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die wörtlich oder inhaltlich aus anderen Schriften entnommen sind, habe ich als solche
kenntlich gemacht. Diese Dissertation wurde in gleicher oder ähnlicher Form noch in
keinem früheren Promotionsverfahren eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich mich
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Abstract

Research and development on IT security yields many different techniques and concepts
to thwart off attackers in computer systems and networks, all of which come with different
advantages and disadvantages. Choosing a capable solution that fits one’s needs is a
crucial, but also very challenging task. This is especially true for new emerging security
paradigms where empirical data from the real world are still missing.

One of these IT security paradigms is Moving Target Defense (MTD). Through re-
peatedly altering a system’s configuration and/or appearance, MTD intends to divert
attackers, inhibit reconnaissance and increase effort of attacks. Many publications have
emerged from research in this field, suggesting new techniques or providing practical
implementations. However, it is not ultimately clear how effective these Moving Target
Defense techniques actually are, and how they compare to each other or conventional
defense mechanisms. Previous research mainly focused on the evaluation of individual
techniques or on the comparison of at most two or three of them in very limited theo-
retical scenarios. What has been lacking so far is a flexible framework for assessing and
fairly comparing the effectiveness of different defense techniques in diverse, and most
importantly, realistic scenarios. This would assist researchers in benchmarking proposed
techniques, and practitioners in selecting appropriate defenses that fit their scenarios.

To solve this problem, defense techniques and the attacks they are supposed to protect
against need to be assessed under realistic conditions to be able to deliver meaningful
results in the first place. Furthermore, such evaluation must not be limited to defenses
arising from MTD or any other emerging paradigm for that matter, but be applicable
to traditional and established defenses alike, to allow for a fair comparison. To this end,
an attack simulation-based evaluation framework is proposed that — based on detailed
modeling — is able to compare different types of defenses under realistic conditions to
produce meaningful results on defense effects.

Case studies conducted with this framework, where different Moving Target Defenses
are evaluated in a realistically modeled corporate network, reveal interesting and novel
findings. Despite high-ranked publications saying otherwise, one of the most frequently
suggested MTD techniques, virtual machine (VM) migration, may in fact have a neg-
ative effect on security. However, observed defense effects vary depending on details of
the environment they are assessed in, implying that generalizing on the basis of inci-
dental evidence is not advisable. Consequently, for evaluation to be fair and findings to
be meaningful, detailed and realistic modeling is not sufficient but evaluation in diverse
settings is equally important. To account for this newly determined requirement, the
framework is extended with functionality allowing for the automated generation and
diversification of realistic benchmark networks. Using this feature, simulation can auto-
matically be scaled with ease, painting a more fine-grained picture of defense effects and
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their distribution. Analysis of simulation results obtained from 500 of such benchmark
networks not only confirms findings of the first case study but also reveals additional
effects of the employed defenses, thus further emphasizing the need to base evaluation
on a broad range of diverse networks.

Apart from defense evaluation, anonymous and dynamic routing is inspected more
closely as one form of Moving Target Defense. Despite being regarded as a promising
approach, respective techniques are yet underrepresented in MTD research. To this end,
suggested network-layer anonymity protocols for application in the internet are investi-
gated and shortcomings identified to subsequently propose an improved anonymous and
dynamic routing protocol that can generally be applied in the context of closed corporate
networks and the internet alike.
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1. Introduction

Information technology (IT) plays an important role in modern society, be it for private
purposes, the public sector, or businesses. Communication with friends, relatives, but
also colleagues, nowadays mostly takes place via internet-based platforms. Banking is
done online, and also transactions between banks are processed digitally in near real
time. Even our most critical infrastructure, such as water and electricity supply, is
highly dependent on IT and is becoming increasingly networked to align and automate
processes. Simply put, modern society is built upon the advantages and conveniences
we derive from the use of IT and its networking — but there are also risks involved.
For as long as IT has existed, adversaries with diverse motives have tried to compromise
it. Depending on the goal of such attacks, the consequences may range from disruptive
and unpleasant to dangerous and life-threatening. WannaCry and NotPetya have shown
that entire industries can be affected, even if these attacks were not necessarily targeted
against specific companies. The infection of nuclear power plants and uranium enrich-
ment plants with Stuxnet has made clear that even air-gapped systems are threatened
when dealing with a sufficiently advanced and motivated attacker. Similarly, the case
reveals that attacks of this kind can assume life-threatening dimensions.

Hence, there have always been efforts to protect IT systems. Various solutions have
been proposed and implemented to counteract adversaries in different stages of an attack
that, according to the frequently cited [37, 45, 46, 112, 118, 134, 140] Cyber Kill Chain®

from Lockheed Martin [82], can be divided into seven phases ranging from reconnais-
sance, via weaponization, delivery, exploitation, installation, and command & control,
to actions on objectives. While this subsumption is not authoritative, it illustrates
that successful attacks are not singular events but the results of numerous intermedi-
ate steps, or phases for that matter. Consequently, effective defense is not only about
keeping adversaries from completing their attacks, but disrupting them during any of
these steps, starting with impeding reconnaissance needed to prepare attacks in the first
place. Among these existing solutions are firewalls to prevent unauthorized access to
networks or network segments, intrusion detection systems to detect such unauthorized
access, and anti-virus software to protect endpoints, representing commonly known and
well-established countermeasures. However, in the face of ever-growing threats to net-
works and systems, new concepts and paradigms emerge that intend to improve security
and go beyond established approaches. One of these paradigms is Moving Target De-
fense (MTD), which intends to deter the attacker by repeatedly changing parameters
of systems and networks to invalidate knowledge acquired during reconnaissance, thus
impeding attacks. The term Moving Target Defense was coined around the year 2009
and reached considerable popularity since then, as is indicated by the continuously in-
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creasing number of related publications per year1. Yet, the idea of active defense and
deception is not entirely new and also not exclusive to MTD. These concepts have been
used before, with some of the work dating back to a time long before the advent of
Moving Target Defense. Some recent publications that qualify as MTD refrain from
using this label but classify themselves as Cyber Deception. Mechanisms suggested in
this context do not aim at invalidating gained knowledge but increase the difficulty of
determining useful information by inserting dummy traffic, for example.

Irrespective of how emerging paradigms and proposed defenses are labeled, research
and development to improve the security of computer systems and networks have been
recognized as important topics. However, to employ such newly proposed techniques in
a useful way, their impact on security and how they compare to existing defense schemes
must be understood.

1.1. Motivation and Problem Statement

Research on new concepts and techniques to secure networks and systems, as well as
their subsequent development are indispensable to keep up with sophisticated attackers.
Yet, while suggested approaches regularly come with promising concepts and tailor-made
scenarios to support their utility, the question on how to quantify and compare their
impact on security often remains unanswered. This, however, is relevant to practitioners
and researchers alike. The former need to make informed decisions about which defenses
to employ in a given scenario to maximize security at reasonable costs. The latter, in
turn, who develop such techniques, need to confirm that intended and achieved effects
match, or compare the performance of their approach to that of existing solutions.

While many systems and defense techniques can be analyzed using static methods
such as well-established attack graphs and trees, this proves to be difficult for MTD
techniques for the dynamically occurring state changes caused by the defender actions.
In the course of performing a single defense action, the corresponding attack graph may
change drastically and would need to be renewed. Furthermore, the time instances at
which these defenses are triggered may neither be random nor predefined, but can also
be dependent on the output of an intrusion detection system (IDS). Generating a graph
that considers all these possibilities, even for small systems, would quickly result in
excessive numbers of possible states and transitions between them [123], thus becoming
unmanageable and computationally expensive, if feasible at all. What is more, an attack
(and defense) graph like this would also not serve one of its primary purposes, that is
providing a comprehensive overview.

To this end, academic research not only produced a considerable amount of publi-
cations that suggest new defensive techniques, but also such that address the problem
of defense evaluation, with approaches ranging from mathematical formalization to real
testbeds. Existing work in this field strongly focuses on answering the question to what
extent a specific defense effect improves security. Maleki et al. [89], for example, in-

1Specific numbers on the development of annual publications related to Moving Target Defense can be
retrieved through Google Scholar, for example.
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vestigate how an attacker’s success probability changes if she cannot rely on previous
reconnaissance but has to probe IP addresses over and over again in order to compro-
mise targets, as required addresses are repeatedly changed by a respective defensive
technique. Based on Markov modeling, the authors show that at sufficiently high fre-
quencies, and especially in the case of multi-target attacks that require knowledge of
multiple targets’ addresses at the same time, attacker success is limited since maintain-
ing correct knowledge on numerous addresses is very unlikely in the presence of repeated
IP address randomization. However, the requirement that addresses of all involved tar-
gets must be known at the same time to perform a successful multi-target attack stems
from the assumed effect that the shuffling of a target’s IP address does in fact revoke
the attacker’s winning state on said target, which may be questioned. Another interest-
ing question not being asked is that of other potential effects, including those that are
detrimental to the defender or legitimate user of the system, such as service disruption
or even security degradation. While the existence of such negative effects remains to be
shown, for some MTD techniques, arguments supporting this idea are just as convincing
as those used to convey positive effects. As Chapter 3 will further elaborate, defense
effects are frequently assumed rather than tested in existing research on Moving Target
Defense evaluation, with potentially negative effects receiving only little attention. This
is partly motivated by the claim to keep models simple, which is plausible for analyt-
ical approaches to evaluation that cannot handle complex state representations. Yet,
simulation-based approaches regularly strive for the same goal as to improve efficiency.
However, this poses a problem, because for evaluation to deliver meaningful insights, it
must be based on a defense’s actual effects, including those that have negative implica-
tions. Otherwise there is a risk that obtained results simply cannot provide a realistic
impression of a defense’s real-world performance. Yet, this requires higher levels of de-
tail and complexity. Testbeds, in turn, that provide the ultimate level of detail come
with relatively high costs, and require considerable effort in maintenance and setup for
relying on operational implementations of techniques.

What is more, to allow for a fair comparison of defenses, uniform metrics are needed
that are applicable across different techniques and, most importantly, do not prefer one
over the other. In that sense, deriving an attacker’s success chance from guessing entropy
of valid IP addresses, as in the previous example, will only insufficiently account for the
security impact of defenses whose effects comprise other factors such as connectivity to a
migrated VM within the network, for example, that are not subject to successful guessing
or probing. Consequently, a fair and realistic approach to comparative evaluation must
employ generic metrics that are able to capture various effects. Given that a large
proportion of existing approaches to evaluating MTD regularly focuses on investigating
individual techniques rather than comparing utility of different ones, this requirement
has been addresses only rarely.

Considering the above, the questions arise whether there is an efficient way to reveal
effects rather than assume them, how to quantify their impact on security, and how to
fairly compare findings. To answer these questions, a coherent evaluation framework
is presented that addresses the challenges of determining the actual effects of defenses,
account for potential security improvement as well as degradation, and provide met-
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rics capable of fairly comparing defense performance across numerous techniques and
hundreds of independent investigations. Based on detailed modeling and simulation,
this framework can incorporate well-known and established static defenses, as well as
dynamic defenses arising from paradigms such as MTD and Cyber Deception. At the
same time, it allows to represent differently skilled adversaries equipped with capabilities
to perform both real and hypothetical attacks to simulate realistic threats and what-if
scenarios alike, and track their progress in the presence of different defenses. Using a
sophisticated modeling language, attacks, defenses, and legitimate actions, as well as
the scenarios they operate in can easily be modeled with a high level of detail, so that
ultimate effects of defenses need not be defined, but can be observed as a result of the
involved actions’ underlying mechanisms.

1.2. Contribution

The presented work makes several contributions to the state of evaluating Moving Target
Defenses and potential MTD techniques themselves which are summarized as follows:

• Modeling and simulation framework for realistic evaluation: A modeling
and simulation framework is presented that surpasses existing approaches to de-
fense evaluation with regard to both accuracy and significance. By employing a
flexible modeling language, systems and actors can be modeled at an arbitrarily
high level of detail, allowing for a more realistic simulation and meaningful results.
Furthermore, the framework can incorporate any number of attackers and defend-
ers, so that both static and active defenses can be evaluated, making the framework
more versatile. Defense-independent metrics ensure that attacker progress is mea-
sured irrespective of employed defense techniques, thus allowing for quantitative
comparison across simulations. At the same time, detailed transaction logs allow
for qualitative analysis, providing a better understanding of cause and effect of
different actions. Parts of this framework have been published in a paper [19] pre-
sented at the Nordic Conference on Secure IT Systems 2018 that was recognized
with the Best Paper Award.

• Revealing defense-induced security degradation: With help of the afore-
mentioned framework and a high-detail model, this work is the first to reveal that
VM migration, one of the most frequently proposed MTD techniques, may in fact
have a negative impact on security. Observed security degradation is related to
environmental factors that have been ignored by other approaches so far. This is
not only an interesting new finding, but also contradicts the numerous high-ranked
publications [3, 46, 61, 64] that based their conclusions on strong assumptions, low-
detail modeling, and, most importantly, single examples that have been specifically
constructed and do not consider the environment a defense operates in. This ex-
periment and its findings have also been part of the aforementioned publication [19]
presented at the Nordic Conference on Secure IT Systems 2018.
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• Benchmark network fuzzing for automated scenario diversification: An-
other major shortcoming of existing approaches to evaluation is the tendency to
generalize on the basis of single experiments providing incidental evidence of a
defense’s effect. To not fall victim to the same mistake, the framework is ex-
tended with an automated diversification algorithm that is referred to as bench-
mark fuzzing. Based on this, arbitrary numbers of diverse high-detail benchmark
networks can be generated automatically, instead of modeled manually. Using
this mechanism, the proposed simulation framework may not only employ a con-
siderably higher level of detail than other approaches, but also significantly scale
the sample size of investigated scenarios which, in existing work, is typically one.
This benchmark fuzzing is done to generate 500 networks, providing insights into
a wide spectrum of defense effects, their frequency of occurrence, and environ-
mental conditions they are related to. Being the first to show that the effects of
specific defenses are not solely positive or negative but span a scale with results
depending on individual factors, this work supports practitioners and researchers
alike in selecting and developing adequate defenses on the basis of data. Further-
more, metrics are introduced that aggregate such amounts of data resulting from
simulation at a larger scale, thus allowing for a comprehensive overview of defense
performance. A related article [21] has been published in Springer International
Journal of Information Security (2021).

• Qualitative assessment of Moving Target Defenses: Apart from the de-
fenses that are investigated experimentally, this work presents a critical assess-
ment of numerous Moving Target Defenses and the analogies used to promote
them. Using the MTD-supporting work’s arguments and narratives against itself,
negative effects as well as ineffectiveness of supposedly useful MTD techniques are
well-reasoned on a solely logical level. Considering that such effects have not been
identified so far, the presented work continues to point out why individual evalua-
tion approaches fail to reveal potential security degradation or sheer irrelevance of
movement. A related publication [20] has been presented at the Mal-IoT Work-
shop, co-located with the ACM International Conference on Computing Frontiers
2020.

• Anonymous and dynamic routing-enabled Moving Target Defense: Con-
sidering anonymous and dynamic routing which is slowly gaining traction in the
MTD community, this work presents novel attacks on PHI, an anonymity protocol
for the network layer representing the current state of research in this domain.
Furthermore, an improved protocol is presented. This protocol, dPHI, is designed
to operate in networks at the scale of the internet, yet remains generally applicable
to smaller corporate networks, thus potentially useful for the purpose of MTD. It
overcomes limitations of the protocols it is based on, yielding higher anonymity
with comparable, partly even better, performance. Introduced attacks and the
improved dPHI protocol have been published [18] in the Proceedings on Privacy
Enhancing Technologies Symposium 2020, Issue 3.
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1.3. Thesis Structure

The following Chapter 2 provides background information on topics that are relevant to
this work. This includes an introduction to the concept of Moving Target Defense, as well
as an overview of techniques that have been proposed in this context. Furthermore, fun-
damental concepts of logic programming in Prolog are outlined for being integral to the
proposed evaluation framework. Afterwards, Chapter 3 presents a critical view on Mov-
ing Target Defense, the analogies used to promote it, and existing approaches to MTD
evaluation. In this course, argumentative disparities related to proposed techniques are
revealed, none of which are accounted for in existing approaches to evaluation. Chapter 4
focuses on the proposed framework, starting with collecting requirements that ought to
be fulfilled in order to allow for realistic evaluation. Subsequently, relevant terms in the
context of this framework will be presented, followed by an overview of the framework
itself. Afterwards, its components and the way they interact are explained in detail,
divided into its two major building blocks, the modeling language and the simulation
engine.

Having understood how the framework operates, an experiment is presented in Chap-
ter 5, illustrating that the framework is indeed capable of generating novel insights.
Based on two variations of the same network and employing differently skilled attackers,
the performance of popular MTD techniques is investigated, revealing that these may
also have security degrading effects. While these findings corroborate the framework’s
capability to yield meaningful results, they also emphasize the need for testing in numer-
ous diverse scenarios to fully understand a defense technique’s impact. Consequently,
Chapter 6 introduces extensions to the framework that concern capabilities of the mod-
eling language and provide usable means to automate the generation of large numbers
of unique, yet realistic scenarios. Using this feature in combination with an extended
scenario definition, large-scale simulation is conducted. Generated results not only de-
liver incidental evidence on defense effects but a broad spectrum of possible outcomes
and how these are distributed.

Chapter 7 makes a shift away from evaluation and instead focuses on anonymous and
dynamic routing as a potential form of Moving Target Defense. First, existing protocols
are presented, one of which is investigated in more detail. Critical errors that enable
de-anonymizing attacks are revealed and elaborated to subsequently propose solutions.
Based on this, an improved protocol is presented that is tested against the previously
identified attacks, as well as additional ones that result from an extended threat scenario.
The chapter ends with a quantitative analysis of the proposed protocol with regard to
anonymity and performance.

Finally, a discussion follows in Chapter 8. First, findings will be summarized with
regard to insights obtained from experiments, as well as the general research question.
Based on this, related work is discussed that is closer to the scope of the framework and
its findings to allow for comparison. This extends the broader existing work discussed
in the course of Chapter 3, where limitations throughout the spectrum of evaluation
schemes have been addressed. Afterwards, the work is concluded before presenting an
outlook on potential future work.
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2. Background

This chapter provides an introduction to the Moving Target Defense paradigm and
presents related MTD techniques that have emerged from research and development
in this field. Furthermore, fundamentals of the Prolog programming language will be
introduced. These are relevant to the operations of the simulator that will be covered
later.

2.1. The Moving Target Defense Paradigm

Many of the active defenses proposed throughout the last years, qualify as Moving Target
Defenses or have specifically been presented as such. Consequently, MTD is of certain
relevance in the scope of this work that intends to evaluate such active defenses. The
following sections provide an explanation and definition of the concept itself and intro-
duce specific defenses that have been suggested, grouped along the general domains they
operate in.

2.1.1. Explanation and Definition

Moving Target Defense is an IT security paradigm that advocates proactive defense.
Through mutating a system’s appearance, knowledge that an attacker may have pre-
viously acquired is repeatedly invalidated. In consequence, attacks that rely on such
outdated knowledge may fail, forcing the attacker to redo reconnaissance over and over
again. This, in turn, is not only time-consuming and thus costly, but also risky as it
increases chances of being detected for leaving traces and potentially triggering alerts.
Such proactive defense behavior is opposed to classical concepts of IT security that are
mostly static in nature. These comprise network segmentation, firewalling, intrusion de-
tection or end-point security, for example, all of which are intended to impede or defend
attacks, yet do not repeatedly change the system’s appearance, thus allowing an attacker
to take her time to collect information and prepare the next step.

In the context of IT Security, the term Moving Target Defense is being used at least
since the year 2009 and has been widely adopted by academia and industry by now.
So far, there is no official definition of MTD. However, the one provided by the US
Department of Homeland Security in 2011 appears to be generally accepted (originally
from [66]):

Moving Target Defense (MTD) is the concept of controlling change across
multiple system dimensions in order to increase uncertainty and apparent
complexity for attackers, reduce their window of opportunity and increase the
costs of their probing and attack efforts.
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The notion of this definition can be found throughout literature, where similar phrasings
are used whenever research on Moving Target Defense is being motivated, implying that
there is a common understanding. A term frequently used in this context is attack
surface, representing the part of a system that is subject to reconnaissance and potential
attacks by an adversary. The effectiveness of MTD techniques is often argued with
a shifting and potential reduction of attack surface. Manadhata and Wing [90] even
propose using it as a metric to determine the (likely) security of a software product by
measuring the ways an attacker can interact with the software that had formerly lead
to exploits. Simply put, the idea is to limit the number of attack vectors to reduce
the adversary’s opportunities, thus lowering the chances of successful attacks. Yet,
MTD does not necessarily aim at decreasing the attack surface, but obscure and hide it
from the adversary by constantly changing it. To describe this goal, Zhuanget al. [149]
introduced the term exploration surface. Exploration surface is the space in which the
attacker believes the attack surface to be. Consequently, the goal of the attacker is to find
(parts) of the attack surface within the exploration surface to launch the attack. In that
sense, MTD intends to maximize exploration surface while keeping the attacker from
decreasing it through reconnaissance. Further work that is dedicated to establishing
a theoretical foundation of MTD has been presented by Zhuang et al. [148, 146] and
Green et al. [59] among others.

2.1.2. Defense Techniques

The presented definition is very general in that it merely requires controlled change in-
tended to impede attackers for a technique to be classified as Moving Target Defense.
How and where this change happens is intentionally left open, resulting in a plethora of
techniques that operate on different levels of IT systems. And despite the lack of any
formal scheme to categorize MTD techniques, differentiation along the domains they
operate in, is common practice, thus bringing some order to the otherwise confusing
quantity of techniques. In their technical report on Moving Target Defense from 2013,
as well as a compact survey from 2014, Okhravi et al. [100, 101] not only presented the
state of research on Moving Target Defense at that time, but also compiled a list of
categories, representing these domains. They differentiate between techniques that add
dynamics (i.e., movement or repeated change) to networks, platforms, runtime environ-
ments, software, and data. The same categories are still in use in the aforementioned
technical report’s second edition presented by Ward et al. [131] that was published in
2018. A short description of the scope of these categories is given in the following:

• Network-based MTD techniques consider the shape and appearance of networks,
intended to increase the difficulty of network-borne attacks through impeding re-
connaissance. Respective adaptation may require configuration of the hosts in a
network, but may also be deployed within the network infrastructure and operate
transparently to the connected nodes. Utilizing features from software defined net-
working, some of the MTD techniques proposed in this category exhibit relative
maturity and are frequently supported by prototypical implementations.
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• Platform-based defenses consider specifics of the computing platform and other
low-level resources that services run and rely on, as to impede attacks specifi-
cally going for related vulnerabilities. This usually comprises the layers up until
the operating system and includes characteristics of employed hardware, but also
hypervisors as in the case of VMs, for example.

• Runtime environment-based defenses comprise techniques that affect the be-
havior or appearance of the direct environment that services and applications op-
erate in. In most cases, this environment is provided by respective operating sys-
tems, so that corresponding defenses affect the way resources are made available
and accessed or interaction is handled.

• Application-based techniques directly affect a given application’s shape and/or
how it processes data irrespective of the system that the application runs on.
Attacks that are supposed to be fended off by defenses in this domain are those
relying on knowledge of the application’s inner structure, for example.

• Data-based defenses address the randomization or obfuscation of data that are
processed by applications. This serves to mitigate attacks that rely on malformed
messages or inputs which aim at provoking unintended behavior or even exploiting
vulnerabilities.

These categories are neither unified nor universally accepted, yet, irrespective of devia-
tions in wording, can repeatedly be found throughout MTD literature.

To give an impression of the topic’s breadth, various MTD techniques, grouped along
the aforementioned categories are presented in the following. In case of ambiguity with
regard to appropriate category selection or whenever a proposed technique simply affects
multiple domains, remarks are made accordingly. Considering the amount of published
work in this field, the list of techniques presented here can not be exhaustive. However,
the selection was composed as to include those techniques that may be considered partic-
ularly relevant for their frequent occurrence in related research. For further information
on MTD techniques, the attacks they are supposed to defend against, the interested
reader is referred to the recent survey from Cho et al. [39] as well as the aforementioned
work from Ward et al. [131].

Network-based Defenses

A frequently suggested network-based defense is the randomization of addresses and
ports of communicating entities in networks. The intention behind this is to invalidate
learned addresses in short intervals so that subsequent attacks that rely on such infor-
mation ultimately fail. In addition, the shuffling of addresses obfuscates the real size of
a network by confronting the attacker with numerous addresses when eavesdropping on
traffic or actively probing. The general mechanism is frequently referred to as Network
Address Space Randomization (NASR) and has been proposed in many different forms,
some of which even go beyond the IP protocol. The earliest proposal of this kind dates
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back to 2001, that is before the advent of MTD, suggesting the schedule-based reassign-
ment of IPv4 addresses and was presented by Kewley et al. [80]. Their approach was
not only a theoretical proposal but comprised a prototypical implementation. To further
increase the attacker’s uncertainty, approaches such as MT6D from Dunlop et al. [53]
resort to employing IPv6, sourcing potential addresses from an even larger pool thus
making guessing but also scanning significantly harder. More recent work took up on
this topic and suggested similar schemes, yet benefiting from technological progress. In
this regard, Chang et al. [34], and Narantuya et al. [97] implemented their IP random-
ization schemes (short: IP-Shuffling) with help of SDN. The approach and prototypical
implementation of MacFarland et al. [88] also relies on SDN, yet goes so far as to also
shuffle MAC addresses. Interestingly, they classify their approach as a host-based defense
since adaptation does not happen “within” the network, but on each and every host.
Generally speaking, proposals and implementations of NASR are comparatively mature
as the work from Li et al. [86] and Yackoski et al. [138, 139] illustrates, which turned
into a commercial product [47]. In recent years, this concept has also been suggested
to improve IoT security. The MT6D-inspired approach from Zeitz et al. [141], and the
one from Nizzi et al. [99] specifically address NASR in the context of IoT, considering
limitations such as constrained power consumption, storage, as well as computational
resources, which are common in the IoT context. Yet, as mentioned before, the scope of
randomizing addresses of communicating entities has been extended since, going beyond
application in IP networks. The proposal from Woo et al. [134] transfers the concept to
CAN bus IDs in order to protect against spoofing. However, their approach to switching
addresses after each message is not random but based on splitting the 27-bit ID into a
5-bit fixed ID for all 15 devices in the network and then use the remaining 22 bits to
create an unpredictable ID so that attackers cannot simply spoof messages.

Other proposals advocate the migration of virtual machines (VMs) across different
hypervisors in order to move critical services out of the attacker’s firing line. This
migration can either be done in a state-preserving or state-resetting fashion. The state-
preserving type is what is referred to as live migration in the context of this work and
suggests that VMs are moved during runtime as to keep respective services operational
and preserve information of currently processed tasks. In contrast, the state-resetting
type is referred to as cold migration and advocates VMs to be started from scratch, once
deployed at their new location. Depending on whether this is done through effectively
copying virtual HDDs to the target as advocated by Wang et al. [129], or by booting up
duplicate VMs that are maintained at different locations, this type of migration may, in
the latter case, fend off adversaries that reached persistence at the former location. The
Mayflies framework from Ahmed and Bhargava [5, 6], as well as the scheme proposed
by Zhuang et al. [150] pursue such an approach. However, the framework from Ahmed
and Bhargava also considers other adaptations that will be covered in the context of
platform-based defenses. Debroy et al. [50] suggest migration specifically for the pur-
pose of mitigating distributed denial of service (DDoS) attacks. Their intention is to
proactively, and in the worst case reactively, migrate applications to other presumably
secure locations, which is why they refer to their approach as application migration.
However, what they actually do is migrating VM snapshots, thus, from a technical per-
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spective, implementing a form of VM live migration even though this serves to relocate
the contained target application. Furthermore, the approach also stipulates to inject
dummy traffic, once a VM under attack has been migrated to deceive attackers into
thinking that their attack is still in progress. The authors explain how this mechanism
is supposed to work from a rather high-level perspective, but do not provide techni-
cal details on how this scheme may be implemented. Interestingly, publications that
are concerned with VM migration more often discuss how to efficiently and effectively
employ it in defense strategies rather than suggest practical implementations.

Approaches that also involve migration, yet not for the sake of defending migrated
nodes, have been proposed by Venkatesan et al. [127] and Almohri et al. [11]. The
former propose to proactively relocate network probes that monitor passing traffic in
order to increase chances of detecting intruders. The suggested placement and rotation
scheme takes the respective network’s hierarchy into consideration as to determine loca-
tions where attackers will most likely pass during lateral movement. The latter suggest
repeated relocation of honeypots and decoy VMs to deceive attackers during reconnais-
sance, increase their risk of being detected, and detract them from targeting critical
machines and services.

Another form of network-based defense or deception emerges from dynamic and/or
anonymous routing. The approach from Hong et al. [65] suggests an SDN-enabled scheme
that implements dynamic routing through continuously changing the network topology,
thus affecting which paths are chosen for routing communication flows. Depending on
the type of attacker and her location within the network, this may impede reconnaissance
and also avert attacks that rely on access to communication flows. Another SDN-based
approach has been suggested by Skowyra et al. [115] and intends to not only add dy-
namics to routing but also anonymize communication by exchanging identifiers in packet
headers on the different layers of the network stack. To accommodate this, proxies are
located in front of communicating entities to transparently apply changes to outgoing
and incoming traffic. These proxies, in turn, cooperate with a trusted SDN controller
that installs routes between hosts based on exchanged identifiers. In 2003, long before
the rise of SDN, Touch et al. [121] presented DynaBone (i.e. dynamic backbone) that
advocates the instantiation of several virtual overlay networks across which traffic should
be multiplexed. While primarily intended to layer different DDoS attack mitigations to
increase difficulty for attackers, these virtual networks also allow to implement dynamic
routing which is handled by a dedicated proactive/reactive multiplexer (short: PRM).
Revere [76] is a similar approach that also relies on overlay networks for establishing
dynamic routes, yet for the sake of delivering security updates. Zhu et al. [145] assume
a wireless context where communication is subject to jamming attacks and suggest that
for routing to a given destination, source and intermediate nodes always pick two next
hops, one for real and one for false communication flows. These false flows are inserted
to confuse attackers, yet cannot be identified as such for using encryption. Not know-
ing which path the “real” communication is going, an adversary has to invest more
resources to disrupt communication. While the scope of this approach is on wireless
networks and jamming attacks, a similar scheme may be employed in wired networks
that rely on source routing to defend against attackers who may reside on individual
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paths. Compared to previously introduced approaches, network-based MTD techniques
that are based on anonymous or dynamic routing are relatively scarce, despite their
ability to impede reconnaissance or averting attacks. However, outside the Moving Tar-
get Defense paradigm, anonymous routing is a vivid and established research branch
from which numerous suggested protocols have emerged. These vary with regard to
performance, realized anonymity but also the scope in which they can be applied. To
account for this topic’s relevance, not only in the context of MTD but communication
in general, Chapter 7 presents an excursus into this field. There, different approaches to
anonymous routing are presented, one of which is discussed in detail for being applica-
ble in both public networks such as the internet, as well as corporate networks without
relying on one central trusted instance as was the case with the SDN-based approaches.
Furthermore, the discussed protocol is analyzed with regard to information leakage that
jeopardizes claimed anonymity to subsequently propose an improved protocol resolving
identified issues.

Platform-based Defenses

From a technical perspective, aforementioned proposals to implement VM migration
can also be considered as platform-based defenses since re-location to another hyper-
visor may come along with changes in hardware that affect the underlying computing
platform. Considering that attacks such as Meltdown and Spectre are (partly) specific
to the utilized CPU architecture and may be exploited in virtualized environments, it
becomes apparent that VM migration may have practical implications in this regard.
As a result, a defender may choose to migrate VMs across hypervisors with heteroge-
neous hardware configurations to avert such hardware-specific attacks. Another defense
that addresses the computing platform has been proposed by Dai and Adegbija [48]
and intends to deflect side-channel attacks on caches. To accommodate this, a so-called
“tuner” repeatedly changes the configuration of runtime configurable cache at intervals
that are shorter than the time needed by an attacker to reverse-engineer the cache’s
index mapping and probing for cache hits and misses.

However, according to the previously presented classification, platform-based defenses
are not only concerned with mitigating attacks that are related to the underlying hard-
ware but also operating systems. Aforementioned work from Ahmed and Bhargava [5,
6, 7] that suggested a form of VM migration also considers the adaptation of these with
regard to utilized operating systems and related parameters. As a result, VMs that are
re-instantiated elsewhere will provide the same service but may have changed from a
Windows to a Linux platform, for example, forcing the adversary to perform reconnais-
sance all over again to prepare her attack. Considering that the scheme from Ahmed
and Bhargava relies on spawning VMs from ready-made templates, quickly “exchang-
ing” an OS is practicable. Thompson et al. [120] propose a similar scheme to overcome
OS-inherent weaknesses. Their approach also relies on ready-made VMs for quick inter-
changeability of operating systems, yet does not advocate the relocation of VMs. With
rotation intervals as short as 60 seconds, reconnaissance was hardly feasible anymore,
according to the authors’ findings.
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Wahab et al. [3] specifically propose to migrate services to protect these against at-
tackers. With help of their risk assessment algorithm, they identify risky VMs whose
services should be migrated, as well as safe VMs that may serve as a migration target.
However, the authors do not provide a practical implementation on how services are
supposed to be migrated independently from the VMs they are located in. Instead, they
rely on such features to exist in a cloud environment and conduct their experiments with
help of CloudSim [32].

Runtime Environment-based Defenses

One of the most commonly known defensive mechanisms that concern the runtime en-
vironment is Address Space Layout Randomization [119] (short: ASLR) that was first
released in the year 2000. Since then it has been widely accepted, further improved, and
is now integral to most modern operating systems. What ASLR does is, simply put,
randomizing the location of data in memory and providing virtual memory addresses to
applications, thus obfuscating the real location of information or executable code. The
intention of this obfuscation is to increase difficulty of exploiting buffer overflows and
deflect attacks that rely on knowledge of the location of data in RAM such as return-to-
libc attacks. Its wide acceptance and success1, as well as the fact that it fits the general
notion of Moving Target Defense lead to ASLR being frequently used to motivate the
idea and utility of MTD.

Yet other defenses operating on this level are Instruction Set Randomization (ISR) [77,
104], and System Call Number Randomization (SCNR) [72] that intend to keep attack-
ers from executing successfully injected code by inserting an additional abstraction layer
for communication with the underlying system. The basic idea of ISR is to make the
runtime environment incompatible with injected code so that instructions are simply
not understood. To accomplish this, the approach from Kc et al. , for example, cre-
ates unique execution environments for each and every process, that rely on modified
instructions to operate properly. Assuming that the attacker does not know how the
execution environment translates randomized instruction sets to those of the underlying
system, it is unlikely for attackers to successfully inject instructions that cause intended
behavior. Yet, while such measures seem capable of impeding attacks by not causing
the intended effect, the injection of illegal instructions may still crash the respective
process. This may be acceptable in many cases. However, in the context of security
critical systems, a Denial of Service (DoS) may be just as fatal as successful compromi-
sation. Potteiger et al. [105, 106] consider the case of cyber-physical systems (CPS) in
contexts where reliability and availability are at least as important as defending against
attacks. So, as to account for this, they propose a scheme that does not only employ ISR
but also detects successful code injection to reconfigure the respective controller accord-
ingly to avert any sort of unintended behavior. System Call Number Randomization,
on the other hand, only concerns the mapping of numbers to specific system calls that

1Despite recurring issues related to faulty implementations, as well as successful attacks like the one
from Gras et al. [57] that is based on side-channeling the memory management unit (MMU), ASLR
is considered to be an effective defense.
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is usually static. Through randomizing these upon process instantiation and inserting
an abstraction layer that takes care of de-randomizing call numbers during operations,
subsequently injected code relying on such system calls will not match the randomization
scheme and therefore not cause intended effects.

However, while ASLR operates transparently towards applications, this is not the
case with SCNR and ISR. These mechanisms cannot be exclusively implemented in
the underlying system (e.g. the kernel) that provides the runtime environment, but
also require modifications to the application in order keep legitimate code operable,
while impeding execution of injected code. The approach presented by Jiang et al. [72]
solves this through intercepting process invocation to inspect code and replace respective
system calls. Nevertheless, this requires further modifications to the kernel and imposes
additional load.

Application-based Defenses

Making applications dynamic to implement some form of Moving Target Defense can be
achieved in different ways. One branch of research in this field is concerned with intro-
ducing variety to application binaries and is frequently referred to as software diversity.
In their work from 2011, Jackson et al. [71] propose compiler-based randomization. Given
that functionality programmed in a high-level language can, on a low level, be realized
in different ways, the authors suggest to have the compiler randomize the produced
machine code. As a result, every binary will be different so that specifically crafted
exploits relying on characteristics of a certain binary do not work on a large scale. In
subsequent work, Jackson et al. [70] proposed software diversification solely based on
the random insertion of NOPs. Wu et al. [135] specifically suggest software diversifica-
tion based on existing binaries. To accomplish this, they propose to first derive LLVM2

intermediate representations (IR) from said binaries. Afterwards, different diversifying
operations are performed on these representations before, finally, building new binaries
that implement the same functionality, yet exhibit a different internal structure. In turn,
Taguinod et al. [117] take up on software diversification at another level. Instead of in-
troducing randomness with help of the compiler or subsequent modification of binaries,
they suggest the translation of source code to other programming languages to yield bi-
naries that are inherently different. Obviously, the challenge of this approach lies in the
sophistication of said translator to correctly process and translate instructions, especially
those that may be unique to one particular language and do not have a counter part in
the target language. A general overview of approaches to software diversity and attacks
that are of particular relevance in this regard have been presented by Larsen et al. [83].

Other approaches to application-based MTD simply suggest to rely on different ap-
plications that serve the same purpose, yet do not exhibit the same weaknesses so that
attackers cannot easily scale their attacks. Taguinod et al. [117] and Zhang et al. [142]
propose to do so for databases and their corresponding servers. Being integral to most

2LLVM used to be an acronym, standing for Low-level Virtual Machine. However, in the course of
evolving into an umbrella project for different compiler and toolchain technologies, the abbreviation
was removed and LLVM became a term of its own.
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web applications, databases are frequently targeted by so-called SQL injection attacks
that, if successful, may result in compromisation of data or even the underlying systems.
This is achieved by injecting queries in unintended ways that bypass input sanitation.
By switching between different types of databases and database server applications that
also come with different dialects, this injection is supposed to become harder as specific
servers may not be vulnerable to certain exploits or simply not “understand” the injected
query’s dialect. Boyd and Keromytis [27] propose a somewhat different approach that
also intends to prevent SQL injection attacks, yet resorts to exchanging instructions in
the SQL-server’s parser and the scripts that perform queries on the application’s behalf.
As a result, an attacker that manages to inject queries will not succeed unless learning
the instruction mapping. This is similar to the previously introduced concept of ISR, yet
transferred to the application level. However, applications may just as well be diversified
through their configuration. Even though this does not affect binaries so that exploits
targeting characteristics of the application’s inner structure will still scale, it changes
behavior and, on a higher level, appearance at runtime. This, in turn, may impact the
application’s attack surface and, consequently, the set of applicable attacks that an ad-
versary may resort to. Corresponding approaches stem from research on evolutionary
algorithms and have been suggested by John et al. [73], Lucas et al. [87], as well as Col-
lado et al. [42, 113]. They propose to diversify web server configurations so that these
vary in potentially security relevant details, yet, yield the same observable experience
from the user’s perspective. Furthermore, they investigate which of these configurations
perform best with regard to number and severity of attacks to subsequently recombine
individual parameters in order to derive more secure configurations.

Data-based Defenses

Defenses that are based on dynamic data are generally concerned with how data are
represented when stored or in memory. In this regard, Bhatkar and Sekar [24] suggest
a scheme they refer to as Data Space Randomization (DSR) that is intended to add an-
other layer of security for data in memory, once an attacker managed to bypass defensive
techniques such as ASLR and ISR. The main idea of this approach is to simply XOR
data with an unknown mask, yielding high entropy (e.g. 232 for integers and pointers
on a 32-bit architecture) that cannot be efficiently bruteforced. A similar approach has
been suggested by Cadar et al. [30]. Both schemes require availability of the correspond-
ing application’s source code to insert respective operations. However, Cadar et al. also
compute equivalence classes for instruction operands to assign random bit masks for
XOR-operations on a per class basis which incurs less overhead and may increase effi-
ciency of their approach. In the presence of viable attacks on existing DSR schemes,
Rajasekaran et al. [108] propose another approach to DSR. While, in principle, employ-
ing the same scheme of masking data, their framework repeatedly re-randomizes masks
so that the shape of data continuously changes. From a technical perspective, these
data randomizing techniques rely on symmetric encryption to protect data in RAM.
And while neither of the approaches presented here has been proposed in the context of
Moving Target Defense, they fit the general definition.
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At this point, the ambiguity in classifying the individual techniques should be recalled.
This specifically concerns approaches to defend against SQL injection attacks. These
have been categorized as application-based defenses in this work for effectively being im-
plemented in server applications and related scripts (e.g. PHP or CGI) to diversify their
behavior with regard to processing queries. Interestingly, Ward et al. [131] categorized
these techniques as defenses that rely on dynamic data rather than dynamic applica-
tions for protecting against potentially malicious user-generated input data. However,
this appears inconsistent considering that most other techniques have been categorized
with regard to what is being randomized.

2.2. Logic Programming with Prolog

The concept of logic programming and implementations thereof date back to the late
1960s and early 1970s, arising in the context of research on artificial intelligence (AI)
and natural language processing [43] (NLP). One of the earliest publications in that
regard, also introducing the clausal form as is common in Prolog, was submitted by
Cordell Green [58] and relied on Lisp. Prolog itself first appeared in 1971 and had been
developed by Alain Colmerauer, Philippe Roussel and Robert Kowalski [43, 81]. While
it is definitely not the only representative of logic programming languages, it is one of the
most popular ones. The Prolog distribution which is of particular interest in the context
of this work for being integral to the framework presented in Chapter 4, is SWI-Prolog.
It dates back to 1987, is actively maintained, and subject to ongoing development.

An important strength of Prolog is, simply put, that it allows to query information
from given knowledge bases that is not the result of mere look-ups, but incorporates
the evaluation of rules that are part of said knowledge bases. In consequence, results
of such queries may reveal information that is not explicitly given but deduced from
existing data and defined relations. To be fair, this can equally be achieved with means
of imperative programming. However, fine-grained instructions would be required as to
specify how inputs ought to be processed in order to produce the required output, in-
stead of just querying for the desired information. While this is definitely not a suitable
way to solve every kind of problem, it sure is to evaluate what-if -scenarios and deter-
mine the different actor’s options, as is relevant for the simulation framework. Since
Prolog’s declarative nature makes it inherently different from commonly used impera-
tive programming languages, providing a short introduction will help to understand the
presented work.

In the following sections, some of Prolog’s basic concepts are presented. These are not
exhaustive and solely serve to better understand how the framework’s simulation engine
operates and lay the foundation for the low-level representation of scenario descriptions
which are presented in Chapter 4.4.2 and serve as input for the simulation engine. For
an introduction to Prolog that goes beyond what is needed to understand the simulation
engine and its inputs, the interested reader is referred to the work of Ivan Bratko [28]
and Blackburn et al. [25].
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2.2.1. Facts, Rules and Deductive Reasoning

Knowledge bases in Prolog generally consist of fact collections and rules. Fact collections
contain structured information that can simply be retrieved or processed in the course
of evaluating rules. Both information and rules are accessed through so called predicates
that may also serve to characterize the type of, or relation between, enclosed information.
What may sound confusing is best illustrated with a small example. Listing 2.1 depicts a
simple knowledge base that only consist of the predicates produces and needsCooling.
The former serves to store information on the kind of components a given manufacturer
produces, the latter is to tell if a given component type needs some sort of cooling.
Note that predicates start with minuscule letters. The terms enclosed in the parentheses
following the predicate’s name can be of different shape to represent different types of
information:

• Terms that only consist of alphanumerical symbols starting with a minuscule letter
are generally treated as strings (e.g. somePredicate(word)).

• Terms that consist of alphanumerical symbols starting with a capital letter are
also treated as strings, yet only if the whole term is enclosed in single quotes as in
someOtherPredicate(’Word’).

• Otherwise, if omitting the quotes, terms starting with a capital letter will be treated
as variables that may be instantiated to any value.

• Numerals simply represent integers and do not need any special character to mark
them as such as illustrated in numberOfLegs(horse,4).

• A list may also represent a single (compound) term that comprises a potentially
extensive amount of yet other terms (e.g. listPredicate([one,two,three])).

Furthermore, these terms may also comprise yet other predicates. However, where this
is needed and how it works goes beyond a small introduction and is also not needed for
the simulation engine. The number of terms that a predicate refers to is called its arity.
For the first predicate in Listing 2.1, produces, this arity is 2. For the second predicate
in the given example, it is 1. It is common practice to provide information on arity when
referring to predicates, especially since the same predicate can be used multiple times
with different arity within the same knowledge base. The default notation is to simply
append the arity to the predicate, separating them with a dash as in produces/2 and
needsCooling/1.

1 // knowledge base consisting of the two predicates ’produces ’

and ’needsCooling ’

2 produces(intel ,cpu).

3 produces(amd ,cpu).

4 produces(micron ,ssd).

5 needsCooling(cpu).

Listing 2.1: Fact collections in Prolog.
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1 // the known predicates

2 produces(intel ,cpu).

3 produces(amd ,cpu).

4 produces(micron ,ssd).

5 needsCooling(cpu).

6 // predicate ’produces ’ can also refer to a rule and recursively query

the same predicate.

7 produces(Manufacturer ,memory):-produces(Manufacturer ,cpu).

Listing 2.2: Deductive reasoning at the example of a simple rule.

This information can subsequently be queried. Assuming that the knowledge base
from Listing 2.1 has been loaded, one might simply “ask” if Intel produces CPUs by
typing produces(intel,cpu). to which Prolog will answer yes or true, depend-
ing on which implementation of Prolog is being used. Consequently, a query such as
produces(intel,ram). will return no or false as the given fact collection does not
say otherwise.

However, what is true or false may not only depend on facts but also rules. For
example, assuming that any manufacturer that produces CPUs also produces memory
chips, there is no need to explicitly add respective facts to the knowledge base. Instead,
a rule that allows to deduce production of memory chips in case of producing CPUs
is sufficient. Listing 2.2 extends the previous fact collection with such a rule. There
are several things to observe in this example. First, the same predicate that has been
used for mere fact statements can also be used to represent rules that are of the same
arity. Second, the first term of the rule’s head, that is the part left of :-, starts with a
capital letter marking it as a variable, and third, Prolog allows for recursion. Usage of
a variable to represent the manufacturer allows this variable to take any form and have
Prolog deduce whether this can evaluate to true. When loading this knowledge base, a
query such as produces(intel,memory). would cause Prolog to replace all occurrences
of the term Manufacturer with intel and see if its one and only goal, that is the
expression right of :-, can be fulfilled. Ultimately, Prolog will return true. Deductive
reasoning based on the fact produces(intel,cpu). in combination with a rule that
states that every CPU manufacturer also produces memory is sufficient to come to this
conclusion.

Obviously, the same rule might apply to SSD manufacturers. To include these, the
rule can simply be duplicated while changing the goal’s second term from cpu to ssd. In
such cases, Prolog will check both rules for goal satisfaction and return true or false

accordingly. However, another option would be to append the alternative goal to the
existing rule, combining the two with a logical OR that is represented as a semicolon (;)
in Prolog.

2.2.2. Unification

Taking this concept of deductive reasoning a little further and incorporating the other
predicate (needsCooling/1), one might introduce a rule to determine if a given manu-
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1 produces(intel ,cpu).

2 produces(amd ,cpu).

3 produces(micron ,ssd).

4 needsCooling(cpu).

5 // extending the previous rule to include SSDs

6 produces(Manufacturer ,memory):-produces(Manufacturer ,cpu);

7 produces(Manufacturer ,ssd).

8 // new rule for the unification example; will return true or false if

’Manufacturer ’ is specified , otherwise valid isntances of ’

Manufactuer ’ are returned

9 mustProcureCoolers(Manufacturer):-produces(Manufacturer ,Component),

10 needsCooling(Component).

Listing 2.3: Deductive reasoning and unification in Prolog.

facturer must procure coolers which are needed for CPUs, yet not for solid-state drives.
A corresponding rule is depicted in Listing 2.3, line nine. As can be seen, the rule
mustProcureCoolers/1 has two goals combined through a comma (,) representing the
logical AND in Prolog.

When querying mustProcureCoolers(intel). this rule first checks the predicate
produces/2 for the components produced by the specified manufacturer. The variable
Component serves as a placeholder that might be instantiated to any value derived from
the lookup on produces/2. In the given knowledge base, there is only one possible
value that Component can be instantiated to which is cpu. Subsequently, this value is
used when checking for fulfillment of the second goal as it utilizes the same variable
Component which has just been instantiated. This process of instantiating variables to
specific values in the course of verifying goals is referred to as unification. This concept
of unification can be illustrated with even simpler examples. While the very first query
from the previous section — produces(intel,cpu). — would trigger Prolog to check
if the given goal can be satisfied and report true or false accordingly, it may be
adapted to query which known manufacturers produce CPUs in the first place. This is
simply done by not specifying the first term but inserting an uninstantiated variable as
in produces(X,cpu). when querying. Based on this, Prolog will instantiate X to any
value for which this expression is fulfilled and return it. In the given example, both
intel and amd will be returned as possible instances of X, one after another. Unification
does not only work for values obtained from fact collections but may equally be used
with rules. In that sense, mustProcureCoolers/1 need not be queried with a specific
value but can also be evaluated using a variable that will be unified with any value for
which this rule evaluates to true.

The existence of extensive literature implies that there is more to be said about Prolog
than what is contained in this short introduction. However, the fundamental concepts
needed to understand the simulation engine in Chapter 4 are summarized quickly. Ob-
viously, knowledge bases that served as examples have been chosen to be very simple as
to not obstruct in illustrating the notion of deductive reasoning and unification.
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3. A Critical View on Moving Target
Defense

The previous introduction to the general concept of Moving Target Defense and respec-
tive techniques presented the topic in a neutral way. Yet, in how far MTD really is the
game changer that many related papers claim it is [38, 45, 46, 143], remains to be seen
until respective mechanisms have sufficiently been tested in real-world scenarios. The dif-
ferent techniques come with convincing narratives, explaining how and why movement,
under certain conditions, may impede the attacker and improve security. However, one
might construct equally convincing scenarios in which movement may have unintended,
though plausible side effects that actually cause security degradation. On other occa-
sions, movement may simply have no effect at all. So far, defensive techniques proposed
since research on MTD kick-started mostly lack the necessary maturity and have only
been implemented in prototypical ways, at best. Only few proposals (e.g. Li et al. [86])
allegedly made it into commercial products which are still hardly available though. In
consequence, empirical data to compare intended effects with real effects observed in
operational networks and systems are missing.

To this end, a lot of research on frameworks to model and formally analyze MTD
techniques has been conducted. Unfortunately, said work is only rarely considers po-
tential negative effects MTD techniques might cause and if so, only to a limited extent
that regularly does not go beyond cost incurred through resource overhead and service
degradation. Indeed, it seems that there is a bit of an MTD bubble in which movement
is promoted as the answer without really questioning the merits. On a plainly argumen-
tative level, this chapter elaborates why one needs to be careful when considering MTD
techniques1. For this purpose, some of the most figurative analogies used to motivate
Moving Target Defense by providing examples of how movement is integral to averting
threats in other domains, are shortly presented and contrasted with plausible real-world
scenarios in which specific techniques may in fact reduce security. This serves to illus-
trate that, depending on the context, movement may not be such a good idea after all.
There is merit in the main idea of MTD and there are applications where it can probably
improve security. But as a few examples show, there are also cases where movement can
potentially make things worse.
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(a) Dogfight Analogy (b) Flock of Birds Analogy (c) Shell Game Analogy

Figure 3.1.: Illustration of different possible analogies for Moving Target Defense which
result in different perspective on movements.

3.1. Euphemistic Analogies

Moving Target Defense is frequently motivated with analogies from the real world. Some
of the most figurative ones are presented in the following, together with short explana-
tions on how they presumably relate to defending IT networks and systems.

The Dogfight

Zhuang et al. [148] compare MTD to a military strategy that is colloquially referred to as
“dogfight” (Figure 3.1(a)). They outline that in an air-to-air combat situation it would
be suicidal if a pilot who is being chased by an enemy aircraft continued flying forward
in a straight line as this gave the enemy enough time to properly aim and fire. Instead,
the pilot will spin the aircraft and make unpredictable turns to get rid of the persecutor
and not become an easy target. It is quite conceivable that in this situation, movement
is absolutely critical to avert successful attacks. Furthermore, Zhuang et al. compare
the state of IT security to sitting in a bunker, waiting to be overwhelmed by the enemy.
Moving Target Defense supposedly changes this situation. The lesson to be learned from
these analogies is that standing still gives an adversary the necessary time to prepare his
or her targeted attack that could have been avoided through movement. This relates to
previously introduced VM migration, for example, where movement is intended to get
virtual machines out of the attacker’s reach, thus aborting ongoing attacks and forcing
the adversary to pick another target or engage in reconnaissance again.

The Flock of Birds

Another analogy compares MTD to a flock of birds and has been used by companies2

to commercially advertise the concept of MTD. In a flock of birds, each individual is
constantly moving, thus changing the shape of the flock (see Figure 3.1(b)). A single bird
would not stand a chance against a predator. Yet, the constant unpredictable movement

1The work in this chapter has been published [20] and presented at the Mal-IoT Workshop, co-located
with the ACM International Conference on Computing Frontiers 2020.

2https://blog.cryptomove.com/moving-target-defense-recent-trends-253ce784a680
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within the flock makes it impossible to single out one specific bird and consequently
increases difficulty of a targeted attack. In that sense, this analogy fits the ideas of IP
shuffling or VM migration, for example, where randomly relocating VMs or assigning
addresses from a preferably large address space are supposed to prevent adversaries from
keeping track of single entities. Furthermore, for an attacker who attempts to identify
potential targets through sniffing traffic or other passive means, IP shuffling will bloat
the number of observed addresses over time making it harder to pick a valid target,
similar to picking a target from a large flock.

The Shell Game

The US Department of Homeland Security project homepage [1], Zheng and Namin [143],
as well as Cho et al. [39] employ yet another analogy to describe the concept of Moving
Target Defense. They compare it to the shell game in which a ball is put under one
of three identical shells as illustrated in Figure 3.1(c). The shells are moved rapidly to
confuse the players who can bet under which shell the ball lies. With increasing speed,
it becomes harder to keep track of the ball’s actual location. Furthermore, once the
player (representing the attacker in this analogy) loses track of the ball’s position, every
choice she can make is no better than wild guessing. This analogy generally translates
to the frequency at which movement of network and system characteristics occurs, as to
invalidate the adversary’s previous observations. While there are limits to how frequently
different defenses can be triggered, be it because of physical conditions or the disruption
of legitimate services, the shorter the intervals, the sooner the attacker has to return
to the reconnaissance phase. In fact, if movement intervals are shorter than the time
needed for the attacker to scout out the system again, reconnaissance may even become
obsolete, forcing the attacker to resort to other means or simply guessing.

3.2. Reconsidering Analogies and Potential Effects

While the previously presented analogies may be convincing to a certain degree, they
are still only analogies that do not and can not capture the reality of attacks on IT
systems. However, even if putting inevitable inaccuracy aside, the question arises why
only favorable analogies should be applicable and not the unfavorable ones. The fol-
lowing sections will illustrate that, on the basis of analogies, movement may equally be
considered disadvantageous or generally useless. Furthermore, some of the techniques
that have been presented in Chapter 2.1.2 will be revisited to elaborate on how and why
the form of movement they suggest may actually be suitable examples for such negative
effects or sheer irrelevance of movement.

3.2.1. Analogies With a Twist

To illustrate that movement is not necessarily always a good idea, Moving Target Defense
shall be compared to deer hunting. While this, again, is just a figurative analogy, it makes
clear that characterizing the effects of MTD is not that simple. Furthermore, the shell
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(a) Deer Hunting Analogy (b) Truth about the Shell Game

Figure 3.2.: (a) An efficient hunter will wait in a deer stand, exploiting the prey’s move-
ment. (b) The shell game’s difficulty does not result from movement but
sleight of hand.

game analogy is revisited. By having a closer look at what the shell game actually is,
the message that this analogy conveys takes an ironic turn. Surprisingly, this changed
meaning may still apply to introduced MTD techniques.

Deer Hunting

The meaning of the deer hunting analogy highly depends on the question whether or not
a deer becomes a harder target if it is moving around. And this, in turn, depends on
the hunter’s strategy. Should the hunter employ a stalking approach in which he or she
systematically sweeps through the hunting ground, this might be the case. By moving
around, the deer might elegantly evade the also moving hunter and remain undetected
for a longer time. However, stalking a deer can be tiresome and difficult, as the deer
will flee when it notices movement or smells the hunter. Therefore, most hunters rely
on a different approach: They simply find a suitable location or set up a deer stand
where they can hide and wait for a deer to show up as depicted in Figure 3.2(a). And
in this case moving around does not help the deer, but is actually the only reason why
it might get shot in the first place. If the deer would stay put, the hunter would never
catch it (unless it does so right in front of the hunter). Transferring this to the domain
of IT security and Moving Target Defense, an adversary who is aware of the presence of
MTD techniques may observe the system and wait for a configuration more vulnerable
to her attacks that would not work if any of the other configurations had been statically
employed.

The lesson to be learned from this example is that just as there are positive analogies
supporting the idea of movement for the sake of security, there are equally plausible
analogies suggesting the opposite. Researchers who propose and evaluate Moving Target
Defenses should not only consider how movement benefits the defender, but also how
movement may benefit the attacker.
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The Shell Game Revisited

While the shell game’s primary intention is to convey the notion that rapid movement is
a suitable measure to avert attackers, those who employ this analogy obviously disregard
the fact that this game is a fraud. That is, the difficulty of the shell game is not the
result of movement, but sleight of hand where the player who moves the cups will hide
the ball in the back of his hand as depicted in Figure 3.2(b). Quick movement merely
serves as a distraction and is intended to make believe that success and failure solely
depend on attention and the difficulty of keeping track of the “target”. To what extent
analogies are capable of adequately representing Moving Target Defenses and the effects
they may have on systems and networks has been questioned on several occasions in this
chapter. It is remarkable, though, that this analogy is not even suitable to promote the
benefits of movement.

Sticking to the roles of the defender being the player who moves the cups and the
attacker being the one who is trying to find the ball, the attacker still loses. However,
considering the changed notion of the shell game, this does not result from movement.

3.2.2. When Movement May Hurt

This chapter discusses a few MTD techniques where movement may plausibly be ex-
pected to lower security, raising doubts about its unconfined usefulness. Despite existing
research claiming security benefits, a critical consideration of potential effects appears
necessary, since similar arguments as those that are used to convey movement-related
security improvements, can be employed to imply security degradation. In particular
Virtual Machine shuffling, OS rotation, application rotation, as well as configuration
parameter randomization are being discussed. Note that these MTD techniques are not
necessarily the only ones that may have negative effects on security but have been chosen
for their frequent occurrence in MTD research.

Virtual Machine Shuffling

Shuffling or generally the migration of virtual machines has been addressed by several
approaches to MTD evaluation [6, 7, 9, 10, 11, 45, 64, 150] and can be done in different
ways as the various proposals from the Background Chapter indicate. Hong and Kim [64],
for example, suggest state preserving live migration of VMs within a pool of physical
hosts in the network. Using their modeling approach called HARM, they show that this
VM shuffling increases security as it moves a VM with its critical application out of the
attacker’s firing line by changing its location and connectivity.

If the physical position of the VM does not matter for an attack, moving the VM has
no effect since the logical communication must remain intact for the critical service to
remain operational. However, there are several attacks in which the physical location
matters: For one, there are cross-VM attacks in which an attacker may gain control over
or at least interact with VMs running on the same hypervisor. For another, co-located
VMs can frequently, that is in most default configurations (e.g. Xen), communicate
unhindered through the hypervisor’s virtual switch, thus mitigating any firewalling that
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could have been in place at the VM’s previous location. This may enable further attack
paths, especially in small enterprises, where VMs are not isolated to the maximum as is
or should be the case in Amazon’s AWS or Microsoft’s Azure, for example.

With this in mind, the “stalking hunter” should be recalled. If the attacker wants to
perform a cross-VM attack, she needs to gain control over a VM on the same hypervisor.
During the time it takes the attacker to get access to a VM on a particular hypervisor,
however, the VM shuffling defense might have moved the target, thwarting any effort.
In consequence, similar to a hunter stalking the prey, movement in form of VM shuffling
may increase attacker cost. Yet, “stalking” a particular VM is only possible if it takes
more or less the same effort to get control over any VM on any hypervisor. In practice,
however, this is not necessarily the case. Unless the adversary is able to instantiate her
own VM, she has to compromise an existing one to gain access. Additionally, she needs
to be able to reach this VM which might be protected through a firewall. Therefore, the
attacker will likely be able to attack a small subset of VMs, only. Similarly, even if the
attacker is allowed to start her own VMs, she will most probably not be able to influence
on which physical host this is done, thus impeding efficient “stalking” of the target.

In fact, the waiting hunter analogy is much more fitting: Having gained control over
a VM, be it through compromisation or legitimate instantiation, the attacker, in the
presence of VM shuffling, simply has to wait until the target moves into the desired
position. By only attacking a single VM, the attacker can essentially reach any other
VM by simply waiting for VMs to be shuffled. Hence, the attack surface has increased
significantly while the overall security of the system decreased — due to VM shuffling.
This is a hypothetical, yet plausible scenario that does not interfere with the concept
of VM migration. In that sense, VM migration may open up new attack paths, thus
drastically reducing the overall security of the network.

Operating System Rotation

OS shuffling or rotation is a MTD technique that is based on the idea that constantly
switching operating systems makes it harder for an attacker to penetrate a network. The
reasoning behind this is that if an attacker knows an exploit against one OS, switching
the OS will fend him off. Since the attacker does not know which VM will run which OS
at what point in time, attacking will be difficult. OS rotation, among other things, has
been addressed and deemed useful in [5, 6, 7, 120]. However, within these approaches, the
effectiveness of OS rotation to improve security was never questioned but only postulated.
Instead, the focus of evaluation was on feasibility and optimization of OS rotation to
reduce downtime. Once again, the hunting analogy can be applied. If an attacker has an
exploit for a specific OS, then using this exploit (after it has been developed) is typically
a matter of seconds. So the difficulty lies in obtaining or developing an exploit in the
first place. In the OS rotation scenario, the attacker only needs to find an exploit for
one of the OSes that are being rotated and then wait for the desired OS to run on the
target. For inevitable overhead, OS rotation can not be done every few seconds so that
there will be ample time to attack the OS once the desired OS is rotated in. In effect,
OS rotation enables new attack chains that would not exist without it.
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Note that OS rotation is not the same as OS diversification. Using diverse operating
systems across systems within the network, it may be harder for an attacker to spread
throughout the network and reach his ultimate goal. But while OS diversification is able
to cut off attack chains, OS rotation enables new attack chains that may result in a net
security loss.

Application Rotation and Parameter Mutation

John et al. [73, 87] have proposed application configuration parameter mutation as an
MTD technique. The idea is to use genetic algorithms that constantly re-evaluate and
change configurations to find (near) optimal settings for an application. However, they
also measure configuration distance to ensure that old and new settings are not identical.
They use an Apache Web-Server running on Redhat Enterprise Linux as a prototypical
example.

Constantly verifying if the used configuration is still the most secure makes sense —
if an attack becomes known, systems should quickly be adjusted accordingly. However,
what benefit is gained by not keeping the most secure configuration until a more se-
cure configuration is found? Switching between configurations may actually increase
the attack surface: Should there be no vulnerability that can be exploited based on the
currently employed configuration, the attacker only has to wait until the configuration
is changed to try again, thus increasing his chances. Since there is only a limited num-
ber of reasonable configurations, it is also not problematic for an attacker to wait for a
configuration that he is crafting an exploit for to reappear. Hence, while continuously
optimizing the configuration of an application is a reasonable strategy, the forced con-
stant “movement” of the configuration to hopefully equally, but potentially less secure
settings, decreases security. It seems movement is only done so that it qualifies as a
MTD technique.

Other approaches that do not only consider an application’s configuration but the
application itself, have been proposed by Taguinod et al. [117] and Zhang et al. [142].
At the example of SQL servers they suggest that the entire application is exchanged
with another one that is capable of fulfilling the same task. However, this is subject to
the same limitations as mentioned before.

Casola et al. [33] even propose to constantly switch between a set of different encryp-
tion systems. The authors implemented their prototype on a small resource constrained
OS to prove feasibility. They argued that a brute force attack becomes more difficult,
as the attacker does not know which cryptosystem is being used at a given time. While
noting that there might be more efficient attacks than brute force on an algorithm, they
claim that this does not influence the security benefit from switching algorithms. They
also note that when the attacker does not know the used key length, brute force attempts
are more difficult. Yet, why would it be more secure to switch between two key lengths?
To attack an 80 bit key using brute-force requires, on average, 248 times less effort than
attacking a 128 bit key. Hence, from a security perspective using the longest key is the
most secure, not switching between them. Furthermore, the likelihood that an attacker
finds a flaw in one of, say, three encryption algorithms or implementations is higher
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than in only one. Consequently, by constantly switching between encryption algorithms,
the attack surface rather increases, thus potentially reducing overall security. Updating
keys or using longer keys would be a much more sound and efficient solution if one is
concerned about brute-force attacks.

3.2.3. When Movement May Work

Of course, there are also cases in which movement makes a system more secure and the
positive MTD analogies of the dogfight or the flock of birds can be applied. ASLR,
NASR, as well as anonymous and dynamic routing, for example, are techniques suggest-
ing movement of properties that may plausibly impede an attacker during reconnaissance
and execution when repeatedly being changed, yet are not subject to vulnerabilities
themselves. To better illustrate what this means: Changing a host’s IP address as ad-
vocated by NASR does not directly affect vulnerability for the simple reason that, in
general, one address is not more or less secure than another one. Different operating
systems, on the other hand, exhibit different vulnerabilities so that exchanging these for
one another may directly affect a system’s security level. Note that this does not mean
that there are no downsides to these techniques. At least, they incur additional load on
respective systems. However, an adversary cannot simply exploit movement by waiting.
Obviously, the techniques discussed in the following are not necessarily the only ones
that may have a positive effect on security.

Address Space Layout Randomization (ASLR)

The most prominent example is ASLR in which real memory addresses are obfuscated
by the OS. The “movement” of addresses increases the difficulty of reliably exploiting
buffer overflows, for example, due to unknown memory offsets. Despite the existence
of viable attacks on ASLR, the scheme has shown to raise the bar for attackers. The
comprehensive overview of suggested techniques presented in Chapter 2.1.2 lists many
more randomization techniques based on dynamic software, dynamic data, or dynamic
runtime environments that intend to increase the difficulty of exploit development. The
survey from Ward et al. [131] further extends this list with examples including com-
mercial approaches in which an application is recompiled for every new user so that an
exploit developed for one target does not work for another. It is interesting to note that
54 out of 89 MTD techniques listed by Ward et al. are categorized as exploit develop-
ment preventing, many of which have not been proposed as Moving Target Defenses.
Still, the numerous frameworks and theoretic approaches to MTD evaluation in existing
literature do not consider assessing the effectiveness of exploit prevention, but instead
focus on the other phases of the attack chain.

Network Address Space Randomization (NASR)

Another technique that potentially benefits security is IP shuffling or network address
space randomization in general. This assumption is based on the fact that changing
addresses has no impact on a target’s vulnerability per se for addresses themselves not
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being security critical. The deer hunter analogy is therefore not applicable. On the
other hand, constantly changing network addresses may indeed limit the time frame an
attacker can use obtained information, thus making some attacks more difficult. The
attacker also has a harder time learning the network layout and do reconnaissance to
identify high priority targets. Yet, this only holds true as long as the attacker has no
efficient way of obtaining addresses or layout information. Considering that legitimate
clients must be able to communicate with servers, implemented NASR schemes must
provide means allowing for unobstructed communication. These may simply be based
on using DNS names that are presumably unknown to the attacker and cannot be sniffed
or other more sophisticated authentication schemes. However, such means that allow for
unimpeded communication may also be used by an attacker, once necessary resources
have been compromised. In such cases NASR is of no benefit, but at least does no harm
either.

Anonymous and Dynamic Routing

Another technique that has the potential to improve security is anonymous and dy-
namic routing. Its effectiveness, however, may depend on communication behavior and
the threat scenario. First of all, anonymous routing itself does not necessarily fit the def-
inition of Moving Target Defense. Assuming that anonymous routing manages to keep
senders and receivers secret, there is no movement at all but a reduction of available
information. While this may be even better, it still does not involve movement. Nev-
ertheless, dynamic routing can be considered a MTD technique, which in combination
with sender and receiver anonymity may offer a higher degree of security. In a threat
scenario where an adversary needs to intercept all traffic, dynamic routing impedes the
attacker unless he manages to control each of the selected paths to re-assemble all data.
Depending on whether dynamic routing is employed on a per packet basis, instead of per
flow, the attacker might not even be able to re-assemble a single payload if not eaves-
dropping on all paths. However, should the attacker not be interested in what is being
communicated but only in the fact that two entities communicate, dynamic routing in-
creases chances that the adversary may catch at least some packages that reveal who is
communicating with whom. In this threat scenario, anonymizing or at least obscuring
communicating entities is advisable. While obscuring with help of aforementioned NASR
may raise the bar for an attacker to identify communicating entities despite changing
addresses, full anonymity is even better. It should be noted, though, that the ability to
route dynamically, as well as the degree to which obscuring or anonymizing addresses
can avert identification depend on the network topology. The excursus in Chapter 7
further elaborates on this topic.

3.2.4. When Movement Does Not Matter

Chances are that movement of certain system or network properties may not have prac-
tical effects. However, it is advisable to differentiate between the reasons why that is.
In a somewhat ironic yet illustrative way, Evans et al. [56] outline how different Moving
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Target Defenses are incapable of defending against certain types of attacks. Neither im-
proving nor lowering security, the examples that the authors choose convey the meaning
that selected defenses have no effect at all. However, in the case of Evans et al. this is
simply due to the fact that defenses and attacks are deliberately chosen to operate on
different levels so that there is basically no interference. ASLR, for example¸ will not be
able to prevent SQL-injection attacks since it has got nothing to do with how a related
application handles inputs.

Yet, despite the fact that the form of movement introduced by a specific technique
may not affect all kinds of attacks, there are also examples where movement makes
no sense from any point of view. One such technique is the CAN ID shuffling scheme
suggested by Woo et al. [134] which has already been mentioned in Chapter 2.1.2 when
introducing selected MTD techniques. The technique supposedly makes it harder for
an attacker to send a malicious message to a device by switching the address (CAN ID)
in unpredictable ways. And in fact, this increases difficulty for an attacker. However,
the effect is not due to randomly changing the ID, but using the last 22 bits of the
ID header as an unpredictable authentication tag. Typically, an authentication tag
would also ensure integrity of the message, and not only the address. Nevertheless, this
increases security, albeit not due to any address randomization but the inclusion of a
cryptographic authentication tag. In that sense, this technique fits the revised shell
game analogy, where movement only seemingly contributes to the effect that in reality
depends on something entirely different.

Without further data from the real world or results from adequate evaluation schemes,
it is hard to tell which other MTD techniques may actually have a positive impact on
security, though be it not for the sake of movement. The case of Woo et al. allowed for
such evaluation plainly on the basis of dissecting the suggested scheme, yet others may
require testing and experimentation.

3.3. Status Quo

Supported by figurative analogies, this chapter outlined that frequently proposed and
cited Moving Target Defenses bear the potential to not only improve, but also degrade
security. While these negative effects of specific techniques have only been derived on
a plainly logical level and not shown in the real world, neither have their benefits in
most cases. So far, existing approaches to evaluating MTD techniques mostly consid-
ered the benefits of movement, thus causing analysis to be biased in favor of movement.
Downsides, when taken into account at all, are regularly limited to cost incurred through
excess resource consumption or service degradation, but never include security reduction.
Considering the potential security gains as well as losses, research on MTD should incor-
porate both positive and negative effects into theoretical MTD frameworks and analysis
techniques. In particular two simple rules should be kept in mind when analyzing or
developing MTD techniques:

1. Movement can hurt: Possibly negative security implications of movement must
always be considered.
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2. Do not move for movement’s sake: It should be verified that the security
benefit from an MTD technique really stems from the movement aspect.

With MTD being promoted by funding agencies and specific workshops, there has
been an influx of papers proposing movement for a wide range of applications. Hopefully,
cautionary notes help researchers to keep a balanced view on MTD and start “separating
the wheat from the chaff”. Research should focus on the security goals to be reached,
that may be supported by concepts such as MTD. Yet, in the end, the technologically
most sound solution should be chosen. If movement is able to deceive an attacker, it may
be reasonable to employ it. But if a static system can achieve the same, one should not
hesitate to promote this technology despite not being able to attribute it to a popular
trend in academic research.

3.3.1. Limitations of Evaluation Approaches

The reason that existing approaches to evaluation fail to reveal defense-induced security
degradation may be due to some repeatedly observable limitations related to different
aspects of respective evaluation schemes. One such aspect is the question on what is ac-
tually being evaluated. What may frequently go unnoticed is that some of the suggested
evaluation approaches investigate defense effects, while others evaluate defense strate-
gies. The difference is that the former intend to find out about the impact defenses have
on system and attacker. The latter, in turn, address the question of how to efficiently
use these defenses in the presence of certain attacker types or environmental constraints,
while assuming that intended effects are also achieved. Another aspect is the underlying
method that is used to perform analysis in the first place. This is hardly ever the same
for any two evaluation approaches. Yet, differentiation between those that rely on either
mathematical formalization, simulation, or (virtual) testbeds seems appropriate. These
categories are very inclusive so that approaches they subsume still differ. The chosen
method also has implications with regard to size and complexity of models that analysis
is based on, thus ultimately influencing evaluation results and their validity.

A considerable number of suggested approaches to evaluating MTD techniques are
game theoretic in nature and rely on mathematical formalization. These regularly yield
probabilities, quantifying how chances of a successful attack (or defense) are affected
by a specific technique, thus overcoming the comparability issue. Yet, their ability to
model complex situations is limited. What is more, most game theoretic approaches
focus on optimizing attack and defense strategies or finding equilibria in the presence
of actors of certain capability. This, however, requires in-depth knowledge on defense
effects which are mostly just assumed. Respective evaluation schemes range from Stack-
elberg Games [3, 122], Zero-Determinant Theory [130], and empirical game-theoretic
analysis [107], through different forms of Markov modeling [7, 45, 46, 84, 89, 136, 144],
to stochastic petri nets [14, 40]. While such approaches regularly consider that move-
ment may be constrained, some of the proposed work [38, 94, 129] is more elaborate in
this regard, taking potential service degradation and excess resource consumption into
account. Negative effects on security, however, are out of scope.
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Furthermore, there are simulation-based approaches to MTD evaluation. Being gen-
erally able to imitate operation of real-world processes, simulation can handle higher
degrees of complexity that go beyond the capabilities of mathematical formalization and
investigate problems where there is no analytical solution [23]. However, to what degree
simulation generates meaningful insights into the effects of MTD techniques, obviously
depends on the respective approach’s scope, as well as quality and detail of modeling.
Hong and Kim [64], for example, propose to evaluate MTD techniques with help of sim-
ulation on a multi-layered model that is supposedly able to incorporate a high level of
detail. Yet, for their case study, they only consider a small simplified network segment
with a very limited threat scenario and, most notably, assume perfect knowledge about
the attacker’s state. Succeeding work based on their approach [8, 10, 55] extends the
scenarios that simulation is performed on, but still suffers from ignoring realistic threats
that may result from co-location of VMs, for example. Yet other simulation-based ap-
proaches [50, 51] do not intend to determine defense effects but rather to optimize de-
fense utilization to mitigate DDoS attacks. In this regard, they are comparable to the
previously referenced mathematical approaches that focused on developing strategies.
Similarly, early work from Zhuang et al. [147, 150] suggests simulation to test perfor-
mance of different attacks and defenses in dependency of characteristic parameters such
as timing, frequency and expected effects that are assumed to be known.

In contrast, there are approaches that rely on testbeds [41, 98, 118] and analyzing
raw data from real-world measurements [140], offering an unmatched level of detail
that ultimately supports the validity of generated evaluation results. However, these
are scarce for causing considerable effort in maintaining and extending them, even if
virtualized. Firstly, a defense must be fully implemented to be evaluated, there is no
quick testing of an idea or concept. Secondly, monitoring the system state as to determine
whether or not a defense was able to prevent attacks requires further effort, all of which
is multiplied by the number of scenarios a defense is supposed to be tested in.

A viable approach to defense evaluation that accounts for the needs of proactive
defense should not presume effects but determine them. Furthermore, it should be
able to incorporate the level of detail that is necessary to yield realistic results, and be
maintainable and scalable enough to easily extend testing.
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4. A Modeling and Simulation Framework

In this chapter, a modeling and simulation framework is presented that overcomes pre-
viously identified limitations of existing approaches to defense evaluation, making a step
towards fair and realistic quantification and comparison of the security impact of differ-
ent defense techniques1. The framework consists of independent components to handle
the various steps from initial modeling, through simulation, to the processing of results.
To motivate why the framework has been designed the way it is and to allow for a
better understanding of subsequent descriptions and explanations, general requirements
towards evaluation will be presented first, followed by an introduction to terms that
have a specific meaning in the context of the framework. Afterwards, an overview of the
framework’s general structure will be presented, before providing a detailed description
of the framework which is divided into two major parts, the modeling language and the
simulation engine. Finally, a meta model is defined that prescribes how modeled entities
should look like. This is to establish a minimum level of detail and ensure compatibility
of said entities.

4.1. Towards Fair and Realistic Evaluation

Chapter 3 outlined that existing approaches to evaluating MTD have a tendency to only
consider beneficial effects and ignore potential downsides. While there was no proof but
only claims that such negative effects exist, the arguments that have been presented to
justify such claims are not less plausible than those used to convey the beneficial effects.
Consequently, for evaluation results to yield meaningful insights, the chosen approach
must be able to reveal both positive and negative effects.

To accomplish this, the suggested framework must fulfill certain requirements. These
are presented in the following, together with explanations on why fulfilling them sup-
posedly resolves limitations and shortcomings of existing approaches. However, the sole
definition of requirements does not yet solve any problems which is why Chapter 4.1.2
will introduce some fundamental design choices that have been made to address said
requirements and tackle the challenges related to realistic and fair evaluation.

4.1.1. Requirements

To be able to realistically analyze and compare different defense techniques, an evaluation
framework must fulfill, or – on occasions where modeling and simulation incorporate

1Parts of the work presented in this chapter have been published [19] in the proceedings of the Nordic
Conference on Secure IT Systems 2018.
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user input – allow for the fulfillment of the following requirements. Note, however, that
these requirements are still relatively general, only specifying what aspects should be
considered, but not how to consider them. How the suggested framework addresses
these, is covered in the remainder of this chapter.

• Handling dynamic changes: The key property of paradigms such as Moving Target
Defense is the proactive and flexible modification of a system’s appearance. This
means that the attacker is not the only one who may incur changes to the system.
As a result, a suitable analysis technique needs to be able to incorporate numerous
actors, account for the effects of their actions, and consider interdependencies that
affect their subsequent options.

• Modeling granularity: Analysis can only reveal effects on characteristics that have
been modeled in the first place. An over-simplified model that does not consider
that co-located VMs may interact with each other, for example, will not be able
to determine effects that result from such interaction. In consequence, obtaining
meaningful results is only possible if the modeled networks and systems, with their
OSes and applications are represented in a realistic way.

• Realistic attacker capabilities: Attackers must be able to realistically interact with
the system. While exploits are often used to penetrate a network, once attackers are
inside, a common strategy is to exfiltrate credentials and then use legitimate means
to laterally move within the network. Consequently, not only exploits but also
legitimate actions must be incorporated. Furthermore, attacker actions must be
equipped with realistic requirements that are checked against the modeled system’s
state to decide whether or not they can be performed.

• Realistic defense modeling: Similarly, defender actions need to be modeled accu-
rately. That is, representing a defense action’s impact on the system through the
state changes it causes and not through the intended high-level effect. Otherwise,
security-relevant side effects will go unnoticed.

• Stateful attacker: To account for the fact that reconnaissance is integral to suc-
cessful attacks and that one of the primary purposes of proactive defense is to
invalidate previously acquired information, the framework must incorporate an
actor’s knowledge. Otherwise, the effects of invalidating previously learned IP
addresses through means like NASR could not be adequately represented.

• Common and quantifiable metrics: To be universally applicable, metrics that are
used for evaluation must be independent from any given defense technique. Fur-
thermore, for subsequent comparison to be fair, they must be able to equally
capture the different techniques’ effects as to not prefer one over the other.

4.1.2. Fundamental Design Choices

Based on the aforementioned requirements and insights from existing approaches to
evaluation, fundamental design choices have been made that are expected to support the
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realistic evaluation of defenses. How a framework implements these, is not important
at this point but will be addressed later in this chapter. However, introducing and
motivating them here helps to understand how the toolchain sketched in Chapter 4.3
came into existence and which assumptions it is based on.

To perform analysis, event-discrete simulation has been chosen for its ability to in-
corporate interaction of multiple actors, be it attackers or defenders, and account for
intermediate state changes caused by proactive dynamic defense or any other action
which may ultimately affect subsequent options of all other actors. Knowledge that
actors may have acquired is part of this state representation, thus equally subject to
manipulation by successful actions. Limitations presented in Chapter 3.3.1 illustrated
that evaluation on the basis of mathematical models, though elegant and computation-
ally less expensive, is not able to incorporate a state model with the desired level of
detail but requires considerable simplification and strong assumptions. Testbeds, on
the other hand, constitute the opposite extreme. Being real systems, their level of de-
tail is unsurpassed, yet their setup and management requires a lot of effort, even when
virtualized.

In the course of simulation, to determine any actor’s options to interact with the
system based on the current system state, deductive reasoning is used. As previous
research by Ou et al. [102] has shown, Prolog is suitable for this purpose, especially
since some implementations such as XSB and SWI-Prolog support tabling [110]. This
feature, simply put, allows to selectively store intermediate results for specific predicates
with given arity, so that values, instead of re-computing them over and over again, can
be looked up. As a result, the performance of Prolog is further improved by significantly
reducing computational effort for answering subsequent queries, which is especially useful
when the number of potentially executable functions is high and their dependencies
are “sufficiently” complex. Existing work uses deductive reasoning to derive complete
trees instead of next steps only (e.g. MulVal). Yet, in the presence of multiple state-
manipulating actors, this is barely feasible as has been mentioned before. Furthermore,
the complexity of the resulting graph would render it incomprehensible, partly taking
its purpose to the absurd.

Additionally, a modeling language is provided, forming an abstraction layer between
the user and the framework. This way modeling systems and actions is unified and inde-
pendent from the specific implementation of the simulator used to determine an actor’s
options to interact with the system and apply resulting state changes. The reasons to do
so are simple. First, the toolchain may be subject to further development in the future.
Should there be a better way to do simulation or determine an actor’s next steps, and
the framework be adapted accordingly, previously crafted models should not be invali-
dated but benefit from the frameworks improvement. Second, the format required by the
simulation engine to perform deductive reasoning is not user-friendly and comparatively
extensive, thus emphasizing the utility of a dedicated modeling language. After all, if the
framework is supposed to enable IT security practitioners and researchers alike to check
on various defenses’ impact on security in numerous different settings, it must not suffer
from obscure formatting or syntax required for subsequent processing. Instead, it should
be human-readable and as usable as possible. Third, introducing such an abstraction
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layer allows for the integration of high-level features that may aggregate otherwise ex-
tensive code into single instructions. This way, the required detail for modeling systems
and actions can be reached with less effort.

A simplified overview and summary of a framework that adheres to these design choices
is presented in Chapter 4.3, followed by detailed descriptions of the main components in
the subsequent sections.

4.2. Definition of Terms

Before going into details of the language’s features and syntax, and illustrating these on
the basis of practical examples, it is necessary to establish a common understanding of
a few specific terms that are used in the following sections. While being particularly
relevant to understanding the modeling language, these terms denote concepts that are
referred to throughout the whole framework. These terms and the meaning they have
within the scope of this framework are presented in the following.

Elements are the building-blocks of every scenario and represent more or less complex
data structures that can be related to one another through references. Elements can have
an arbitrary amount of attributes that can be elements themselves, thus allowing for the
definition of large trees. However, elements may also be completely unrelated. Their
primary purpose is to allow for the encapsulation of information that somewhat belongs
together. Employing the example of a computer, such an element may be a PC, that, in
turn, consist of numerous other elements such as a CPU, RAM, or an operating system.

Attributes refer to the properties that elements may have to characterize their shape
and behavior during simulation. Such attributes may be elements themselves (i.e., sub-
elements) that have attributes of their own. However, attributes may as well be primitive
data types such as strings to simply define an element’s name, for example. Regarding
an element as the root of a tree, primitive attributes represent leaves, whereas complex
attributes (i.e. sub-elements) pose as nodes that increase the tree’s depth. Depending
on the required level of modeling detail, the user of the language may opt for either one
or the other. Attributes may not only refer to single data points but also lists.

Types are used to classify elements and their attributes. In the framework, there
exist three predefined primitive types, string, boolean, and int that are used to store
either text, true or false values, or numbers. These primitive types can only be used
for element attributes but never exist without a corresponding element. On the other
hand, there are no predefined types for elements. Instead, the user of the language can
freely define an element’s type upon its declaration.

Identifiers are unique names that are used to unambiguously refer to elements. This
is especially important for elements that pose as roots, as they have no super-ordinate
element that refers to them through one of its attributes. Sub-elements have identifiers,
as well, yet accessing them through a parent element’s attribute is easier in most cases.
Depending on how a sub-element is instantiated, its unique identifier may even be un-
known to the user so that access through attributes is the only way.
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Templates are ready-made “blueprints” that can be used to instantiate elements
with a single instruction, similar to classes known from object-oriented programming.
The contents of templates can range from a hand full of primitive attributes to complex
structures comprising numerous sub-elements and functions. Templates can be freely
defined by the user to serve any purpose and must have unique names to allow for
unambiguous instantiation calls.

Functions are, just like elements and their attributes, part of the modeled network.
Their purpose is to enable interaction with the system, be it to simply check if certain
conditions are met or for the sake of manipulating the system state. Functions can
be defined at will, either in the scenario definition or one of the templates it utilizes.
Functions are generally global so that their names have to be unique.

Parameters serve the purpose of making both functions and templates flexible. They
are passed upon function call or template-based element instantiation and provide values
that shape the appearance of an element to be created or specify aspects of a function’s
operation, respectively.

4.3. Framework Overview

The modeling and simulation framework consist of different components. Figure 4.1
provides a simplified overview, depicting information items as squares and processing
steps as dashed rounded boxes.

Figure 4.1.: Overview of the attack simulation framework

The first processing is done by the instantiator that transforms any given scenario
definition into a corresponding benchmark network instance. Such a scenario definition
dictates the composition of the system or network that is supposed to be investigated. To
keep this definition as compact and comprehensible as possible, it utilizes the component
library to reuse previously defined elements that can be of any size and complexity. This
reduces effort when creating large and high-detailed scenarios, as reoccurring elements
do not need to be defined over and over again, similar to the concept of classes from
object-oriented programming. The scenario definition, as well as the templates in the
component library are written in a human-readable modeling language that employs
an intuitive syntax and provides specific features to allow for a compact description of
systems as well as actions.

The resulting benchmark network instance is a single Prolog file that follows specific
conventions with regard to representing facts and rules to allow for automated processing
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by the simulation engine. As opposed to the high-level scenario definition, the bench-
mark network instance is a self-contained monolith, providing a coherent description of
a network’s full state including the actors, as well as possible actions and their require-
ments. Consequently, it is not as compact and easy to comprehend anymore. Based
on this input, the simulation engine can determine the different actors’ possibilities to
interact with the system, trigger actions, and apply state changes accordingly. How the
simulator operates exactly is determined by the simulation configuration file. This file is
used to configure the simulator with regard to available defenses, attacks and legitimate
actions, as well as the number of rounds to simulate. The intention behind using such
a simulation configuration instead of “hard-coding” respective properties into the sce-
nario definition is, simply, to increase flexibility and avoid repeatedly passing through
the whole toolchain. This way, the same benchmark network can easily be tested for
different attackers and defenders without the need to apply any changes to the scenario.

Throughout the simulation, the simulation engine keeps track of all events and writes
them into log files for subsequent analysis. These logged events comprise anything from
first initialization of attacks, defenses and legitimate actions, through occurring state
changes, to assets acquired by the attacker(s). Additionally, the simulation’s final state
is exported for further investigation or later continuation of the simulation.

4.4. Modeling Language

Considering the fact that both JSON and XML serve the primary purpose of describing
structured information, the question may arise, if it was not easier to simply resort to
employing one of these instead of developing a new language. While this would have
saved time also with regard to the required translator, it would not have fulfilled all
requirements, though. First, while both JSON and XML are human-readable and allow
for a coherent state description, they are far from comprehensible. Once the system to
be modeled exceeds even the smallest degree of complexity that might not yet even be
sufficient for the envisaged level of detail, JSON and XML documents become impossible
to read or maintain without additional tools. Even though JSON omits a lot of the over-
head that is mandatory in XML, the degree to which this improves on comprehensibility
is negligible in the presence of large and detailed system models. Furthermore, neither
of them provide any operators or keywords that are intended to reduce modeling effort
or provide any other sort of flexibility for that matter. Instantiating complete elements
from reusable templates with a simple keyword such as new, for example, is not possible
without any non-standard preprocessing. Finally, the scenarios needed for simulation
are not only mere state descriptions but also incorporate functions as means for attack-
ers and defenders to interact with the system. To a certain extent, functions with their
conditions and effects could probably be represented as nodes with specific attributes.
However, considering the descriptive nature of both JSON and XML, resorting to this
practice feels more like a work-around and is anything but intuitive.

In consequence, the high level modeling language used in the scenario definition file
and the component library, has been specifically designed and developed for this frame-
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work. As outlined in Chapter 4.1.2, the modeling language serves as an abstraction
layer between the user and the framework that may provide at least three very obvious
advantages:

• Simplification of the modeling process by providing an intuitive and common syn-
tax so that scenarios are easy to create and maintain.

• Introduction of advanced language features to reduce modeling effort, increase
efficiency and keep definitions compact.

• Provisioning of a unified way to modeling systems and functions that is independent
from subsequent processing so that changes to the framework do not invalidate
previously defined scenarios.

To what extent these advantages can be realized, depends on different aspects. The
two first advantages solely depend on the language’s design that will be covered in the
following Chapter 4.4.1. There, a coherent description of the modeling language’s syntax
and features will be provided, together with practical examples to give an introduction on
how to use it when modeling systems and functions. The third advantage from the above
list requires the implementation of a translator to transform the high-level description,
written in said modeling language, into a low-level representation that is compatible with
the framework’s other components taking care of subsequent processing. This low-level
representation consists of valid Prolog facts and rules that follow a certain structure
as expected by the simulation engine. Considerable effort was put into developing a
structure for this low-level representation so that it is straightforward to derive from the
high-level modeling language and, at the same time, suitable for automated processing by
the simulator. Details on this low-level representation will be provided in Chapter 4.4.2.

4.4.1. High-level Language Properties and Syntax

The modeling language employs a syntax that is very similar to that of well-known
object-oriented programming languages such as Java or C++. Its primary purpose is
to enable the efficient description of a system’s state and the definition of functions in
order to interact with it. The language comes with a manageable amount of keywords,
and only has to comply with few conventions in order to be processable. As a result, it is
easy to grasp and does not leave much space for erroneous usage. The following outline
is divided into three parts, with the first one presenting the basics of describing system
states which is fairly simple. The second one introduces functions, elaborating on some
noteworthy particularities, whereas the third part serves to explain special functors that
can be used within functions.

System State Description

Most instructions to describe the scenario’s state are, simply put, declarations and as-
signments, both of which always require a type to be given first. Explicit declaration
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is only needed for elements, whereas element attributes, or rather the attribute keys
through which stored values and other elements are referenced, are always declared im-
plicitly. That means, an element attribute of type string that is referred to as name

(i.e., the attribute key), for example, is automatically declared upon assigning a string
to it but cannot be declared in advance without such assignment. However, should
an attribute be assigned with another element instead of a simple string, said element
must have been declared at some previous point. There is one exception to this rule,
namely when the keyword new is used to instantiate a new element upon assignment,
but this will be covered later on. Note, that the ability to assign elements as attributes
of other elements allows for the description of arbitrarily complex structures that can be
regarded as directed graphs. When assigning lists instead of singletons, square brackets
are appended to the type. Likewise, the list of values to be assigned is enclosed in square
brackets with its values separated by commas.

Element attributes are generally accessed through the element’s identifier in conjunc-
tion with the respective attribute key, both of which are connected through a dot (.),
as is common in many languages. In large structures (i.e., the aforementioned directed
graphs), this scheme of simply appending a dot and the respective attribute key can
be carried forward to an arbitrary extent to reach attributes of subordinate elements at
any depth. It should be noted that identifiers, as well as element attributes always start
with a minuscule letter. Also, every instruction is terminated with a semicolon (;).

1 // declare elements of different types

2 application app1;

3 application app2;

4 os os1;

5 node pc1;

6 interface if1;

7

8 // give them primitive attributes of type string

9 string app1.name="cron";

10 string app2.name="nginx";

11 string pc1.type="server";

12

13 // assign element as attribute

14 os pc1.os=os1;

15 interface pc1.interfaces=if1;

16 interface app2.bindingInterface=if1;

17

18 // assign lists

19 application [] os1.apps=[app1 ,app2];

20

21 // subordinate elements for detailing

22 processor cpu1;

23 int cpu1.cores =8;

24 processor pc1.cpu=cpu1;

25

26 // indirect access to attributes

27 int pc1.cpu.cacheSize =512;

Listing 4.1: Element declaration and value assignment
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A few exemplary instructions to demonstrate how a simple description of a computer,
referred to as pc1, may look like are given in Listing 4.1, with lines two to six depicting
element declarations that solely require type and identifier (e.g. application app1) to
be specified. Lines nine to eleven, in turn, equip these with attributes of type string

to specify name and generic type respectively. Additionally, lines 14 to 16, as well as 24
illustrate how to set elements to be attributes of other elements to enable more detailed
modeling, while line 19 shows how to assign multiple values, in this case elements, at
once. Besides, what has not been mentioned before, this code snippet demonstrates
the usage of double dashes // to initiate comments. These always affect the whole line
and cannot be placed behind a statement that is supposed to be processed. For better
comprehension and to illustrate the concept of these descriptions forming a directed
graph, Figure 4.2 provides a visualization of the structure that results from the provided
code snippet with squares representing both elements and simple attributes, and arrows
respective attribute keys. While this is only a small example, it is indicative of the
language’s ability to define complex scenarios.

What this example also shows is that the assignment of subordinate elements merely
forms relations. Whether these are integral to the parent element, thus increasing its
level of detail as in lines 14, 15 and 24, where pc1 is extended through specifying and
assigning subordinate elements and their attributes, or simply express a relation like
that of an application’s binding interface as in line 16, does not matter to the language.
What these relations mean is ultimately dependent on how the corresponding functions
use such information. To prevent any ambiguity with regard to semantics and ensure
compatibility of subsequently defined elements and functions, it is advisable to define
a meta model specifying required attributes and how they should be treated. For the
scenarios used in the case studies in Chapters 5 and 6.4, a corresponding meta model is
described in Chapter 4.6.

Figure 4.2.: Graphical representation of structure from code snippet in Listing 4.1.

But what if the modeled node had, say, 100 attributes, half of which are other elements
with attributes of their own and several nodes would be needed for a given scenario?
Being able to model elements at a high level of detail as to create realistic scenarios,
raises the question of how to reuse such detailed models. While the process of describing
elements is straightforward, repeating descriptions over and over again to create a mul-
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1 // init -instruction naming four expected parameters

2 init(TYPE ,APPS ,CORES ,CACHE);

3

4 // upon usage , names are enclosed in $-signs
5 string type=$TYPE$;
6

7 // create os element

8 os os;

9

10 // this assignment expects APPS to be a list

11 application [] os.apps=$APPS$;
12

13 // templates can directly define subordinate elements and specify

their attributes

14 processor cpu;

15 int cpu.cores=$CORES$;
16 int cpu.cacheSize=$CACHE$;

Listing 4.2: Example template file to instantiate a simple node

titude of similar elements is highly inefficient, prone to errors and, additionally, bloats
the scenario beyond comprehension. This jeopardizes at least one of the aforementioned
advantages that a dedicated modeling language should deliver. This is where templates
come into play. A simple new-statement allows to instantiate previously defined elements
of arbitrary complexity that can be customized upon creation by providing respective
parameters to the constructor, just like classes in object-oriented programming. Getting
back to the example of a node, the necessary specification could be saved in a template
file (e.g. node.template) that follows the exact same syntax as introduced before. How-
ever, to enable the processing of variable parameters that are passed on when calling
new, the template starts with a special init-statement, specifying how many parameters
it expects and under which reference they can be accessed throughout this template. A
sample is depicted in Listing 4.2.

Note that the parameters’ names used for referencing corresponding values are in all
capital letters. From a technical perspective it is sufficient for these terms to only start
with a capital letter, yet, for improved distinguishability, it is recommended to use all
capital letters. These variables can then be used throughout the template to specify
the shape of the newly created element by simply enclosing them in dollar-signs ($) and
placing them where needed. Listing 4.3 illustrates how to use the keyword new in order
to instantiate elements from the previously defined template. Note that the identifiers of
elements that are defined within a template directly serve as attribute keys to reference
them through their parent element in the same way as is done for attributes of primitive
type. Therefore, they do not need to be globally unique as is required for identifiers
used at the top level of the scenario definition, but only within the template. From a
technical perspective, the translator takes care that newly created sub-elements still get
a globally unique identifier as this is required by the simulation engine, yet not by the
modeling language.
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1 // the initial instructions are basically the same as before

2 application app1;

3 application app2;

4 application app3;

5

6 string app1.name="cron";

7 string app2.name="nginx";

8 string app3.name="word";

9

10 // element ’pc1’ is instantiated from template and customizing

parameters are passed on

11 node pc1=new node("server" ,[app1 ,app2 ],8,512);

12

13 // reuse of the template to instantiate another , different pc

14 node pc2=new node("client" ,[app3 ],4,512);

Listing 4.3: Instantiation call

To further extend the degree to which code is reused, instantiation of subordinate
elements such as the CPU from the example in Listing 4.2 may, again, be externalized
into additional templates. As a result, calling the node template could trigger calls to
other templates, thus subsequently instantiating respective elements and using them as
attributes. In this case, the code that is needed in the node template to instantiate a
new CPU would be reduced to a single line. While the CPU’s complexity is manageable
in the given example, this will come in handy when reaching higher levels of detail.

Function Definition

Having introduced the basics of system modeling, the next step is to have a look at
functions. By enabling potentially state-changing interaction with the system, functions
are what makes simulation possible in the first place. However, before going into details
on syntax, keywords, and operators, some important specifics of how functions work
in the context of the framework and its modeling language should be addressed. In
this framework, functions are not intended to perform arithmetic operations or data
processing in general. Functions specify conditions that must be met to enable their
execution, together with effects that may subsequently be applied as to change the
system’s state. In that sense, functions are not imperative but rather declarative in
nature. Similar to a fine-grained SQL query, a function’s set of conditions characterizes
the shape of elements it may be applied to, yet does not specify how retrieval of such
elements is implemented. The question on how this is done in practice is of no concern
here and left to subsequent processing.

As is common in most languages, parameters can be passed on to functions. Assuming
there is a function that expects a parameter of type node, for example, then providing
a specific node element (i.e., through its identifier) upon function call will result in a
check to determine whether or not related conditions are fulfilled for the respective node

element. If so, the function call will return true along with a list of potential effects
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to be applied to the system state. However, leaving the expected parameter “blank”
by providing an uninitialized variable instead of an existing node element’s identifier,
the function operates as a generator that will output all nodes that meet its conditions,
each one at a time. This is, in fact, one very important feature of functions within
this framework and ultimately required by the simulation engine. Yet, for this to work,
function parameters and defined conditions must not be independent. This will be
covered in more detail later on in Chapter 4.5, where the simulation engine’s functioning
is explained.

While functions serve the purpose of allowing interaction with the system by modifying
its state, they may as well have no state-changing effect. In that case, the evaluation of
a function’s conditions merely determines whether or not execution is possible. Causing
no state changes, such functions do not directly contribute to the simulation’s progress.
Yet, they can be employed as “helpers” for other functions that may simply use them
as additional conditions that are either fulfilled or not, thus further narrowing down the
result set of the calling function. How functions work, is best illustrated with help of
working examples. Starting with a simple function, the syntax will become clear very
quickly and some fundamental operators will be explained.

Listing 4.4 presents the necessary code for a simple function that checks for operational
nodes. Prior to definition, functions need to be declared in the same way as has been
shown for elements in the previous section. In addition, functions must be equipped with
certain attributes that determine how they are processed by the simulation engine, which
is done analogous to the specification of attributes for elements. These comprise duration
and success rate of both setup and execution of a specific function (i.e., setupTime,
setupProb, execTime and execProb) as shown in lines four to seven in Listing 4.4. In
the context of this framework, it is assumed that actions must be setup prior to initial
execution. How long this setup takes and how likely it is to succeed is determined by
respective numeric values. The idea behind this is to account for the different types of
actions that may be modeled. Something like performing an HTTP-GET request does
not pose a challenge and needs less preparation than crafting a zero-day exploit, for
example, which is usually time-consuming and may even fail. However, once an action
has been setup successfully, its performance is shaped by duration and success rate of
execution, determined by two other values. Lastly, a fifth attribute determines whether
or not a function is public. If so, it can be called by actors depending on the fulfillment
of its conditions. On the other hand, should a function not be public, it can only
be called from within other functions, thus explicitly turning it into a helper function.
The first half of Listing 4.4 covers the function’s declaration and the specification of
said attributes that have been chosen to cost minimal time (i.e. one round) in setup
and execution while exhibiting a success rate of 100 % in both regards. The function
definition starts in line ten. The conditions being checked here are made up to serve the
purpose of this example and may look different in a more sophisticated scenario. Having
no effect, this function is what has previously been called a “helper” and was chosen for
the simplicity that results from the absence of effects.

The first thing to note is that a function definition always starts with the function name
that must begin with a lowercase letter. This name has to be unique since functions are
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1 // necessary function declaration

2 function operationalNode;

3 boolean operationalNode.public="true";

4 int operationalNode.setupTime =1;

5 int operationalNode.setupProb =100;

6 int operationalNode.execTime =1;

7 int operationalNode.execProb =100;

8

9 // function definition

10 operationalNode(node PC)

11 {

12 PC.powered =="true" &&

13 PC.interfaces == INTERFACE &&

14 INTERFACE.state=="connected"

15 };

Listing 4.4: Definition of a simple helper function that does not cause any state changes.

globally accessible irrespective of where (i.e., in which template or even the main scenario
file) they have been defined. Following the function name, enclosed in parentheses,
aforementioned parameters are given. These are represented as pairs with the first term
specifying the parameter’s type, and the second term specifying the parameter’s name
for reference throughout the function’s body. Should there be more than one parameter,
these pairs are simply separated by commas (,). It should be noted that the parameters’
names are written in all capital letters that, analogous to the parameters processed upon
template call, mark them as variables. However, from a technical perspective, it would be
sufficient for parameters to only begin with a capital letter to be identified as variables.
Together, function name and parameter list form the function head which is followed by
the function body that, enclosed in curly brackets, contains all conditions and potential
effects. Processing-wise, a function is handled as a large instruction, which is why it
must be terminated with a semicolon (;), just like instructions that are used to describe
the system state.

Inside the body of the function depicted in Listing 4.4, there are different conditions
that a node must fulfill in order to be considered operational within the scope of this
example, with line 12 simply stating that a node must be powered. Whether or not this
is given, shall be determined by comparing the value of the primitive attribute powered

of the corresponding node element referred to as PC (i.e. the parameter name from the
function head) with a provided reference value. To do so, the comparison operator == is
used. The example gets interesting with lines 13 and 14, where another variable named
INTERFACE is introduced that can be identified as such for being spelled in capital letters
only. The intention behind these two lines is to check if the node in question has an
interface assigned to it and whether or not this interface’s state is connected. Just
like in the previous code samples, interfaces are subordinate elements of nodes that
have attributes themselves, and one of these is being checked here to make for a simple
example. Remember that elements, including the subordinate interface, have identifiers
and that if an element is assigned to be the attribute of another element, it is technically
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1 operationalNode(node PC)

2 {

3 PC.powered =="true" &&

4 PC.interfaces.state =="connected"

5 };

Listing 4.5: Definition of a simple helper function that does not cause any state changes
in an alternative notation.

the subordinate element’s identifier that is set to be the attribute value, thus basically
serving as a pointer. This has been shown in Listing 4.1, line 14, for example. However,
in the context of checking whether or not a node is operational, the exact interface

element assigned to a specific node element is of no interest. What matters is that there is
one interface, any interface, assigned to this node and that its state is indeed connected.
Hence, a variable is used to represent whatever interface is “found” at PC.interfaces.

However, the ability to chain attributes through connecting dots (.) known from
the introduction to state descriptions also exists for functions. This means, instead
of referencing the potentially existing interface with help of the variable INTERFACE to
access its attribute state, one may as well point directly to said sub-attribute. An
adapted version of function operationalNode() is depicted in Listing 4.5. Depending
on how many attributes of said interface need to be accessed, the one or the other
notation may result in cleaner code and support structuring.

Irrespective of the chosen notation, in the given example, all specified conditions must
be met for the node to be considered operational. This is why they are combined
through two ampersand symbols &&, representing the AND-operator. A list of all basic
operators that can be used within functions is given in Table 4.1, together with their
descriptions, as well as examples that illustrate usage. There may be cases, in which it is
necessary to group combinations of conditions as to determine the order in which they are
resolved. By default, AND has a higher precedence than OR, meaning that expressions like
A && B || C && D are implicitly treated as (A && B) || (C && D). Using parentheses,
this behavior can be altered, which is especially useful when offering alternative sets of
conditions to decide whether a function can be executed or not.

Having understood this simple example, more complex functions shall be considered
that are not limited to using comparison operators and may also have effects. For this
purpose the model is extended to also include the ability to remotely start a computer.
The corresponding function will illustrate two important things: utilization of helper
functions and specification of effects. Listing 4.6 depicts the respective code snippet.

1 wakeOnLan(node PC)

2 {

3 operationalNode(PC) &&

4 ! ( PC.running == "true" )

5 set boolean PC.running="true"

6 };

Listing 4.6: Definition of a simple effective function that employs a helper function.
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Table 4.1.: Operators to be used within functions.

Operator Symbol Usage Description

AND && c1 && c2 Logical AND requiring both conditions c1

and c2 to be fulfilled as to return true for
the whole expression.

OR || c1 || c2 Logical OR requiring either condition c1 or
c2 or both to be fulfilled as to return true

for the whole expression.

EQUALS == v1 == v2 Compares values v1 and v2 for equality and,
if so, returns true. Instead of specific val-
ues, references may be used, as well.

NOT ! ! (c1) Negates the result of condition c1, so that
expression evaluates to true if c1 is false.

While still being a relatively simple example, the function wakeOnLan() shows that
existing functionality can easily be reused by calling operationalNode() in line three.
This provides an easy way to encapsulate frequently required conditions and include them
with one simple line of code. Apart from the checks that are performed in the course
of calling operationalNode(), to “start the node” it is also necessary that the node
is not already running. Line four inserts the respective condition that also illustrates
on how the NOT-operator is used. Of course, the condition may equally be changed
to PC.running=="false" to achieve the same result without using the NOT-operator.
However, this would require that the state of PC.running is maintained in any case,
that is, also when the node is not running. Yet, depending on the meta model, the
attribute running might only come into existence upon calling wakeOnLan() or any
other function to power on the node. In that case, there would be no previous state in
which PC.running=="false" would ever be fulfilled so that using the NOT-operator is
obviously mandatory. Line five finally specifies the function’s effect before the function
body is closed. Note that this statement starts with the keyword set, followed by the
word boolean to indicate the type of the information that is being set. The third part
of the statement specifies the information that is supposed to be persisted. In this
case, the value true shall be assigned to the attribute running of the respective node
referenced through PC. Variables that are used in the course of specifying conditions
can evenhandedly be used when describing the function’s effects. Functions can have
an arbitrary number of effects that are simply separated through line breaks or white
spaces.

Apart from setting, there is also the possibility to add or delete information, using
add or del instead of set. The difference between setting and adding is that set

will overwrite previously stored information that could have been referenced through
PC.running, whereas add does not interfere with any existing value and simply appends
the specified information. However, if using set in a context where there is no previous
value to be overwritten, it will automatically behave like add. Consequently, repeated
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adding turns singletons into lists. Deleting works the other way around and removes
the data point specified in the third part of the statement if the type fits. With help
of these modifiers, functions may alter the system state thus potentially affecting the
different actors’ subsequent options to interact with the system. No matter which type
of modification is used, the syntax is exactly the same as introduced with the example
of set. A compact overview that summarizes the three modifiers is given in Table 4.2,
together with examples and descriptions.

Note that setting, adding or deleting can only be done for singletons. That means, the
information right of the equal sign of any such instruction must not be a list instance.
As a result, an instruction like add application os1.apps=app1 cannot be adapted to
add application os1.apps=[app1,app2,app3] in order to assign several applications
at once. Instead, either one add instruction per application instance is needed, or a
variable must be used in such assignments, whose specific value results from another
instruction that serves as a generator and outputs singletons. This causes said variable
to take different single values during unification, thus resulting in an individual add-
instruction for each instance of APP. An example of how this works is given in Listing 4.7
that simply removes all applications from PC for which the attribute updated is not true.

This section gave an introduction to the definition of functions, focusing on their gen-
eral structure and syntactical aspects that must be adhered to. Also, and probably most
importantly, the application of effects has been presented that is integral to interaction
simulation. However, despite being sufficient for some illustrative examples, the condi-
tions to determine when and how functions may be executed that have been presented
so far, are yet limiting.

Table 4.2.: Modifiers to specify function effects.

Modifier Example Description
set set boolean PC.running="true" The set-modifier writes the given value to

the specified attribute in a way such that
any previously defined value is overwritten.

add add application OS.apps=app3 The add-modifier writes the given value to
the specified attribute in a way such that it
is appended to potentially existing values.
In case of one existing value, this modifier
turns singletons into lists.

del del application OS.apps=app3 The del-modifier removes the given value
from the attribute. When the last value as-
signed to an attribute is being removed, the
whole attribute is removed from the model
since values are conditional to their exis-
tence. Using an uninitialized variable (e.g.
VAR) instead of a specific value (i.e. app3 in
the given example) when deleting, causes all
values to be removed at once, thus removing
the whole attribute.
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1 removeOutdatedApps(node PC)

2 {

3 PC.os.apps == APP &&

4 ! ( APP.updated == "true" )

5

6 del application PC.os.apps=APP

7 };

Listing 4.7: Assigning multiple values.

Built-in Functors

While using AND and OR to combine simple checks for equality (or inequality) of attributes
may get one further than expected, detailed interaction modeling may require a little
more. For this purpose, the language has been equipped with functors that can be used
within function definitions, primarily to refine conditions. They implement mechanisms
beyond the abilities of the operators presented in Table 4.1, thus allowing for more fine-
grained functions. In the following, purpose and usage of these functors is explained:

• isInList(x,y) checks whether or not x is in the list that is referenced through y.
The shape of y is that of an attribute reference such as os1.apps from line 19 of
Listing 4.1 which points to a list of values. Whether the element whose attributes
are being referenced here is explicitly given through an identifier (e.g. os1) or
instead by using a variable, does not matter. Also, as was the case with previous
attribute references, it is possible to reference attributes that are deeper within
a hierarchy of elements by chaining attribute keys using dots (.) as delimiters.
However, x is either a specific value or a variable that may hold a specific value. It
cannot be instantiated as a reference to some element’s attribute (e.g. app1.name).
Should this functor be used with x being an uninitialized variable, it will serve as
a generator, repeatedly yielding one specific instance of x for every value referred
to through y.

• isOfType(x,y) checks whether or not y is of type x. This functor is only applicable
to elements and not primitive types such as string or int. Whereas x must be
specified, y may either be an element’s identifier or a variable referring to an
element. Should this functor be used with an uninitialized variable serving as y,
then it will work as a generator and return one instance at a time of said variable
for each element within the model that is of the specified type.

• findAllWhere(x,(conditions)) creates a list of all elements x that meet the spec-
ified conditions. This functor must be used in combination with an assignment
like LIST=findAllWhere(X,(isOfType(application,X))), specifying a variable
that is supposed to hold the generated list. Any conditions that can be used
throughout functions and exhibit the aforementioned generator property can be
used as conditions in the sense of this functor. These comprise, for example,
the checks for equality (or inequality), as well as the two previously mentioned
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functors. Just like in functions, these conditions can be combined through the AND

and OR operators. Note that this functor does not generate single results one after
another but a list instance holding several values at once. Given that the applica-
tion of effects always concerns singletons, such a list can only be an intermediate
result of the function it is generated in and will require further processing.

• pickFromList(x) will randomly pick one item from list x. This functor must also
be used in an assignment that specifies the variable which is supposed to hold
the value picked from x. An example building upon the result from the previous
functor findAllWhere() could look like VALUE=pickFromList(LIST). Note that
this functor expects x to be a list instance and not a reference to an attribute
which may hold several values. Furthermore, from a technical perspective, this
could be a generator, yielding one of the items enclosed in x at a time. However,
the functor is implemented such that it only yields one of the enclosed items that
has been picked randomly.

• isMember(x,y) is similar to the previously introduced isInList()-functor in that
it checks whether or not x is in list y. However, in this case, y is not a reference
to an attribute that may hold a list of values but instead is a list instance as the
ones resulting from using the findAllWhere()-functor. Assuming that x has been
specified, this functor will return true or false, depending on x’s presence in y.
Yet, should x be an uninitialized variable, it will serve as a generator, yielding one
result per element in y.

• append(x,y) appends element x to list y and returns a new list instance, which is
why this functor must be used in an assignment (e.g. NEWLIST=append(X,LIST)).
Again, note that y is not a reference to an attribute holding several values but a
list instance as resulting from findAllWhere(), for example.

• concat(x,y) concatenates two strings x and y and returns the result which must
be assigned to a new variable as in WORD=concat("Hello","World"). Both x and
y may either be explicit strings or variables that hold strings. Attribute references
cannot be used as arguments. Note that this functor may cause unintended behav-
ior if used with uninitialized variables for yielding an infinite number of results.

• len(x) returns the length of x that must be a list instance. This functor must be
used in an assignment like LEN=len(LIST) to store the returned value.

• getHash(x) is used in an assignment such as HASH=getHash("password") to gen-
erate an md5 hash from x and store it in HASH. The practical use of this functor is
limited except for delivering checksums to easily detect manipulation of attributes
that may have been caused by previous state-changing actions.

Obviously, the first several functors are more sophisticated than len() or concat(),
for example. Therefore, Listing 4.8 presents a minimal working example that utilizes the
initial four functors isInList(), isOfType(), findAllWhere(), and pickFromList().
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1 // create node

2 node pc1;

3 // create os

4 os os1;

5 string os1.type="client";

6 // assign os to node

7 os pc1.os=os1;

8 // create pool of applications , assuming a template exists

9 application pc1.os.apps=new application("MailClient");

10 application pc1.os.apps=new application("WordProcessor");

11 application pc1.os.apps=new application("Browser");

12 // declare function - omitting timings here

13 function deleteRandomApp;

14 ...

15 deleteRandomApp(node PC){

16 isOfType(node ,PC) &&

17 APPS=findAllWhere(X,( isInList(X,PC.os.apps))) &&

18 APP=pickFromList(APPS)

19

20 del application PC.os.apps=APP

21 };

Listing 4.8: Minimal working example for usage of first functors isInList(),
isOfType(), findAllWhere(), and pickFromList().

Presenting how these may be used in practice should clarify how to employ the remaining
ones. To better illustrate what function deleteRandomApp() does, the related state
description it operates on is also provided. Obligatory function attributes (line 14) have
been omitted, though. Note that if the depicted function is used as a generator, and not
called with a specific node instance as a parameter, the first condition of the function
in line 16 serves to narrow down the space of elements from which to instantiate the
variable PC. Considering that the given scenario only consists of five elements, this is not
really necessary as the search space is small and there are no other elements exhibiting an
attribute named os that, in turn, holds an attribute called apps. Yet, in larger scenarios
this may increase performance.

4.4.2. Low-level Representation in Prolog

Considering that the previously introduced high-level language serves as an abstrac-
tion layer to simplify modeling and decouple it from whatever happens in subsequent
processing, there must be a low-level representation that suits the simulation engine’s
requirements. Furthermore, there must be a way to transform the former into the latter.
As has been mentioned before, this low-level representation is based on SWI-Prolog and
a corresponding translator has been implemented, both of which will be introduced in
the following. Processing-wise, it would now be the translator’s turn to generate the
required Prolog facts and rules. However, for the sake of didactics and to better reflect
the actual development process, the low-level representation is introduced first.
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Describing States With Fact Collections

Knowing what can be done with the high-level language, there are two requirements that
appear to be of particular importance when it comes to the low-level representation:

• The low-level model must allow for the adequate description of all elements, their
attributes and relations, as well as functions provided through high-level descrip-
tions so that transformation does not cause any information loss.

• Low-level representations that adhere to this model must be automatically pro-
cessable by the simulation engine irrespective of what has been modeled or any
semantics.

In order to develop a suitable model, these requirements must be broken down, re-
sulting in subordinate tasks. Deciding on a structure on how to represent the state
description introduced in Chapter 4.4.1 appears to be a reasonable first step. The previ-
ous introduction to Prolog in Chapter 2.2 presented collections of facts as means to store
information. Yet, while predicates and arity of such collections may usually be chosen
freely, the need to ensure interoperability with the simulation engine and the intent to
keep its complexity as low as possible, suggests to agree on a unified structure with only
few predicates and fixed arity. From a structural point of view, a single predicate with
arity three appears sufficient to represent elements with all their attributes. The pred-
icate’s first atom may serve as the element’s identifier, the second one as attribute key
and the third one as the corresponding value. Likewise, by using identifiers of existing
elements as values, this allows to define relations to form trees or graphs.

The structure that has ultimately been employed is only slightly more complex. To
also incorporate types, the previously suggested triple was extended to a quadruple,
with elementAttribute serving as the respective predicate that was chosen freely. In
addition, a second predicate with arity two has been introduced to solely store element
identifiers and their respective types. This predicate is named element. Based on these,
all state information from the high-level description can easily be represented. Listing 4.9
provides an example of how this looks in practice, depicting the Prolog representation
of the high-level description from Listing 4.1 where different elements with only few
attributes had been defined and related to each other. As illustrated, the first term
of element/2 specifies the respective element’s type, whereas the second one holds the
identifier through which it is referred. The four terms employed in elementAttribute/4

represent element identifier, attribute type, attribute key and attribute value in this exact
order. Please note that there is probably no limit to the number of alternative low-level
representations that would make for an equally suitable solution so that this is not the
only way to do it, but one of many.

While being considerably more extensive, the low-level representation’s structure is
relatively simple and straightforward. Predicate elementAttribute/4 is fully capable
of representing structures of related elements irrespective of their depth, it just needs
more space to do so. Consequently, translating the one into the other does not pose
any challenges. However, there is more to an adequate low-level representation, namely
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1 element(application ,app1).

2 element(application ,app2).

3 element(os ,os1).

4 element(node ,pc1).

5 element(interface ,if1).

6 element(processor ,cpu1).

7 elementAttribute(app1 ,string ,name ,’cron’).

8 elementAttribute(app2 ,string ,name ,’nginx’).

9 elementAttribute(pc1 ,string ,type ,’server ’).

10 elementAttribute(pc1 ,os ,os ,os1).

11 elementAttribute(pc1 ,interface ,interfaces ,if1).

12 elementAttribute(app2 ,interface ,bindingInterface ,if1).

13 elementAttribute(os1 ,application ,apps ,app1).

14 elementAttribute(os1 ,application ,apps ,app2).

15 elementAttribute(cpu1 ,int ,cores ,8).

16 elementAttribute(pc1 ,processor ,cpu ,cpu1).

17 elementAttribute(cpu1 ,int ,cacheSize ,512).

Listing 4.9: Low-level representation of element declaration and value assignment

functions. In Prolog, there is no such thing as functions. Yet, as introduced in Chap-
ter 2.2, there are rules and these are suitable to implement required functionality as will
be shown in the following. However, finding a suitable representation that serves the
intended purpose of functions is more challenging than it was for mere state descriptions.

Representing Functions Through Rules

Just like functions, rules can generally be divided into head and body. However, to ade-
quately represent functions as introduced in Chapter 4.4.1, a rule’s head is considerably
more complicated than the corresponding function head, whereas a rule’s body merely
contains respective conditions. Hence, for better comprehension, these two parts of rules
will be introduced separately, starting off with the rule head.

To ensure that the simulation engine is able to determine all actions, decide upon their
feasibility and ultimately perform them, a defined structure is needed. Given the fact,
that all functions must be declared as such, the simulation engine can easily determine
all functions and even distinguish between those that are publicly available and those
that are not by checking their attribute public. To provide a unified way of calling all
functions, a dedicated predicate with arity four has been introduced that is eval/4 and
characterizes the default rule head. The number of parameters a function may have is
not reflected by the predicate’s arity since these are enclosed in a list that is treated
as only one of the four terms. Would the arity be dependent on a function’s number
of parameters, the simulation engine would have to count these first to determine the
correct predicate. While this is definitely possible, putting all parameters into a list
treated as one compound term appeared to be more convenient.

The first term of predicate eval/4 specifies the function name as its sole identifier,
which is why these names must be unique. Furthermore, the simulation engine only
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Table 4.3.: Overview of terms used in the default rule head.

Term Description State

# 1 Holds the unique function
name.

Must be specified, which is done automatically by
the simulation engine, based on available functions.

# 2 Used for the current actor. Must also be specified, which is done by the simula-
tion engine, based on a strict order in which actors
take turns.

# 3 List of all function param-
eters.

Uninitialized when determining all available op-
tions. Specific values provided upon execution at-
tempt which is timed by simulation engine.

# 4 Holds result that is either
0 or effect quadruple.

Always kept uninitialized to retrieve result from
rule evaluation based on specific combination of
function and parameters.

expects declared functions, and nothing else, to be valid first terms, implying that de-
clared names and names from function definitions must match. The second term is
used to provide the identifier of the actor on whose behalf a function is called. Even
though the actor could be provided through one of the function’s parameters, passing
it through a dedicated term is convenient for two reasons. First, the simulation engine
has no semantic understanding of a function’s parameters, so presuming that any ac-
tor used in the parameters should be the currently active actor may cause unintended
behavior. Second, as has been outlined before, functions may be used as generators to
determine valid parameters in the first place. In fact, this is of utmost importance for
the simulation engine when determining viable next steps. Therefore, during simulation,
parameters will frequently be kept uninitialized, while the actor always has to be spec-
ified. Otherwise, an action may be deemed feasible just because any actor can call the
corresponding function. The aforementioned list of function parameters serves as the
third term of eval/4. Depending on the simulation engine’s state, this term is either
uninitialized to determine possible options for a given function, or initialized to check if
conditions are still fulfilled before respective effects are applied. The final term in the
rule’s head is reserved for its “results” that relate to a function’s effects as described in
Chapter 4.4.1. This term may either hold the integer 0 in case of helper functions, or
a quadruple specifying one effect of said function. Should a function have more than
one effect, there will be several instances of the corresponding rule, one for each effect.
During simulation, all of these will be evaluated to determine all effects that need to
be applied. Yet, this does not cause any additional computational effort, as will be
explained in Chapter 4.5, but avoids further complication of the rule head and simplifies
processing by the simulation engine. A summary of all four terms is given in Table 4.3.
To better illustrate the previous outline, Listing 4.10 shows the head of the rule that
represents function operationalNode(node PC) from prior examples. For the sake of
simplicity, placeholders are employed where usually conditions would be in the rule’s
body. These will be covered later on.
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1 eval(operationalNode ,ACTOR ,[PC],0):-

2 <condition 1>,

3 ...

4 <condition n>.

Listing 4.10: Rule head for function operationalNode()

It should be noted that while Prolog comes with built-in predicates that allow to
set/add (assert) and delete (retract) information upon rule processing, instantaneous
effect application is not desirable so that these predicates are not part of any rules. Not
only would such behavior render separately defined chances and timings obsolete that
have been set as additional attributes, it would also make it impossible to check if a
function’s conditions are fulfilled without directly applying its effects. In consequence,
effects are better returned as results of unification during rule evaluation to have the
simulation engine take care of their processing.

As opposed to the rule head, the body is comparatively simple for only comprising
the conditions that decide whether or not a corresponding action can be performed.
However, the low-level representation of these conditions, which are technically speaking
goals in Prolog, look a lot more complicated than their high-level counterparts. As was
the case in the high-level language, these are combined through logical AND and OR
operators whose precedence can easily be altered by using parentheses in equal measure.
The conditions and functors that can be used in the modeling language have counterparts
in the low-level representation. Some of these are simple queries of the predicates used
to describe the system state that have previously been introduced, others employing
built-in predicates and predefined rules. To understand the low-level representations
of conditions presented in the following, some basic Prolog operators from Chapter 2.2
should be remembered. In Prolog, a simple comma (,) represents a logical AND, whereas
a semicolon (;) expresses a logical OR. The NOT operator that is referred to as an
exclamation mark (!) in the modeling language, is represented through \+. A dot (.)
indicates any statement’s end, that includes both facts and rules as a whole.

In the low-level representation, checks for equality and inequality, as well as the func-
tors isInList() and isOfType() from Chapter 4.4.1 are realized as mere queries of the
predicates element/2 and elementAttribute/4 and do not require any sophisticated
functionality. In that sense, checking whether a node referred to as PC is really powered

as expressed by condition PC.powered=="true" from the operationalNode()-example
is represented as elementAttribute(PC,boolean,powered,’true’). When processed
by Prolog, this query will determine whether or not a given node instance meets this
condition or, when operating as a generator, reveal all instances of PC that do. De-
pending on the degree to which attribute keys are concatenated to refer to attributes
of subordinate elements as in PC.interface.state=="connected", for example, such
queries must be extended to check on chains of element attributes. In the same way,
isOfType() is represented by queries on the predicate element/2. The rule correspond-
ing to function operationalNode(), which already served to illustrate the structure of
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1 eval(operationalNode ,ACTOR ,[PC],0):-

2 (element(node ,PC)),

3 (elementAttribute(PC ,boolean ,powered ,’true’)),

4 (elementAttribute(PC ,interface ,interfaces ,RAND0829),

5 elementAttribute(RAND0829 ,string ,state ,’connected ’)).

Listing 4.11: Example of a rule solely relying on querying the fact collection

rule heads, gets by with these simple queries. To make for a better example, assume
that the representation of operationalNode() as given in Listing 4.5 is augmented with
a check to determine whether the element referred to as PC really is of type node so that
the low-level representation also contains a query to element/2. This is simply done by
inserting the additional condition isOfType(node,PC) at the beginning of the high-level
definition. Listing 4.11 depicts the corresponding rule in Prolog.

As can be seen, all conditions are queries to the fact collection represented through
predicates element/2 and elementAttribute/4, not requiring any deductive reasoning
but only unification to be evaluated. These queries are combined through commas (,)
representing the logical AND operator. The fact that they are all enclosed in parentheses
which are used to determine precedence, has no impact in the given example. However,
it is the translator’s standard procedure to enclose goals that result from conditions
and functors in the high-level language in parentheses to mitigate any ambiguity con-
sidering evaluation order, especially when low-level representations consist of numerous
statements. Lines five and six are noteworthy since these, together, represent condition
PC.interfaces.state=="connected" that makes use of concatenation to refer to at-
tributes at a deeper level. Considering the previous explanation on how information in
the predicate elementAttribute/4 is structured, there is no way that querying a single
entry can represent such a condition. Therefore, queries must be composed to check on
related entries in elementAttribute/4. To accomplish this, unique variables are used
to establish links between elements and the attributes of their subordinate elements.
Through unification, Prolog will take care to find a match, if possible. Otherwise this
goal cannot be satisfied for the current instance of PC so that the whole function either
fails or another PC instance has to be checked.

Other conditions that may be used in the high-level function definition (i.e., self-
defined functions and functors other than isOfType() and isInList()), do not solely
rely on fact queries. While calls to self-defined functions are simply represented by incor-
porating the related rule, the other high-level functors rely on built-in predicates from
Prolog or pre-defined rules that are inherent to the simulation engine. Table 4.4 gives
a comprehensive overview of these and aligns them with their corresponding high-level
representation. For completeness sake, previously explained fact queries are included
here, as well.
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Table 4.4.: Overview of high-level functors and conditions together with their low-level
representations. Note that from a technical perspective, the append-functor
causes items to be prepended. However, the order of lists is not relevant to
any of the functors or operators.

High-level condition/functor Low-level representation

PC.powered==”true” elementAttribute(PC,boolean,powered,’true’)

! (PC.powered==”true”) \+(elementAttribute(PC,boolean,powered,’true’))

PC.interfaces.state==”connected” (elementAttribute(PC,interface,interfaces,RANDXYZ),
elementAttribute(RANDXYZ,string,state,’connected’))

isInList(APP,pc1.apps) elementAttribute(pc1,application,apps,APP)

isOfType(node,PC) element(node,PC)

LIST=findAllWhere(X,(goals)) findall(X,(goals),LIST)

ITEM=pickFromList(LIST) choose(LIST,ITEM)

isMember(ITEM,LIST) member(ITEM,LIST)

NEW=append(ITEM,LIST) NEW==[ITEM|LIST]

WORD=concat(”one”,”two”) atom concat(”one”,”two”,WORD)

LEN=len(LIST) length(LIST,LEN)

HASH=getHash(VALUE) md5 hash(VALUE,HASH,[])

4.4.3. Translator

The translator is responsible to transform the high-level definitions written in the mod-
eling language into low-level representations in Prolog. Previous examples of state and
interaction descriptions in both representations illustrate that this can generally be done
on a per instruction basis, only requiring contextual information on few occasions. This
is the case when processing templates, for example.

The translator is implemented in Python and relies on the Parsimonious library [54]
from Erik Rose, a parser which is based on parsing expression grammars (PEG). Process-
ing of all files that need to be translated is done in a multi-stepped approach to resolve
different statements and instructions in a convenient order. Furthermore, translation is
done recursively to process templates at any depth of the described structure, creating
an instance of the main worker for every element instantiation triggered by the new key-
word followed by the respective template name. Instances of the worker class process
complete files in consideration of provided contextual information which may comprise
parameters for the init-statement of a template, as well as the identifier of the parent
element from which instantiation of the subordinate element has been initiated. The first
worker instance that processes the main scenario definition file is the only one operating
without contextual information since this file represents the scenario’s root.

To translate a scenario definition, the only mandatory input is the definition file itself.
This, however, assumes that the corresponding library where potentially referenced tem-
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1 elementdef = ws type ws identifier ws eos

2 ws = " "*

3 type = lowercase alphanum*

4 identifier = lowercase alphanum*

5 eos = ws ";" ws

6 lowercase = ~"[a-z]"

7 uppercase = ~"[A-Z]"

8 alphanum = digit / letter

9 digit = ~"[0-9]"

10 letter = uppercase / lowercase

Listing 4.12: EBNF extract for parsing element declarations

plates are stored, is in the same location as the definition. Should deviating component
libraries be used, these must be specified through providing path information.

General Working Mode

The parsing of any files is preceded by completely loading the file into memory. On
this occasion, comments may already be filtered out and possibly included snippets be
integrated accordingly. These snippets represent externalized code that is stored outside
the main scenario definition. This may be useful to maintain function properties such
as timing and success probabilities separately. Once the file has been fully loaded,
the parser evaluates it with help of a grammar that specifies symbols and defines the
patterns that are needed to recognize these. Defined symbols can be used to describe
more complex symbols thus avoiding redundant definition. Said grammar is formally
described in extended Backus-Naur form (EBNF) [16, 133] that must cover all symbols
the parser might encounter. To give a simple example, a grammar may state that the
symbol word is defined as a continuous sequence of characters ranging from a to z.
The symbol sentence, in turn, may be defined as a sequence of symbols of type word

that are delimited by white spaces, ending with a full stop. Based on this grammar,
the parser would be able to recognize and dissect sentences and words, as long as the
analyzed text does not contain capital letters, numbers or any other symbol that has not
been defined. For better comprehension, an extract of the EBNF that is used to process
element declarations is depicted in Listing 4.12. While this is only a simple example, it
conveys the notion of how grammar definition works. Note that this extract contains
unnecessary redundancy with regard to symbols type and identifier which, however,
improves readability in this example.

If the provided document has been parsed successfully, an abstract syntax tree (AST)
is generated. This is a hierarchical representation of all identified symbols and how they
are related to allow for subsequent processing. This tree is traversed bottom up by a
node visitor, starting with the leaves. In this course, identified symbols are processed,
transformed if needed, and returned to their parent node. Since specific values that are
used within conditions are the same for both high-level and low-level representations on
many occasions, the need for transforming is limited to nodes in the AST that, together
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with their child nodes, represent complete expressions. Considering this, the single
values of a condition that serves to perform comparison for equality do not need to be
transformed, for example. Instead, the node that handles processing of the condition as
a whole will simply take the values from the child nodes and assemble the corresponding
expression for the low-level representation. This, in turn, will be returned to the next
higher node in the AST for further processing. To better illustrate this, Figure 4.3
depicts a simplified extract from an AST where the focus is on the functor isOfType(),
indicating which operation is performed at what point during traversal.

Figure 4.3.: Traversal of the AST to translate high-level to low-level representation.

Multi-stepped Processing of Files

The outlined process of parsing and transforming of high-level scenario definitions is di-
vided into distinct steps to incorporate contextual information where needed and allow
for pre-processing of certain instructions. This pre-processing concerns included snip-
pet files, for example. To avoid parsing and interpreting yet another instruction, pre-
processing takes care of dereferencing included snippets and incorporates their contents
as if reading one continuous file. Whenever elements are instantiated from templates,
contextual information is required to correctly process enclosed instructions and assign
the resulting element and its attributes accordingly. However, the parsimonious library
can only process context-free grammars (CFG). While this comes with benefits as the
utilized EBNF is comparatively user-friendly, it impedes the building and processing of
one overarching AST. In consequence, transforming high-level to low-level representation
in one go is hardly feasible. To circumvent this, the aforementioned recursive instanti-
ation of workers has been implemented, allowing to process templates in the context
that they have been called in.

Once all referenced snippets and templates have been processed in their respective
contexts, the translator generates an intermediate representation of the scenario. This
is an extensive monolith which is still based on the modeling language, yet independent
from all previously referenced content. It contains all required information as if snippets
had not been externalized and all elements were defined manually without resorting to
templates. Based on this intermediate state, translation can be done truly context-free
since all calls to templates from the different levels in the scenario’s hierarchy, and the
variable parameters they employ, have already been resolved.

59



4.5. Simulation Engine

On the basis of translated scenarios, the simulation engine takes over, fulfilling the
primary purpose of this framework: controlling interaction simulation of all involved ac-
tors and applying resulting state changes accordingly. Yet, furthermore, the simulation
engine is also responsible to log the progress of the different actors for subsequent evalua-
tion. The simulator’s general mode of operation, as well as the representation of progress
are covered in the following. Finally, some details with regard to its implementation are
addressed.

4.5.1. Operational Mode

The simulation of attack and defense is performed in an event-discrete fashion with time
represented through rounds for which the simulation engine maintains a counter repre-
senting the time-wise progression of the simulation. Consequently, all public attacker
and defender actions take a certain amount of rounds to execute, serving to put the dif-
ferent kinds of actions into perspective and make simple tasks consume less “time” (i.e.,
rounds) than complicated ones. Furthermore, actions are characterized by individual
success probabilities to account for the possibility of complex tasks to fail. Before any of
these actions can be used effectively, though, they must initially be set up which takes
additional rounds and is subject to yet another probability. However, this setup is only
needed once per action and actor. The intention behind this is to reflect time and effort
involved in preparing specific actions such as exploits, as well as the chances that this
ultimately fails and related effort was in vain. Legitimate actions, on the other hand,
that represent intended interaction with systems and software may have setup times as
low as one round, succeeding with a chance as high as 100%. The attributes of a function
that account for these probabilities and durations have already been introduced in the
context of defining functions in the modeling language in Chapter 4.4.1.

All actors have the opportunity to start actions once per round, one after another in
a fixed order. This order is determined through the order in which actors are defined
in the scenario. Once it is a given actor’s turn, she may initiate as many actions as
the current system state allows for. Which actions are feasible and can therefore be
initiated is determined with help of unification. For a given actor and the known list
of generally available actions, the simulator checks if, and for which input parameters,
a Prolog rule evaluates to true. A list of ongoing actions is maintained for each actor,
keeping track of which actions have been started when and in which round they are
supposed to be finished. In the beginning of every new round, these lists are checked by
the simulation engine. This is not only done to check for due actions, but verify that
all ongoing actions are still generally feasible and in line with the current system state.
Should actions have become impossible due to one or more previous state changes, the
simulation engine will detect this and abort respective actions. This is the case when
a defense may have moved a target out of the attacker’s reach, for example, but also
when the system detects that actions would cause a state change that is already present.
While this may sound abstract, a simple example would be if the attacker engages in
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different actions that all yield the same effect and one of them succeeds earlier. In this
case, redundant actions are terminated. When checking all ongoing actions as described,
the simulator will ultimately come across due actions, once in a while. If these are still
feasible, the simulator will attempt to execute them. The order of attempting execution
is the same as the order in which these have been enlisted. Whether or not this attempt
is successful depends on the respective action’s probability. A dice roll is used to decide
whether the action was successful or not and, if so, the state is modified accordingly.
This processing of queued setups and executions is depicted in Algorithm 1.

As has been mentioned before, to represent functions with multiple effects, one in-
stance of the corresponding low-level rule exists for any single effect. This is intended
to keep rule heads simple and not maintain lists of lists in the fourth term of eval/4.
Except for the respective effect, these rules are absolutely identical. While one might
think that this causes additional load for repeated evaluation of the same rule, a conve-
nient feature named tabling takes care of this. With tabling enabled, goals in Prolog are
not re-evaluated but looked up if they have been evaluated before. This way, no further
computational effort is needed so that evaluating multiple versions of the same rule does
not slow down simulation. Furthermore, values that can be looked up also accelerate
evaluation of other rules if required goals are the same. To make sure that this tabling
does not interfere with the simulation engine’s task to determine feasible actions on the
basis of the current state, generated look-up tables are deleted after every successful
state change. Once checking and attempted execution of due actions is done, the actors
may start over with enlisting actions.

With regard to attacker behavior, the simulation engine employs a greedy attacker that
tries to perform all available attack actions in parallel. Hence, once an attack action
becomes available (i.e., the action’s requirements are met), the attacker will start it.
But once an action has been started, the same action cannot be initiated with the same
parameters again, as long as it is in the list of ongoing attacker actions. For example,
an attacker can start a phishing attack against five different targets in a single round.
However, once she has started a phishing attack against a target, the attacker has to wait
until this phishing attack was either successful, failed or was defended, before launching
another phishing attack against the same target. But if learning of a new target, the
attacker is free to start a phishing attack against this new target any time.

4.5.2. Measuring and Logging Progress

The attackers’ progress is measured in form of revenue which is generated through com-
promising certain resources that have been assigned a specific value. This value can be
freely chosen on a per resource basis. The simulation engine will extract this value from
any resource that is equipped with an attribute named externalValue and assign it
to the corresponding attacker, once she gets hold of it. For each round the simulation
engine stores the generated revenue and relates the accumulated amount to the number
of rounds that it took the attacker to reach it. Hence, the simulation engine does not
report costs on a per action basis but counts the overall time till compromise and the
maximum revenue generated in a given scenario. These two measures are not specific
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Algorithm 1 Processing queue of actions in setup and execution

Require: currentRound <= maxRounds
1: procedure processActionQueue(currentRound)
2: for actor ∈ ListOfActors do . this is an ordered list
3: for action ∈ actor.ongoingSetups do . check setups first
4: if action.dueRound == currentRound then
5: randomNumber ← getRand(0, 1) . get rand between 0 and 1
6: if randomNumber <= action.setupProb then
7: actor.availableActions.append(action)
8: end if
9: actor.ongoingSetups.remove(action)

10: end if
11: end for
12: for action ∈ actor.ongoingExecs do . check executions second
13: fulfilled← checkRequirements(action) . action requirements met?
14: if fulfilled == True then
15: if action.dueRound == currentRound then
16: randomNumber ← getRand(0, 1)
17: if randomNumber <= action.executionProb then
18: applyEffectsOf(action) . state changes incurred
19: actor.ongoingExecs.remove(action)
20: end if
21: end if
22: else . abort if requirements not met
23: actor.ongoingExecs.remove(action)
24: end if
25: end for
26: end for
27: end procedure

to any chosen defense and serve as comparators to measure the impact a defense has
on attacker success. This attack strategy and metric is similar to the method used by
P2CySeMoL [63] and pwnPr3d [75]. The alternative would be to limit the number of
actions an attacker can execute in parallel and assign costs to each action. However,
this would require an intelligent attacker with a strategy that strives to make optimal
decisions. Furthermore, these decisions would need to incorporate observable system be-
havior (i.e. noticeable effects of the currently employed defense) while still being subject
to imperfect knowledge. Considering this, the attacker itself would become an influenc-
ing factor in the experiment so that evaluation results would not only reflect effects of
the defense under test but also changes in attacker behavior, thus impeding fair com-
parison. In this regard, a greedy attacker is suitable for the specific purpose since all
employed defenses “face” the same potent attacker, making comparison ultimately fair.
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Apart from revenue, the simulator keeps track of all initiated, aborted, and success-
fully executed actions on a per round basis for each actor. For successful actions, the
corresponding state changes are logged, as well. In addition to the quantitative analysis,
these data allow for a qualitative analysis and enable the user of the framework to inves-
tigate how and why different states came about. While measuring and logging revenue
is important in order to quantify the attacker’s success under different conditions, the
simulation engine itself does not require this and will operate irrespective of any such
values being assigned to resources. Once the defined number of rounds to simulate has
been reached, the simulation engine will export said data in form of CSV files for each
actor. Furthermore, the current state of the Prolog instance will be saved for subsequent
investigation, if needed, or simply to continue simulation at a later point in time.

4.5.3. Implementation

The simulation engine is based on Python (3.7) and SWI-Prolog [69], one of the most
actively maintained open-source Prolog implementations that was initially released in
1987. To bridge these two, the PySwip library [137] is used that allows to perform queries
to Prolog databases from within Python programs. To accomplish this, the Python-based
part of the simulator maintains a dedicated Prolog instance that has been loaded with
the scenario’s low-level representation. For the sake of simplicity, Python takes care
of all organizational aspects that are related to the simulation process. This includes
keeping track of rounds, durations, and probabilities, but also logging all interaction,
no matter if successful or not. Furthermore, Python also handles setup and execution
queuing, and only resorts to Prolog to determine available actions, verify fulfillment of
their requirements, and apply state changes, if necessary. This determining of available
actions makes extensive use of previously introduced unification, allowing to simply
query for all combinations of rules and respective parameters that evaluate to true at
any given time for the current actor. The resulting list is what the calling Python script
treats as executable actions. Compatibility is ensured through the unified structure of
the low-level representation thus enabling Python to retrieve required information and
perform all needed operations on the basis of only few predefined queries. As a result,
the simulation engine is fully independent from what has been modeled and can equally
be used to simulate interaction of any kind in any other domain.

4.6. A Unified Model for Networked Systems and Interaction

So far, this chapter gave a comprehensive introduction to the framework, focusing on
the modeling language to describe scenarios and actions, as well as the simulator that
processes these scenarios to determine the different actors’ possible steps, apply respec-
tive state changes, and ultimately reveal how different conditions affected their progress.
However, the preceding outline of the simulator’s working mode revealed, that the sim-
ulator is fully agnostic to what has been modeled. This means that, apart from the
necessity of defining actors and actions, there are no further requirements or support
mechanisms ensuring that modeled actions are actually compatible with the shape of

63



the described system to perform simulation on. As a result, different attacks or defenses
might not be executable and their effects never applied, simply for relying on conditions
that consider types of elements and specific attributes that are not part of the model.
To illustrate this, neither the modeling language nor the simulator dictate how a com-
promised host shall be represented. This could simply be done by equipping a host
with a boolean variable such as compromised and setting it to either true or false,
for example. However, this is just one way to represent compromisation of hosts with
many others being equally plausible. How this is ultimately done, is of no importance at
this point and highly dependent on what is being modeled and at which level of detail,
emphasizing the framework’s flexibility. What is important though, is to use element
types and their attributes consistently across actions and state descriptions.

This is where the meta model comes into play, prescribing how the different elements
that form scenarios should “look like” to be compatible with each other and meet the
required level of detail to yield meaningful results in the course of simulation. While
the definition of such a meta model is not necessary from a technical point of view,
it simplifies modeling and ultimately helps to understand how scenarios implementing
it are generally structured. Note that the meta model only covers the basic forms of
elements and their attributes. In consequence, it includes the general structure of an
application, for example, yet not specific instances thereof such as a potential web server
or corresponding browser. These will be introduced in the course of the respective cases
studies, where needed.

In general, the meta model can be designed freely and must comply with only few
conventions that serve to avoid otherwise required configuration and allow for unob-
structed processing. Remarks will be made on occasions where this is relevant. For
better comprehension, elements of the meta model with all their attributes and relations
are also visualized in a UML class diagram that is depicted in Figure 4.4. Considering
that the modeling language allows to aggregate these into templates, which resembles
the concept of classes from object-oriented programming, this representation appears
convenient. Even though the model is comparatively simple, the textual description
to elaborate on meaning and purpose of different elements and attributes may appear
confusing at times, which is why repeated consultation of Figure 4.4 is advised to get a
better understanding of the model. It should be noted that relations of parent to child
elements are always depicted as aggregations and never as compositions. While it may
seem more realistic to mark the relationship of node to OS as a composition, there is no
such dependency on a technical level, as a respective OS will still exist even though its
parent node may have been deleted.

4.6.1. Nodes, Operating Systems and Applications

These three types of elements are the building blocks of every scenario. In the modeled
network, nodes represent all physical and virtual hosts which, in turn, are the basis
for operating systems and applications that enable most of the interaction in scenarios.
Nodes are comparatively simple. By default they are characterized by seven attributes,
four of which are of type string referred to as name, type, cpu, and hasVuln. While
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Figure 4.4.: Meta model for a detailed representation of network scenarios.

name only serves as a human readable identifier (as opposed to the identifier used to
unambiguously refer to the node element itself), type can be used to differentiate be-
tween servers or clients, for example. Specifying cpu may serve to distinguish between
certain capabilities or limitations of a given node and, in combination with vulnerabili-
ties entered in the string list hasVuln, decide upon the applicability of exploits such as
Meltdown and Spectre, for example. The other three characteristics of a node refer to its
OS, installed network interfaces and the subnet(s) that the respective node is physically
attached to. The meta model assumes that a node only has one OS referenced through
os, while there may be numerous interfaces and subnets. In most cases, a node will have
only one network interface so that the list that the attribute key myInterfaces refers
to only contains one interface element’s identifier. Firewalls, however, are nodes, too.
And to make any sense, they require at least two interfaces. Similarly, a node may be at-
tached to several subnets which are referred to through attribute key belongsToSubnet.
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In this regard, information on subnets might have equally been part of the node’s cor-
responding interface elements. However, in the scope of this model, interfaces and
their configuration only serve to decide on the feasibility of communication on a logical
level, that is on or above layer three of the ISO OSI model. Subnets, on the other hand,
represent affiliation to the same broadcast domain where ability to communicate is sub-
ject to fewer restrictions. How the meta model handles communication will be covered
in more detail in Chapter 4.6.5. Being elements themselves, interface and subnet

instances have attributes of their own. Subnets bear two attributes of type string that
are name and type. While the former serves to equip a subnet with a descriptive name,
the latter may characterize what kind of nodes it hosts (e.g. servers, clients, security
cameras etc.). Interfaces, on the other hand, hold yet another element which is of type
ipaddress that will be covered later on in the context of how the meta model implements
communication.

Elements of type os represent the respective nodes’ operating systems and exhibit
a higher degree of complexity. Once again, a string attribute serves to equip the os

element with a descriptive name. Furthermore, string attributes family and type shall
be specified. The former to differentiate between general OS families such as Windows,
Linux or Unix, for example, the latter to specify whether this is the respective operating
system’s server, client or maybe even embedded version. In what granularity this is used
may depend on the scenario. More importantly, an os instance also holds a list of inter-
faces that is, in most cases, the same as that of the super-ordinate node element which
is why the respective list may simply be passed on during OS instantiation. Deviations
are possible, though. Maintaining such a list within the os element serves the purpose
of easily passing these to subordinate elements of type application that the os element
is equipped with through its applications list. On the other hand, if needed, network-
enabled functions that may be considered OS-inherent can simply be linked to elements
in the myInterfaces list without requiring instantiation of a dedicated application

element. Examples of functions that extend the basic shape of an OS to address certain
use cases will be covered in the context of the case studies. To exert control over such po-
tentially OS-inherent functionality or behavior, a string list referred to as parameters
is maintained individually for each os instance. There, arbitrary values can be enlisted
that may be incorporated by functions as to entail their outcome. However, the meta
model does not prescribe to what extent this list is used, as this depends on specific im-
plementation of functionality for individual scenarios. Apart from this, each os instance
holds a string list referred to as hasVuln where respective entries are made to assign
certain vulnerabilities. This works analogous to the parameters list, yet is intended to
specifically effect availability or outcome of exploits. However, operating systems may
also hold data, which can be obtained by an attacker to either extract information for
subsequent attacks or simply to generate revenue. These data are organized in lists that
are referred to as dataInRam and dataStored. While the former represents information
in RAM which may only be accessible under certain conditions, the latter represents
information that is accessible through the file system and can be read with help of func-
tions that are inherent to the OS or dedicated applications, for instance. Both lists are
of type usefulData which is usually used for data that hold revenue. However, the
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framework does not perform strict type checking so that any kind of data that is used in
the meta model can simply be stored in these lists. In consequence, though, respective
element types must be checked upon access through functions in order to be handled
correctly. Should operating systems provide functionality that requires identification
and/or authentication, a list named acceptedCredentials shall be maintained for each
OS instance that refers to elements of type credential. Credentials are combinations
of other elements that represent usernames and passwords, and will be covered in more
detail in Chapter 4.6.2.

Lastly, there are elements of type application that, by quantity and complexity,
make for a large part of the scenario descriptions that will be presented in the case
studies and also provide most of the available functionality for interaction. While the
specific functions they provide and the individual attributes they may require highly
depend on the kind of application that is being modeled, they share a common basic
structure, resembling that of operating systems. As was the case with other element
types, string name is used to provide a descriptive name, whereas type serves to char-
acterize the nature of the application, which may be a web or mail server, for example.
Also, network-enabled applications maintain their own list of interfaces that they listen
on for incoming communication. This list is referred to as bindingIf and is a subset of
the myInterfaces list of the super-ordinate os element. The reason this a is a subset
is simply to reflect cases in which services running on nodes with multiple connected
interfaces must not be accessible through all of these. Practical examples from everyday
life are web-based UIs of routers, for example, which, at all cost must not be accessible
through the WAN interface but only the internal LAN. But also SQL servers frequently
listen on their link local address only, at least in default configuration. Since the meta
model’s representation of network communication also considers ports, listeningPorts
must be specified. And considering that some applications may listen on numerous ports,
this is a list. Despite the fact that ports are numerals, they do not serve to perform any
arithmetic operations which is why the respective list is of type string and not int. In
equal manner to operating systems, application elements maintain lists for dataInRam,
as well as dataStored that may contain any type of information. The reasons that appli-
cations hold such lists in addition to the lists maintained by their respective os element
are three-fold. First, it makes applications more self-contained. Second, in the presence
of multiple applications per OS, it would become impossible to tell which data belong
to which application without additional information. Third, depending on the degree
to which the attacker may have gained access to the system in question, she might only
be able to access data of said application but not the rest of the system. In such cases,
compromised data are simply those that are subordinate to the compromised applica-
tion. On occasions where the attacker gained full access to a system (i.e., the OS), the
function that enables the attacker to extract data will simply iterate through all subor-
dinate applications. Besides the two lists that refer to data that are physically located
on the node where the application resides, there is a third list containing data that is
referred to as dataLinked. This list may hold elements from different sources, including
dataStored, that can be accessed through said application. This additional list is simply
intended to account for cases in which an application like a Wordpress installation, for
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example, provides access to data that are not stored locally but in a remote database.
Depending on the application in question and potential vulnerabilities, an attacker may
acquire such information without compromising the node or application where data ac-
tually reside. Should applications need to identify legitimate users to authorize certain
types of interaction or access to data, a list of acceptedCredentials can be maintained
in the same way as for operating systems. Furthermore, string lists parameters and
hasVuln are maintained for each application instance, serving the same purpose as in
the case of operating systems.

4.6.2. Assets and Information

The meta model comprises a set of defined element types to represent different kinds
of information, as well as assets that hold numeric values serving to generate revenue
upon acquisition by an actor. These element types are ipaddress, username, password,
credential, as well as usefulData, and will be explained in the following.

Elements of type ipaddress hold two string attributes, the actual IP address referred
to as value, as well as a corresponding DNS name that is referred to as name. Both are
sufficient to unambiguously identify targets for network communication and are there-
fore unique within a given scenario. Instances of type username only have one string

attribute named value that specifies a given user’s name. This kind of information
serves to reflect ownership of assets and may also be used for identification to decide
upon availability of certain functions. To make this identification unambiguous, such
names are unique within the scope of one modeled application. However, across applica-
tions, usernames may be reused which does not only concern respective strings, but also
complete elements in case some sort of federated access is being replicated. Similarly,
password elements have only one string attribute, value, that holds a password. This
information, in combination with a corresponding username, is used for authentication.
Obviously, passwords need not be unique, neither within the scope of the scenario, nor
within that of applications. Together, pairs of username and password elements form
credentials. These are elements of their own, intended to explicitly link username
and password to form valid combinations for authentication. Furthermore, credential
elements contain information on the related privilege level. Upon describing that data
elements may be assigned to operating systems and applications alike, and elaborating
on the purpose of this distinction, the idea of differentiating between levels of access al-
ready became apparent. While obviously different sets of credentials may serve to access
different OSes and applications, the resulting privileges may be basic or elevated, the
former representing regular users, the latter administrators or super users. This priv-
ilege level is determined by the string attribute level and can be used for arbitrary
differentiation. Apart from this, credential elements have a string attribute to equip
them with a descriptive name. Lastly, there are elements of type usefulData. These
do not contain any information that is critical for further interaction with the system
so that their acquisition has no impact on the actor’s further progress. Instead, they
hold two attributes of type int, externalValue and internalValue. The former one
is where numeric values for generating attacker revenue are assigned which is counted to
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measure the attacker’s progress. The latter may be used to assign values representing
another perspective on the assets worth, for example from a defender’s point of view,
allowing for a more distinctive analysis if needed. Also, there are two string attributes to
specify name and type to add meaning to the respective elements and simplify retrieval
when analyzing results manually.

Elements of all these types are regularly located (or rather referenced) in the lists
dataStored, dataInRam, and dataLinked that are maintained for operating systems
and applications, respectively. This is to reflect, that not only valuable assets may be
located in systems and applications, but also addresses and credentials, which may be
extracted from saved configuration files and the like. Furthermore, usernames may be
inferred from the local file structure or simply polling directory information from an
Active Directory (AD) server. Passwords, on the other hand, may be present in RAM.
It is the scenario designer’s obligation to ensure plausible distribution of such data. The
fact that these lists for referencing data are of type usefulData does not matter since
strict type checking is not enforced but must be applied upon extracting said information.

Apart from such “storage” locations, respective elements are employed in the context
where they fulfill their primary purpose. For IP addresses, this is obviously the interfaces
where they serve to identify targets for network communication. Credentials, as outlined
before, may be referenced in a list named acceptedCredentials should the respective
OS or application need such information for implementing authentication or the like.
However, it should be noted that information from such attributes cannot simply be
read and extracted by an actor for not representing accessible information in the sense
of the meta model.

4.6.3. Attacker Model

One of the requirements listed in the beginning of Chapter 4.1.1 stated that attackers
must be stateful to realistically represent lateral movement and its requirements. That
means, apart from affecting the system under attack, successful actions of the attacker
may also serve to acquire knowledge that she can utilize in subsequent attack steps.
However, as mentioned before, the simulation engine is generally agnostic to what is
being simulated and only requires elements of type actor to exist in order to attribute
performed actions correctly. Additional attributes and their semantics play no role in the
simulator’s operation. Consequently, maintaining attributes that describe the attacker’s
state and their potential relevance in fulfilling the requirements of different actions must
be considered in the meta model. For this purpose, the following attributes have been
defined: knownIpAddressStrings, knownDnsNames, knownUsernames, knownPasswords,
and knownUsefulData.

The chosen attribute keys already indicate what kind of information they refer to,
representing all types of data comprised in the meta model. However, it should be noted
that these lists only contain strings that have been extracted from elements. This means,
that the actor’s list of knownPasswords does not contain references to elements of type
password, but only the values that are enclosed in said elements. The reason to do so is
simple and founded in the working mode of the simulator: Whenever handling elements,
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it is in fact only their identifiers that are being passed or returned by the different func-
tions, similar to pointers in C. As a result, assigning an element of type password to
the attacker’s knowledge will only duplicate the reference but not produce a deep copy.
While this is intended behavior, it makes assigning elements to attacker knowledge as a
consequence of successful reconnaissance inadequate to represent acquisition of informa-
tion that can “expire” as any subsequent changes to said element would inevitably be
known to the attacker. Therefore, to effectively implement and test schemes that rely
on invalidating acquired information such as Network Address Space Randomization or
simple password renewal policies, attacker knowledge is based on extracted values of
simple types which are always duplicated when assigned. Therefore, all functions that
augment attacker knowledge must be designed so that the corresponding effect defining
which information is added, extracts values from respective elements but must not assign
the element itself. In effect, subsequent changes to the system state will cause attacker
knowledge to deviate more and more, so that actions requiring such information become
unavailable unless reconnaissance is repeated. The outlined scheme is applied across all
types of information. Elements of type usefulData are the only exception to this rule.
Neither being required in any further attack steps for simply measuring progress nor
being subject to any modification by a defense scheme, these elements may simply be
assigned to the attacker knowledge.

4.6.4. Representing Compromisation

The meta model generally differentiates between two types of access an adversary may
have to a system, one allowing to read provided resources, the other enabling execution
of code on the respective system. The former may simply result from having gained legit-
imate access to a system’s SMB service or the company’s CRM, for example, which allow
for reading potentially relevant data, thus generating revenue. Similarly, exploitable vul-
nerabilities in applications and OSes may allow to do so, yet without requiring preceding
authentication and authorization. Either way, the system in question is the target of
an action that is launched from somewhere else within “reachable distance”. The meta
model assumes that any sort of reading, no matter if legitimate or enabled by vulnera-
bilities, does not incur any changes on the target system. The other type of access goes
beyond simply reading but allows to exert control over the target, thus becoming a new
source from which further attacks can be launched. Obviously, this ability to (remotely)
execute code may subsequently allow to read stored data, which is why this type of access
comes with more advantages for the attacker. To acquire such capabilities, the adver-
sary must either get access to a legitimate service (e.g. SSH or RDP) that is intended
to exert remote control, or find and exploit a vulnerability that grants such privileges.
To what degree this is possible, obviously depends on the functionality implemented in
the specific scenario. Performing an action that results in the ability to remotely control
a host is encompassed by a state change of the target system, indicating, which actor is
able to operate on which privilege level. To accomplish this, the meta model includes a
dedicated element type that is referred to as rceRight, derived from RCE which stands
for remote code execution. Whenever an actor performs an action with said effect, an
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rceRight element will dynamically be created and augmented with respective attributes
to specify details and be attached to the node element that hosts the compromised os or
application instance. For this purpose, the attribute rceRights is reserved. Attaching
such elements to the corresponding node has been chosen for the simplicity that results
from only checking nodes and not requiring to traverse all OSes and application which
occur in higher quantities. Considering that each OS and application are subordinate to
a particular node this appears convenient and allows to easily check for such privileges.

Elements of this type are characterized by two attributes. One is named actor, refer-
encing the actor instance that obtained the privilege, and the second one named level

of type application, referencing the application or OS over which the actor my exert
control now. Here again, the specified type poses no impediment to assigning an ele-
ment of type os. Functions that check on this attribute must determine the type and
allow or disallow certain actions accordingly. Being able to control the OS, that is if the
level attribute refers to an os instance and not an application, is the meta model’s
representation of elevated privileges, allowing the respective actor to also read informa-
tion from subordinate applications. Should the level attribute refer to an application,
on the other hand, reading is limited to data enclosed in said application, resembling
user-level privileges. However, both types enable the actor to use the respective node as
a source for further actions and try to engage in communication with nodes that may
have previously been unreachable.

4.6.5. Communication

While different types of communication such as exchanging e-mails or transporting data
via exchangeable media (e.g. USB sticks) may be implemented through extending the
meta model, the built-in type of communication is network-based. For this purpose,
aforementioned elements of type ipaddress that hold unique addresses and DNS names
serve to identify connected nodes and allow to engage in communication depending on
the fulfillment of certain requirements. This is checked with help of a function written in
the modeling language itself that does not have any effect but simply evaluates to true

or false, which according to the previous outlines in Chapter 4.4.1 makes it a helper
function. What this function basically does is to check if any of the nodes that the current
actor may use as sources is able to reach the target address and port. Nodes that may
serve as source are simply those that have an element of type rceRight attached to
their rceRights list, where the current actor is set as actor. For any of these nodes
to be able to reach the target, it either needs to be part of the same subnet as the
target, or requires the existence of a firewall rule that specifically allows communication
for involved IP addresses on the respective port. The logic behind this is that nodes
belonging to the same subnet may communicate unimpeded for not being separated
through a firewall. Communication across subnets, in turn, is assumed to be completely
blocked, unless there is at least one rule that explicitly allows communication for given
source and destination. Such firewall rules are represented through yet another element
type which is referred to as fwallow. Elements of this type are characterized by two
attributes, the first being a list of ipaddress elements referred to as ips, and another
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1 tryConnect(node SNODE ,actor ACTOR ,interface SIF ,ipAddress SIP ,node

DNODE ,interface DIF ,ipAddress DIP ,port DPORT)

2 {

3 isOfType(node ,DNODE) &&

4 isOfType(node ,SNODE) &&

5 isOfType(actor ,ACTOR) &&

6 isInList(RCENODE ,SNODE.rceRights)&&

7 RCENODE.actor== ACTOR &&

8 // find the node belonging to the destination ip

9 DIPADDRESS.value ==DIP &&

10 DIF.ipAddress == DIPADDRESS &&

11 isInList(DIF ,DNODE.myInterfaces) &&

12 // check if they are in the same subnet else check via checkfw

13 ( ( isInList(SUBNET ,SNODE.belongsToSubnet) &&

14 isInList(SUBNET ,DNODE.belongsToSubnet) ) ||

15 ( isInList(SIF ,SNODE.myInterfaces) &&

16 SIF.ipAddress == SIPADDRESS &&

17 checkfw(SIPADDRESS ,DIPADDRESS ,DPORT) ) )

18 };

19

20 checkfw(ipAddress SIP ,ipAddress DIP ,port DPORT)

21 {

22 isOfType(fwallow ,FWRULE) &&

23 isInList(SIP ,FWRULE.ips) &&

24 isInList(DIP ,FWRULE.ips) &&

25 isInList(DPORT ,FWRULE.ports)

26 };

Listing 4.13: Function tryConnect and its helper to determine ability to communicate.

one being a list of strings referred to as ports containing ports. The effect of such
a firewall rule is that communication between all referenced IP addresses is generally
allowed for all listed ports. The function tryConnect which performs these checks to
reach a specific target is depicted in Listing 4.13, together with another helper function
that solely serves to determine if at least one fitting fwallow element exists.

4.6.6. Timings and Probabilities of Functions

In the course of explaining how functions are declared and defined (Chapter 4.4.1), as
well as the introduction to the simulation engine’s working mode (Chapter 4.5.1), it was
made clear that the framework expects an element of type function to be declared for
each defined function within the scenario. Furthermore, these may have attributes, one
of which is mandatory, others conditional, and yet another optional. Considering this,
such elements and related attributes must obviously be part of the meta model and are
— in contrast to any other aspect of the meta model — prescribed by the simulation
engine. The attribute that is required for all functions is the boolean named public

which determines whether or not a respective function can be called directly by an actor
during simulation or solely serves as a helper that can only be called in the context
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of other functions. Depending on this boolean’s shape, further attributes of type int

may be required. These are aforementioned chances and duration of setup and execution,
referred to as setupProb and setupTime, as well as execProb and execTime that must be
specified for public functions only. While these may also be defined for functions that are
not public (i.e., a helper function), the simulation engine will ignore such properties and
only consider said attributes of the function that utilizes the helper. The one attribute
that is fully optional is the string list referred to as param that allows to assign tags
to functions. Respective values are only considered if the simulation engine has been
initialized with a list of valid tags that restricts which functions the simulator can choose
from. This is part of the simulation configuration file introduced in Chapter 4.3 and
useful when intending to repeat a simulation in the presence of differently skilled actors,
which otherwise would require to change the model and translate the scenario again.
Being part of the system state, the attributes of a function element can, from a technical
perspective, be modified in the course of interaction simulation. However, serving the
purpose of controlling function behavior, the meta model forbids such modification.

4.6.7. Interplay

Based on the previous specifications, nodes can be modeled that are equipped with cer-
tain types of operating systems, which in turn provide the environment for applications.
Both OSes and applications have been defined to hold information in dedicated lists
(e.g. dataStored) that may be accessed in the course of data exfiltration. Yet, others
such as acceptedCredentials solely serve to link certain information to an applica-
tion or OS, in this case for the sake of discriminating and authenticating valid users,
but cannot be read by an attacker who managed to compromise a node and obtain
reading or execution privileges. Consequently, functions defined to interact with a sce-
nario implementing this meta model must not only adhere to the chosen structure of
different element types, attributes, and their interrelations, but also need to consider
their semantic meaning. In this regard, a function that allows the attacker to read all
useful data that are subordinate to a certain node, might be executable for correctly
relating to elements and attributes that exist in the model, yet not fulfill its intended
purpose as it would also yield elements from the aforementioned acceptedCredentials

list. Similarly, functions must consider the model’s representation of an actor’s con-
trol over a certain node by checking respective elements of type rceRight and related
privilege levels when determining whether or not different actions can be performed on
certain targets. Furthermore, the meta model dictates how network connectivity shall
be represented to incorporate aspects such as firewalling but also consider the existence
of different, separated subnets and account for their implications on the nodes’ ability
to communicate. Adherence to the meta model’s representation of network connectivity
is enforced through the aforementioned helper function tryConnect that is to be used
within functions that rely on connectivity.

The logical next step would be to define functions. However, even though the presented
meta model may already suggest some plausible functions, it does not prescribe any form
of interaction. Doing so would dictate capabilities of the actors and impose an interaction
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scheme that may be out of the modeled scenario’s scope. Consequently, functions that
are in line with the meta model are subject to the case studies, where they serve to
enable interaction of actors that suit the given scenario, as well as its threat and defense
model.
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5. Evaluating the Security Impact of
Defense Techniques

So far, the modeling and simulation framework has only been described, covering the
modeling language and its primary features, as well as an introduction on how to use it.
Furthermore, the working mode of the simulation engine has been outlined to provide a
basic understanding of how modeled states and actions are processed to produce results.
What is still missing, though, is a demonstration of its capabilities on the basis of a re-
alistic scenario. To this end, this chapter presents a case study that has been conducted
with help of the presented framework1. Using the framework’s modeling language, a
sample network representing the IT infrastructure of an SME has been modeled to in-
vestigate the performance of four defenses in the presence of differently skilled attackers.
While intended to provide insights on the effects of these defenses and their impact on
security, this investigation also serves to check on the approach’s viability.

The investigated defenses are outlined in the following section, followed by a coherent
description of the sample network’s shape and the assumed software landscape. After-
wards, modeled vulnerabilities, corresponding exploits, as well as legitimate actions are
presented that characterize the attacker and her ability to interact with the system state,
before presenting experimental results and the insights they yield. These, however, also
introduce a twist, showing that minute changes to the scenario under test may have
a considerable effect on simulation results, thus raising concerns about the validity of
findings that have been obtained from single investigations. Based on these insights, the
chapter concludes with an assessment of whether evaluation based on detailed modeling
and simulation is conducive to gaining a better understanding of MTD techniques and
their security implications, while raising further questions.

5.1. Investigated Defenses

The defense techniques that are employed in the experiment to investigate their impact
on security through affecting attacker progress are IP shuffling, VM live migration, VM
cold migration, and VM resetting. The first three have been chosen for their frequent
occurrence in MTD literature and the existence of prototypical implementations. VM
resetting, was included for being integral to cold migration and having a potential impact
on security itself. However, the modeling language does not restrict which defenese
may be modeled so that others could have been implemented just the same. To put

1The presented case study and its findings have been published in the proceedings of the Nordic
Conference on Secure IT Systems 2018 [19]. The publication was recognized with the Best Paper
Award.
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performance of the different defenses into perspective, simulations will also be conducted
with no defense enabled, serving as a base line.

Table 5.1.: List of defenses that are employed in the case study for comparison of per-
formance, as opposed to using no defense.

Name Description Impact
Live migration The VM is migrated from one

physical host to another with-
out loosing its state.

Moving a VM changes the physical
connectivity and hence communica-
tions paths.

VM resetting The VM is restarted from
read-only memory, loosing all
state information.

Any remote code execution privi-
leges on the VM previously gained
by the attacker are removed.

IP shuffling A new IP address is assigned
to the VM.

Knowledge of the IP address previ-
ously gained by the attacker is re-
moved.

Cold migration The VM is migrated to an-
other physical host, restarted
from read-only memory, and
assigned a new IP.

This is the combination of live mi-
gration, VM resetting, and IP shuf-
fling.

IP shuffling is one of the most frequently suggested Moving Target Defenses [34, 53,
80, 86, 97], advocating the repeated change of IP addresses of communicating entities,
may also comprise ports, and in rare cases even MAC addresses [88]. The intention is
to impede the attacker by invalidating previously acquired knowledge of addresses and
making guessing significantly harder by leveraging large address spaces. The implemen-
tation employed in the case study only considers IP addresses and is therefore denoted
as IP shuffling.

VM live and cold migration propose to repeatedly relocate VMs across various physical
hosts. Doing so for the purpose of defense has been addressed in previous work dealing
with MTD and network defense in general [3, 11, 44, 61, 64, 98, 129], with suggested
schemes generally differing in whether a VM’s state is preserved or not. State preserving
migration that is denoted as live migration in the following intends to seamlessly move
a VM out of the attacker’s reach while keeping it as is. Attacks that live migration
is supposed to fend off are such that rely on certain connectivity [64] or co-location of
VMs [61, 129]. Another form of VM migration that is denoted as cold migration suggests
to not only migrate VMs but reset them to a default state, reverting any potential
modifications caused by the attacker [5, 45]. Additionally, such VMs (may) receive new
IP addresses (e.g. through DHCP), thus implementing a form of IP shuffling whenever
migrated. In the scope of this work, cold migration combines moving and resetting of
VMs while providing them with new IP addresses.

VM resetting suggests the sole recurring reset of virtual machines. Prior to the ad-
vent of MTD, approaches such as SCIT [22] already promoted the idea of resetting VMs
to previous, presumably secure states to prevent attackers from reaching persistence.
Though not being a Moving Target Defense in the classical sense, it has been included
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to determine its individual impact on security. This allows to dissect performance mea-
surements of VM cold migration and relate its results to those of the defenses it is
composed of.

A brief summary of employed techniques can be found in Table 5.1. Note that the
real-world implementation and application of such defenses may come with challenges.
For example, the blunt shuffling of IP addresses might not only impede attackers but
also break legitimate communication if no precautions are taken. To account for this, the
previously presented meta model also includes DNS names that are assumed to be known
to legitimate users, allowing to resolve correct IP addresses at any time. Likewise, the
resetting of VMs renders any service useless that stores data locally, which is why VMs
that host databases or serve as storage are exempt from resetting and cold migration.

5.2. Network Layout and Software Landscape

Figure 5.1 shows the network setup for the envisioned small enterprise network. The
network is separated into a DMZ with servers accessible from the internet, an intranet
with clients, and a server subnet. The communication between subnets as well as between
machines within the server subnet is subject to firewalling. Furthermore, no machine
beyond the DMZ is directly reachable from the internet. In the DMZ two Xen servers
are assumed that form a pool of hypervisors for three VMs. These comprise a Microsoft
Exchange server running on Windows Server, and two VMs running on Ubuntu Server.
One for the company’s Drupal-based website, and one for a Tomcat server that hosts
applications such as time tracking that are accessible to employees from the intranet as
well as from the internet after log-in. In the server subnet there are four hosts, three of
which form another pool of Xen servers to host VMs, and one Ubuntu Server machine
serving as a storage system for backups. The VMs in this second pool comprise:

• A Windows-based Active Directory Server acting as the domain controller, pro-
viding authentication services and network file sharing.

• A server running Base CRM, a proprietary customer relationship management
system, based on Ubuntu Server.

• A server for accounting applications such as Datev, based on Windows Server.

• Another Tomcat server that exclusively runs applications for the HR department,
based on Ubuntu Server.

• A Veritas Netbackup server to centrally command and control the backup agents
on the various backup clients, based on CentOS server.

• Two Ubuntu-based servers for DevOps purposes (e.g. Jenkins and Jira).

• Four SQL servers, two of which are based on Ubuntu Server (for the Tomcat HR
and Base CRM) and the other two being based on Windows Server (for Active
Directory and Exchange).
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Finally, client computers are assumed to be located in the subnet called “Intranet”,
which is connected to the server subnet and the DMZ through the second firewall. All
clients are based on Windows 10 and differ in the user groups that operate them. They
are equipped with the MS Office suite and backup agents. Employed applications and
operating systems are based on respective element types that have been defined in the
context of the unified meta model in Chapter 4.6 but also extend these to implement
required attributes and functionality where needed. One somewhat extraordinary exten-
sion in this regard is the Xen operating system’s capability to host virtual nodes. Every
Xen instance holds a list of type node that is named vms where references to attached
VMs are maintained. Apart from being subordinate elements of an OS, virtual nodes
do not differ from physical nodes and are based on the same template.

In the given example network, eight different assets are modeled that can be obtained
by an attacker, yielding different amounts of revenue which add up to 100 points in
total. Four of these usefulData elements are supposed to represent customer data, two
of which yield 15 points each, the other two 10 points each. Additionally, there are
two usefulData elements representing financial data, yielding 15 points each, as well as
credit card information and HR data for 10 points, each. All of this data can be accessed
in different ways. One way to access customer data is through the Base CRM frontend,
if respective credentials have been obtained from the various back-office clients. Another
option is to directly query the SQL server where data are effectively stored, given the fact
that the attacker was able to obtain username and password. Yet another possibility is
to compromise the operating system that the SQL server is running on and exfiltrate the
database. The financial data can be accessed through the CEO’s computer or through
her e-mail account, again opening up different ways to acquire this information. HR data
can be obtained through compromising either the Tomcat server in the server subnet or
the respective SQL server where data is stored. Finally, credit card information can be
retrieved through access to the assistant’s computer or its backup.

The fact that the sample network utilizes Xen hypervisors to host VMs for different
purposes allows to incorporate VM migration in the scenario. From a practical point
of view it does not make sense to shuffle VMs from the DMZ with those from the
server subnet. Hence, VM shuffling is only used to move VMs across hosts that belong
to the same pool. To simulate the changed physical connectivity mentioned by Hong
and Kim [64], hosts from the server subnet are directly attached to the free ports of
the routing firewall fw2. By default, most hypervisors use a virtual switch that the
hosted VMs are attached to. Therefore, VMs located on the same host are assumed
to be connected by the virtual switch of the hypervisor and can communicate with
each other regardless of the firewall setting in fw2. To summarize, the firewall fw2

limits communication between VMs located on different hosts, whereas communication
between VMs on the same host is not restricted.

It should be noted that the four VMs that serve as SQL servers for the different
applications are never migrated but strictly allocated to host 6. This is due to the fact
that the migration of VMs that contain large databases poses additional challenges in
order to maintain availability and consistency. Additionally, VM resetting conflicts with
the database’s primary purpose to persist data.
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Figure 5.1.: The network used in the case study, representing a fairly typical small en-
terprise setup.

5.3. Vulnerabilities and Attack Steps

Choosing realistic vulnerabilities and exploits, as well as legitimate actions that con-
tribute to the attacker’s progress is crucial for a fair and realistic evaluation. Detailed
protocols of successful attacks like that of Phineas Fisher on Hacking Team [103] have
revealed that for attackers to reach their goals, legitimate actions are as relevant as vul-
nerabilities and their exploits. Consequently, legitimate actions are integral to the model.
However, the question arises how to choose vulnerabilities, functions and exploits. This
was done as follows: For the presented sample network, specific and commonly used
software has been chosen and the CVE database and Metasploit database searched for
related entries for the years 2016 to 2018. For each CVE entry with a high CVSS score,
applicability of the vulnerability in the given scenario was manually checked. In particu-
lar, vulnerability exploits that result in either remote code execution, privilege escalation
or the retrieval of information (e.g credentials, RAM content etc.) have been chosen.
Based on this, exploits have been modeled for the respective vulnerability with a high
level of detail that can entail a range of requirements that need to be met. Similarly,
realistic legitimate functions of the assumed applications and systems have been imple-
mented that are equally capable of providing the attacker with execution privileges or
valuable information. Examples of such legitimate functions are remote shell or desk-
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top access for operating systems to gain remote code execution privileges, ARP cache
lookups to retrieve IP addresses, or SQL queries to obtain information from databases.

One important aspect is defining the duration of an exploit as well as the attack
success probability. Although the CVE entries include parameters that are related to
an exploit’s duration and likelihood of success (e.g. attack complexity, exploit code
maturity etc.), specific figures for these measures cannot be derived from a given score.
Therefore, values for duration and success rate have been manually determined based on
a vulnerability’s description, the underlying mechanism, and the availability of exploit
code (e.g. in Metasploit), noting that these values could potentially be optimized with
data obtained from real world attacks.

This totaled in 16 exploits, as well as 10 legitimate actions an attacker can call, result-
ing in 26 executable actions from an attacker’s perspective. Table 5.2 gives an overview
of these, including the respective CVE entry number(s) if applicable, a simplified effect
description, and the attacker type that is able to use them. Details on requirements and
effects of these actions can be found in Appendix A.

Table 5.2.: List of actions available for differently skilled attackers (year), CVE entry
for exploits if applicable, and corresponding effect.

Action CVE entry Effect Skill

tomPrivEscalation 2016-9775, 2016-9774 elevate RCE on target OS 2016
privEscalationWindows 2016-0026 elevate RCE on target OS 2016
backupServerRCE 2016-7399 read data from multiple OS 2016
phishingDocRCE 2016-0099 RCE on target OS 2016
tomHttpPutRCE 2017-12615, 2017-12617 RCE on target app 2017+
jmxTomcatVulnerability not available RCE on target OS 2017+
privEscalationUbuntu 2017-0358 elevate RCE on target OS 2017+
eternalBlueRCE 2017-0143 to 2017-0148 RCE on target OS 2017+
redirectBackupToCloud 2017-6409 read data from multiple OS 2017+
backupClientRCE 2017-8895 RCE on target OS 2017+
clientRCEoverServer 2017-6407 RCE on target OS 2017+
meltdown 2017-5715, 2017-5753 read data from target node 2017+
drupalRCE 2017-5715, 2017-5753 RCE on target app 2017+
sendMailExchangeRCE 2018-8154 RCE on target app 2017+
exchangeDefenderRCE 2018-0986 RCE on target app 2017+
readData legitimate read data from target OS any
pingscan legitimate read IP from target OS any
arpCache legitimate read IP from target OS any
configureAdClients legitimate RCE on target OS any
getCustomerData legitimate read data from target app any
getMail legitimate read data from target app any
remoteDbManagement legitimate read data from target app any
sqlQuery legitimate read data from target app any
remoteShellLinux legitimate RCE on target OS any
remoteShellWindows legitimate RCE on target OS any
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5.4. Experimental Results

Two independent experiments have been conducted, one in which the attacker could
utilize exploits based on vulnerabilities published in 2016 (4 exploits plus 10 legitimate
functions) and one with exploits based on vulnerabilities from 2017/2018 (12 exploits
and 10 legitimate functions). In both cases, performance was tested in the presence
of no defense technique, live migration, cold migration, IP shuffling, and VM resetting,
resulting in a total of ten setups for simulation. For every combination of defense and
attacker type, simulation was started 100 times, consisting of 8000 rounds each. The rea-
son to repeat simulation 100 times is that, while the modeled network itself is static, the
numerous attacker and defender actions are subject to different probabilities to account
for operations that may plausibly fail occasionally due to their difficulty, complexity,
or sheer chance (e.g. phishing attack)2. Based on the 100 simulations per setup, aver-
ages have been formed that are less susceptible to outliers. Furthermore, three revenue
thresholds have been defined. These are at 40, 75 and 100 points respectively to mea-
sure how many simulations reached these thresholds for a given number of rounds. The
results are depicted in Figure 5.2.

In the experiment where exploits from 2017 and 2018 were used, no significant differ-
ence between having no defense technique, IP shuffling or live migration can be observed.
Attacks succeeded fairly quick and all simulations achieved the maximum revenue of 100
points. When VM resetting or cold migration were enabled, it took more rounds for
the attacker to reach revenue levels of 75 or 100. Hence, one can say that they had
a positive impact on security. Cold migration is the combination of live migration, IP
shuffling and VM resetting. The fact that cold migration and VM resetting performed
nearly identical indicates that the security gain primarily results from VM resetting and
not from migrating (shuffling) VMs.

In the second experiment only four exploits (i.e., those selected from the year 2016)
and ten legitimate functions were available, resulting in fewer viable attack paths. In this
case, all defenses performed similar for a revenue threshold of 40. However, revenue levels
of 75 or 100 were only achieved when either live migration or cold migration was enabled.
If no defense technique, IP shuffling or VM resetting was used, these revenue levels were
never reached in any simulation run. The log data of the simulations reveal that there
was only one possible attack path to achieve at least 75 points. The performed attacker
actions are listed in Table 5.2. The first step is that the attacker launches a successful
phishing attack against one of the clients. The attacker can then use the remote code
execution privileges as well as the stolen DNS names to launch an attack based on exploit
backupserverRCE (CVE-2016-7399 ) on the backup server. These first attack steps are
independent from any of the used defense techniques and generate more than 40 revenue
points for the attacker. This is due to data directly found on the attacked client and
backup server, as well as using the Base CRM server with stolen credentials of the client.
Besides data that directly generates revenue, additional data is stored in the backup.
In particular, it also contains configuration files of the “Base CRM” and “Tomcat HR”

2Respective probabilities for the different actions can be found in Appendix A.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2.: Results of the attack simulation. Each defense was simulated 100 times for
exploits based on 2017/2018 vulnerabilities (a-c) and 2016 vulnerabilities (d-
f). Results are displayed with regard to reached threshold with the y-axis
depicting the percentage of simulations that reached the respective success
threshold for the given round (x-axis).
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servers and the corresponding SQL credentials. These SQL credentials can then be used
in the next attack step to retrieve customer data and HR data using regular SQL queries
and database management commands. However, to perform these regular functions, the
attacker needs to be able to communicate with the SQL servers on host 5 via the SQL
port 3306. Both nodes that the attacker controls — the compromised client (phishing)
as well as the backup server (backupserverRCE) — are not whitelisted to communicate
on the SQL port. Since the backup server and the SQL server are located on different
hosts in the beginning, the firewall blocks such communication attempts. Therefore, for
no defense technique, IP shuffling or VM resetting the attacker cannot call these SQL
functions and, in consequence, never reaches revenue levels of 75 or above. However,
the firewall cannot block communication between VMs on the same host as they are,
by default, attached to the same virtual switch. The log data reveals that when live
migration or cold migration is enabled, the backup server is shuffled to the same host as
the SQL databases roughly one-third of the times. Hence, whenever the backup server
was on the same host as the SQL server, the attacker could retrieve data using SQL
queries until another shuffle operation migrated the backup server to a different host.

Please note that this scenario is exactly as discussed by Hong and Kim [64] to assess
the effectiveness of live migration. The migration of VMs changes the physical connec-
tivity and with it the attack paths. However, as the experiment shows, this can have
a significant negative impact on security as the migration of VMs enables attack paths
that would otherwise not exist.

Evaluation With a Twist

In the experimental results depicted in Figure 5.2, migration had a negative impact on
security. Only the removal of the attacker’s RCE privileges (which is being done in
VM resetting and cold migration) had a notably positive effect on security. However,
resetting VMs only hindered the attacker and made attacks more difficult with regard
to the required time (rounds) to a full compromise but could not completely fend off
attacks. Of course, if resetting is done at much higher frequencies, it is possible to get
results in which all attacks are defended. Such timings are not very realistic, though.

However, one can also produce scenarios in which migration has a measurable positive
effect. When having a look at the experiment based on the 2016 exploits, the reason why
the attack does not work if no migration is used is that the VMs of the backup server
and the SQL servers are not on the same physical host. Therefore, to generate positive
results for migration, the starting position of VMs was modified, moving the backup
server to the same host as the SQL servers. Figure 5.3 shows the experimental results
for this modified case of an attacker employing exploits from 2016. This time, migration
contributed to security. The reason is that with migration turned on, the backup server
and the SQL server were on different hosts two-thirds of the time, while for the other
non-migrating defenses they were always on the same physical host. Hence, attacking
was more difficult in that it took the attacker more rounds to exfiltrate data. Yet, it
should be noted that the attacker was still able to exfiltrate all data within 8000 rounds
in 90% (live migration) and 80% (cold migration) of the simulations.
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(a) (b) (c)

Figure 5.3.: The same analysis as in Figure 5.2 (d-f) but this time the starting position
of the backup server was on host 6 (as the SQL servers) instead of host 5.

The fact that attack simulation is not only able to measure revenue data but also log all
steps performed by the attacker, allows to investigate why a defense performs a certain
way. This is exactly what was done to understand and describe why migration performed
so poorly for the 2016 scenario in Figure 5.2 (e,f), illustrating the advantages of being
able to also perform qualitative analysis to put quantitative results into perspective. In
that sense, simulation has shown to be viable, generating insights that other approaches
were not able to deliver. However, another important lesson to be learned is that the
results of attack and defense simulation can be heavily influenced through tuning the
investigated scenario. Hence, evaluation on the basis of one single scenario does not allow
for generalizing findings, despite being common practice among proposed schemes.

5.5. Summary

This chapter presented a case study in which experiments with Moving Target Defenses
based on VM live and cold migration, IP shuffling, and VM resetting have been con-
ducted, yielding important insights regarding the effects of different defenses, as well as
evaluation in general. With regard to defense effects, results show that while random
VM migration can have a positive effect on security, negative effects are equally possi-
ble. Through changing the physical connectivity in a network, VM migration influences
attack steps. Should the initial network layout be beneficial for the attacker, moving
VMs may improve security through increasing attack time as the attacker has to wait
for VMs to be shuffled back to suitable positions. However, should the initial layout
be comparably secure and not allow for attacks, random VM migration will eventually
shuffle VMs such that an attack becomes feasible in the first place. That means, the
potential positive impact is only an increase in attack time while the negative impact is
that formerly impossible attacks may be enabled.

More importantly, though, apart from specific results on defense performance, the
case study in this chapter has shown that attack simulation based on realistic exploits,
functions and network setups is indeed capable of analyzing and comparing defense
techniques, laying the corner stone for subsequent development of the framework and
research on defense effects.
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6. Benchmark Network Fuzzing

The case study and its results presented in the previous chapter revealed that simula-
tion on the basis of detailed models is indeed capable of generating valuable insights.
However, it also showed that seemingly minute changes in the scenario can have a con-
siderable impact on evaluation results. In consequence, to evaluate fairly, defenses under
investigation should be tested in a multitude of diverse scenarios as to include poten-
tially relevant corner cases, revealing a larger spectrum of effects. This would allow
for a coherent overview of a given technique’s strengths and weaknesses, as well as the
situations in which they come into effect. Considering this, the requirements for realistic
analysis and comparison presented in Chapter 4.1.1 must be extended to also include
the following:

• A wide range of benchmark networks: The performance of attacks and defenses
may depend on environmental factors. Hence, to realistically compare defense
techniques, the analysis should not be based on a single network configuration but
on a wide range of configurations.

• Aggregation of results: Once investigated scenarios reach a certain quantity, indi-
vidual treatment of results such as the previously employed CDF plots is neither
efficient nor useful. In consequence, metrics are needed that aggregate data to
yield comprehensible and meaningful insights.

Despite the simplifications and comfort features introduced by the modeling language,
crafting detailed and realistic scenarios requires effort. For networks of the kind presented
in the previous experiment and a modest number of variations thereof, this is definitely
feasible. Yet, should the scenarios to be tested grow in size and complexity or the
number of variations needed to be increased, this may become challenging. What is
more, handcrafting variations to detect corner cases in which the effect of a defense takes
a turn is prone to bias since the respective scenario designer might only consider such
cases that she deems relevant for expecting a certain effect. Environmental conditions
of unanticipated causes and effects may simply not be included and therefore not be
detected.

In order to increase test coverage and avoid unintended bias, yet keeping modeling
effort at a manageable level, this chapter introduces benchmark network fuzzing, en-
abling the automated diversification of benchmarks networks on the basis of a single
scenario definition1. Depending on the required degree of freedom, such definitions may
merely describe a scenario’s basic structure while making specifics such as network size,

1Parts of the contents of this chapter have been published in an article [21] in the Springer International
Journal of Information Security.
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configuration of nodes, employed software but also distribution of vulnerabilities subject
to probability. To accommodate this, the previously introduced modeling language is
augmented with new functionality so that, from a technical perspective, it is no longer
a simple modeling language to describe mere states and actions but is now capable of
processing. This includes utilization of runtime variables, loops, if-clauses and probabili-
ties, for example, to make scenario definitions flexible where needed. In consequence, one
single definition may result in a vast amount of unique instances whose (dis)similarity
depends on how extensively these features are used and in which combinations they
occur. Each of these instances is a full state description defining every element in the
network including attackers and defenders. However, there is no obligation to use any
of these diversifying features. Fully deterministic scenario definitions as used in the first
experiment work just as before.

The next section gives an introduction to these new language features and provides
information on how to use them correctly, followed by a detailed outline as to how
these new instructions are processed by the framework’s translator, that is more of an
interpreter at this point. Afterwards, to test these new capabilities of the framework,
another experiment is conducted where size, complexity and number of scenarios are
considerably increased with help of benchmark fuzzing to perform simulation at a larger
scale. Before presenting and discussing obtained results, new metrics are presented
that help make sense of the increased amount of data and allow for interesting insights.
Finally, this chapter is concluded with a summary of how benchmark fuzzing contributes
to realistic and meaningful evaluation.

6.1. New Language Features

Extending the modeling language’s capabilities to use runtime variables, augment it
with features such as loops and if-clauses, as well as additional operators to employ
probability, provides several advantages that do not only simplify diversification but
scenario definition in general. Some of the most obvious benefits resulting from these
enhancements are the following:

• omit excessive repetitions with loops

• use conditions to switch between various alternatives within a scenario

• use runtime variables to store and retrieve information at any point

• maintain and extend lists of elements that are of special interest (e.g. group items
that must be accessed and altered on particular occasions)

• employ probability to diversify single minute attributes as well as large parts of a
scenario to create differently shaped instances of the same scenario

In consequence, the creation of numerous different, yet similar instances becomes
much easier and less time consuming, and can even be fully automated when employing
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probability to “decide” upon certain aspects that impact the instance’s shape while
creating it. To better illustrate how newly added features are used in practice, it makes
sense to start off with runtime variables that the language is now able to process, since
these play a major role when utilizing loops and if-clauses, for example.

Runtime variables extend the concept of parameters that are passed to the init

instruction of templates. Since these may be different for any new instance of a given
template, using them within the template had to be realized with help of placeholders
that serve to represent specific values. To use them, their names simply had to be en-
closed in $-signs upon usage and the translator would insert the corresponding value
upon processing the given instruction. In a similar fashion, runtime variables are used.
Coming into existence upon first usage, they do not need to be declared. An instruc-
tion as simple as currentRound=1; will cause a variable named currentRound to be
created with the given value. Respective values may equally be strings or lists. Upon
assigning a new value to a runtime variable, the old value will simply be overwritten.
However, values may not only be set and retrieved but also processed in the sense of
incrementing counters, concatenating strings or simply appending values to lists. This
way, the translator can maintain a state of existing elements and related information
which can be used to fine-tune subsequent scenario generation. Previously, augmenting
elements with additional attributes only worked if all their identifiers were known and
hard-coded into the definition. Now, through maintaining lists of element identifiers,
these can be recalled at any point of subsequent translation to augment them with at-
tributes or use them for other purposes, simply by iterating through said lists. This
is especially useful when certain aspects have been made subject to probability so that
there is no way of hard-coding related information in the definition. It should be noted
that runtime variables are only valid in the scope of the file that is being processed.
That means, a variable that is maintained in the main scenario definition is not known
in the context of processing a template file which has been invoked by calling new, for
example. Should this be needed, the respective variable must be passed to the template
upon instantiation.

The syntax of using for-loops is similar to that of function definitions. The functor
for initiates the loop and is followed by parentheses that specify the counting variable
together with a specified range or list for iteration. Afterwards, the loop’s body is
specified which must be enclosed in curly brackets. Inside this body, the counter variable
can be used in the same way as runtime variables. Being enclosed in $-signs, they will
be easily detected as such and processed accordingly. Loops may be nested and their
counting variables are only valid within the scope of the loop. Similarly, the if-clause
starts with the keyword if, followed by parentheses containing the condition to be
checked, as well as the curly brackets that enclose the instructions to be processed if the
condition is met. Nesting if-clauses is possible to an arbitrary extent.

The full benefit of these augmentations to the modeling language arises from combining
them, allowing to easily scale up numbers while preserving the ability for individual
treatment in case of certain conditions. Listing 6.1 provides a code snippet showing how
these features may be used. In this example, 100 nodes are instantiated according to
the template presented in Listing 4.2 and directly equipped with an attribute to denote
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1 subnet clients;

2 // creating 100 nodes for the client subnet

3 for($I$ in range (1 ,100)){

4 node pc$I$=new node("client" ,[],4,512);

5 subnet pc$I$.belongsToSubnet=clients;
6 $allClients$ +=[ pc$I$ ];
7 }

8 // now , every fourth client is equipped with a Linux -based os

9 $counter$ =1;
10 for($PC$ in $allClients$){
11 if($counter$ ==5){
12 $counter$ =1;
13 }

14 if($counter$ ==4){
15 os $PC$.os=new os("linux");

16 $windowsClients$ +=[ $PC$];
17 }

18 $counter$ +=1;
19 }

Listing 6.1: Employing runtime variables, for-loops, and if-clauses in practice.

them as members of the subnet named clients. Furthermore, each node element is
appended to a list of runtime variables (i.e., allClients) for later reference. Afterwards,
every fourth node is equipped with an operating system of the Linux-family, which is
simply done by iterating through the list of all nodes and checking if the counter is four
to make respective modifications.

These features allow to easily scale a given scenario and even quickly switch between
alternatives that may have been defined in the scenario definition though simple condi-
tioning. However, this is still deterministic and does not allow for automated variation.
To accomplish this, one additional feature referred to as PROB() has been introduced
that allows to leave some aspects to chance while processing the scenario. Through
randomizing certain values, conditions that are subsequently checked may take different
turns thus considerably changing the shape of the resulting scenario instance, allowing to
generate large varieties. This probabilistic feature simply implements randomly picking
one value from a list of values which may either happen assuming a uniform distribution
of probabilities or by providing a second list of values that determines probabilities for
the values in the first list based on the order of appearance. It should be noted that
utilization of this feature differs from that of functors for requiring the respective ex-
pression to be enclosed in $-signs as if referring to a runtime variable. Why this is the
case will be covered in the next section where implementational aspects of the extended
modeling language are covered. Listing 6.2 provides a code snippet showing how to
use this feature (in lines two, five, and eight), using the example of a randomly chosen
number of nodes to instantiate and their potential vulnerability in dependence of the
utilized operating system.
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1 // depending on chance , either 10 ,100 or 200 nodes will be generated

2 $numOfNodes$=$PROB ([10 ,100 ,200])$;
3 for($I$ in range(1, $numOfNodes$)){
4 // os is chosen randomly: 50% for windows , the other two 25% each.

Note that the last probability may be extrapolated

5 $ostype$=$PROB(["windows","linux","osx"] ,[50 ,25])$;
6 node pc$I$=new node("client" ,[],4,512);

7 os pc$I$.os = new os($ostype$);
8 $vulnerable$=$PROB([true ,false ] ,[10])$;
9 if($ostype$ =="linux"){

10 if($vulnerable$ ==true){
11 string pc$I$.os.hasVuln="shellshock";
12 }

13 }

14 }

Listing 6.2: Probabilistic scenario shaping.

While this is only a trivial example, it illustrates how the newly introduced features
may be used to automatically diversify scenarios. Probabilistic determination of specific
values was only done on three occasions, already yielding a high number of different
potential outcomes. Obviously, these will mostly differ in the number of pc and utilized
operating systems, which may be of no particular importance. Yet, practical implications
are evident. Assuming that those features are used on a large scale to choose between
equally plausible shapes of different aspects of networked systems and making subsequent
choices dependent on previous ones, numbers of realistic scenarios can easily be scaled.

6.2. An Additional Processing Layer

Simply put, the modeling language has been augmented with features that go beyond
mere descriptions but allow for additional processing by the translator itself, before
producing the output in form a monolithic Prolog file. In this regard, the translator does
not need to be rewritten from scratch but may similarly be augmented with capabilities
to adequately handle newly introduced instructions. Processing wise, the effects of
runtime variables, loops, if-clauses, as well as the probabilistic value selection can be
evaluated before any form of translation is conducted. What this means is that the
original translator can simply be equipped with a preprocessor that resolves all new
instructions, producing a representation that can be translated just as before.

To accomplish this, parsing is extended to recognize the new instructions, first. This
is done with an additional grammar that is considerably simpler than the one used to
translate scenarios for only needing to tell apart descriptive instructions and those that
need preprocessing. In consequence, the resulting AST is simpler which also benefits its
traversal to produce an ordered list containing all instructions from the input file. While
anything that concerns descriptions is basically just left as is, instructions requiring
preprocessing are transformed into a structured format to simplify subsequent handling.
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At this point, the preprocessor comes into play, working off ordered instructions to build
and maintain the list of plain descriptions and variables, replace them where needed,
unroll loops, an evaluate if-clauses. Furthermore, in this step, all probabilistic decisions
are resolved and directly replaced by the value that has been determined on the basis
of given options. This direct in-place substitution is the same as done for runtime
variables and not handled by a specific procedure as is needed for loops or if-clauses.
Therefore, to be detected as a value that should directly be replaced, it is simply enclosed
in $-signs, serving as a distinctive identifying feature. The fact that this list contains
all instructions, even the plainly descriptive ones, ensures that processing of runtime
variables is in sync with processing of the rest of the scenario. If treated separately,
additional effort would be needed to align which variable had what value at a given time
to substitute placeholders correctly. The output that is generated is a representation
of the scenario definition that is fully deterministic and does not contain any of the
newly introduced instructions anymore. From this point on, the previously introduced
translation process will pick up. This whole procedure is performed for every individual
file that is being loaded, from the main scenario to the template files and snippets.
Remember that the main worker of the translator processes all files recursively, so as
to implement preprocessing, the procedure outlined above is simply incorporated in the
worker, just before translation is invoked.

6.3. Metrics for a Comprehensive Analysis

For analyzing simulation results on a small scale, the previous experiment relied on
CDF plots for different thresholds. This has shown to be a convenient way to get an
impression of how the different defenses perform under certain conditions. Yet, when
increasing the number scenarios, manually investigating different plots to decide which
defense performed best under what conditions is hardly feasible and, most importantly,
not efficient. To this end, new metrics are presented that deliver meaningful KPIs from
simulation logs which, in turn, can be further processed to condense results.

The new metrics still rely on the attacker’s progress in the presence of different de-
fenses, measured in form of revenue gained through compromising resources of certain
value. During simulation, this attacker revenue is logged in each round, with rj [i] denot-
ing the revenue accumulated by the attacker up to round i for simulation j. However,
instead of simply plotting this accumulated revenue, results are now captured with help
of the following metrics: rmax is the maximum accumulated revenue among all l inde-
pendent simulations conducted for a given combination of network and defense, ravgj is
the average accumulated revenue per round for simulation j, and ravgm the median of
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these averages among all l simulations. These are formally defined as:

rmaxj = rj [n] (6.1)

rmax = max
j≤l
{rmaxj} (6.2)

ravgj =
∑
i≤n

(rj [i]) /n (6.3)

ravgm = median
(j≤l)

{ravgj} (6.4)

In this regard, rmax shows how far an attacker can possibly infiltrate a network.
Deviations in this metric across defenses indicate if a defense was able to cut off attack
avenues — or maybe even opened new ones. However, only looking at rmax does
not capture cases where a defense cannot prevent an attack, but slow it down. Many
proposed MTD techniques actually do not claim to completely prevent attacks but
impede the attacker as to make attacking more costly and risky. This is what ravgj
is for. Relying on the average of accumulated revenue per round instead of gained
revenue per round, ravgj accounts for both earliness and height of obtained revenue.
As a result, it will yield lower values for simulations in which revenue acquisition was
delayed, even though rmax may be the same. This way the two metrics complement
each other. Deriving ravgm from all ravgj serves to make this metric resistant to outliers
and condense results from l independent simulations per network and defense into one
single value. These two metrics are well suited to compare defenses within the same
network. However, across different networks, where conditions might differ significantly
and achievable revenue deviate, comparison of these values makes no sense. What can
be done though, is classifying results on a per scenario basis to determine whether or
not the rmax value of the defense was higher, equal or lower than that of employing “no
defense”. If so, the defense is effective. Yet, should rmax be higher, the defense actually
has a negative impact on security. Doing the same with ravg is not helpful, though,
as this value has a high variance due to the probabilistic nature of the simulation. For
this metric, classification is done on the basis of overlapping confidence intervals for
ravgm to decide upon significantly higher or lower values. In Chapter 6.4.4, analysis of
experimental results of the following case study will illustrate this classification scheme
and the purpose it serves.

6.4. Fuzzing-enabled Defense Evaluation at Scale

For the second case study, a mid-sized corporate network consisting of nine subnets is
assumed. These allow for a considerably more complex network hierarchy than the three
subnets used in the previous experiment, let alone scenarios that consist of merely three
hypervisors and five unspecific VMs [64]. While this generally requires more lateral
movement for the attacker to compromise all valuable resources, it also provides more
occasions for defenses to unfold their potential and learn about their effects. However,
the most important difference is that this case study relies on the previously presented
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fuzzing approach. That is, specific network instances are not modeled manually as be-
fore, but derived from a single high-detail scenario definition that serves as a template for
automated diversification. To test this functionality and investigate the spectrum and
quality of results obtained from such auto-generated network instances, this experiment
was chosen to be larger. Instead of evaluating defenses in only two benchmark net-
works, this number is scaled up by factor 250 through utilizing the newly added features
of the modeling language to automatically generate 500 network instances for simula-
tion. These 500 instances share the same basic network layout and general connectivity
but differ in a number of aspects which have been declared subject to probability and
conditions. In particular these include:

• No. of clients and servers in different subnets

• OSes of clients and servers

• Server types (e.g. CRM, SQL, Webserver etc.)

• No. of XEN hosts within subnets to migrate VMs

• Existence and distribution of different vulnerabilities in:

– Hardware

– OS

– Software

• Reuse of credentials

• Storing and caching of credentials

• Firewall misconfiguration

This allows to evaluate attack and defense performance in different, yet equally realistic
scenarios and get a better understanding of their impact on security. Using the same
defenses as in the first experiment allows to investigate if the previously provoked in-
cidental security degradation caused by individual defenses can also be observed when
employing automated and unbiased diversification. Should this be the case, benchmark
fuzzing would not only be convenient but also suitable to produce scenarios that yield
equally meaningful insights. Furthermore, the increased scale, complexity, and diver-
sity may reveal additional effects and shed light on how these are distributed. In the
following, the general network layout, software landscape, as well as vulnerabilities and
attacker actions will be explained.

6.4.1. Network Layout

The scenario definition employs a high degree of freedom to generate diverse benchmark
networks in large quantities. Yet, the general network structure is fixed, consisting
of nine specific subnets. That means, irrespective of randomized properties such as
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the number of hosts in the demilitarized zone (DMZ), their configuration, or installed
applications, there will be a DMZ in every benchmark network. The same goes for
other subnets and structural properties so that all instances share a general layout as
shown in Figure 6.1. The depicted circles represent subnets that form the network.
These are connected through different types of arrows, representing different types of
possible communication between them. This is either IP and port-based, out of band via
removable media, or through e-mails. Remember from the meta model that IP and port-
based communication depends on firewall rules that are usually inserted on the basis of
deployed applications, however, this time also based on potential misconfiguration.

Figure 6.1.: Fixed subnets, represented as circles, that are randomly populated and in-
terconnect through firewalls. Communication is possible as indicated by the
different arrow types

The depicted structure has been chosen to account for company networks with produc-
tion or development subnets that, to a certain degree, need to be isolated from regular
network traffic for their criticality to operations or confidentiality reasons. As can be
seen in Figure 6.1, network-based communication to “engineering and production” is
restricted to the server subnet that may be required for keeping production numbers in
sync with accounting, for example. However, there might also be unofficial communica-
tion from and to engineering clients via removable media to represent users that try to
bypass inconvenient restrictions. This type of communication is implemented fairly sim-
ple through assigning a certain attribute to individual clients of the respective subnets,
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marking those that may engage in such exchange. Communication is less restricted in
the part of the network that can be considered as the office IT. There, clients access
application servers in the DMZ and server subnet, while admins have to manage these.
Exposed servers from the DMZ need to communicate with the server subnet for authen-
tication services and the like. Additionally, clients from marketing and accounting, as
well as admins are able to receive e-mails.

The ranges of the numbers of physical nodes, VMs, as well as applications that may
be realized in the course of diversification for the different subnets in the scenario def-
inition is given in Table 6.1. These are minimum and maximum numbers of instances
of the given element type. As one can see, for applications in some client subnets, these
numbers may rise quickly. This is due to conditions and probabilities employed in the
scenario definition that ensure realistic scaling of client applications and other proper-
ties. For example, should the randomly picked number of virtual machines in the server
subnet be high, conditions in the scenario will take care to equip these with applications
that are randomly chosen from a list of potential server subnet applications. Otherwise
the VMs would serve no purpose and just bloat the model. However, to be considered
realistic, legitimate clients are needed to communicate with those servers. Therefore re-
spective client applications are deployed on a set of randomly chosen clients that fit the
application type to ensure that accounting software, for instance, is not deployed on the
admin clients where they are most probably of no use. Depending on how these random
numbers turn out, and how many clients have been instantiated in the respective subnet,
this may lead to a high application count. At the same time, this pairing of client and
server applications triggers the instantiation of firewall rules to allow for communica-
tion between respective addresses and ports. This logic has been used throughout the
definition file to enable the generation of versatile and realistic benchmark networks.

Table 6.1.: Range of possible scenario size

Subnet No. of Phys. Nodes No. of VMs No. of Apps

remote 1 - 3 0 6 - 45
internet 2 0 6 - 12
dmz 2 - 3 4 - 12 5 - 14
server 4 - 9 11 - 24 15 - 32
printer 1 - 3 0 0
engineering clients 6 - 9 0 3 - 51
engineering server 2 - 5 5 - 12 6 - 15
production 1 - 4 0 1 - 4
marketing 4 - 7 0 24 - 98
accounting 4 - 7 0 24 - 105
admin 2 - 4 0 2 - 4

Total 29 - 56 20 - 48 92 - 380

94



6.4.2. Software Landscape

The applications that are instantiated depending on probability and conditions have been
selected with regard to functionality that is regularly required in a corporate context.
These comprise Active Directory (AD) Servers, Microsoft Exchange, Apache Tomcat,
SAP for production and accounting, but also different types of database servers, to
name just a few. Applications come with typical actions one can reasonably expect to
exist as to allow for interaction, extending the default templates presented in the meta
model in Chapter 4.6. In that sense, the Apache2 server allows to retrieve websites,
whereas the OSes allow to read from the file system, for example. On occasions where
there is no obvious real world application as to represent a certain functionality, generic
applications have been modeled and equipped with plausible actions. An example for
such a generic application is the marketing server that is assumed to be accessed by
client applications on nodes in the marketing subnet and allows, depending on the given
privilege, to retrieve certain types of information.

Table 6.2.: Potential applications per subnet

Subnet Potential server applications

dmz Apache2, Tomcat, SQL, Exchange, Remote Shell/Desktop
server Active Directory (AD), SQL, SAP, Max DB, Veritas Net-

backup, Tomcat, Marketing (generic), Datev, SMB, Re-
mote Shell/Desktop

engineering server Git, Licensing (generic), SQL, SAP, Max DB, Remote
Shell/Desktop

production generic application for deployment

Potential client applications

internet DMZ: Apache2, Tomcat, Exchange
remote DMZ: Apache2, Tomcat, Exchange; Server: AD
marketing DMZ: Apache2, Tomcat, Exchange; Server: AD, Veritas

Backup, Tomcat, Marketing
accounting DMZ: Apache2, Tomcat, Exchange; Server: AD, Veritas

Backup, Tomcat, Datev, SAP
admin DMZ: Apache2, Tomcat, Exchange, SQL, Remote Shel-

l/Desktop; Server: AD, Veritas Backup, Tomcat, Datev,
SAP, SQL, Max DB, Remote Shell/Desktop

Table 6.2 gives an overview of the different applications that the benchmark network
generator chooses from, in order to equip server and client nodes in the respective sub-
nets. In this case study, more than one instance of an application can be deployed per
subnet. This is not only true for SQL servers that are frequently used exclusively for
specific services, but also for other applications. In these cases, the benchmark network
generator re-evaluates related configuration parameters which are subject to automated
diversification, including potentially existing vulnerabilities, so that the resulting appli-
cation instance exhibits a different set of characteristics than previous ones. The client
application listing contains additional information about the target subnet of a given
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application. Just like applications, operating systems are subject to automated diver-
sification, as well. The experiment differentiates between a Windows, Linux and XEN
basis and determines parameters, as well as vulnerabilities accordingly.

6.4.3. Exploits and Legitimate Actions

As in the previous case study, the attacker’s interaction is realized through actions that
can generally be divided into exploits and legitimate actions. However, their number
has been increased for this larger scenario, which is also due to the extended list of
modeled software. These actions have been determined by scanning through the list
of applications employed in the case study and identifying their core functionalities.
Furthermore, basic OS-inherent actions that may be relevant in the course of an attack
are included again. These comprise pinging hosts, opening remote shells, and reading
from filesystems, to name just a few. In equal manner as before, vulnerabilities for
employed software were obtained from the CVE database and Metasploit. These have
been filtered with regard to age and score as to only consider those with a score higher
than eight in a time range from the years 2016 to 2019. Vulnerabilities from this list
have been selected and incorporated into the model if exploiting them yielded any of the
following effects:

• allow restricted or privileged read access to data

• grant restricted or privileged remote code execution

• escalate privileges

In consequence, this list contains exploits known from the first experiment but also new
ones that are related to the extended software catalog and the increased time span.

When comparing the different legitimate actions, but also exploits, similarities in
underlying mechanisms, as well as effects become apparent. Actions to query SQL
databases or fetch e-mails, for example, can be classified as authenticated reading of
network-based resources. Many exploits, on the other hand, provide attackers with RCE
privileges requiring no authentication at all. Based on these reoccurring patterns, generic
actions and exploits have been crafted that are used to equip fictional applications such
as the marketing server with plausible means of interaction.

All in all, this resulted in 48 actions an attacker can directly call, with Table 6.3
giving an overview of how these have been classified along different dimensions. While
type differentiates between exploits and legitimate actions, execution environment dis-
tinguishes the setting in which these may be launched. In the context of this case study,
this may either be through network connectivity to the target, RCE privileges on the
target system, RCE privileges on any system that resides on the same physical host as
the target, or through other channels such as e-mail or removable media. Execution
restriction indicates whether the attacker needs to authenticate with help of credentials
or not and, finally, effect categorizes actions with regard to the changes they cause to
the system state. “Reading assets from applications” refers to obtaining aforementioned
usefulData elements that have a defined value that serves to measure attacker revenue.
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This may be credit card information stored in a database that the attacker can get hold
of by different means. Differentiating between “full” or “restricted” simply refers to the
privilege level. “Read only IP addresses” results in the attacker learning IP addresses.
These have no inherent value but are needed for further attack steps. “Reading all data”
from either applications or complete operating systems comprises extraction of any in-
formation, including string values for IP addresses, DNS names, usernames, passwords,
etc. as well as usefulData elements. This may be the case when getting access to the
filesystem to retrieve configuration files of different services as was also discussed in the
context of the meta model. Lastly, “remote control” subsumes all actions that grant
remote code execution, be it through legitimate ways such as a remote shell or through
exploiting vulnerabilities. An exhaustive list of all implemented actions can be found
in the supplemental material referred to in Appendix B, comprising definitions of their
requirements and effects. Similar to the approach in the previous case study, duration
and success rate of exploits have been manually determined on the basis of related vul-
nerabilities’ descriptions, the underlying mechanisms, and the availability of exploit code
(e.g. in Metasploit).

Table 6.3.: Attacker functions (48) grouped by specific attributes

Dimension Shape Number

Type
legitimate 24
exploit 24

Execution
Environment

Network 37
Local System 4
Local Host 4
Others 3

Execution
Restriction

Authenticated 21
Unauthenticated 27

Effect

Read Assets from
Application (full/restricted)

5/9

Read all data from OS 7
Read all data related
to Application

3

Read only IP addresses 2
Remote Control
(system/user)

20/2

6.4.4. Experimental Results

Due to the probabilistic nature of simulated actions, development of attacker revenue
may vary across simulations, even when repeated for the same benchmark network and
defense. Therefore, for every combination of the 500 benchmark networks, five defense
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Figure 6.2.: Boxplots representing attacker performance for scenarios 96 and 157 based
on i) the average accumulated revenue per round ravgj across different
defenses and 200 independent simulations each and ii) the maximum accu-
mulated revenue rmax at the end of each simulation

configurations, and two additional control groups, l = 200 independent simulations are
performed with n = 12000 rounds each. The number of rounds n = 12000 was chosen
high enough so that for simulations with no defense in any given network, the attacker
could, and did reach the maximum amount of achievable revenue at least once. However,
on average, the maximum available revenue was obtained in 91.8% of the cases when no
defense was employed. This results in a total of 700,000 simulations which is why simply
plotting attacker revenue development for each of these will not yield any insights for
the sheer amount of information. This is where the introduced metrics come into play.

Figure 6.2 depicts “notched” boxplots representing the average accumulated revenue
per round ravgj , as well as the maximum attacker revenue rmaxj for networks 96 and 157
based on 200 simulations per defense. These were chosen exemplarily and the boxplots of
all networks can be found in Appendix B, including data and Python scripts to generate
them. In each plot, the upper and lower boxes depict the top and bottom quartiles,
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representing the 25% of values above and below the median. The horizontal line that
separates top and bottom quartile along the notch, is the median. For boxplots that
display the average accumulated revenue per round, this is ravgm. Whiskers, where
present, indicate variability of values outside the quartiles, while outliers are represented
as crosses. The notches in the boxplots represent the 95% confidence interval for the
median, i.e., the area in which the real median is expected to lie based on the observed
data with a probability larger or equal to 95%. This interval was calculated using the
approach of McGill et al. [91] that relies on a Gaussian-based asymptotic approximation
of the standard deviation and is defined as:

M ± 1.7
1.25R

1.35
√

(N)
(6.5)

In this expression, M represents the observed median, R is the interquartile range
defined through R = Q3 −Q1 and N is the number of observations which in the given
case case is l = 200. To check on results, all simulations with no defense are performed
three times in total, so that there are two control groups. Since these are based on the
same inputs as the reference case, they are subject to the same probability distribution.
Consequently, if sample size and simulation duration have been chosen adequately to
employ said metrics, there should be no significant difference.

Figures 6.2(a) and 6.2(b) show boxplots of the average accumulated revenue per round
and the maximum attacker revenue for network 96, that allow for interesting observa-
tions. Most notably, values of rmax are considerably higher for both types of VM
migration as opposed to employing no defense. This means, that these defenses did not
only fail to prevent attacks, but opened up new attack opportunities, just like in the
first experiment’s original network configuration for the 2016-attacker. The qualitative
analysis of respective simulation logs reveals that this results from changed connectivity
and co-location of VMs that occasionally increases the number of viable attack paths.
The other defenses yield the same rmax as no defense, meaning that the number of
successful attacks is the same. Looking at the average accumulated revenue one can see
that cold migration and live migration also have a negative impact on this performance
indicator, yielding higher values than no defense. IP shuffling has no considerable im-
pact while VM resetting was able to slow down the attacker. Note that cold migration
exhibits a lower average accumulated revenue per round than live migration which can
be explained by the fact that cold migration also incorporates resetting of VMs.

In contrast, network 157 paints a different picture. As shown in Figure 6.2(d), in this
network, rmax is the same across all defenses, meaning that none of them decreased or
increased the number of successful attacks. However, as shown in Figure 6.2(c), both
types of VM migration, as well as VM resetting have a throttling effect on the attacker.
Furthermore, one can see that cold migration, being a combination of the other defenses,
has the strongest impact. Judging from this case, VM migration appears to be a capable
defense, similar to the findings from the previous experiment’s second network config-
uration. The qualitative analysis of simulation logs reveals that the positive effect of
VM migration in this network is due to disadvantageous initial placement of VMs. This
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results in a relatively high number of viable attack paths so that subsequent relocation
of VMs is more likely to cut existing paths off than establish new ones. Thus, VM
migration slows down the attacker.

Comparing Defenses Among 500 Scenarios

The important question that arises from these findings is which types of effects exist for
the different defenses and how they are distributed. So far, the results from two specific
networks have been investigated where different effects of defenses could be observed.
However, this second experiment aspired to allow for investigation across numerous
cases which is why simulation was conducted for 500 networks that have been generated
with the presented benchmark fuzzing approach. Also, the claimed utility of the newly
introduced metrics in aggregating data has not been shown yet since the boxplots still
only concern one single network at a time.

For an overarching analysis, the maximum attacker revenue rmax, which basically
represents the worst case attack scenario for a given network and defense shall be con-
sidered first. For each benchmark network, values of rmax for all active defenses are
compared with that of no defense to determine if these are smaller, equal, or larger, and
categorize them accordingly. This ability to categorize allows for a compact representa-
tion in form of histograms, indicating how frequently different effects could be observed.
Figure 6.3(a) shows respective histograms of all defenses together with the two control
groups (where no defense was active) across all 500 scenarios. One can see that for IP
shuffling and VM resetting, as well as the two control groups, rmax is never higher than
that of no defense, thus never causing any security degradation. On the other hand, in
the presence of cold migration and live migration in 189, respectively 205, out of the
500 networks, rmax increases. That means, in more than a third of all cases, migration
actually has a negative impact on security. A reduction of maximum attacker revenue is
only observed in very few cases (i.e., cold migration 17/500, IP shuffling 13/500, live mi-
gration 0/500 and VM resetting 16/500). In this regard, the considered defenses hardly
ever keep the attacker from reaching her goal as compared to no defense. However, this
is not too surprising, considering that the main goal of most MTD techniques is to slow
an attacker down.

As opposed to categorizing and comparing rmax across defenses, for which only max-
imum values matter, doing so for the average accumulated revenue per round requires
a more sophisticated scheme. Looking at the boxplots in Figures 6.2(a) and 6.2(c), one
can see that values for ravgj occasionally spread across wide ranges. Consequently, nei-
ther maximum nor minimum are able to adequately capture the observed effect. The
median appears suitable, however, despite similarities, is hardly ever the same for dif-
ferent defenses, thus making it hard to decide when values are genuinely different or
roughly the same. To this end, ravgm together with its 95% confidence interval shall be
employed, which is indicated by the notches. For each defense it can then be checked
whether the confidence interval lies entirely above or below the confidence interval of
no defense. If so, its ravgm is classified as “larger”, respectively “smaller”. This is in
line with McGill et al. [91] who state that non-overlapping confidence intervals indicate
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Figure 6.3.: Histogram of the attack simulations over 500 networks with a showing how
often each defense resulted in a larger, the same, or smaller rmax compared
to no defense. In b the number of networks is shown in which ravgm for a
chosen defense is significantly smaller or larger than that of no defense
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significant difference. Should intervals overlap, values are generally classified as “equal”.

Figure 6.3(b) depicts the resulting histogram of the average accumulated revenue
per round. Again, including results from the two control groups for which simulations
with no defense have been repeated. Note that a significance level of 95% means that
there is a probability of up to 5% that a median is falsely classified as different. In
the control groups, deviation in 4%, respectively 3.8% of the cases can be observed so
that the assumption of a classification error smaller than or equal to 5% is not violated.
Results show that cold migration and live migration cause a higher average accumulated
attacker revenue in 32.4%, respectively 45.8% of the cases. VM resetting and IP shuffling
exhibit negative effects in only 0.6%, respectively 1.6% of the cases, which, considering
the confidence interval, might be the result of pure chance. In contrast, live migration
reduces the average accumulated revenue in only 11.2% of networks which is the lowest
followed by IP shuffling (32%), cold migration (39.2%), and VM resetting (46.6%).

In summary, cold migration may have both positive and negative effects. However,
in the investigated benchmark networks, its positive impact on security is lower than
that of using sole VM resetting. Live migration affects security mostly negatively. Con-
sequently, both types of VM migration are not advisable since they open attack paths
that would otherwise not exist. Instead, VM resetting and IP shuffling have the largest
positive impact while hardly exhibiting any downsides. Among the two, VM resetting in-
creases the security level considerably more (46.6%) than IP shuffling (32%). Note, that
these findings concern the defenses’ general effectiveness, given their duration times as
delimiting factors. To what extent the most effective defense is attractive for a defender
to employ, however, may depend on factors such as strategy, environmental conditions,
and the cost that result from these. Nevertheless, in this specific scenario of a mid-sized
enterprise network with given vulnerabilities and exploits, VM resetting performs best.

Coverage of Benchmark Fuzzing

The question, whether the introduced fuzzing approach is able to yield equally meaning-
ful results as the manually tweaked benchmark networks, can be clearly answered with
yes. Not only did fuzzing produce the same cases as seen in the initial case study, it also
revealed new cases that had not been observed yet. Table 6.4 gives an overview of all
encountered effects, ordered by frequency of occurrence. Two of the five most dominant
effects that measurably deviate from employing no defense are the ones discussed at the
examples of scenarios 96 and 157 where migration either degraded or improved security.
However, extending simulation to include more networks of higher diversity reveals that
IP shuffling was able to slow down the attacker in a considerable number of cases, as
can be seen in both Table 6.4 and Figure 6.3(b). While not as effective as VM resetting,
it still increases security. Furthermore, rare cases are revealed where cold migration and
live migration cause rmax to increase, for example, while at the same time, cold migra-
tion lowers ravgm that results from VM resetting. This highlights that relying on a few
handcrafted benchmark networks is not enough to analyze defense techniques. Instead,
it is advisable to base analysis on many benchmark networks that, with help of fuzzing,
can be derived automatically from one single scenario definition.
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Table 6.4.: Overview of observed defense performance combination for cold migration
(C), live migration (L), VM resetting (R), and IP shuffling (I) with ’+’ indi-
cating a larger, ’-’ a smaller attacker revenue

rmax ravg count rmax ravg count rmax ravg count
CLRI CLRI CLRI CLRI CLRI CLRI

==== ==== 108 ==== -+-+ 2 -=== ---= 1
++== ++== 74 -=-- -==- 2 =+== -+-= 1
==== -==- 39 =+== -==- 2 ==-= ++-- 1
++== ++-= 34 ++== ---- 2 ++-= ++-= 1
++== ++-- 28 -+-= -+-- 2 ++== ==-- 1
==== ---= 26 -+-- -=-- 2 ++== ++-+ 1
==== -=-= 24 ==== ++=- 2 ++-- ++-- 1
==== ---- 23 ==== ==-= 2 -=-= -=-- 1
==== -=-- 13 ==== ---+ 2 ++=- ++-= 1
==== -+-= 11 ==== -+=- 2 ++-= -+-- 1
++== =+== 9 ++== =+-- 2 ++== ---= 1
==== =+-= 9 ++== -==- 2 ==== ++++ 1
++== -+-= 9 -=== -=-- 2 ==== =+== 1
==== ++== 5 =+== -+-- 1 ==== ===+ 1
==== ++-- 5 -+== -==- 1 -=== ---- 1
++== -+=- 5 =+== -+=- 1 ++=- ++-- 1
++== =+-= 4 =+== -=-= 1 -=-- -=-= 1
==== -+-- 3 ==== =++= 1 ==== +=== 1
++== -=-= 3 ==== -=== 1 ==-- =+-- 1
++== ++=- 3 -+=- -=-- 1 -+=- -==- 1
++== -=-- 3 ==-= -+-- 1 =+== ++=- 1
-+-- -+-- 2 ++== ++++ 1 ==== ++-= 1
++== ==== 2 ==== ===- 1

6.5. Summary

This chapter introduced “benchmark fuzzing”, an extension to the modeling and simula-
tion framework that is based on substantial enhancements of the modeling language and
the translator responsible for deriving valid Prolog code, allowing to automatically gen-
erate large numbers of realistic benchmark networks from a single scenario definition to
address the previously identified need for evaluating defenses in a multitude of different,
yet equally realistic settings. Scenario definitions that serve as input for this automated
process might dictate the basic network structure, for example, while declaring other
characteristics subject to probability. Networks generated from this definition will fol-
low this prescribed structure, yet differ in aspects such as the number of nodes, deployed
applications or any other parameter. This enables the framework to scale up evalua-
tion with ease, reducing effort while increasing coverage. To test this new capability, as
well as validate and extend findings on defense performance, further experiments have
been conducted, using benchmark networks derived from “benchmark fuzzing”. For this
purpose, a scenario definition for a mid-sized corporate network was created and used
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to automatically generate 500 benchmark network instances, serving as input for the
simulator to evaluate the previously introduced defenses at a considerably larger scale.
Furthermore, two new metrics have been introduced to quantify the security implications
of the defenses under test. The first metric indicates how far an attacker can infiltrate
the network for a given defense by measuring gained revenue, while the second metric
exposes throttling effects on attacks.

Implementing these new features, the framework, previously focusing on modeling
and simulation, advanced with regard to automation and scaling. Considering that
previous experimentation had shown that for evaluation to be meaningful, it has to
consider numerous different scenarios, automated benchmark network diversification and
aggregated metrics to analyze results are not merely convenience features but actually
hard requirements that the framework now fulfills.
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7. Routing-based Moving Target Defense

While the previous chapters focused on evaluating Moving Target Defenses, the scope
now shifts to anonymous and dynamic routing that is still underrepresented in MTD
research. Though promising for considerably impeding reconnaissance if implemented
and applied correctly, only few MTD-related publications address this topic. Further-
more, those publications that do cover anonymous and dynamic routing as a means of
Moving Target Defense, regularly only consider dynamically changing communication
paths through adapting the topology with help of SDN [65, 115]. The routing scheme
presented here1 is not tailored to the concept of MTD, yet may generally be employed
for that purpose, as well. The following outline considers application in the internet
for posing the biggest use case and providing the size, as well as layout for anonymous
dynamic routing to unfold its potential.

The potential to improve security and privacy with help of specifically designed routing
protocols stems from the fact that most communication networks, and in particular the
internet, do not hide who is communicating with whom at what time. However, from a
privacy perspective, such meta data are very critical as a lot information can be inferred
from them. This applies to both global public networks such as the internet, as well
as closed corporate networks. An attacker that gets hold of conveniently located nodes
within a network will have an easy job during reconnaissance for obtaining a lot of
relevant information through simply inspecting passing traffic. While reconnaissance
is, in most cases, not an adversary’s primary concern, it helps in preparing the next
steps. Considering a global scale, an entity controlling an autonomous system (AS) can
store meta data — who communicated with whom and at what time and which service
— of all communication going through that AS. While not necessarily needing such
information to prepare a subsequent attack, authoritarian regimes use such information
to oppress and prosecute opponents. Furthermore, a malicious AS can manipulate the
Border Gateway Protocol (BGP) to increase the traffic it can eavesdrop on [13, 126].
Technical changes to the internet infrastructure and the used protocols are therefore
advocated by privacy-conscious actors [124]. The most famous initiative to counter
surveillance is the Tor project [116] in which traffic is encrypted and relayed through
hops to obfuscate the actual communication partners using onion routing. While Tor
is still subject to traffic analysis and other attacks (e.g. [31, 74, 96]), it offers a good
degree of privacy for the average user. However, the introduced overhead does not
make it a viable solution to be used by every client and application. Tor’s speed is
often insufficient [52] and its scalability is limited [12, 93]. Transferring the concept
of Tor to closed corporate networks is also challenging. By establishing an overlay

1The work presented in this chapter has been published [18] in the Proceedings on Privacy Enhancing
Technologies Symposium 2020, Issue 3.

105



network which employs source-based routing, it cannot easily be adapted to operate
effectively in a smaller scale. Furthermore, considerable adaptation on the client side
would be required to make applications use it. Anonymous communication protocols
with provable anonymity guarantees such as Mixnet-based systems exhibit an even worse
performance than Tor [49]. For comprehensive surveys of such protocols see the work of
Shirazi et al. [114] or Ren and Wu [109].

To tackle this problem, lightweight anonymity protocols have been proposed which
focus on optimizing performance and deployment costs with the goal to allow large-scale
utilization at the network layer. The Lightweight Anonymity and Privacy (LAP) proto-
col [67] is the first proposed protocol in this category. It is deployed at the network layer
on top of the Internet Protocol and offers sender anonymity. Dovetail [111] builds upon
LAP and adds receiver anonymity, to some degree, but requires user-controlled pathlet
routing. HORNET [35] offers the highest degree of anonymity, yet requires source-based
routing. The Path-hidden lightweight anonymity protocol (PHI) [36] builds upon the
LAP and Dovetail protocols. Like LAP, PHI works with any inter-domain routing pro-
tocol such as BGP. From a privacy and security perspective anonymous and dynamic
routing are favorable features. Performance requirements and costs are limiting factors,
though, that impede the wide deployment of anonymity preserving protocols. Conse-
quently, investigating how these can be realized in a cost-effective manner is an important
task. Whether or not anonymity protocols will be deployed in global networks such as
the internet is, in the end, a political question. However, as outlined before, anonymity
protocols are not only interesting from a privacy perspective but also for network se-
curity. In large corporate networks they constitute a promising approach to decrease
information leakage in case of compromised infrastructure. This, in turn, can hamper
lateral movement, thus impeding attacks such as Advanced Persistent Threats (APT).
With the rise of software-defined networking (SDN), implementing these protocols in IP
networks has become very realistic and cost-efficient.

The contribution of the work in this chapter is twofold. Firstly, novel de-anonymization
attacks against the PHI protocol are presented that significantly decrease receiver and
sender anonymity. Secondly, an improved lightweight anonymity protocol named de-
pendable PHI (dPHI) is proposed that withstands these attacks. The reason for focusing
on PHI in the first place is that its application in closed corporate networks is generally
feasible, while representing the state of the art for this kind of protocols. Suggesting an
improved successor based on identified shortcomings is the obvious thing to do. How-
ever, before going into details of the PHI protocol and possible attacks on it, related
work is presented to get an impression of the status quo in the field of anonymous and
dynamic routing. Once PHI, its limitations, as well as the improved dPHI protocol have
been presented, performance analysis is conducted to compare dPHI with other proposed
protocols based on commonly used metrics. Finally, limitations are discussed.
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7.1. Related Work

In the following, the most important lightweight anonymous routing protocols will be
introduced that are relevant for PHI and dPHI. In the quantitative anonymity analysis
in Chapter 7.5.2 not only PHI and dPHI are compared, but also LAP and HORNET for
reference. Consequently, they are shortly introduced, as well.

LAP is the first network layer lightweight anonymity protocol and was presented in
2012 [67]. The goal of LAP is to provide sender anonymity while not impeding the
routing of the network it is deployed in. The session establishment works as follows:
A session request is sent from source to destination. In the session request message,
a header field is used by each routing node to store information on how it routed the
message. That is, each node stores the ingress port (from where the message has been
received) and the egress port (to where the message is forwarded), encrypted with its
individual secret key. This way, routing information can only be retrieved by the routing
node that wrote the information, thus preventing other nodes from learning where the
message originated. After the session request message reaches the destination, all further
messages are exchanged based on the encrypted routing information in the header. Each
routing node receiving a message decrypts the routing information and sends the message
to the corresponding ingres or egres port. In consequence, an attacker that eavesdrop
on a message does not learn the source address. However, an attacker can determine the
distance to the source by counting the routing elements in the header. To obfuscate this
information, LAP has the option to employ variable-size routing segments (VSS) with a
parameter that will be denoted as V SS in the following2. In this case, for each routing
element a random number (that does not exceed the VSS threshold) of dummy entries
is added. This way the path length is obfuscated to a certain degree.

Dovetail was proposed two years after LAP by Sankey and Wright [111] and builds
upon the basic idea of storing the routing information encrypted in the header. However,
it adds some form of receiver anonymity by introducing a helper node to which session
establishment requests are sent. The real destination of a message is encrypted with the
helper nodes public key and, upon arrival at the helper node, decrypted and inserted into
the message’s header. The message is then forwarded to the destination via a tail node
that lies on both the path from the source to the helper node, as well as from the helper
node to the destination. One main difference to LAP (and PHI) is that Dovetail assumes
pathlet routing, which is a client-controlled scheme. Hence, it interferes with any routing
policy employed by the underlying infrastructure. Furthermore, the number of nodes on
a path is not hidden in Dovetail so that an attacker can learn the distance to source or
destination. Considering this, Dovetail proposes not to use shortest path routing, thus
obfuscating the real distance by occasionally using longer paths than necessary.

HORNET [35] employs a source-based routing scheme in which the client chooses a
path to the destination. For each routing node on the path, the client encrypts infor-
mation on how to forward messages, using the respective routing node’s public key, and
stores it in the session establishment message. Each routing node receiving the session

2In LAP [67] this parameter was denoted as M .
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establishment message decrypts its corresponding routing information and re-encrypts
it with a secret symmetric key and stores it in the header. After session establishment,
messages are exchanged as done in LAP and Dovetail using these encrypted routing
information fields. Each routing node only learns its predecessor and successor on the
path, offering the highest anonymity of the discussed protocols. However, in the inter-
net, source-based routing undermines routing policies employed by intermediate nodes to
balance load, for example. This makes adopting such routing policies unlikely. Besides
anonymity, HORNET also introduces default payload encryption from hop to hop.

For completeness’ sake, it should be noted that there have been several proposals to
increase security in BGP inter-domain routing [29, 79, 85, 125, 132], including protocols
that increase privacy [15, 60, 62]. However, privacy in these protocols does not refer
to sender or receiver anonymity but rather focus on the privacy of the ASes and their
business models. Mitseva et al. [95] compiled a comprehensive survey of such proposals.

7.2. System and Threat Model

The PHI and dPHI network models are similar to the internet architecture. It is assumed
that two clients want to communicate over a network of routing nodes. In the internet
analogy these routing nodes represent the interconnected Autonomous Systems (AS)
that form the internet. Each node is connected with one or more other nodes over
dedicated interfaces. Furthermore, each node can be connected to a multitude of clients.
In the employed nomenclature, clients are denoted with lower case letters, while the
routing nodes are denoted with capital letters, typically an A followed by an index.

Each communication is initiated by a client s, called source, that wants to communi-
cate with a client d, called destination. The routing nodes that source and destination
are attached to are referred to as As and Ad respectively. According to the used pro-
tocol, a path is established between s and d via routing nodes. The path between two
nodes Ai and Aj is denoted with PAi−Aj and comprises all nodes in the route path. An
asterisk (*) indicates that the corresponding node is included in the path, i.e. PAi−Aj∗
includes Aj but not Ai. In the following, |PAi−Aj | is denoted as the number of nodes
on the path PAi−Aj , i.e the distance between Ai and Aj , not counting Ai or Aj . Using
the taxonomy of Kelly et al. [78], this translates to a wired network, with a free path
topology and a unicast routing scheme.

7.2.1. Original Threat Model

Two different threat models are considered, with the first being the same as defined in
PHI. It assumes that a single attacker controls exactly one routing node Ai and can
i) read and store all packets passing through this node, ii) modify or stop all packets
passing this node, and iii) send new packets originating from this node. Furthermore,
it is assumed that the attacker knows the network topology and the routing policies of
each individual node. Hence, for each packet the attacker can predict how a node would
forward it. In principle, there are two attack goals:
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• Sender anonymity: The attacker tries to de-anonymize the source of a commu-
nication request by minimizing the set of clients (the sender anonymity set size)
that could have sent a message.

• Receiver anonymity: The attacker tries to de-anonymize the destination of a
communication request. That is, he or she tries to minimize the set of clients (the
receiver anonymity set size) that could be the recipient of a specific message.

According to the nomenclature of Kelly et al. [78] this translates to an adversary
with local reachability, dynamic adaptability, and active+passive/internal attackability.
The information the attacker can learn and the degree to which the attacker can de-
anonymize the receiver or sender is defined in Chapter 7.5.1. The destination d does not
need to be trusted by s when it comes to sender anonymity. That is, if the adversary
is located at the exit node (and hence knows the destination), the security properties of
dPHI and PHI hold even if d is malicious. Recently, Wails et al. [128] presented attacks
against various anonymity protocols in case the source or destination moves within the
network and the attacker located within the path between s and d is able to link sessions.
While this is an interesting type of attack, it is not part of the threat model of dPHI.

7.2.2. Extended Threat Model

The original threat model from PHI can be seen as a realistic scenario in which a nation
state actor has control over ASes which reside in her country. Due to their geographical
proximity, these adjacent ASes could be modeled as a single large AS to be in-line with
the threat model. Yet, getting control over an AS located geographically far away would
be more difficult for such an actor. The assumption that an attacker controls a single
AS is therefore realistic in many cases. However, one might argue that in the internet
it is very easy to gain access to clients located at various different locations by setting
up servers in different countries, using proxy servers, or renting botnets. Hence, it is
reasonable to assume that an attacker does not only control a routing node but also a
number of clients connected to different routing nodes. Therefore, the extended threat
model assumes the same capabilities as before but add a fourth ability: iv) The attacker
has full access to clients connected to different routing nodes. These clients can be used
to receive and transmit messages.

7.3. The PHI Protocol and How to Attack It

PHI is a stateless routing protocol in which no information about sessions is stored within
the routing nodes. Instead all necessary routing information for each AS is stored in the
message header with the goal to anonymize the communication partners to malicious
ASes or outsiders. In the following, a short introduction to the PHI protocol is given. For
a detailed protocol description, the reader is referred to the original PHI publication [36].

Figure 7.1 gives an example of the routing process in PHI, where a source s = c1
connected to AS A1 wants to anonymously communicate with a destination d = c14
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Figure 7.1.: An example routing procedure between source s = c1, destination d = c14
and helper node M = A12 resulting in midway node W = A8. The final
path between s and d is depicted in green while yellow nodes are only used
during setup.

connected to A15. First, s chooses a helper node M and uses its public key to encrypt
the destination address d. In this example M = A12 was chosen. Afterwards, s sends
a midway request to M that includes the encrypted destination d. Each node on path
Ps−M stores its routing information, consisting of ingress and egress port to forward a
given message, encrypted in the header’s routing segment before forwarding it to the
next node on the way to M . For this purpose, every node Ai has its own set of secret
keys (kposi ,kenci ,kmac

i ), so that the encrypted routing information can only be decrypted
and authenticated by the node that inserted it. The routing information is stored in
the routing segment V at pseudo-random positions pos based on the node-specific secret
key kposi , session ID sid (which is derived from the session’s fresh public key pubs), and
a Pseudo-Random-Function PRF ():

pos = PRF(kposi , sid) (7.1)

V is initialized by the sender s with random values that are indistinguishable from
real routing information. This way, a node receiving a message does not learn anything
about a message’s previous path. Since a node does not know if a routing element already
contains routing information, it may happen that two nodes write to the same routing
element. In this case important information is lost so that the session establishment
fails. Hence, session establishment in PHI is not dependable and may require several
attempts to initiate a session. The authors of PHI proposed to send out four session
requests in parallel to achieve a success rate of 90% with the default parameters in the
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internet environment. The routing information Ri for node Ai consists of egress and
ingress ports and is encrypted with:

ci = ENCkenc
i

(Ri||posprev||flags) (7.2)

where posprev is the position of the routing segment which was inserted by the preced-
ing routing node and transmitted in a specific header field. flags contain additional
protocol-specific information. A message authentication code (MAC) is used to verify
the integrity of the current and previous routing element with:

mi = MACkmac
i

(ci||mi−1) (7.3)

where mi−1 is the MAC in the routing segment at position posprev. If M would directly
forward incoming midway requests to d, the resulting path would be unnecessary long or
violate routing policies such as valley-freeness [36]. For this reason, a backtracking phase
was introduced in PHI. Instead of forwarding the message to d, it is sent back by helper
node M to the previous node with d in the destination field. Each AS that receives such
a midway request message decides based on the routing policy and the stored ingress
information if it should become the midway node W . In the given example, a simple
routing policy is used that checks if there exists a shortest path from the previous node
to the destination which does not include the current node. If such a path exists, the
message is sent back. Else, the current node becomes the midway node W . In Figure 7.1
this leads to selecting A8 as the midway node W . Obviously, different routing policies
to ensure goals such as valley-freeness, for example, can be employed just the same.

After midway node W has been found, the handshake message is forwarded to destina-
tion d. Each node on the path between W and d stores its routing information encrypted
in the routing segment for later retrieval by the same node. Once d receives a handshake
message it computes a session key ks−d between s and d using ECDH key agreement with
the session-dependent public key pubs enclosed in the payload of the handshake message.
The session ID is generated via a cryptographic hash with sid = Hash(pubs) to securely
link it to the session-dependent public key pubs and prevent man-in-the-middle attacks.
Each AS on the path back to s uses its (encrypted) routing information stored in the
routing segment to determine how to forward the message. When the message reaches
s, the handshake is complete and s and d have established a shared session key and a
PHI header to securely communicate with each other. Note that a session establish-
ment will not succeed if an aforementioned collision occurs, which is why several session
establishment requests are sent in parallel.

7.3.1. Attacks on PHI

In the following, several novel sender and receiver de-anonymization attacks against
PHI are introduced. The quantitative impact on sender and receiver anonymity will be
discussed at a later point in Chapter 7.5.2.
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Passive Distance Leakage Attack

An attacker controlling a node Ai ∈ Ps−W between the source and the midway node
can store the routing segment V during the path request message. This allows the
attacker to observe which elements have changed, once the handshake reply message
is returned. Changed elements belong to nodes in PAi−M ∪ PW−d. Let the number of
changed elements be a then a = |PAi−M | + |PW−d|. Knowing M , the attacker can also
predict |PAi−M | and therefore learn |PW−d|. However, the attacker does not know which
node of the (known) path PAi−M is the midway node W . Consequently, she does not
know |PAi−W | and cannot directly compute the distance to d. Still, learning |PW−d| in
conjunction with PAi−M may considerably reduce the anonymity set size.

Active Attack on PHI to Determine W and the Distance to d

The attacker on a node Ai ∈ Ps−W between source and midway node can perform
an active attack during the transmission phase to determine which elements belong to
PW−M∗ and which to path PAi−d. For this attack, it is assumed that the attacker is able
to determine whether or not a data transmission reaches the destination d. Depending on
the used application layer protocol, this could be inferred from re-transmissions from s or
responses from d, for example. The attack is fairly simple: The attacker modifies single
routing elements and observes if the message still reaches d. If not, the corresponding
routing element belongs to PAi−d since only these elements impact successful routing
from Ai to d. This way the attacker can learn |PAi−d|.

The attack’s efficiency can be increased by combining it with the passive attack from
before that reveals which elements in the routing segment belong to PAi−M ∪ PW−d.
This way, the attacker only needs to test these. Furthermore, the routing elements
belonging to PW−M are the only ones that changed during the passive attack but whose
manipulation did not result in a transmission failure. Hence, the attacker also learns the
distance |PW−M | between midway and helper node. Since the path between the attacker
node and the helper node is known, the attacker can use this information to precisely
determine the identity of W . This, in turn, reveals information about the distance to
destination d in a topology-based attack.

Distance Leakage to the Source

The same active attack as before can also be applied in a reverse order to determine
the distance to s. Again, the attacker modifies routing elements of messages going
from the attacker controlled node Ai to s and observes if the messages still arrive. The
challenging part is that the source only expects a single valid path reply. Modifications
of V during the transmission phase can easily be detected by s. In consequence, once a
path reply reaches the source, it will not accept any further path replies. This problem
can be circumvented with an attack strategy as follows: Starting with i = 1, the attacker
modifies all but i routing elements in V . The attacker does this in all

(
l
i

)
possible ways

to send
(
l
i

)
modified path reply messages. If the distance to the source is i, one of these

path reply messages is valid and s sends back an answer. If not, the attacker knows that
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the distance is greater than i and increases i by one and repeats the process. This way
source s receives only a single valid setup message and will not get suspicious. Since the
position prev of the previous routing element is known, the attacker does not need to
consider this position in her attack. Figure 7.2 illustrates this attack.

While the attack is efficient for small distances, the number of messages the attacker
has to send increases exponentially with the distance to s and routing segment size m.
However, in PHI the default segment size is m = 12, so that only 2048 messages need
to be sent to test all distances from 1 to 12. Yet, for large sizes of m = 48, the attack
quickly becomes impossible.

Figure 7.2.: Illustration of the attack to reveal the distance from Ai to s. In this example
the routing segment V consists of six routing elements with V [4] known to
belong to the previous node. The routing segments the attacker modifies
are indicated in red.

Attacks on Implementations Without Freshness

The PHI protocol does not specify the employed encryption scheme and in particular, it
is not explicitly stated that freshness is needed for encryption. This omission could lead
to implementations without freshness. Indeed, the implementation section in PHI [36]
does not include any freshness and the performance was measured without additional
seeds in the header. What follows, is a discussion on the implications should freshness be
omitted in the implementation of PHI. Routing elements in PHI are encrypted without
authentication using:

ci = enckenc
i

(Ri||posprev||flags) (7.4)

with kenci being the encryption key of the respective node, Ri the routing information,
posprev the position of the routing element in V corresponding to the preceding node i−1,
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and flags containing protocol-specific information. Hence, the entropy of the plaintext
is actually very low. If two messages of different sessions are routed in the same way,
the corresponding ciphertexts will be identical if posprev is the same. Since posprev ∈
{1, .., 12} with PHI’s default parameters, chances for this to occur are considerably high.
By comparing the ciphertexts ci from different sessions, an attacker can detect routing
elements that are equal with a high probability.

If an attacker starts many different sessions with publicly known destinations and
different source addresses (e.g. by using proxies), she can craft a lookup table with
the ciphertext and corresponding routing information for all ASes with moderate effort.
Using such a lookup table, an attacker would in effect be able to decrypt the routing
information without actually knowing kenci . The only “freshness” stems from the fact
that posprev is based on sid which is linked to a session’s public key. Since the number
of possible values for posprev is very small, so is the entropy. Furthermore, a malicious
node can use the same sid and public key to send messages, mimicking the “forward
to Ad phase” of the protocol. The attacker will not be able to finish the handshake
due to the missing private key but can still observe the returned message header, thus
detecting overlapping paths with only few messages. In particular, if the attacker wants
to find out if a session belongs to a specific destination, a single message to d with the
old session ID sid will do. If the suspicion is correct, the routing segment returned by
the message from d will be identical.

Correlation of Failure Probability and Distance to Destination

Session establishment of the PHI protocol is unreliable with the failure probability de-
pending on the distance between source s and helper node M , as well as the distance
between midway node W and destination d. Details regarding the collision probability
will be provided at a later point in Chapter 7.5.3. If the attacker is able to link different
session establishments for the same destination d but different helper nodes M , these
probabilities can be used to make predictions about d. The more data the attacker
collects, the more accurate this prediction becomes.

How difficult it is to link session requests in practice, depends on the used application
layer protocol and application. Obviously, payload encryption makes it considerably
harder to link sessions when the attacker is not the entry node and therefore does not
know s. However, for the entry node it is not unlikely that multiple session requests to
the same (unknown) destination can be linked by observing the traffic flow and timing
at a higher protocol level. Note that the attacker can drop some successful session
establishment messages to force s to send out even more session establishment requests
to get more data in shorter time.

Attacks Using Extended Threat Model to De-anonymize s

The previously described attacks are in line with PHI’s original threat model presented
in Chapter 7.2.1. Yet, in Chapter 7.2.2 an extended threat model has been introduced
in which the adversary does not only control an AS Ai along the routing path but also
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n clients c1, .., cn connected to different ASes. This is a realistic assumption in an open
network such as the internet, where an attacker could utilize proxies or resort to botnets.
The attack discussed here assumes that the attacker has control over such clients.

The idea of the attack is to send modified backtracking messages from the attacker
controlled AS Ai with different attacker controlled clients c1, .., cn as the destination
and the original routing segment V 1. Each client cj receiving such a message records
the routing segment V 1

j and sends it to the attacker. The attacker then compares the

routing segment V 1
j with V 1 and counts the number of changed routing elements. The

attacker knows that for a client cj 6= s, one node in Ps−Ai is chosen as the midway
node Wj . The number of changed routing elements observed in V 1

j is equivalent to the
distance |PWj−cj | between this midway node Wj and the attacker controlled client cj . In a
second step, the attacker can also determine |PAi−Wj | by sending a modified backtracking
message to client cj , again, but this time with modifying some routing elements in V 1 to
determine which modifications lead to message drops during backtracking. This is the
same approach as done for the previously described active attacks to determine distances
to d and s. The degree of de-anonymization in this attack is very high as the attacker
can use many different clients, resulting in many different midway nodes Wj , to narrow
down the possible positions of s. Note that the attack becomes easier if the attacker also
exploits the missing freshness in PHI’s encryption as identical ciphertexts show common
paths between different nodes.

7.4. The Improved dPHI Protocol

The dPHI protocol is generally based on PHI, yet, implements several modifications
to withstand the discovered attacks. The modifications are based on five main ideas:
i) splitting the routing segment into two parts to prevent passive distance leakage, ii)
circular insertion of routing elements instead of picking pseudo-random positions to
avoid collision and enable integrity checks, iii) extending the backtracking phase back
to source s and adding integrity checks of the routing segment, iv) addition of a midway
nonce to prevent attackers from modifying the destination, and finally v) the consistent
use of authenticated encryption with fresh IVs to ensure freshness and high entropy
ciphertexts. In the following, these changes are discussed in more detail. Furthermore,
a formal protocol description with pseudo code can be found in Appendix C.

7.4.1. Key Management

In the dPHI protocol, every node Ai has a secret symmetric key ki that is only known
to this one node and used to encrypt and decrypt its own information in the routing
header. Furthermore, every node Ai that can serve as a helper node has an ECDH key
pair (pubi, privi). The public key pubi of the chosen helper node needs to be known to
source s in advance. In addition to these static keys, the source s generates a session
key ks−M with helper node M and a session key ks−d with destination d using ECDH
key exchange during the dPHI session establishment. The established session key ks−d
can be used by both source and destination to exchange encrypted messages that are
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Figure 7.3.: Illustration of routing segments V 1 and V 2 for the example from Figure 7.1
with As = A1, M = A9, W = A8 and Ad = A15. Randomly initialized
values are depicted in gray.

protected against man-in-the-middle attacks. Note that no payload encryption is done
by nodes in dPHI and hence needs to be taken care of by the clients.

7.4.2. Authenticated Encryption

All symmetric encryption in dPHI is performed using an authenticated encryption al-
gorithm such as AES-GCM [92]. An authenticated encryption algorithms gets three
inputs, the key k, the plaintext p and additional authentication data a which is authen-
ticated but not encrypted. The output is a triplet consisting of a freshly generated IV
IV , authentication tag t and the corresponding cyphertext c with (c, t, IV ) = enck(p, a).
In dPHI, the session ID sid is always part of the additional authentication data a to
ensure that the ciphertext is securely linked to the current session.

7.4.3. Modification to the Routing Segment

Two major changes are applied to the routing segment V . The first is to split it in two,
with V 1 storing routing information for nodes on path Ps−M and V 2 storing the routing
information for nodes on PW−d. Furthermore, routing elements are inserted into V 1

and V 2 in a circular manner, starting at random positions that are chosen during their
initialization. Both V 1 and V 2 default to length l = 12 but can be adapted individually
to fit other use cases. Figure 7.3 depicts the shape of V 1 and V 2 for the example from
Figure 7.1. Figure 7.4 shows the complete dPHI header. V 1 is initialized by source s and
V 2 by midway node W using keyed cryptographic pseudo random number generators
(CPRNGs) based on fresh and secret seeds. While s initializes V 1 immediately, V 2 is
initialized by W after the backtracking phase, before forwarding the handshake to d.
The seed used to initialize V 2 is stored by W encrypted in the midway field in the dPHI
header. As shown in Figure 7.3, midway node W stores its routing element in both V 1

and V 2 (encrypted with different IVs).

Another modification in dPHI is the routing information R that is encrypted and
stored in a routing element. In PHI, it only consisted of ingress and egress ports. In
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Figure 7.4.: Illustration of the dPHI header showing V 1 and V 2 that form the routing
segment. Note that field sizes in this representation do not relate to real
sizes of header elements.

dPHI, it also contains two pointers posV 1 and posV 2 indicating the positions where
the current routing element is stored in V 1 and V 2. If it is only stored in one of the
segments, the other pointer is null. These pointers are used to detect if the position of
the routing elements have been altered and enable the midway node to find its field in
the other routing segment. A type flag indicating that the node is the midway node is
stored in R, as well. Equation 7.5 shows how a routing element consisting of (ci, ti, IVi)
is computed:

(ci, ti, IVi) = encki(R; sid||cpos−1)
R = (ingress||egress||type||posV 1||posV 2)

(7.5)

See Algorithms 2 and 3 in Appendix C for details.

7.4.4. Backtracking to s and Verification of V 1 and V 2

In PHI, backtracking is done from helper node M to midway node W , where the message
is forwarded to destination d. To enable the source to verify the integrity of V 1, back-
tracking in dPHI is changed as to reach all the way back to s. The node that becomes
the new midway node W , encrypts the destination address d with its secret key and
stores it in the destination address field in the header. Then, the message is sent back to
s. Consequently, nodes between W and s do not learn about d, while midway node W
can retrieve the destination using its secret key in the next phase of the protocol when
s sends the handshake to d. This modified backtracking phase allows source s to check
if V 1 has been tampered with by comparing it to the initial version of V 1 that s stored
while preparing the request. In dPHI it is assumed that s knows the maximum distance
to the chosen helper node M . The idea of this integrity check is that with knowledge
about the distance, s can estimate which routing elements in V 1 should have changed
and which not. If modifications outside the expected range occur, s drops the message
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and may initiate a new attempt. Details of this step are provided in Algorithms 4-5 in
Appendix C.

Midway node W performs the same integrity verification of V 2 as s does of V 1. W
initializes V 2 when it forwards the message to d for the first time, based on a fresh seed
and a keyed CPRNG (see Algorithm 7 in C.4). To be able to retrieve the seed when the
message gets back, W encrypts the seed together with a close upper bound distd of the
distance to d with its own secret key and stores it in a dedicated midway field in the
header. In addition to the session id sid, the ciphertext cV 1 of W ’s routing element in
V 1 is used as additional authentication data for this encryption.

midway(to d) ← encki(seed||distd, sid||cV 1) (7.6)

When the midway node receives the handshake reply from d, it decrypts the seed and
distance value and verifies that only the expected routing elements in V 2 have changed.
The additional authentication data securely links V 1 and V 2 so that an attacker cannot
simply replace V 1 or V 2 as a whole without the midway node noticing. After verifying
V 2, the midway node W replaces the midway field with a MAC of the entire routing
segment comprising V 1 and V 2 to ensure this secure linkage for the remainder of the
protocol.

7.4.5. Addition of the Midway Nonce

The last major change in dPHI is the addition of a midway nonce to prevent attacks
in the extended threat model. During initialization, s generates a nonce nmid (see
Appendix C.2-C.5 for details). This nonce is encrypted with the shared session key
ks−M that s derived with help of M ’s publicly available key pubM . To enable M to
derive that exact same key, s includes pubs of its freshly generated key pair in the
payload when sending its request to M . The helper node M decrypts this nonce and
puts it, unencrypted, in the midway field of the backtracking message that is sent back.
Midway node W , in turn, computes a hash value of the midway nonce together with the
destination dest and routing segment V 1 and overwrites the midway field midway(to s):

midway(to s) ← Hash(dest||nmid||V 1) (7.7)

When source s receives the message at the end of the backtracking phase, it verifies this
hash value and that the correct destination dest has been used. If this is not the case,
the message is dropped.

7.5. Analysis of dPHI

To check if dPHI really is an improvement over PHI, it shall be analyzed with regard to
three aspects. First, it needs to withstand the previously outlined attacks on PHI since
these motivated the development of dPHI in the first place. Second, to determine the
degree to which dPHI fulfills its primary purpose, that is providing anonymity of senders
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and receivers against adversaries controlling routing nodes, a quantitative anonymity
analysis is conducted. Third, to find out about the cost of the security improving
modifications, dPHI is analyzed with regard to computational effort and goodput.

7.5.1. Security

In Chapter 7.3.1 several novel attacks on PHI have been presented. Whether or not the
modifications introduced with dPHI are able to withstand these, also under consideration
of the extended threat model, is discussed in the following.

Passive Distance Leakage Attack

The passive distance leakage in PHI is the main reason for splitting the routing segment
into two parts, V 1 and V 2. The number of changed elements in V 1 that a node in
Ps−M can observe is equivalent to the distance to the known helper node M . Hence, the
attacker does not learn anything new by counting the changed elements in V 1. When a
node in Ps−W receives V 2 for the first time, all values are new as they are initiated by
midway node W . Consequently, a node in Ps−W cannot make any observation about d.
The routing element corresponding to W changes twice in V 1. However, no single node
receives both versions so that W cannot be identified based on any such observation. All
nodes in PW∗−M and PW∗−d know d so that distance leakage attacks to the destination
are only interesting for those in Ps−W .

Active Attack to Determine W and the Distance to d

In dPHI, an attacker controlling Ai ∈ Ps−W would need to (repeatedly) modify routing
elements in V 1 to identify which of them belong to PW−M or W . To prevent this,
backtracking is extended beyond W so that source s receives V 1 after backtracking.
Destination d receives V 1 with the handshake message. Hence, any modification of V 1

after the handshake message is detected by s or d as they always check the integrity of
received headers. To detect manipulations during the phases of backtracking to W and
backtracking to s, the source uses the new midway reply message in the dPHI protocol:

H.midway(to s) = nrep = Hash(d||nmid||V 1) (7.8)

The midway reply message is generated by midway node W , the last node to modify V 1.
Destination d and nmid are known to all nodes on PW∗−M∗ but not to nodes on Ps−W .
In consequence, an attacker on Ai ∈ Ps−W cannot compute a valid midway reply for a
modified V 1. This way, source s can detect any modifications to V 1 after processing by
midway node W .

To prevent attacks during the handshake message to d, source s sends a MAC of V 1

with the shared session key to destination d. The destination can therefore authenticate
V 1 based on the shared session key and discard any message with a modified V 1.
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Distance Leakage to the Source

To prevent leakage of information on the distance to the source, s stores the random
values that were used to initialize V 1, the starting position pos pointing to the first
routing element, and the maximum distance distM to M . On receiving the midway
reply, s uses this information to verify that only routing elements belonging to the path
Ps−M have been modified, these are elements in V 1 between pos and pos + distM . If
other elements have been modified, the message is dropped by s. This results in the
same effect (i.e., session establishment failure) as if an element belonging to Ps−Ai had
been modified by the attacker. After the midway request, s stores V 1 and drops any
message in which the routing segment V 1 is not identical. This ensures that the attack
on V 1 can also not be executed in a later stage of the protocol.

However, an attacker on Ai ∈ PW−d could try to manipulate V 2 to learn at least the
distance between Ai and (the unknown) midway node W . To prevent such attacks, the
midway node W verifies V 2 the same way as s has verified V 1. Midway node W has
stored the seed for initializing V 2 and the distance distd between W and d encrypted in
the midway field of the header. With this information, the midway node verifies that
at most distd routing elements have been inserted in V 2, starting from position pos2
that W retrieves from its own routing element. At the end of the session establishment,
source s stores V 2 so that any modifications of V 2 during the data transmission phase
are detected. As a result, in dPHI the attacker cannot learn the distance to s nor the
distance to W .

Exploiting Missing Freshness

The dPHI protocol proposes to use authenticated encryption with fresh IVs whenever
information is (re-)encrypted. Hence, the attacker cannot learn anything by observing
ciphertexts. The position pos within a routing segment in dPHI is independent from
a secret key or node address since routing elements are inserted in a circular manner.
Therefore, which routing elements in V 1 or V 2 are modified cannot be used to link
sessions or nodes.

Correlation of Failure Probability and Distance to Destination

Through circular insertion of routing elements, dPHI ensures that no collisions occur as
long as the maximal sizes of V 1 and V 2 are not exceeded by the chosen path to M and d.
The session establishment is therefore dependable making this type of attack impossible.

Active Attacks in the Extended Threat Model

In dPHI the backtracking phase has been altered so that the midway node sends a
midway reply back to the source s. The source s then verifies that the correct destination
has been used to determine the midway node W . To accomplish this, the midway
node W computes a midway reply H.midway by hashing the midway nonce nmid with
the destination d and routing segment V 1, i.e. nrep ← Hash(d||nmid||H.V 1). This
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midway reply nrep is sent back in the midway field H.midway of header H. The source
recomputes this midway reply and can thereby verify that the midway node W has
received the correct destination d.

It is important to ensure that an attacker cannot misuse the midway reply H.midway
to learn the destination d. The high entropy midway nonce nmid has been sent encrypted
to the helper node M . Only M and nodes on PW∗−M , the same that also know desti-
nation d, learn the midway nonce which is necessary to compute H.midway. Nodes in
Ps−W do not know the midway nonce and can therefore not compute Hash(d||nmid||V 1).
In consequence, it is not possible for an attacker on these nodes to misuse H.midway as
an oracle to determine d.

Information Leakage in dPHI

dPHI does not offer perfect anonymity as the attacker can learn some information about
communicating peers. The following elaborates on which information the attacker is
able to learn about sender and receiver depending on the compromised node.

Sender anonymity:
Attacker on entry node As:

1. The entry node knows the source address s, i.e., there is no sender anonymity.

Attacker on Ai with Ai ∈ PAs−W or Ai ∈ PW−M∗:

1. For (known) destination M the path PAs−M goes through Ai−1∪Ai, thus reducing
the anonymity set of s to sources reachable through Ai−1.

2. The distance to s cannot be higher than the maximum segment length m minus
the distance |PAi−M |.

Attacker on midway node W :

1. Learns the same as attacker on PAs−W or PW−M∗.
2. W can perform an active attack by violating the routing policy and deciding not

to become the midway node for the known destination d. The attacker can then
observe whether or not the node W will be selected for the path PW ′−d (where
W ′ is the new midway node with W ′ ∈ PAs−W ). In how far this de-anonymizes s
depends on the deployed routing policy and layout of the network.

Attacker on Ai with Ai ∈ PW−d∗ learns:

1. For the (known) destination d the path PW−d goes through Ai−1∪Ai, thus reducing
the anonymity set of unknown W .

2. Furthermore, it is known that the distance to W cannot be greater than the max-
imum segment length m minus the distance from Ai to d.

Receiver anonymity:
Attacker on Ai with Ai ∈ PAs∗−W learns:

1. Destination d can be reduced to such destinations that one of the nodes on the pre-
dictable path to M (i.e., PAi−M∗) can serve as midway node W without violating
the employed routing policy.

Attacker on Ai with Ai ∈ PW∗−d∗ or Ai ∈ PW−M∗:

1. These nodes learn destination d so there is no receiver anonymity.
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The entry node learns the identity of source s and the midway node the destination d
which results in zero anonymity if the entry node also becomes the midway node. This
is a major drawback of PHI/dPHI since topology information is required to choose M
such that this does not happen.

7.5.2. Quantitative Anonymity

Having investigated how dPHI withstands the previously introduced attacks, the achieved
sender and receiver anonymity for the lightweight anonymity protocols LAP, HORNET,
PHI and dPHI are compared next.

(a) Sender anonymity with entry
ASes metric for attacker on path
s to M

(b) Sender anonymity with IPv4
address metric for attacker on
path s to M

(c) Sender anonymity with IPv4
address metric for attacker on dif-
ferent paths

(d) Sender anonymity with IPv4
address metric for attacker on
path s to M with different rout-
ing policies

(e) Receiver anonymity with IPv4
address metric for attacker on
path s to W

(f) Receiver anonymity with IPv4
address metric for attacker located
anywhere on the path (including
exit node)

Figure 7.5.: Quantitative sender and receiver anonymity set size analysis. Results are
shown as cumulative distribution functions (CDF) in which the y-axis shows
the probability that the anonymity set size is equal or smaller than the value
depicted in the x-axis.
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Assumptions and Experimental Setup

Computing the anonymity depends on several factors such as the network topology,
the routing policies and the attacker’s capabilities. In PHI [36] and HORNET [35],
anonymity set size was computed based on a valley-free routing policy and the 2014
CAIDA dataset [68], representing the internet infrastructure on the level of Autonomous
Systems. In the valley-free routing model, the network is a directed graph in which each
edge is either of the type provider-to-customer or peer-to-peer. A valley-free path is
a path that starts with any number of customer-to-provider edges followed by zero or
one peer-to-peer edge and any number of provider-to-customer edges. PHI and HOR-
NET [36, 35] assume all valley-free routes as equally likely, regardless of the length of
the route. However, for a given source and destination pair it is reasonable to assume
that only a predictable subset of paths will be chosen in practice based on the network
topology, e.g. the shortest paths.

Therefore, one might argue that a network model in which only a selected number of
paths between two nodes is valid, is more realistic. For analysis, a shortest path valley-
free routing policy is employed, in which all valid paths need to have the minimum
number of hops. Sender and receiver anonymity set size have been computed for PHI,
dPHI, LAP with one element per hop (i.e., no VSS), LAP with three elements per
hop (VSS=3), and HORNET. For this, 1000 random source and destination pairs have
been chosen and a PHI path computed for each by randomly choosing a helper node.
Should no valley-free path exist or the midway node be identical with the entry node,
new random nodes were chosen. The computation was performed using Matlab and
the 2014 CAIDA dataset [68]. The software as well as used data is publicly available
on Github [17]. The quantitative analysis is based on the following assumptions and
metrics:
Attacker capabilities: For PHI, the passive and active attacks from Chapter 7.3.1 are
assumed but not the attacks exploiting low entropy or those based on malicious clients.
Routing assumption: If not specified otherwise, a valley-free shortest path routing is
used in which each shortest path is equally likely to be chosen. Only in Figure 7.5(d)
other routing schemes (non valley-free shortest path and valley-free without shortest
path) are used.
Anonymity set size: Computation of the anonymity set size is based on two metrics:
1) The number of ASes that could be the entry node (sender anonymity) or the exit
node (receiver anonymity). And 2) the size of the IPv4 address space associated with
the ASes that could be the entry node or exit node, respectively.
Location of attacker node: The location of the attacker on a PHI or dPHI path
greatly influences the anonymity set size as outlined in Chapter 7.5.1. The attacker
location for dPHI is therefore specified in each figure. For LAP and HORNET, all nodes
between the source and destination are used as attacker locations for the anonymity set
size comparison as there is no midway node or helper node in these schemes.
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Sender Anonymity

Figure 7.5(a) shows the CDF of the sender anonymity set size for nodes on the path from
source s to midway node M . The sender anonymity set sizes for LAP and HORNET
for the path s to d are also depicted for comparison. In this figure, anonymity set sizes
based on entry ASes are shown while Figure 7.5(b) presents the same information on the
basis of possible IPv4 source addresses. Please note that the anonymity set size on the
x-axis has a logarithmic scale with base 2 so that a shift to the right by one is already an
increase by factor two. As one can see, PHI only achieves the anonymity level of LAP
without VSS while dPHI performs slightly better than LAP with V SS = 3.

The sender anonymity for paths W to d and W to M is shown in Figure 7.5(c).
These paths are especially interesting for PHI and dPHI as enclosed nodes learn the
destination. The anonymity set size for W to d is considerably larger than W to M
since the backtracking algorithm in PHI does not guarantee a shortest path routing.
The anonymity set size in Figure 7.5(c) for dPHI, therefore, consists of all nodes that
are reachable via the previous hop without compromising valley-freeness. In PHI, the
attacker can learn the path length, hence, all nodes that cannot be reached with a
number of hops that is less or equal to the path length are excluded. Note, however,
that in 97.5% of the sessions a shortest path was chosen and in 2.5% of the cases, the
resulting path was only one hop longer. Only in one out of one thousand sessions, the
resulting path was two hops longer. If an attacker ignored the 2.5% chance of a longer
route, the anonymity set size for W to d looked like that from W to M . The anonymity
set size decreases, the closer the attacker-controlled node is to the source, which is why
the anonymity set size for nodes on Ps−W is the lowest as compared to nodes on PW−M .

The impact of different routing policies has also been tested and is depicted in Fig-
ure 7.5(d). If no shortest path routing is assumed, i.e., all valley-free paths are considered
to be valid, the anonymity set size increases significantly. Using a shortest path routing
policy without requiring valley-freeness also results in a larger anonymity set size than
the valley-free shortest path routing policy. But this difference is considerably smaller
than compared to not using a shortest path routing policy.

Receiver Anonymity

The receiver anonymity set size is depicted in Figures 7.5(e) and 7.5(f). LAP does
not provide receiver anonymity, hence, the anonymity set size is 1. PHI and dPHI
only provide receiver anonymity for nodes on the path Ps−W from the source to the
midway node. In the given experiment this corresponds to 60% of the nodes being able
to eavesdrop d during session establishment. While the receiver anonymity set size for
both PHI and dPHI is already very high, dPHI outperforms PHI considerably. Note that
a high receiver anonymity is especially important for the entry node As which knows the
source so that the combined sender-receiver anonymity solely depends on the receiver
anonymity.
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Figure 7.6.: Upper bound of sender-receiver anonymity set size with IPv4 address metric
for an attacker located anywhere on a path.

Upper Bound of Sender-receiver Anonymity

Computing the sender-receiver anonymity for PHI and dPHI is computationally ex-
tremely expensive since all possible paths from all sources to all destinations have to
be computed for all helper nodes. Therefore, only an upper bound of the sender-
receiver anonymity set size has been computed. This was done by multiplying the
sender anonymity set size for an attacker on node Ai (i.e., all possible sources for this
session establishment) with the receiver anonymity set size for the same node (all possi-
ble destinations). The correct source and destination pair lies within this upper bound.
However, the actual sender-receiver anonymity set size might be smaller as for some
sender-receiver pairs, there may exist no helper node such that a path traverses through
the attacker node. Yet, this upper bound provides a rough estimation of the sender-
receiver anonymity set size. Figure 7.6 shows the upper bound of the sender-receiver
anonymity. dPHI considerably outperforms LAP in this metric. Nodes that have a
receiver anonymity set size of 1 in dPHI (nodes on path PW−d and PW−M ) exhibit a
relatively high sender anonymity as shown in Figure 7.5(c)), while nodes with low sender
anonymity (close to source s) have a relatively high receiver anonymity. This ensures
that the minimum sender-receiver anonymity set size remains fairly high in dPHI. HOR-
NET clearly performs the best in terms of sender-receiver anonymity as only the entry
and exit nodes have a sender or receiver anonymity set size of one.

7.5.3. Performance

In the following, the performance of dPHI in terms of computational complexity, latency,
header size and goodput is compared to PHI. In particular, the header size and the per-
formed cryptographic operations are different and the backtracking phase is extended so
that more nodes are traversed during session establishment. However, session establish-
ment is now deterministic and does not randomly fail, thus omitting the need to send
out multiple session requests in parallel. Furthermore, no long-headers are needed so
that the header size is constant for all sessions.
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Latency

To compare the latency of processing PHI and dPHI messages during session establish-
ment and transmission, the dPHI and PHI packet processing has been implemented in
C and made available on Github [17]. To make use of Intel’s AES-NI instruction set,
their Intelligent Storage Acceleration Library Crypto Version (ISA-L crypto) has been
utilized to implement AES-GCM-256 and AES-CBC-256 for required AES operations.
Any ECDH operations have been realized with the curve25519-donna library [2]. For
measuring the required clock cycles, the intrinsic function rdtsc() was used to conduct
one million independent measurements. After sorting these measurements, the top and
bottom 37.5% were discarded to calculate the average of the remaining quarter. This is
common practice when using rdtsc() and was also done by Chen et al. [35, 36]. Though,
please note that in the presence of compiler and processor optimizations rdtsc() mea-
surements on current processors for low numbers of clock cycles are quite inaccurate
despite being the best available option. Measurements have been performed on an Intel
Core i7-7500U with 2.7GHz using a single thread. Table 7.1 shows the processing latency
results for PHI and dPHI. Some dPHI operations require fresh random numbers that
can either be precomputed or generated on the fly. Both have been implemented so that
two values are supplied in the Table 7.1 for these operations.

For session establishment, the computation time of nodes besides the helper node is
negligible, especially when considering that in both PHI and dPHI the helper node,
source, and destination have to perform public key operations. As can be seen in Ta-
ble 7.1, the public key operation of the helper node is up to two orders slower than all
other cryptographic operations. In dPHI the backtracking phase is extended to s so that
more nodes need to be traversed. While the additional cryptographic operations will not
significantly impact the setup latency, propagation latency might be higher. However,
a PHI session establishment only succeeds with 90% probability. When a session estab-
lishment fails, the process needs to be repeated, including the computationally expensive
public key operations, thus nearly doubling the setup latency. In consequence, while the
minimum setup latency in dPHI is slightly worse than PHI due to the additional hops,
the average and especially worst case setup latency are better.

In HORNET, pubic key operations have to be performed by all nodes on the path
so that the session establishment latency is considerably higher than in dPHI or PHI.
Furthermore, the public key operations result in a considerable burden for the ASes
if many sessions are created in parallel. An average path in the 2014 CAIDA dataset
is about 4.2 hops, hence in average 4.2 sequential public key operations need to be
performed per session in HORNET. In PHI, four parallel public key operations, resulting
from four independent requests, suffice with a 90% probability, in 10% of the cases, eight
or more are needed. In dPHI on the other hand, only one public key operation needs
to be performed within the network. Therefore, dPHI reduces the overall computation
load induced by the protocol considerably.

126



dPHI PHI

Session establishment

Midway Request (A 6= M) 430*/1151 110
Midway Request (A = M) 146000 144915
Backtracking (A 6= W ) 117 105
Backtracking (A = W ) 1600*/3169 222
Handshake to d (A 6= W ) 430*/1151 110
Handshake to d (A = W ) 1255*/3619 n/a
Handshake reply to s (A 6= W ) 117 105
Handshake reply to s (A = W ) 951*/2124 105

Transmission phase

Transmission phase (A 6= W ) 117 105
Transmission phase (A = W ) 250 105

Table 7.1.: Measured clock cycles of header processing for different nodes A in the proto-
col during the different phases of session establishment and the transmission
phase. Entries marked with an asterisk are clock cycle measurements for an
implementation based on precomputed random numbers (a node can pre-
compute random numbers when the processor is idle).

Header Size and PHI Collision Probability

The header size is greatly influenced by the routing segment size. The default parame-
ters proposed in PHI [36] for the number of routing elements in V is m = 12 for path
lengths smaller than 8 and m = 48 for larger paths. Furthermore, N = 4 session estab-
lishment requests are sent out in parallel for small headers and N = 5 for large ones.
The parameters were chosen so that a session establishment succeeds with 90% proba-
bility for the 2014 CAIDA dataset. However, the used formula to compute the success
probability [36] is not accurate. It only computes the probability of a collision on the
path between the source and destination but ignores the collision that can occur between
the midway node and the helper node. In Figure 7.7(a), the session establishment prob-
ability for 1000 random PHI paths is computed with both the inaccurate formula and
an updated formula that includes the collision probability between midway and helper
node. The success probability with the accurate formula is considerably smaller. In fact,
m = 16 instead of m = 12 is needed to achieve the 90% probability. For a maximum
path length rmax, the number of routing elements in a dPHI header is (rmax +1) ·2. The
size of the routing segment of PHI and dPHI for different values of rmax are compared in
Figure 7.7(b) under the assumption that for PHI a routing segment size m is chosen such
that a session establishment success rate of 90% is achieved. For this computation, an
estimation of the expected path length from W to M is needed. In the given experiment
with 1000 random PHI paths, the ratio of the path length r between s and d and the
path between W to M was roughly 50%. This value is used in Figure 7.7(b), as well.
As one can see, the routing segment size in PHI grows exponentially while it only grows
linearly in dPHI.
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(a) CDF of the probability that a PHI ses-
sion establishment is successful

(b) Comparison of routing segment sizes of
dPHI and PHI

Figure 7.7.: a) CDF of the probability that a PHI session establishment is successful
with N = 4 parallel session requests with the inaccurate formula from [36]
and the accurate formula for different segment sizes m. b) Comparison of the
routing segment size between PHI and dPHI depending on the maximum
path length rmax. For PHI the routing segment size was computed such
that the probability of a successful session establishment is at least 90%
when sending out N = 4 request. For dPHI the routing segment size is
m = 2 · l = 2 · (rmax + 1).

It is also possible in dPHI to use different sizes for V 1 and V 2 than the default value
of l = 12 for each vector. This is due to the fact that the source chooses the helper
node and can simply pick one with a distance equal or smaller to 7 without reducing too
much anonymity. Most nodes will be within this distance and a larger size is reserved for
V 2 to reach far away destinations. Furthermore, since the path is split into two routing
segments it is possible to create routes longer than r by choosing a helper node such
that the midway node is roughly half-way between s and d.

LAP uses a variably sized header that does not depend on the maximum path length
but the current path length. To make comparisons between PHI, dPHI, LAP and HOR-
NET, different values for maximum path length rmax were used and average path length
ravg for LAP. For anylsis, rmax = 7 was chosen with ravg = 5 and rmax = 11 with
ravg = 8, assuming a value of m = 16 and m = 66 for PHI segment sizes for normal
and large headers. The PHI values were chosen based on the more accurate collision
formula. In dPHI the header size is made up of a fixed part of 50 bytes for sid, midway
field, pointers and flags, as well as the routing segments V 1 and V 2 whose size depends
on rmax. One routing element consists of 39 bytes so that the header size for dPHI is
674 bytes and 986 bytes for rmax = 7 and rmax = 11 respectively.
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(a) rmax=7, ravg = 5 (b) rmax=11, ravg = 8

Figure 7.8.: Approximated goodput of the different protocols based on the ratio of header
size and payload (assuming processing is not the bottleneck). LAP uses
variable sized headers and for computation, the average number of hops has
been used.

Goodput and Throughput

In PHI [36], goodput measurements were performed using an SDN testbed. It was
observed that PHI-related packet processing had no considerable impact on transmission
rates of the used 10 Gbps link. Only in HORNET, processing speed impacted the
goodput since HORNET also performs payload encryption. The processing speed of
packets during transmission is roughly the same for dPHI and PHI with a measured
clock cycle count of 117 vs 105 (See Table 7.1). This means, from a computational
perspective, that the number of dPHI headers to be processed, even with the small size
of 674 bytes, could be one magnitude higher than the number that is actually needed to
saturate the 10 Gbps link. Hence, only the header size impacts the goodput in dPHI,
just as has been the case in PHI. Therefore, the goodput for different payload sizes was
approximated by computing the ratio of header size divided by packet size. The result
of this analysis can be seen in Figure 7.8. In the computation it is assumed that the
size of a PHI routing element is 24 bytes with 8 bytes resulting from encrypting the
routing information with AES in counter mode and 16 bytes from the 128-Bit message
authentication code that is also used in HORNET and dPHI. Note that dPHI proposes
to only use r = 11 or larger but r = 7 was included for comparability.

Analysis results show that the average goodput of LAP is the best, even with V SS = 3.
This contradicts statements made by Chen And Perrig [36], where the worst case header
size was assumed, it seems. HORNET’s goodput is also higher than that of both PHI and
dPHI due to its smaller header size. Note that Figure 7.8 does not consider processing
load as a potential bottleneck. But measurement data from PHI [36], where processing
overhead is included, yield similar results for large payloads, that is slightly above 7 Gbps
for a 1024 byte payload. Comparing PHI with dPHI, it can be observed that, for a small
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r = 7, PHI has a higher goodput than dPHI. However, dPHI outperforms PHI for large
paths of r = 11. Furthermore, this difference will increase rapidly for larger paths due
to the exponential vs linear growths in header size.

7.5.4. Limitations of dPHI

While dPHI is able to improve on security and anonymity when compared to PHI, there
are still limitations that should be pointed out. One of them is that the threat model
assumes the attacker to control only a single AS. If the attacker controls two ASes, she
can learn considerably more by combining the individually learned information. If the
attacker-controlled nodes are close to each other, this is not as problematic as if the
attacker controls two nodes that are further away. This is due to the fact that attacker
nodes close to the source have a low source anonymity but large destination anonymity
while attacker nodes close to the destination have no destination anonymity but large
source anonymity. Hence, the anonymity can be greatly reduced if the attacker manages
to gain control over two nodes on the path that are further apart. Active attacks on the
routing layer could make this issue even worse in practice. For example, in BGP, route
poisoning is a known problem that was used in the past to direct traffic over specific
ASes for eavesdropping [13, 126]. Similarly, an attacker may drop session requests until
a favorable dPHI path is established [26].

The biggest limitation and open problem of the dPHI protocol is the selection of the
midway node. To be more precise, how to make sure that the entry node does not also
become the midway node. If the entry node becomes the midway node there is no source
or destination anonymity since the entry node (necessarily) knows the source and the
midway node knows the destination. In a network scenario in which the source knows the
employed routing policy of all nodes, it can verify that this does not happen. However, in
adaptive routing policies such as BGP, one cannot accurately predict the route that will
be chosen. Indeed, the fact that dPHI does not require client-based routing is its main
benefit when compared to HORNET. Efficiently solving this problem without requiring
client-based or client-controlled routing is important future work. Note that if the entry
node performs active attacks to shape the traffic as described above, the problem of
preventing the entry node to become the midway node becomes even more severe.

Application-wise, dPHI, just like the other discussed protocols, requires an adequately
sized network to unfold its potential. The scenario chosen to discuss its security improve-
ments and analyze it with regard to anonymity was the internet, which is probably one
of the most plausible use cases. However, application as a Moving Target Defense in net-
works smaller than the internet is entirely feasible. What must be considered, though,
is the fact that dynamic routing requires the existence of alternative paths in the first
place. This applies to all discussed protocols. The architecture of large networks typ-
ically considers alternative communication paths, even if only serving as a fall back.
SDN-based networks, if built to implement topological changes, may also provide at
least the wiring to allow for alternative paths. Small networks with a star topology,
however, simply cannot provide alternative paths for their physical layout. Anonymity,
in turn, is not solely dependent on the existence of alternative paths, but may benefit
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from it. Yet, a sufficient number of clients and intermediate hops are needed to ensure a
minimal anonymity set size. It should be noted, though, that in the corporate network
context, the adversary is not necessarily interested in unambiguously identifying entities,
but only learning addresses to progress with attacking. Hence, large anonymity set sizes
may not be as important as concealing addresses for which the number of hops is more
critical.

7.6. Summary

This chapter elaborated on anonymous and dynamic routing, a topic that is of general
relevance for communication, especially with regard to the internet. However, consid-
ering that adversaries may collect sufficient information to identify potentially valuable
targets and prepare lateral movement simply through eavesdropping on passing traffic,
anonymous and dynamic routing is equally relevant in the context of corporate networks.
Consequently, for its movement property, it has also been identified as a Moving Target
Defense for particularly impeding reconnaissance of such information. Still, the body of
literature covering anonymous and dynamic routing as a means of Moving Target De-
fense is comparatively small as opposed to the defenses that have been investigated in
the preceding chapters. What is more, proposed schemes predominantly employ SDN-
based approaches that cannot provide anonymity, while constantly flooding the network
with communication on the control plane to remove and insert required flows on all
involved hops for any combination of communicating peers.

To this end, an anonymous and dynamic routing protocol has been introduced that
is applicable in the internet, as well as corporate networks, broadening the scope of this
work beyond defense evaluation, and contributing to the state of Moving Target Defense
in a yet underrepresented domain. In this course, different existing protocols have been
considered, focusing on those that operate on the network layer and support policy-based
routing, for their better applicability in a corporate network context as, say, overlay net-
works that employ source routing. The PHI protocol has been investigated in particular,
presenting novel attacks that significantly reduce its achieved anonymity. Based on this,
a new protocol named dependable PHI (dPHI) was presented that withstands these
attacks, holding true even if the threat model is extended to consider attackers who con-
trol clients in various ASes. dPHI also solves PHI’s problem of collisions in the routing
segment, thus requiring fewer session establishment requests and smaller header sizes.

A quantitative anonymity and performance analysis shows that dPHI offers a good
trade-off between performance and anonymity compared to protocols such as LAP and
HORNET. The sender-receiver anonymity set size of dPHI is considerably larger than
that of LAP, which is mainly due to the fact that dPHI offers receiver anonymity for
nodes on path s to W , while LAP does not offer any receiver anonymity. HORNET,
however, provides the best anonymity of the discussed protocols. In terms of setup
latency and goodput, dPHI achieves similar or better results than PHI but lower good-
put than LAP or HORNET. HORNET requires expensive public key operations on all
routing nodes during session establishment. Furthermore, HORNET uses client-based
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routing that is neither in line with today’s internet nor corporate networks. dPHI does
not impose any requirements on the employed type of routing but leaves such decisions
to the underlying architecture. The only major issue in dPHI is that the client should
choose a helper node so that the entry node does not become the midway node.
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8. Discussion

This last chapter summarizes results and discusses obtained insights and their meaning
to MTD research. Furthermore, related work will be presented that is closer to the
proposed framework and investigated defenses than the evaluation approaches discussed
in the end of Chapter 3. Afterwards, a short outlook into future work will be given,
before concluding this thesis.

8.1. Summary of Results

Two case studies as well as an anonymous and dynamic routing protocol have been
presented in the course of this work. The first case study considered a corporate network
as could plausibly be in use by a small company. Two versions of this network, differing
in only minute aspects, were used to test five defense configurations that are based
on frequently proposed Moving Target Defenses. Investigated defense configurations
comprised two flavors of VM migration, IP shuffling, VM resetting, as well as a reference
configuration where no defense was employed. These were tested for their effect on
security in the presence of two differently skilled attackers. This effect, in turn, was
measured in form of attacker revenue, a defense-independent performance indicator that
was calculated from compromised resources. Results from this first experiment revealed
that a frequently proposed technique, VM migration, may in fact have a negative impact
on security for opening up attacks paths that would otherwise not exist. Considering
that existing evaluation approaches, without exception, deemed VM migration to be
improving security, this is a novel finding. However, the second version of the employed
network, only differing in the initial location of some VMs, painted a different picture. In
this changed scenario, VM migration had a positive effect on security. This was due to
critical VMs now starting in a location that was beneficial for the attacker, thus moving
them improved security through impeding attacks. In this regard, the first case study
not only illustrated that defenses may pose a security risk. It also showed that evaluation
should not be based on single experiments, even though this is common practice.

To further investigate this, a second case study was performed. This one, however,
was not limited to two almost identical versions of the same network but relied on 500
different networks. These were of larger size and higher complexity to make simulation
even more realistic. However, this required network generation and diversification to be
automated since manual modeling would not have been feasible anymore. To accommo-
date this, benchmark fuzzing was introduced to automate this process on the basis of
one single scenario definition that allows for the specification of a networks foundation
while leaving certain aspects to probability. Based on these 500 networks simulation
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was conducted employing the same five defense configurations as before to validate pre-
vious findings and provide a higher resolution of observed effects and their distribution.
Yet, the increased volume of simulation results poses a challenge with regard to compre-
hensive analysis itself. Therefore, new metrics were developed to quantify the security
implications of the defenses under test. The first metric indicates how far an attacker
can infiltrate the network for a given defense by measuring gained revenue, while the
second metric exposes throttling effects on attacks. Analysis confirmed that certain de-
fenses may sometimes have a negative impact on security, sometimes a positive, and
sometimes none at all. However, through benchmark fuzzing, it was possible to quantify
how frequently these different effects on security occur. In particular, results show that
VM migration more often than not had a negative impact on security rather than a pos-
itive, thus further corroborating the contradiction to existing work that says otherwise.
Unlike VM migration, VM resetting and IP shuffling had a considerable positive impact
on security, with VM resetting exhibiting the highest performance in the conducted ex-
periments. It should be noted that analysis did not only reproduce previous findings
from the manually crafted benchmark networks but also revealed cases previously not
encountered, such as the positive impact of IP shuffling. In this regard, apart from
increasing test coverage, fuzzing also helps detecting corner cases and may serve as a
kind of sanity check for more formal evaluation methods. Besides quantitative analysis,
the framework also allows for a qualitative assessment which provides defenders with a
more balanced view when deciding which defenses to employ.

However, apart from quantitatively evaluating different proactive defense techniques,
this work also presented an anonymous and dynamic routing protocol that may serve
as a Moving Target Defense technique. Preceding investigation on lightweight network-
layer anonymity protocols revealed limitations and design flaws in recently published
work. While improving on its predecessors, the analyzed protocol — PHI — leaked
information that, under certain circumstances, allowed for a considerable reduction of
the senders’ and receivers’ anonymity set sizes. Even more so, when extending the threat
scenario to be more realistic and in line with the internet as a scenario. Based on these
findings, an improved protocol named dPHI has been proposed. While exhibiting similar
computational load as PHI, the new protocol withstands identified attacks, even in the
extended threat scenario, thus improving on anonymity. Relying on Intel’s AES-NI,
experimental and analytical analysis has shown that computational effort involved in
the protocol-related processing is no delimiting factor. In fact, the number of dPHI
headers to be processed may even be one magnitude higher than what is needed for
saturating a 10 Gbps link, before computational load would become an issue.

8.2. Related Work

In Chapter 3.3.1, a broader range of related work has already been discussed, ranging
from analytical approaches to evaluation, through simulation, to testbeds. At this point
now, the proposed framework has been used to investigate a selection of defenses and
provide insights on their performance in different settings. Considering this, the focus
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of related work is narrowed down to approaches that employ a similar methodology or
investigated on the same defenses, thus allowing for comparison. Since the framework
presented here is the first to reveal considerable security degradation incurred through
VM migration, approaches that address this very technique are of special interest.

In 2016, Hong and Kim introduced their hierarchical attack representation model
(HARM) [64] to address the challenges of evaluating MTD techniques at the example of
VM live migration. This multi-layered approach is based on graphical security models
such attack trees and graphs, yet overcomes their limitations with regard to incorporat-
ing adaptations that MTD ultimately requires. While it is not made clear if defenses
are modeled by their intended effect or underlying mechanisms, results indicate that the
scheme is capable to detect security improvement and deterioration. However, the sce-
nario used for evaluating effectiveness consists of only three physical hosts and five VMs
where migrating specific machines indeed improves security due to a sub-optimal initial
state and, most importantly, knowledge about the attacker’s current progress. While
this can be considered a realistic setting, there are numerous equally realistic settings
where the attacker’s progress is not known and VM migration may cause transition to
an insecure state. Additionally, it is assumed that no negative effect may result from
co-location of VMs. Considering the track record of vulnerabilities in common hypervi-
sors, and the fact that most of them default to attaching guest OSes to the same virtual
switch (e.g. Xen), this is a strong assumption. In consequence, Hong and Kim conclude
that VM migration is effective to improve security. Further defense evaluation conducted
with help of the HARM [8, 10] revealed that migration may increase the number of at-
tack paths, yet not leading to any security degradation as VM migration would still fend
these off. Instead, results indicate that the overall risk and the “return on attack” was
ultimately lowered. Enoch et al. [55] present a further developed version of the HARM
that incorporates temporal aspects.

The evaluation approach of Debroy et al. [50] is also concerned with VM live mi-
gration, yet not to assess its actual effects but to optimize its utilization in a defense
strategy to fend off distributed denial of service (DDoS) attacks. The authors determine
performance indicators such as cost of migration related to resource consumption and
service degradation for legitimate users that ought to be minimized. At the same time
migration should be timed so that DDoS attacks are prevented while choosing optimal
migration locations that take resource utilization efficiency into account. Analysis to
derive these timings is based on the common assumption that DDoS attacks can be
modeled as a Poisson process. Should proactive migration not prevent a DDoS attack,
reactive migration is suggested based on alerts from an intrusion detection system (IDS).
Experiments are performed on an SDN-enabled GENI Cloud and results indicate that
an optimized defense strategy can reduce the success rate of DDoS attacks by up to
40% while reducing cost as compared to periodic migration. Since the threat model is
limited to DDoS attacks, downsides that may result from co-location of VMs are not
accounted for. However, Debroy et al. consider service interruption and additional load
to be impediments of VM migration and include these in their optimization problem.

An earlier approach to evaluating VM migration is presented by Wang et al. [129]. The
suggested framework primarily considers cost of performing defense actions as opposed
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to cost of being attacked, as well as the effort required by an attacker to successfully
compromise a system. The cost incurred to the defender for migrating a VM are derived
from the mean downtime of services and related monetary net loss. Cost of being
attacked include damages from loss of confidentiality, integrity and availability but also
reputation. Together with historic information on attacks and knowledge of the mean
effort required to conduct them, distribution fitting is done to enable prediction of future
attacks. Based on this, the framework optimizes for reducing cost – including those of
being attacked – in the long run while keeping migration intervals shorter than attack
intervals. Interestingly enough, the authors consider covert channel attacks that may
result from co-location of VMs and use this to motivate migration in the first place.
However, the fact that migration may enable the attacker’s VM to attack even more
other machines is not considered.

Repeatedly randomizing IP addresses, for example, has been evaluated based on the
low probability for an attacker to maintain knowledge on correct IP addresses of multiple
targets that need to be attacked simultaneously [89]. While this is not far-fetched, in
practice, multi-target attacks need not necessarily be carried out at once, but may span a
time frame during which outdated knowledge may plausibly be refreshed. Furthermore,
in a realistic scenario, successful attack and defense depend on more than only knowing
IP addresses. Attackers and defenders repeatedly select from a multitude of different
actions, all of which depend on various factors that would need to be considered so that
quantifying the actual effect of IP shuffling is far more complicated. However, when
including all potentially relevant aspects, mathematical formalization reaches a degree
of complexity that is far beyond calculating the probability of guessing correct addresses.

Abdul Basit Ur Rahim et al. [4] present an approach to MTD evaluation that is based
on model checking and utilize it to investigate IP shuffling in the presence of constraints
to maintain system operation. Interestingly, this methodology is similar to the one
proposed here for also relying on a state representation that is repeatedly checked to
decide if requirements for subsequent actions are fulfilled or not. While not making
a final judgment about the effectiveness of IP shuffling, the authors claim that their
scheme is capable of formally representing this technique. However, their representation
of IP shuffling is limited to the effects it has on an adversary that repeatedly scans for
addresses, while ignoring all other steps an attacker may take to acquire such knowledge
or subsequently use it. In this regard, their general approach is interesting, yet does not
incorporate the needed level of detail to yield realistic results.

Bangalore and Sood [22] did not only propose sole VM resetting but also evaluated
their scheme. With help of a VMware ESX hypervisor and a virtualized guest repre-
senting a web server, they conduct experiments to determine possible frequency and
effect of resetting the guest. The authors conclude that resetting intervals of less than a
minute make attacking impractical while barely impeding regular operation when utiliz-
ing spare VMs that seamlessly take over incoming requests. While this appears plausible,
the findings are limited to cases in which light-weight read-only services are concerned.
Machines that need to persist data and can therefore not be resetted, are not considered.
Furthermore, depending on the type of service that is provided, intervals shorter than a
minute may not be feasible.

136



Evaluation approaches that address MTD-related downsides in form of resource con-
sumption and degraded service availability have been presented by Connel et al. [45],
Chen et al. [38], and Mendonça et al. [94]. These, however, do not inspect the security
impact of investigated defenses but focus on their effects on operators and legitimate
users with regard to cost, service availability and job finish time. The simulation-based
approaches from Zhuang et al. [147, 150] also consider the potentially negative impact
of defenses on legitimate operation. Yet, this is not represented as cost or downtime to
be minimized, but as functional requirements defense strategies must adhere to.

Table 8.1.: Comparative overview of related work with regard to different aspects. Em-
ployed abbreviations: simulation-based (s), analytical (a), testbed (t), high
(h), medium (m), low (l), defense effect (DE), defense strategy (DS)
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this work s h 90 500 live migration
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VM resetting
IP shuffling

DE considered,
detected

yes

Hong &
Kim [64]

s m 8 (larger numbers
only for scalability
analysis)

1 live migration
OS shuffling

DE not consid-
ered

no

Alavizadeh
et al. [8, 10]

s m 16 (900 nodes in
model, yet, only
“important” ones
in evaluation)

2 live migration
OS shuffling

DE considered,
not detected

yes

Debroy et
al. [50]

t h 7 (+ 30 nodes as
dummies and mi-
gration targets)

20 live migration
(5 strategies)

DS only service
degradation

no

Wang et
al. [129]

s l 1 144 live migration
cold migration
(7 strategies)

DS only service
degradation

yes

Maleki et
al. [89]

a l n (formalism not
limited regarding
number of nodes)

2 IP shuffling DS not consid-
ered

no

Ur Rahim
et al. [4]

s m n/a n/a IP shuffling DE not consid-
ered
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no
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s l 7 1 cold migration
(5 strategies)
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Table 8.1 provides a comparative overview of related work with regard to different
aspects. Note that this table only comprises those approaches where information on
compared aspects could be obtained from related publications, at least to a certain
degree. In this table, the column “approach” refers to the employed evaluation ap-
proach that can either be simulation-based (s), analytical (a), or relying on testbeds
(t). “Model granularity” refers to the level of detail of employed models that evalua-
tion is based on. This can either be high (h), medium (m), or low (l). Obviously, this
qualitative classification cannot fully represent the exact granularity employed in the
different approaches. Yet, an elaborate description of utilized models is regularly not
included in respective publications, and, what is more, opposes the principle of a com-
pact comparative overview. Still, levels of granularity have not been chosen randomly
but were determined in the following way: Granularity of testbeds is generally assumed
to be high for considering real systems, whereas granularity of analytical approaches is
assumed to be low, for the extent of simplification and assumptions that is needed to
represent complex systems through mathematical formalization. Simulation-based ap-
proaches have been assigned granularity levels based on the model descriptions in the
related publications. The work of Wang et al. [129], for example, employs a model that
only considers whether or not a node is being attacked, neither incorporating any other
characteristics of these nodes, nor potential applications, data, or the surrounding net-
work. Consequently, the granularity level of this approach has been classified as being
low, as has been done for all other approaches that only considered the attack state of
nodes. In turn, the approach from Alavizadeh et al. [8, 10] considers nodes together
with their operating systems, as well as potential vulnerabilities that allow for attacks
in the first place, and has therefore been classified as exhibiting a medium granularity.
This level of granularity was assigned whenever a model did not only consider nodes,
but also included OSes or applications and respective vulnerabilities. Any model more
complex than that, was considered to be of high granularity. This applies to the model
utilized in this work for its relative complexity as demonstrated in Chapters 4, 5, and 6.

“Scenario size” characterizes the different approaches with regard to the number of
nodes that evaluated scenarios comprise. From a technical perspective the number of
nodes is not perfectly fit to represent a scenario’s real size, as it does not reflect the
potentially large number of other entities that may be part of the model. However,
in the presence of deviating levels of modeling granularity, the number of nodes is an
intuitive and most importantly common indication for scenario sizes. It should be noted
though, that numbers on considered nodes vary for some approaches. In this regard, the
approach from Alavizadeh et al. [8, 10] specifies a scenario size of up to 900 nodes, yet,
only considers a fraction of these during evaluation on the basis of importance measures.
While this may be part of the employed evaluation scheme, it does not qualify as the
factual evaluation of a defense on the basis of 900 nodes in the context of this comparison.

The “number of scenarios” represents the number of different settings in which de-
fenses have been evaluated. The degree to which scenarios actually differ varies across
the different approaches. The evaluation conducted by Debroy et al. [50], for example,
derives different scenarios from randomly shuffling characteristics of the operating sys-
tems of respective nodes. The scenarios employed by Wang et al. [129], on the other
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hand, are based on traces of attacks from a cloud computing environment that are not
further elaborated and may differ in yet other aspects than only the OS, however, always
consider only one specific node.

“Defenses” lists the different Moving Target Defenses that have been evaluated by
the respective approach. Occasionally, remarks are made with regard to the number
of different strategies a defensive technique has been evaluated with. This is related to
the “investigated aspect” that may either be the defense effect (DE) or defense strategy
(DS). While approaches that evaluate defense effects strive to reveal how a technique
impacts the system it operates in, defense strategy evaluation attempts to answers the
question on how to effectively employ these techniques. The last but one column –
“security degradation” – address whether or not the respective evaluation approach
considered, and may be even detected, defense-related security degradation. As can be
seen, negative effects are frequently not considered, and if so, are limited to concerns
regarding service degradation or disruption. Finally, the last column indicates whether or
not the respective approach compared defenses with regard to their impact on security
in considered scenarios. Obviously, comparison of different techniques is unlikely if
conducted evaluation only considered one defense in the first place.

8.3. Future Work

There are several conceivable directions for future work, three of which appear to be
very promising and are outlined in the following:

• Smart attackers: The experiments employed a greedy and powerful attacker
who pursues all available attack avenues. For the considered defenses this was ap-
propriate as attacker actions only resulted in beneficial effects from an attacker’s
perspective. However, to include any kind of intrusion detection systems in the
analysis, intelligent attackers are needed who try to avoid being detected. Modeling
an intelligent attacker is also helpful to analyze defenses that are based on decep-
tion. The introduced benchmark fuzzing to automatically generate large numbers
of related yet different benchmark networks is already an important step towards
training such an attacker. Manual benchmark modeling would be too cumbersome
to generate enough training data for most artificial intelligence (AI) algorithms to
be effective. Attack simulations with such intelligent attackers could not only be
used to further evaluate defenses but also improve defense deployment by opti-
mizing honeypot placement, for example. Hence, combining the attack simulation
approach with an AI-enabled attacker is a promising and interesting direction for
future work.

• Common standardized benchmarks: The conducted case studies have shown
that characteristics of the networks used for defense evaluation had a considerable
impact on observed performance and effects. Consequently, testing at a larger
scale is advisable. However, what may further improve comparability of findings
generated by independently conducted research and development, is the definition
of common benchmark networks. Agreeing on a common standard to test de-
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fenses does not only ensure that proposed techniques have been evaluated under
the same conditions but may also enforce a minimum level of detail and realism.
Assuming that such common benchmark networks are adequately chosen, they
may strengthen trust in the results of evaluation and help to separate the wheat
from the chaff.

• Extending analysis to other network types: Getting an understanding of
how different defenses perform is not only relevant in the context of medium-sized
corporate networks. Data centers, critical infrastructures, as well as IoT environ-
ments must be secured, as well. And while most defenses, no matter if proactive
or static, are generally applicable in these domains, they are yet subject to other
constraints and changed environmental factors. That these need to be considered,
has been sufficiently motivated by now. Consequently, developing realistic sce-
nario definitions for other targets is an important next step to enable evaluation
of defense performance under such altered conditions.

8.4. Conclusion

In the presence of an ever-growing number of attacks on networks and infrastructure,
the development of new techniques to defend these is of utmost importance. Yet, their
ability to contribute to security should not be assumed but verified. In this thesis,
an attack simulation framework has been presented that is able to quantitatively and
qualitatively evaluate and compare different network defense techniques at a larger scale.
By revealing that defenses intended to increase security may also have negative effects,
the two conducted experiments have shown that the chosen approach to evaluation and
the employed level of detail have a significant impact on findings. Evaluation approaches
that favored simplification over accuracy were not able to yield such insights. In this
regard, simulation on the basis of high-detail network descriptions is a viable and useful
approach. However, this work has also shown that generalizing on the basis of single
findings is not advisable, since results did not only depend on the level-of-detail but also
on what has been modeled. Equally plausible settings may yield different results so that
testing in different settings is not optional but necessary to fairly compare and improve
understanding of defense performance. The introduction of benchmark fuzzing makes
an important step towards evaluation at a larger scale. Through considerably reducing
the effort required to generate large sample sizes, extensive testing does not pose an
additional burden and becomes economically attractive.
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Apart from evaluation, this work also attended to anonymous and dynamic routing
as a form of Moving Target Defense. While a large part of existing research focuses on
refining and improving popular defense techniques such as IP shuffling and VM migra-
tion, other promising techniques are underrepresented. The network-layer anonymity
protocol presented in this work is discussed and analyzed with regard to utilization in
the internet, yet may equally be applied in closed corporate networks. Through conceal-
ing the addresses and identities of both receivers and senders of messages, this protocol
does not intend to invalidate learned addresses but prevent them from being learned in
the first place. In combination with schemes such as NASR, for example, this may sig-
nificantly impede reconnaissance. In addition, given the required network architecture,
the protocol also allows to vary communication paths, thus further increasing difficulty
for the attacker to acquire information.
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A. Available Functions in Experiment 1

Table A.1 lists legitimate system functions and Table A.2 the modeled exploits that can
be used by an attacker.

Table A.1.: Overview of attacker actions based on legitimate functions

Name: readData Result: Attacker.knows+=App.allData; Time/Probability: 60 / 100

Requirements:App=Attacker.remoteCodeExe OR (OS=App.parent & OS=Attacker.remoteCodeExe)

Name: pingscan Result: Attacker.knows+=OS.ipaddress; Time/Probability: 175 / 2

Requirements: Attacker.reachable(OS,Port=ping)

Name: arpCache Result: Attacker.knows+=TARGET.ipaddress; Time/Probability: 20 / 100

Requirements:(App=Attacker.remoteCodeExe OR OS=Attacker.remoteCodeExe) & OS=App.parent & SUB-
NET=OS.belongsToSubnet & TARGET.belongsToSubnet=SUBNET

Name: configureAdClients Result: Attacker.remoteCodeExe+=TARGET; Time/Probability: 200 / 80

Requirements: App=activeDirectory & Attacker.remoteCodeExe=App & TARGET=App.clients

Name: getCustomerData Result: Attacker.knows+=CRMUSER.data; Time/Probability: 20 / 100

Requirements:App=baseCrm & CRMUSER=App.user & Attacker.knows=CRMUSER.password & At-
tacker.knows=CRMUSER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName)
& Attacker.reachable(OS,Port=tcp)

Name: getMail Result: Attacker.knows+=CRMUSER.data; Time/Probability: 20 / 100

Requirements:App=exchangeServer & EMAILUSER=App.user & Attacker.knows=EMAILUSER.password
& Attacker.knows=EMAILUSER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: remoteDbManagement Result: Attacker.knows+=App.allDatabaseData; Time/Probability: 180 / 100

Requirements:App=sqlServer & ADMIN=App.admin & Attacker.knows=ADMIN.password & At-
tacker.knows=ADMIN.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) &
Attacker.reachable(OS,Port=SQLPORT)

Name: sqlQuery Result: Attacker.knows+=USER.databaseData; Time/Probability: 30 / 100

Requirements:App=sqlServer & USER=App.databaseUser & Attacker.knows=USER.password & At-
tacker.knows=USER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) &
Attacker.reachable(OS,Port=sqlport)

Name: remoteShellLinux Result: Attacker.remoteCodeExe+=OS; Time/Probability: 20 / 100

Requirements: OS.family=Linux & OS.remoteShellEnabled & ADMIN=OS.root & Attacker.knows=ADMIN.password
& Attacker.knows=ADMIN.username & (Attacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) & At-
tacker.reachable(OS,Port=22)

Name: remoteShellWindows Result: Attacker.remoteCodeExe+=OS; Time/Probability: 20 / 100

Requirements: OS.family=Windows & OS.remoteShellEnabled & ADMIN=OS.root & Attacker.knows=ADMIN.password
& Attacker.knows=ADMIN.username & (Attacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) & At-
tacker.reachable(OS,Port=3389)
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Table A.2.: Overview of attacker actions based on exploits

Name: tomPrivEscalation Result: Attacker.remoteCodeExe+=OS; Time/Probability: 800 / 25

Requirements: App=tomcat & App.hasTomPriv & Attacker.remoteCodeExe=App & OS=Linux

Name: privEscalationWindows Result: Attacker.remoteCodeExe+=OS; Time/Probability: 60 / 100

Requirements: (OS=Windows10 OR WindowsServer2016) & OS.hasWinPrivEscalation & Attacker.remoteCodeExe=App

Name: backupServerRCE Result: Attacker.remoteCodeExe+=OS; Time/Probability: 30 / 100

Requirements: App=veritasBackupServer & OS=App.parent & OS.family=linux & App.hasCVE20167399 & (At-
tacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: phishingDocRCE Result: Attacker.remoteCodeExe+=App; Time/Probability: 200 / 2

Requirements: App=officeSuite & OS.family=windows & OS=App.parent & App.isPhishingVulnerable

Name: tomHttpPutRCE Result: Attacker.remoteCodeExe+=App; Time/Probability: 30 / 100

Requirements: App=tomcat & App.hasHttpPutVulnerability & OS=App.parent &(Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=jmxport)

Name: jmxTomcatVulnerability Result: Attacker.remoteCodeExe+=OS; Time/Probability: 120 / 90

Requirements: App=tomcat & App.hasJmxEnabled & OS=App.parent & ( Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName ) & (App.jmxNoAuth OR (Attacker.knowsUsername(App) & Attacker.knowsPassword(App)) &
Attacker.reachable(OS,jmxport)

Name: privEscalationUbuntu Result: Attacker.remoteCodeExe+=OS; Time/Probability: 120 / 50

Requirements: OS=Ubuntu & OS.hasUbuntuPrivEscalation & OS=App.parent & Attacker.remoteCodeExe=App

Name: eternalBlueRCE Result: Attacker.remoteCodeExe=OS; Time/Probability: 60 / 10

Requirements: OS.family=Windows & OS.hasEternalBlue & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=smb)

Name: redirectBackupToCloud Result: Attacker.knows+=App.backupedData; Time/Probability: 300 / 90

Requirements: App=veritasBackupServer & App.hasCloudVuln & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp/5637)

Name: backupClientRCE Result: Attacker.remoteCodeExe=OS; Time/Probability: 120 / 20

Requirements: App=veritasBackupClient & Attacker.parent=OS & OS.family=windows & APP.hasSSLVuln & (At-
tacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) & Attacker.reachable(Os,Port=ssl)

Name: clientRCEoverServer Result: Attacker.remoteCodeExe=OS; Time/Probability: 120 / 50

Requirements: App=veritasBackupClient & App.hasRCEfromServer & SERVER=App.server & At-
tacker.remoteCodeExe=SERVER & OS=App.parent & Attacker.knows=OS.ipaddres & reachable(OS,Port=ssl)

Name: meltdown Result: Attacker.knows+=Node.dataInRAM; Time/Probability: 200 / 10

Requirements: NODE.type=Intel & OS.runsOn=NODE & OS.hasMeltdown & App.parent=OS & At-
tacker.remoteCodeExe=App

Name: drupalRCE Result: Attacker.remoteCodeExe+=App; Time/Probability: 30 / 100

Requirements: App=drupal & App.hasRCEviaHttpGetVuln OS=App.parent & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=http)

Name: sendMailExchangeRCE Result: Attacker.remoteCodeExe+=App; Time/Probability: 120 / 30

Requirements: App=exchangeServer & OS=App.parent & OS.family=windows & USER=App.emailuser &
Attacker.knows=USER.username & Attacker.knows=USER.password & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName)

Name: exchangeDefenderRCE Result: Attacker.remoteCodeExe+=App; Time/Probability: 32 / 20

Requirements: App=exchangeServer & OS=App.parent & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName)
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B. Supplemental Material to Benchmark
Fuzzing and Experiment 2

Results from the experiment performed on the basis of 500 automatically diversified
benchmark networks and the program code to generate them can obviously not be part of
a printable document. Instead, respective graphs, together with python scripts to gener-
ate them can be found at https://github.com/AlexB030/BenchmarkNetworkAnalysis.
The archive also contains condensed raw data in form of a binary pickle files that
are used by the python script to generate respective output. Furthermore, the sce-
nario definition that was used to generate all 500 benchmark networks can be found at
https://github.com/AlexB030/BenchmarkNetworkSynthesis. Enclosed files describe
the general structure of generated network instances and how they are assembled. Fur-
thermore, the definitions of all implemented functions are enclosed, providing insights
into requirements and effects.
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C. Detailed dPHI Protocol Description

In the pseudo-code used to describe the protocol, capital letters denote structs with
several fields, while minuscule letters denote single entries. The message header is
denoted with H and the payload with P . A dot is used to address a specific field
within a struct. The encryption function (c, t, iv) = enck(p, a) denotes an authen-
ticated encryption function (e.g. AES-GCM [92]) with plaintext p, key k and addi-
tional authentication data a. The output is ciphertext c, authentication tag t and a
fresh initialization vector iv. Similarly, p = deck(c, t, iv, a) is the authenticated de-
cryption funcion which ensures the integrity of plaintext p and authentication data
a. For public key operations (priv, pub) = ECDHgen() denotes the generation of a
public-key private-key pair of an Elliptic-Curve Diffie Hellman algorithm. Generat-
ing a session key between two entities A and B is done using the ECDH function
kA−B = ECDH(pubA, privB) = ECDH(pubB, privA) = kB−A, where pubA and pubB are
the public keys of A and B respectively and privA and privB the private keys. The
Assert(S) function verifies that the Boolean expression S is true. If it is false, the pro-
tocol is aborted, i.e., the node drops the processing of the current message. The function
sendMessage(port,H, P ) denotes the sending of the message of a node to the next node
at port port with header H and payload P .

C.1. Message Header and Routing Segments

The bulk of the header is made up of two routing segments V 1 and V 2 (see Figure 7.4),
each consisting of l routing elements that contain routing information for every node on
the path. Each node Ai has a unique secret symmetric key ki that is not shared with
any other entity. It is used to encrypt the routing information R and store it in the
routing segment so that it can be retrieved and authenticated later on. More formally,
the encrypted information consists of a triplet (ivi, ci, ti), where ivi is a freshly generated
initialization vector, ci is the ciphertext and ti the authentication tag of an authenticated
encryption algorithm with:

(ci, ti, IVi) = encki(R; sid||cpos−1) (C.1)

where R is the plaintext routing information that gets encrypted and sid||cpos−1 is the
additional authentication data. The routing information R consists of five fields in total.

R = (port1||port2||type||posV 1||posV 2) (C.2)
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The two fields port1 and port2 correspond to ingress and egress interfaces, and the type
field defines the role of the node in the session (e.g. midway node or entry node). The
fields posV 1 and posV 2 point to the routing element in V 1 and V 2 where R is stored.
Only the midway node W stores R in both routing segments so that for other nodes one
of the pointers is null.

Algorithm 2 Phase 0: Setup

procedure setup(d)
(privs, pubs)← ECDHgen()
nmid ← random()
M ← chooseHelperNode()
distM ← maxDistanceTo(s,M)
pubM ← lookupPublicKey(M)
ks−M ← ECDH(pubM , privs)
H.sid← Hash(pubs)
(c, t, IV )← encks−M

(d||nmid, H.sid)
P ← (c, t, IV, pubs)
H.V 1 ← random()
H.V 2 ← zeros()
H.midway ← zeros()
H.pos← random(0, l − 1)
H.dest←M
H.status← “toHelperNode”
Hs ← H
store(Hs, privs, pubs, ks−M , distM , nmid)
sendMessage(As, H, P )

end procedure

C.2. Phase 0: Initialization

Algorithm 2 details the initialization performed by source s. For each path request,
source s generates a fresh ECDH key pair, consisting of pubs and privs. The source
computes a session id sid by hashing the public key with a cryptographically secure
hash function sid = Hash(pubs). This way a session is intrinsically linked to the freshly
generated ECDH key pair. This idea was introduced in PHI to securely link the path
setup and the transmission phase and is kept in dPHI.
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The source then chooses a helper node M from a list of trusted ASes. It is assumed that
the list also contains the maximum distance distM (number of hops) between the source
and the helper node M as well as the public key pubM of M . The source uses its own
private key privs and M ’s public key pubM to compute a session key ks−M with ks−M =
ECDH(privs, pubM ). The source uses this session key ks−M to encrypt the destination
address d as well as freshly generate a high-entropy random midway nonce nmid. The
routing elements in the routing segment V 1 are initiated by s with random values that
are indistinguishable from real routing elements. This can, for example, be done using
a cryptographically secure pseudo-random number generator with a fresh high-entropy
seed value. Furthermore, s chooses a random start position pos ∈ {0, .., l−1} and stores
pos and V 1 locally for later reference. After initialization, the source s starts the midway
request phase by sending a request message to its corresponding AS As. The payload
of the midway request consists of the encrypted destination and the session’s public key
pubs. The destination field dest of the message header is set to dest := M , the status
field to status := “toHelperNode” to indicate that the protocol is in the initial phase.

C.3. Phase 1: Midway Request

The processing of a midway request message is described in Algorithm 3. Each node on
the path to M encrypts its routing information R and stores it in the routing segment
V 1 using authenticated encryption. The session id sid as well as the ciphertext of the
previous routing element are used as additional authentication data for the authenticated
encryption algorithm. When the midway request reaches M , M decrypts the destination
d and midway nonce nmid. It sets the destination field dest and the midway field of the
header to d and nmid respectively. Then the message’s status is set to “findMidway”
and sent back to the previous node.

C.4. Phase 2: Find Midway Node W

Algorithms 4 and 5 explain Phase 2 of the dPHI protocol. The goal is to find a midway
node W that is on the path Ps−M between s and M such that a path Ps−d = Ps−W∗ ∩
PW−d meets the routing policy of the network (e.g. valley-freeness, shortest path etc.).
Each node receiving a ”findMidway” request decrypts its routing information in V 1 and
uses the ingres information and the destination d to decide whether or not to become the
midway node. If not, the message is simply forwarded to the previous node, reachable
through R.port1.
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Algorithm 3 Phase1: Midway Request

Require: H.status == “toHelperNode”
1: procedure midwayRequest(ingres,H,P)
2: if self == H.dest then
3: Assert(H.sid == Hash(P.pubs))
4: ks−M ← ECDH(privM , P.pubs)
5: d||nmid = decks−M

(P.c, P.t, P.IV, sid)
6: H.dest← d
7: H.status← “findMidway”
8: H.midway ← nmid

9: H.pos← H.pos− 1 mod l
10: sendMessage(ingres,H, P )
11: else . M not yet reached
12: R.port2← FindRouteTo(H.dest)
13: R.port1← ingres
14: R.posV 1← H.pos
15: R.posV 2← null
16: cprev ← H.V 1[H.pos− 1 mod l][0]
17: if isClient(ingres) then
18: R.type← “entryNode”
19: else
20: R.type← “V 1”
21: end if
22: H.V 1[H.pos]← encki(R,H.sid||cprev)
23: H.pos← H.pos + 1 mod l
24: sendMessage(R.port2, H, P )
25: end if
26: end procedure

Once a node becomes the midway node, it prepares a midway reply nrep using the
midway nonce nmid from the midway field. The idea behind the midway reply is to
allow the source s to verify the integrity of destination d as well as V 1. To do this,
it computes nrep = Hash(H.dest||nmid||H.V 1) and sets the midway field in the header
to nrep. Furthermore, the midway node updates its routing information R with the
updated R.port2 information to route messages to d. It also chooses a random start
position in V 2 and stores it in R.posV 2, sets R.type = “midway”, re-encrypts R, and
updates its routing segment in V 1 accordingly. Note, that this updated V 1 is used by
the hash function to determine nrep. Then the midway node encrypts the destination
field H.dest in the header with its secret key so that nodes between s and W do not
learn d. Lastly, the message is sent back to s via the nodes on path Ps−W . These nodes
only relay the message but do not alter the routing segment.
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Algorithm 4 Phase 2: Find Midwaynode

Require: H.status == “findMidway”
1: procedure findMidway(ingres,H,P)
2: cprev ← H.V 1[(H.pos− 1) mod l][0]
3: R← decki(H.V 1[H.pos], H.sid||cprev)
4: Assert(R.type == “V 1”&&R.posV 1 == H.pos)
5: if checkIfNewMidway(self,R.port1, H.dest) then
6: R.type← “midway”
7: nmid ← H.midway
8: R.posV 2← random(0, l − 1)
9: R.port2← FindRouteTo(H.dest)

10: H.V 1[H.pos]← encki(R,H.sid||cprev)
11: H.midway ← Hash(H.dest||nmid||H.V 1)
12: H.dest← encki(H.dest,H.sid)
13: H.status← “midwayReply”
14: end if
15: H.pos← H.pos− 1 mod l
16: sendMessage(R.port1, H, P )
17: end procedure

C.5. Phase 3: Handshake to d

When receiving a midway reply, source s first verifies the integrity of the received routing
segment H.V 1. Only distM routing elements should have been modified compared to
the randomly initialized V 1

s starting from position poss in consecutive order. If this is
not the case the message is dropped. It then verifies that the midway field H.midway is
equal to Hash(d||nmid||H.V 1) to verify that the correct destination was used by midway
node W and that V 1 has not been altered after processing by W . If these checks succeed,
the source computes a session key ks−d based on the private key of the ECDH key pair
it generated for this session, as well as d’s publicly available longterm key pubd. It uses
this session key to encrypt V 1 and sends it together with the public key pubs to d in a
handshake message. The process of this handshake initiation is covered in Algorithm 6.
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Algorithm 5 Phase 2: Midway Reply

Require: H.status == “midwayReply”
1: procedure midwayReply(ingres,H,P )
2: cprev ← H.V 1[(H.pos− 1) mod l][0]
3: R← decki(H.V 1[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 1)
5: H.pos← H.pos− 1 mod l
6: sendMessage(R.port1, H, P )
7: . If H.type == “entryNode” then R.port1 is a client address
8: end procedure

Algorithm 7 covers communication of nodes on the path Ps−W that forward the mes-
sage to the midway node W according to the routing information stored in H.V 1. The
midway node uses its secret key to decrypt the destination field d = decki(H.dest) and
sets H.dest = d. It then chooses a random seed seed and uses a cryptographically se-
cure pseudo-random number generator to initiate the second routing segment V 2 with
V 2 = CPRNG(seed). Furthermore, it determines the maximum expected number of
hops distd for the message to reach d. It uses authenticated encryption to encrypt seed
and distd with W ’s routing element in V 1 as additional authentication data and stores
it in the header’s midway field. The midway node serves as the bridge between nodes
writing their routing information in V 1 and V 2. It therefore re-encrypts its routing seg-
ment and stores it in V 2 at position posV 2 (so that V 1[posV 1] and V 2[posV 2] contain
the same plaintext but different ciphertexts). It then initiates the next phase of the
protocol by setting pos = posV 2 + 1 mod l and sending the message via port2.

Should the midway node also be the exit node (port2 is a client address) the message
is sent directly to the client. Otherwise the handshake message is forwarded to the next
node specified in port2. Nodes between W and d retrieving the handshake message look
up the destination and where to forward the package. Then, they store their routing
information encrypted in V 2 the same way, as nodes between s and M have done with V 1

during the first phase of the protocol and forward the message. This process is described
in Algorithm 8.

C.6. Phase 4: Handshake Reply

Algorithm 9 describes the handshake reply preparation by destination d. At first, des-
tination d verifies that sid is the hash of the received public key pubs and computes
the session key ks−d using this public key and its own private key. The session key is
then used to decrypt the routing segment stored in the payload and compare it with the
received routing segment H.V 1. If they are identical, the destination d encrypts both
routing segment V 1 and V 2 and uses this as the payload of the handshake reply message.
It deletes the destination field from the header and sends back the message to s.
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Algorithm 6 Phase 3: Initiate handshake

Require: Client s receives message with H.status == “midwayReply”
1: procedure initHandshake(ingress,H, P )
2: Hs, privs, pubs, distM , ks−M ,← restore()
3: Assert(H.sid == Hs.sid&&H.pos == Hs.pos)
4: /* Verify that only routing segments in V 1 have been modified between positions

Hs.pos and (Hs.pos + distM mod l) */
5: pointer = Hs.pos + distM + 1 mod l
6: while pointer 6= Hs.pos do
7: if H.V 1[pointer] 6= Hs.V

1[pointer] then
8: Abort()
9: end if

10: pointer = pointer + 1 mod l
11: end while
12: nrep ← Hash(d||nmid||H.V 1)
13: Assert(nrep == H.midway)
14: . All checks valid, send message to d
15: ks−d = ECDH(pubd, privs)
16: (c, t, IV )← encks−d

(H.V 1, sid)
17: P ← c, t, IV, pubs
18: H.status← “handshakeToW”
19: store(V 1)
20: sendMessage(ingress,H, P )
21: end procedure

Algorithms 10 and 11 describe the processing of the handshake reply message by
the routing nodes between d and s. The nodes between d and W look up the routing
information in their routing segments and forward the message to W without modifying
any routing segments. The midway node receiving a handshake reply message verifies
that there were no unauthorized modifications in V 2. For this, the midway field is
decrypted to retrieve the seed for V 2 and the distance distd between W and d. It uses
the seed to re-compute the initial value of V 2 and verifies that at most distd routing
elements have changed in V 2, starting at position pos. If this check succeeds, the pointer
is switched to V 1 and the message forwarded to s.

The source s receiving the handshake reply verifies that the received routing segment
V 1 matches the stored routing segment. It then decrypts the payload to verify that the
routing segment received by d is the same as the one received by the source. If this is
true, the handshake is complete and a secure path has been established that is linked to
the session key ks−d. This process is described in Algorithm 12.
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Algorithm 7 Phase 3: Handshake to W

Require: H.status == “handshakeToW”
1: procedure handshakeToW(ingress,H,P )
2: cprev ← H.V 1[(H.pos− 1 mod l][0]
3: R← decki(H.V 1[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 1)
5: if R.type == “midway” then
6: H.dest← decki(H.dest,H.sid)
7: seed← random()
8: H.V 2 ← CPRNG(seed)
9: distd ← maxDistanceTo(H.dest)

10: cprevV 2 ← H.V 2[(R.posV 2− 1 mod l][0]
11: H.V 2[R.posV 2]← encki(R,H.sid||cprevV 2)
12: cv1 ← H.V 1[R.posV 1][0]
13: H.midway ← encki(seed||distd, sid||cv1)
14: H.status← “handshakeToD”
15: H.pos← R.posV 2 + 1 mod l
16: else
17: H.pos← H.pos + 1 mod l
18: end if
19: sendMessage(R.port2, H, P )
20: end procedure

Algorithm 8 Phase 3: Handshake to d

Require: H.status == “handshakeToD”
1: procedure handshakeToD(ingress,H,P )
2: if isClient(H.dest) then . Message arrived, forward to client
3: R.type← “destNode”
4: R.port2← H.dest
5: else
6: R.type← “V 2”
7: R.port2← findRouteTo(H.dest)
8: end if
9: R.port1← ingress

10: R.posV 1← null
11: R.posV 2← H.pos
12: cprev ← H.V 2[(H.pos− 1 mod l)[0]
13: H.V 2[H.pos]← encki(R,H.sid||cprev)
14: H.pos← H.pos + 1 mod l
15: sendMessage(R.port2, H, P )
16: end procedure
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Algorithm 9 Phase 4: Prepare handshake reply

Require: Client d receives message with H.status == “handshakeToD”
1: procedure initHandshakeReply(ingress,H, P )
2: Assert(H.sid == Hash(P.pubs))
3: ks−d ← ECDH(P.pubs, privd)
4: V 1

s ← decks−d
(P.c, P.t, P.IV,H.sid)

5: Assert(H.V 1 == V 1
s )

6: P ← encks−d
(H.V 1||H.V 2, sid)

7: H.dest← zeros()
8: H.status← “replyToW”
9: store(H)

10: sendMessage(ingress,H, P )
11: end procedure

Algorithm 10 Phase 4: Handshake Reply

Require: H.status == “replyToW”
1: procedure handReplyToW(ingress,H,P )
2: cprev ← H.V 2[(H.pos− 1 mod l][0]
3: R← decki(H.V 2[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 2)
5: if R.type == “midway” then
6: . Verify V 2 and then switch to V 1

7: cv1 ← H.V 1[R.posV 1][0]
8: seed||distd ← decki(H.midway, sid||cv1)
9: V 2

s ← CPRNG(seed)
10: . Only distd elements in V 2 should have changed starting at H.pos
11: pointer = H.pos + distd + 1 mod l
12: while pointer 6= H.pos do
13: if H.V 2[pointer] 6= V 2

s [pointer] then
14: Abort()
15: end if
16: pointer = pointer + 1 mod l
17: end while
18: cv2 ← H.V 2[R.posV 2][0]
19: H.midway ← MACki(cv1||cv2||sid)
20: H.pos← R.posV 1− 1 mod l
21: H.status← “replyToS”
22: else . Not the midway node
23: H.pos← H.pos− 1 mod l
24: end if
25: sendMessage(R.port1, H, P )
26: end procedure
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Algorithm 11 Phase 4: handshake Reply to s

Require: H.status == “replyToS”
1: procedure handReplyToS(ingress,H,P )
2: cprev ← H.V 1[H.pos− 1 mod l][0]
3: R← decki(H.V 1[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 1)
5: sendMessage(R.port1, H, P )
6: end procedure

Algorithm 12 Phase 4: handshake finish

Require: Client c receives message with H.status == “replyToS”
1: procedure handshakeFinish(ingress,H, P )
2: Hs, privs, pubs, ks−d, nmid ← restore()
3: V 1

d ||V 2
d ← decks−d

(P,H.sid)
4: Assert(Hs.V

1 == H.V 1&&H.V 1 == V 1
d )

5: Assert(H.V 2 == V 2
d )

6: H.status← “transmissionPhaseToD1”
7: store(H)
8: end procedure

Algorithm 13 Phase 5: Transmission phase

Require: H.status == “transToD1”
1: procedure transmissionPhaseD1(ingres,H,P )
2: cprev ← H.V 1[(H.pos− 1 mod l][0]
3: R← decki(H.V 1[H.pos], H.sid||cprev)
4: Assert(H.pos == R.posV 1)
5: Assert(R.type == (“midway” OR “V 1”))
6: if type == “midway” then
7: cv1 ← H.V 1[R.posV 1][0]
8: cv2 ← H.V 2[R.posV 2][0]
9: m← MACki(cv1||cv2||H.sid)

10: Assert(m == H.midway)
11: H.status← “transToD2”
12: H.pos← R.posV 2 + 1 mod l
13: else
14: H.pos← H.pos + 1 mod l
15: end if
16: sendMessage(R.port2, H, P )
17: end procedure
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C.7. Phase 5: Transmission Phase

Messages between s and d can now be exchanged without requiring a destination field
dest. Each node on the path Ps,d simply forwards messages according to the stored
routing information in its respective routing element in V 1 or V 2 and direction. The
midway node W is responsible to switch between V 1 and V 2. Before this is done, the
midway node verifies that the midway field contains the valid MAC of W ’s two routing
elements (one in V 1, one in V 2) to securely link the two segments together. Source s and
destination d have both stored routing segments V 1 and V 2. For every message they
receive they first verify that the received routing segments match the stored routing
segments before accepting it. The Algorithms describing the transmission phase for
messages from s to d can be found in Algorithm 13 and 14. The reverse direction from
d to s is analogous.

Algorithm 14 Phase 5: Transmission phase

Require: H.status == “transToD2”
1: procedure transmissionPhaseD2(ingres,H,P )
2: cprev ← H.V 2[(h.pos− 1 mod l][0]
3: R← decki(H.V 2[H.pos], H.sid||cprev)
4: Assert(R.posV 2 == H.pos&&R.type == “V 2”)
5: H.pos← H.pos + 1 mod l
6: sendMessage(R.port2, H, P )
7: end procedure
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Zusammenfassung

Die Forschung auf dem Gebiet der IT-Sicherheit bringt viele Techniken und Konzepte zur
Abwehr von Angriffen auf Computernetzwerke hervor. Die Auswahl geeigneter Verteidi-
gungstechniken zur Erfüllung individueller Anforderungen stellt in der Praxis aber eine
schwierige Aufgabe dar. Dies gilt insbesondere für neue Sicherheitsparadigmen, für die
noch keine empirischen Daten vorliegen. Eines dieser Paradigmen ist Moving Target
Defense (MTD), das durch wiederholte Änderung der Konfiguration eines Systems An-
greifer ablenken, die Aufklärung verhindern, und den Aufwand für Angriffe erhöhen soll.
Bei vielen Techniken, die im Rahmen wissenschaftlicher Veröffentlichungen zu diesem
Thema vorgeschlagen werden, bleibt jedoch unklar, wie wirksam diese, auch im Vergleich
zu anderen, tatsächlich sind. Die bisherige Forschung konzentriert sich vor allem auf die
Bewertung einzelner, oder den Vergleich weniger Techniken in begrenzten theoretischen
Szenarien. Was bisher fehlt, ist ein Ansatz für die Bewertung und den fairen Vergleich
der Wirksamkeit verschiedener Abwehrtechniken unter realistischen Bedingungen.

Um dieses Problem zu lösen, wird ein simulations-basiertes Framework vorgeschla-
gen, das mithilfe detaillierter Modellierung in der Lage ist, verschiedene Arten von
Abwehrtechniken unter realistischen Bedingungen zu vergleichen, und aussagekräftige
Ergebnisse über deren Wirksamkeit zu liefern. Mit diesem Framework durchgeführte
Fallstudien zur Bewertung verschiedener Moving Target Defenses in einem realistisch
modellierten Unternehmensnetzwerk bringen interessante neuartige Erkenntnisse zutage.
Eine häufig vorgeschlagene MTD-Technik, die Migration virtueller Maschinen, kann neg-
ative Effekte auf die Sicherheit haben. Beobachtete Auswirkungen variieren jedoch in
Abhängigkeit von den Details der Umgebung, in der sie bewertet werden, was bedeutet,
dass eine Verallgemeinerung auf Basis von Einzelfällen, trotz detaillierter Modellierung,
nicht ratsam, und die Bewertung in verschiedenen Umgebungen deshalb wichtig ist.
Um das zu ermöglichen, wird das Framework um Fähigkeiten zur automatische Erzeu-
gung diverser Benchmark-Netzwerke ergänzt, um so die Simulation zu skalieren und
ein genaueres Bild der Effekte von Verteidigungstechniken zu zeichnen. Die Analyse
der Simulationsergebnisse aus 500 solcher Benchmark-Netzwerke bestätigt die Erkennt-
nisse der ersten Fallstudie und zeigt zusätzliche Effekte auf, was die Notwendigkeit der
Bewertung in verschiedenen Umgebungen unterstreicht.

Neben der Verteidigungsbewertung wird anonymes dynamisches Routing als eine Form
der Moving Target Defense näher untersucht, das als vielversprechender Ansatz gilt, in
der MTD-Forschung jedoch unterrepräsentiert ist. Zu diesem Zweck werden vorgeschla-
gene Anonymitätsprotokolle auf der Vermittlungsschicht für die Anwendung im Inter-
net untersucht und Mängel identifiziert, um anschließend ein verbessertes Protokoll
vorzuschlagen, das sowohl im Kontext geschlossener Unternehmensnetzwerke als auch
im Internet angewendet werden kann.
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