3. Ergebnisse

3.1 Basale $[Ca^{2+}]_i$ -Konzentration der β -Zellen

Die β -Zellen in Ruhe zeigen in Gegenwart von 5 mM Glukose $[Ca^{2+}]_{i-}$ Konzentration von ca. 100 nM in unterschiedlichen Spezies (Berridge et al., 2000; Prentki and Wollheim, 1984; Schöfl et al., 1995).

Bei den β -Zellen vom Mausstamm 129S/Sv mit normal erhaltener PKC α -Expression lag die [Ca²⁺]_i-Konzentration bei 98.9 ± 2.9 nM (n=66). Bei den PKC α -/- Zellen lag die basale [Ca²⁺]_i-Konzentration der einzelnen β -Zellen im Gegenwart von 5 mM Glukose bei 101.2 ± 3.0 nM (n=75). Hierbei bestanden keine signifikanten Unterschiede zwischen den beiden Gruppen (**Abb 3.1A**).

Abb. 3.1. Wirkung von PKC-Defizienz auf die basale $[Ca^{2^+}]_i$ -Konzentration in β -Zellen, Mittelwerte ± SEM; **A**: Basale $[Ca^{2^+}]_i$ -Konzentration in PKC α -/- β -Zellen vs. Kontrollgruppe; p=n.s. **B**: Basale $[Ca^{2^+}]_i$ -Konzentration signifikant erhöht in PKC β -/- β -Zellen gegenüber der Kontrolgruppe; p=n.s. **C**: Basale $[Ca^{2^+}]_i$ -Konzentration in PKC $\alpha\beta$ -/- β -Zellen vs. Kontrollgruppe; p=n.s.

Die β -Zellen vom Mausstamm C57/BI-6, welche als Kontrolle für die PKC β -/- β -Zellen verwendet wurden, zeigen eine $[Ca^{2+}]_i$ -Konzentration von 92 ± 1.6 nM (n=79). Bei den PKC β -/- β -Zellen war das basale Ca²⁺-Signal höher (105.9 ± 2.9 nM, n=79; p<0.05) (**Abb. 3.1B**).

Die β -Zellen des 129Sv/BI-6 Hybridstammes mit vorhandener PKC α -/PKC β -Expression zeigten eine basale [Ca²⁺]_i-Konzentration von 85.7 ± 1.3 nM (n=61). Die basale [Ca²⁺]_i-Konzentration bei den PKC $\alpha\beta$ -/- β -Zellen betrug

im Gegenwart von 5 mM Glukose 85.5 ± 2.5 nM (n=57) und war damit nicht signifikant unterschiedlich gegenüber den Kontrollen (**Abb. 3.1C**).

3.2 Einfluss der PKCα-Defizienz auf das ACh-induzierte Ca²⁺-Signal

3.2.1 ACh-Stimulation der PKCα-/- β-Zellen

Zur Aktivierung der muskarinischen Rezeptoren an der Membran der β -Zelle wurde in dieser Arbeit Carbachol (CCh) als Analogon des parasympatischen Transmitters ACh verwendet. Wie in **Kapitel 1.3.3** dargestellt, verursacht die Stimulation mit Carbachol die G-Protein-vermittelte PLC–Aktivierung und damit den Abbau von PIP₂ zu IP₃ und DAG. Es kommt zu einer DAG-vermittelten PKC-Aktivierung und einer Erhöhung der [Ca²⁺]_i-Konzentration. Es handelt sich dabei um eine biphasische Veränderung der [Ca²⁺]_i-Konzentration, bestehend aus einem transienten Peak, gefolgt von einer lang anhaltenden Plateau-Phase (**Abb. 3.2**).

Der initiale Anstieg der [Ca²⁺]_i-Konzentration kommt durch die Freisetzung der intrazellulär gespeicherten Ca²⁺-Ionen. Die nachfolgende Plateau-Phase benötigt einen Einstrom der extrazellulären Ca²⁺-Ionen über VDCC und VICC (Gilon and Henquin, 2001; Schöfl et al., 2000a).

Nach der Stimulation der β -Zellen mit 10 μ M CCh stieg die [Ca²⁺]_i-Konzentration gleichermaßen bei den β -Zellen des wildtyp- (n=14) wie auch des PKC α -/- Stammes (n=19) an (627.3 ± 80.9 nM vs. 736.9 ± 107.8 nM; p=n.s.).

5 Minuten nach Beginn der Stimulation mit 10µM CCh wurde die $[Ca^{2+}]_i$ -Konzentration erneut gemessen und als Plateau-Phase ausgewertet. Das Plateau war bei den PKCα-/- β-Zellen signifikant niedriger (65.3 ± 8.1 nM vs. 32.4 ± 14.3 nM; p<0.01). Auch der AUC-Wert war bei den PKCα-/- β-Zellen signifikant erniedrigt (173.6 ± 86.3 nMs vs. 115.4 ± 9.5 nMs; p<0.05). In weiteren Experimenten sollte die Beteiligung der intra- und extrazellulären Komponenten zur Steuerung des Ca²⁺-Signals bei den PKCα-/- β-Zellen untersucht werden (**Abb. 1.3**).

Abb. 3.2 Wirkung von PKC α -Defizienz auf das CCh-induzierte Ca²⁺-Signal in β -Zellen; **A**: Repräsentative Spuren von 14-19 Experimenten; **B**: Mittelwerte ± SEM des Ca²⁺-Umsatzes in der Zelle, als AUC-Wert für die unter A gezeigten Versuche; **C**: Mittelwerte ± SEM des maximalen Anstiegs und der Plateau-Phase; *- p<0.05, *** - p<0.01

3.2.2 ACh-Stimulation der β-Zellen im Ca²⁺-freien Medium

Die Stimulation der muskarinischen Rezeptoren führt sowohl zum Ca²⁺-Einstrom über die Zellmembran als auch zur Entleerung der intrazellulären Ca²⁺-Speicher. Die β -Zellen wurden im Ca²⁺-freien Medium (incl. EGTA 2,5 mM) mit CCh stimuliert, um die intrazelluläre Freisetzung der Ca²⁺-Ionen zu untersuchen. Die Stimulation mit CCh führte sowohl bei den Kontrollzellen (n=8) wie auch bei den PKC α -/- β -Zellen (n=9) zum transienten [Ca²⁺]_i-Aufstrich ohne Plateau (115.1 ± 47.1 nM vs. 99.1 ± 14 nM; p=n.s.) (**Abb. 3.3**). Auch die AUC war in beiden Gruppen gleich (12.1 ± 3.0 nMs vs. 15.7 ± 3.3 nMs; p=n.s.). Die CCh-vermittelte Freisetzung der intrazellulär gespeicherten Ca²⁺-Ionen scheint in den PKC α -/- β -Zellen unbeeinträchtigt zu sein.

Abb. 3.3 Wirkung von CCh auf die Entleerung intrazellulärer Speicher. Die Stimulation von β -Zellen mit CCh im Ca²⁺-freien Medium führt zur vergleichbaren Reaktion bei PKC α -/- β -Zellen und Kontrollzellen. Repräsentative Spuren von 8-9 Zellen.

3.2.3 Ca²⁺-Einstrom über VDCC in PKCα-/- β-Zellen

Die ACh-bedingte Entleerung der intrazellulären Ca²⁺-Speicher führt zum Ca²⁺-Einstrom über VDCC und VICC.

Die VDCC können über die Stimulation der β -Zellen mit K⁺-Ionen aktiviert werden. Die Erhöhung der K⁺-Konzentration im extrazellulären Medium auf 45 mM führt zur Depolarisation der Zellmembran und zur direkten rezeptorunabhängigen Aktivierung der VDCC. Es kommt zum Einstrom der Ca²⁺-Ionen in die insulinfreisetzenden β -Zellen.

Die Erhöhung der Ca²⁺-Konzentration in den β -Zellen erfolgt unmittelbar nach Zugabe des KCI mit einer transienten Erhöhung, welche schnell in eine Plateau-Phase übergeht, die über die gesamte Stimulationszeit anhält. Die Stimulation der β -Zellen mit KCI 45mM führte sowohl bei den Kontrollzellen (n=7) wie auch bei den PKC α -/- β -Zellen (n=10) zu einer biphasischen Veränderung mit einem Aufstrich (719.8 ± 96.6 nM vs. 761.5 ± 111.5 nM; p=n.s.) und einer Plateau–Phase (123.4 \pm 19.6 nM vs. 126.8 \pm 19.9 nM; p=n.s.), ohne dass signifikante Unterschiede bestanden (**Abb. 3.4**). Auch der AUC-Wert blieb in beiden Gruppen gleich (278 \pm 41 nMs vs. 238.2 \pm 18.6 nMs; p=n.s.).

Abb. 3.4 Wirkung der Membrandepolarisation auf $[Ca^{2+}]_i$. PKC α -/- β -Zellen zeigen keine signifikanten Veränderungen im Ca²⁺-Signal. Repräsentative Spuren von 7-10 Experimenten.

3.2.4 Ca²⁺-Einstrom über VICC in PKCα-/- β-Zellen

Zur Beurteilung des Einstroms der extrazellulären Ca²⁺-Ionen durch die VICC werden die β -Zellen mit Thapsigargin behandelt. Thapsigargin führt zur irreversiblen Blockade der intrazellulären Ca²⁺-ATPasen, die vor allem auf dem endoplasmatischen Retikulum exprimiert werden und der Wiederauffüllung der Calcium-Speicher dienen (Chen et al., 2003; Treiman et al., 1998). Aufgrund der andauernden Calcium-Verluste aus den Speichern führt die Behandlung mit zellpermeablem Thapsigargin zum Anstieg der [Ca²⁺]_i-Konzentration und dem darauf folgenden Ca²⁺-Einstrom vor allem über die VICC. Es handelt sich hierbei um den so genannten kapazitativen Ca²⁺-Einstrom (Putney and Bird, 1993; Takemura et al., 1989). In den β -Zellen führt die Entleerung der intrazellulären Ca²⁺-Speicher zu einem zusätzlichen Ca²⁺-Einstrom über VDCC. Um die Beteiligung der VDCC am intrazellulären Ca²⁺-Signal auszuschließen, wurden die β -Zellen mit Nifedipin vorbehandelt (**Abb. 3.5**). Bei Nifedipin handelt es sich um einen spezifischen und reversiblen Inhibitor der VDCC (L-Typ).

Die Stimulation der β -Zellen mit Thapsigargin 2µM (VDCC blockiert) führte sowohl bei den Kontrollzellen (n=11) als auch bei den PKC α -/- β -Zellen

(n=13) zu einem biphasischen Anstieg der $[Ca^{2+}]_i$ -Konzentration mit einem Aufstrich (88.7± 7.9 nM vs. 111.5 ± 8.2 nM; p=n.s.) und einer Plateau-Phase (45.2 ± 3.7 nM vs. 49 ± 3.6 nM; p=n.s.). Bei der Auswertung der AUC zeigten sich keine Unterschiede (60.5 ± 6.9 nMs vs. 58.5 ±5.9 nMs; p= n.s.). Der Ca²⁺-Einstrom über VICC scheint von der PKCα-Defizienz nicht betroffen zu sein.

Abb. 3.5 Wirkung von Thapsigargin auf $[Ca^{2+}]i$ nach Zugabe vom VDCC-Blocker Nifedipin. Die β -Zellen wurden für 5 Minuten mit Nifedipin vorbehandelt und daraufhin mit Thapsigargin stimuliert. Die PKC α -/- Zellen zeigten keine Unterschiede im kapazitativen Einstrom. Repräsentative Spuren von 11-13 Experimenten.

Eine weitere Möglichkeit, den kapazitativen Ca²⁺-Einstrom nachzuweisen, besteht in der Entleerung intrazellulärer Ca²⁺-Speicher im Ca²⁺-freien Medium mit nachfolgender Zufuhr extrazellulärer Ca²⁺-Ionen. Beim Wiedereinstrom des Ca²⁺ in die β -Zelle handelt es sich um den kapazitativen Einstrom sowohl über die VDCC wie auch über die VICC (Schöfl et al., 1996).

In unseren Experimenten wurden die β -Zellen zunächst mit Ca²⁺-freien Medium für 5 Minuten vorbehandelt und dann mit Thapsigargin 2µM behandelt (**Abb. 3.6**). Daraufhin kam es zum Anstieg der [Ca²⁺]_i ohne einer erkennbaren Plateau-Phase sowohl bei den Kontrollzellen (n=8) als auch bei den PKCα-/- β -Zellen (n=7). Es zeigten sich keine signifikanten Unterschiede zwischen den beiden Gruppen (30.3 ± 5 nM vs. 25.2 ± 4.7 nM). Das Aussetzen der β -Zellen einem Ca²⁺-haltigen Medium führte zu einem erneuten [Ca²⁺]_i-Anstieg mit deutlicher Aufstrich- und anhaltender Plateau-Phase sowohl bei den Kontrollzellen als auch bei den PKC α -/- β -Zellen (75.5 ± 17.2 nM vs. 78 ± 19 nM; p=n.s.).

Die AUC war während beider Stimulationsphasen im calciumfreien und calciumhaltigen Medium in beiden Gruppen (Wildtyp vs. PKC α -/-) nicht signifikant unterschiedlich (Ca²⁺-frei: 22.7 ± 4.2 nMs vs. 29.9 ± 11.2 nMs; Ca²⁺-haltig: 67.6 ± 8 nMs vs. 65.5 ± 9.6 nMs; p=n.s.) Sowohl die Funktion der intrazellulären Ca²⁺-Speicher wie auch der Ca²⁺-Einstrom über VDCC und VICC scheinen unter diesen Bedingungen in den PKC α -/- Zellen nicht beeinträchtigt zu sein.

Zusammenfassend zeigten sich weder in den VDCC noch in den VICC Beeinträchtigungen im Ca²⁺-Einstrom in den PKC α -/- β -Zellen.

Abb. 3.6 Charakterisierung intrazellulärer Ca²⁺-Speicher und des kapazitativen Ca²⁺-Einstroms. **A**: Die Stimulation mit Thapsigargin (2 μ M) führt im Ca²⁺-freien Medium zur Entleerung intrazellulärer Speicher, repräsentative Spuren von 7-8 Experimenten; **B**: Mittelwerte ± SEM des maximalen Anstieges im Ca²⁺-freien Medium; **C**: Die Mittelwerte ± SEM des maximalen Anstieges und der Plateau-Phase nach Gabe von extrazellulären Ca²⁺ und daraus entstandenem kapazitativen Ca²⁺-Einstrom.

3.2.5 Tabellarische Zusammenfassung der Veränderungen vom Ca²⁺- Signal in PKC α -/- β -Zellen

Secretagoga	β-Zellen (nM) / Kontrolle		PKCα-/- β-Zellen (nM)	
	Peak	Plateau	Peak	Plateau
CCh 10µM	627.3 ± 80.9	65.3 ± 8.1	736.9 ± 107.8	32.4 ± 14.3 ***
KCI 45mM	719.8 ± 96.6	123.4 ± 19.6	761.5 ± 111.5	126.8 ± 19.9
Tpg 2µM (pre- treatment: Nfd 10µM)	88.7± 7.9	45.2 ± 3.7	111.5 ± 8.2	49 ± 3.6
CCh 10µM (Ca-frei)	115.1 ± 47.1		88.7 ± 7.9	
Tpg 2µM (Ca-frei)	30.3 ± 5		25.2 ± 4.7	
Tpg 2µM (Ca-halt.; Ca-Wiedereinstrom)	75.5 ± 17.2	20.2 ± 3.5	78 ± 19	26.4 ± 3.6

Tabelle 3.1 Zusammenfassung der Mittelwerte vom Aufstrich und Plateau ±SEM für die Ca²⁺-Signale nach Stimulation der PKCα-/- β-Zellen; *-p<0.01 vs.</td>Kontrollgruppe

Secretagoga	<mark>β-Zellen / Kontrolle</mark> AUC	ΡΚCα-/- β-Zellen AUC	
CCh 10µM	173.6 ± 23.9	115.4 ± 9.5 *	
KCI 45mM	238.2 ± 18.6	278 ± 41	
Tpg 2µM (pre-treatment:	60.5 ± 6.9	58.5 ± 5.9	
Nfd 10µM)			
CCh 10µM (Ca-frei)	12.1 ± 3	15.7 ± 3.3	
Tpg 2µM (Ca-frei)	22.7 ± 4.2	29.9 ± 11.2	
Tpg 2µM (Ca-halt.;	67.6 ± 8	65.5 ± 9.6	
Ca-Wiedereinstrom)			

Tabelle 3.2 Zusammenfassung der AUC-Werte des Ca²⁺-Signals nach Stimulation der PKC α -/- β -Zellen; *-p<0.05 vs. Kontrollgruppe

3.3 Einfluss der PKCβ-Defizienz auf das ACh-bedingte Ca²⁺-Signal

3.3.1 ACh-Stimulation der PKCβ-/- β-Zellen

Die Stimulation der β -Zellen mit CCh führte sowohl bei den Kontrollzellen als auch bei den PKC β -/- β -Zellen zum deutlichen [Ca²⁺]_i-Aufstrich mit anhaltendem Plateau, wobei beide Phasen des [Ca²⁺]_i-Signals bei den PKC β -/- β -Zellen signifikant vergrößert waren. Der Initialanstieg des [Ca²⁺]_i – Signals war bei den PKC β -/- β -Zellen (297.9 ± 47.7 nM, n=18) nahezu um das 3-fache gegenüber den Kontrollzellen (122.2 ± 37.1 nM, n=11; p<0.05) gesteigert. Auch das [Ca²⁺]_i-Plateau war bei den PKC β -/- β -Zellen signifikant erhöht (16. 7 ± 5.9 nM vs. 39.8 ± 6.9 nM; p<0.05) (**Abb. 3.7**). Entsprechend war auch der AUC-Wert in der Gruppe der PKC β -/- β -Zellen gesteigert (46.3 ± 13.4 nMs vs. 86.1 ± 9.3 nMs; p<0.05).

Die nachgewiesene Veränderung des Ca²⁺-Signals in den PKCβ-/- β-Zellen kann sowohl durch die gesteigerte Entleerung der intrazellulären Ca²⁺-Speicher als auch durch den Einstrom der extrazellulären Ca²⁺-Ionen über VDCC und VICC bedingt sein. In weiteren Experimenten sollen die entsprechenden Mechanismen der Ca²⁺-Regulation separat untersucht werden.

Abb. 3.7 Einfluss der fehlenden PKC β -Expression auf das Ca²⁺-Signal der β -Zellen nach Stimulation mit CCh. **A**: Repräsentative Spuren von 11-18 Messungen; **B**: Ca²⁺-Umsatz in den PKC β -/- β -Zellen signifikant vergrößert; **C**: Deutlich vergrößerter [Ca²⁺]_i-Wert sowohl im Aufstrich als auch im Plateau; Mittelwerte ± SEM; *-p<0.05

3.3.2 ACh-bedingte Entleerung der intrazellulären Ca²⁺-Speicher

Wie bereits dargestellt, führt die Stimulation der muskarinischen Rezeptoren der β -Zellen sowohl zur Freisetzung der intrazellulär gespeicherten Ca²⁺-Ionen als auch zum Ca²⁺-Einstrom über die Zellmembran. Um die Beteiligung der intrazellulären Ca²⁺-Speicher zu untersuchen, wurden die PKCβ-/- β-Zellen im Ca²⁺-freien Medium (incl. EDTA 2.5 mM) mit CCh stimuliert. Es kam zum transienten Anstieg des Ca²⁺ -Signals ohne messbares Plateau. Die PKCβ-/- β-Zellen (n=10) zeigten zwar tendenziell erhöhtes [Ca²⁺]_i-Signal gegenüber den Kontrollzellen (n=8), dennoch war der Unterschied zwischen den beiden Gruppen nicht signifikant (181.3 ± 52.4 nM vs. 257.2 ± 87.2; p=n.s.). Auch die AUC war zwischen den beiden Gruppen gleich (13.4 ± 2.5 nMs vs. 15.1 ± 4.1 nMs) (**Abb. 3.8**).

Abb. 3.8 Stimulation der β -Zellen mit Carbachol im Ca²⁺-freien Medium (EGTA 2,5 mM). Die Entleerung der intrazellulär gespeicherten Ca²⁺-Ionen ist in den PKC β -/- β -Zellen unbeeinträchtigt. Repräsentative Spuren von 8-10 Zellen.

3.3.3 Ca²⁺-Einstrom über VDCC in PKCβ-/- β-Zellen

Der ACh-bedingte Einstrom der extrazellulären Ca²⁺-Ionen findet sowohl über die VDCC als auch die VICC statt. Die Erhöhung der extrazellulären K⁺-Konzentration führt zur Depolarisation der Zellmembran und zum Ca²⁺-Einstrom über VDCC. Zur Überprüfung des VDCC-abhängigen Ca²⁺-Einstroms über die Zellmembran wurden, wie bereits im Kapitel **3.2.3** beschrieben, die β-Zellen mit 45 mM K⁺ stimuliert.

Nach Stimulation mit K⁺-Ionen kam es sowohl bei den Kontrollzellen (n=11) als auch bei den PKC β -/- β -Zellen (n=14) zu einem transienten Anstieg des Ca²⁺-Signals (431 ± 63.7 nM vs. 560 ± 66.6 nM; p=n.s.) mit einem anhaltendem Plateau (88.1 ± 32.3 nM vs. 155 ± 31.1 nM; p=n.s.) (**Abb. 3.9**).

Die AUC war zwischen den beiden Gruppen gleich (188.9 \pm 24.3 nMs vs. 217.8 \pm 18.6 nMs; p=n.s.).

Abb. 3.9 Das Ca²⁺-Signal nach Depolarisation der Zellmembran mit K⁺ 45 mM in den PKC β -/- β -Zellen vs. Kontrollzellen. Repräsentative Spuren von 11-14 Experimenten.

3.3.4 Ca²⁺-Einstrom über VICC in PKCβ-/- β-Zellen

Die Stimulation der β -Zellen mit Thapsigargin führt zur Entleerung der intrazellulären Ca²⁺-Speicher und zum kapazitativen Einstrom der Ca²⁺-Ionen über die VICC, wie bereits ausführlich im Kapitel **3.2.4** dargestellt. Um den möglicherweise vorhandenen Ca²⁺-Einstrom über die VDCC auszuschließen, wurden die β -Zellen erneut mit dem spezifischen VDCC (L-Typ) Inhibitor Nifedipin vorbehandelt.

Während der initiale Anstieg des Ca²⁺-Signals in den β -Zellen beider Gruppen vergleichbar war (77.8 ± 12.8 nM vs. 88 ± 17.6 nM; p=n.s.), zeigten die PKC β -/- β -Zellen (n=9) signifikant erhöhte [Ca²⁺]_i-Konzentration im Plateau gegenüber den Kontrollgruppe (n=16) (12.9 ± 8.8 nM vs. 28.2 ± 4.5 nM; p<0.05).

Die AUC war bei den PKC β -/- β -Zellen gegenüber den Kontrollzellen tendenziell vergrößert (**Abb. 3.10**), ohne dass signifikanter Unterschied bestand (59 ± 7.1 nMs vs. 82 ± 12.0 nMs; p=n.s.).

Zusammenfassend war das initiale Ca^{2+} -Signal nach Stimulation mit Thapsigargin gleich in beiden Versuchsgruppen, das Ca^{2+} -Signal in der Plateau-Phase war bei den PKC β -/- β -Zellen deutlich erhöht.

Abb. 3.10 Kapazitativer Einstrom über VICC nach Stimulation mit Thapsigargin 2µM **A**: Repräsentative Spuren von 9-16 Experimenten; **B**: Die tendenzielle Erhöhung von AUC in den PKCβ-defizienten Zellen; **C**: Das $[Ca^{2^+}]_i$ -Plateau signifikant erhöht bei PKCβ-defizienten β-Zellen; *-p<0.05

Eine weitere Möglichkeit zur Darstellung des kapazitativen Ca²⁺-Einstroms über VICC besteht in der Entleerung intrazellulärer Ca²⁺-Speicher im Ca²⁺- freien Medium mit nachfolgender Zufuhr extrazellulärer Ca²⁺-Ionen. Es kommt zur Auffüllung der zellulären Ca²⁺-Speicher über den Wiedereinstrom der extrazellulären Ca²⁺-Ionen (Schöfl et al., 1996).

Die Stimulation der β -Zellen mit Thapsigargin 2µM im Ca²⁺-freien Medium (incl. EDTA) führte zur Entleerung der zellulär gespeicherten Ca²⁺-Ionen und zum Anstieg der cytosolischen Ca²⁺-Konzentration. Bei fehlendem Ca²⁺-Einstrom ließ sich keine Plateau-Phase nachweisen. Das Ca²⁺-Signal war in den Kontrollzellen (n=13) und den PKC β -/- (n=11) β -Zellen gleich (44.8 ± 13.5 nM vs. 40.5 ± 5.4 nM; p=n.s.) (**Abb. 3.11**).

Abb. 3.11 Ca²⁺-Freisetzung aus den intrazellulären Ca²⁺-Speichern nach Stimulation mit Thapsigargin 2µM im Ca²⁺-freien Medium **A**: Repräsentative Spuren von 11-13 Experimenten; **B**: Transienter Ca²⁺-Anstieg nach Stimulation mit Thapsigargin 2µM im Ca²⁺-freien Medium; **C**: Transienter Ca²⁺-Anstieg und die Plateau-Phase nach einer Erhöhung der extrazellulären Ca²⁺-Konzentration auf 1.5 mM, Mittelwerte ± SEM

Nach der Erhöhung der extrazellulären Ca²⁺-Konzentration auf 1.5 mM kam es zum Einstrom der extrazellulären Ca²⁺-Ionen, die β -Zellen zeigten einen deutlichen Anstieg der [Ca²⁺]_i-Konzentration mit einer anhaltenden Plateau-Phase. Die Veränderungen des [Ca²⁺]_i waren nicht signifikant unterschiedlich im Vergleich zwischen den Kontrollzellen und PKC β -/- β -Zellen, weder im Aufstrich (75.9 ± 17.4 nM vs. 64.9 ± 19.6 nM; p=n.s.), noch im Plateau (29.4 ± 5.2 nM vs. 26.8 ± 8.1 nM; p=n.s.). Auch die AUC war in beiden Gruppen gleich (89.5 ± 15.9 nMs vs. 75.7 ± 22.8 nMs; p=n.s.).

3.3.5. Tabellarische Zusammenfassung der Veränderungen vom Ca²⁺- Signal in PKC β -/- β -Zellen

Secretagoga	Wildtyp β-Zellen (nM)		PKCβ-/- β-Zellen (nM)	
	Peak	Plateau	Peak	Plateau
CCh 10µM	122.2 ± 37.1	16.7 ± 5.9	297.9 ± 47.7 *	39.8 ± 6.9 *
KCI 45mM	431 ± 63.7	88.1 ± 32.3	560 ± 66.6	155 ± 31.1
Tpg 2µM (pre- treatment: Nfd 10µM)	77.8 ± 12.8	12.9 ± 8.8	88 ± 17.6	28.2 ± 4.5 *
CCh 10µM (Ca- frei)	181.3 ± 52.4		257.2 ± 87.2	
Tpg 2µM (Ca-frei)	40.5 ± 5.4		44.8 ± 13.5	
Tpg 2µM (Ca-halt.; Ca-Wiedereinstrom)	75.9 ± 17.4	29.4 ± 5.2	64.9 ± 19.6	26.8 ± 8.1

Tabelle 3.3 Zusammenfassung der Mittelwerte \pm SEM des Ca²⁺-Signals für Aufstrich und Plateau nach Stimulation der PKC β -/- β -Zellen im Vergleich zur Kontrollgruppe; *- p<0.05

Socratagoga	Wildtyp β-Zellen	PKCβ-/- β-Zellen	
Secretagoga	AUC	AUC	
CCh 10µM	46.3 ± 13.4	86.1 ± 9.3 *	
KCI 45mM	188.9 ± 24.3	217.8 ± 18.6	
Tpg 2µM			
(Vorbehandlung: Nfd	59 ± 7.1	82 ± 12	
10µM)			
Cch 10µM (Ca-frei)	13.4 ± 2.5	15.1 ± 4.1	
Tpg 2µM (Ca-halt.; Ca-	895+159	75 7 + 22 8	
Wiedereinstrom)			

Tabelle 3.4 Zusammenfassung der Werte für Ca²⁺-Umsatz nach Ca²⁺-Initialsignal in den PKC β -/- β -Zellen im Vergleich zu den Kontrollzellen; *-p<0.05

3.4 Einfluss der kombinierten PKC $\alpha\beta$ -/- Defizienz auf das AChbedingte Ca²⁺-Signal

3.4.1 ACh-Stimulation der PKCαβ-/- β-Zellen

Bei den PKC $\alpha\beta$ -/- Hybridmäusen handelt es sich um die homozygoten, PKC $\alpha\beta$ -/- Kreuzungen der beiden bereits verwendeten Mäusestämmen Sv-129 und Bl6, die jeweils PKC α -/- bzw. PKC β -/- Defizienz zeigen. Als Kontrollgruppe wurden die Sv-129/Bl6-Mäuse verwendet, welche die beiden PKC-Isozyme exprimieren.

Die Stimulation mit CCh im calciumhaltigen Medium führte bei den PKC $\alpha\beta$ -/- β -Zellen zum typischen Ca²⁺-Signal bestehend aus einem deutlichen Aufstrich und einer anhaltenden Plateau-Phase. Der Aufstrich war bei den PKC $\alpha\beta$ -/- β -Zellen (377.2 ± 69.6nM; n=14) um die Hälfte größer als bei den Kontrollzellen (168.2 ± 24.5 nM; n=17; p< 0.05). Gleichzeitig waren weder das Plateau (41.6 ± 10.1 nM vs. 34.2 ± 7.8 nM; p=n.s.) noch der AUC-Wert (85.9 ± 16.6 nMs vs. 103.8 ± 12,9 nMs; p=n.s.) des Ca²⁺-Signals unterschiedlich (**Abb. 3.12**).

Abb. 3.12 Stimulation der PKC $\alpha\beta$ -/- β -Zellen mit CCh 10 μ M; **A**: Repräsentative Spuren von 14-17 Spuren; **B**: Der Ca²⁺-Umsatz in PKC $\alpha\beta$ -/- β -Zellen unverändert; **C**: Der Aufstrich der Ca²⁺-Konzentration in β -Zellen nach Stimulation mit CCh in den PKC $\alpha\beta$ -/- β -Zellen deutlich gesteigert; *-p< 0.05.

3.4.2 Ca²⁺-Einstrom über VDCC in PKC $\alpha\beta$ -/- β -Zellen

Die Kontrollzellen (n=17) zeigten nach der Stimulation der β -Zellen mit K⁺lonen ein regelrechtes Ca²⁺-Signal, charakterisiert durch einen transienten Peak und ein lang anhaltendes Plateau. Bei den PKC $\alpha\beta$ -/- β -Zellen (n=14) war nicht nur der Aufstrich des [Ca²⁺]_i-Signals um mehr als das 3fache vermindert (537.7 ± 59.5 nM vs. 165.6 ± 22.5 nM; p<0.001), sondern auch die Plateau-Phase signifikant verkleinert (105.1 ± 16.4 nM vs. 63.3 ± 7 nM; p< 0.05). Entsprechend war auch der AUC-Wert bei den PKC $\alpha\beta$ -/- β -Zellen signifikant vermindert (237.3 ± 26.3 nMs vs. 135.3 ± 13.9 nMs; p<0.01)

Abb. 3.14 Depolarisation der PKCαβ-/- β-Zellen mit KCl **A**: Repräsentative Spuren von 14-17 Experimenten; **B**: Der Ca²⁺-Umsatz in PKCαβ-/- Zellen nach Depolarisation der Zellmembran vermindert; **C**: Die Verminderung des $[Ca^{2+}]_{i-}$ Signals bei den PKCαβ-/- β-Zellen gegenüber den Kontrollzellen; *-p<0.05; ***-p<0.01 49

3.4.3 Ca²⁺-Einstrom über VICC in PKC $\alpha\beta$ -/- β -Zellen

Vergleichbar mit vorangegangenen Experimenten bei den PKC α -/- und PKC β -/- β -Zellen wurden die β -Zellen mit Thapsigargin (2µM) behandelt. Die Inhibierung der der Ca²⁺-ATPasen führt zunächst zur Ca²⁺-Freisetzung aus den intrazellulären Speicher und daraufhin zum kapazitativen Ca²⁺-Einstrom über VICC aus dem extrazellulären Raum.

Um den unspezifischen Einstrom der Ca²⁺-Ionen über VDCC auszuschließen, wurden die β-Zellen mit Nifedipin als spezifischem Blocker der VDCC vom L-Typ vorbehandelt.

Das Ca²⁺-Signal war in den PKC $\alpha\beta$ -/- β -Zellen (n=11) und den Kontrollzellen (n=9) gleich. Beide Gruppen reagierten mit einem transienten Peak des [Ca²⁺]_i –Signals und einem messbaren Plateau nach Applikation von Thapsigargin; weder der initiale Anstieg (22 ± 3.3 nM vs. 26.2 ± 4.9 nM; p=n.s), noch das Plateau (6.5 ± 1.4 nM vs. 7.8 ± 1.3 nM; p=n.s.) waren unterschiedlich (**Abb. 3.14**). Auch der Ca²⁺-Gesamtumsatz war zwischen beiden Gruppen gleich (15.1 ± 1.3 nMs vs. 17.5 ± 4.4 nMs; p=n.s.).

Abb. 3.14 Stimulation der β -Zellen mit Thapsigargin 2µM bei blockierten VDCC vom L-Typ. Die PKC $\alpha\beta$ -/- β -Zellen zeigten keine Unterschiede im Ca²⁺-Signal gegenüber den Kontrollzellen. Repräsentative Spuren von 9-11 Experimenten

3.4.4 Tabellarische Zusammenfassung der Veränderungen vom Ca²⁺- Signal in PKC $\alpha\beta$ -/- β -Zellen

Secretagogen	Wildtyp β-Zellen (nM)		PKCαβ-/- β-Zellen (nM)	
	Peak	Plateau	Peak	Plateau
CCh 10µM	168.2 ± 24.5	41.6 ± 10.1	377.2 ± 69.6*	34.2 ± 7.8
KCI 45mM	537.7 ± 59.5	105.1 ± 16.4	165.6 ± 22.5***	63.3 ± 7*
Tpg 2µM (pre- treatment: Nfd 10µM)	22 ± 3.3	6.5 ± 1.4	26.2 ± 4.9	7.8 ± 1.3

Tabelle 3.5 Zusammenfassung der Mittelwerte vom Aufstrich und Plateau \pm SEM für die Ca²⁺-Signale nach entsprechender Stimulation der PKCa β -/- β -Zellen; *-p<0.05; ***-p<0.01 vs. Kontrollgruppe

Secretagogen	Wildtyp β-Zellen	PKCαβ-/- β-Zellen	
	AUC	AUC	
CCh 10µM	85.9 ± 16.6	103.8 ± 12,9	
KCI 45mM	237.3 ± 26.3	135.3 ± 13.9***	
Tpg 2µM (pre-	15 1 + 1 3	17.5 ± 4.4	
treatment: Nfd 10µM)	10.1 ± 1.0		

Tabelle 3.6 Zusammenfassung der AUC-Werte des Ca²⁺-Signals \pm SEM in PKC $\alpha\beta$ -/- β -Zellen; ***-p<0.01 vs. Kontrollgruppe