundaries for
the investigated time scales in the central part of the system.
The outcome mimics the results for an infinite system. For the
theory predictions presented in fig. 3, we use the actual length
L = 50 µm of the experimental system.

In order to correctly consider the effect of the finite exper-
imental sample size, we set the number of numerical realiza-
tions equal to the experimental sample size of the correspond-
ing measurements. The experimental sample sizes vary be-
tween 118 and 623 (median 390) for the different measure-
ments. The calculations are then repeated 200 times to obtain
the confidence intervals presented in the figures.

For all presented theory predictions, the effect of the finite
experimental spatial resolution is approximated by convolving
the numerically calculated phase profiles with a Gaussian of
a standard deviation of σPSF = 3 µm [40] before calculating
the presented quantities.
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FIG. E1. Additional results for the time evolution of the relative size of the fourth-order connected correlation functions. As for
fig. 2 (see there for the meaning of the plotted quantities and error bars), but for several different initial phase-locking strengths (quantified
by 〈cos(ϕ)〉init) and different trapping geometries. The results for a 〈cos(ϕ)〉init of 0.81 and 0.88 have been obtained with a harmonic
confinement. For all other results, a 75 µm long box trap has been superimposed onto the harmonic confinement (see Methods). We find that
Gaussian correlations emerge dynamically for all measurements, independent of the initial phase-locking strength or the trapping geometry.
The speed for the decay of M (4) increases with the initial phase-locking in agreement with our theoretical model. One can understand the
trend by realizing that the phase-fluctuations of the initial state get smaller with increasing phase-locking and are therefore more quickly
overshadowed by the mixed-in initial density fluctuations.
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Supplementary Information

Results for the sixth-order correlation functions

The results for the sixth-order correlation functions corresponding to the fourth-order results presented in fig. 2, 3 and E1 are
shown in figs. S1 to S3. In analogy to eq. (4) we have

M (6)(t) =
S
(6)
con(t)

S
(6)
full(t)

=

∑
z

∣∣∣G(6)
con(z, t)

∣∣∣∑
z

∣∣G(6)(z, t)
∣∣ . (S1)

We get qualitatively similar results for the sixth-order as for the fourth-order correlation functions. However due to the more
challenging requirements concerning statistics and systematic errors we get bigger error bars and slightly worse agreement
between experiment and theory for the sixth order.

Additional discussion of the theoretical model

Importance of the initial density fluctuations As already discussed in the main text, in our theoretical model, the dynamical
emergence of Gaussian correlations is due to the rotating of large Gaussian fluctuations from the density to the phase quadrature.
In order to illustrate this explicitly, we compare the theory predictions for the usual case with initial density fluctuations and
the fictitious case of having no initial density fluctuations. As can be seen from fig. S4, a significant connected fourth-order
correlation remains at all times for the theory calculation without initial density fluctuations, consistently with general theoretical
predictions for Luttinger liquid dynamics [43, 44]. This observation demonstrates the crucial importance of the Gaussian initial
density fluctuations for the dynamical emergence of Gaussian correlations, in our model. Note that also without initial density
fluctuations the theory predicts a slight decrease in M (4). This decrease is due to the mixing of correlation from different spatial
points, as discussed further below.
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FIG. S1. Time evolution of the relative size of the sixth-order connected correlation functions. As for fig. 2 (see there for the meaning of
the plotted quantities and error bars), but for the sixth-order instead of the fourth-order correlation functions.
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FIG. S2. Recurrence of the sixth-order correlation functions. As for fig. 3, but for the sixth-order instead of the fourth-order correlation
functions. See the caption of fig. 2 for the meaning of the plotted quantities and error bars.
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FIG. S3. Time evolution of the relative size of the sixth-order connected correlation functions. As for fig. E1, but for the sixth-order
instead of the fourth-order correlation functions. See the caption of fig. 2 for the meaning of the plotted quantities and error bars.
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FIG. S4. Theory predictions with (green) and without (blue) initial density fluctuations. For the parameters of the measurement shown in
fig. 2. The solid lines give the results for 105 numerical realizations while the shaded areas give the uncertainty considering the experimental
sample size of 378. The orange shaded areas bounded by the dashed lines represent the predictions for Gaussian fluctuations. The green-orange
and blue-orange dashed boundary lines mark the results for the case with and without initial density fluctuations respectively. As one can see,
with initial density fluctuations, the final state appears Gaussian (assuming the experimental sample size) while the theory prediction without
initial density fluctuations stays distinctively non-Gaussian.

Relative size of the initial phase and density fluctuations Let us now explicitly show that in our theoretical model the initial
phase fluctuations are suppressed compared to the initial density fluctuations. For the comparison of the two quantities, we have
to consider the factor Cn from eq. (5), i.e., we want to compare 〈ϕ̃2

n(t = 0)〉 with 〈C2
n δρ̃

2
n(t = 0)〉. Remember that ϕ̃n and δρ̃n

represent the eigenmode expansions of the phase and density fluctuations respectively. Assuming a homogeneous system with
Neumann boundary conditions, the eigenmodes are given by cosine functions. We get

Cn =
2g1D
h̄ckn

, (S2)

where kn is the wavenumber taking the values

kn = n
π

L
(S3)

with n being a positive integer. The speed of sound is denoted by c and can be calculated as

c =

√
g1Dn1D
m

. (S4)

In fig. S5 the results for the lowest non-zero mode (k1 = π/L) are shown as a function of the phase-locking. We see that for the
parameter range used in the experiment, the phase fluctuations are suppressed compared to the density fluctuations. For higher
kn this suppressing will get less. However, the integral quantities in eq. (4) will be dominated by the lowest lying modes.

More generally, connecting to the discussion in the main text, we can argue that any viable potential V (φ(z)) in Hamiltonians
of the form

H =

∫
dz

[
a π(z)2 + b

(
∂φ(z)

∂z

)2

+ V (φ(z))

]
(S5)

will suppress the fluctuations in φ, at least in the classical fields approximation. This can be seen from the formalism introduced
in ref. [32]. There the φ fluctuations are calculated in the classical fields approximation by solving the stochastic differential Itō
equation

dφ = A(φ) dz +
√

2D dX. (S6)

Here dφ describes the stochastic change in the field when moving dz in the spatial 1D direction. The change dφ is determined
by the deterministic drift term A(φ) dz and the stochastic diffusion term

√
2D dX , where dX is an infinitesimally small and

uncorrelated random term obeying Gaussian statistics with zero mean and the variance equal to dz. The stochastic realizations



12

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

FIG. S5. Magnitude of the initial phase and density fluctuations in the theoretical model. Cosine transformed initial phase (blue line) and
density (green line) fluctuations. The results for k1 = π/L are shown as a function of the phase locking strength. The system size L = 50 µm
is chosen to be consistent with fig. 3. The results for the phase fluctuations are obtained numerically (see Methods) while for the density
fluctuations 〈C2

n δρ̃
2
n(t = 0)〉 = 4/(λT k

2
n) is used. As for all other presented theory calculations λT = 11 µm. The range of phase-locking

used in the experiment is indicated by the red shaded area. The finite experimental spatial resolution is considered for 〈cos(ϕ)〉 but not for the
second moments.

for φ(z) are then obtained by sampling the initial values (say, at z = 0) of the field from its equilibrium distribution Weq(φ) and
subsequently integrating eq. (S6).

The drift coefficient is connected to the equilibrium distribution via

A(φ) = D
d lnWeq(φ)

dφ
. (S7)

It depends on the potential V (φ) since Weq(φ) depends on it. We now want to check whether starting from a certain value of
φ, the drift coefficient A(φ) leads to a force against or in support of the diffusion. Therefore, we simple have to calculate the
derivative of A(φ). If the derivative is negative, then we have a reversing force. To know whether the drift decreases fluctuation
in general, we simply calculate the average∫

dφWeq(φ)
dA(φ)

dφ
= D

∫
dφWeq

d2 lnWeq(φ)

dφ2
= D

[∫
dφ

d2Weq(φ)

dφ2
−
∫

dφ
1

Weq

(
dWeq(φ)

dφ

)2
]
. (S8)

The first integral on the right hand side is just a surface term and vanishes with proper assumptions for Weq. In order to be
normalizable the equilibrium distribution needs to fulfill limφ→±∞Weq = 0 which leads to a vanishing surface term for the
integral limits ±∞. However, not only normalizable, but also periodic Weq can occur like in the case of the sine-Gordon model.
In case of a periodic Weq the integration in eq. (S8) is performed over one period. The surface term therefore also vanishes
due to the periodicity condition on the integral boundaries. With the surface term vanishing and the integrand of the second
integral always being positive, the expression (S8) is always smaller than or equal to zero. The equality holds for a constant Weq

corresponding to the case of a zero or constant V (φ). We have therefore shown that any viable V (φ) leading to a sensible Weq

reduces the fluctuations in φ.
Validity of the classical fields approximation Since the Heisenberg and Hamiltonian equations of motion are identical for

conjugate fields, our discussion is reduced to the initial state. From the validity of the classical fields approximation for the
thermal initial state directly follows that the initial density fluctuations are Gaussian, which is an important prerequisite of our
proposed mechanism for the emergence of Gaussian phase correlations.

Using the classical fields approximation for a thermal state corresponds to making two approximations: Firstly, the quantum
(zero temperature) fluctuations are neglected. Secondly, the Bose-Einstein distribution for the occupation of the eigenmodes
is replaced by the Rayleigh-Jeans distribution. Both approximations are good when the thermal occupation of the eigenmodes
under consideration is sufficiently large. Expressed as an equation the criteria read

1

eβεn − 1
+

1

2
≈ 1

βεn
, (S9)

which is fulfilled for small values of βεn. Here β = (kBT )−1 and εn are the mode energies. Clearly the fulfillment of eq. (S9)
depends on the mode-energy under consideration. For the discussion we will therefore consider the highest mode that can still
be resolved in experimental measurements.
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For simplicity, we will use the quadratic approximation [45]

H =

∫
dz

[
g1D(z) δρ2(z) +

h̄2n1D(z)

4m

(
∂ϕ(z)

∂z

)2

+ h̄J n1D(z)ϕ2(z)

]
(S10)

of eq. (1) for our discussion. Equation (S10) is a good approximation for large phase-locking and, trivially, for zero tunneling.
Further assuming a homogeneous system, the eigenmodes are given by sine and/or cosine modes, depending on the boundary
conditions. The eigenenergy for the wavenumber k is given by

ε = h̄c

√
k2 +

1

l2J
. (S11)

Here lJ is the healing length of the relative phase, it can be calculated as

lJ =

√
h̄

4mJ
. (S12)

A sensible upper bound for k can be derived from the spatial resolution of the phase measurement, which in turn can be bounded
by the pixel size, ∆zpix = 2 µm, of the used absorption imaging system. We therefore use k = 2π/∆zpix together with typical
values for the temperature (T = 70 nK) and speed of sound (c = 1.8 mm/s). For the tunneling rate J , we use the highest
experimental value leading to the lowest lJ = 2 µm. With this values the left and right hand side of eq. (S9) differ by only
3%, justifying the use of the classical field approximation. Even though our argument was demonstrated using the quadratic
approximation, we expect it to remain valid for the sine-Gordon model since the higher modes, where quantum effects might be
relevant, are not affected strongly by the tunneling term.

The role of spatial mixing of correlations. As found in earlier works, spatial mixing can only lead to the emergence of
Gaussian correlations under two broadly applicable yet not generally valid conditions: The clustering of initial correlations [6,
7, 46] and dynamical delocalization [8, 9, 44, 46]. The requirement of dynamical delocalization means that under the time
evolution an initially localized disturbance will spread through the entire system and its amplitude will eventually decay. It is
easy to see that this condition is not satisfied by the dynamics of the homogeneous Luttinger liquid model [43, 44]. Due to the
phonon dispersion being linear, an initially localized wave packet does not spread but merely splits into a left- and a right-moving
component that travel without dispersion, retaining in this way to large extent a memory of the initial correlations. In the case
of the non-homogeneous Luttinger liquid model (e.g. harmonic trap) the dynamics is not non-dispersive anymore, but still not
delocalizing [47].

To understand the effect of spatial mixing, let us consider the time evolution of the phase field ϕ in coordinate space. For a
general quadratic Hamiltonian, the Heisenberg equations of motion are linear and their solution for arbitrary initial conditions
can be expressed as

ϕ(z, t) =

∫
dz′ (Gϕ(z − z′, t)ϕ(z′, 0) +Gδρ(z − z′, t) δρ(z′, 0) )

whereGϕ andGδρ are propagators of the quantum fields. The delocalization condition is satisfied roughly when the propagators
spread in space so that their magnitude decays with time everywhere. From the above formula and based on the multi-linearity
of correlation functions, we can easily express the dynamics of phase correlations G(N)

con (z, t) as spatial convolutions of the
initial correlations of the fields ϕ and δρ. Then, assuming the validity of the delocalization condition together with the condition
of initial clustering, it is possible to show that connected correlations of order higher than two decay with time. Given that
correlation functions provide a complete characterization of the system’s state, this proves that a thermodynamically large
system will be locally described at large times by a Gaussian state. Moreover, finite size effects are bounded by the presence of
a maximum bound in the speed of information propagation, which allows for a demonstration of this effect in a finite system.

In the case of the Luttinger liquid model dynamics, the Hamiltonian is given by eq. (1) with J = 0. In the homogeneous case,
the Heisenberg equation of motion for the phase field ϕ(x, t) is nothing but the 1D wave equation, whose solution in the infinite
system is given by d’Alembert’s formula

ϕ(z, t) =
1

2
(ϕ(z + ct, 0) + ϕ(z − ct, 0))− g1D

h̄c

∫ z+ct

z−ct
dz′δρ(z′, 0).

Clearly, due to the absence of dispersion, the propagator Gϕ is localized at the edges of the light-cone z′ = z ± ct and Gδρ
is a simple step function that is a constant, independently of t, in the interior of the light-cone. As a result, the dynamics of
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correlations G(N)
con (z, t) can be expressed as a relatively simple combination of initial phase correlations at the edges of the past

light cone and initial density correlation (Gaussian in our model) from within it. Initial clustering still means that connected
correlations show some decrease with time, due to the fact that correlations between distant points vanish. However, this
restricted mechanism of spatial mixing can only account for a limited decrease of the non-Gaussian correlations [47] as also
apparent in fig. S4.

A variety of perturbations of different origin can lead to deviations from the linearity of the spectrum. Such perturbations are
for example the non-linearity of the phononic dispersion in the full Bogoliubov approximation [48] seen at the healing length
scale, the presence of an inhomogeneous background density (e.g. harmonic trap) or phononic interactions. A careful analysis
of the effects of such perturbations on the dynamics will be published in ref. [47]. In particular, we find that in presence of a
harmonic trap, the dynamics still is not delocalizing. Also, the weak non-linearity in the phononic dispersion when considering
the full Bogoliubov approximation instead of Luttinger liquid has only minor effects. This can be understood from the fact that
the healing length is about ten times smaller than the spatial resolution. In the end, from observing the recurrences in the box-like
trap, we know that the spectrum in this case is approximately linear despite the perturbations.


