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Introduction

Numerical simulation of complex systems is a rapidly developing field in mathemat-
ical research with a growing number of applications in engineering, environmental
sciences, medicine, and many other areas. This can be traced back to the increasing
computer power on the one hand and more and more refined numerical techniques
on the other hand. The main goal of these simulations is to make predictions which
could reduce the costs of experiments or could be the basis for scientific or political
decisions. In light of these consequences, the question of how reliable the obtained
results are is of great importance. Since all simulations are, in the best case, only
approximations to reality, the occurrence of errors is inevitably in some degree. As
a first step, let us classify different types of errors which appear necessarily in the
simulation of complex systems (according to [72]).

First, we detect model errors, which are rooted in the description of observed real-life
processes in mathematical terms. In this stage, some terms which only contribute
to a negligible extent to the system are omitted. Moreover, one is often forced to
impose certain assumptions to simplify the problem in order to be able to solve it,
e.g. if one reduces the dimension of a problem or assumes that certain terms are
constant.

Secondly, in order to compute the simulation, one has to discretize the system and
to solve it numerically, which leads to numerical errors. These errors are also in-
evitably due to the finite representation of numbers in computers. This concerns
the discretization itself and also the utilization of solvers, e.g. iterative solvers which
only provide a solution up to a certain tolerance. Time and computer system re-
strictions can limit the possibilities to pass to more and more refined discretizations
or to solve up to maximal accuracy, even if it were possible theoretically.

Thirdly, we encounter data errors, which can concern model parameters, boundary
conditions or even the geometry of the system. Often, these data are unknown or
only estimated roughly since exact measurements are impossible or too costly. In
many cases, a perfect knowledge of the data is not possible due to their natural vari-
ability. Eventually, the measurements themselves can be incorrect, e.g. by reason
of external effects.

The first source of errors is beyond the scope considered here. Regarding the second
point, there has been great advantages in the numerical mathematics to control
and reduce the error arising from discretization and numerical solution over the
last decades. The third error originating from uncertainties in the input data and
model parameters, however, has received less attention for a long time. This has
changed since the pioneering work of Ghanem and Spanos [47] about stochastic
finite elements and polynomial chaos, who presented a possibility to determine the
response surfaces of the solution from the stochastic modeling of the uncertain
input data. This method proved to be successful for many interesting applications
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in physics and engineering (see, e.g., [24] for meteorology, [40, 46, 92] for hydrology,
[86] for chemistry, and in particular the recent monograph of Le Mâıtre and Knio
[72] with applications in fluid dynamics).

The idea of polynomial chaos consists in extending the solution space by further
stochastic coordinates which come from the modeling of the uncertain input data
and in discretizing the new space by global polynomial basis functions, while the
time and space discretization for the other coordinates can be performed in the usual
manner. In this way, this approach can be seen as an extension of deterministic
finite element methods for partial differential equations. At the same time, it is in
most cases more efficient and more accurate than other methods like, e.g., Monte
Carlo or first-order methods (see the overview over alternative methods in [47] and
[101]).

There have been many improvements to the original idea from Ghanem and Spanos
during the last twenty years, in particular the extension to generalized polynomial
chaos [114], to multi-element polynomial chaos [107], to stochastic collocation [13],
and to sparse finite element schemes [20]. Apart from the variety of applications as
mentioned above, the analysis of this method in a theoretical way, however, mostly
concentrated on investigating the diffusion equation with a stochastic diffusion as
a prototype of an elliptic partial differential equation (e.g. [11, 29, 87, 103]). To
the knowledge of the author, there is in particular no application of this method to
variational inequalities.

The focus of this thesis is the application of polynomial chaos methods to the
Richards equation modeling groundwater flow in order to quantify the uncertainty
arising from certain stochastic model parameters. By means of the Richards equa-
tion, one can model water flows in saturated and in unsaturated porous media,
where it is parabolic in the unsaturated and elliptic in the saturated regime. The
main difficulty consists in the nonlinearities, since the saturation and the hydraulic
conductivity are both dependent on the pressure. Moreover, the saturation appears
in the time derivative, while the hydraulic conductivity is a factor in the spatial
derivative.

Berninger [18] recently presented a method to solve this problem without any
linearization techniques by applying a Kirchhoff transformation and an implicit–
explicit time discretization to obtain an elliptic variational inequality of second
kind (see [48, Chapter 1] for the terminology) with a convex, lower semicontinu-
ous functional. This variational inequality can be seen equivalently as a convex
minimization problem, which in turn allows the proof of existence results for the
solution and of convergence results for an appropriate finite element discretization.
Moreover, monotone multigrid methods [68] providing fast and reliable solutions
of the system are applicable and, since no linearization is involved, turn out to be
robust with respect to varying soil parameters.

Let us now consider the case that some parameters in the Richards equation are un-
certain and consequently modeled as random functions, e.g. the permeability of the
soil, the boundary conditions or source functions. These random functions should
have a positive correlation length, which means that stochastic partial differential
equations (SPDEs) with white noise like in [58] are not considered here. Our ulti-
mate goal is to quantify the uncertainty of the solution of the Richards equation,
viz. of the water pressure, in dependence of the uncertainty of the input parameters
such that we are able to answer the following questions:

(Q1) What is the average pressure in the domain, and how is it developing
in time?
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(Q2) In which areas of the soil do we encounter the largest uncertainty?

(Q3) What is the probability that the soil is saturated after one minute/
one hour/one day at special points in the domain?

(Q4) What is the probability that the pressure exceeds a fixed threshold
value within a predetermined time?

To achieve this goal, we first perform a spectral decomposition of the correlation
operator of the random input functions (the so-called Karhunen–Loève decompo-
sition) and set up the stochastic solution space. Then, proceeding with Kirchhoff
transformation and time discretization as above, we end up with the stochastic
Richards equation over a space of tensor products consisting of functions on the
computational domain, which will be discretized by finite elements, and functions
in the stochastic space, which will be discretized by polynomial chaos.

At this point, the difficulties caused by the nonlinearities become apparent. First,
the Kirchhoff transformation yields a lower obstacle condition for the transformed
pressure, which is against the nature of global polynomials tending to infinity as
the argument becomes larger. Secondly, the convex functional, which has the form
of a superposition operator, needs a special discretization and moreover couples
all coefficients of the polynomial chaos basis. This means that the solution of the
discretized problem in a Galerkin approach cannot be obtained by the reduction to
one-dimensional minimization problems by a splitting into subspaces as it is possi-
ble in the deterministic case. As will be shown in Chapter 4, this can be achieved
nevertheless by an appropriate basis transformation, which connects the stochastic
Galerkin approach to stochastic collocation methods. With this connection, we are
able to solve the large systems in a robust way with one-dimensional minimization
techniques. Moreover, this allows us to extend this method to a multigrid algorithm
to speed up the convergence. Note that the theoretical results and techniques devel-
oped for the stochastic Richards equation can be carried over to elliptic variational
inequalities of second kind with stochastic parameters.

The outline of this thesis is as follows. We start in Chapter 1 with the description of
the deterministic Richards equation and the parameters in the hydrological model.
We introduce the Kirchhoff transformation and study for deteriorating model pa-
rameters the form of the nonlinear parameter functions which specify the saturation
and the part of the hydraulic conductivity which depends on the pressure. This is
important in the following chapters, since the transformed saturation arises in the
derivative of the convex functional later on. Section 1.2 is devoted to the weak
formulation of the Richards equation, the reformulation as a variational inequality
of second kind, and an overview over known results for the existence and uniqueness
of a solution.

Chapter 2 comprises the specification of the input noise as random fields and the
derivation of the stochastic Richards equation, in the pointwise formulation as well
as in the weak formulation. This requires the definition of tensor spaces and of
operators thereon, which is provided in Section 2.2. The main result of this chapter
is the insight that the conditions on the existence of solutions for the deterministic
Richards equation are sufficient to show the measurability and the integrability of
the solution of the stochastic Richards equation if the permeability is modeled as
random field.

The main chapter 3 is devoted to the discretization of the stochastic Richards
equation. Note that in addition to the time discretization by backward Euler and
the spatial discretization by means of finite elements, which are known from the
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deterministic problem, we have to consider the approximation of the stochastic input
parameters by the Karhunen–Loève expansion and the discretization by polynomial
chaos. The Karhunen–Loève expansion is introduced in Section 3.1, and it turns out
that the independence of the random variables in this series is of major importance
for the following conclusions. Moreover, this expansion introduces a new stochastic
space, which is embedded in R

M and in which the polynomial chaos basis will be
established. Beforehand, we investigate the time-discretized stochastic Richards
equation after Karhunen–Loève approximation, reformulate it in terms of convex
minimization and variational inclusions and show the existence of a unique solution.

The aforementioned discretization in the new stochastic domain is carried out in
Section 3.3, where we describe different polynomial chaos schemes with correspond-
ing quadrature formulas. The convex functional needs special attention and we will
find a consistent approximation by means of Gaussian quadrature. At the end of
this chapter, we turn to the convergence of the polynomial chaos and finite element
discretization. We proof the convergence for limit cases, where the problem de-
generates to a stochastic obstacle problem, and perform numerical experiments to
determine the discretization error.

The numerical solution of this discretized minimization problem is presented in the
second main chapter 4. The underlying idea is a successive minimization of the
energy in direction of the nodal basis functions in the spatial domain. Due to the
dependence on the stochastic basis functions, this turns out to be a Block Gauß–
Seidel method, which necessitates an inner minimization within each stochastic
block, which is complicated by the fact that the nonlinearity in the convex func-
tional couples all polynomial chaos basis functions. We present a transformation
which yields a decoupling within each block and which connects the stochastic
Galerkin approach with tensor product polynomial chaos bases to a stochastic col-
location method. This reduces the whole problem to a successive minimization in
one-dimensional subspaces, and we can prove global convergence for this method.
The same idea allows us to establish a multigrid solver in order to accelerate the
convergence, where this Block Gauß–Seidel method acts as a fine grid smoother
and a Newton linearization is used for the coarse grid corrections. We conclude
this chapter by a comparison of our approach with a pure stochastic collocation
approach with regard to the convergence rates.

In the final chapter 5, we apply our results to a hydrological problem. We perform
our computations on a realistic geometry and explain which further extensions in the
spatial solver are advised to treat the anisotropy of the grid. Then, using realistic
parameter functions with a lognormally distributed permeability function featuring
an exponential covariance, we simulate the infiltration of water from a river into an
initially dry soil and demonstrate how the questions (Q1)–(Q4) can be answered on
the basis of the results.

Finally, we sum up some facts about the exponential covariance operator in the
Karhunen–Loève expansion, some important polynomial sets, and Gaussian quadra-
ture in the appendix.
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Chapter 1

Deterministic Richards
equation in homogeneous soil

In this introductory chapter 1, we state the Richards equation in its hydrological
setting. We explain the parameter functions used throughout this thesis. The first
important step in our considerations is done in Section 1.1, where we introduce
the Kirchhoff transformation. Its application will allow us to write the Richards
equation in a form which is more suitable for the analytical and numerical treatment
in the following chapters. Section 1.1 is also devoted to the study of the occurring
parameter functions and its limit cases. Afterwards in Section 1.2, we derive the
weak formulation of the equation and define boundary conditions. The presentation
mainly follows the work of Berninger [18], whereas the facts from hydrology can be
read in the book of Bear [15].

1.1 Basic tools in hydrology and Kirchhoff trans-
formation

We consider a computational domain D ⊂ R
3 and use a coordinate system with

points x = (x1, x2, z) ∈ D, where we assume that the z-axis points downwards in
the direction of gravity such that the relation between the piezometric head h and
the pressure of the water at x is given by the formula

h =
p

ρg
− z. (1.1.1)

Here, p = pw − pa denotes the difference between the pressure of water and the
constant atmospheric pressure, while ρ is the density of the water and g the gravi-
tational constant.

The law of Darcy (first published in [28, p. 576]) states

v = −Kc∇h (1.1.2)

for the water flux v through a porous medium at any time t. The coefficient Kc is
called hydraulic conductivity and is a scalar function if the flow takes place in an
isotropic medium and a symmetric positive definite 3 × 3 -matrix for any x ∈ D
in general. In unsaturated soils, it is moreover dependent on the saturation θ(·).
This is a function p 7→ θ(p) which is monotonically increasing between a minimal
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saturation θm and a maximal saturation θM , where we have θm > 0 due to residual
water and θM < 1 due to residual air in the soil and where the saturation is maximal
for hydrostatic pressures p ≥ 0. Using the symbol η for the viscosity of the water,
we now split up the hydraulic conductivity according to

Kc(x, θ) = K(x) η−1ρg kr(θ) (1.1.3)

in the permeability K(·) of the soil as a function on D, which is no longer dependent
on the fluid, and the function kr(·) which is called relative permeability. This is a
monotonically increasing function of the saturation θ which assumes values in the
range [0, 1].

The work of Richards [91] combined the law of Darcy (1.1.2) with the principle of
mass conservation; he stated the continuity equation

nθt + div v = f, (1.1.4)

where the function n = n(x) denotes the porosity of the soil and f is a source
function (often set equal to zero). Inserting Darcy’s law (1.1.2) into (1.1.4) and
applying (1.1.1) and (1.1.3), we arrive at the Richards equation

nθ(p)t − div
(

K η−1kr(θ(p))∇
(

p− ρgz
)

)

= f (1.1.5)

for the unknown pressure function p on (0, T ) ×D with T > 0, in which

v = −K η−1kr(θ(p))∇
(

p− ρgz
)

(1.1.6)

is the water flux. Since we assume in this thesis that kr(θ(p)) is always positive, it is
obvious that the Richards equation is a quasilinear elliptic-parabolic equation which
is of elliptic type where the soil is fully saturated and parabolic in the unsaturated
regime.

There are different ways how to obtain concrete analytical versions of the parameter
functions p 7→ θ(p) and θ 7→ kr(θ), and we restrict ourselves in the following to the
Brooks–Corey model (see [45] for a discussion of different models). With a soil
dependent parameter λ > 0, which is called the pore size distribution factor , and
the definition e(λ) := 3 + 2

λ , it states

kr(θ(p)) =

[

p

pb

]−λe(λ)

:=







(

p
pb

)−λe(λ)

for p ≤ pb

1 for p ≥ pb

(1.1.7)

for the relative permeability and

θ(p) = θm + (θM − θm)

[

p

pb

]−λ

(1.1.8)

for the saturation. The value pb < 0 is the so-called bubbling pressure, which
indicates the pressure which is necessary to allow air bubbles to enter an originally
fully saturated soil. Observe that the Brooks–Corey functions are not differentiable
in this point. Figures 1.1 and 1.2 show some typical graphs of these functions.

Analyzing (1.1.5), we detect the nonlinearities in the time derivative and in the
spatial derivatives. As a first step, it would be expedient to eliminate the relative
permeability kr(·) in front of the gradient. This can be done by means of the
Kirchhoff transformation, see Alt and Luckhaus [5]. In our case, this transformation
κ : R → R is defined as

κ : p 7→ u :=

∫ p

0

kr(θ(q)) dq, (1.1.9)
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Figure 1.1: p 7→ θ(p)
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Figure 1.2: p 7→ kr(θ(p))

and the new variable u is said to be the generalized pressure. The saturation as a
function of u is denoted by

H(u) := θ(κ−1(u)), (1.1.10)

and the transformed Richards equation (1.1.5) then reads

nH(u)t − div
(

K η−1
(

∇u− kr(H(u))ρg∇z
)

)

= f. (1.1.11)

This can be seen by the chain rule ∇u = kr(θ(p))∇p if all terms are differentiable;
otherwise we refer to [18, Chapter 1.5]. Note that (1.1.11) is now a semilinear
equation.

Our choice of the parameter functions in (1.1.7) according to Brooks and Corey
comes in handy in combination with the Kirchhoff transformation because the trans-
formation itself as well as its inverse can be given in a closed form by means of (1.1.7)
and (1.1.9), viz.

u = κ(p) =







pb

−λe(λ)+1

(

p
pb

)−λe(λ)+1

+ −λe(λ)pb

−λe(λ)+1 for p ≤ pb

p for p ≥ pb

(1.1.12)

and

p = κ−1(u) =







pb

(

u(−λe(λ)+1)
pb

+ λe(λ)
)

1
−λe(λ)+1

for uc < u ≤ pb

u for u ≥ pb.
(1.1.13)

Observe that the generalized pressure and the physical pressure are equal in case
of full saturation, whereas, in the unsaturated regime, the interval (−∞, pb) of the
physical pressure corresponds to the bounded interval (uc, pb) for the generalized
pressure; this lower bound

uc :=
λe(λ)

λe(λ) − 1
pb (1.1.14)

is called the critical generalized pressure, and we have uc < pb. Then, the trans-
formed functions in (1.1.11) are given by

H(u) = θ(κ−1(u))

=







θm + (θM − θm)
(

u(−λe(λ)+1)
pb

+ λe(λ)
)

λ
λe(λ)−1

for uc < u ≤ pb

θM for u ≥ pb

(1.1.15)
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Figure 1.6: u 7→ kr(H(u))

for the saturation as a function of the generalized pressure u, where H(u) → θm as
u ↓ uc, and

kr(H(u)) =

[

κ−1(u)

pb

]−λe(λ)

=







(

u(−λe(λ)+1)
pb

+ λe(λ)
)

λe(λ)
λe(λ)−1

for uc < u ≤ pb

1 for u ≥ pb

(1.1.16)

for the transformed relative permeability. The antiderivative Φ of H will turn out
to be important in the following. It is convex and has the form

Φ(u) =

∫ u

0

H(s) ds

=



















θmu+ (θM − θm)pb

(

1 + 1
λ(e(λ)+1)−1

)

−
(θM−θm)pb

λ(e(λ)+1)−1

(

u(−λe(λ)+1)
pb

+ λe(λ)
)

λ(e(λ)+1)−1
λe(λ)−1

for uc ≤ u ≤ pb

θMu for u ≥ pb.

(1.1.17)

We scale the pressure by setting pb = −1. Figures 1.1–1.2 and Figures 1.5–1.6 show
some realistic parameter functions according to [18, Section 1.4] with θM = 0.95,
θm = 0.21 and λ = 2

3 , whence uc = − 4
3 ; on the one hand for the physical saturation

and relative permeability and on the other hand for their transformed counterparts.
Moreover, Figures 1.3–1.4 display the Kirchhoff transformation and its inverse.
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Figure 1.7: u 7→ H(u) for varying λ
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Figure 1.8: u 7→ κ−1(u) for varying λ

Even for realistic hydrological data, the graphs of these functions already look
quite steep, and we regard their behavior for deteriorating soil parameter λ. In
nature, this value varies approximately between 1.0 for sand and 0.1 for clay, cf. the
references in [18], but from a mathematical point of view, we are interested in λ
which tends to 0 or ∞. In particular the shape of the generalized pressure H plays
an important role for the numerical solution, which is why we put our focus on
it. Furthermore, the inverse Kirchhoff transformation κ−1 is of interest since it
will be applied to obtain the physical solution from the generalized solution at the
end of the computation. We underline that these considerations are particularly
important with respect to developing numerical solution methods which are robust,
i.e. the convergence properties of which remain mostly unaffected by the variation
of the parameter λ.

For λ→ 0, we obtain λe(λ) → 2 and uc ↓ −2 by (1.1.14). The unsaturated regime is
thus represented by the interval (−2,−1), and the inverse Kirchhoff transformation
κ−1 in (1.1.13) converges pointwise to the function

κ−1
0 : u 7→

{

−(u+ 2)−1 for − 2 < u ≤ −1

u for u ≥ −1.

The saturation H of the generalized pressure u in (1.1.15) tends pointwise to

H0 : u 7→ θM ∀u ∈ (−2,∞), (1.1.18)

which we extend in accordance with H by setting

H0(−2) = H0

(

lim
λ→0

uc

)

:= lim
λ→0

H(uc) = θm.

An alternative view on this limit case is the observation that the graph of H turns
into the monotone graph

u 7→
{

[θm, θM ] for u = −2

θM for u > −2
(1.1.19)

as λ→ 0, see the bold green line in Figure 1.7.

In the case λ→ ∞, we have λe(λ) → ∞ and uc ↑ −1 due to (1.1.14) such that the
slopes of the functions κ−1 and H increase while the intervals (uc,−1) representing
the unsaturated regime become smaller and smaller. In the limit, the unsaturated
regime is vanished and the pointwise limit function H∞ is constant, viz.

H∞ : u 7→ θM ∀u ∈ [−1,∞). (1.1.20)
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Again, we observe the monotone graph

u 7→
{

[θm, θM ] for u = −1

θM for u > −1
(1.1.21)

as the limit of the graph of H as λ → ∞, see the bold red line in Figure 1.7.
Observe that the structure of (1.1.21) and (1.1.19) agrees. We will show in Remark
3.2.32 and Remark 4.3.8 that these limit cases are also treated by our analytical
and numerical approach.

1.2 Boundary conditions and weak formulation

In this section, we specify boundary conditions for the Richards equation (1.1.11)
and derive a weak formulation for this problem. Moreover, we cite results from [18]
concerning the time discretization and the existence of a unique solution for this
equation.

For sake of simplicity, we set n ≡ 1 and η = 1 in (1.1.11) and introduce ez := ∇z.
In what is to come, we always assume that

Kmin ≤ K(x) ≤ Kmax ∀x ∈ D (1.2.1)

is satisfied for constants Kmax > Kmin > 0. Furthermore, let D ⊂ R
d be an open,

bounded, connected and nonempty set with a Lipschitz boundary ∂D such that the
normal n, which we assume to be directed outwards, exists almost everywhere on
∂D (cf. [26, pp. 12–14]). For each time t ∈ [0, T ], the boundary ∂D is decomposed
into subsets ΓD(t) and ΓN (t). Here, ΓD(t) denotes the set of Dirichlet boundary
conditions, which model hydrostatic pressures given by adjacent waters (e.g. rivers
or lakes). The set ΓN (t) is corresponding to Neumann boundary conditions, which
specify water flow across the boundary of D (e.g. due to precipitation) and often
occur as homogeneous Neumann boundary conditions, for instance on the border
of an impermeable soil.

Then, for any t ∈ (0, T ], T > 0, we consider the boundary value problem

H(u)t − div
(

K∇u−K kr(H(u))ρgez

)

= f(t) on D (1.2.2)

u = uD(t) on ΓD(t) (1.2.3)

v · n = fN(t) on ΓN (t), (1.2.4)

where the flux v is defined as

v = −(K∇u−K kr(H(u))ρgez) (1.2.5)

and where uD(t) with uD > uc and fN (t) are given functions on ΓD(t) and ΓN(t),
respectively.

The weak formulation of this boundary value problem is straightforward if the
involved functions show the regularity of a classical solution. More precisely, if
H, kr : (uc,∞) → R are continuously differentiable real functions, K ∈ C1(D) with
(1.2.1), f(t) ∈ C0(D), fN (t) ∈ C0(ΓN (t)) and u(t) ∈ C2(D) on a C1-polyhedron
D ⊂ R

d with Hausdorff measurable ∂D, then u satisfies the boundary value problem
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(1.2.2)–(1.2.4) for t if, and only if, it satisfies the variational inequality

∫

D

H(u)t (v − u) dx+

∫

D

K∇u∇(v − u) dx ≥
∫

D

K kr(H(u))ρgez∇(v − u) dx

+

∫

D

f (v − u(t)) dx−
∫

ΓN (t)

fN (v − u) dσ ∀v ∈ K̂c(t) (1.2.6)

in the convex set

K̂c(t) := {w ∈ C2(D) : w(x) > uc ∀x ∈ D ∧ w|ΓD(t) = uD(t)}, (1.2.7)

see Proposition 1.5.3 and the following remarks in [18].

The formulation in terms of weak derivatives necessitates more effort. We recall
from [3] the definitions of Sobolev spaces Hk(D) as the space of all functions whose
weak derivatives up to order k belong to L2(D) and of Hk

0 (D) as the closure of
C∞

0 (D) w.r.t. ‖ · ‖Hk(D). At a first point, restating the assumptions on D and ∂D

as explained before (1.2.2), we define the weak generalization of K̂c(t) for t ∈ [0, T ]
as

K̂(t) := {v ∈ H1(D) : v ≥ uc ∧ trΓD(t) v = uD(t)}, (1.2.8)

in which v ≥ uc means v(x) ≥ uc almost everywhere on D. Observe that values
v(x) = uc (which correspond to p(x) = −∞) are now possible in contrast to (1.2.7),
which ensures that K̂(t) is closed. The weak Dirichlet boundary condition in (1.2.8)
has the meaning that

uD(t) ∈ {v = trΓD(t) w : w ∈ H1(D) ∧ w ≥ uc a.e.} (1.2.9)

as an element of H1/2(ΓD(t)) with trace operator trΓD(t) : H1(D) → H1/2(ΓD(t))
(see [22, Sections 2.7–2.9] for the corresponding definitions). The range of uD(t)
has to be contained in [uc,∞), now almost everywhere on ΓD(t) and even for an
extension of uD(t) in H1(D) almost everywhere on D. K̂(t) has the desired prop-
erties.

Proposition 1.2.1 ([18]). K̂(t) is a nonempty, closed and convex subset of H1(D).

With regard to our models of Brooks–Corey type, let the functions H : [uc,∞) → R

and kr : H([uc,∞)) → R be continuous, monotonically increasing and bounded with
a uc < 0. Furthermore, let us assume that the function K satisfies (1.2.1) and that
f(t) ∈ L2(D) and fN(t) ∈ L2(ΓN (t)). We now seek for a solution defined on the
open time cylinder Q := (0, T )×D and employ the solution space

L2(0, T ;H1(D)) :=







v : (0, T ) → D :

(

∫ T

0

‖v(t)‖2
H1(D) dt

)1/2

<∞







. (1.2.10)

Observe that we require moreover that the solution u ∈ L2(0, T ;H1(D)) has a
regularity such that H(u)t ∈ L2(D) almost everywhere on (0, T ]; in this case, all
the terms in (1.2.11) make sense and we call u the weak solution of the variational
inequality (1.2.6) at the time t ∈ (0, T ] if u(t) ∈ K̂(t) and

∫

D

H(u)t (v − u) dx+

∫

D

K∇u∇(v − u) dx ≥
∫

D

K kr(H(u))ρgez∇(v − u) dx

+

∫

D

f (v − u) dx−
∫

ΓN (t)

fN (v − u) dσ ∀v ∈ K̂(t). (1.2.11)
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In the rest of this section, we will note some insights about the existence of solutions
of (1.2.11). First in Remark 1.2.2, we sum up a classical result from Alt, Luckhaus,
and Visintin [6], which also provides an alternative formulation (with weak time
derivatives). Afterwards, we outline some recent results of Berninger [18] which
will be the starting point for the stochastic version in Chapter 2.

Remark 1.2.2. We cite analytic results concerning the Richards equation with
Brooks–Corey-like parameter functions first given in [6]. It is assumed that

uD ∈ H1(Q) ∩ C0(0, T ;H1(D)),

H0 := H(u(0, ·)) ∈ L∞(D), H(u) ∈ L∞(Q) ∩H1(0, T ;V ′)

with fN ≡ 0, f ≡ 0. Here, V denotes the space V =
{

v ∈ H1(D) : v = 0 on ΓD

}

,
and the goal is to find a solution in the set

KA =
{

v ∈ L2(0, T ;H1(D)) : u = uD on (0, T ) × ΓD

}

.

Furthermore, set

W (y) := sup
uc≤z<∞

(

yz −
∫ z

0

H(z′) dz′
)

.

Then, the weak formulation of the problem reads

u ∈ KA :

∫

D

(

W (H0(x)) −H0(x)v(0, x)
)

α(0, x) dx +

∫∫

Q

W (H(u))αt dxdt

−
∫∫

Q

H(u)(vα)t dxdt+

∫∫

Q

K (∇u − kr(H(u))ρgez)∇ ((v − u)α) dxdt ≥ 0

∀v ∈ C0(0, T ;H1(D)) ∩H1(Q) ∩ KA,

∀α ∈ C2(Q) with 0 ≤ α ≤ 1 and α(T, ·) = 0 in D. (1.2.12)

Indeed, by taking an α which vanishes on ΓD and partial integration in t and x,
one obtains

∫ T

0
V ′〈H(u)t − div(K∇u−K kr(H(u))ρgez), (v − u)α〉V dt ≥ 0

for all such v as above, where V ′〈·, ·〉V denotes the duality bracket for (V ′, V ).
Consequently, the solution of (1.2.12) satisfies (1.2.2) with f ≡ 0 in V ′, a.e. in
(0, T ). Moreover, the boundary conditions (1.2.3)–(1.2.4) are attained in a weak
sense and H(u(0, x)) = H0(x) a.e. in D. For this problem (1.2.12), Alt et al. [6]
show that there exists at least one solution.

We resume the approach of Berninger [18] who proceeds by applying an implicit
time discretization in the diffusion part and an explicit one in the convective part
in (1.2.11); more concretely, for a partition 0 = t0 < t1 < . . . < tNT = T of the
time interval [0, T ] with τn = tn − tn−1, use the backward Euler as implicit scheme.
Then, it can be shown that this time-discretized version of (1.2.11) is a variational
inequality of second kind, viz.

u ∈ K̂ : â(u, v − u) − ℓ̂(v − u) + φ̂(v) − φ̂(u) ≥ 0 ∀v ∈ K̂. (1.2.13)

The terms in (1.2.13) have the meaning

â(v, w) := τn

∫

D

K∇v∇w dx ∀v, w ∈ H1(D), (1.2.14)
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ℓ̂(v) :=

∫

D

H(u(tn−1)) v dx+ τn

∫

D

K kr(H(u(tn−1)))ρgez ∇v dx

+ τn

∫

D

f(tn) v dx− τn

∫

ΓN (tn)

fN(tn) v dσ ∀v ∈ H1(D), (1.2.15)

and

φ̂(v) :=

∫

D

Φ̂(v(x)) dx ∀v ∈ K̂ (1.2.16)

with

Φ̂(z) :=

∫ z

0

H(s) ds ∀z ∈ [uc,∞) (1.2.17)

and K̂ := K̂(tn). We sum up some results from [18] which will be used later.

Proposition 1.2.3. Let H : [uc,∞) → R and kr : H([uc,∞)) → R be mono-
tonically increasing and bounded with a uc < 0. Furthermore, let us assume that
the function K satisfies (1.2.1) and that f(tn) ∈ L2(D) and fN(tn) ∈ L2(ΓN (tn)).
Then, the following holds:

a) The bilinear form â(·, ·) from (1.2.14) is continuous and coercive; more pre-
cisely, there exist C, c, c1, c2 > 0 such that

â(v, w) ≤ C‖v‖H1(D)‖w‖H1(D) ∀v, w ∈ H1(D) (1.2.18)

and
â(v, v) ≥ c‖v‖2

H1(D) − c1‖v‖H1(D) − c2 ∀v ∈ K̂. (1.2.19)

b) The linear form ℓ̂ from (1.2.15) is continuous on K̂.

c) The functional φ̂ : K̂ → R from (1.2.16) is convex and Lipschitz continuous
with

|φ̂(v)| ≤ L‖v‖H1(D) ∀v ∈ K̂. (1.2.20)

This allows to prove the existence of a solution of the time-discretized Richards
equation.

Theorem 1.2.4 ([18]). With the assumptions of Proposition 1.2.3, the variational
inequality (1.2.13) has a unique solution.

All these considerations and the numerical solution methods relying upon them
assume that the parameters in the Richards equation are known exactly. Our goal
of quantifying the uncertainty in the data will lead us to stochastic parameters, and
in the following we will show to what extent one can achieve similar results for the
stochastic problem. In Chapter 2, we will specify these stochastic parameters and
formulate the Richards equation when taking them into consideration. Afterwards,
we will discretize the problem in time, space and stochastic dimensions, analyze its
properties and show how it can be solved numerically. This will be the purpose of
Chapters 3 and 4.
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Chapter 2

The stochastic Richards
equation

Looking back to the Richards equation (1.1.5), we ask for its solution if there are
some parameters which are random, say the permeability K(x, ω) or the source
term f(t, x, ω) with ω ∈ Ω for a sample space Ω. This is a natural question in the
context of our principal goal of quantifying the uncertainty arising from a lack of
information of certain input parameters as addressed in the introduction. Obviously,
the solution p is consequently also a “random” function p(t, x, ω) and we ask for its
distribution if, say, K(x, ·) is only given by certain probabilities P(K(x, ·) ∈ A) for
Borel sets A ∈ Bor(R).

Observe that we first have to specify which parameters are assumed to be random
and “how random” they are, i.e. which regularity they have. Especially the last
question is fundamental in view of how to model the stochastic Richards equation,
treating boundary conditions, etc. We discuss this at the end of this chapter in
Remark 2.3.9. Beforehand, we begin with some preliminary work in Sections 2.1
and 2.2 and settle notation and definitions that will be useful later on. Then, in
Section 2.3, we derive the weak formulation of the stochastic Richards equation.
As set out in Chapter 1, the analysis of the Richards equation (1.1.5) with Kirch-
hoff transformation and implicit–explicit time discretization leads to a variational
inequality of the form (1.2.13). We aim for a generalization of this proceeding in
the stochastic context. In doing so, the theory and numerics to be developed in this
and the following chapters can be transferred to stochastic variational inequalities
of the form

u ∈ K : a(u, v − u) − ℓ(v − u) + φ(v) − φ(u) ≥ 0 ∀v ∈ K, (2.0.1)

where φ is a convex, lower semicontinuous and proper functional and K is a convex,
closed and nonempty subset of a space of L2 functions defined on D × Ω.

2.1 Random fields

Let (Ω, E ,P) be a given complete probability space with a sample space Ω, a sigma-
algebra E ⊂ 2Ω as set of events, and a probability measure P : E → [0, 1]. Here,
completeness means that for every B ⊂ A with A ∈ E satisfying P(A) = 0, it is
B ∈ E . For a random variableX : Ω → R, we denote by σ(X) ⊂ E the sigma-algebra
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generated by X and call PX with

PX(B) := P(X−1(B)) for all B ∈ Bor(R)

the distribution of X and

E[X ] :=

∫

Ω

X(ω) dP(ω) (2.1.1)

the expectation of X (w.r.t. P) and

Var[X ] := E[(X − E[X ])2] (2.1.2)

the variance of X (w.r.t. P). For 1 ≤ p ≤ ∞, define

Lp(Ω) := {X : Ω → R : ‖X‖Lp(Ω) <∞} (2.1.3)

with norms

‖X‖Lp(Ω) :=

(∫

Ω

|X(ω)|p dP(ω)

)1/p

for 1 ≤ p <∞ and

‖X‖L∞(Ω) := inf{s ∈ R : |X(ω)| ≤ s a.s.}

for p = ∞. In the following, we will mostly take the case p = 2; observe that L2(Ω)
is a Hilbert space with scalar product

(X,Y )L2(Ω) := E[XY ] =

∫

Ω

X(ω)Y (ω) dP(ω). (2.1.4)

Let Xr be a set of random variables indexed by r ∈ {1, . . . , R}, R ≤ ∞, defined on
(Ω, E ,P).

Definition 2.1.1. The random variables {Xr} are independent if for every finite
class (Br1 , . . . , Brn) of Borel sets

P

(

n
⋂

k=1

{Xrk
∈ Brk

}
)

=

n
∏

k=1

P(Xrk
∈ Brk

).

Equivalently, the random variables {Xr} are independent if the induced sigma-
algebras {σ(Xr)} are independent. The following proposition is well known.

Proposition 2.1.2 ([78]). If X1, . . . , XR are independent and integrable random
variables, then

E

[

R
∏

r=1

Xr

]

=

R
∏

r=1

E [Xr] .

Now, we come to the main topic of this section. We refer to [4] and [88] for the
following definitions and results.

Definition 2.1.3. A random field is a parametrized collection of R-valued ran-
dom variables {Xy}y∈Y defined on a probability space (Ω, E ,P) for a parameter set
Y ⊂ R

d. The collection of all measures Py1,...,yk
on Bor(Rk) defined by

Py1,...,yk
(B1 × · · · ×Bk) := P(Xy1 ∈ B1, . . . , Xyk

∈ Bk) for y1, . . . , yk ∈ Y (2.1.5)

for arbitrary integer k is called the family of finite-dimensional distributions of the
random field X = {Xy}y∈Y .
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A random field is a generalization of a stochastic process which is usually defined
on the parameter set Y = [0, T ]. A random field can be characterized in main parts
by its finite-dimensional distributions, and, conversely, one can construct a random
field by finite-dimensional distributions. This is stated by the extension theorem of
Kolmogorov.

Theorem 2.1.4 ([88]). For all y1, . . . , yk ∈ Y, k ∈ N, let Py1,...,yk
be probability

measures on R
k such that

Py℘(1),...,y℘(k)
(B1 × · · · ×Bk) = Py1,...,yk

(B℘−1(1) × · · · ×B℘−1(k))

for all permutations ℘ on {1, 2, . . . , k} (“symmetry”) and

Py1,...,yk
(B1 × · · · ×Bk) = Py1,...,yk,yk+1,...,yk+m

(B1 × · · · ×Bk × R
m)

for all m ∈ N (“consistency”). Then, there exist a probability space (Ω, E ,P) and a
random field {Xy} on Ω with Xy : Ω → R such that (2.1.5) holds for all yi ∈ Y,
k ∈ N and all Borel sets Bi.

Alternatively, one can also define random fields as function-valued random variables.
More precisely, let Gd denote the set of all functions from R

d to R and Gd the sigma-
algebra containing all sets of the form {g ∈ Gd : g(yi) ∈ Bi, i = 1, . . . , k}, where
k is an arbitrary integer, yi ∈ R

d, Bi ∈ Bor(R). Then, define a random field
as a measurable mapping from (Ω, E) into (Gd,Gd). We obtain again the finite-
dimensional distributions via (2.1.5) from the measure P on E , and these finite-
dimensional distributions give a unique probability measure on the set Gd. Now,
denote by X(y, ω) the value which the function in Gd corresponding to ω takes at
the point y.

Hence, we can look at the random field X from two perspectives: for given ω ∈ Ω,
X(·, ω) is simply a deterministic function from R

d to R, which we refer to as a
realization of X ; on the other hand, for fixed y ∈ R

d, X(y, ·) is a random variable.

2.2 Tensor spaces

In this section, we introduce tensor products, which will help us to clarify the
structure of functions depending on x ∈ D ⊂ R

d and ω ∈ Ω.

Definition 2.2.1 ([59]). Let H1, H2 be two Hilbert spaces with scalar products
(·, ·)H1 and (·, ·)H2 , respectively. For v1 ∈ H1 and v2 ∈ H2, their tensor product
v1 ⊗ v2 is defined as a conjugate bilinear form

v1 ⊗ v2(w1, w2) := (v1, w1)H1 (v2, w2)H2 (2.2.1)

on H1 ×H2.

For v1 ⊗ v2, w1 ⊗ w2 ∈ S := span{v1 ⊗ v2 : v1 ∈ H1, v2 ∈ H2}, one can now define

(v1 ⊗ v2, w1 ⊗ w2)H1⊗H2 := (v1, w1)H1 (v2, w2)H2 (2.2.2)

and linearly extend it to S. It is straightforward to see that (2.2.2) defines a scalar
product on S, which justifies the following definition.

Definition 2.2.2. The completion of S with respect to the scalar product defined
in (2.2.2) is called the tensor space H1 ⊗H2.
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Proposition 2.2.3 ([59]). The tensor space H1 ⊗ H2 is a Hilbert space. If {ej}
and {fk} are bases of Hilbert spaces H1 and H2, then {ej ⊗ fk}j,k∈N constitute a
basis of H1 ⊗H2.

Define the usual norm by ‖ · ‖H1⊗H2 := (·, ·)1/2
H1⊗H2

. From (2.2.2), it follows imme-
diately that

‖v1 ⊗ v2‖H1⊗H2 = ‖v1‖H1‖v2‖H2 (2.2.3)

if v1 ∈ H1 and v2 ∈ H2.

Let H be a separable Hilbert space. Denote by L2(X,µ;H) the space of H-valued
square integrable functions on X (w.r.t. a measure µ), equipped with scalar product

(f, g)L2(X,µ;H) =

∫

X

(f(x), g(x))H dµ(x), (2.2.4)

and write shortly L2(X,µ) = L2(X,µ; R).

Theorem 2.2.4 ([59]). Let (X,µ) and (Y, ν) be measure spaces such that L2(X,µ)
and L2(Y, ν) are separable. Then, the following holds:

a) There exists a unique isometric isomorphism

L2(X,µ) ⊗ L2(Y, ν) ∼= L2(X × Y, µ× ν)

which maps f ⊗ g to f(x)g(y).

b) For any separable Hilbert space H, there exists a unique isometric isomor-
phism

L2(X,µ) ⊗H ∼= L2(X,µ;H)

which maps f ⊗ h to f(x) · h.

Proof. Let {ej(x)} and {fk(y)} be bases of L2(X,µ) and L2(Y, ν), respectively.
Then, the family {ej(x)fk(y)}j,k∈N constitutes a basis of L2(X × Y, µ × ν), while
{ej⊗fk}j,k∈N is a basis of L2(X,µ)⊗L2(Y, ν) according to Proposition 2.2.3. Hence,
the map

U : f ⊗ g 7→ f(x)g(y)

can be extended uniquely to a unitary operator from L2(X,µ) ⊗ L2(Y, ν) onto
L2(X × Y, µ× ν). This proves a).

In order to show part b), let {ej} be a basis of H . Thus, we have

lim
n→∞

∥

∥

∥

∥

∥

∥

g(x) −
n
∑

j=1

(g(x), ej)Hej

∥

∥

∥

∥

∥

∥

= 0

for every g ∈ L2(X,µ;H) such that the linear span of {gj(x) · ej : gj ∈ L2(X,µ)} is
dense in L2(X,µ;H). Now, the map

U :

n
∑

j=1

(gj ⊗ ej) 7→
n
∑

j=1

gj(x) · ej

preserves the scalar products by the definitions (2.2.2) and (2.2.4) and is defined on
a dense subspace of L2(X,µ) ⊗H ; hence, it can be extended uniquely to a unitary
operator from L2(X,µ) ⊗H onto L2(X,µ;H).
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In this thesis, we usually take the tensor product of the spaces H1(D) and L2(Ω)
and obtain by Theorem 2.2.4 the isomorphism

H1(D) ⊗ L2(Ω) ∼= L2(Ω;H1(D) ∼= H1(D;L2(Ω)) (2.2.5)

with scalar product

(v, w)1,0 :=

∫

Ω

(v, w)H1(D) dP

and norm

‖v‖1,0 := (v, v)
1/2
1,0 =

(∫

Ω

‖v‖2
H1(D) dP

)1/2

.

The same construction can be done with tensor products of spaces like Lp for
1 ≤ p ≤ ∞ and Banach spaces like Ck, see [12]; e.g. we have

L∞(D) ⊗ Lp(Ω) :=

{

v : D × Ω → R : ess sup
x∈D

‖v(x, ·)‖2
Lp(Ω) <∞

}

.

Note moreover that spaces like L2(0, T ;H1(D)) from (1.2.10) are defined in the same
way. As the notation suggests, the theorem of Fubini holds for v ∈ L2(D) ⊗ L2(Ω)
and we have [65]

∫

D

∫

Ω

v(x, ω) dP dx =

∫

Ω

∫

D

v(x, ω) dxdP,

and this is how the scalar product

(v, w)0,0 :=

∫

Ω

(v, w)L2(D) dP =

∫

D

∫

Ω

v(x, ω)w(x, ω) dP dx

with norm ‖v‖0,0 := (v, v)
1/2
0,0 is defined in L2(D) ⊗ L2(Ω).

Denote by C∞
0 (S) for S ⊂ R

k the space

C∞
0 (S) :=

{

ϕ ∈ C∞(S) : supp(ϕ) := {y : ϕ(y) 6= 0} ⊂ S is compact
}

.

It is well known (e.g. [109]) that C∞
0 (D) is dense in H1

0 (D) and that C∞
0 (Ω) is dense

in L2(Ω) if Ω ⊂ R
k. Hence, the following statement is not surprising.

Lemma 2.2.5. Let Ω ⊂ R
k. Then, the set

D :=

∞
⋃

N=1

{

N
∑

i=1

ϕD
i ϕ

Ω
i : ϕD

i ∈ C∞
0 (D), ϕΩ

i ∈ C∞
0 (Ω)

}

(2.2.6)

is dense in H1
0 (D) ⊗ L2(Ω).

Proof. For given v ∈ H1
0 (D) ⊗ L2(Ω) and ε > 0, we can find by definition of the

tensor space a vN =
∑N

i=1 v
D
i v

Ω
i with vD

i ∈ H1
0 (D), vΩ

i ∈ L2(Ω) and

‖vN − v‖1,0 ≤ ε/2.

For density reasons, we can find for every vD
i a sequence (ϕD

i,n)n with ϕD
i,n → vD

i in

H1
0 (D) and for every vΩ

i a sequence (ϕΩ
i,n)n with ϕΩ

i,n → vΩ
i in L2(Ω).

First, we show that for ε′ := ε
2N and each i, we can find an n(i) such that

‖ϕD
i,nϕ

Ω
i,n − vD

i v
Ω
i ‖1,0 < ε′ for all n > n(i). (2.2.7)
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Choose n1 such that ‖ϕD
i,n − vD

i ‖H1(D) ≤ ε′

2‖vΩ
i ‖L2(Ω)

for n > n1, whence

‖ϕD
i,n‖ ≤ ‖ϕD

i,n − vD
i ‖H1(D) + ‖vD

i ‖H1(D) ≤
ε′

2‖vΩ
i ‖L2(Ω)

+ ‖vD
i ‖H1(D).

Now, choose an n2 > n1 with

‖ϕΩ
i,n − vΩ

i ‖L2(Ω) ≤
ε′

2

(

ε′

2‖vΩ
i ‖L2(Ω)

+ ‖vD
i ‖H1(D)

)−1

for n > n2. Then, (2.2.3) provides for all n > n2 =: n(i)

‖ϕD
i,nϕ

Ω
i,n − vD

i v
Ω
i ‖1,0 ≤ ‖ϕD

i,n(ϕΩ
i,n − vΩ

i )‖1,0 + ‖(ϕD
i,n − vD

i )vΩ
i ‖1,0

= ‖ϕD
i,n‖H1(D)‖ϕΩ

i,n − vΩ
i ‖L2(Ω) + ‖ϕD

i,n − vD
i ‖H1(D)‖vΩ

i ‖L2(Ω) ≤ ε′.

By means of (2.2.7), one can estimate

∥

∥

∥

∥

∥

N
∑

i=1

ϕD
i,nϕ

Ω
i,n −

N
∑

i=1

vD
i v

Ω
i

∥

∥

∥

∥

∥

1,0

≤
N
∑

i=1

∥

∥ϕD
i,nϕ

Ω
i,n − vD

i v
Ω
i

∥

∥

1,0
< ε/2

for all n ≥ maxi n
(i) + 1 =: n0. Defining ϕ =

∑N
i=1 ϕ

D
i,n0

ϕΩ
i,n0

, we have ϕ ∈ D with

‖ϕ− v‖1,0 ≤ ‖ϕ− vN‖1,0 + ‖vN − v‖1,0 ≤ ε.

Now, we consider operators on tensor spaces. For i = 1, 2, let Ki be Hilbert
spaces and Ai be densely defined linear operators from Hi to Ki on the domains
domAi ⊂ Hi. Furthermore, let us denote by domA1 ⊗ domA2 the linear span of
{v1 ⊗ v2 : vi ∈ domAi for i = 1, 2}. Then, domA1 ⊗ domA2 is dense in H1 ⊗H2.
Define

A1 ⊗A2(v1 ⊗ v2) := A1v1 ⊗A2v2 (2.2.8)

for vi ∈ domAi and extend it to a linear operator on domA1 ⊗ domA2.

Proposition 2.2.6 ([59]). The operator tensor product A1⊗A2 is a densely defined
linear operator from H1 ⊗H2 to K1 ⊗K2. Furthermore, if A1 and A2 are bounded
operators on H1 and H2, respectively, then

‖A1 ⊗A2‖ = ‖A1‖‖A2‖.

It is obvious that, by induction, one can define tensor products of any finite number
of Hilbert spaces and tensor products of any finite number of operators thereon.
The following proposition will be helpful.

Proposition 2.2.7. Let Hr be Hilbert spaces and (Ar
n)n be a sequence of linear

bounded operators on Hr for r = 1, . . . , R with

‖Ar
nvr − vr‖Hr → 0 for all vr ∈ Hr as n→ ∞. (2.2.9)

Then, it holds

‖Anv − v‖H → 0 for all v ∈ H :=

R
⊗

r=1

Hr as n→ ∞ (2.2.10)

for An =
⊗R

r=1A
r
n.
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Proof. Let Ir be the identity operator on Hr and I =
⊗R

r=1 I
r. Inductively, we

have

I −An =

R
⊗

r=1

Ir −
R
⊗

r=1

Ar
n

=

(

R−1
⊗

r=1

Ir −
R−1
⊗

r=1

Ar
n

)

⊗ IR +

R−1
⊗

r=1

Ar
n ⊗

(

IR −AR
n

)

=

(

R−2
⊗

r=1

Ir −
R−2
⊗

r=1

Ar
n

)

⊗ IR−1 ⊗ IR +

R−2
⊗

r=1

Ar
n ⊗

(

IR−1 −AR−1
n

)

⊗ IR+

R−1
⊗

r=1

Ar
n ⊗

(

IR − AR
n

)

= . . .

=
R
∑

r=1

(

r−1
⊗

s=1

As
n

)

⊗ (Ir −Ar
n) ⊗

(

R
⊗

s=r+1

Is

)

.

Now, take a v ∈ H of the form v =
∑N

i=1 v
1
i ⊗· · ·⊗vR

i with vr
i ∈ Hr. The calculation

above allows us to write

‖v −Anv‖H =

∥

∥

∥

∥

∥

(

R
∑

r=1

(

r−1
⊗

s=1

As
n

)

⊗ (Ir −Ar
n) ⊗

(

R
⊗

s=r+1

Is

))

v

∥

∥

∥

∥

∥

H

≤
N
∑

i=1

R
∑

r=1

∥

∥

∥

∥

∥

(

r−1
⊗

s=1

As
nv

s
i

)

⊗ (vr
i −Ar

nv
r
i ) ⊗

(

R
⊗

s=r+1

vs
i

)∥

∥

∥

∥

∥

H

=

N
∑

i=1

R
∑

r=1

(

r−1
∏

s=1

‖As
nv

s
i ‖Hs

)

· ‖vr
i −Ar

nv
r
i ‖Hr ·

(

R
∏

s=r+1

‖vs
i ‖Hs

)

.

The sequence (‖As
nv

s
i ‖Hs)n is convergent and thus bounded for all s = 1, . . . , R.

Consequently, we can conclude ‖v − Anv‖H → 0 from (2.2.9). The totality of such
finite sums being dense in H , (2.2.10) is verified.

2.3 Weak formulation

In this section, we derive the Richards equation for stochastic parameters. We
concentrate on a stochastic permeability K and discuss other random parameters
in Remark 2.3.6.

Now, let the permeability K be a random field defined on D × Ω. For each ω ∈ Ω,
K(·, ω) is a realization for which (1.2.1) holds, i.e.

Kmin ≤ K(x, ω) ≤ Kmax ∀x ∈ D ∀ω ∈ Ω, (2.3.1)

and for which the Richards equation (1.1.5) makes sense. The solution p(ω) is a
function on (0, T ) × D, and we take the saturation θ(p(ω)) and the relative per-
meability kr(θ(p(ω))) as in (1.1.8) and (1.1.7), respectively. We can also define
pointwise the Kirchhoff transformation κ : R → R as

κ : p(ω) 7→ u(ω) :=

∫ p(ω)

0

kr(θ(q)) dq. (2.3.2)
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We obtain the generalized pressure which satisfies (1.2.2)–(1.2.4) for each realiza-
tion, i.e. for any ω ∈ Ω and any t ∈ (0, T ] consider the boundary value problem

H(u(t, ·, ω))t + div(v) = f(t) on D (2.3.3)

u(t, ·, ω) = uD(t) on ΓD(t) (2.3.4)

v · n = fN (t) on ΓN(t), (2.3.5)

where the flux v is defined as

v = − (K(·, ω)∇u(t, ·, ω) −K(·, ω) kr(H(u(t, ·, ω)))ρgez) (2.3.6)

and where uD(t) with uD > uc and fN(t) are given functions on ΓD(t) and ΓN (t),
respectively, which are assumed to be deterministic for the moment (until Remark
2.3.6).

Remark 2.3.1. Note that the Kirchhoff transformation only works, since K is a
random field, which gives a sense to single realizations ω ∈ Ω. The same holds for
the inverse Kirchhoff transformation which is necessary to transform back from our
computational solution u to our physical solution p, or, in our setting, to transform
back statistics like E[u] to E[p]. Observe that we have

E[p] = E[κ−1(u)] 6= κ−1(E[u])

in general, but by Jensen’s inequality (e.g. [78, p. 159]) the estimate

E[p] ≤ κ−1(E[u]), (2.3.7)

since κ is convex.

For the weak formulation, we can exploit the results from the deterministic case
and claim that for each realization ω ∈ Ω, the function u satisfies the variational in-
equality (1.2.11) or its time-discretized counterpart (1.2.13). We want to investigate
for the latter problem which conditions are necessary to derive the measurability of
u and some regularity results.

To this end, define âω(·, ·) and ℓ̂ω(·) as â(·, ·) and ℓ̂(·) in (1.2.14) and (1.2.15),
respectively, by replacing the deterministic K by the random field and consider for
each ω ∈ Ω the variational inequality

u ∈ K̂ : âω(u, v − u) − ℓ̂ω(v − u) + φ̂(v) − φ̂(u) ≥ 0 ∀v ∈ K̂. (2.3.8)

Now, define the (possibly set-valued) map U : Ω → H1(D) by

ω 7→ U(ω) := {u ∈ K̂ : u solves (2.3.8)}.

First, we can state the following.

Proposition 2.3.2. Let K be a random field satisfying (2.3.1). Then, with the
assumptions of Proposition 1.2.3, the map U is measurable.

Proof. By Theorem 1.2.4, there is a unique solution u of (2.3.8) for each ω ∈ Ω.

Moreover, the assertions of Proposition 1.2.3 are still valid for âω and ℓ̂ω due to
(2.3.1). According to [33, Prop. II.2.2], the variational inequality (2.3.8) is equiva-
lent to

u ∈ K̂ : âω(v, u − v) − ℓ̂ω(u− v) + φ̂(u) − φ̂(v) ≤ 0 ∀v ∈ K̂.
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Observe that K̂ is separable, since H1(D) is. With a set {vi}i∈N which is dense in
K̂ and by continuity, we see that

u ∈ U(ω) ⇔ âω(vi, u− vi) − ℓ̂ω(u− vi) + φ̂(u) − φ̂(vi) ≤ 0 ∀i ∈ N.

The set

Ui(ω) := {u ∈ K̂ : âω(vi, u) − ℓ̂ω(u) + φ̂(u) ≤ âω(vi, vi) − ℓ̂ω(vi) + φ̂(vi)}

is closed by the continuity of âω, ℓ̂ω and φ̂. Thus, we can conclude from [8, Theo-
rem 8.2.4] that

U(ω) =
⋂

i∈N

Ui(ω)

is measurable.

By this proposition, U(ω) ∈ K̂ is the unique solution of (2.3.8) for each ω ∈ Ω. We
can say more.

Proposition 2.3.3. With the assumptions of Proposition 2.3.2, the map U satisfies
U ∈ Lp(Ω;H1(D)) for all 1 ≤ p ≤ ∞.

Proof. Again, the assertions of Proposition 1.2.3 are still valid for âω and ℓ̂ω due to
(2.3.1). Hence, we have by this proposition

âω(U(ω), U(ω)) ≥ c‖U(ω)‖2
H1(D) − c1‖U(ω)‖H1(D) − c2 (2.3.9)

on the one hand and by (2.3.8)

âω(U(ω), U(ω)) ≤ âω(U(ω), v) − ℓ̂ω(v − U(ω)) + φ̂(v) − φ̂(U(ω)) (2.3.10)

≤ C‖U(ω)‖H1(D)‖v‖H1(D) + ‖ℓ̂ω‖
(

‖U(ω)‖H1(D) + ‖v‖H1(D)

)

+ L
(

‖U(ω)‖H1(D) + ‖v‖H1(D)

)

for all v ∈ K̂ on the other hand. Combining (2.3.9) and (2.3.10) provides

c‖U(ω)‖2
H1(D) ≤

(

c1 + C‖v‖H1(D) + ‖ℓ̂ω‖ + L
)

‖U(ω)‖H1(D) +
(

‖ℓ̂ω‖ + L
)

‖v‖H1(D) + c2.

With the assumptions made on the functions occurring in ℓ̂ω, in particular that
K satisfies (2.3.1) and that f and fN are deterministic, we can state that ‖ℓ̂ω‖ is
uniformly bounded by a constant. Consequently

‖U(ω)‖H1(D) ≤ C̃
(

1 + ‖v‖H1(D)

)

for an arbitrary fixed v ∈ K̂, where the constant C̃ is independent of ω. This yields
U ∈ Lp(Ω;H1(D)) for all 1 ≤ p ≤ ∞.

Now, instead of testing with v ∈ K̂, we take v = V (ω), where V ∈ L2(Ω; K̂), and
integrate on Ω, which is possible by Proposition 2.3.3. Then, U is the solution of
the variational inequality

U ∈ L2(Ω; K̂) : E[âω(U, V − U)] − E[ℓ̂ω(V − U)] + E[φ̂(V )] − E[φ̂(U)] ≥ 0

∀V ∈ L2(Ω; K̂). (2.3.11)
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Remembering (2.2.5), we detect that

L2(Ω; K̂) = {v ∈ L2(Ω;H1(D)) : v(ω) ∈ K̂ for almost all ω ∈ Ω}
=
{

v ∈ H1(D) ⊗ L2(Ω) : v ≥ uc a.e. on D × Ω∧ (2.3.12)

trΓD(t) v(·, ω) = uD(t) for almost all ω ∈ Ω
}

.

We write this set (2.3.12) in a more compact form as

K(t) := {v ∈ H1(D) ⊗ L2(Ω) : v ≥ uc ∧ trΓD(t) v = uD(t)}. (2.3.13)

It is clear that K(t) is convex and nonempty (note the assumptions on uD(t) in
(1.2.9)). To prove the closedness, we first see that for any w ∈ H1(D) ⊗ L2(Ω)
with w < uc on a subset E1 ×E2 ⊂ D×Ω with positive product measure dx× dP,
cf. Theorem 2.2.4, there exists for any ε > 0 a second subset E3 × E4 ⊂ E1 × E2

with positive product measure such that w < uc − ε, whence

0 < C ≤ ‖w − v‖0,0 ≤ ‖w − v‖1,0

uniformly for each v ∈ K(t). With the same argument for a w ∈ H1(D) ⊗ L2(Ω)
with trΓD(t) w 6= uD(t) on a subset E1 ×Ω ⊂ D×Ω with positive product measure,
one obtains

0 < C ≤ ‖ trΓD(t) w − trΓD(t) v‖L2(ΓD(t))⊗L2(Ω)

≤ ‖ trΓD(t) w − trΓD(t) v‖H1/2(ΓD(t))⊗L2(Ω)

≤ C̃‖w − v‖1,0

uniformly for each v ∈ K(t), where we used the Sobolev embedding theorem (see [22,
Theorem 2.19]) in the second line and the trace theorem from [22, Theorem 2.24] in
the third line. Hence, we have proven the following analogue to Proposition 1.2.1.

Proposition 2.3.4. K(t) is a nonempty, closed and convex subset of the tensor
space H1(D) ⊗ L2(Ω).

Let us return to the time-continuous case. If we apply this procedure to problem
(1.2.11), it is clear that we seek on Q× Ω = (0, T ) ×D × Ω for a solution which is
an element of

L2(0, T ;H1(D) ⊗ L2(Ω)) :=







v : (0, T ) → D × Ω :

(

∫ T

0

‖v(t)‖2
1,0 dt

)1/2

<∞







.

As in the deterministic case, the time derivative H(u)t is problematic and we have
to assume that H(u)t ∈ L2(D) ⊗ L2(Ω) almost everywhere on (0, T ). Then, u is
called the weak solution of the stochastic Richards equation at the time t ∈ (0, T ] if
u(t) ∈ K(t) and

E

[∫

D

H(u(t))t (v − u(t)) dx

]

+ E

[∫

D

K∇u(t)∇ (v − u(t)) dx

]

≥ E

[∫

D

K kr(H(u(t)))ρgez∇ (v − u(t)) dx

]

+ E

[∫

D

f(t) (v − u(t)) dx

]

− E

[

∫

ΓN (t)

fN (t) (v − u(t)) dσ

]

∀v ∈ K(t). (2.3.14)

If the same time discretization as in Section 1.2 is carried out, we can transfer
problem (2.3.14) to problem (2.3.11); this will be shown in Section 3.2.

At this point, it is time for several remarks.
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Remark 2.3.5. Having a closer look to the proofs of Propositions 2.3.2 and 2.3.3,
we can state some generalizations as it is done in [54] where a similar problem with
φ ≡ 0 is examined. First, we can replace H1(D) with an arbitrary separable Hilbert
space H , in particular if H is a subspace of L2(D) or H1(D). The source function f
can be chosen random, too, which demands the condition ‖f‖L2(D) ∈ L2(Ω). More

generally, we can replace âω, ℓ̂ω, and φ̂ by a(·, ·, ω), ℓ(·, ω), and φ(·, ω) provided that
they are all Carathéodory maps and satisfy

(i) (ω 7→ ‖a(·, ·, ω)‖) ∈ Lp(Ω),

(ii) (ω 7→ ‖ℓ(·, ω)‖) ∈ Lp(Ω),

(iii) φ(·, ω) is Lipschitz continuous with a Lipschitz constant L independent of ω.

Here, φ is said to be a Carathéodory map if φ(x, ·) is measurable for every x ∈ H
and φ(·, ω) is continuous for every ω ∈ Ω; with analogous definitions for a and ℓ.
Finally, observe that the proofs do not work if the Dirichlet boundary function uD

is also random, since the convex set K̂ is then depending on ω. In this case, different
techniques are necessary to obtain the results, see [55].

Remark 2.3.6. In this remark, we discuss the consequences if parameters other
than the permeability K are random.

If the relative permeability kr(·) and the saturation θ(·) are stochastic, say kr(·, ω)
and θ(·, ω), it is not clear how to define the Kirchhoff transformation; however, κ
will be dependent on ω and so will be the generalized saturation H ; and even if kr,
θ, and K are independent (in the stochastic sense), kr(H(u)) and K will not be in
general — apart from the question of how to define kr◦H ◦u if these are all random
fields. In particular the randomness of the nonlinear function H causes problems
which are beyond the scope of this thesis. Thus, we will henceforth assume that
kr(·) and θ(·) are deterministic.

We now turn to stochastic source functions f and stochastic Neumann boundary
functions fN . Observe that formulation (2.3.14) already includes them provided
that they are integrable. Hence, we assume that

f ∈ L2(0, T ;L2(D) ⊗ L2(Ω)), fN ∈ L2(0, T ;L2(ΓN ) ⊗ L2(Ω)), (2.3.15)

which corresponds to the considerations in Remark 2.3.5. We will indicate at appro-
priate locations throughout this thesis how to treat these functions, confer Remarks
2.3.5, 3.1.28 and 4.1.2.

By the formulation in (2.3.12), a stochastic Dirichlet boundary functions uD is
feasible if it can be written as the trace of a function w ∈ H1(D) ⊗ L2(Ω) with
w ≥ uc almost everywhere on D × Ω analogously to (1.2.9), i.e.

uD(t) ∈ {v = trΓD(t) w : w ∈ H1(D) ⊗ L2(Ω) ∧ w ≥ uc a.e.}, (2.3.16)

where the trace operator trΓD(t) : H1(D) ⊗ L2(Ω) → H1/2(ΓD(t)) ⊗ L2(Ω) is the
generalization of the deterministic trace operator onH1(D) by creating the operator
tensor product with the identity operator on L2(Ω). For its discretization, similar
to that of stochastic initial conditions u0, we refer to the Remarks 3.3.3 and 3.3.4
and the reference in Remark 3.1.28.

Remark 2.3.7. The formulation (2.3.8) provides a direct way to compute the
expectation E[u] of the solution of the time-discrete stochastic Richards equation
by means of the Monte Carlo method. Indeed, we need to sample independent and
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identically distributed (i.i.d.) realizations of K(x, ωn) or, more generally, of âωn(·, ·)
and ℓ̂ωn(·) for n = 1, . . . , NMC and to solve (2.3.8) for each ωn. We denote the
solution by u(·, ωn) and compute the average

ū(x) :=
1

NMC

NMC
∑

n=1

u(x, ωn).

Then, it is well known that

P

(

lim
NMC→∞

ū(x) = E[u](x)

)

= 1

for all x ∈ D by the strong law of large numbers (e.g. [78, Section 16]). The great
advantages of this method are that it is easy to implement and that it can be
run independently of the considered setting (e.g. also in high-dimensional spaces).
Unfortunately, the convergence speed is rather poor. For this question, we refer to
Subsection 4.1.3, where we carry out a more refined analysis of the Monte Carlo
approach.

Remark 2.3.8. There are numerous investigations about how the random per-
meability K is typically distributed. Traditionally (and fortified by a number of
experiments), it is often assumed that it has a lognormal distribution, i.e.

log(K(x, ·)) ∝ N (µK , σ
2
K),

see e.g. [27, 39, 57, 100]. This is expedient since it ensures the positivity of K
and allows easy computation of moments. Other authors refer to mismatches with
real-life data [50, 104] and prefer other models, in particular gamma distributed
permeabilities, see e.g. the references in [77]. Comparisons of lognormally and
gamma distributed permeability can be found in [77] on the basis of experimental
data and in [84] on the basis of field data; [99] provides theoretical estimates about
the bias when using false distributions.

We emphasize that, by means of the Karhunen–Loève expansion in Section 3.1, our
approach does not depend on a particular choice of the distribution but allows to
compute directly on the basis of measured data (see Subsection 3.1.3).

The last remark provides a short survey about generalized random fields and white
noise. We refer to the stated references for further details.

Remark 2.3.9. Random fields as defined in Definition 2.1.3 are not sufficient to
model highly erratic processes. To this purpose, one introduces generalized random
fields onD, which are continuous linear mappings from a space S of test functions on
D to a space of random variables on Ω (for the exact definition, see [43]). Concerning
white noise, one has to deal moreover with generalized random variables which are
no longer in L2(Ω). If K or u is modeled by a generalized random field, it is not
obvious how to interpret the product K(x, ω)∇u(x, ω) which arises in (2.3.6). We
come back to this topic after concretizing “white noise”.

Let S be the Schwartz space of rapidly decreasing smooth functions [109, p. 183]
and its dual S ′ the space of tempered distributions. In order to model white noise,
choose as probability space the set Ω = S ′(Rd) equipped with the weak*-topology
and Borel sigma-algebra and the measure µ1 such that

∫

S ′(Rd)

ei
S ′(Rd)

〈ω,ϕ〉
S(Rd) dµ1(ω) = e−‖ϕ‖2/2 ∀ϕ ∈ S (Rd), (2.3.17)
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which exists due to the Bochner–Minlos theorem [58, Section 2.1]. On this space,
the white noise is defined as expansion

W (x, ω) :=
∞
∑

k=1

ηk(x)Hαk
(ω), (2.3.18)

where {ηk} is a basis of L2(Rd) and {Hα} is a basis of L2(S ′(Rd)), see [58, p. 38].
For each x ∈ R

d, W (x, ω) ∈ 〈S 〉′, which is the dual space of 〈S 〉 := S (S ′(Rd, µ1)),
cf. [71, Section 3.3] for the precise definitions.

Resuming the question of the multiplication K(x, ω)∇u(x, ω) if K and u are gener-
alized random fields, this is possible in the usual pointwise way only under further
assumptions. For example, it works for u ∈ L2(D) ⊗ 〈S 〉 if K is C∞ in space and
has special regularity on Ω, cf. [19, Theorem 6.18]. However, usually one has to take
Wick products f ⋄ g for f, g ∈ 〈S 〉′, cf. [58, Section 2.4]. Once having defined the
Wick product, one can extend it to analytic functions by its power series, e.g. the
Wick exponential exp⋄X :=

∑

n∈N

1
n!X

⋄n for X ∈ 〈S 〉′.
As an example, the Wick SPDE of the simple pressure equation in saturated soil is
according to [58, Section 4.6] given by

− div(K(x) ⋄ ∇p(x)) = f(x) on D (2.3.19)

p(x) = 0 on ΓD. (2.3.20)

Here, f(x) has to be 〈S 〉′-valued and K is modeled as

K(x, ·) = exp⋄W (x, ·),

where W is the white noise process from (2.3.18) such that K(x, ·) ∈ 〈S 〉′. With
appropriate assumptions on the regularity of f , it is possible to prove that (2.3.19)–
(2.3.20) has a unique solution p ∈ C2(D) ⊗ 〈S 〉′. Further convergence results for
linear elliptic SPDEs with white noise can be found in [17].

There are several reasons why this approach does not work for the Richards equa-
tion. The main reason is that it no longer allows a pointwise interpretation of the
realizations of K and consequently for p and u. Therefore, neither the Kirchhoff
transformation κ(p) nor the saturation H(u) in (1.1.9) and (1.1.10) make sense,
in particular since these functions cannot be written as power series like the Wick
exponential function above. Beside from this, it is doubtful whether this Wick
product approach provides the correct modeling. First, it is E[X ⋄ Y ] = E[X ]E[Y ]
for X, Y ∈ 〈S 〉′, see [58, p. 64], which means that the mean of the solution of (lin-
ear) Wick SPDEs is not influenced by higher statistical moments of K. Secondly,
comparisons with SPDEs with usual interpretation of the multiplication, e.g. in [58,
Section 3.5], show that the solution from the Wick models do not agree with Monte
Carlo simulations in general. For this reason, we will henceforth concentrate solely
on random fields K with the usual multiplication.
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Chapter 3

Discretization

In this chapter, we describe the discretization of the parabolic nonlinear SPDE to
find u(t) ∈ K(t) satisfying

E

[∫

D

H(u(t))t (v − u(t)) dx

]

+ E

[∫

D

K∇u(t)∇ (v − u(t)) dx

]

≥ E

[∫

D

K kr(H(u(t)))ρgez∇ (v − u(t)) dx

]

+ E

[∫

D

f(t) (v − u(t)) dx

]

− E

[

∫

ΓN (t)

fN(t) (v − u(t)) dσ

]

∀v ∈ K(t), (3.0.1)

as introduced in (2.3.14). The structure of the equation and the number of differ-
ent variables necessitate a separation of the discretization into several steps which
are carried out independently. A main difficulty consisting in the nonlinearity in
the spatial derivative was already treated in (2.3.2) by the Kirchhoff transforma-
tion. As next steps, we have to take care of the random field K(x, ω) first; we
use a Karhunen–Loève expansion to represent it in a countable number of random
variables which concurrently specify a finite-dimensional stochastic domain. This
is done in Section 3.1. Next, we introduce a suitable time discretization in Sec-
tion 3.2, where we treat the gravitational term explicitly in order to simplify the
following spatial and stochastic problems. It also allows us to write the arising
time-discrete problems as variational inequalities, which can be seen as convex min-
imization problems. Therefor, we use finite element ansatz functions in the spatial
domain and polynomial chaos ansatz functions in the stochastic domain which are
introduced consecutively in Section 3.3. While this discretization in both spatial
and stochastic direction is straightforward for the linear parts of the equation, one
has to turn special attention to the nonlinear term, which is done in Subsection
3.3.3. Furthermore, we present some convergence proofs. Finally in Section 3.4, we
give some numerical results concerning the discretization error.

3.1 The Karhunen–Loève expansion

A major difficulty when incorporating random fields into differential equations is
the problem that one has to deal with abstract measure spaces Ω which are possi-
bly infinite-dimensional or where distributions and density functions—if existent—
might only be known approximately by sampling. In addition, one is particularly
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interested in handling functions on these abstract spaces, namely random variables
defined on the sigma-algebra of random events in Ω. The simplest and mostly used
method is the aforementioned Monte Carlo method (Remark 2.3.7), which consists
of sampling these functions at randomly chosen points ωn ∈ Ω. The Karhunen–
Loève approach in this section pursues another idea by expanding a function K on
D × Ω in a series of the form

K(x, ω) = K̄(x) +

∞
∑

r=1

√

λrgr(x)ξr(ω),

where {gr(x)} is an orthonormal set of functions on D and {ξr(ω)} is a special set
of random variables on Ω. It is named after Kari Karhunen [62] and Michel Loève
[78] who developed it independently of each other in the late 1940s.

3.1.1 Definition

Let K ∈ L∞(D) ⊗ L2(Ω) be a random field. If K(x, ·) ∈ L2(Ω) for every x ∈ D,
then K(x, ·) is often called a second order random variable. The family {K(x, ·)}x

of second order random variables is then called a second order random field defined
on D. We set the following notations.

Definition 3.1.1. Let K(x, ·) be a second order random field. Then, we denote the
expectation value of K by K̄(x) = E[K(x, ·)]. The function VK defined on D ×D
by

VK(x1, x2) := E
[(

K(x1, ω) − K̄(x1)
) (

K(x2, ω) − K̄(x2)
)]

is the covariance of K and the function CK defined on D ×D by

CK(x1, x2) := E [K(x1, ω)K(x2, ω)]

is the correlation of K.

If the second order random field is centered at expectations, the second moments
E[K(x, ω)2] are variances and the correlation and the covariance coincide. In the
case K̄(x) 6≡ 0, one can easily see that

VK(x1, x2) = CK(x1, x2) − K̄(x1)K̄(x2).

This means that we have a one-to-one correspondence between these two statistics,
and the following statements work with each of them. For a survey of second order
properties—those which can be defined or determined by means of covariances—we
refer to [78, Chapter X]. In particular, we cite the following two propositions.

Proposition 3.1.2 ([78]). A function C(x1, x2) on D ×D is a correlation if, and
only if, it is of nonnegative type, i.e. for every finite subset Dn ⊂ D and every
function h(x) on Dn, we have

∑

x1∈Dn

∑

x2∈Dn

C(x1, x2)h(x1)h(x2) ≥ 0.

Definition 3.1.3. A second order function K(x, ·) is continuous in quadratic mean
(in q.m.) at x ∈ D if

E

[

(K(x+ εh, ·) −K(x, ·))2
]

→ 0 as ε→ 0, x+ εh ∈ D.
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Proposition 3.1.4 ([78]). K(x, ·) is continuous in q.m. at x ∈ D if, and only if,
CK(x1, x2) is continuous at (x, x).

We now assume that K(x, ·) is continuous in q.m. and consider the operator
CK : L2(D) → L2(D) defined by

g 7→ (CKg)(x1) :=

∫

D

CK(x1, x2)g(x2) dx2. (3.1.1)

We will see that the correlation CK is a Fredholm kernel and CK is a trace class
operator. First, CK is self-adjoint since CK(x1, x2) = CK(x2, x1). Moreover, CK

is positive, i.e. (CKg, g)L2(D) ≥ 0 for all g ∈ L2(D), due to Proposition 3.1.2.
Finally, we show the continuity of the kernel CK on D ×D. By Proposition 3.1.4
we know that CK is continuous at every diagonal point (x1, x1) ∈ D × D. For
(x1, x2) ∈ D × D with x1 6= x2, we observe that K(x1 + ε1h1, ·) → K(x1, ·) and
K(x2 + ε2h2, ·) → K(x2, ·) in L2(Ω) as ε1, ε2 → 0 implies

CK(x1 + ε1h1, x2 + ε2h2) = E [K(x1 + ε1h1, ·)K(x2 + ε2h2, ·)]
→ E [K(x1, ·)K(x2, ·)] = CK(x1, x2),

where the convergence of the expectation follows from [78, p. 469]. Thus, by Mer-
cer’s theorem [109, Theorem VI.4.2], it holds

CK(x1, x2) =

∞
∑

r=1

λrgr(x1)gr(x2), (3.1.2)

where the series converges absolutely and uniformly on D×D, and the continuous
functions gr are the eigenfunctions of CK corresponding to eigenvalues λr, i.e.

∫

D

CK(x1, x2)gr(x2) dx2 = λrgr(x1). (3.1.3)

All eigenvalues are nonnegative and can be ordered as λ1 ≥ λ2 ≥ . . . ≥ 0. Eigen-
functions corresponding to (necessarily finitely) multiple eigenvalues are written
with distinct indices, and they are orthonormalized on D according to

∫

D

gr(x)gs(x) dx = δrs. (3.1.4)

Employing (3.1.2) and the uniform convergence, we get

∞
∑

r=1

λr =

∞
∑

r=1

λr

∫

D

gr(x)gr(x) dx =

∫

D

CK(x, x) dx <∞.

Let us assume for a moment that K̄(x) = E[K(x, ω)] ≡ 0. We now define for
r = 1, 2, . . .

ξr(ω) :=
1√
λr

∫

D

K(x, ω)gr(x) dx. (3.1.5)

These integrals exist, since K (in q.m.) and gr are continuous on the domain D.
The {ξr} are orthonormal on Ω due to (3.1.3) and (3.1.4), since

E[ξrξs] =
1√
λrλs

∫

D

∫

D

E[K(x1, ω)K(x2, ω)]gr(x1)gs(x2) dx1 dx2

=
1√
λrλs

∫

D

λsgr(x1)gs(x1) dx1 (3.1.6)

= δrs.
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The same calculation shows

E[K(x, ω)ξr(ω)] =
√

λrgr(x), (3.1.7)

which represents the coefficients when expanding K(x, ·) in the orthonormal direc-
tions ξr. This directs us to the partial sum

KM (x, ω) =

M
∑

r=1

√

λrgr(x)ξr(ω).

Exploiting the orthogonality, (3.1.7) and (3.1.2), we see by

E

[

(K(x, ω) −KM (x, ω))
2
]

= E
[

K(x, ω)2
]

+ E
[

KM (x, ω)2
]

− 2E

[

M
∑

r=1

√

λrgr(x)ξr(ω)K(x, ω)

]

= CK(x, x) −
M
∑

r=1

λrgr(x)gr(x) → 0

that KM → K in L2(Ω) as M → ∞, uniformly on D. These considerations give
rise to the following theorem.

Theorem 3.1.5 ([78]). A second order random field K(x, ω) ∈ L∞(D) ⊗ L2(Ω)
continuous in q.m. on a domain D with centered expectations has an orthogonal
decomposition

K(x, ω) =

∞
∑

r=1

√

λrgr(x)ξr(ω) (3.1.8)

with (3.1.4) and (3.1.6) if, and only if, the λr are the eigenvalues and the gr are
the orthonormalized eigenfunctions of its correlation operator. Then the series con-
verges in L2(Ω) uniformly on D.

Proof. We still need to show the “only if” assertion. If K has the decomposition
(3.1.8), we have

CK(x1, x2) = lim
M→∞

E[KM (x1, ω)KM (x2, ω)] =

∞
∑

r=1

λrgr(x1)gr(x2)

and consequently
∫

D

CK(x1, x2)gr(x2) dx2 = λrgr(x1).

We now drop the assumption K̄(x) = E[K(x, ω)] ≡ 0. To this end, we split up
K(x, ω) = K̄(x) + K̃(x, ω) and perform the orthogonal decomposition for the ran-
dom part K̃. Another possibility is to use directly the covariance kernel VK , which
is identical to the correlation kernel CK−K̄ . In either case, defining the ξr according
to

ξr(ω) :=
1√
λr

∫

D

(

K(x, ω) − K̄(x)
)

gr(x) dx (3.1.9)

instead of (3.1.5), Theorem 3.1.5 holds verbatim if one replaces (3.1.8) with

K(x, ω) = K̄(x) +

∞
∑

r=1

√

λrgr(x)ξr(ω). (3.1.10)
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Definition 3.1.6. The orthogonal decomposition (3.1.10) is called the Karhunen–
Loève expansion (KL expansion) of the random field K ∈ L∞(D) ⊗ L2(Ω).

Definition 3.1.7. The partial sum

KM (x, ω) := K̄(x) +

M
∑

r=1

√

λrgr(x)ξr(ω) (3.1.11)

is called the M -th truncate of the Karhunen–Loève expansion (3.1.10).

Remark 3.1.8. The preceding definitions can be extended easily to random fields
K in L2(D) ⊗ L2(Ω), see [95, Theorem 2.5]. In particular, it holds

‖K −KM‖2
0,0 = E

[∫

D

(K(x, ω) −KM (x, ω))2 dx

]

→ 0. (3.1.12)

In Proposition 3.1.12, Corollaries 3.1.14 and 3.1.18, and Theorem 3.1.19, we will
give conditions for the convergence of the KL expansion in L∞(D) ⊗ L∞(Ω).

Partial sums KM of the KL expansion for K are optimal finite-dimensional approx-
imations of K in the mean square sense having an orthonormal basis in D (see [47,
p. 24]). A quantitative information provides the following theorem in [95] (PU⊗V is
the projection onto U ⊗ V in the L2 sense).

Theorem 3.1.9. If K ∈ L2(D) ⊗ L2(Ω) has the KL expansion (3.1.10), then for
any M ∈ N it holds

inf
U⊂L2(D)

dim(U)=M

‖K − PU⊗L2(Ω)K‖2
0,0 =

∑

r≥M+1

λr

with equality only for U = span{g1, g2, · · · , gM}, i.e. for the M -th truncate (3.1.11).

The approximation quality of the M -th truncate is thus depending on the decay
of the eigenvalues λr, which in turn is depending on the covariance kernel VK .
Following the theory described in [66], one can find bounds for the eigenvalue decay
in dependence of the regularity of VK .

Theorem 3.1.10 ([95]). Let VK : L2(D) → L2(D) be the operator

g 7→ (VKg)(x1) =

∫

D

VK(x1, x2)g(x2) dx2 (3.1.13)

in analogy to (3.1.1). We denote by {(λr, gr)}r≥1 the eigenpair sequence of the
operator VK . Let {Dj} be a finite partition of the domain D ⊂ R

d.

a) If VK is piecewise analytic on D × D, then there exist positive constants C
and C̃, only depending on VK , such that

0 ≤ λr ≤ C exp(−C̃r 1
d ) for all r ≥ 1. (3.1.14)

b) If VK is piecewise Hk on D × D with k ≥ 1, then there exists a positive
constant C, only depending on VK , such that

0 ≤ λr ≤ Cr−
k
d for all r ≥ 1.
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Figure 3.1: Example of a realization of the KL expansion KM (x, ω) on D = (0, 1)2

with covariance kernel (3.1.16) for different truncations M = 1, 3, 5, 10.

c) If VK is piecewise smooth on D×D, then for any s > 0 there exists a positive
constant C, only depending on VK and s, such that

0 ≤ λr ≤ Cr−s for all r ≥ 1.

Moreover, if all the domains Dj have the uniform cone property, then for
any s > 0 and any multi-index α ∈ N

d there exists a positive constant C,
depending on VK , s and α, such that on each Dj

‖∂αgr‖L∞(Dj) ≤ C|λr|−s for all r ≥ 1. (3.1.15)

Example 3.1.11. Two of the most commonly used covariance kernels (e.g. [9, 47,
63, 95]) are the exponential covariance kernel

VK(x1, x2) = exp(−|x1 − x2|/γ), (3.1.16)

see Appendix A for more details, and the Gaussian covariance kernel

VK(x1, x2) = σ2 exp(−(x1 − x2)
2/γ2). (3.1.17)

For D = (−a, a), we obtain the following decay rates, which reflects the regularity
of VK : for the kernel (3.1.16), we have

8a2γ

(rγπ)2 + (2a)2
≤ λr ≤ 8a2γ

((r − 1)γπ)2 + (2a)2

by (A.11) and (A.12) and thus
λr ≤ Cr−2

for a constant C = C(a, γ), whereas the analytic kernel (3.1.17) even provides

λr ≤ C
(1/γ)r

Γ(r/2)
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Figure 3.2: Eigenvalue decay for different covariance kernels on D = (0, 1)d for d =
1, 2, 3. Left: exponential covariance kernel (γ = 20). Right: Gaussian covariance
kernel (σ = 1, γ = 2)

with a constant C = C(a, γ, σ), see [103], where Γ(·) denotes the gamma function
interpolating the factorial. In the latter case, the decay of the eigenvalues is even
faster than predicted by Theorem 3.1.10. An example is shown in Figure 3.2.

By means of Theorem 3.1.10, we are now ready to give a criterion for the convergence
of KM to K in L∞(D) ⊗ L∞(Ω).

Proposition 3.1.12. Let VK be analytic on D ×D and K ∈ L∞(D) ⊗ L∞(Ω). If
the random variables ξr in the KL expansion (3.1.10) are uniformly bounded, i.e. if
there exists a c ∈ R such that ‖ξr‖L∞(Ω) ≤ c for all r ∈ N, then each term in
(3.1.10) can be bounded by

∥

∥

∥

√

λrgrξr

∥

∥

∥

L∞(D)⊗L∞(Ω)
≤ C exp(−C̃r 1

d ) (3.1.18)

with positive constants C and C̃, depending only on VK , and the truncate KM

converges to K in L∞(D) ⊗ L∞(Ω) with

‖K −KM‖L∞(D)⊗L∞(Ω) ≤ CΓ(d, C̃M
1
d )

with positive constants C, depending on VK , and C̃, depending on VK and d, where
Γ(d, s) is the incomplete gamma function [2, p. 260].

Proof. By virtue of the boundedness of ξr, we get by (3.1.14) and (3.1.15)

∥

∥

∥

√

λrgrξr

∥

∥

∥

L∞(D)⊗L∞(Ω)
≤ Cλ

1
2−s
r ≤ C exp

(

−
(

1

2
− s

)

C̃r
1
d

)

for all s > 0.

For the second assertion, (3.1.18) provides

‖K −KM‖L∞(D)⊗L∞(Ω) =

∥

∥

∥

∥

∥

∞
∑

r=M+1

√

λrgrξr

∥

∥

∥

∥

∥

L∞(D)⊗L∞(Ω)

≤
∞
∑

r=M+1

C exp(−C̃r 1
d ) ≤

∫ ∞

M

C exp(−C̃x 1
d ) dx = CdC̃−dΓ(d, C̃M

1
d ) → 0

as M → ∞.
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We can relax the conditions on the boundedness of ξr and the regularity of K and
VK . By using Chebyshev’s inequality and the Borel–Cantelli lemma, one can prove
the following proposition.

Proposition 3.1.13 ([78]). Let the random variables Xr be orthogonal. If it holds
∑

r log2(r)E[X2
r ] < ∞, then the series

∑

r Xr converges in L2 sense and almost
surely.

Applying Proposition 3.1.13 to KL expansions with Xr =
√
λrgr(x)ξr , we get im-

mediately another convergence criterion.

Corollary 3.1.14. If the functions in (3.1.11) satisfy

∞
∑

r=1

λr log2(r)‖gr‖2
L∞(D) Var(ξr) <∞,

then the KL expansion converges in L∞(D) ⊗ L∞(Ω).

3.1.2 Independent KL expansions and reformulation

We now turn to the functions ξr in the Karhunen–Loève expansion (3.1.10). The
relationship (3.1.6) means that these random variables ξr are mutually uncorrelated
and have unit variance. Moreover, by (3.1.9) we obtain immediately

E[ξr] = 0 for all r. (3.1.19)

Another important concept when dealing with random variables is independence.
If two or more random variables are independent, they are also uncorrelated (this
can be seen for random variables ξ1, . . . , ξM from the KL expansion (3.1.10) by
combining (3.1.19) and Proposition 2.1.2), but the opposite is not true in general.
In this subsection, we state some consequences if the functions ξr are independent.
Later on, we have a closer look on the important class of normally distributed
random fields where the KL decomposition turns out to consist of independent
terms. Finally, we derive an exact formulation of (3.0.1) when K is approximated
by a truncated KL series (3.1.11).

A very interesting feature of having independent ξr is the fact that this provides
further criteria for the L∞(Ω) convergence of the KL expansion. In order to prove
this, we recall a famous result from probability theory, Kolmogorov’s zero–one law.
For preparation, let Xr be a set of random variables indexed by r ∈ {1, . . . ,M},
M ≤ ∞, defined on (Ω, E ,P) with the notations from Section 2.1, and let us consider
the sigma-algebras σr := σ(Xr , Xr+1, . . .). The σr form a nonincreasing sequence
of sigma-algebras, and its intersection

σ∞ =

∞
⋂

r=1

σr

is called tail sigma-algebra. Note that all σr and in particular the tail sigma-algebra
σ∞ are contained in σ(X1, X2, . . .) induced by the whole sequence (Xr)r. The ele-
ments of σ∞ are called tail events, and they describe, loosely speaking, the events
which can only be determined by infinitely many Xr. Now, let {Xr} be indepen-
dent. Then σ(X1, . . . , Xr) is independent of σr+1 and therefore also independent of
σ∞ ⊂ σr+1 for arbitrary r. Hence, σ∞ is independent of σ(X1, X2, . . .) and, being
contained therein, even independent of itself. Since an event A is independent of
itself if, and only if, P(AA) = P(A)P(A), i.e. if P(A) = 0 or P(A) = 1, the zero–one
law reads:
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Theorem 3.1.15 ([78]). On a sequence of independent random variables, the prob-
ability of a tail event is either 0 or 1.

In other words, the tail sigma-algebra of a sequence of independent random variables
is equivalent to {∅,Ω}. Since the set of convergence {ω :

∑∞
r=1Xr(ω) < ∞} is a

tail event, we can state:

Corollary 3.1.16. If {Xr} is a sequence of independent random variables, then
the series

∑∞
r=1Xr converges almost surely or diverges almost surely.

In view of this corollary, it is clear that the conditions under which one obtains
almost sure convergence is under the assumption of independence by far less re-
strictive than elsewise. For an arbitrary sequence of random variables, we have the
table of convergence below (see [78] for corresponding definitions):

convergence in L2

⇓
convergence a.s. ⇒ convergence in probability ⇒ convergence of laws

In contrast, for series of independent random variables, the reverse implications are
also true [78, Section 17].

Theorem 3.1.17. For series
∑

r Xr of independent random variables Xr which are
centered at expectations and are uniformly bounded, convergence of laws, conver-
gence in probability, convergence in L2(Ω), and almost sure convergence are equiv-
alent.

Corollary 3.1.18. If all random variables ξr obtained in the KL decomposition
(3.1.10) of K are independent and bounded, then it holds

‖K −KM‖2
L∞(D)⊗L∞(Ω) → 0.

Proof. Combine Theorems 3.1.5 and 3.1.17.

The question arises whether one can ensure the independence of the uncorrelated
random variables ξr. Note that their distribution is entirely determined by the
distribution of K. An important special case is when K(x, ·) is a Gaussian random
variable. Since normality is preserved under linear combinations and passages to
the limit in q.m. and therefore also under integration in q.m., this property is
transferred to the ξr. Even more is true: for such random fields, orthogonality
becomes independence. The precise formulation reads as follows.

Theorem 3.1.19 ([78]). If the covariance VK is continuous on D × D, then the
random field K(x, ·) is Gaussian if, and only if, the random variables ξr defined by
(3.1.9) are Gaussian. In this case, the ξr are independent and the KL expansion
(3.1.10) converges in L∞(D) ⊗ L∞(Ω).

We stress that the independence of the normally distributed ξr is not implied by the
fact that they are uncorrelated, which is—albeit sometimes claimed in the literature
(see [83])—not true in general, but by the normal distribution of K.

Remark 3.1.20. As we will see below, independence is essential for the formulation
of the solution space whenK is approximated by a truncated KL expansionKM . For
that, one is sometimes tempted to assume that the ξr are Gaussian (e.g. [47, 75]).
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Keese [64] proposes another remedy: if there exists a (nonlinear) transformation
G = F−1

K(x,·) ◦ erf, with the distribution function FK(x,·)(y) = P(K(x, ω) < y) and

the error function erf(·), see [2, p. 297], such that K(x, ω) = G(x, Y (x, ω)) for a
Gaussian random field Y , the KL expansion reads

K(x, ω) = G
(

x, Ȳ (x) +
∑

√

λY,rgY,rξr

)

(3.1.20)

with Gaussian ξr . The drawback of this idea reveals when using a stochastic
Galerkin approach (Subsection 4.1.1), where the nonlinearity of K in ξr causes
avoidable approximation errors while assembling the stiffness matrix (see Remark
4.1.5).

Another possibility in the case of non-independent ξr—which is more related to
the purpose of stochastic Galerkin methods—is to expand each ξr in a new set of
independent Gaussian random variables ζr = (ζ1, . . . , ζMr ) as a polynomial chaos
approach

ξr(ω) =

Pr
∑

k=1

ξr,kΨk(ζr(ω)) (3.1.21)

with Hermite polynomials Ψk (see Subsection 3.3.1). For the consequences for our
approach, we also refer to Remark 4.1.5.

Keeping these options in mind, we make for simplicity the following assumption for
the rest of this thesis.

Assumption 3.1.21. The ξr in the Karhunen–Loève expansion (3.1.10) are inde-
pendent.

Now approximate the function K in (3.0.1) by its truncated KL expansion KM .
For a fixed truncation number M < ∞, let us denote by ξ = (ξ1, . . . , ξM ) the
vector of random variables ξr : Ω → R and by Ωr := ξr(Ω) their range. The
set Ω(M) := Ω1 × · · · × ΩM ⊂ R

M is then a probability space equipped with the
sigma-algebra Bor(Ω(M)) and a unique probability measure P

(M) satisfying

P
(M) =

M
∏

r=1

Pξr ,

see [16, Theorem 4.14] for the uniqueness of P
M . One may identify

L2(Ω, σ(ξ1, . . . , ξM ),P) ∼= L2(Ω(M),Bor(Ω(M)),P(M)). (3.1.22)

In turn, the right-hand side can be identified with

L2(Ω(M),Bor(Ω(M)),P(M)) ∼=
M
⊗

r=1

L2(Ωr,Bor(Ωr),Pξr ), (3.1.23)

see Theorem 2.2.4. We assume that the random variables ξr have known density
functions pdfr : Ωr → R

+ with pdfr ∈ L∞(Ωr). Then

pdf(y) =

M
∏

r=1

pdfr(yr) for all y = (y1, . . . , yM ) ∈ Ω(M) (3.1.24)
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is the joint probability density function of ξ. Due to the identification (3.1.22), the
expectation of a function v ∈ L2(Ω(M)) can be written as

E[v] =

∫

Ω

v(ξ(ω)) dP(ω)

=

∫

Ω(M)

v(y) dP
(M)(y)

=

∫

ΩM

· · ·
∫

Ω1

v(y1, . . . , yM ) dPξ1(y1) · · · dPξM (yM ) (3.1.25)

=

∫

Ω(M)

v(y)pdf(y) dy

=

∫

ΩM

· · ·
∫

Ω1

v(ξ1, . . . , ξM )pdf1(ξ1) dξ1 · · · pdfM (ξM ) dξM .

In the last line we changed the notation from yr to ξr to underline the fact that we
introduced “coordinates” ξ1, . . . , ξM to the space Ω by means of the KL expansion.

Remark 3.1.22. At this point, we can concretize the meaning of the space Ω and
the function K in (3.0.1). We replace K by its truncated KL expansion KM , which
results in looking at (Ω, σ(ξ1, . . . , ξM )) instead of (Ω, E). Thus, we have to find
uM (t) ∈ K(t) which satisfies

E

[∫

D

H(uM (t))t (v − uM (t)) dx

]

+ E

[∫

D

KM∇uM (t)∇ (v − uM (t)) dx

]

≥ E

[∫

D

KMkr(H(uM (t)))ρgez∇ (v − uM (t)) dx

]

+ E

[∫

D

f(t) (v − uM (t)) dx

]

− E

[

∫

ΓN (t)

fN(t) (v − uM (t)) dσ

]

∀v ∈ K(t). (3.1.26)

By means of the Doob–Dynkin lemma (see [90, p. 7]), the solution uM of the
stochastic variational inequality (3.1.26) can be described by just a finite number
of random variables, i.e.

uM (t, x, ω) = uM (t, x, ξ1(ω), . . . , ξM (ω)) = uM (t, x, ξ(ω)).

Consequently, the stochastic part of the solution space is given by (3.1.22) and the
set K(t) from (2.3.13) can be written as

K(t) =
{

v ∈ H1(D) ⊗ L2(Ω) : v(x, ξ(ω)) ≥ uc a.e. on D × Ω∧
trΓD(t) v(·, ξ(ω)) = uD(t) for almost all ω ∈ Ω

}

(3.1.27)

or

K(t) =
{

v ∈ H1(D) ⊗ L2(Ω(M)) : v(x, ξ) ≥ uc a.e. on D × Ω(M) ∧

trΓD(t) v(·, ξ) = uD(t) for almost all ξ ∈ Ω(M)
}

. (3.1.28)

Remark and Notation 3.1.23. We will henceforth always operate on the space
(Ω(M),Bor(Ω(M)),P(M)). In light of the identification (3.1.22), we will however
mostly write L2(Ω) in the following and use from time to time the short hand
notation

E[v] =

∫

Ω

v(ξ) dP
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for the expectation of v ∈ L2(Ω(M)) from (3.1.25). This implies the restriction of the
probability space from (Ω, E ,P) to (Ω, σ(ξ1, . . . , ξM ),P) as mentioned above. Only
in cases, when we want to emphasize the embedding in R

M attained by (3.1.22),
we will use the notation Ω(M) with coordinates y ∈ Ω(M) or ξ ∈ Ω(M), e.g. when
looking at the space C0(Ω(M)) = {v : Ω(M) → R : v continuous} in Section 3.3.

The first question arising from (3.1.26) is whether this problem is still well-posed.
In view of (2.3.1) this means whether KM is bounded and uniformly coercive,
i.e. whether there exist Kmin, Kmax ∈ (0,∞) such that

P(KM (x, ω) ∈ [Kmin, Kmax] ∀x ∈ D) = 1. (3.1.29)

The convergence ‖KM−K‖L∞(D)⊗L2(Ω) → 0 asM → ∞ in combination with (2.3.1)
is of no use, since, first, we are interested in truncations KM for small M (note
that the time-discrete problem will be solved in d + M dimensions later on) and,
secondly, we remember the Gibbs phenomenon for Fourier series. To circumvent
this, one normally imposes assumptions on the ratio of the expectation K̄(x) and the
random part K̃(x, ·) (see [9] or [103]) to ensure (3.1.29) while supposing in addition
the convergence KM → K in L∞(D)⊗L∞(Ω). For example, the assumption in [9]
reads

σ0,M (x) < K̄(x) −Kmin for almost all x ∈ D (3.1.30)

with σ0,M : D → R given by

σ0,M (x) =

M
∑

r=1

√

λr |gr(x)|αr ,

where Ωr = ξr(Ω) ⊂ (−αr, αr) is supposed to be bounded.

The violation of (3.1.30) can occur even in “nice” situations, see the example in
[9, p. 11] for the exponential covariance kernel from Example 3.1.11.

The independence of the random variables {ξr} is again the key to the problem.

Lemma 3.1.24 ([103]). Let KM be the truncated KL expansion (3.1.11) of K. If
the random variables ξ1, . . . , ξM are independent, then it holds

KM = E[K|σ(ξ1, . . . , ξM )].

Proof. Let M ′ > M . Due to the independence of {ξr} and (3.1.19), one can state
the conditional expectations E[ξr|σ(ξ1, . . . , ξM )] = E[ξr] = 0 for M < r ≤ M ′ and
hence

E[KM ′ |σ(ξ1, . . . , ξM )] = KM . (3.1.31)

For an arbitrary A ∈ σ(ξ1, . . . , ξM ), it follows by (3.1.31) and (3.1.12) that

∫

D

(∫

A

(KM −K) dP

)2

dx =

∫

D

(∫

A

(KM ′ −K) dP

)2

dx

≤
∫

D

∫

A

(KM ′ −K)2 dP dx→ 0

as M ′ → ∞. This proofs the assertion.

Corollary 3.1.25. If the random variables ξ1, . . . , ξM are independent, then it holds

P(KM (x, ω) ∈ [Kmin, Kmax] ∀x ∈ D) = 1.
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P(ξr /∈ Ωr,0) estimated by
(3.1.32) (m = 2)

Ωr,0 = [−2, 2] 0.0455 0.25
Ωr,0 = [−3, 3] 0.0027 0.111
Ωr,0 = [−5, 5] 5.7 · 10−7 0.04
Ωr,0 = [−10, 10] 1.5 · 10−23 0.01

Table 3.1: Loss of information by truncating using ξr ∝ N (0, 1).

Proof. This follows from (2.3.1) by Lemma 3.1.24 and the monotonicity of condi-
tional expectations [65, Theorem 8.14], since

KM = E[K|σ(ξ1, . . . , ξM )] ≤ E[Kmax|σ(ξ1, . . . , ξM )] = Kmax a.s.,

and analogously for Kmin.

Remark 3.1.26. At the end of this subsection, we consider truncations of the
sets Ωr. This is helpful, since the restriction (3.1.29) stipulates that all the Ωr are
bounded, more precisely, that there exists an αr such that

P({ω : |ξr(ω)| < αr}) = 1

for all r = 1, . . . ,M . This would ban many distributions including Gaussian dis-
tributed ξr although they are widely used in this context (cf. e.g. [47, 75, 92, 113]).
This truncation is now “cutting off” the tails of these distributions without affecting
their approximation qualities. This is possible due to the trivial result that for all
ε > 0, there is a compact set C ⊂ Ω with P(Ω\C) < ε [65, Lemma 13.5].

If Ωr,0 ⊂ Ωr and Ω0 =
∏M

r=1 Ωr,0 ⊂ Ω(M) denotes the subdomain, the loss of
information by truncation can be estimated by Markov’s inequality (see [78, p. 158]),
which reads

E[|X |m] − εm

‖|X |m‖L∞(Ω)
≤ P[|X | ≥ ε] ≤ E[|X |m]

εm

with an m > 0 for a random variable X : Ω → R. With Ω0 =
∏M

r=1[−αr, αr], where
α1, . . . , αM are positive real numbers, it provides

P(ξ /∈ Ω0) = 1 −
M
∏

r=1

P(|ξr| ≤ αr) ≤ 1 −
M
∏

r=1

(

1 − (αr)
−m

E[|ξr |m]
)

. (3.1.32)

Like the related Chebyshev’s inequality, Markov’s inequality is in most cases not
very strict, confer Table 3.1. The inequality (3.1.32) shows in particular the conver-
gence of P(ξ /∈ Ω0) to zero when min1≤r≤M αr → ∞. The consequences for (3.1.26)
when applying the truncation onto Ω0 follows immediately: use the expectation

E
[

u(t, x, ξ)1{ξ∈Ω0}
]

= E [u(t, x, ξ)|ξ ∈ Ω0]P(ξ ∈ Ω0)

instead of the original E[u(t, x, ξ)].

In the discretization as well as in our computations, this truncation will however
not be necessary, cf. the procedure in Subsections 3.3.3 and 3.3.4.

Remark 3.1.27. In hydrological applications, the permeability K is often assumed
to be lognormally distributed, see Remark 2.3.8 for a discussion. To approximate
such a function K, it is possible to use the methods described in Remark 3.1.20 with
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G(·) = exp(·) in (3.1.20), cf. [64], or with a polynomial chaos approach as in (3.1.21),
cf. [53] for approximation results. The most practicable way (used in [13, 40, 87]) in
accordance with the common practice in hydrology (see e.g. [27, 39, 57]) is, however,
to consider K̃ = log(K) and to perform a Karhunen–Loève expansion for K̃. This
results in

KM (x, ω) = exp

(

K̄(x) +
M
∑

r=1

√

λrgr(x)ξr(ω)

)

(3.1.33)

with Gaussian ξr and the corresponding probability space (Ω(M),Bor(Ω(M)),P(M)).
Our approach to solve the stochastic Richards equation will work as well if (3.1.11)
is replaced by (3.1.33), as will be carried out where needed.

Remark 3.1.28. The Karhunen–Loève expansion was introduced for the perme-
ability function K, as the notation throughout this section suggests. However, it
can be applied also to other parts of the Richards equation, even to Dirichlet and
Neumann boundary conditions (cf. [96]) and in particular to the right-hand side
f(x, ω). This was done for example in [12, 13, 32, 82] to obtain

f(x, ω) = f̄(x) +

M(f)
∑

r=1

√

λ
(f)
r g(f)

r ζr(ω), (3.1.34)

and one has to assume that {ζr} is independent of {ξr} (which is supported by
the hydrological context). Inserting the truncated KL expansion of f in (3.1.26)
minimizes the computational effort of our Galerkin approach in Subsection 4.1.1 in
a minor way, whereas it yields a further discretization error and a substantial effort
to compute (3.1.34). For that reason, we will not pursue this idea.

3.1.3 Computational aspects

In this subsection, we go into some details about the computation of the KL ex-
pansion. One has to distinguish between two major tasks: first, parameters like the
covariance have to be estimated from experimental data, and, secondly, the first M
functions gr and ξr in (3.1.10) have to be computed in an efficient way.

We start with the latter problem and assume that the expectation value K̄(x) and
the covariance function VK(x1, x2) from Definition 3.1.1 are known. The functions
gr and numbers λr are the eigenfunctions and eigenvalues of the operator VK on
L2(D) from (3.1.13), i.e.

∫

D

∫

D

VK(x1, x2)gr(x2)ϕ(x1) dx2 dx1 =

∫

D

λrgr(x1)ϕ(x1) dx1 ∀ϕ ∈ L2(D)

(3.1.35)
in weak formulation. Apart from some special cases (e.g. [47, Section 2.3]), exact
solutions are not known, and numerical approximations are necessary. To this
end, we introduce the finite element space Sh ⊂ L2(D) consisting of all continuous
functions in L2(D) which are linear on each triangle t ∈ Th for a given triangulation
Th of D with vertices Nh and spanned by the nodal basis

Λh := {sp : p ∈ Nh},

the elements sp of which are determined by sp(q) = δpq for all p, q ∈ Nh. This
discretization leads to the generalized eigenvalue problem

Vg = λMg, (3.1.36)
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where the matrix V with entries

Vij =

∫

D

∫

D

spi(x1)VK(x1, x2)spj (x2) dx2 dx1

and the mass matrix M with entries

Mij =

∫

D

spi(x)spj (x) dx

are both symmetric and positive definite.

Since the number M of approximate eigenpairs in our truncated expansion (3.1.11)
is typically much smaller than our discrete dimension |Nh|, iterative solvers like
Krylov methods (see, e.g., [93]) are suggested. Moreover, one has to take into
account that V is (in contrast to M) a dense matrix in general. For research in this
context, we refer to Eiermann et al. [32] who investigated the use of Lanczos-based
methods in this setting and Schwab and Todor [95] who created a solver based on
the idea of fast multipole methods.

The fact that V is a dense matrix and the limits to the size of Nh which are
effected thereby have another consequence. It is reasonable to use two different
discretizations for our spatial domain D for the KL expansion on the one hand
and the approximation of the SPDE introduced in 3.3.2 on the other hand or at
least to solve the KL eigenproblem on a distinctly coarser grid. Hence, the discrete
functions g should be stored in a way that they can be transferred easily to another
grid later on. Finally, observe that once the eigenpairs (λr , gr) have been computed,
the functions ξr are obtained by (3.1.9).

For concluding this section, we provide a short insight into how to recover the
expectation value K̄(x) and the covariance function VK(x1, x2) from experimental
data. Let (xi)i ∈ R

ND be a vector of measuring points xi ∈ D for i = 1, . . . , ND.
We assume that we can make observations of NΩ independent realizations of the
random field K at these points and store the values in a matrix K ∈ R

ND×NΩ with

Kil = K(xi, ωl) for i = 1, . . . , ND, l = 1, . . . , NΩ.

We define the (vector-valued) sample mean µK as

µK
i :=

1

NΩ

NΩ
∑

l=1

Kil (3.1.37)

and the (matrix-valued) sample covariance ΣK as

ΣK
ij :=

1

NΩ − 1

NΩ
∑

l=1

(

Kil − µK
i

) (

Kjl − µK
j

)

. (3.1.38)

It is well known (see, e.g., [7]) that µK
i is an unbiased and consistent estimator for

K̄(xi), i.e.

E
[

µK
i

]

= K̄(xi) and lim
NΩ→∞

P
(

|µK
i − K̄(xi)| < ε

)

= 1 ∀ε > 0,

and that ΣK
ij is an unbiased and consistent estimator for VK(xi, xj), i.e.

E
[

ΣK
ij

]

= VK(xi, xj) and lim
NΩ→∞

P
(

|ΣK
ij − VK(xi, xj)| < ε

)

= 1 ∀ε > 0.
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It is now possible to insert the estimated covariance into (3.1.35), but it is usually
more expedient to compute an approximation of the truncated KL expansion di-
rectly from µK

i and ΣK
ij by performing a spectral decomposition. For details of this

method, the so-called principal component analysis (PCA), see [70]. Finally, we
refer to Babuška et al. [10] who shed light on the interplay between PCA and the
stochastic diffusion equation.

3.2 Time discretization and convex minimization

In this section, the time discretization for the Richards equation is presented. The
resulting spatial and stochastic problems will be rewritten as minimization problems
and variational inclusions, which points the way to how our numerical solution will
be configured. We adopt the approach for the deterministic Richards equation
presented in [18, Sections 2.3 and 2.4].

3.2.1 Time discretization

The starting point is the variational inequality (3.1.26) as the weak formulation
of the Kirchhoff-transformed stochastic Richards equation (2.3.3)–(2.3.5) for any
t ∈ (0, T ] after modeling the permeability K by the truncated Karhunen–Loève
expansion (3.1.11). For notational reasons, we omit the truncation parameter M
and set f(t) = 0 and fN(t) = 0 for all t ∈ (0, T ], cf. Remark 3.2.12. The problem is
then to find u(t) ∈ K(t) solving

E

[∫

D

H(u(t))t (v − u(t)) dx

]

+ E

[∫

D

K∇u(t)∇ (v − u(t)) dx

]

≥ E

[∫

D

K kr(H(u(t)))ρgez∇ (v − u(t)) dx

]

∀v ∈ K(t). (3.2.1)

Let 0 = t0 < t1 < . . . < tNT = T be a partition of the time interval [0, T ] and
denote by τn = tn − tn−1 for n = 1, . . . , NT the time step size. We choose our time
discretization to be implicit in the diffusion part on the left-hand side and explicit
in the convective part on the right-hand side of (3.2.1). The explicit treatment of
this convective term coming from the gravitation allows a reformulation in terms
of convex minimization as it is carried out in the sequel. Taking the backward
Euler for the implicit discretization and substituting the time derivative H(u(t))t

in (3.2.1) by the corresponding differential quotient

H(u(tn)) −H(u(tn−1))

τn
,

we achieve the following time-discrete version of (3.2.1): find un ∈ K(tn) with

E

[∫

D

H(un) (v − un) dx

]

+ τnE

[∫

D

K∇un∇ (v − un) dx

]

≥ E

[∫

D

H(un−1) (v − un) dx

]

+ τnE

[∫

D

K kr(H(un−1))ρgez∇ (v − un) dx

]

∀v ∈ K(tn), (3.2.2)

where un is an approximation of u(tn). In the following, we abstract from the
dependence on t and regard (3.2.2) as a steady-state inequality. To that effect, we
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set K := K(tn), ΓD := ΓD(tn) and ΓN := ΓN (tn) and obtain

K = {v ∈ H1(D) ⊗ L2(Ω) : v ≥ uc ∧ trΓD v = uD}. (3.2.3)

Recall from Section 2.3 that, with uD as in (2.3.16), the set K is a nonempty, closed
and convex subset of H1(D) ⊗ L2(Ω).

We now take a closer look at the structure of (3.2.2). To this end, we define the
bilinear form a(·, ·) by

a(v, w) := τnE

[∫

D

K∇v∇w dx

]

∀v, w ∈ H1(D) ⊗ L2(Ω) (3.2.4)

and recall the definitions of the norms ‖ · ‖0,0 and ‖ · ‖1,0 from Section 2.2, viz.

‖v‖0,0 = E

[∫

D

v2 dx

]1/2

, ‖v‖1,0 =

(

E

[∫

D

(∇v)2 dx

]

+ E

[∫

D

v2 dx

])1/2

.

In light of (3.1.29), a(·, ·) is continuous on H1(D) ⊗ L2(Ω) with

|a(v, w)| ≤ τnKmax‖∇v‖0,0‖∇w‖0,0 ≤ C‖v‖1,0‖w‖1,0 ∀v, w ∈ H1(D) ⊗ L2(Ω).
(3.2.5)

On the other hand, we get

a(v, v) ≥ τnKmin‖∇v‖2
0,0 ∀v ∈ H1(D) ⊗ L2(Ω).

By means of the Poincaré inequality [89, p. 340]

∫

D

v2 dx ≤ C

∫

D

(∇v)2 dx ∀v ∈ H1
ΓD

(D)

on the space
H1

ΓD
(D) := {v ∈ H1(D) : trΓD v = 0}, (3.2.6)

we obtain the coercivity of a(·, ·) on H1
ΓD

(D)⊗L2(Ω), i.e. there exists a c > 0 such
that

a(v, v) ≥ c‖v‖2
1,0 ∀v ∈ H1

ΓD
(D) ⊗ L2(Ω). (3.2.7)

In order to fulfill the Dirichlet boundary conditions, the customary procedure is to
look first for a w ∈ H1(D) ⊗ L2(Ω) with trΓD w = uD and to combine it with an
appropriate ṽ ∈ H1

ΓD
(D) ⊗ L2(Ω) to obtain v = w + ṽ. The energy norm of the

latter function can be estimated from below by

a(v, v) = a(ṽ, ṽ) + 2a(w, ṽ) + a(w,w)

≥ c‖ṽ‖2
1,0 − 2C‖w‖1,0‖ṽ‖1,0 − C‖w‖2

1,0

≥ c‖v‖2
1,0 − 2(C + c)‖w‖1,0‖v‖1,0 − (3C − c)‖w‖2

1,0

using (3.2.5), (3.2.7), and the triangle inequality. Furthermore, we can conclude
K ⊂ w +

(

H1
ΓD

(D) ⊗ L2(Ω)
)

from K − w ⊂ H1
ΓD

(D) ⊗ L2(Ω). We summarize this
for sake of quotation.

Lemma 3.2.1. Let w ∈ H1(D)⊗L2(Ω) be a function with trΓD w = uD. Then we
have K ⊂ w +H1

ΓD
(D) ⊗ L2(Ω), and there exist constants c1, c2 > 0 such that

a(v, v) ≥ c‖v‖2
1,0 − c1‖v‖1,0 − c2 ∀v ∈ w +H1

ΓD
(D) ⊗ L2(Ω)

with the constant c from (3.2.7).
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We now turn to the right-hand side of (3.2.2) and define the linear form ℓ on
H1(D) ⊗ L2(Ω) by

ℓ(v) := E

[∫

D

H(un−1)v dx

]

+ τnE

[∫

D

K kr(H(un−1))ρgez∇v dx

]

(3.2.8)

for all v ∈ H1(D) ⊗ L2(Ω). If H : [uc,∞) → R and kr : H([uc,∞)) → R are
monotonically increasing and bounded functions and the permeability K satisfies
(3.1.29), then ℓ ∈

(

H1(D) ⊗ L2(Ω)
)′

. Replacing un by u, we can rewrite the varia-
tional inequality (3.2.2) as

u ∈ K : E

[
∫

D

H(u)(v − u) dx

]

+ a(u, v − u) − ℓ(v − u) ≥ 0 ∀v ∈ K (3.2.9)

with K defined in (3.2.3).

3.2.2 Formulation as a convex minimization problem

It remains to examine the integral in this inequality. It turns out that it can be
rewritten in terms of convex functionals, which gives us the possibility to apply
methods of convex minimization. Therefore, we recall at the beginning some fun-
damental definitions.

Definition 3.2.2 ([33]). Let V be a real vector space and C ⊂ V a convex set, i.e.
for y, z ∈ C and λ ∈ (0, 1) we have (1 − λ)y + λz ∈ C. F : C → R ∪ {±∞} is said
to be convex if for every y and z in C, we have

F ((1 − λ)y + λz) ≤ (1 − λ)F (y) + λF (z) ∀λ ∈ [0, 1] (3.2.10)

whenever the right-hand side is defined, i.e. unless it is F (z) = −F (y) = ±∞.
F : C → R is said to be strictly convex if it is convex and the strict inequality holds
in (3.2.10) for all y, z ∈ C, y 6= z and each λ ∈ (0, 1).

The following lemma provides some helpful facts about convex function defined on
the real line.

Lemma 3.2.3 ([67]). Let I ⊂ R be an interval. Then for f : I → R the following
holds.

a) f is convex if, and only if, the inequality

f(z)− f(z1)

z − z1
≤ f(z2) − f(z)

z2 − z

holds for any z1, z, z2 ∈ I with z1 < z < z2.

b) If f is convex, then for any z ∈ I the difference quotient

f(y) − f(z)

y − z

is a monotonically increasing function of y ∈ I\{z}.

We now define the function Φ : [uc,∞) → R as

Φ(z) :=

∫ z

0

H(s) ds ∀z ∈ [uc,∞). (3.2.11)

We assume uc < 0, which implies that Φ(0) is defined and equal to zero. A general
form of Φ when using Brooks–Corey parameters can be found in (1.1.17). By means
of Lemma 3.2.3, it is easy to prove some basic properties of Φ [18, Lemma 2.3.6].
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Lemma 3.2.4. Let Φ : [uc,∞) → R be defined as in (3.2.11).

a) If H is monotonically increasing, then Φ is convex.

b) Φ is differentiable (from the right) in uc. In addition, we have Φ′(uc) = H(uc)
if H is continuous in uc. Furthermore, Φ is differentiable in z ∈ (uc,∞) if,
and only if, H is continuous in z, which is true for all but countably many
points, and in this case Φ′(z) = H(z) holds.

c) If H is bounded, then Φ is Lipschitz continuous with Lipschitz constant ‖H‖∞.

Note that part b) in Lemma 3.2.4 states that differentiable Φ is continuously dif-
ferentiable at the same time; this assertion then holds for all convex functions since
every convex function (with bounded image) has, except for an additive constant,
a representation as in (3.2.11).

Using the convex function Φ, we define the functional φ : K → R by

φ(v) := E

[∫

D

Φ (v(x, ξ(ω))) dx

]

∀v ∈ K. (3.2.12)

In the sequel, we will connect φ arising from (3.2.12) to the variational inequality
(3.2.9). It is convenient to assume that Φ is Lipschitz continuous. A more general
setting (with less strict conditions on the underlying function Φ) is regarded in [68].

Proposition 3.2.5. If Φ is a convex function, then φ : K → R is a convex func-
tional. If, in addition, Φ is Lipschitz continuous, then φ is also Lipschitz continuous
and satisfies

|φ(v)| ≤ C‖v‖1,0 ∀v ∈ K (3.2.13)

with a C > 0.

Proof. The convexity of φ follows directly from the convexity of the function Φ. To
prove the Lipschitz continuity, let v, w ∈ K. Then, by means of the Cauchy–Schwarz
inequality in L2(D) ⊗ L2(Ω), it holds

|φ(v) − φ(w)| ≤ E

[∫

D

|Φ (v(x, ξ(ω))) − Φ (w(x, ξ(ω))) | dx
]

≤ L · E

[∫

D

|v(x, ξ(ω)) − w(x, ξ(ω))| dx
]

≤ L · ‖1‖0,0 ‖v − w‖0,0

≤ C‖v − w‖1,0,

where L is the Lipschitz constant of Φ. Since Φ(0) = 0 implies φ(0) = 0, we get
(3.2.13).

The following definition can be found, e.g., in [33].

Definition 3.2.6. Let F : U → R ∪ {±∞} be defined on a subset U ⊂ V of a
normed space V with u ∈ U and v ∈ V .

a) If there is an ε > 0 such that u+ λv ∈ U for all λ ∈ [0, ε], we call

∂vF (u) := lim
λ↓0

F (u+ λv) − F (u)

λ
(3.2.14)

the directional derivative of F at u in the direction of v if this limit exists.

47



b) If there exists a u′ ∈ V ′ such that

∂vF (u) = V ′〈u′, v〉V ∀v ∈ V, (3.2.15)

then we say that F is Gâteaux-differentiable at u, call u′ the Gâteaux-deri-
vative at u of F and denote it by F ′(u).

The uniqueness of the Gâteaux-derivative is obvious from (3.2.15). The case of
convex functions if of special interest since the fraction on the right-hand side of
(3.2.14) is in that instance a monotone function of λ, which means that this ex-
pression always has a limit which can be, however, ±∞. This fact is utilized in the
following proposition.

Proposition 3.2.7. Let Φ : [uc,∞) → R be convex and differentiable. Then, for
any u, v ∈ K the directional derivative ∂v−uφ(u) exists and can be written as

∂v−uφ(u) = E

[∫

D

Φ′ (u(x, ξ(ω))) (v(x, ξ(ω)) − u(x, ξ(ω))) dx

]

(3.2.16)

or, equivalently, as

∂v−uφ(u) = E

[∫

D

H (u(x, ξ(ω))) (v(x, ξ(ω)) − u(x, ξ(ω))) dx

]

. (3.2.17)

Proof. Recall the short hand notation from Remark 3.1.23 with ξ = ξ(ω). For all
u, v ∈ K, we have u+λ(v−u) ∈ K for λ ∈ [0, 1] since K is convex. Setting w := v−u,
we have to look at the difference quotient

φ(u + λw) − φ(u)

λ
=

∫

Ω

∫

D

Φ(u(x, ξ) + λw(x, ξ)) − Φ(u(x, ξ))

λ
dxdP (3.2.18)

as λ ↓ 0. By Lemma 3.2.3 b) we obtain

Φ(u(x, ξ) + λw(x, ξ)) − Φ(u(x, ξ))

λ
≤ Φ(u(x, ξ) + w(x, ξ)) − Φ(u(x, ξ))

1
=: G1(x, ω)

and

Φ(u(x, ξ) + λw(x, ξ)) − Φ(u(x, ξ))

λ
≥ Φ(u(x, ξ) − w(x, ξ)) − Φ(u(x, ξ))

1
=: G2(x, ω)

for w(x, ξ) = w(x, ξ(ω)) ≥ 0 and λ ∈ (0, 1] and an analogous result for the case
w(x, ξ) = w(x, ξ(ω)) ≤ 0.

The function Φ is assumed to be differentiable, thus the integrands

Φ(u(x, ξ) + λw(x, ξ)) − Φ(u(x, ξ))

λ
(3.2.19)

in (3.2.18) converge to Φ′(u(x, ξ))w(x, ξ) almost everywhere in D × Ω as λ ↓ 0,
either as a monotonically increasing sequence for w(x, ξ) < 0 or as a monotonically
decreasing sequence for w(x, ξ) ≥ 0 due to Lemma 3.2.3 b).

As shown above, the integrand (3.2.19) is bounded by the integrable function
max(|G1(·, ·)|, |G2(·, ·)|) independently of λ ∈ (0, 1], thus one can apply the the-
orem of Lebesgue (see, e.g., [109, Theorem A.3.2]), which ensures the convergence
of the integrals in (3.2.18).

Finally, the equivalence of (3.2.16) and (3.2.17) follows from Φ′ = H in Lemma
3.2.4 b).
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Under the assumption that H is continuous, the variational inequality (3.2.9) can
be now written as

u ∈ K : ∂v−uφ(u) + a(u, v − u) − ℓ(v − u) ≥ 0 ∀v ∈ K (3.2.20)

with the notation fixed in (3.2.4) and (3.2.8).

The linear terms on the left-hand side of (3.2.20) are often subsumed under a func-
tional J : H1(D) ⊗ L2(Ω) → R defined by

J (v) :=
1

2
a(v, v) − ℓ(v) ∀v ∈ H1(D) ⊗ L2(Ω). (3.2.21)

This functional J is quadratic and strictly convex, see [33, Remark II.1.1]. It is also
continuous if H and kr are monotonically increasing and bounded functions and K
satisfies (3.1.29), see (3.2.5) and the paragraph following (3.2.8). Moreover, by [33,
Remark II.2.1], the Gâteaux-derivative exists in u ∈ H1(D) ⊗ L2(Ω) and reads

J ′(u)(v) = ∂vJ (u) = a(u, v) − ℓ(v) ∀v ∈ H1(D) ⊗ L2(Ω). (3.2.22)

Combining the above results, the functional F : K → R defined by

F (v) := J (v) + φ(v) ∀v ∈ K

is strictly convex with existing derivative ∂v−uF (u) for any u, v ∈ K, and (3.2.20)
has the short form

u ∈ K : ∂v−uF (u) ≥ 0 ∀v ∈ K. (3.2.23)

Now, Lemma 3.2.3 b) states

F (v) − F (u) ≥ F (u+ λ(v − u)) − F (u)

λ

for any λ ∈ (0, 1]. Taking the limit as λ ↓ 0, it follows

F (v) − F (u) ≥ ∂v−uF (u) ≥ 0.

Conversely, if F (v) − F (u) ≥ 0 for all v, then for any λ ∈ (0, 1] it holds

F (u+ λ(v − u)) − F (u)

λ
≥ 0.

Taking the limit as λ ↓ 0, we arrive at

∂v−uF (u) ≥ 0

for all v and have hence proven the equivalence of the variational inequality (3.2.23)
with a convex minimization problem. We state this result in a more general form
like in [18].

Proposition 3.2.8. Let V be a real vector space, C ⊂ V a convex set and the map-
ping F : C → R a convex functional whose directional derivative ∂v−uF (u) exists
for all u, v ∈ C. Then the variational inequality

u ∈ C : ∂v−uF (u) ≥ 0 ∀v ∈ C (3.2.24)

is equivalent to the minimization problem

u ∈ C : F (u) ≤ F (v) ∀v ∈ C. (3.2.25)
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This reformulation as a convex minimization problem is the key to obtain the main
result of this section, viz. the conclusion that there exists a unique solution to our
problem (3.2.9). Therefor, we cite the general result in reflexive Banach spaces,
which can be found, e.g., in [33, Prop. II.1.2]. We first provide some definition.

Definition 3.2.9. Let V be a real vector space and C ⊂ V nonempty, closed and
convex. A functional F : C → R ∪ {+∞} is said to be lower semicontinuous if
lim infw→v F (w) ≥ F (v) holds for all v ∈ C (with w ∈ C). A convex functional
F : C → R∪ {+∞} is called coercive if for any sequence (un) ⊂ C with ‖un‖ → ∞
we have F (un) → +∞. It is said to be proper if it is not identically equal to +∞.
We call the section domF := {v ∈ K : F (v) < +∞} the effective domain of F .

Proposition 3.2.10 ([33]). Let V be a reflexive Banach space, C ⊂ V a nonempty,
closed and convex subset of V . We assume that F : C → R∪{+∞} is convex, lower
semicontinuous and proper. We assume in addition that the set C is bounded or
that the functional F is coercive over C. Then the minimization problem (3.2.25)
has at least one solution. It has a unique solution if F is strictly convex over C.

We apply this to our situation.

Theorem 3.2.11. Let K ⊂ H1(D)⊗L2(Ω), a(·, ·) and ℓ(·) be defined as in (3.2.3),
(3.2.4) and (3.2.8), respectively. If H : [uc,∞) → R is monotonically increasing,
bounded and continuous and kr : H([uc,∞)) → R is monotonically increasing and
bounded and K satisfies (3.1.29), then the variational inequality (3.2.9) has a unique
solution. Furthermore, it is equivalent to the minimization problem

u ∈ K : J (u) + φ(u) ≤ J (v) + φ(v) ∀v ∈ K (3.2.26)

with J and φ as defined in (3.2.21) and in (3.2.12), respectively.

Proof. By Proposition 3.2.8, the last assertion is clear and it suffices to show that K
and F = J + φ satisfy the conditions of Proposition 3.2.10 on the reflexive Hilbert
space H1(D) ⊗ L2(Ω). The conditions on K were verified in Proposition 2.3.4.

The functional F is strictly convex on K since J is strictly convex and φ is convex.
F is proper and continuous as J and φ are, the latter according to Proposition
3.2.5. It remains to check the coercivity of F , which follows from Lemma 3.2.1 and
(3.2.13) for v ∈ K by

J (v)+φ(v) ≥ 1

2
a(v, v)−|ℓ(v)|− |φ(v)| ≥ 1

2
c‖v‖2

1,0− (c1 +‖ℓ‖+C)‖v‖1,0− c2 → ∞
(3.2.27)

as ‖v‖1,0 → ∞.

Before we proceed by relaxing some conditions on the occurring functions, we give
some remarks.

Remark 3.2.12. At the beginning of this section, we set fN = 0 and f = 0 for
notational reasons. If we drop this assumption, Theorem 3.2.11 remains valid if we
guarantee that the functional ℓ, to which both functions solely contribute, is still
continuous. This is achieved for f ∈ L2(D)⊗L2(Ω) and fN ∈ L2(ΓN )⊗L2(Ω), which
holds according to the assumptions in (2.3.15), by means of the Cauchy–Schwarz
inequality and the trace theorem in [22, p. 1.61].

Remark 3.2.13. As a further generalization, we can insert a space-dependent
porosity function n = n(x). If n is nonnegative and bounded, we just define the
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functional φ by

φ(v) := E

[∫

D

n(x)Φ (v(x, ξ(ω))) dx

]

∀v ∈ K

instead of (3.2.12). All arguments in this section remain valid, and it is only needed
to replace Φ(·) and H(·) by n(·)Φ(·) and n(·)H(·), respectively, in the according
terms, in particular in (3.2.16) and (3.2.17).

Remark 3.2.14. Under the assumptions of Theorem 3.2.11, the map

v 7→ E

[∫

D

H (u(x, ξ(ω))) v(x, ξ(ω)) dx

]

is a bounded linear functional on H1(D) ⊗ L2(Ω). Consequently, φ in Proposition
3.2.7 is Gâteaux-differentiable and so is F = J + φ.

In that instance, the strict inequality in (3.2.23) can only occur for u ∈ ∂K. For an
inner point u ∈ intK and an ε > 0 such that

Bε(u) := {v ∈ H1(D) ⊗ L2(Ω) : ‖u− v‖1,0 < ε} ⊂ intK,

we take a w ∈ Bε(u) and obtain

∂w−uF (u) ≥ 0 as well as ∂−(w−u)F (u) ≥ 0.

This leads to the problem
F ′(u) = 0

if u ∈ intK. Note that this is always the case if, for example, K = H1(D)⊗L2(Ω).

Looking at the definition of K in (3.2.3), we detect the obstacle condition v ≥ uc,
which results from the Kirchhoff transformation. If, however, H : R → R is defined
on the whole real line—this occurs for instance in certain hydrological limit cases
as described in [18, Section 1.4]—then we obtain the variational equality

ũ ∈ H1
ΓD

(D) ⊗ L2(Ω) : E

[∫

D

H(w + ũ) v dx

]

+ a(w + ũ, v) − ℓ(v) = 0

∀v ∈ H1
ΓD

(D) ⊗ L2(Ω)

for a w ∈ H1(D) ⊗ L2(Ω) with trΓD w = uD. For uD ≡ 0, this simplifies to

u ∈ H1
ΓD

(D)⊗L2(Ω) : E

[∫

D

H(u) v dx

]

+a(u, v)−ℓ(v) = 0 ∀v ∈ H1
ΓD

(D)⊗L2(Ω).

(3.2.28)

Remark 3.2.15. Finally, we recall that condition (3.1.29) in Theorem 3.2.11 is
satisfied by (2.3.1) and Assumption 3.1.21 according to Corollary 3.1.25.

3.2.3 Variational inclusions

Having a closer look on Theorem 3.2.11, we detect that the continuity of H is not
necessary to ensure the coercivity of J + φ and therefore the existence of a unique
solution but only for the equivalence of the variational inequality (3.2.9) and the
minimization problem (3.2.26). In this subsection, the consequences of having a
possibly uncontinuous H are investigated more specifically. In the course of this,
we arrive at a reformulation of problem (3.2.26) by introducing subdifferentials and
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disposing of the convex set K. As a collateral benefit, we are able to proof the
well-posedness of (3.2.26).

For the rest of this section, we use the assumptions of Theorem 3.2.11 except for the
continuity of H . In view of Lemma 3.2.4 b) and Proposition 3.2.7, the derivative
∂vφ(u) needs no longer exist. However, one can proceed by using the following
generalization of Proposition 3.2.8, the proof of which uses the same arguments and
can be found in [33, Prop. II.2.2].

Proposition 3.2.16. Let V and C be as in Proposition 3.2.8 and F = F1 + F2,
where F1, F2 : C → R ∪ {+∞} are convex and F1 possesses directional derivatives
∂v−uF1(u) for all u, v ∈ C. Then

u ∈ C : ∂v−uF1(u) + F2(v) − F2(u) ≥ 0 ∀v ∈ C

is equivalent to

u ∈ C : (F1 + F2)(u) ≤ (F1 + F2)(v) ∀v ∈ C.

Corollary 3.2.17. The minimization problem (3.2.26) is equivalent to the varia-
tional inequality

u ∈ K : a(u, v − u) − ℓ(v − u) + φ(v) − φ(u) ≥ 0 ∀v ∈ K. (3.2.29)

Proof. Take C = K, F1 = J and F2 = φ in Proposition 3.2.16.

Remark 3.2.18. In the course of this section, we started with (2.3.14) and per-
formed first a transformation by means of the KL expansion and afterwards the time
discretization to obtain (3.2.29). If one performed the transformation by means
of the KL expansion directly on the time-discretized stochastic Richards equation
(2.3.11), one would achieve the same result (3.2.29). This is mainly due to the fact
that K is not dependent on time. This shows that the results in this chapter remain
true even if u is not regular enough to formulate the inequality (2.3.14).

Remark 3.2.19. In Propositions 3.2.8 and 3.2.16, the functional F is defined
on a convex set C. It is often convenient to have F defined on the whole space
V . Therefor, we introduce the canonical extension F̄ : V → R ∪ {+∞} of an
F : C → R ∪ {+∞} by setting F̄ (v) = F (v) for all v ∈ C and F̄ (v) = +∞ for all
v ∈ V \C. Then, since we assume that C is nonempty, closed and convex, F̄ is lower
semicontinuous and proper if, and only if, F is. Moreover, u solves the minimization
problem (3.2.25) if, and only if, u solves the problems

u ∈ V : F̄ (u) ≤ F̄ (v) ∀v ∈ V.

In the following, we will use the extension for Φ and φ with regard to the convex
set K without indicating it by Φ̄ and φ̄ explicitly.

Before we give a reformulation of (3.2.26) in terms of subdifferentials, we achieve
our purpose of abstracting from the convex set K defined in (3.2.3) by introducing
a translation of the Dirichlet values. As in Lemma 3.2.1, we first choose a fixed

w ∈ H1(D) ⊗ L2(Ω) with trΓD w = uD (3.2.30)

and set u = w+ ũ and v = w+ ṽ. To write it in a more compact form, we introduce

Fw(·) := F (w + ·) (3.2.31)
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as the translation for mappings F defined on a vector space V . Obviously, the
functional Jw + φw is convex, lower semicontinuous and proper on

KΓD := K − w = {v ∈ H1
ΓD

(D) ⊗ L2(Ω) : v ≥ uc − w}, (3.2.32)

and, since φ : H1(D) ⊗ L2(Ω) → R ∪ {+∞} is the extended functional, even on its
superset H1

ΓD
(D) ⊗ L2(Ω). Thus, the following is clear.

Proposition 3.2.20. The minimization problem (3.2.26) is equivalent to

ũ ∈ H1
ΓD

(D) ⊗ L2(Ω) : Jw(ũ) + φw(ũ) ≤ Jw(v) + φw(v) ∀v ∈ H1
ΓD

(D) ⊗ L2(Ω)
(3.2.33)

in the sense that the solution u of (3.2.26) equals w + ũ.

We apply Proposition 3.2.16 with V = C = H1
ΓD

(D) ⊗ L2(Ω) and F1 = Jw and
F2 = φw to give another formulation.

Proposition 3.2.21. The minimization problem (3.2.33) is equivalent to the vari-
ational inequality

ũ ∈ H1
ΓD

(D) ⊗ L2(Ω) : a(w + ũ, v − ũ) − ℓ(v − ũ)

+ φ(w + v) − φ(w + ũ) ≥ 0 ∀v ∈ H1
ΓD

(D) ⊗ L2(Ω). (3.2.34)

The assertion in Proposition 3.2.21 remains true if one replaces the space H1
ΓD

(D)⊗
L2(Ω) with the set KΓD , since

ũ ∈ KΓD : J (w + ũ) + φ(w + ũ) ≤ J (w + v) + φ(w + v) ∀v ∈ KΓD

is equivalent to (3.2.26).

This result allows us to state that the convex minimization problem (3.2.26) is
well-posed with regard to the functional ℓ.

Proposition 3.2.22. Assume that the conditions in Theorem 3.2.11 are satisfied.
Furthermore, for i ∈ {1, 2}, let ℓi ∈

(

H1(D) ⊗ L2(Ω)
)′

and let ui be the unique
solutions of

ui ∈ K :
1

2
a(ui, ui) − ℓi(ui) + φ(ui) ≤

1

2
a(v, v) − ℓi(v) + φ(v) ∀v ∈ K. (3.2.35)

Then it holds
‖u1 − u2‖1,0 ≤ c−1‖ℓ1 − ℓ2‖,

where c is the coercivity constant of a(·, ·) in (3.2.7).

Proof. Due to Proposition 3.2.21, we can rewrite (3.2.35) in the form

ũi ∈ KΓD : a(w + ũi, v − ũi) + φw(v) − φw(ũi) ≥ ℓi(v − ũi) ∀v ∈ KΓD .

We set v = ũ2 for i = 1 and v = ũ1 for i = 2 and obtain

a(w + ũ1, ũ1 − ũ2) − φw(ũ2) + φw(ũ1) ≤ ℓ1(ũ1 − ũ2) (3.2.36)

and
a(−w − ũ2, ũ1 − ũ2) − φw(ũ1) + φw(ũ2) ≤ −ℓ2(ũ1 − ũ2). (3.2.37)

Adding (3.2.36) and (3.2.37), one gets

a(ũ1 − ũ2, ũ1 − ũ2) ≤ (ℓ1 − ℓ2)(ũ1 − ũ2)

and thus the assertion by the coercivity (3.2.7) and ‖u1−u2‖1,0 = ‖ũ1− ũ2‖1,0.
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Instead of circumventing the lack of derivatives of φ as in Propositions 3.2.16 and
3.2.21, one can take another path by generalizing the concept of differentiability.

Definition 3.2.23 ([14]). Let V be a normed space, F : V → R ∪ {+∞} a convex
functional and v0 ∈ domF . A bounded linear functional g on V with

F (v) − F (v0) ≥ V ′〈g, v − v0〉V ∀v ∈ V (3.2.38)

is called a subgradient of F at v0. The set of all subgradients at v0 is called
the subdifferential of F at v0 and is denoted by ∂F (v0). Furthermore, we set
dom ∂F := {v ∈ domF : ∂F (v) 6= ∅}.

It is obvious that the subdifferential ∂F is a multivalued operator from dom ∂F to
2V ′

and that ∂F (v) is always a closed convex set (possibly empty). The subdiffer-
ential is indeed a generalization of the Gâteaux-derivative, since the following can
be proven.

Proposition 3.2.24 ([33]). Let F be a convex function of V into R ∪ {+∞}. If
F is Gâteaux-differentiable at v ∈ V , then it is subdifferentiable at v and ∂F (v) =
{F ′(v)}. Conversely, if F is continuous and finite at the point v ∈ V and has only
one subgradient, then F is Gâteaux-differentiable at v and ∂F (v) = {F ′(v)}.

It follows immediately from Definition 3.2.23 that ∂F is a monotone operator and
that dom ∂F ⊂ domF . Even more is true.

Proposition 3.2.25 ([14]). Let V be a real Banach space and F be a lower semi-
continuous proper convex functional on V . Then it holds:

a) The subdifferential ∂F is a maximal monotone operator, i.e.

V ′〈g − g1, v − v1〉V ≥ 0 ∀g ∈ ∂F (v)∀v ∈ dom ∂F

implies v1 ∈ dom∂F and g1 ∈ ∂F (v1).

b) The domain dom ∂F is a dense subset of domF .

Remark 3.2.26. In V = R, the converse of part a) is also true: each maximal
monotone function is the subdifferential of a lower semicontinuous proper convex
function (see [14, p. 60]).

Now, let the scalar function Φ defined in (3.2.11) be canonically extended by +∞
on (−∞, uc) according to Remark 3.2.19 and H be monotonically increasing. By
Proposition 3.2.25 b), we have dom ∂Φ ∩ (−∞, uc) = ∅, which agrees with the fact
that for v0 = z0 < uc, the left-hand side of (3.2.38) is not defined for all v = z < uc.
For z0 > uc, we confirm the convexity of Φ by Lemma 3.2.4 and obtain, by using
this lemma in combination with Lemma 3.2.3,

Φ(z0) − Φ(z1)

z0 − z1
=

∫ z0

z1
H(z) dz

z0 − z1
≤ lim

y↑z0

H(y)

≤ lim
y↓z0

H(y) ≤
∫ z2

z0
H(z) dz

z2 − z0
=

Φ(z2) − Φ(z0)

z2 − z0
(3.2.39)

for z1 < z0 < z2. Therefore, we have

Φ(z) − Φ(z0) ≥ gz0(z − z0) ∀z ∈ R (3.2.40)
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for all
gz0 ∈ [ lim

y↑z0

H(y), lim
y↓z0

H(y)] =: Iz0 . (3.2.41)

If H is continuous and thus Φ differentiable, this results in ∂Φ(z0) = Iz0 = {H(z0)}.
Finally for z0 = uc, the same consideration as in (3.2.39) with Φ(z1) = +∞ for
z1 < z0 = uc provides (3.2.40) for all

gz0 ∈ (−∞, lim
y↓uc

H(y)] =: Iuc . (3.2.42)

Altogether, the multivalued function H̃ : [uc,∞) → 2R defined by

H̃(z0) := Iz0 ∀z0 ∈ [uc,∞) (3.2.43)

with Iz0 from (3.2.41) and (3.2.42) is the subdifferential of Φ, i.e. ∂Φ = H̃ , on
dom∂Φ = [uc,∞), and it is maximal monotone.

Note that the only but decisive assumption for the preceding considerations is the
fact that H is monotonically increasing. An example for H̃ are the hydrological
limit cases (1.1.19) and (1.1.21).

We now turn to the subdifferential of φ. We assume for a moment that φ is defined
on L2(D) ⊗ L2(Ω) and will show that

g ∈ ∂φ(v0) ⊂ L2(D) ⊗ L2(Ω) ⇔ g(x, ξ(ω)) ∈ ∂Φ (v0(x, ξ(ω))) ⊂ R. (3.2.44)

For g ∈ ∂φ(v0), it holds

E

[∫

D

(

Φ (v(x, ξ(ω))) − Φ (v0(x, ξ(ω)))
)

dx

]

= φ(v) − φ(v0)

≥ E

[∫

D

g(x, ξ(ω)) (v(x, ξ(ω)) − v0(x, ξ(ω))) dx

]

∀v ∈ L2(D) ⊗ L2(Ω). (3.2.45)

For any measurable set E := E1 × E2 ⊂ D × Ω define ṽ = v on E and ṽ = v0 on
the complement of E. Taking v = ṽ in (3.2.45) leads to

∫

E2

∫

E1

(

Φ (v(x, ξ(ω))) − Φ (v0(x, ξ(ω)))

− g(x, ξ(ω)) (v(x, ξ(ω)) − v0(x, ξ(ω)))
)

dxdP ≥ 0 (3.2.46)

for all v ∈ L2(D) ⊗ L2(Ω), whence, since E was arbitrary,

Φ (v(x, ξ(ω))) − Φ (v0(x, ξ(ω))) ≥ g(x, ξ(ω)) (v(x, ξ(ω)) − v0(x, ξ(ω))) ,

a.e. on D × Ω.

Thus g(x, ξ(ω)) ∈ ∂Φ (v0(x, ξ(ω))), a.e. onD×Ω. Conversely, let g ∈ L2(D)⊗L2(Ω)
such that

Φ(v) − Φ (v0(x, ξ(ω))) ≥ g(x, ξ(ω)) (v − v0(x, ξ(ω))) , a.e. on D × Ω, ∀v ∈ R.

From this, it is immediately clear that g ∈ ∂φ(v0), as claimed.

From Proposition 3.2.25 b) and [14, Prop. II.2.8], we can further deduce

dom ∂φ = domφ = {u ∈ L2(D) ⊗ L2(Ω) : u(x, ξ(ω)) ∈ domΦ, a.e. on D × Ω}.

Let φ be now defined on H1(D) ⊗ L2(Ω) with Φ(v) ∈ L2(D) ⊗ L2(Ω). We expect

the subdifferential ∂φ(v0) ⊂
(

H1(D) ⊗ L2(Ω)
)′

to be given on a larger domain than
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in the previous case. To make this precise, let us denote the subdifferential for φ
defined on L2(D)⊗L2(Ω) by (∂Φ(v0), ·)0,0 ⊂

(

L2(D) ⊗ L2(Ω)
)′

, which is motivated
by (3.2.44). It is now obvious that

(∂Φ(v0), ·)0,0 ⊂ ∂φ(v0), (3.2.47)

more exactly, (∂Φ(v0), ·)0,0 is the subset of all elements in ∂φ(v0) which are also
functionals on L2(D) ⊗ L2(Ω).

We are now ready to state the reformulation of (3.2.33) as a variational inclusion.

Proposition 3.2.27. The minimization problem (3.2.33) is equivalent to the vari-
ational inclusion

ũ ∈ H1
ΓD

(D) ⊗ L2(Ω) : 0 ∈ a(w + ũ, ·) − ℓ(·) + ∂φ(w + ũ) (3.2.48)

in
(

H1
ΓD

(D) ⊗ L2(Ω)
)′

.

Proof. First, the functional J is differentiable, and as in (3.2.22) we obtain

∂Jw(v0)(v) = J ′(w + v0)(v) = a(w + v0, v) − ℓ(v)

and consequently

∂(Jw + φw)(v0)(v) = a(w + v0, v) − ℓ(v) + ∂φw(v0)(v)

for all v0 ∈ dom ∂φw ⊂ H1
ΓD

(D) ⊗ L2(Ω) and v ∈ H1
ΓD

(D) ⊗ L2(Ω).

If ũ ∈ H1
ΓD

(D) ⊗ L2(Ω) solves the minimization problem (3.2.33), then we have

(Jw(v) + φw(v)) − (Jw(ũ) + φw(ũ)) ≥ 0 ∀v ∈ H1
ΓD

(D) ⊗ L2(Ω) (3.2.49)

and thus by Definition 3.2.23

0 ∈ a(w + ũ, ·) − ℓ(·) + (∂φw)(ũ).

Conversely, if ũ solves the variational inclusion (3.2.48), we obtain (3.2.49) by the
same argument.

Finally, we cite a more general existence theorem than the one obtained in Theorem
3.2.11. We choose homogeneous Dirichlet conditions and apply a result from [60,
Prop. 3.2.1] to our case.

Theorem 3.2.28. If H : I → R defined on an interval I ⊂ R containing zero is
monotonically increasing and a(·, ·) is a coercive and continuous bilinear form and

ℓ ∈
(

H1
ΓD

(D) ⊗ L2(Ω)
)′

, then the variational inclusion

u ∈ H1
ΓD

(D) ⊗ L2(Ω) : 0 ∈ a(u, ·) − ℓ(·) + (H̃(u), ·)0,0 (3.2.50)

in
(

H1
ΓD

(D) ⊗ L2(Ω)
)′

has a solution.

Note that I can be chosen as I = [uc,∞) with uc < 0 or I = R and that H̃ = ∂Φ
is the multifunction corresponding to H . In light of Propositions 3.2.20 and 3.2.27,
we can deduce from (3.2.47) immediately the following.

Proposition 3.2.29. If u is a solution of the variational inclusion (3.2.50), then
it is also a solution of the minimization problem (3.2.26).
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Since we have

(∂Φ(v0), ·)0,0 6= ∂φ(v0), (3.2.51)

the converse of Proposition 3.2.29 is not true in general. However, both subdifferen-
tials coincide when we discretize them, see Remark 3.3.13. Moreover, the uniqueness
of the solution of (3.2.26) provides another interesting result.

Proposition 3.2.30. If H : I → R defined on an interval I ⊂ R containing zero
is monotonically increasing and bounded, then the solution of (3.2.50) is unique.

We conclude this section with two remarks.

Remark 3.2.31. The assumption of boundedness of H for the statement that the
solution in Theorems 3.2.11 or 3.2.28 is unique can be relaxed and replaced by
Hölder continuity of H outside of an interval [−a, a], confer [18, p. 69].

Remark 3.2.32. Finally, we consider the Richards equation in the limit cases
introduced in (1.1.18) and (1.1.20). In either case, the function Φ is linear on the
interval [uc,∞) and its subdifferential reads

∂Φ(u) = H̃(u) =











∅ for u < uc

(−∞, θM ] for u = uc

θM for u > uc.

(3.2.52)

The functional φ becomes linear, too, and we end up with a linear constrained
problem. Indeed, with the function w from (3.2.30), we define

ℓ̃(v) := ℓ(v) − a(w, v) − (θM , v)0,0

and can rewrite (3.2.34) as

ũ ∈ KΓD : a(ũ, v − ũ) − ℓ̃(v − ũ) ≥ 0 ∀v ∈ KΓD . (3.2.53)

We come back to this topic in Subsection 3.3.4.

3.3 Polynomial chaos and finite elements

In this section, we pursue the discretization of the minimization problem (3.2.26).
At this point, the different nature of the spaces H1(D) and L2(Ω) has to be taken
into account. In the former space we have to deal with derivatives and boundary
conditions and—as it is known from the numerics of (deterministic) PDEs—a finite
element approach is feasible. On the other hand, in the latter space we seek after
an approximation of an L2 function, where the structure of the space is specified
by the density functions which are based upon the random variables ξr from the
KL expansion (3.1.10) as explained in (3.1.22). A suitable tool for this are the
so-called polynomial chaos expansions, which are presented in Subsection 3.3.1.
After we set notation for our finite element approach in Subsection 3.3.2, we focus
on the approximation of the nonlinear functional φ from (3.2.12), see Subsection
3.3.3. Putting all these tools together, we can formulate (3.3.49) as the discretized
version of minimization problem (3.2.26). Finally, we show the convergence of the
discretized solution in special cases.
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3.3.1 (Generalized) Polynomial chaos

In this subsection, we present the basis that will be used for our discretization in
the stochastic space L2(Ω). After a historical excursion, we define our polynomial
basis in one dimension and extend it afterwards to M dimensions. We present three
different possible bases and explain their construction and properties. At the end,
we introduce a Gaussian quadrature which is closely related to our polynomial basis.

The polynomial chaos (PC) approach was first applied in similar context developed
by Ghanem and Spanos [47] for various problems in mechanics and is based on
fundamental work by Wiener [110] in 1938. It allows high-order representation in
combination with fast convergence by expanding functions v ∈ L2(Ω) in truncated
series of the form

v(ω) =
P
∑

k=0

vkΨk(ω) (3.3.1)

with global polynomials Ψk and coefficients vk.

Although the term “polynomial chaos” was introduced by Wiener for a construction
in ergodic theory, the main idea was revealed by Cameron and Martin [23]. They
showed that the set {Hk} of Hermite polynomials (see Appendix B.1) forms, if
normalized, a complete orthonormal set and that each function v ∈ L2(Ω̃) can be
approximated in L2 sense by an Hermite series

vP (ω) :=

P
∑

k=0

(∫

Ω̃

v(ζ)Hk(ζ) dP̃(ζ)

)

Hk(ω), (3.3.2)

i.e.
∫

Ω̃

|v(ω) − vP (ω)|2 dP̃(ω) → 0 as P → ∞. (3.3.3)

This is valid for arbitrary one-dimensional Ω̃ and arbitrary measures P̃(·) which
possess a density function. Thus, by setting Ψk = Hk and vk as the expression in the
parentheses in (3.3.2), the Hermite series vP allows a PC representation as in (3.3.1).
Together with a scheme to create products of Hermite polynomials to be able to
approximate also functions on an M -dimensional domain Ω̃ (see the construction
of the classical PC basis {Ψc

k} below), this was the utilized PC basis in all the early
works in this field, cf. [47], [73] or [82]. Nevertheless, one problem persisted: while
an exponential convergence in (3.3.3) is experienced if P̃(·) is Gaussian, i.e. if it
has a density of the form (B.2), see [80], the convergence is rather poor for other
distributions [53]. The remedy was surprisingly already suggested by Cameron and
Martin and systematized by Xiu and Karniadakis [114] who called it the generalized
polynomial chaos : since the convergence result (3.3.3) still holds if one replaces the
Hermite polynomials by an arbitrary dense sets of functions, one can choose the
polynomial set according to the distribution in P̃(·). The optimal polynomial set
is known for some important distributions (e.g. the Legendre polynomials {Lek}
for the uniform distribution, cf. Wiener–Askey chaos in Table 3.2 and Appendix
B for definitions and properties of the most common polynomial sets) and can be
computed in other cases, see [108].

Taking this into consideration, we define our PC basis as follows. First, recall
the spaces Ωr constructed by means of the random variables ξr defined preceding
(3.1.22). For each r = 1, . . . ,M , let {ψr

k}k=0,1,... be orthogonal polynomials in Ωr,
which are normalized according to

E [ψr
kψ

r
l ] =

∫

Ωr

ψr
k(ξr)ψ

r
l (ξr)pdfr(ξr) dξr = δkl (3.3.4)
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random variable ξr Wiener chaos {Ψ(ξr)} support

Gaussian Hermite chaos (−∞,∞)
uniform Legendre chaos [a, b]

beta Jacobi chaos [a, b]
gamma Laguerre chaos [0,∞)

Table 3.2: The correspondence of Wiener–Askey PC and their underlying random
variables (following [114]).

and which constitute an orthogonal basis in L2(Ωr). Observe that the orthogo-
nality is computed with regard to the probability induced by the ξr from the KL

expansion (3.1.10). Choosing some multi-index α(k) = (α
(k)
1 , . . . , α

(k)
M ), the multidi-

mensional polynomials Ψk are defined as products of corresponding one-dimensional
polynomials by

Ψk(ξ1, ξ2, . . . , ξM ) :=

M
∏

r=1

ψr

α
(k)
r

(ξr). (3.3.5)

Note that these products reflect the structure of Ω(M) given by (3.1.23). If k =
0, 1, . . . is a counting of all multi-indices in N

M
0 , these polynomials form a basis such

that each second order random variable v ∈ L2(Ω(M)) can be written as

v(ξ) =

∞
∑

k=0

vkΨk(ξ).

In light of the identity (3.1.22) and Remark 3.1.23, we henceforth rewrite this as

v(ξ(ω)) =

∞
∑

k=0

vkΨk(ξ(ω)) =

∞
∑

k=0

vkΨk(ξ) (3.3.6)

for v ∈ L2(Ω). Since the orthonormality

E [ΨkΨl] =

M
∏

r=1

E

[

ψr

α
(k)
r
ψr

α
(l)
r

]

= δkl (3.3.7)

follows from (3.3.4), the coefficient vk in (3.3.6) is obtained by projection on Ψk,
i.e.

vk = (v,Ψk)L2(Ω) = E [vΨk] .

For our discretization, we truncate the expansion (3.3.6) having a total of P + 1
basis polynomials and denote the solution space by

ZP := span{Ψk : k = 0, . . . , P} ⊂ L2(Ω). (3.3.8)

The aforementioned projection on our basis polynomials now allows the definition
of a projection operator PP : L2(Ω) → ZP defined by

PP v(ξ(ω)) :=

P
∑

k=0

(v,Ψk)L2(Ω)Ψk(ξ(ω)) =

P
∑

k=0

vkΨk(ξ(ω)), (3.3.9)

where the generalization for v ∈ V ⊗ L2(Ω) is immediate by taking the operator
tensor product with the identity operator on V .

According to the one-dimensional polynomials ψr
k and the multi-indices α, different

schemes are possible. We will discuss three different bases in the following. The
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mostly used basis (e.g. in [47, 63, 73]) consists of one-dimensional polynomials ψr
k

of degree k and multi-indices α with |α| :=
∑

r αr ≤ P0 such that we have a total
of

P + 1 =
(M + P0)!

M !P0!
(3.3.10)

multidimensional polynomials. We denote this classical polynomial set as {Ψc
k} and

adopt its traditional ordering (cf. [47]), where α(k) < α(l) if |α(k)| < |α(l)| or if, in
the case |α(k)| = |α(l)|, the first different index in α(k) is smaller than its counterpart
in α(l). In particular, it holds

Ψ0 ≡ 1, (3.3.11)

which yields that

E [Ψ0] =

∫

Ω

1 dP = |Ω| = 1 (3.3.12)

and
E [Ψk] = E [ΨkΨ0] = 0 ∀k > 0 (3.3.13)

due to (3.3.7).

A larger but more flexible scheme (e.g. in [11]) is when using the same polynomials
ψr

k but with multi-indices α with αr ≤ Pr for all r = 1, . . . ,M . We denote it as
the tensor product basis {Ψt

k}. It it easy to see that the identities (3.3.11)–(3.3.13)
hold as above. We employ the same ordering as for {Ψc

k} and remark that the space
ZP can be rewritten as

ZP =

M
⊗

r=1

ZPr
r (3.3.14)

with one-dimensional global polynomial spaces

ZPr
r :=

{

v = v(y) ∈ L2(Ωr) with v ∈ span{yk : k = 0, . . . , Pr}
}

= PolPr (Ωr).

Hence, the cardinality of {Ψt
k} is

P + 1 =
M
∏

r=1

(Pr + 1). (3.3.15)

A variant derived from {Ψt
k} are biorthogonal polynomials [11]. In one dimension,

we denote them by {ψ̂r
k} and claim that they satisfy

E

[

ψ̂r
kψ̂

r
l

]

=

∫

Ωr

ψ̂r
k(ξr)ψ̂

r
l (ξr)pdfr(ξr) dξr = δkl, (3.3.16)

E

[

ξrψ̂
r
kψ̂

r
l

]

=

∫

Ωr

ξr ψ̂
r
k(ξr)ψ̂

r
l (ξr)pdfr(ξr) dξr = crkδkl (3.3.17)

for all k, l = 0, . . . , Pr, where the numbers crk are nonzero constants. The clue
of finding these polynomials lies in the representation as linear combinations of
orthogonal polynomials

ψ̂r
k =

Pr
∑

l=0

sr
klψ

r
l . (3.3.18)

Defining the coefficient matrices S ∈ R
(Pr+1)×(Pr+1) and C ∈ R

(Pr+1)×(Pr+1) with
entries Skl = sr

kl and Ckl = crkδkl and the mass matrices M, M̄ ∈ R
(Pr+1)×(Pr+1)

with entries

Mkl =

∫

Ωr

ξr ψ
r
k(ξr)ψ

r
l (ξr)pdfr(ξr) dξr,

M̄kl =

∫

Ωr

ψr
k(ξr)ψ

r
l (ξr)pdfr(ξr) dξr,
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M = 1 M = 2 M = 3 M = 4
P0 |{Ψc

k}| |{Ψt
k}| |{Ψc

k}| |{Ψt
k}| |{Ψc

k}| |{Ψt
k}| |{Ψc

k}| |{Ψt
k}|

0 1 1 1 1 1 1 1 1
1 2 2 3 4 4 8 5 16
2 3 3 6 9 10 27 15 81
3 4 4 10 16 20 64 35 256
4 5 5 15 25 35 125 70 625
5 6 6 21 36 56 216 126 1296

Table 3.3: The cardinality of the classical PC basis (3.3.10) in comparison with
tensor product PC basis (3.3.15) with Pr = P0 for all r = 1, . . . ,M .

respectively, and denoting by I the identity matrix, we can rewrite (3.3.16)–(3.3.17)
by inserting (3.3.18) as

ST M̄S = I, ST MS = C,

which corresponds in view of M̄ = I to an eigenvalue problem

MS = SC (3.3.19)

for each dimension r = 1, . . . ,M . Finally, we construct the multidimensional
biorthogonal polynomials according to (3.3.5) and denote them by {Ψb

k}. The car-
dinality is given by (3.3.15), too. Remark that they no longer fulfill the identities
(3.3.11)–(3.3.13), but that they possess the advantage of diagonalizing the stiffness
matrix for linear problems, cf. Subsection 4.1.1.

For later reference, we note the convergence of the PC discretization. Henceforth,
P → ∞ is short hand notation for P0 → ∞ or minr Pr → ∞, respectively.

Theorem 3.3.1. Let v ∈ L2(Ω) and vP := PP v its projection onto ZP as defined
in (3.3.9). Then we have

‖v − vP ‖L2(Ω) → 0 as P → ∞.

The proof is just the multidimensional generalization of the argument in [23] us-
ing the tensor product PC basis {Ψt

k} or, alternatively, a well-known result for
orthonormal bases in Hilbert spaces, see e.g. [109].

Remark 3.3.2. Observe that each convergence result as P → ∞ for one of the
three presented polynomial sets also holds for the other ones, since we have by
construction

span{Ψt
k} = span{Ψb

k} ⊂ span{Ψc
k},

if P0 ≥∑r Pr, and

span{Ψc
k} ⊂ span{Ψt

k} = span{Ψb
k},

if minr Pr ≥ P0. Nevertheless, the size of the bases and hence the numerical work
is distinctly different, see Table 3.3.

Remark 3.3.3. We can now explain how Dirichlet boundary conditions

trΓD u = uD

from (3.2.3) can be modeled. To avoid technical subtleties, let the function u be
continuous. Following an idea from [73], we employ on both sides the projection
PP onto the orthonormal basis. By equating the coefficients, one obtains

uk(x) = E [uD(x)Ψk] (3.3.20)
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for x ∈ D. For a deterministic function uD = uD(x), the right-hand side of (3.3.20)
can be simplified as E [uD(x)Ψk] = E [Ψk]uD(x) such that (3.3.12) and (3.3.13)
provide

uk(x) =

{

uD(x) for k = 0

0 else

for {Ψ} = {Ψc
k} and {Ψ} = {Ψt

k}, i.e. one can employ the usual spatial boundary
discretization for uD and allocate it to the zeroth PC mode, while all other PC
coefficients vanish. For a discretization of Neumann boundary conditions, we refer
to Remark 4.1.2.

Remark 3.3.4. An initial condition u = u0(x) can be treated in the same way as
Dirichlet conditions in Remark 3.3.3. In particular, we have

uk(x) =

{

u0(x) for k = 0

0 else

if u0 = u0(x) is deterministic and if {Ψ} = {Ψc
k} or {Ψ} = {Ψt

k}.

In order to compute the occurring expectation values, quadrature formulas are nec-
essary. An obvious choice in view of the involved polynomials is Gaussian quadra-
ture with the density pdf(·) as weighting function. In the one-dimensional space
Ωr with PC polynomials of maximal degree Pr (take Pr = P0 for {Ψ} = {Ψc

k}) we
apply a Gaussian quadrature with Pr +1 quadrature points πr

1 , . . . , π
r
Pr+1 which are

the zeros of the orthogonal polynomial of degree Pr + 1. The quadrature weights
ηπr

i
are given by

ηπr
i

=

∫

Ωr

Lr,πr
i
dPξr ,

where Lr,πr
i

are the Lagrange polynomials with Lr,πr
i
(πr

j ) = δij as a basis of

PolPr (Ωr). Properties of Gaussian quadrature like the fact that polynomials of
degree 2Pr + 1 are computed exactly are summarized in Appendix C.

For the M -dimensional quadrature, we just take the products

πi = (π1
i1 , . . . , π

r
ir

), ηπi =

M
∏

r=1

ηπr
ir
, (3.3.21)

and

Lπi(ξ(ω)) =
M
∏

r=1

Lr,πr
ir

(ξr(ω)) (3.3.22)

with the global index

i = i1 + (P1 + 1)(i2 − 1) + (P1 + 1)(P2 + 1)(i3 − 1) + . . .

We denote by QP the set of all these quadrature points πi (omitting the index in
the sequel), denote its cardinality by Π, and see that

Π := |QP | =
M
∏

r=1

(Pr + 1). (3.3.23)

With this choice of QP , the quadrature order is high enough to compute E[ΨkΨl]
and E[ΨkΨlξr] or, more general, E[uv] for u, v ∈ ZP exactly. This is not the case
for E[H(u)v] for nonlinear H but for the projected version E[PP (H(u))v]. For that
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reason, we will henceforth call this QP the quadrature point set corresponding to
ZP .

With this notation, we can indicate the solution of (3.3.16)–(3.3.17). Indeed, the
biorthogonal polynomials are, up to multiplicative factors, just Lagrange polyno-
mials in Gaussian quadrature points, i.e.

ψ̂r
k =

1
√
ηπr

k

Lr,πr
k

(3.3.24)

and crk = πr
k, see [13, Lemma 2.1]. This will play an important role later on.

We close this subsection by defining for further use the Lagrange interpolant oper-
ator I P : C0(Ω(M)) → ZP by

I
P v(ξ) :=

∑

π∈QP

v(π)Lπ(ξ), (3.3.25)

generated by the quadrature point set QP corresponding to ZP . Taking the quadra-
ture formula for the function which is constant one, one can see that

∑

π∈QP

ηπ = 1, (3.3.26)

since

∑

π∈QP

ηπ =
∑

π∈QP

∫

Ω

Lπ(ξ(ω)) dP(ω) =

∫

Ω

∑

π∈QP

Lπ(ξ(ω)) dP(ω)

=

∫

Ω

(I P 1)(ξ(ω)) dP(ω) =

∫

Ω

1 dP = |Ω| = 1.

Again, the generalization of the operator I P for v ∈ V ⊗ L2(Ω) is immediate by
taking the operator tensor product with the identity operator on V .

3.3.2 Finite elements in space

In this subsection, we present the space discretization by finite elements. The nota-
tion and the main ideas are the same as in Berninger [18], who follows Kornhuber
[68] and Glowinski [48]. As in these references, we consider the case of a bounded,
polygonal domain D ⊂ R

2. However, the results presented herein also apply for
polyhedral domains in higher and lower dimensions.

Let T be a given partition of D into triangles t ∈ T with minimal diameter of
order O(2−). The set of all N vertices of the triangles in T is denoted by N. We
assume that each triangulation T is regular in the sense that the intersection of two
triangles in T is either empty or consists of a common edge or a common vertex.

For the convergence proofs in the following subsections, we deal with a sequence of
these triangulations and assume that they possess a decreasing mesh size

h := max
t∈T

diam t → 0 as → ∞. (3.3.27)

In addition, we assume that the sequence of triangulations

(T)≥0 is shape regular (3.3.28)
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in the sense that the minimal interior angle of all triangles contained in
⋃

≥0 T is
bounded from below by a positive constant.

The character of Dirichlet and Neumann boundaries should be reflected properly
by the triangulation. To this end, we assume that ΓD is closed and that each
intersection point in ΓD ∩ ΓN is contained in N. The vertices on the Dirichlet
boundary are denoted by ND

 := N ∩ ΓD.

The finite element space S ⊂ H1(D) is the subspace of all continuous functions in
H1(D) which are linear on each triangle t ∈ T. The space S is spanned by the
nodal basis

Λ := {s()p : p ∈ N},
the elements s

()
p of which are determined by s

()
p (q) = δpq for all p, q ∈ N. The

analogous construction in the space H1
ΓD

(D) gives rise to the finite element space

SD
 ⊂ H1

ΓD
(D) and its nodal basis given by

ΛD
 := {s()p : p ∈ N\ND

 }.

Together with the global polynomial space ZP and the polynomial chaos func-
tions Ψk introduced in (3.3.8) and (3.3.5), respectively, we define the tensor space
S ⊗ZP ⊂ H1(D) ⊗ L2(Ω) by

S⊗ZP :=
{

ϕ ∈ H1(D) ⊗ L2(Ω) : ϕ ∈ span{s()p (x)Ψk(ξ) : p ∈ N, k = 0, . . . , P}
}

.

(3.3.29)

Recall that QP denotes the Gaussian quadrature point set corresponding to ZP .
Then, we proceed by defining the finite dimensional analogue of the convex set K
defined in (3.2.3) by

KP
 := {v ∈ S ⊗ZP : v(p, π) ≥ uc ∀p ∈ N ∀π ∈ QP ∧ v(p, π) = uD(p, π)

∀p ∈ ND
 ∀π ∈ QP }. (3.3.30)

The set KP
 ⊂ S ⊗ZP is obviously convex, nonempty and closed. Observe that we

have to assume that the Dirichlet boundary function uD is continuous in each node
(p, π) ∈ ND

 × QP such that writing uD(p, π) makes sense. Even if this function
is purely deterministic, uD = uD(x), it has impact on the coefficients vik in the
representation

v(x, ξ(ω)) =

N
∑

i=1

P
∑

k=0

viks
()
pi

(x)Ψk(ξ(ω)) ∈ S ⊗ZP (3.3.31)

for {i : pi ∈ ND
 }, as it is described in Remark 3.3.3.

Remark 3.3.5. In general, we have KP
 6⊂ K since the Dirichlet boundary values

in KP
 differ from those in K. Even worse, the condition v(x, ξ(ω)) ≥ uc needs not

hold for (x, ξ) /∈ N × QP because v is a polynomial in ξ. However, neither in the
formulation of the problem nor in the post-processing of the solution a computation
in points ξ /∈ QP is needed, since the calculation of the integrals and moments is
done by using these quadrature points solely. If the solution method is constructed
in a way that it does not require the evaluation in such points either (more precisely:
the evaluation of H(u(x, ·)) and Φ(u(x, ·)) or the inverse Kirchhoff transformation
on u(x, ·) in such points), this fact does not pose a drawback. On the other hand,
we emphasize that in spatial direction the piecewise linearity provides this obstacle
condition for all (x, π) ∈ D × QP as in the deterministic case (see [18, Remark
2.5.1]).
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3.3.3 Approximation of the nonlinear functional

In this subsection, a discrete version of the functional φ from (3.2.12) and proofs
of important properties are presented. This will allow us to formulate the fully
discretized version of the convex minimization problem (3.2.26).

We seek an approximation of the nonlinear functional φ for functions in the subset
S⊗ZP . The integrals are approximated by quadrature formulas, but in a different
way: the treatment of the spatial integral arises directly from the interpolation of
the integrand Φ(v) in S, which provides positive weights of the form

hp :=

∫

D

s()p (x) dx, (3.3.32)

whereas a Gaussian quadrature is taken for the expectation value with weights ηπ

corresponding to quadrature points π ∈ QP as introduced in Subsection 3.3.1. The
discrete functional φP

 : S ⊗ZP → R ∪ {+∞} then reads

φP
 (v) :=

∑

π∈QP

∑

p∈N

Φ(v(p, π))hpηπ ∀v ∈ S ⊗ZP . (3.3.33)

Observe that the evaluation v(p, π) has according to (3.3.31) the form

v(pi0 , π) =

N
∑

i=1

P
∑

k=0

viks
()
pi

(pi0)Ψk(π) =

P
∑

k=0

vi0kΨk(π). (3.3.34)

This means that φP
 is decoupled in spatial direction with regard to the nodal basis,

whereas the nonlinear function Φ is still depending on all PC basis functions in each
quadrature point due to their global nature. Each solution method has to take this
fact into account.

The following lemma shows that φP
 features all important properties which φ have.

Lemma 3.3.6. Let H be monotonically increasing and bounded and let (3.3.23)
hold. Then the functional φP

 is convex, proper and lower semicontinuous on its
domain

domφP
 = {v ∈ S ⊗ZP : v(p, π) ≥ uc ∀p ∈ N ∀π ∈ QP }.

Furthermore, it is Lipschitz continuous and satisfies

|φP
 (v)| ≤ C‖v‖1,0 ∀v ∈ domφP

 , (3.3.35)

where the Lipschitz constant as well as the constant C > 0 are independent of  and
P .

Proof. The convexity of φP
 follows from the convexity of Φ and the fact that the

weights hp and ηπ are positive. It is clearly proper and lower semicontinuous if we
can prove the Lipschitz continuity.

Denoting by L the Lipschitz constant of Φ, we take u, v ∈ domφP
 and have

|φP
 (u) − φP

 (v)| =

∣

∣

∣

∣

∣

∣

∑

π∈QP

∑

p∈N

(Φ(u(p, π)) − Φ(v(p, π))) hpηπ

∣

∣

∣

∣

∣

∣

≤ L
∑

π∈QP

∑

p∈N

ηπ |u(p, π) − v(p, π)|
∫

D

s()p (x) dx.
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Since u(·, π) and v(·, π) are linear functions on each triangle t ∈ T for all π, we can
further deduce

|φP
 (u) − φP

 (v)| ≤ L
∑

π∈QP

∑

p∈N

ηπ

∫

supp(s
()
p )

|u(x, π) − v(x, π)| dx

≤ 3L

∫

D

∑

π∈QP

ηπ |u(x, π) − v(x, π)| dx,

where the last inequality is due to the fact that each triangle is contained in the
support of three nodal basis functions. We apply the Cauchy–Schwarz inequality to
the sum over π with (3.3.26) and exploit (3.3.23) and the high order of the Gaussian
quadrature, which allows us to compute E[v2] exactly, to obtain

|φP
 (u) − φP

 (v)| ≤ 3L

∫

D





∑

π∈QP

ηπ





1/2



∑

π∈QP

ηπ |u(x, π) − v(x, π)|2




1/2

dx

≤ 3L

∫

D

(∫

Ω

(u(x, ξ) − v(x, ξ))
2

dP

)1/2

dx.

Finally, by applying the Cauchy–Schwarz inequality in L2(D) we arrive at

|φP
 (u) − φP

 (v)| ≤ 3L‖1‖L2(D)

(∫

D

∫

Ω

(u(x, ξ) − v(x, ξ))2 dP dx

)1/2

≤ C‖u− v‖1,0,

which shows the Lipschitz continuity of φP
 and which yields (3.3.35), since

φP
 (0) = 0.

For the proof of the consistency of φP
 in Theorem 3.3.9, some preliminaries are in

order. First, we recall the definition of the projection PP in (3.3.9) and introduce
by IS the piecewise linear interpolation operator IS : C0(D) → S defined by

ISv(p) := v(p) for all p ∈ N. (3.3.36)

The tensor product structure allows a generalization IS : C0(D)⊗V → S ⊗V for
V ⊂ L2(Ω) immediately by taking the operator tensor product with the identity
operator on V .

Next, we assume that the Dirichlet boundary function uD is the trace of a function
w ∈ H1(D) ⊗L2(Ω) which is uniformly continuous on ΓD for almost all ω ∈ Ω, i.e.

uD = trΓD w for a w ∈
(

H1(D) ∩ C0(D)
)

⊗ L2(Ω), (3.3.37)

and that the interpolated and projected function wP
 = IS ⊗ PPw ∈ S ⊗ ZP

satisfies
‖wP

 − w‖1,0 → 0 as → ∞, P → ∞. (3.3.38)

Condition (3.3.37) is fulfilled if, for example, uD(·, ω) is continuous a.e. on the closed
boundary ΓD, which can be seen by the Tietze extension theorem [109, Corollary
B.1.6]. For condition (3.3.38), we split up ‖wP

 −w‖1,0 ≤ ‖wP
 −wP ‖1,0+‖wP −w‖1,0

for wP = PPw. Now, a criterion for condition (3.3.38) can be found in [25, Theorem
16.2], which states, provided that (3.3.27) and (3.3.28) hold, requirements on the
regularity of w. In our case d = 2, it is fulfilled if w ∈ H2(D)⊗L2(Ω) according to
the Sobolev embedding theorem (see, e.g., [22, Theorem 2.19]) and Theorem 3.3.1.
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For the following convergence results, we will exploit the embedding of Ω(M) into
R

M and thus switch notation. These results can also be stated if Ω(M) is unbounded.
We do not follow the path of regarding truncations of Ω(M) as in Remark 3.1.26,
but, following an idea in [13], impose an assumption on the probability density
function pdf(·) introduced in (3.1.24) that it satisfies

pdfr(yr) ≤ Cpdfr e
−|δryr|2 (3.3.39)

for some Cpdfr > 0 and numbers δr which are strictly positive for unbounded Ωr

and equal to zero otherwise such that

pdf(y) ≤ Cpdf e
− PM

r=1 |δryr|2 .

Observe that we can cover all important distributions including the normal distri-
bution by this assumption. Moreover, we introduce a positive weight σ assembled
as the product of one-dimensional weights σr(yr) = Cσre

−|δryr|2/4 for some Cσr > 0

such that σ(y) = Cσe
− PM

r=1 |δryr|2/4. Define the functional spaces

C0
σ(Ω(M)) := {v : v ∈ C0(Ω(M)) and ‖v‖C0

σ(Ω(M)) := max
y∈Ω(M)

|σ(y)v(y)| <∞}

and

C0
σ,0(Ω

(M)) := {v : v ∈ C0
σ(Ω(M)) and lim |σ(y)v(y)| → 0 as |y| → ∞}.

With this choice, the embedding C0
σ(Ω(M)) ⊂ L2(Ω(M)) is continuous. We inves-

tigate the approximation error of the interpolation I P defined in (3.3.25) in the
one-dimensional and in the M -dimensional case.

Lemma 3.3.7. Let v ∈ C0
σ(Ω(M)) be a continuous function for M = 1. Then the

interpolation error satisfies

‖v − I
P v‖L2(Ω(M)) ≤ C inf

v̄∈PolP (Ω(M))
‖v − v̄‖C0

σ(Ω(M)) (3.3.40)

with a constant C > 0 independent of P .

Proof. First, we see that the orthogonal property for Lagrange polynomials (3.3.22)
in the Gaussian quadrature points

∫

Ω

Lπ(ξ(ω))Lς(ξ(ω)) dP = δπςηπ (3.3.41)

yields

‖I P (v)‖2
L2(Ω(M)) =

∫

Ω

∑

π∈QP

v2(π)L2
π(ξ(ω)) dP

≤ max
π

(

v2(π)σ2(π)
)

∑

π∈QP

∫

Ω

L2
π(ξ(ω))

σ2(π)
dP.

If Ω(M) is bounded, we have σ = Cσ and (3.3.41), whence by (3.3.26)

‖I P (v)‖L2(Ω(M)) ≤ C‖v‖C0
σ(Ω(M)). (3.3.42)

In the case of unbounded Ω(M), we exploit the definition of σ and condition (3.3.39),
which allows us to apply the convergence result for quadrature formulas in Ap-
pendix C to obtain

∑

π∈QP

∫

Ω

L2
π(ξ(ω))

σ2(π)
dP =

∑

π∈QP

1

σ2(π)
ηπ →

∫

Ω

1

σ2(ξ(ω))
dP ≤ Cpdf

C2
σ

√
2π

δ1
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as P → ∞, which provides (3.3.42), too.

For each v̄ ∈ PolP (Ω(M)), it holds I P v̄ = v̄. Thus, it follows

‖v − I
P v‖L2(Ω(M)) ≤ ‖v − v̄‖L2(Ω(M)) + ‖I P (v − v̄)‖L2(Ω(M))

≤ C‖v − v̄‖C0
σ(Ω(M))

and consequently (3.3.40), since v̄ was arbitrary.

Lemma 3.3.8. Let v ∈ C0
σ,0(Ω

(M)) ⊂ L2(Ω(M)). Then

‖v − I
P v‖L2(Ω(M)) → 0 as P → ∞. (3.3.43)

Proof. The definitions of I P and the underlying Gaussian points π and Lagrange
polynomials Lπ allow us to apply Proposition 2.2.7 and (3.1.23) with Hr = L2(Ωr),
An = I P , Ar

n = I Pr
r , where I Pr

r is the one-dimensional Lagrange interpolation
in Ωr. Hence, we only have to show

‖w − I
Pr
r w‖L2(Ωr) → 0 as Pr → ∞

for all w ∈ C0
σr ,0(Ωr). By Lemma 3.3.7, it is sufficient to guarantee the existence of

a sequence (pn)n ⊂ Poln(Ωr) of polynomials such that

‖(pn − w)σr‖∞ → 0 as n→ ∞.

If Ωr is bounded, this is just the Weierstraß approximation theorem (see, e.g., [67]),
otherwise this holds by [79, Theorem 1.4].

We can now state the consistency of φP
 .

Theorem 3.3.9. Let H be a bounded and monotonically increasing function and
v ∈ C∞(D) ⊗ C∞

0 (Ω(M)). If (3.3.23), (3.3.27), (3.3.28), and (3.3.39) hold, then
for the interpolated function vP

 = IS(v
P ) of the projected function vP = PP (v),

shortly vP
 = IS ⊗ PP v ∈ S ⊗ZP , we have

vP
 → v in H1(D) ⊗ L2(Ω) as → ∞, P → ∞ (3.3.44)

and
φP

 (vP
 ) → φ(v) as → ∞, P → ∞. (3.3.45)

If, in addition, a function w satisfies (3.3.37) and (3.3.38), then the convergence re-
sults (3.3.44) and (3.3.45) are also valid for v = w + ṽ ∈ w +

(

C∞(D) ⊗ C∞
0 (Ω(M))

)

and vP
 = wP

 + ṽP
 = IS ⊗ PPw + IS ⊗ PP ṽ.

Proof. We split up the convergence error as

‖v − vP
 ‖ ≤ ‖v − vP ‖ + ‖vP − vP

 ‖. (3.3.46)

The first term on the right-hand side of (3.3.46) converges as P → ∞ because of
Theorem 3.3.1. Since C∞(D) is dense in all Hk(D) (see [25, p. 119]), the conver-
gence of the second term as  → ∞ under the assumptions (3.3.27) and (3.3.28) is
well known (see [25, Theorem 16.2]). Due to (3.3.38), the same holds for v = w+ ṽ
and vP

 = IS ⊗ PPw + IS ⊗ PP ṽ.

It remains to show the consistency φP
 (vP

 ) → φ(v). Assume first that φ(v) = ∞.

Then we can find an open subset E1 × E2 ⊂ D × Ω(M) with v(x, ξ) < uc for all

(x, ξ) ∈ E1×E2 and P
(M)(E2) > 0, whereE2 contains a set of the form

∏M
r=1(ar, br).
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Due to h → 0 we can find a ∗ such that N∩E1 6= ∅ for all  ≥ ∗. We can also find a
P ∗ such that for all P > P ∗ the corresponding quadrature point set always contains
a π ∈ E2, see Theorem C.2. This provides φP

 (vP
 ) → ∞ as → ∞, P → ∞.

In the case φ(v) < ∞, i.e. v(x, ξ) = v(x, ξ(ω)) ≥ uc for all x ∈ D and P-almost all
ω ∈ Ω, we begin by estimating

|φ(v) − φP
 (vP

 )| =

∣

∣

∣

∣

∣

∣

∫

Ω

∫

D

Φ(v(x, ξ)) dxdP −
∑

π∈QP

∑

p∈N

Φ(vP
 (p, π))hpηπ

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∫

D





∫

Ω

Φ(v(x, ξ)) dP −
∑

π∈QP

Φ(vP (x, π))ηπ



 dx

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

π∈QP

ηπ





∫

D

Φ(vP (x, π)) dx −
∑

p∈N

Φ(vP
 (p, π))hp





∣

∣

∣

∣

∣

∣

≤
∫

D

∣

∣

∣

∣

∫

Ω

(

Φ(v(x, ξ)) − Φ(vP (x, ξ))
)

dP

∣

∣

∣

∣

dx

+

∣

∣

∣

∣

∣

∣

∫

D

∫

Ω



Φ(vP (x, ξ)) −
∑

π∈QP

Φ(vP (x, π))Lπ(ξ)



 dP dx

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

π∈QP

ηπ





∫

D

Φ(vP (x, π)) dx −
∑

p∈N

Φ(vP
 (p, π))hp





∣

∣

∣

∣

∣

∣

=: (A1) + (A2) + (A3).

The integrand of the spatial integral in term (A1) can be estimated using the Lip-
schitz continuity of Φ (with Lipschitz constant L) and the Cauchy–Schwarz inequal-
ity by

∣

∣

∣

∣

∫

Ω

(

Φ(v(x, ξ)) − Φ(vP (x, ξ))
)

dP

∣

∣

∣

∣

≤ L

∫

Ω

∣

∣v(x, ξ) − vP (x, ξ)
∣

∣ dP

≤ C‖v(x, ξ) − vP (x, ξ)‖L2(Ω) → 0

as P → ∞. Since this convergence is monotone, we can use the theorem of Lebesgue
(see, e.g., [109]), whence (A1) → 0.

Using the identity operator Id, we can rewrite

(A2) ≤ ‖(Id⊗I
P − Id⊗ Id)Φ(vP )‖L1(D)⊗L1(Ω) ≤ C‖(Id⊗I

P − Id⊗ Id)Φ(vP )‖0,0.
(3.3.47)

Now apply Proposition 2.2.7 with H1 = L2(D), H2 = L2(Ω), A1
P = Id, A2

P = I P ,
which provides (A2) → 0 as P → ∞ by means of Lemma 3.3.8 if we can show

Φ(vP ) ∈ L2(D) ⊗ C0
σ,0(Ω

(M)). (3.3.48)

Indeed, v ∈ C∞(D) ⊗ C∞
0 (Ω(M)) implies vP ∈ C∞(D) ⊗ C0

σ,0(Ω
(M)), since vP is a

polynomial in Ω(M), and thus (3.3.48), since Φ is Lipschitz continuous.

For the sum in (A3), note that Φ(vP (·, π)) is uniformly continuous on D for each
Gaussian quadrature point π, since v(·, π) : D → [uc,∞) and vP (·, π) : D → [uc,∞)
are (in case of v = w + ũ this follows from (3.3.37)). Denote by p1t, p2t, p3t the
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vertices of t ∈ T. Due to
∑3

i=1 s
()
pit = 1 on the element t, it holds

∣

∣

∣

∣

∣

∣

∫

D

Φ(vP (x, π)) dx −
∑

p∈N

Φ(vP
 (p, π))hp

∣

∣

∣

∣

∣

∣

≤
∑

t∈T

∫

t

(

3
∑

i=1

s()pit
(x)|Φ(vP (x, π)) − Φ(vP (pit, π))|

)

dx

≤ |D| max
|x−y|≤h

x,y∈D

|Φ(vP (x, π)) − Φ(vP (y, π))| → 0

as  → ∞. In combination with (3.3.26) we have (A3) → 0, and the proof is
complete.

Now, we have all tools together to formulate the discrete version of the minimization
problem (3.2.26). It reads

uP
 ∈ KP

 : J (uP
 ) + φP

 (uP
 ) ≤ J (v) + φP

 (v) ∀v ∈ KP
 . (3.3.49)

We will see that we can transfer most results from the continuous to the discrete
model. We begin with the most important one.

Theorem 3.3.10. With the assumptions of Lemma 3.3.6 and with the conditions
on kr and K as in Theorem 3.2.11, the discrete minimization problem (3.3.49) has
a unique solution.

Proof. This follows from Proposition 3.2.10 with V = S ⊗ ZP , C = KP
 and

F = J + φP
 . To show the coercivity of F , we proceed as in (3.2.27) using (3.3.35)

instead of (3.2.13) and obtain

J (v) + φP
 (v) ≥ 1

2
c1‖v‖2

1,0 − c2‖v‖1,0 − c3 → ∞ (3.3.50)

as ‖v‖1,0 → ∞. The rest is clear.

By means of Proposition 3.2.16, it is easy to see that the minimization problem
(3.3.49) is equivalent to the variational inequality

uP
 ∈ KP

 : a(uP
 , v − uP

 ) − ℓ(v − uP
 ) + φP

 (v) − φP
 (uP

 ) ≥ 0 ∀v ∈ KP
 . (3.3.51)

In the following, we want to reformulate the discrete minimization problem (3.3.49)
in terms of variational inequalities and variational inclusions in consideration of the
boundary conditions as it was done for the continuous problem in Subsection 3.2.3.
We recall the canonical extension from Remark 3.2.19 and apply it to the functional
φP

 with regard to the convex set KP
 . Furthermore, we recall the definition of the

translation operator introduced in (3.2.31).

We now choose a fixed wP
 ∈ S ⊗ZP with

wP
 (p, π) = uD(p, π) ∀p ∈ ND

 ∀π ∈ QP

and set uP
 = wP

 + ũP
 . The translated discrete convex set analogously to (3.2.32)

is then given by

KP
, ΓD

:= KP
 − wP

 = {v ∈ SD
 ⊗ZP : v(p, π) ≥ uc − wP

 (p, π)∀p ∈ N ∀π ∈ QP }.
(3.3.52)
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Again, as in Remark 3.3.5, we have in general KP
, ΓD

6⊂ KΓD .

Proceeding as in the derivation of Propositions 3.2.20, 3.2.21 and 3.2.27, we can
now state their discrete counterparts.

Proposition 3.3.11. The minimization problem (3.3.49) is equivalent to

ũP
 ∈ SD

 ⊗ ZP : JwP

(ũP

 ) + (φP
 )wP


(ũP

 ) ≤ JwP

(v) + (φP

 )wP

(v) ∀v ∈ SD

 ⊗ZP

(3.3.53)
and equivalent to the variational inequality

ũP
 ∈ SD

 ⊗ZP : a(wP
 + ũP

 , v − ũP
 ) − ℓ(v − ũP

 )

+ φP
 (wP

 + v) − φP
 (wP

 + ũP
 ) ≥ 0 ∀v ∈ SD

 ⊗ZP (3.3.54)

and equivalent to the variational inclusion

ũP
 ∈ SD

 ⊗ZP : 0 ∈ a(wP
 + ũP

 , ·) − ℓ(·) + ∂φP
 (wP

 + ũP
 ) (3.3.55)

in
(

SD
 ⊗ZP

)′
, always in the sense that the solution uP

 of (3.3.49) equals wP
 + ũP

 .

The assertion in Proposition 3.3.11 remains true if one replaces the space SD
 ⊗ZP

with the set KP
, ΓD

in (3.3.53) or (3.3.54).

Remark 3.3.12. Note that we can prove in the same way as in Proposition 3.2.22
an analogous well-posedness result for the discrete problem (3.3.49).

Remark 3.3.13. Since we can interchange the sums and the subdifferential accord-
ing to [33, Prop. I.5.6], the subdifferential ∂φP

 (v0) ⊂
(

S ⊗ZP
)′

can be expressed
in view of (3.2.44) directly as

∂φP
 (v0)(v) =

∑

π∈QP

∑

p∈N

∂Φ(v0(p, π))v(p, π)hpηπ ∀v ∈ S ⊗ZP (3.3.56)

with dom ∂φP
 = domφP

 . Note that the difference revealed in (3.2.51) does no
longer play a role in the discrete world.

3.3.4 A convergence result for the limit cases

In the last subsection, we derived the discretized problem (3.3.49) with the unique
solution uP

 ∈ KP
 . The next obvious step should be the proof that

uP
 → u in H1(D) ⊗ L2(Ω) as → ∞, P → ∞, (3.3.57)

where u is the unique solution of problem (3.2.26). This is true for the deterministic
Richards equation (1.2.13) with solution û ∈ K̂ and the solution ûj ∈ K̂ of the
problem discretized with linear finite elements in S, i.e.

û → û in H1(D) as → ∞,

see [18, Theorem 2.5.9]. Analyzing the proofs of this theorem or of similar con-
vergence results (e.g. [48, Theorem I.6.2], [68, Theorem 1.13]), we can break them
down into two major components:

(i) There exist a set M which is dense in H1(D) and a mapping r : M → S for

which lim→∞ φ̂(rv̂) = φ̂(v̂) for all v̂ ∈ M .
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(ii) If v̂ ∈ S for all  and the sequence converges weakly to v̂ ∈ H1(D) as → ∞,
then

lim inf
→∞

φ̂(v̂) ≥ φ̂(v̂).

We try to transfer these two points into our setting. Concerning the consistency
condition (i), this is already done in Theorem 3.3.9. For the stability condition (ii),
a corresponding condition for the stochastic Richards equation would be

(ii’) If vP
 ∈ S ⊗ ZP for all  and P and the sequence converges weakly to a

v ∈ H1(D) ⊗ L2(Ω) as → ∞, P → ∞, then

lim inf
→∞
P→∞

φP
 (vP

 ) ≥ φ(v).

Condition (ii) can only be shown by an interplay of the convexity of Φ, the piecewise

linearity of v̂ and the corresponding quadrature formula for φ̂, which provides

φ̂(v̂) ≥ φ̂(v̂) ∀v̂ ∈ S (3.3.58)

and, together with the weak lower semicontinuity of φ̂,

lim inf
→∞

φ̂(v̂) ≥ lim inf
→∞

φ̂(v̂) ≥ φ̂(v̂).

However, the condition in the stochastic setting corresponding to (3.3.58)

φP
 (vP

 ) ≥ φ(vP
 ) ∀vP

 ∈ S ⊗ZP

is false in general for P > 1, as can be seen by simple examples. Thus, it is not
clear under which assumptions (ii’) is valid or a proof for (3.3.57) can be given.

It is, however, possible to show the convergence (3.3.57) in some special cases,
namely for the limit cases from Remark 3.2.32. We carry out the proof within a
greater context by developing a convergence theory for stochastic obstacle problems
as will be defined in the following.

Consider the stochastic obstacle problem

u ∈ K̄ : a(u, v − u) ≥ ℓ(v − u) ∀v ∈ K̄ (3.3.59)

on the convex set

K̄ :=
{

v ∈ H1
0 (D) ⊗ L2(Ω(M)) : v ≥ Ψ a.e. in D × Ω(M)

}

(3.3.60)

with an obstacle function Ψ ∈ (H1(D) ∩ C0(D)) ⊗ (L2(Ω(M)) ∩ C0(Ω(M))) which
satisfies Ψ(·, ξ) ≤ 0 in a neighborhood of ∂D for all ξ ∈ Ω(M) and Ψ(x, ·) ≤ 0
outside a compact set C̄1 ⊂ Ω(M) for all x ∈ D. Note that we take homogeneous
Dirichlet conditions for sake of simplicity. Recall from (3.1.22) and Remark 3.1.23
that (Ω(M),P(M)) and (Ω,P) can be identified in L2 sense. For the following re-
sults however, this background via the Karhunen–Loève expansion is not necessary
and we only assume for the rest of this section that (Ω(M),Bor(Ω(M)),P(M)) is a
probability space with Ω(M) ⊂ R

M , where ℓ(·) is a linear continuous functional on
V = H1

0 (D) ⊗ L2(Ω(M)) and a(·, ·) is a continuous and coercive bilinear form on
V × V .
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Theorem 3.3.14. The stochastic obstacle problem (3.3.59) has a unique solution.

Proof. We apply Proposition 3.2.10 with V = H1
0 (D) ⊗ L2(Ω(M)), C = K̄ and

F (v) = 1
2a(v, v) − ℓ(v) and only have to check that the conditions on F and K̄ are

satisfied. As in the proof of Theorem 3.2.11, we detect that F is strictly convex,
lower semicontinuous, proper and coercive.

Furthermore, it is clear that K̄ is convex. To show the closedness of K̄, one can
proceed as in Proposition 2.3.4 by replacing uc with Ψ . Finally, K̄ is nonempty
because Ψ+ := max(0, Ψ) ∈ K̄ due to the conditions on Ψ .

Proceeding as in Subsections 3.3.1 and 3.3.2, the discretized problem now reads

uP
 ∈ K̄P

 : a(uP
 , v − uP

 ) ≥ ℓ(v − uP
 ) ∀v ∈ K̄P

 (3.3.61)

on the convex set

K̄P
 := {v ∈ S ⊗ZP : v(p, π) ≥ Ψ(p, π)∀p ∈ N ∀π ∈ QP }. (3.3.62)

We want to show that the discretized solutions uP
 converge to the solution u ∈ K̄

as  → ∞ and P → ∞. First, we state the following lemma. Recall the definition
of D from (2.2.6).

Lemma 3.3.15. Under the above assumptions on K̄, the set D ∩ K̄ is dense in K̄.

Proof. The proof proceeds in the same way as the proof of Lemma II.2.4 in [48],
just by performing it in our tensor space instead of H1

0 (D). We sketch it for com-
pleteness.

Let v ∈ K̄. Lemma 2.2.5 implies the existence of a sequence (ṽn)n ⊂ D with
‖ṽn − v‖1,0 → 0. Defining

vn := max(Ψ, ṽn),

the functions vn also converge strongly to v, since v ∈ K̄. Moreover, the conditions
on K̄ imply that vn is a sequence in the set

C :=
{

v ∈ K̄ ∩
(

C0(D) ⊗ C0(Ω(M))
)

: v has compact support in D × Ω(M)
}

.

(3.3.63)

Therefore, it is sufficient to prove the existence of a sequence (vn)n ⊂ D ∩ K̄ with

‖vn − v‖1,0 → 0

for an arbitrary v ∈ C . To this end, we approximate v ∈ C as in the proof of
Lemma 2.2.5 by the sum vN =

∑N
i=1 v

D
i v

Ω
i of functions vD

i ∈ H1
0 (D) ∩ C0(D),

vΩ
i ∈ L2(Ω(M)) ∩ C0(Ω(M)) with compact support, respectively, such that

‖vN − v‖1,0 < ε/2,

and take a sequence of mollifiers (ϕD
n ) ∈ C∞

0 (Rd) and (ϕΩ
n ) ∈ C∞

0 (RM ) with de-
creasing support and

∞
⋂

n=1

supp(ϕD
n ) × supp(ϕΩ

n ) = {0}. (3.3.64)
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Let

ṽn := vN∗(ϕD
n ⊗ϕΩ

n ) :=

N
∑

i=1

∫

Rd

ϕD
n (x−x′)vD

i (x′) dx′
∫

RM

ϕΩ
n (ξ−ξ′)vΩ

i (ξ′) dP
(M)(ξ′),

then ṽn ∈ C∞
0 (Rd) ⊗ C∞

0 (RM ) with

supp(ṽn) ⊂ supp(vN ) + supp(ϕD
n ) × supp(ϕΩ

n )

and ‖vN − ṽn‖1,0 < ε/2 if n is large enough. Thus, ṽn → v in H1(Rd) ⊗ L2(RM )
and, due to (3.3.64) and the bounded supports, even in L∞(Rd) ⊗ L∞(RM ). This
is still valid if ṽn is restricted to D × Ω(M) such that ṽn ∈ D .

Define Dδ := {x ∈ D : dist(x, ∂D) < δ}. Take a compact set C̄n
2 ⊂ Ω(M) which

is a superset of C̄1 and the support of ṽn in Ω(M)-direction and a δ > 0 such
that Ψ(x, ξ) ≤ 0 and v = 0 in Dδ × (Ω(M)\C̄n

2 ). Due to the convergence of ṽn in
L∞(Rd) ⊗ L∞(RM ), there exists for all ε > 0 an n0 = n0(ε) such that

v(x, ξ) − ε ≤ ṽn(x, ξ) ≤ v(x, ξ) + ε ∀(x, ξ) ∈ (D\Dδ/2) × C̄n
2 (3.3.65)

and

ṽn(x, ξ) = 0 ≥ Ψ(x, ξ) ∀(x, ξ) ∈ Dδ/2 × (Ω(M)\C̄n
2 ) (3.3.66)

for all n > n0. Take a function θn ∈ D with θn ≥ 0 in D × Ω(M) and θn(x, ξ) = 1
for all (x, ξ) ∈ (D\Dδ/2) × C̄n

2 . Finally, define vε
n := ṽn + εθn. Then, vε

n ∈ D with

vε
n(x, ξ) ≥ Ψ(x, ξ) for all (x, ξ) ∈ D × Ω(M) by (3.3.65) and (3.3.66), and it is

‖vε
n − v‖1,0 → 0 as ε→ 0 and n→ ∞, n ≥ n0(ε).

This concludes the proof.

We now turn to the convergence proof.

Theorem 3.3.16. With the above assumptions on Ψ and the conditions (3.3.23),
(3.3.27), and (3.3.28) to the discretization and (3.3.39), we have

uP
 → u in H1

0 (D) ⊗ L2(Ω(M)) as → ∞, P → ∞, (3.3.67)

where uP
 is the solution of (3.3.61) and u is the solution of (3.3.59).

Proof. At the beginning, we show the following two approximation results:

(K1) If (vP
 ),P is such that vP

 ∈ K̄P
 for all  and P and that it converges weakly

to v as → ∞ and P → ∞, then v ∈ K̄.

(K2) There exist a set M which is dense in K̄ and an operator rP
 : M → K̄P

 such

that ‖rP
 v − v‖1,0 → 0 as → ∞ and P → ∞ for all v ∈ M .

Let us first prove (K1). Consider a function ϕ =
∑N

i=1 ϕ
D
i ϕ

Ω
i ∈ D with ϕ ≥ 0,

where ϕD
i ∈ C∞

0 (D) and ϕΩ
i ∈ C∞

0 (Ω(M)), and define ϕP
 by

ϕP
 :=

∑

π∈QP

∑

t∈T

ϕ(Gt, π)1tLπ = I
P





∑

t∈T

ϕ(Gt, ·)1t



 . (3.3.68)
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Here, Gt is the centroid of the triangle t ∈ T with vertices p1t, p2t, p3t. The triangle
inequality and the definition of the tensor scalar product provide

‖ϕ− ϕP
 ‖0,0 ≤

∥

∥

∥

∥

∥

∥

N
∑

i=1



ϕD
i −

∑

t∈T

ϕD
i (Gt)1t



ϕΩ
i

∥

∥

∥

∥

∥

∥

0,0

+

∥

∥

∥

∥

∥

∥

N
∑

i=1





∑

t∈T

ϕD
i (Gt)1t







ϕΩ
i −

∑

π∈QP

ϕΩ
i (π)Lπ





∥

∥

∥

∥

∥

∥

0,0

≤ C

N
∑

i=1

∥

∥

∥

∥

∥

∥

ϕD
i −

∑

t∈T

ϕD
i (Gt)1t

∥

∥

∥

∥

∥

∥

L2(D)

+ C

N
∑

i=1

∥

∥

∥

∥

∥

∥

ϕΩ
i −

∑

π∈QP

ϕΩ
i (π)Lπ

∥

∥

∥

∥

∥

∥

L2(Ω(M))

,

since ‖ϕΩ
i ‖L2(Ω(M)) and

∥

∥

∥

∑

t∈T
ϕD

i (Gt)1t

∥

∥

∥

L2(D)
are bounded (the latter because it

is convergent). Now,

∥

∥

∥

∥

∥

∥

ϕD
i −

∑

t∈T

ϕD
i (Gt)1t

∥

∥

∥

∥

∥

∥

L2(D)

→ 0 as → ∞

because of the uniform continuity of ϕD
i (we even have convergence in L∞(D)) and

∥

∥

∥

∥

∥

∥

ϕΩ
i −

∑

π∈QP

ϕΩ
i (π)Lπ

∥

∥

∥

∥

∥

∥

L2(Ω(M))

=
∥

∥ϕΩ
i − I

PϕΩ
i

∥

∥

L2(Ω(M))
→ 0 as P → ∞

with Lemma 3.3.8, since ϕΩ
i ∈ C∞

0 (Ω(M)). Altogether, we have

‖ϕ− ϕP
 ‖0,0 → 0 as → ∞, P → ∞. (3.3.69)

For the approximation of Ψ by ΨP
 , we take piecewise linear interpolation in D and

Lagrange interpolation in Ω(M), i.e. ΨP
 = IS ⊗ I PΨ . In particular, we have

Ψ(p, π) = ΨP
 (p, π) ∀p ∈ N ∀π ∈ QP .

One can approximate Ψ by the function ΨN =
∑N

i=1 Ψ
D
i Ψ

Ω
i , where ΨD

i ∈ C∞(D)
and ΨΩ

i ∈ C∞
0 (Ω(M)), since C∞(D) is dense in H1(D), analogously to Lemma

2.2.5. By definition of the operator tensor product in (2.2.8), IS ⊗ I PΨN is an
approximation of ΨP

 . Moreover, we can reduce as above

‖IS⊗I
PΨN−ΨN‖0,0 ≤ C

N
∑

i=1

∥

∥ΨD
i − ISΨ

D
i

∥

∥

L2(D)
+C

N
∑

i=1

∥

∥ΨΩ
i − I

PΨΩ
i

∥

∥

L2(Ω(M))
,

where the convergence
∥

∥ΨD
i − ISΨ

D
i

∥

∥

L2(D)
→ 0 as  → ∞ is clear [25, Theo-

rem 16.2] and the convergence

∥

∥ΨΩ
i − I

PΨΩ
i

∥

∥

L2(Ω(M))
→ 0 as P → ∞

is provided by Lemma 3.3.8.

Hence, we have
‖ΨP

 − Ψ‖0,0 → 0 as → ∞, P → ∞. (3.3.70)
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Now, let (vP
 ),P ⊂ K̄P

 be a sequence converging weakly to v ∈ H1
0 (D)⊗ L2(Ω(M))

as → ∞, P → ∞. Then, (3.3.69) and (3.3.70) imply

lim
→∞
P→∞

(vP
 − ΨP

 , ϕ
P
 )0,0 = (v − Ψ, ϕ)0,0. (3.3.71)

Inserting (3.3.68), this can be rewritten as

(vP
 − ΨP

 , ϕ
P
 )0,0 =

∫

Ω(M)

∫

D

(vP
 − ΨP

 )





∑

π∈QP

∑

t∈T

ϕ(Gt, π)1tLπ



 dxdP
(M).

We now exploit the exactness of the Gaussian quadrature for functions in K̄P
 , the

identity Lπ(ς) = δπς for π, ς ∈ QP and the exact quadrature formula for linear FE
functions

∫

t

w dx =
|t|
3

3
∑

i=1

w(pit)

(see [48, p. 34]) and obtain by the definition of K̄P


(vP
 − ΨP

 , ϕ
P
 )0,0 =

∑

π∈QP

ηπ





∑

t∈T

ϕ(Gt, π)

∫

t

(

vP
 (x, π) − ΨP

 (x, π)
)

dx





=
∑

π∈QP

ηπ





∑

t∈T

ϕ(Gt, π)
|t|
3

3
∑

i=1

(

vP
 (pit, π) − ΨP

 (pit, π)
)





≥ 0

for all ϕ ∈ D with ϕ ≥ 0. Letting → ∞ and P → ∞ provides by (3.3.71)
∫

Ω(M)

∫

D

(v − Ψ)ϕdxdP
(M) ≥ 0 ∀ϕ ∈ D with ϕ ≥ 0,

which implies v ≥ Ψ a.e. in D × Ω(M). Thus, (K1) is proven.

We now turn to (K2). In view of Lemma 3.3.15, we take M = D ∩ K̄ and again
rP
 = IS ⊗ I P . Obviously, it is rP

 v ∈ K̄P
 for all v ∈ M , since rP

 v(p, π) =

v(p, π) ≥ Ψ(p, π) for all p ∈ N and π ∈ QP by construction.

We still have to show ‖rP
 v − v‖1,0 → 0 as j → ∞, P → ∞. With v =

∑N
i=1 v

D
i v

Ω
i

and rP
 v =

∑N
i=1(ISv

D
i )(I P vΩ

i ), we can estimate as above

‖rP
 v − v‖1,0 ≤ C

N
∑

i=1

∥

∥vD
i − ISv

D
i

∥

∥

H1(D)
+ C

N
∑

i=1

∥

∥vΩ
i − I

P vΩ
i

∥

∥

L2(Ω(M))
,

where the convergence
∥

∥vD
i − ISv

D
i

∥

∥

H1(D)
→ 0 as → ∞ is again provided by [25,

Theorem 16.2] and the convergence
∥

∥vΩ
i − I P vΩ

i

∥

∥

L2(Ω(M))
→ 0 as P → ∞ is again

ensured by Lemma 3.3.8, since vΩ
i ∈ C∞

0 (Ω(M)). This validates (K2).

This preliminary work done, we can turn to the convergence. We follow [48, The-
orem I.5.2] and divide the proof of (3.3.67) into three parts: first show the bound-
edness of (uP

 ),P , then the weak convergence, and finally the strong convergence of
this sequence.

We will now show that there exist constants C1 and C2 independent of  and P
such that

‖uP
 ‖2

1,0 ≤ C1‖uP
 ‖1,0 + C2 (3.3.72)
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for all  and P . By (3.3.61), we have

a(uP
 , u

P
 ) ≤ a(uP

 , v
P
 ) − ℓ(vP

 − uP
 ) ∀vP

 ∈ K̄P
 ,

whence by means of the coercivity (3.2.7)

c‖uP
 ‖2

1,0 ≤ C‖uP
 ‖1,0‖vP

 ‖1,0 + ‖ℓ‖(‖uP
 ‖1,0 + ‖vP

 ‖1,0) ∀vP
 ∈ K̄P

 . (3.3.73)

Let v ∈ M and vP
 = rP

 v ∈ K̄P
 . Since ‖rP

 v−v‖1,0 → 0 due to (K2), we know that

‖vP
 ‖1,0 is uniformly bounded by a constant C3. Hence, (3.3.73) can be written as

‖uP
 ‖2

1,0 ≤ 1

c

(

CC3 + ‖ℓ‖)‖uP
 ‖1,0 + ‖ℓ‖C3

)

.

Thus, we have (3.3.72), which implies ‖uP
 ‖1,0 ≤ C4 for all  and P .

As second step, we prove that uP
 converges weakly to u. Since it was just shown

that uP
 is uniformly bounded, we can exploit that H1

0 (D) ⊗ L2(Ω(M)) is a Hilbert

space and state the existence of a subsequence (uPi
i

) which converges weakly to a

u∗ ∈ H1
0 (D)⊗L2(Ω(M)). By (K1), we have u∗ ∈ K̄. Now show that u∗ is a solution

of (3.3.59). For v ∈ M and vPi
i

= rPi
i
v, we can state as above

a(uPi
i
, uPi

i
) ≤ a(uPi

i
, rPi

i
v) − ℓ(rPi

i
v − uPi

i
). (3.3.74)

Since rPi
i
v converges strongly to v and uPi

i
converges weakly to u∗ as i → ∞,

Pi → ∞, taking the limit in (3.3.74) provides

lim inf
i→∞
Pi→∞

a(uPi
i
, uPi

i
) ≤ a(u∗, v) − ℓ(v − u∗) ∀v ∈ M . (3.3.75)

On the other hand, it is

0 ≤ a(uPi
i

− u∗, uPi
i

− u∗) = a(uPi
i
, uPi

i
) − a(uPi

i
, u∗) − a(u∗, uPi

i
) + a(u∗, u∗),

which can be rewritten as

a(uPi
i
, u∗) + a(u∗, uPi

i
) − a(u∗, u∗) ≤ a(uPi

i
, uPi

i
).

Taking the limit, we obtain

a(u∗, u∗) ≤ lim inf
i→∞
Pi→∞

a(uPi
i
, uPi

i
). (3.3.76)

Combining (3.3.75) and (3.3.76), we have u∗ ∈ K̄ with

a(u∗, v − u∗) ≥ ℓ(v − u∗) ∀v ∈ M .

From the density of M and the continuity of a(·, ·) and ℓ(·), we can conclude

a(u∗, v − u∗) ≥ ℓ(v − u∗) ∀v ∈ K̄. (3.3.77)

Since the solution of (3.3.59) is unique according to Theorem 3.3.14, we obtain
u∗ = u. Hence, u is the only cluster point of (uP

 ) in the weak topology. Conse-
quently, the whole sequence converges weakly to u.

As last step, we show that uP
 even converges strongly to u. With v ∈ M , we can

derive analogously to (3.3.74) that

a(uP
 , u

P
 ) ≤ a(uP

 , r
P
 v) − ℓ(rP

 v − uP
 ) (3.3.78)
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with rP
 v ∈ K̄. By coercivity, we have moreover

0 ≤ c‖uP
 − u‖2

1,0 ≤ a(uP
 − u, uP

 − u) = a(uP
 , u

P
 ) − a(u, uP

 ) − a(uP
 , u) + a(u, u).

(3.3.79)
Since uP

 converges weakly to u and rP
 v converges strongly to v by (K2) as → ∞

and P → ∞, we can combine (3.3.78) and (3.3.79) and take the limit to obtain

0 ≤ c lim inf
→∞
P→∞

‖uP
 − u‖2

1,0 ≤ c lim sup
→∞
P→∞

‖uP
 − u‖2

1,0 ≤ a(u, v − u) − ℓ(v − u) (3.3.80)

for all v ∈ M . By density and continuity, (3.3.80) also holds for all v ∈ K̄. Taking
v = u in (3.3.80), we obtain

lim
→∞
P→∞

‖uP
 − u‖1,0 = 0,

as stated.

We apply this for the limit cases of the Richards equation.

Theorem 3.3.17. Let the discretization satisfy (3.3.23), (3.3.27), (3.3.28), and
let (3.3.39) hold with ΓN = ∅. Moreover, let the function w be an element of
(H1(D)∩C0(D))⊗(L2(Ω(M))∩C0(Ω(M))) and satisfy (3.3.37)–(3.3.38). If H = H0

or H = H∞ as defined in (1.1.18) and (1.1.20), respectively, then we have

uP
 → u in H1(D) ⊗ L2(Ω) as → ∞, P → ∞, (3.3.81)

where u is the unique solution of problem (3.2.26) and uP
 ∈ KP

 is the unique
solution of the discretized problem (3.3.49).

Proof. Recall from Remark 3.2.32 that (3.2.26) can be written as a stochastic ob-
stacle problem

ũ ∈ KΓD : a(ũ, v − ũ) − ℓ̃(v − ũ) ≥ 0 ∀v ∈ KΓD

with u = w + ũ and

KΓD = {v ∈ H1
ΓD

(D) ⊗ L2(Ω) : v ≥ uc − w}

from (3.2.32). Setting Ψ = uc − w, (3.3.81) now follows from Theorem 3.3.16.

3.4 Numerical experiments

In this section, we turn to the error made by the discretization presented in this
chapter. In the following, we will disregard the error from the Karhunen–Loève
expansion and the time discretization and solely concentrate on the error from the
PC and FE approximation.

At the beginning, let us recall known error estimates for the linear case. Consider
H ≡ 0 with homogeneous Dirichlet conditions and ΓN = ∅, which leads to the linear
diffusion equation

u ∈ H1
0 (D) ⊗ L2(Ω) : a(u, v) = ℓ(v) ∀v ∈ H1

0 (D) ⊗ L2(Ω), (3.4.1)

confer Remark 3.2.14. This problem was examined in depth in Babuška et al.
[11, 12] including a theoretical analysis of the discretization error. Their result
reads as follows.
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Theorem 3.4.1. Let u be the solution of (3.4.1) with a functional ℓ(v) = E[
∫

D
fv dx]

with a continuous and bounded f ∈ L2(D) ⊗ L2(Ω) expanded as in (3.1.34) and let
α ∈ (0, 1). Assume that the KL expansion (3.1.11) for K is strongly uniformly
coercive in the sense that there exists a constant C̃ > 0 such that

min
(x,ω)∈D×Ω,

(

K(x, ω) −
√

λr0gr0(x)ξr0 (ω)
)

−
√

λr0‖gr0‖L∞(D)‖ξr0‖L∞(Ω) ≥ C̃

for all r0 = 1, . . . ,M and differentiable on D in the sense that K̄, gr ∈ C1(D) for
all r = 1, . . . ,M . Furthermore, let Assumption 3.1.21 hold with bounded intervals
Ωr = ξr(Ω) and bounded density functions pdfr(·). Then, u is analytic with respect
to ξ and there exist a constant C > 0, independent of  and P , and a constant
0 < β < 1, only depending on α and C, such that

inf
v∈S⊗ZP

‖u− v‖1,0 ≤ C

(

h +
1

α

M
∑

r=1

βPr+1

)

(3.4.2)

and

inf
v∈S⊗ZP

‖E[u] − E[v]‖L2(D) ≤ C

(

h2
 +

1

α

M
∑

r=1

β2Pr+2

)

. (3.4.3)

We will see in the following that our numerical experiments suggest similar error
bounds for the stochastic Richards equation. To this end, we set up two test cases
in space dimensions d = 1 and d = 2 and solve them with the methods described
in Chapter 4. Another numerical test with a stochastic obstacle problem showing
similar results was carried out in [37].

3.4.1 Results for one space dimension

We start with a very simple problem in one space and one stochastic dimension with
a smooth solution u. Nevertheless, it allows to draw some interesting conclusions
which will be supported by the results in Subsection 3.4.2.

We choose η = 10−3 [kg/ms], ρ = 103 [kg/m3], g = 10 [m/s], n = 1 as parameters in
a sandy soil on a domain D = (−10, 10). Then, we utilize Brooks–Corey functions
with λ = 2/3, θm = 0.21, θM = 0.95, pb = −1 as in the example in Section 1.1.
The generalized saturation H(u) is given by (1.1.15) (see Figure 1.5) with critical
generalized pressure uc = −4/3. The uniformly distributed permeability is given
by the Karhunen–Loève expansion (3.1.11) with M = 1, ξ1 ∝ U (−1, 1), where the
expectation of K is modeled by K̄ = 1.9 · (0.95− x/200) and the eigenvalue λ1 and
eigenfunction g1 are known analytically for the exponential covariance kernel

VK(x, y) = exp(−|x− y|/20)

according to Appendix A. Multiplied with an appropriate scaling factor, the per-
meability function satisfies

K(x, ω) ∈ [8.88 · 10−13, 2.92 · 10−12].

The exact solution is given by

u(t, x, ω) = −1.1 + 0.01x+ 10−3t(x2 − 100) exp(ξ1(ω)),

and we select the function f and corresponding Dirichlet boundary conditions such
that u(1, x, ω) solves (3.2.2) when performing a single time step with τ = 1. Note
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Figure 3.3: Discretization error over the number of spatial unknowns N for de-
creasing mesh size h and fixed polynomial degree P0 = 6 (left) and over increasing
polynomial degree P0 = 0, . . . , 6, for a fixed grid with N = 50 000 unknowns (right).
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Figure 3.4: L2 error of the expectation value over the number of spatial unknowns
N for decreasing mesh size h and fixed polynomial degree P0 = 6 (left) and
over increasing polynomial degree P0 = 0, . . . , 6, for a fixed grid with N = 50 000
unknowns (right).

that u is smooth in x and ξ1. We discretize the problem as described in Section
3.3. In spatial direction, we use an equidistant grid with N nodes and mesh size
h = 20/(N − 1), and in Ω(M) = [−1, 1], we take a PC basis of one-dimensional
Legendre polynomials (see Appendix B.2) with maximal degree P0.

We start with the question of the dependence of the discretization error on the
mesh size h and on the polynomial degree P0. First, we fix the polynomial degree
P0 = 6 and decrease the mesh size h. As shown in the left picture of Figure 3.3, the
error ‖u− uP

 ‖1,0 (upper solid line with markers ◦) now decreases with order O(hj)

(upper dashed line) while the L2 error ‖u−uP
 ‖0,0 (lower solid line with markers ∗)

even behaves like O(h2
 ) (lower dashed line). In the other setting on a fixed spatial

grid with N = 50 000, the right picture of Figure 3.3 shows an exponential decay
of the error ‖u− uP

 ‖1,0 (solid line) of order O(βPr+1) with β = 0.1 (dashed line).

Let us perform the same test scenario in order to investigate the error of the ex-
pectation value E[u]. For fixed P0 = 6 and decreasing mesh size h, the left pic-
ture of Figure 3.4 indicates that the error ‖E[u] − E[uP

 ]‖L2(D) behaves like O(h2
 )

(dashed line), while we obtain an exponential decay of order O(β2Pr+2) with β = 0.1
(dashed line) for a fixed spatial grid with N = 50 000 and increasing polynomial
degree P0 = 0, . . . , 6 in the right picture. Note that for P0 > 4 a larger PC ba-
sis no longer reduces the overall error since the spatial error dominates the term
‖E[u] − E[uP

 ]‖L2(D).

These experimental results suggest that the theoretical error estimates in (3.4.2)
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√
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and (3.4.3) in Theorem 3.4.1 for the linear case can possibly be extended to our
case of the stochastic Richards equation.

The last investigation is dedicated to the comparison between the polynomial chaos
and the Monte Carlo method. The Monte Carlo samples were drawn in Ω(M),
i.e. after KL approximation, as will be described in Subsection 4.1.3. We now start
three Monte Carlo runs, each of them consisting of NMC samples, and approximate
the expectation E[u] by the sample mean ū from (4.1.27). The error ‖E[u]−ū‖L2(D)

is shown in Figure 3.5 for all three Monte Carlo runs, where the left picture shows
the results for NMC = 1000 and the right picture displays the same zoomed to the
interval [1, 7]. The dashed line in the left picture remarks the expected O(1/

√
NMC)

behavior as will be deduced in Subsection 4.1.3. Moreover, we plot again the error
‖E[u]−E[uP

 ]‖L2(D) from Figure 3.4 but now over the number of (stochastic) degrees
of freedom. This comparison assumes that each (stochastic) degree of freedom,
which corresponds to a PC basis function, is equivalent to one deterministic solve
of the space-discretized Richards equation. As we will show in Section 4.2, this
assumption is true for all PC bases mentioned in Subsection 3.3.1 (but not for the
classical PC basis {Ψc

k} for M > 1). Figure 3.5 displays a much higher efficiency
of the polynomial chaos approach in comparison with Monte Carlo with a factor of
about 108 for P0 = 4. This is mainly a consequence of the smoothness of u, which
is exploited by polynomial chaos and not by Monte Carlo, and of the low stochastic
dimension M = 1.

3.4.2 Results for two space dimensions

We turn to a two-dimensional domain D ⊂ R
2 and consider the Richards equation

(1.1.11) without gravity, i.e. ∇z = 0. This does not affect the generality of our
computations since this term only contributes to the right-hand side in the time-
discrete weak formulation (3.2.2).

Take λ = 0.694 in the Brooks–Corey functions, which corresponds to a sandy soil.
Moreover, set θm = 0.0458, θM = 1, pb = −1, which yields uc ≈ −1.32446
by (1.1.14), and the function H(u) according to (1.1.15). Furthermore, choose
D = (−1, 1) × (−1, 1) and a lognormal permeability with exponential covariance.
More precisely, let K = 3.9248 · 10−12 exp(K̃), where K̃ is approximated by a
Karhunen–Loève expansion

K̃ = E[K̃] +

M
∑

r=1

√

λrgr(x)ξr(ω)
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Figure 3.7: The triangulations for  = 1 and  = 4.

with M = 2 and ξ1, ξ2 ∝ N (0, 1), cf. Remark 3.1.27. The eigenvalues λr and
eigenfunctions gr are known analytically for the separable exponential covariance
kernel

VK̃(x, y) = exp(−|x− y|1/40)

according to Appendix A. We define E[K̃] = 1.4 · (1 − 0.1|x|22) and can compute
that the permeability function satisfies

P
(

K(x, ω) ∈ [2.54 · 10−12, 1.22 · 10−11]
)

≥ 0.9946.

We define the exact solution as

u(t, x, ω) =











−1 + 0.05(r − |x|)·
(

ξ41(ω) − (3 − ξ1(ω))2 − 3ξ1(ω) + 15
)

cos2(ξ2(ω)π/2),
|x| < r

−1 − (2|ξ1(ω) + ξ2(ω)| + 4)
−1

+ (100 (|x| − 0.16 − 0.2t))
−1
, |x| ≥ r

with r = r(t, ξ1, ξ2) = 2 (0.1 + 0.1t+ 0.01|ξ1 + ξ2|) and select the function f and
corresponding stochastic Dirichlet boundary functions such that u(1, x, ω) solves
(3.2.2) when performing a single time step with τ = 1. The solution u(1, x, ω) is
illustrated in Figure 3.6 at two different realizations. Note that r determines the
boundary between the saturated and the unsaturated regime and that it varies with
ω. The solution u is not differentiable at this boundary and beyond this boundary
the pressure is decreasing extremely rapidly, which is a typical behavior for such
problems, cf. the computations in [18].

The problem is discretized as described in Section 3.3. In spatial direction, we use
a sequence of triangulations T with mesh size h = 2− as obtained by successive
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10
2

10
4

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0 1 2 3 4
10

−4

10
−3

10
−2

10
−1

10
0

Figure 3.9: L2 error of the expectation value over the number of spatial unknownsN

for decreasing mesh size h,  = 2, . . . , 10, and fixed polynomial degree Pr = 4 (left)
and over increasing polynomial degree Pr = 0, . . . , 4, for fixed mesh size h = h10

(right).

uniform refinement of an initial triangulation T0 which comes from one uniform
refinement step applied to a partition of D into two congruent triangles, see Figure
3.7. In Ω(M) = R

2 equipped with the density functions of standard normal distribu-
tions, we take a tensor product PC basis with maximal degree P1 and P2, where the
polynomials Ψk from (3.3.5) are products of one-dimensional Hermite polynomials,
see Appendix B.1.

We start again with the question of how the discretization error depends on the
spatial mesh size h and on the polynomial degree Pr. As in the previous example,
the left picture of Figure 3.8 shows that for fixed polynomial degree P1 = P2 = 4
and decreasing mesh size h,  = 2, . . . , 10, the error ‖u − uP

 ‖1,0 (upper solid line
with markers ◦) decreases with order O(hj) (upper dashed line) while the L2 error
‖u−uP

 ‖0,0 (lower solid line with markers ∗) behaves like O(h2
 ) (lower dashed line).

Now, we fix the mesh size h = h10 and increase the polynomial degree Pr = 0, . . . , 4
for r = 1, 2, where we always take P1 = P2. Here, the right picture of Figure 3.8
shows an exponential decay of the error ‖u − uP

 ‖1,0. The dashed auxiliary line in

this picture indicates the order O(βPr+1) for β = 0.5.

The error of the expectation value E[u] is investigated in a similar way. As shown
in the left picture of Figure 3.9, the error ‖E[u] − E[uP

 ]‖L2(D) behaves like O(h2
 )

(dashed line) for decreasing mesh size h and fixed P1 = P2 = 4, while the right
picture indicates an exponential decay of order O(β2Pr+2) with β = 0.5 (dashed
line) for fixed h = h10. For P1 = P2 ≥ 3, the spatial error starts to dominate
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again. These experimental results also suggest that the discretization error for the
stochastic Richards equation has similar estimates as given in Theorem 3.4.1 for
the linear case.

Finally, let us compare the polynomial chaos approach with the Monte Carlo method.
We fix the mesh size h = h10 and start three runs of the Monte Carlo method. The
errors of the sample mean (4.1.27) as approximation of E[u] in ‖ · ‖L2(D) norm over
the number NMC of deterministic solves are shown as upper solid lines in Figure
3.10, where the dashed line remarks the expected O(1/

√
NMC) behavior as will be

deduced in Subsection 4.1.3. We compare it with the error of the polynomial chaos
approach (lower line with markers ◦), where we assume again that each stochastic
degree of freedom is equivalent to one deterministic solve. Similar to the example
with d = 1, we observe a much higher efficiency of the polynomial chaos approach.
Here, the factor is about 20 for P1 = P2 = 3, which is however worse than the
corresponding result in Subsection 3.4.1 for two reasons: first, the spatial error pre-
vents a higher accuracy, and secondly, the convergence rate of the polynomial chaos
method depends on the dimension M , which is not the case for Monte Carlo. The
results demonstrate again the advantage of the polynomial chaos approach.
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Chapter 4

Numerical solution

In this chapter, we present our approach for the numerical treatment of the discrete
minimization problem

uP
 ∈ KP

 : J (uP
 ) + φP

 (uP
 ) ≤ J (v) + φP

 (v) ∀v ∈ KP
 (4.0.1)

introduced in (3.3.49), where J , φP
 and KP

 are defined in (3.2.21), (3.3.33) and
(3.3.30), respectively. We start in Section 4.1 by giving an overview over the most
commonly used methods for stochastic partial differential equations which feature
the stochastic input noise in a parameterizable form as the Karhunen–Loève expan-
sion in Section 3.1. Our new approach is presented in Section 4.2. It is based on a
successive minimization in direction of the nodal basis functions in form of a Block
Gauß–Seidel method, where, in each block, an inner minimization in stochastic di-
rection is performed in accordance with the form of the stochastic basis functions.
The outer iteration in spatial direction is extended to a monotone multigrid ap-
proach in order to obtain a more efficient method, which is done in Section 4.3.
Moreover, we present some first numerical results concerning convergence rates for
the previously described methods. We conclude this chapter by describing some
post-processing steps for the calculation of moments and probabilities from the
computed solution in Section 4.4.

4.1 Common methods for SPDEs

As in Remark 3.2.14, we assume that Φ and H are continuous and defined on the
whole real line and that, for sake of notation, uD ≡ 0. In that case, the discrete
version of problem (3.2.28) reads

uP
 ∈ SD

 ⊗ZP : a(uP
 , v) − ℓ(v) +

∑

π∈QP

∑

p∈N

H(uP
 (p, π))v(p, π)hpηπ = 0

∀v ∈ SD
 ⊗ZP (4.1.1)

according to Proposition 3.3.11 and Remark 3.3.13. Recall that the permeability
function K in the definition (3.2.4) of the bilinear form a(·, ·) is approximated by a
truncated KL expansion of the form (3.1.11).

In this section, we discuss the application of the most commonly used methods
in this context to (4.1.1), viz. the stochastic Galerkin approach, the stochastic
collocation approach and the Monte Carlo approach. By doing this, we also set
some notation for the following sections.

85



4.1.1 Stochastic Galerkin method

The stochastic Galerkin approach has gained much attention in the last few years
since the work of Ghanem and Spanos [47], who called it “stochastic finite elements
method”. In the broader sense, this term denotes the discretization in Section
3.3, which employs a standard (finite element) approximation in space and an ap-
proximation with global polynomials (PC) in the stochastic domain. We, however,
will denote by this term the method of projecting the terms on the PC basis in
order to compute their coefficients. This is the standard method for all kind of
linear stochastic PDEs (cf. [11, 29, 32, 38, 64, 75, 101, 113]) and stochastic ODEs
(cf. [107, 114]), but is also used for a variety of nonlinear problems (cf. [63, 73, 82]).

Denoting by {s()i } = {s()pi } ⊂ ΛD
 the nodal basis in SD

 with cardinality N = |ΛD
 |

and by {Ψk} the PC basis in ZP , the solution uP
 of (4.1.1) has the representation

uP
 (x, ξ(ω)) =

N
∑

i=1

P
∑

k=0

uiks
()
i (x)Ψk(ξ(ω)), (4.1.2)

and we aim at computing the coefficients uik. Therefor, we insert (4.1.2) and test
functions of the form

v(x, ξ(ω)) = s
()
j (x)Ψl(ξ(ω))

into the weak formulation (4.1.1).

For the bilinear form a(·, ·), we obtain

a(uP
 , v) = τnE

[∫

D

K∇uP
 ∇v dx

]

= τnE

[

∫

D

(

K̄(x) +

M
∑

r=1

√

λrgr(x)ξr

)

∇





N
∑

i=1

P
∑

k=0

uiks
()
i (x)Ψk(ξ)



∇
(

s
()
j (x)Ψl(ξ)

)

dx



 (4.1.3)

= τn

N
∑

i=1

P
∑

k=0

uik

((∫

D

K̄(x)∇s()i (x)∇s()j (x) dx

)

E[ΨkΨl]

+
M
∑

r=1

√

λr

(∫

D

gr(x)∇s()i (x)∇s()j (x) dx

)

E[ξrΨkΨl]

)

,

and the right-hand side reads

ℓ(v) = E

[∫

D

H(un−1)v dx

]

+ τnE

[∫

D

K kr(H(un−1))ρgez∇v dx

]

=

∫

Ω

∫

D

H (un−1(x, ξ)) s
()
j (x)Ψl(ξ) dxdP + (4.1.4)

τn

∫

Ω

∫

D

(

K̄(x) +
M
∑

r=1

√

λrgr(x)ξr

)

kr (H (un−1(x, ξ))) ρgez∇s()j (x)Ψl(ξ) dxdP,

where the argument un−1(x, ξ) has the form

un−1(x, ξ(ω)) =

N
∑

i=1

P
∑

k=0

(un−1)iks
()
i (x)Ψk(ξ(ω)).
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Remark 4.1.1. Since the function H in (4.1.4) couples the variables x and ω,
we need a simultaneous quadrature in D and Ω in order to calculate ℓ(v). We
compute the spatial integral separately on each triangle t ∈ T and apply there a
usual quadrature scheme (see [25, Section 25]), where, at each quadrature point,
a Gaussian quadrature with points QP is employed for the integral over Ω (see
Subsection 3.3.1).

Remark 4.1.2. For the treatment of Neumann boundary conditions, the approach
is still working. If ℓ(v) contains further terms, e.g.

E

[∫

D

f(x, ω)v(x, ω) dx

]

or E

[∫

ΓN

fN(x, ω)v(x, ω) dσ

]

,

the procedure is just the same as in (4.1.4).

Looking at (4.1.3), we note the benefit arising from the tensor product structure
of H1(D) ⊗ L2(Ω) and from the property of the KL expansion of separating the
functions gr depending on x ∈ D and ξr depending on ω ∈ Ω. The spatial integrals
and the expectation values can therefore be calculated independently of each other.
This gives rise to the block matrix A ∈ R

N(P+1)×N(P+1) with

A = ([Aij ]kl)i,j,k,l for i, j = 1, . . . , N and k, l = 0, . . . , P, (4.1.5)

which consists of N2
 blocks Aij ∈ R

(P+1)×(P+1). The entry [Aij ]kl is given by

[Aij ]kl = τn

((∫

D

K̄(x)∇s()i (x)∇s()j (x) dx

)

E[ΨkΨl]

+

M
∑

r=1

√

λr

(∫

D

gr(x)∇s()i (x)∇s()j (x) dx

)

E[ξrΨkΨl]

)

, (4.1.6)

where the spatial integrals are approximated by means of a quadrature formula.
The stochastic integrals, however, are known exactly: on the one hand, it holds
E[ΨkΨl] = δkl due to (3.3.7), on the other hand, we have by (3.1.25)

E[ξrΨkΨl] =

∫

Ω

ξr(ω)Ψk(ξ(ω))Ψl(ξ(ω)) dP(ω)

=

∫

ΩM

· · ·
∫

Ω1

yrΨk(y1, . . . , yM )Ψl(y1, . . . , yM )pdf1(y1) dy1 · · · pdfM (yM ) dyM

=

(∫

Ωr

yrψ
r
k(yr)ψ

r
l (yr)pdfr(yr) dyr

)

∏

s=1,...,M
s6=r

∫

Ωs

ψs
k(ys)ψ

s
l (ys)pdfs(ys) dys

with Ψk =
∏M

s=1 ψ
s
k according to (3.3.5). The integrals over Ωs for s 6= r are again

either zero or one, whereas the integral over Ωr in the parentheses can be calculated
by an exact Gaussian quadrature with points QP (the integrand is a polynomial
of degree at most 2Pr + 1). Note that it is sufficient to generate only once the
one-dimensional integrals and to store them for the rest of the time.

Remark 4.1.3. A short way to represent the stiffness matrix A is to use the matrix
Kronecker product. The matrix A is then written shortly as

A = E0 ⊗ F0 +

M
∑

r=1

Er ⊗ Fr,
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Figure 4.1: Sparsity pattern of each nonzero matrix block Aij for P0 = Pr = 4 in
case of classical PC (left, P + 1 = 21) and tensor product PC (right, P + 1 = 36).

where the matrices Er ∈ R
N×N are built up by the spatial integrals and the ma-

trices Fr ∈ R
(P+1)×(P+1) are built up by the stochastic integrals for all 0 ≤ r ≤M .

This underlines the aforementioned fact that both integrals can be calculated inde-
pendently of each other. This has the advantage that in case of basis changes in S,
for example due to a restriction or prolongation in multigrid approaches or due to
adaptive refinements of the grid, it is only necessary to update the matrices Er and
to rebuild A by the Kronecker product; and vice versa for changes in ZP .

Definition 4.1.4. We denote by aP
 (·, ·) the approximation of the bilinear form

a(·, ·) by quadrature in the spatial domain D as described above and by ℓP (·) the
approximation of the linear form ℓ(·) by quadrature as explained in Remark 4.1.1.

These considerations provide the sparsity structure of the stiffness matrix A. Re-
garding A just consisting of the block matrices (Aij)i,j , it possesses the same pattern
as in the deterministic finite element context, i.e.

Aij 6= 0 ⇒ pi, pj ∈ t for a t ∈ T.

The pattern arising from the expectation values is always the same within each
matrix block Aij 6= 0, but it is depending on the used PC basis functions. For
the biorthogonal basis {Ψk} = {Ψb

k}, each block is diagonal. For {Ψk} = {Ψc
k} or

{Ψk} = {Ψt
k}, we have sparse blocks; a typical pattern is displayed in Figure 4.1.

Remark 4.1.5. In Remark 3.1.20, we discussed the case of non-independent ξr.
The suggestion of applying a nonlinear transformationG to a Gaussian expansion as
in (3.1.20) causes difficulties. Since the functions gY,r and ξr are coupled via G, one
cannot separate the spatial and stochastic integrals as in (4.1.3). A simultaneous
quadrature over D and Ω is necessary, and the diagonal or sparse structure of the
blocks Aij is destroyed.

For the representation of the variables ξr in a PC expansion as in (3.1.21), the
separation of the integrals persists, but the resulting matrix blocks are dense (cf. the
sparsity patterns depicted in [32]), since expectation values E[ΨkΨlΨm] instead of
E[ξrΨkΨl] are obtained in (4.1.6).

Furthermore, we define the block vectors u ∈ R
N(P+1) and b ∈ R

N(P+1). Both
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vectors consist of N blocks ui ∈ R
P+1 and bi ∈ R

P+1, respectively, according to

u =



















...

ui

...



















=



















...
ui0

...
uiP

...



















and b =



















...

bi

...



















, (4.1.7)

where the entries of b are
[bi]k = ℓP (s

()
i Ψk). (4.1.8)

In the linear case, i.e. for H ≡ 0, the problem (4.1.1) can be written as linear system

u ∈ R
N(P+1) : Au = b. (4.1.9)

The matrix A is obviously symmetric. Moreover, it is positive definite, if the ap-
proximate bilinear form aP

 (·, ·) is coercive, i.e. if there exists a c > 0 such that

aP
 (v, v) ≥ c‖v‖2

1,0 ∀v ∈ S ⊗ZP . (4.1.10)

This follows by [25, Theorem 27.1] from the coercivity condition (3.2.7) if the
quadrature scheme used in Definition 4.1.4 is exact for constant functions. Re-
garding the discretization error in the linear case, there exist theoretical estimates
from [11], which we already cited in Theorem 3.4.1.

We return to the nonlinear case H 6≡ 0. Applying the stochastic Galerkin approach
to the sum in (4.1.1), we obtain

∑

π∈QP

∑

p∈N

H(uP
 (p, π))v(p, π)hpηπ

=
∑

π∈QP

∑

p∈N

H





N
∑

i=1

P
∑

k=0

uiks
()
i (p)Ψk(π)



 s
()
j (p)Ψl(π)hpηπ

=
∑

π∈QP

H

(

P
∑

k=0

upjkΨk(π)

)

Ψl(π)hpjηπ (4.1.11)

for all j = 1, . . . , N and l = 0, . . . , P . This means that the nonlinear function H
couples all entries of the vector block uj , and it is far from obvious how to compute
the coefficients uik of the solution. In Section 4.2, we present an approach to
overcome this difficulty.

Remark 4.1.6. Even if H is a “nice” function like a polynomial of low order, we
obtain expressions which are hard to deal with; e.g. for H(z) = z2 the term (4.1.11)
reads after reordering

∑

π∈QP

P
∑

k=0

P
∑

m=0

upjkupjmΨk(π)Ψm(π)Ψl(π)hpjηπ.

The sum
∑

π∈QP Ψk(π)Ψm(π)Ψl(π)ηπ as approximation of E[ΨkΨlΨm] is in general
not zero for k 6= m and the Gaussian quadrature is no longer exact. Debusschere
et al. [30] propose a reprojection onto ZP with accepting an approximation error
for operations on PC functions, but it is clear that this approach is limited (cf. [81]
for an illustrative example).
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4.1.2 Stochastic collocation

An alternative to the stochastic Galerkin approach in Subsection 4.1.1 is the stochas-
tic collocation approach, which became popular in the mid of the first decade in this
century by the works of Xiu and Hesthaven [112] and Babuška et al. [13], although
its idea was already used earlier, e.g. as “Nonintrusive spectral projection” in [74].
It combines the advantages of Monte Carlo methods and the stochastic Galerkin
method. On the one hand, it shows similar convergence results as the latter having
its high resolution by exploiting the interpolation properties of multivariate poly-
nomials. On the other hand, it is straightforward to implement like Monte Carlo
algorithms, since it requires only the solution of corresponding deterministic prob-
lems at each collocation point. In this subsection, we describe the method and give
a short overview over known convergence results with an emphasis on the choice of
collocation points.

We imply again the assumptions on H as in Remark 3.2.14 which led to the varia-
tional equality (3.2.28). In view of (3.1.25), we can regard this equality as a problem
in D in dependence of an M -dimensional parameter y ∈ Ω(M) and consider the so-
lution u as a function u : Ω(M) → H1

ΓD
(D), where we use the notation u(y) to

highlight this dependence. Equation (3.2.28) is then equivalent to the problem of
finding a function u : Ω(M) → H1

ΓD
(D) such that

∂vφ
y(u(y)) + ay(u(y), v) − ℓy(v) = 0 ∀v ∈ H1

ΓD
(D), a.e. in Ω(M) (4.1.12)

with

φy(u(y)) :=

∫

D

Φ(u(y)) dx and ∂vφ
y(u(y)) =

∫

D

H(u(y))v dx, (4.1.13)

ay(u(y), v) := τn

∫

D

K(·, y)∇u(y)∇v dx, (4.1.14)

ℓy(v) :=

∫

D

H(un−1(y))v dx+ τn

∫

D

K(·, y)kr(H(un−1(y)))ρgez∇v dx.

(4.1.15)

We first introduce a semi-discretization in D with finite elements as in Subsection
3.3.2 and obtain by projecting equation (4.1.12) onto the subspace SD

 and approx-
imating the functional φy analogously to (3.3.33) and (3.3.56) an approximation
u : Ω(M) → SD

 for each y ∈ Ω(M) as the solution of

∑

p∈N

H(u(p, y))v(p)hp + ay(u(y), v) − ℓy(v) = 0 ∀v ∈ SD
 . (4.1.16)

The next step consists in choosing a collocation point set C = {y(k)}k=1,...,NC
in

Ω(M). This is the crucial part of this approach and we will specify it below. We
now solve the problem (4.1.16) in each collocation point y = y(k) and denote the
solution by u(·, y(k)) ∈ SD

 . Note that the whole problem is naturally decoupled in
this approach and that we work with NC deterministic problems.

The last step is to take the Lagrange polynomials Ly(k) for each collocation point
and obtain the approximation

uC (x, y) =

NC
∑

k=1

u(x, y
(k))Ly(k)(y) (4.1.17)

as a function in SD
 ⊗ span{Ly(1) , . . . ,Ly(NC)}.
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It remains to specify the set C. The minimal requirement is that the Lagrange
interpolation is feasible, i.e. that there exists a unique polynomial p such that
p(yk) = f(yk), 1 ≤ k ≤ NC , for any f : Ω(M) → R. This property is called
poisedness of C and is nontrivial in the multivariate case M > 1 (see [94] and the
references therein). The first natural idea is to use univariate point sets Cr with
NCr collocation points in each dimension and to build tensor product polynomials.
This is done by first associating to a vector of indices (k1, . . . , kM ) a global index

k = k1 +NC1(k2 − 1) +NC1NC2(k3 − 1) + . . .

for a point y(k) = (y(1,k1), . . . , y(M,kM)) ∈ Ω(M) and calculating Ly(k) as the product

Ly(k)(y) =
M
∏

r=1

Lr,kr (yr)

of one-dimensional Lagrange polynomials Lr,j with Lr,j(y
(r,l)) = δjl for j, l =

1, . . . , NCr representing a basis of the space PolNCr−1(Ωr). An obvious choice for
the collocation points is then taking the zeros of the corresponding orthogonal poly-
nomials. With NCr = Pr + 1 for all 1 ≤ r ≤M , we arrive at

span{Ly(1) , . . . ,Ly(NC)} = ZP (4.1.18)

with ZP from (3.3.14). In this way, this stochastic collocation method can be
seen as stochastic Galerkin method with biorthogonal polynomials {Ψb

k}, which
was first discovered in [13]. A drawback of this idea consists again in the “curse of
dimensionality” because of

NC =

M
∏

r=1

NCr , (4.1.19)

see columns with label |{Ψt
k}| in Table 3.3. This initiated the investigation of sparse

grid schemes like Stroud cubature (used in [112]) or constructions by the Smolyak
algorithm (examined in [87] and [112]).

We cite some known results about the error for the linear case H ≡ 0. For tensor
product polynomials with the zeros of orthogonal polynomials as collocation points,
it is in view of (4.1.18) not surprising that one can prove the following analogue to
Theorem 3.4.1.

Theorem 4.1.7 ([13]). Under the assumptions of Theorem 3.4.1 there exist positive
constants αr and C, independent of  and NC, such that

‖u− uC ‖1,0 ≤ C

(

h +

M
∑

r=1

e−αrPr

)

. (4.1.20)

In case of unbounded Ωr, the convergence rate in (4.1.20) deteriorates slightly and
can be estimated as

‖u− uC ‖1,0 ≤ C

(

h +

M
∑

r=1

√

Pre
−αr

√
Pr

)

under some further assumptions, see [13] for details.

For sparse grids with a Smolyak formula based on Clenshaw–Curtis abcissas, Nobile
et al. [87] proved the following error of the solution uSm

 .
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Theorem 4.1.8. Let u ∈ H1
0 (D) ⊗ C0(Ω(M)). Then, under the assumptions of

Theorem 3.4.1, there exist positive constants α and C, independent of  and the
number NSm of collocation points, such that

‖u− uSm
 ‖H1(D)⊗L∞(Ω(M)) ≤ C

(

h +N
− α

1+log(2M)

Sm

)

. (4.1.21)

It thus features only an algebraic instead of an exponential error decay in stochastic
direction, but on a distinctly smaller point set than (4.1.19). Further research
indicates that sparse grids are preferable for large M , while the tensor product
collocation is superior for long correlation lengths and anisotropic products, i.e. if
the numbers Pr vary for different 1 ≤ r ≤M . On top of that, both methods clearly
outperform the Monte Carlo method. For more details, we refer to [87, Section 5].

To close this subsection, we underline the fact that this collocation approach can be
applied in our nonlinear case as seen above and that it can be generalized straight-
forward to variational inequalities and minimization problems in which we are in-
terested. Indeed, if we define for all y ∈ Ω(M) the convex set

K(y) := {v(y) ∈ S : v(p, y) ≥ uc ∀p ∈ N ∧ v(p, y) = uD(p, y)∀p ∈ ND
 } (4.1.22)

and the functional

J y(v) :=
1

2
ay(v, v) − ℓy(v) ∀v ∈ H1(D) (4.1.23)

as well as

φy
 (v) :=

∑

p∈N

Φ(v(p, y))hp ∀v(·, y) ∈ S (4.1.24)

as discretization of φy defined in (4.1.13), then the semidiscretization of (3.2.26)
reads

u : Ω(M) → K(y) : J y(u(y)) + φy
 (u(y)) ≤ J y(v) + φy

 (v) ∀v ∈ K(y).

(4.1.25)

For the derivation of (4.1.25), we refer to the considerations in Section 3.3 and also
the discretization in the deterministic case in [18, Section 2.5].

We continue this point in Subsection 4.2.2, where we show that our solution method
can be regarded in special cases as a collocation.

4.1.3 Monte Carlo method

For sake of completeness, we outline the Monte Carlo method as applied to the
stochastic Richards equation and compare it with the methods presented in the last
two sections. The method was developed in the 1940s [85] and can be applied in a
huge variety of fields due to its simplicity. For its use in hydrological context, we
refer as example to [39] and [44] and the references therein.

In contrast to Remark 2.3.7, we now apply this method to problem (2.3.8) after
approximation of K by the Karhunen–Loève expansion as done in Section 3.1.
Note that the Monte Carlo method does not allow to compute the approximate
solution uP

 ∈ S ⊗ ZP of (4.0.1), i.e. a representation as a function on D × Ω(M),
but only approximations of the moments of u as discrete functions on S ⊂ H1(D),
i.e. for functions which correspond to E[(uP

 )n] for n ≥ 1. We will concentrate
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in the following on the approximation of E[u] although the computation of higher
moments (as will be defined in Section 4.4) is immediate.

We sample independent and identically distributed (i.i.d.) realizations in the prob-
ability space L2(Ω(M),Bor(Ω(M)),P(M)) from (3.1.22) and denote the samples by
yn, n = 1, . . . , NMC. Using the discretizations and notations from Subsection 4.1.2,
we now have to solve NMC independent problems

u(yn) ∈ K(yn) : J yn(u(yn)) + φyn
 (u(yn)) ≤ J yn(v) + φyn

 (v) ∀v ∈ K(yn)
(4.1.26)

for all n = 1, . . . , NMC. We collect the solutions u(yn) ∈ S and compute the
sample mean

ū :=
1

NMC

NMC
∑

n=1

u(yn). (4.1.27)

By the strong law of large numbers [78, Section 16], the sample mean ū converges al-
most surely to E[u] provided that the finite element discretization converges, cf. Re-
mark 2.3.7. This is a result of the splitting

E[u] − ū = (E[u] − E[u]) + (E[u] − ū) =: E + EMC, (4.1.28)

where u(y) ∈ S is the finite element approximation of u(y) ∈ K̂.

As in the previous subsections, we first consider the linear case with homogeneous
Dirichlet boundary conditions and H ≡ 0, which leads to the problem of finding a
u : D × Ω(M) → R with

u(y) ∈ H1
0 (D) : ay(u(y), v) = ℓy(v) ∀v ∈ H1

0 (D) (4.1.29)

for almost all y ∈ Ω(M). Babuška et al. [11] proved the following result.

Theorem 4.1.9. Let u be the solution of (4.1.29) with ℓy(v) =
∫

D
f(y)v dx for a

continuous and bounded function f ∈ L2(D)⊗L2(Ω). Let K ∈ L2(D)⊗L2(Ω) with

P

(

ω ∈ Ω : K(·, ω) ∈ C1(D) and max
x∈D

|∇K(x, ω)| < C1

)

= 1

for a constant C1. Assume that there exists a constant C2 > 0, independent of NMC

and , such that

NMC · E

[

‖E[u] − ū‖2
L2(D)

]

≤ C2 for all NMC and .

Then for any given ε > 0 there exists a constant C > 0 which is independent of ε,
NMC and  such that

‖E[u] − ū‖L2(D) ≤ C

(

h2
 +

ε√
NMC

)

(4.1.30)

with a probability greater than 1 − C2/ε
2.

Comparing this result with (3.4.3) in Theorem 3.4.1 clearly indicates that the
stochastic Galerkin (as well as the stochastic collocation) approach outperforms
the Monte Carlo method for the linear case and moderate dimensions M . For more
information, see the discussions and numerical experiments in [12, Sections 8 and
9].
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We return to our nonlinear variational inequality and consider the Monte Carlo
error EMC from (4.1.28). Note that this error is a random variable because ū is
random. Thus, we consider

E[E2
MC] = E[u]

2 − 2

NMC
E[u]E

[

NMC
∑

n=1

u(yn)

]

+
1

N2
MC

E





(

NMC
∑

n=1

u(yn)

)2


 .

We exploit that the realizations are i.i.d. and deduce

E[E2
MC] = E[u]

2 − 2E[u]
2 +

1

N2
MC





(

NMC
∑

n=1

E[u]

)2

+

NMC
∑

n=1

(

E[u2
 ] − E[u]

2
)





=
NMC

N2
MC

(

E[u2
 ] − E[u]

2
)

=
1

NMC
Var[u],

which means that the expected L2 error

NMC · E
[

‖EMC‖2
L2(D)

]

= E

[

‖u‖2
L2(D)

]

− ‖E[u]‖2
L2(D)

of the Monte Carlo method is only depending on the variance of u.

For further analysis, we need the theorem of Berry–Esseen [35, Section XVI.5].

Theorem 4.1.10. Let X1, X2, . . . be i.i.d. random variables with finite moments
|E[X1]| < ∞, σ2 := E

[

(X1 − E[X1])
2
]

∈ (0,∞) and µ̄3 := E
[

|X1 − E[X1]|3
]

< ∞
on (Ω, E ,P). Denote by

Φ0,1 : x 7→ 1√
2π

∫ x

−∞
e−t2/2 dt

the cumulative distribution function of the standard normal distribution N (0, 1)
and consider the random variable

S∗
n :=

X1 + . . .+Xn − nE[X1]

σ
√
n

.

Then, the convergence of the distribution of S∗
n to N (0, 1) according to the central

limit theorem can be estimated by

sup
x∈R

|P(S∗
n ≤ x) − Φ0,1(x)| ≤

0.8µ̄3

σ3
√
n
. (4.1.31)

We apply this theorem to our problem and detect that the right-hand side of (4.1.31)
is nearly zero if

NMC ≫ E
[

|u − E[u]|3
]2

E [(u − E[u])2]
3 .

In this case, one obtains

P
(M)

(

|E[u] − ū| ≤ x0
σ√
NMC

)

≈ Φ0,1(x0)−Φ0,1(−x0) = 2Φ0,1(x0)− 1 (4.1.32)

for an arbitrary x0 > 0 with σ2
 := E

[

(u − E[u])
2
]

. By this way, we constructed a
confidence interval with level x0 for the estimation of the function E[u]. Moreover,
by replacing σ2

 with the sample variance

s2 :=
1

NMC − 1

NMC
∑

n=1

(u(yn) − ū)
2,

we obtain a termination condition for the Monte Carlo method. Finally note that
(4.1.32) is only depending on the variance and on the number NMC of Monte Carlo
iterations and not on the dimension M of the sample space.
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4.2 Nonlinear Block Gauß–Seidel and minimiza-

tion

In this section, we present the main ingredients of our method to solve the dis-
crete convex minimization problem (4.0.1). An outer iteration employs a division
of the space S and is a successive minimization in direction of the single nodal
basis functions, which gives rise to a nonlinear Block Gauß–Seidel relaxation and is
a straight generalization of the method for the deterministic Richards equation in
[18]. In contrast to the deterministic approach, we do not arrive at one-dimensional
problems but at a minimization within the space ZP . We examine several pos-
sibilities to solve the inner minimization. In case of tensor product PC functions
{Ψk} = {Ψt

k}, we present a transformation of the inner minimization, which results
in decoupled one-dimensional minimization problems, and we show its connection
to stochastic collocation. We emphasize the nature of this approach which turns
out to be robust with respect to the slope of H and which remains feasible in case
of piecewise smooth Φ and in the limit cases (1.1.18) and (1.1.20).

4.2.1 Nonlinear Block Gauß–Seidel

We start with a nonlinear Block Gauß–Seidel method in S ⊗ZP . This method will
work as a smoother for the multigrid method which will be presented in Section 4.3.
As defined in Subsection 3.3.2, we look at nodes p ∈ N, where N has the cardinality

N = |N|, and regard the corresponding nodal basis functions s
()
p ∈ Λ. Then, we

introduce for i = 1, . . . , N the splitting

S ⊗ZP =

N
∑

i=1

Vi with Vi = span{s()pi
} ⊗ ZP (4.2.1)

of S ⊗ ZP into N subspaces of dimension P + 1. Analogously, we define for
i = 1, . . . , N the splitting

KP
 =

N
∑

i=1

KP
,i

of the convex set KP
 into N subsets

KP
,i := KP

 ∩ Vi.

Observe that this division of KP
 is only possible due to the special structure of this

set and the fact that

s()pi
(pj) = δij .

Moreover, the element v ∈ KP
 can be written as v(x, ξ(ω)) =

∑N

i=1 vi(x, ξ(ω)) with

vi ∈ KP
,i, and the functional φP

 is decoupled in spatial direction with

φP
 (v) =

N
∑

i=1

∑

π∈QP

Φ (vi(pi, π)) hpiηπ =

N
∑

i=1

∑

π∈QP

Φ

(

P
∑

k=0

vikΨk(π)

)

hpiηπ (4.2.2)

according to (3.3.33) and (3.3.34).

Then, starting with a given iterate wν
0 = (uP

 )ν ∈ KP
 , we compute a sequence of

intermediate iterates wν
i = wν

i−1 + v̄ν
i , i = 1, . . . , N, by solving a sequence of convex
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minimization problems of finding corrections

v̄ν
i ∈ Vi with wν

i−1 + v̄ν
i ∈ KP

 : J (wν
i−1 + v̄ν

i ) + φP
 (wν

i−1 + v̄ν
i )

≤ J (wν
i−1 + v) + φP

 (wν
i−1 + v) ∀v ∈ Vi with wν

i−1 + v ∈ KP
 (4.2.3)

and define the next iterate by

MP


(

(uP
 )ν
)

:= (uP
 )ν+1 = wν

N
= (uP

 )ν +

N
∑

i=1

v̄ν
i . (4.2.4)

By construction, we have monotonically decreasing energy

J (wν
i ) + φP

 (wν
i ) ≤ J (wν

i−1) + φP
 (wν

i−1). (4.2.5)

In light of Theorem 3.3.10, each subproblem (4.2.3) is uniquely solvable, which
means that equality holds in (4.2.5) if, and only if, wν

i = wν
i−1. This leads to

J (MP
 (w)) + φP

 (MP
 (w)) = J (w) + φP

 (w) ⇔ MP
 (w) = w (4.2.6)

as a characterization of the fixed points of MP
 . Furthermore, we assume that the

iteration operator MP
 is continuous, i.e.

wν
n → w ⇒ MP

 (wν
n) → MP

 (w) (4.2.7)

as n → ∞. In Remark 4.2.6, it will be shown that condition (4.2.7) is actually
satisfied by the iteration operator. Finally, we note that the minimization problems
(4.2.3) can be rewritten as the variational inequalities

v̄ν
i ∈ Vi with wν

i−1 + v̄ν
i ∈ KP

 : a(wν
i−1 + v̄ν

i , v − v̄ν
i ) − ℓ(v − v̄ν

i )

+ φP
 (wν

i−1 + v) − φP
 (wν

i−1 + v̄ν
i ) ≥ 0 ∀v ∈ Vi with wν

i−1 + v ∈ KP
 (4.2.8)

according to Proposition 3.3.11.

The following global convergence theorem is a generalization of a result for the case
of one-dimensional Vi which can be found in [48, Theorem V.3.1] or [68, Theo-
rem 2.1]. We adapt the proof of the latter to our block case. However, we remark
that the proof in [48] goes without condition (4.2.7) and can be generalized to the
block case in the same way as it is done here.

Theorem 4.2.1. We assume the conditions given in Theorem 3.3.10. Then, for
any initial iterate (uP

 )0 ∈ KP
 , the sequence of iterates

(

(uP
 )ν
)

ν≥0
provided by the

nonlinear Block Gauß–Seidel relaxation method (4.2.4) converges to the solution uP


of the discrete problem (4.0.1).

Proof. For sake of notation, we use the abbreviation FP
 = J+φP

 . The proof is then

divided into three steps. First, we show that the sequence of iterates
(

(uP
 )ν
)

ν≥0

is bounded. This can be seen by contradiction, since ‖(uP
 )ν‖ → ∞ would imply

FP


(

(uP
 )ν
)

→ ∞ by (3.3.50), but it holds

FP


(

(uP
 )ν
)

≤ FP


(

(uP
 )0
)

<∞

for all ν ≥ 0.
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Since
(

(uP
 )ν
)

ν≥0
is bounded in the finite-dimensional space S ⊗ ZP , there exists

a convergent subsequence
(

(uP
 )νk

)

k≥0
with

(uP
 )νk → u∗ ∈ S ⊗ZP

as k → ∞. We have u∗ ∈ KP
 , because (uP

 )νk ∈ KP
 for all k ≥ 0 and KP

 is

closed. We now prove as second step that u∗ must be a fixed point of MP
 . The

monotonicity (4.2.5) implies

FP


(

(uP
 )νk+1

)

≤ FP


(

(uP
 )νk+1

)

= FP


(

MP


(

(uP
 )νk

))

≤ FP


(

(uP
 )νk

)

for all k ≥ 0. The continuity of MP
 and FP

 on KP
 yields

FP


(

MP
 (u∗)

)

= FP
 (u∗),

and we conclude from (4.2.6) that MP
 (u∗) = u∗.

Finally, we show that all fixed points u∗ of MP
 are equal to the solution uP

 of the

problem (4.0.1). In this step, we make use of the structure of our functional φP
j . In

view of (4.2.8), each local variational inequality can be written as

v̄ν
i ∈ Vi with wν

i−1 + v̄ν
i ∈ KP

 : a(wν
i−1 + v̄ν

i , v − v̄ν
i ) − ℓ(v − v̄ν

i )

+
∑

π∈QP

Φ
(

(wν
i−1 + v)(pi, π)

)

hpiηπ −
∑

π∈QP

Φ
(

(wν
i−1 + v̄ν

i )(pi, π)
)

hpiηπ ≥ 0

∀v ∈ Vi with wν
i−1 + v ∈ KP

 (4.2.9)

for all i = 1, . . . , N. For the fixed point u∗, all local corrections v̄ν
i of u∗ must be

zero, which means that the inequality in (4.2.9) reads

a(u∗, v) − ℓ(v) +
∑

π∈QP

Φ ((u∗ + v)(pi, π)) hpiηπ −
∑

π∈QP

Φ (u∗(pi, π))hpiηπ ≥ 0.

(4.2.10)

Now consider some arbitrary but fixed ṽ ∈ S ⊗ ZP with representation (3.3.31)
and insert the interpolation

v = IVi(ṽ − u∗) :=

P
∑

k=0

ṽiks
()
pi

Ψk −
P
∑

k=0

u∗iks
()
pi

Ψk

in (4.2.10) to obtain

a(u∗, IVi(ṽ − u∗)) − ℓ(IVi(ṽ − u∗))+

∑

π∈QP

Φ

(

P
∑

k=0

ṽiks
()
pi

(pi)Ψk(π)

)

hpiηπ −
∑

π∈QP

Φ

(

P
∑

k=0

u∗iks
()
pi

(pi)Ψk(π)

)

hpiηπ ≥ 0.

Adding up all these local inequalities for i = 1, . . . , N, this results in

a(u∗, ṽ − u∗) − ℓ(ṽ − u∗) + φP
 (ṽ) − φP

 (u∗) ≥ 0

according to (4.2.2). Since ṽ ∈ S ⊗ZP was arbitrary, we see by (3.3.51) that u∗ is
equal to the unique solution uP

 .

We have shown that each convergent subsequence of
(

(uP
 )ν
)

ν≥0
converges to uP

 .

Hence, the whole sequence must converge to uP
 , and the proof is complete.
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Remark 4.2.2. Note that we did not assert global convergence in Theorem 4.2.1
for all initial iterates (uP

 )0 ∈ S ⊗ ZP . In fact, for ν = 0 and i = 1 the functional

φP
 in (4.2.3) is equal to ∞ if the condition (uP

 )0(pj , π) ≥ uc is not satisfied at
points pj with j > i = 1. However, if one takes successively the local problems
(4.2.9) instead of (4.2.3), then one arrives at (uP

 )1 ∈ KP
 even for (uP

 )0 6∈ KP
 . In

this sense, we can define the iteration operator MP
 : S ⊗ ZP → KP

 and obtain

global convergence on the whole space S ⊗ZP .

Remark 4.2.3. In Theorem 4.2.1, we did not distinguish between nodes pi ∈ ND


and pi ∈ N\ND
 . Indeed, for pi ∈ ND

 we set wν
0 (pi, ·) = PP (uD(pi, ·)) according

to Remark 3.3.3 and have all corrections v̄ν
i ∈ Vi equal to zero for ν ≥ 0.

Now we turn to the practical realization of the correction problems (4.2.3). Due to
Remark 4.2.3, we henceforth only consider points

pi ∈ N\ND
 .

We switch to matrix notation with a stiffness matrix A defined in (4.1.5) and block
vectors u and b introduced in (4.1.7). Denote by w ∈ R

N(P+1) and v̄ ∈ R
(P+1) the

coefficient vectors of wν
i−1 and v̄ν

i , respectively, and by v ∈ R
N(P+1) the long block

vector with vi = v̄ and vj = 0 for i 6= j. Then, we can rewrite (4.2.3) as

argmin
v̄∈RP+1

1

2
(w+v)T A(w+v)−(w+v)Tb+

N
∑

i=1

∑

π∈QP

Φ

(

P
∑

k=0

(wik + vik)Ψk(π)

)

hpiηπ

subject to

N
∑

i=1

P
∑

k=0

(wik + vik)s()pi
Ψk ∈ KP

 .

We eliminate all constant terms which do not contribute to the minimization and
obtain equivalently with Ā := Aii

argmin
v̄∈RP+1

1

2
v̄T Āv̄ + v̄T ([Aw]i − bi) +

∑

π∈QP

Φ

(

P
∑

k=0

([wi + v̄]k)Ψk(π)

)

hpiηπ

subject to

P
∑

k=0

[wi + v̄]ks
()
pi

Ψk ∈ KP
,i. (4.2.11)

We now introduce the local evaluation matrix B ∈ R
Π×(P+1) with entries

Bπk =
√
ηπΨk(π) for π ∈ QP , k = 0, . . . , P. (4.2.12)

This matrix will play an important role in the further considerations. For now, it
simplifies (4.2.11) in view of the definition of KP

,i as

argmin
v̄∈RP+1

1

2
v̄T Āv̄ + v̄T ([Aw]i − bi) +

∑

π∈QP

Φ

(

1√
ηπ

[B(wi + v̄)]π

)

hpiηπ

subject to
1√
ηπ

[B(wi + v̄)]π ≥ uc ∀π ∈ QP . (4.2.13)

In the following two subsections, we solve this minimization problem depending on
the used stochastic basis functions.
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4.2.2 Transformation of the tensor product PC

Throughout this subsection, we will concentrate on the tensor product PC basis
{Ψk} = {Ψt

k} with (3.3.23). Then, the matrix B defined in (4.2.12) is quadratic (we
continue however for sake of comprehensibility using indices π and k to distinguish
between the quadrature points and the PC modes) and has the following properties.

Proposition 4.2.4. Let (3.3.23) hold and {Ψk} = {Ψt
k}.

a) B is an orthogonal matrix with BT B = BBT = I.

b) The rows cπ ∈ R
P+1 of B are the eigenvectors of Ā, i.e. Ācπ = µπcπ.

Proof. The entries of BT B are given by

[BT B]kl =
∑

π∈QP

√
ηπ

√
ηπΨk(π)Ψl(π) =

∫

Ω

ΨkΨl dP = δkl,

since the Gaussian quadrature is exact. This yields in particular BBT = I, i.e.

[BBT ]πς =

P
∑

l=0

Ψl(π)Ψl(ς)
√
ηπ

√
ης = δπς . (4.2.14)

For part b), we define by K̃ and g̃r the values of

τn

∫

supp(s
()
pi

)

K̄(x)
(

∇s()pi
(x)
)2

dx

and

τn
√

λr

∫

supp(s
()
pi

)

gr(x)
(

∇s()pi
(x)
)2

dx

for r = 1, . . . ,M , respectively, approximated by the quadrature formula used in

(4.1.6). Note that ∇s()pi is constant. Then the entries of the diagonal block Ā = Aii

read

Ākl = K̃E[ΨkΨl] +

M
∑

r=1

g̃rE[ξrΨkΨl]. (4.2.15)

We use again the exactness of the quadrature to obtain

[Ācπ]k =

P
∑

l=0

K̃





∑

ς∈QP

Ψk(ς)Ψl(ς)ης





√
ηπΨl(π)

+

P
∑

l=0

M
∑

r=1

g̃r





∑

ς∈QP

ςΨk(ς)Ψl(ς)ης





√
ηπΨl(π)

=
∑

ς∈QP

K̃Ψk(ς)
√
ης

(

P
∑

l=0

Ψl(ς)Ψl(π)
√
ης
√
ηπ

)

+
∑

ς∈QP

M
∑

r=1

g̃rςΨk(ς)
√
ης

(

P
∑

l=0

Ψl(ς)Ψl(π)
√
ης
√
ηπ

)

.
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We apply (4.2.14) and get

[Ācπ]k =

(

K̃ +

M
∑

r=1

g̃rπ

)

Ψk(π)
√
ηπ

= µπ[cπ]k,

where µπ denotes the approximation of K(pi, π) in the parentheses.

Remark 4.2.5. Proposition 4.2.4 is also valid if we use an exponential KL expan-
sion from (3.1.33). In this case, the block entry Ākl from (4.2.15) now reads

Ākl =
∑

ς∈QP

K̃ςΨk(ς)Ψl(ς)ης ,

where K̃ς is the value of

∫

supp(s
()
pi

)

exp

(

K̄(x) +

M
∑

r=1

√

λrgr(x)ς

)

(

∇s()pi
(x)
)2

dx

approximated by the quadrature formula used in (4.1.6). Then, the same calculation
as in Proposition 4.2.4 shows Ācπ = µπcπ with µπ = K̃π.

Note that
B−1 = BT and B−T = B (4.2.16)

follows from part a) in Proposition 4.2.4. Thus, we have found an eigenvalue de-
composition of Ā = Aii, which reads

B−T ĀB−1 = BĀBT = diag(µ1, . . . , µΠ) =: Di. (4.2.17)

We introduce the new vector w ∈ R
Π which represents the evaluation of the new

iterate at the points (pi, π) for π ∈ QP ; more precisely, it is

wπ = [B(wi + v̄)]π =
√
ηπ

P
∑

k=0

[wi + v̄]kΨk(π). (4.2.18)

In the new variable w, the minimization (4.2.13) reads

argmin
w∈RΠ

1

2
(B−1

w − wi)
T Ā(B−1

w − wi) + (B−1
w − wi)

T ([Aw]i − bi)+

∑

π∈QP

Φ

(

1√
ηπ

wπ

)

hpiηπ subject to
1√
ηπ

wπ ≥ uc ∀π ∈ QP .

Again eliminating all constant terms and reordering leads to

argmin
w∈RΠ

1

2
w

T (B−T ĀB−1)w+w
T B−T ([Aw]i−bi−Āwi)+

∑

π∈QP

Φ

(

1√
ηπ

wπ

)

hpiηπ

subject to
1√
ηπ

wπ ≥ uc ∀π ∈ QP ,

which can be rewritten by virtue of (4.2.16) and (4.2.17) as

argmin
w∈RΠ

1

2
w

T Diw + w
T r +

∑

π∈QP

Φ

(

1√
ηπ

wπ

)

hpiηπ

subject to
1√
ηπ

wπ ≥ uc ∀π ∈ QP (4.2.19)
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Figure 4.2: Possible intersections of H̃ and Gpi,π

with
r := B([Aw]i − bi − Āwi). (4.2.20)

By (4.2.19), we achieved our aim of decoupling within the block at each spatial
node pi. Recalling the multifunction H̃ = ∂Φ defined in (3.2.43), the entries of w

are the solutions of Π = P + 1 scalar inclusions

0 ∈ µπwπ + rπ +
hpiηπ√
ηπ

H̃

(

1√
ηπ

wπ

)

(4.2.21)

for all π ∈ QP or
0 ∈ µπ

√
ηπyπ + rπ + hpi

√
ηπH̃(yπ), (4.2.22)

where we used the rescaling

yπ =
1√
ηπ

wπ (4.2.23)

and where the constraints in (4.2.19) just reduce to

yπ ≥ uc (4.2.24)

for all π ∈ QP . We can interpret yπ as the intersection point of the real linear
function

Gpi,π : x 7→ − µπ

hpi

x− rπ

hpi

√
ηπ

with the multifunction H̃ such that (4.2.22) can be written as

yπ ∈ R : Gpi,π(yπ) = H̃(yπ). (4.2.25)

Observe that the linear functions Gpi,π are strictly decreasing since both µπ and
hpi are positive numbers. Thus, equation (4.2.25) always has a unique solution.

As an example, we chooseH as defined in the setting leading to Figure 1.5 in Section
1.1 using Brooks–Corey parameters. As it can be seen in Figure 4.2, we have to
distinguish three cases:

(1) If Gpi,π(uc) ≤ θm (see bottom line gb), then set yπ = uc due to (4.2.24).
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(2) If Gpi,π(−1) ≥ θM (see top line gt), then

yπ = − 1

µπ
√
ηπ

(rπ +
√
ηπhpiθM ) .

(3) Otherwise (see middle line gm), we have uc < yπ < −1. We solve this numer-
ically (up to machine precision) with the bisection method.

Remark 4.2.6. Using (4.2.16), (4.2.18), (4.2.23) and the definition

H := diag(η1, . . . , ηΠ)

of the scaling matrix H ∈ R
Π×Π, we retransform the vector y = (y1, . . . , yΠ) accord-

ing to
v̄ = BT H

1
2 y − wi.

This shows that the correction v̄ depends continuously on w and y. Furthermore,
y also depends continuously on w by the definition of r and Proposition 3.2.22, be-
cause, using the antiderivative of Gpi,π, (4.2.25) can be written as a one-dimensional
minimization problem

arg min
y

1

2

µπ

hpi

y2 +
rπ

hpi

√
ηπ
y + Φ(y).

Altogether, v̄ depends continuously on w and the operator MP
 thus depends con-

tinuously on wν
i , as claimed in (4.2.7).

We now resume the collocation idea from Subsection 4.1.2. Taking the zeros of the
orthogonal polynomials of order Pr +1 in each dimension 1 ≤ r ≤M and using the
tensor product approach, we have

C = QP with NC = Π. (4.2.26)

We thus switch the notation for the collocation points from y(k) to π and apply the

usual nonlinear Gauß–Seidel method (see [48]) with subspaces Vi = span{s()pi } to
the minimization problem (4.1.25). Each correction step analogously to (4.2.3) in
order to solve (4.1.25) then reads

v̄ν
i (π) ∈ Vi with wν

i−1(π) + v̄ν
i (π) ∈ K(π) :

J π(wν
i−1(π) + v̄ν

i (π)) + φπ
 (wν

i−1(π) + v̄ν
i (π)) ≤ J π(wν

i−1(π) + v) + φπ
 (wν

i−1(π) + v)

∀v ∈ Vi with wν
i−1(π) + v ∈ K(π) (4.2.27)

with intermediate iterates wν
i (π) = wν

i−1(π) + v̄ν
i (π) and an iteration

Mπ
 (wν

0 (π)) = wν
N

(π) = wν
0 (π) +

N
∑

i=1

v̄ν
i (π). (4.2.28)

We define the stiffness matrix Aπ = (aπ
ij)i,j ∈ R

N×N with

aπ
ij = aπ

(

s
()
i (x), s

()
j (x)

)

(4.2.29)

and the vector bπ = (bπi )i ∈ R
N with

bπi = ℓπ
(

s
()
i (x)

)

(4.2.30)
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in analogy to (4.1.5) and (4.1.8), respectively. To evaluate the spatial integrals
in (4.2.29) and (4.2.30), we use the same quadrature formulas as in (4.1.6) and
Remark 4.1.1, respectively. Furthermore, we denote by wπ = (wπ

j )j ∈ R
N and

vπ = (vπ
j )j ∈ R

N the coefficient vectors of wν
i−1(π) and v̄ν

i (π), respectively. Then,
with ideas similar to those which led to (4.2.13) and (4.2.21), the correction step
(4.2.27) can be rewritten as a scalar inclusion

0 ∈ aπ
iiv

π
i − bπi + [Aπwπ]i + hpiH̃(wπ

i + vπ
i ) (4.2.31)

for each π ∈ QP , see [18, pp. 104–105] for a strict derivation. The constraint has
now the form

wπ
i + vπ

i ≥ uc. (4.2.32)

It turns out to be convenient to work with a scaled form B̌ ∈ R
Π×(P+1) of the

matrix B by taking B̌ := H− 1
2 B or, equivalently,

B̌πk = Ψk(π).

Then, we can state the following result.

Proposition 4.2.7. With the notations and assumptions of this subsection, one
Gauß–Seidel iteration (4.2.28) for all π ∈ QP = C is equivalent to one Block Gauß–
Seidel iteration (4.2.4).

Proof. We want to reformulate the inclusions in (4.2.21). First, we show

µπ = aπ
ii. (4.2.33)

Using the representation (4.2.15), the orthonormality of the basis {Ψk}, the exact-
ness of the quadrature and the identity (4.2.14), it holds

µπ = [BĀBT ]ππ

=

P
∑

l=0

P
∑

k=0



K̃E[ΨkΨl] +

M
∑

r=1

g̃r





∑

ς∈QP

ςΨk(ς)Ψl(ς)ης









√
ηπ

√
ηπΨk(π)Ψl(π)

= K̃ +
M
∑

r=1

g̃r

∑

ς∈QP

ς

(

P
∑

k=0

Ψk(π)Ψk(ς)
√
ηπ

√
ης

)(

P
∑

l=0

Ψl(π)Ψl(ς)
√
ηπ

√
ης

)

= K̃ +

M
∑

r=1

g̃rπ = aπ
ii.

In the same way, one can show

[Bbi]π =
√
ηπb

π
i . (4.2.34)

Using (4.2.33) and (4.2.34), the scalar inclusion (4.2.21) can be rewritten in view of
(4.2.18) and (4.2.20) as

0 ∈ aπ
ii[Bv̄]π −√

ηπb
π
i +µπ[Bwi]π − [BĀwi]π +[B[Aw]i]π +hpi

√
ηπH̃

([

B̌(wi + v̄)
]

π

)

.
(4.2.35)

The third and fourth term on the right-hand side of (4.2.35) cancel, because (4.2.17)
provides

µπ[Bwi]π = [DiBwi]π = [BĀwi]π.
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Finally, observe that the diagonalization in (4.2.17) also works if Aij is not a block
on the diagonal. With the same arguments as in the derivation of (4.2.33), we
therefore obtain

[B[Aw]i]π =



B

N
∑

j=1

Aijwj





π

=





N
∑

j=1

(BAijB
T )Bwj





π

=

N
∑

j=1

aπ
ij [Bwj ]π.

Altogether, (4.2.35) can be reformulated as

0 ∈ √
ηπ



aπ
ii[B̌vi]π − bπi +

N
∑

j=1

aπ
ij [B̌wj ]π + hpiH̃

([

B̌wi

]

π
+
[

B̌v̄
]

π

)



 . (4.2.36)

Comparing (4.2.36) with the inclusion (4.2.31) of the collocation approach, we detect
that we have [B̌vi]π = vπ

i if [B̌wj ]π = wπ
j for all 1 ≤ j ≤ N, taking into account

that the constraints in (4.2.13) and (4.2.32) also correspond in this case. Since the
computation in (4.2.36) is realized for all π ∈ QP independently of each other, we
furthermore conclude

B̌wj = (wπ
j )π∈QP ∀ 1 ≤ j ≤ N ⇒ B̌vi = (vπ

i )π∈QP .

This means that the intermediate iterates wν
i (π) = wν

i−1(π) + v̄ν
i (π) for all π ∈ QP

from (4.2.27) and the intermediate iterates wν
i = wν

i−1 + v̄ν
i from (4.2.3) correspond

via the transformation of its coefficient vectors by B̌, if wν
i−1(π) and wν

i−1 do. Thus,
the iterations defined in (4.2.28) for all π ∈ QP and (4.2.4) correspond, as claimed.

We can use these results for gaining an insight into the relationship between the
stochastic Galerkin approach and stochastic collocation. Applying the former to
(4.0.1) results in

arg min
v∈R

N̄(P+1)

1

2
vT Av − vT b +

∑

pi∈N\ND


∑

π∈QP

Φ

(

1√
ηπ

[Bvi]π

)

hpiηπ

subject to v(pi, π) =
1√
ηπ

[Bvi]π ≥ uc ∀pi ∈ N\ND
 ∀π ∈ QP , (4.2.37)

see the derivation of (4.2.13), while the latter can be written as

argmin
v

π∈R
N̄

1

2
(vπ)T Aπvπ − (vπ)T bπ +

∑

pi∈N\ND


Φ (vπ
i )hpi

subject to vπ(pi) = vπ
i ≥ uc ∀pi ∈ N\ND

 (4.2.38)

for all π ∈ QP , where N̄ is the number of nodes in N\ND
 . In our setting, both

methods are indeed equal.

Theorem 4.2.8. Consider the convex minimization problem

u ∈ K : J (u) + φ(u) ≤ J (v) + φ(v) ∀v ∈ K (4.2.39)

as in (3.2.26). Let (SG) be the stochastic Galerkin approach for problem (4.2.39)
with {Ψk} = {Ψt

k} and (3.3.23) on the discretized problem (4.0.1). Let (SC) be the
stochastic collocation approach for problem (4.2.39) with (4.2.26) on the discretized
problem (4.1.25).
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If the same quadrature formulas are used in the computation of the spatial integrals
in (4.1.6) and (4.2.29) on the one hand and the same quadrature formulas are used
for the spatial integrals in Remark 4.1.1 and in (4.2.30) on the other hand, then
(SG) and (SC) are equivalent.

Proof. Let B ∈ R
N̄Π×N̄(P+1) be the block diagonal matrix, where the entries

Bii = B ∈ R
Π×(P+1) are defined in (4.2.12). With the transformation v = Bv, the

minimization (4.2.37) can be written as

argmin
v∈R

N̄Π

1

2
v

T
(

BABT
)

v − v
T (Bb) +

∑

pi∈N\ND


∑

π∈QP

Φ

(

1√
ηπ

viπ

)

hpiηπ

subject to
1√
ηπ

viπ ≥ uc ∀pi ∈ N\ND
 ∀π ∈ QP . (4.2.40)

As shown in the proof of Proposition 4.2.7, it holds
[

[

BABT
]

πς

]

ij

=

[

[

BABT
]

ij

]

πς

= aπ
ijδπς (4.2.41)

and
[[Bb]π]i = [[Bb]i]π =

√
ηπb

π
i . (4.2.42)

Observe that we rearranged the block matrices and block vectors on the left-hand
side of (4.2.41) and (4.2.42) having block indices π, ς and inner indices i, j. The
rearranged matrix BABT is now block diagonal, and we can thus reformulate (4.2.40)
as finding

argmin
vπ∈R

N̄

1

2
v

T
π Aπ

vπ −√
ηπv

T
π bπ +

∑

pi∈N\ND


Φ

(

1√
ηπ

[vπ ]i

)

hpiηπ

subject to
1√
ηπ

[vπ ]i ≥ uc ∀pi ∈ N\ND


for all π ∈ QP , independently of each other. We define vπ = 1√
ηπ

vπ and obtain

argmin
v

π∈R
N̄

ηπ





1

2
(vπ)T Aπvπ − (vπ)T bπ +

∑

pi∈N\ND


Φ (vπ
i ) hpi





subject to vπ
i ≥ uc ∀pi ∈ N\ND



for all π ∈ QP , which is equivalent to (4.2.38).

Remark 4.2.9. There are several factors which lead to the result of Theorem 4.2.8.
First, the conditions (3.3.23) and (4.2.26) ensure that the number of collocation
points and the number of quadrature points and the number of polynomials coin-
cide. Secondly, the approximation φP

 of the convex functional defined in (3.3.33)
is based on the quadrature scheme which is used for the collocation. Finally, the
approximation KP

 from (3.3.30) for the convex set also suits the pointwise view of
the collocation approach.

Note that by the considerations of Section 3.2, the equivalence of the stochastic
Galerkin and the stochastic collocation approach can be stated for a whole class of
stochastic variational inequalities

u ∈ K : a(u, v − u) − ℓ(v − u) + φ(v) − φ(u) ≥ 0 ∀v ∈ K
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if the convex functional φ has the form (3.2.12). In this way, we generalized the
result for the linear case from [13, Section 2.1]. The same result can be obtained if
the biorthogonal PC basis {Ψk} = {Ψb

k} is used directly, cf. Forster and Kornhuber
[37].

4.2.3 Block minimization

The approach in the former subsection cannot be applied for the classical PC basis
{Ψk} = {Ψc

k}. The only assertion from Proposition 4.2.4 which is still valid in
this case is BT B = I. Due to P + 1 < Π, the matrix B ∈ R

Π×(P+1) is no longer
quadratic, and even if one tries to replace the inverse in (4.2.17) by the Moore–
Penrose pseudoinverse B+ ∈ R

(P+1)×Π (see [49] for definition), the resulting matrix

(B+)T ĀB+ ∈ R
Π×Π

is not diagonal, but a dense matrix with rank P + 1 < Π. Since the basis {Ψc
k} is

smaller than {Ψt
k} for equal Pr = P0, it is however of interest albeit a decoupling in

stochastic direction is not possible. In this subsection, we give a short idea of what
are the main challenges one has to deal with in this case.

The starting point is the minimization problem (4.2.13). In terms of convex opti-
mization, it is of the form of finding a v ∈ R

P+1 which fulfills

min J̌ (v) subject to ǧπ(v) ≤ 0, (4.2.43)

where J̌ is given by

J̌ (v) :=
1

2
vT Āv + vT ([Aw]i − bi) +

∑

π∈QP

Φ

(

1√
ηπ

[B(wi + v)]π

)

hpiηπ

and the constraints ǧπ are given by

ǧπ(v) := uc −
1√
ηπ

[B(wi + v)]π = uc −
P
∑

k=0

(wik + vk)Ψk(π)

for all π ∈ QP . The constraint functions ǧπ are linear and the energy function
J̌ is convex. There exists a variety of methods to solve this problem; however,
many optimization algorithms like, e.g., widely used SQP (see [42, Section 5.5]) as
generalization of Newton’s method are not applicable, since J̌ /∈ C2(RP+1).

If the saturation H is continuous, then Φ is differentiable and hence J̌ ∈ C1(RP+1).
In this case, a promising way is to define the Lagrange function Ľ : R

P+1×R
Π → R

by

Ľ(v, λ̌) := J̌ (v) +
∑

π∈QP

λ̌π ǧπ(v) (4.2.44)

and try to solve the Karush–Kuhn–Tucker (KKT) conditions of (4.2.43) given by

∇vĽ(v, λ̌) = 0, (4.2.45)

λ̌ ≥ 0, ǧ(v) ≤ 0, λ̌T ǧ(v) = 0. (4.2.46)

This can be done by penalty methods or barrier methods (see [42] and [111]). Note
that all these methods have in common that the utilization of the gradient of Ľ
implies that there are O(|QP |) evaluations of H in each iteration step for solving
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(4.2.45)–(4.2.46). Thus, we cannot expect that we can solve the minimization prob-
lem (4.2.13) faster by using the classical PC basis {Ψk} = {Ψc

k} than if using the
bases {Ψk} = {Ψt

k} or {Ψk} = {Ψb
k}.

This is substantiated by another approach recently presented in [52]. We write the
minimization problem (4.2.13) as

v∗ ∈ R
P+1 : J̃ (v∗) ≤ J̃ (v) ∀v ∈ R

P+1 (4.2.47)

with

J̃ (v) :=
1

2
vT Āv + vT ([Aw]i − bi) +

∑

π∈QP

Φ

(

1√
ηπ

[B(wi + v)]π

)

hpiηπ,

where the constraints
1√
ηπ

[B(wi + v)]π ≥ uc (4.2.48)

are incorporated in Φ by extending the function by Φ(u) = +∞ for u < uc, cf. Re-
mark 3.2.19. The domain of J̃ is a polyhedron, since (4.2.48) can be rewritten as

〈cπ , v〉 ≥ uc
√
ηπ − 〈cπ,wi〉 ∀π ∈ QP ,

where cπ are the rows of B as in Proposition 4.2.4. Now, (4.2.47) can be solved
in a Gauß–Seidel-like way if one can find a suitable finite set of search directions
S̃ = {v1, . . . , vS} ⊂ R

P+1 reflecting the shape of dom J̃ . As shown in [52], it is very
costly to find S̃, and this set can be quite large. If, however, we have {Ψk} = {Ψt

k}
or {Ψk} = {Ψb

k}, then we can just use the set S̃ = {w1, . . . ,wΠ} ⊂ R
P+1 = R

Π and
obtain again the method described in Subsection 4.2.2. In this way, one can see
that the tensor product PC bases with P + 1 = Π are the most appropriate ones
for our problem.

4.3 Monotone multigrid method

In this section, we present monotone multigrid methods with constrained New-
ton linearization which improve the solution method from Section 4.2. This idea
originates from Kornhuber [69] basing upon earlier works [68] and we show that
it can be applied in our context. It is presented in our hydrological setting with
Brooks–Corey functions and their limit cases in analogy to [18].

4.3.1 Multilevel corrections

With the Block Gauß–Seidel method and the approaches to solve within the single
blocks as described in Section 4.2, we developed a method to solve problem (4.0.1).
It however turns out to be inefficient in general, since it is well known that even
in the linear case with φP

 ≡ 0 and no constraints, the convergence rates of the
normal Gauß–Seidel method already deteriorate when passing to more and more
refined spatial triangulations T. This is due to the form of the subspaces Vi in

(4.2.1), where only high frequency functions s
()
pi with small support are involved

in spatial direction. Thus, the application of MP
 rapidly reduces high frequency

contributions of the error (uP
 )ν − uP

 but hardly affects low frequencies.

A possible remedy is to extend the set of search directions by functions of larger
support in an ordered subset

Rν := (rν
1 , . . . , r

ν
NRν )
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of S for any ν ≥ 0. The first N functions are chosen as

rν
i = s()pi

, i = 1, . . . , N,

and represent the fine grid functions, whereas the functions rν
i for i > N are suitable

functions with larger support.

This gives rise to an extended relaxation method by performing a successive mini-
mization

v̄ν
i ∈ V ν

i with wν
i := wν

i−1 + v̄ν
i ∈ KP

 : J (wν
i−1 + v̄ν

i ) + φP
 (wν

i−1 + v̄ν
i )

≤ J (wν
i−1 + v) + φP

 (wν
i−1 + v) ∀v ∈ V ν

i with wν
i−1 + v ∈ KP

 (4.3.1)

in the subspaces V ν
i := span{rν

i } ⊗ ZP analogously to (4.2.3). Denoting by ūP,ν


the smoothed iterate from (4.2.4), i.e.

ūP,ν
 := wν

N
= MP



(

(uP
 )ν
)

,

the next iterate now reads

(uP
 )ν+1 = wν

NRν = (uP
 )ν +

N
∑

i=1

v̄ν
i +

NRν
∑

i=N+1

v̄ν
i =: C̃P,ν



(

MP


(

(uP
 )ν
))

= C̃P,ν
 (ūP,ν

 ).

In general, an exact evaluation of the coarse grid correction C̃P,ν
 (ūP,ν

 ) is too costly in

practice due to the form of the nonlinearity φP
 such that one contents oneself with an

approximation CP,ν
 of C̃P,ν

 . The decisive condition to ensure the convergence of the
extended relaxation method nevertheless is surprisingly simple and thus powerful
and consists of the monotonicity

J
(

CP,ν
 (w)

)

+ φP


(

CP,ν
 (w)

)

≤ J (w) + φP
 (w) ∀w ∈ KP

 . (4.3.2)

Theorem 4.3.1. Let the assumptions of Theorem 4.2.1 and condition (4.3.2) hold.
Then, for any initial iterate (uP

 )0 ∈ KP
 , the sequence of iterates

(

(uP
 )ν
)

ν≥0
pro-

vided by the extended relaxation method

ūP,ν
 = MP



(

(uP
 )ν
)

(uP
 )ν+1 = CP,ν

 (ūP,ν
 )

converges to the solution uP
 of the discrete problem (4.0.1).

Proof. The proof is almost literally the same as the proof for Theorem 4.2.1 if
condition (4.3.2) is added to the monotonicity (4.2.5).

Note that the coarse grid corrections alone do not need to be convergent. This
provides flexibility for the construction of CP,ν

 . We resume this part after some
remarks.

Remark 4.3.2. If one assumes the monotonicity in each correction step, i.e.

J (wν
i ) + φP

 (wν
i ) ≤ J (wν

i−1) + φP
 (wν

i−1) ∀i = 1, . . . , NRν

for all ν ≥ 0, then it can be seen by

J
(

(uP
 )ν+1

)

+ φP


(

(uP
 )ν+1

)

≤ J (wν
i ) + φP

 (wν
i ) ≤ J

(

(uP
 )ν
)

+ φP


(

(uP
 )ν
)
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and the continuity of J + φP
 on KP

 that the whole sequence (wν
i )v≥0,i=1,...,NRν of

intermediate iterates converges with

wν
i → uP

 as ν → ∞, for i = 1, . . . , NRν .

In either case, it holds
ūP,ν

 → uP
 as ν → ∞. (4.3.3)

Remark 4.3.3. In the linear case with φP
 ≡ 0 and no constraints and with an

appropriate coarsening of the spatial grid, we can use a Gauß–Seidel iteration also
for the coarse corrections and obtain a multigrid algorithm for PDEs (cf. e.g. [56])
for the outer (spatial) iteration. In our SPDE context, this multigrid idea was
first investigated by Le Mâıtre et al. [75] (who used an SOR solver for the inner
(stochastic) iterations) and extended by Elman and Furnival [34].

4.3.2 Constrained Newton linearization with local damping

In the following, we use the convex function Φ : R → R ∪ {+∞} given by (1.1.17)
with pb = −1 using the Brooks–Corey parameter functions with the extension
Φ(u) = +∞ for u < uc according to Remark 3.2.19. In order to incorporate
Dirichlet boundary points, we define the point-dependent convex functions

Φp,π : u 7→
{

Φ(u) for p ∈ N\ND


χ{uD(p,π)} for p ∈ ND


with the subdifferentials

∂Φp,π : u 7→
{

∂Φ(u) for p ∈ N\ND


∂χ{uD(p,π)} for p ∈ ND
 ,

where

∂χ{uD(p,π)} : u 7→
{

R if u ≡ uD(p, π)

∅ else.

Note that for p ∈ N\ND
 the function Φp,π is infinitely times differentiable on the

intervals I1 := (uc,−1) and I2 := (−1,∞). Thus, we call (p, π) ∈ N×QP a critical
node of v ∈ KP

 if p is a Dirichlet node or if v(p, π) takes a critical value, i.e.

v(p, π) ∈ {uc,−1}.

We define by N •
 (v) the set of critical nodes of v. Accordingly, the complement

N ◦
 (v) := (N ×QP )\N •

 (v) is the set of regular nodes of v.

Now, consider a regular node (p, π) ∈ N ◦
 (ūP,ν

 ) for a given smoothed iterate ūP,ν
 .

We can find real numbers

ϕ
ūP,ν


(p, π) < ūP,ν

 (p, π) < ϕūP,ν


(p, π)

such that on the neighborhood [ϕ
ūP,ν


(p, π), ϕūP,ν


(p, π)] of ūP,ν

 (p, π) the function

Φp,π is twice differentiable with

|Φ′′
p,π(z1) − Φ′′

p,π(z2)| ≤ Lν
p,π|z1 − z2| ∀z1, z2 ∈ [ϕ

ūP,ν


(p, π), ϕūP,ν


(p, π)]

and a pointwise Lipschitz constant Lν
p,π > 0. For instance, for ūP,ν

 (p, π) ∈ I1 we
set

[ϕ
ūP,ν


(p, π), ϕūP,ν


(p, π)] := [(uc + ūP,ν

 (p, π))/2, (ūP,ν
 (p, π) − 1)/2]
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and for ūP,ν
 (p, π) ∈ I2 we set

[ϕ
ūP,ν


(p, π), ϕūP,ν


(p, π)] := [(−1 + ūP,ν

 (p, π))/2, 2|ūP,ν
 (p, π)| + 1].

Furthermore, we set

ϕ
ūP,ν


(p, π) = ϕūP,ν


(p, π) = ūP,ν

 (p, π)

for (p, π) ∈ N •
 (ūP,ν

 ) and define the closed and convex set

KūP,ν


:= {w ∈ S ⊗ZP : ϕ
ūP,ν


(p, π) ≤ w(p, π) ≤ ϕūP,ν


(p, π) ∀p ∈ N ∀π ∈ QP }.

(4.3.4)

The special form of φP
 given by (3.3.33) allows us to write

φP
 (w) = φūP,ν


(w) + const. ∀w ∈ KūP,ν


(4.3.5)

with the smooth functional

φūP,ν


: w 7→
∑∑

(p,π)∈N◦
 (ūP,ν

 )

Φ(w(p, π))hpηπ ∀w ∈ KūP,ν

. (4.3.6)

Let us now consider the constrained minimization of the smooth energy J + φūP,ν


uūP,ν


∈ KūP,ν


: J (uūP,ν


) + φūP,ν


(uūP,ν


) ≤ J (v) + φūP,ν


(v) ∀v ∈ KūP,ν

. (4.3.7)

By (4.3.3), we have dist(uP
 ,KūP,ν


) → 0 as ν → ∞, which means that the solutions

of (4.3.7) tend to uP
 . Thus, we are interested in approximate solutions of the

constrained minimization problem (4.3.7). Since the critical nodes of ūP,ν
 do not

contribute to φūP,ν


according to (4.3.6), we can regard φūP,ν


as being smooth on a

neighborhood of ūP,ν
 and we can thus apply the Taylor expansion to obtain

φūP,ν


(w) ≈ φūP,ν


(ūP,ν
 ) +φ′

ūP,ν


(ūP,ν
 )(w− ūP,ν

 ) +
1

2
φ′′

ūP,ν


(ūP,ν
 )(w− ūP,ν

 , w− ūP,ν
 ).

This enables us to approximate J +φūP,ν


by the quadratic energy functional JūP,ν


defined as

JūP,ν


(w) :=
1

2
aūP,ν


(w,w) − ℓūP,ν


(w) :=

1

2

(

a(w,w) + φ′′
ūP,ν


(ūP,ν

 )(w,w)
)

−
(

ℓ(w) − φ′
ūP,ν


(ūP,ν

 )w + φ′′
ūP,ν


(ūP,ν

 )(ūP,ν
 , w)

)

,

(4.3.8)

and we can regard the quadratic obstacle problem

wūP,ν


∈ KūP,ν


: JūP,ν


(wūP,ν


) ≤ JūP,ν


(v) ∀v ∈ KūP,ν


(4.3.9)

as a constrained Newton linearization of (4.3.7).

This obstacle problem is now solved by an extended underrelaxation, where we
minimize successively in the subspaces V ν

i = span{rν
i }⊗ZP for i = N+1, . . . , NRν .

More exactly, we solve the (P + 1)-dimensional problems

vν
i ∈ Dν

i : JūP,ν


(wν
i−1 + vν

i ) ≤ JūP,ν


(wν
i−1 + v) ∀v ∈ Dν

i (4.3.10)
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with constraints Dν
i ⊂ V ν

i satisfying

0 ∈ Dν
i ⊂ {v ∈ V ν

i : wν
i−1 + v ∈ KūP,ν


}. (4.3.11)

We show how to solve this in case of the tensor product PC basis {Ψk} = {Ψt
k}. To

this end, we take the assumptions and notations from Subsection 4.2.2 and assume
that we have a sequence of (nested) triangulations T0, T1, . . . , T of D resulting
from uniform refinement, i.e. each triangle t ∈ Tı is subdivided into four congruent
subtriangles constituting Tı+1, ı = 0, . . . , − 1. This procedure also provides nested
sets of nodes N0 ⊂ · · · ⊂ N and a nested sequence S0 ⊂ · · · ⊂ S of subspaces of
S which correspond to the levels ı = 0, · · · , . We define the multilevel nodal basis
as

ΛS := (s()p1
, . . . , s()pN

, s(−1)
p1

, . . . , s(−1)
pN−1

, . . . , s(0)p1
, . . . , s(0)pN0

),

which consists of all NS = N + · · · +N0 nodal basis functions from all refinement
levels such that

rν
i = s(ıi)

pi
, i = N + 1, . . . , N +NS . (4.3.12)

Observe that the functions are ordered from fine to coarse and that the nodal basis
functions on the finest grid are part of the coarse grid correction.

The stiffness matrix A and the vector b are defined as in (4.1.5) and (4.1.8), re-
spectively, in dependence of the underlying spatial grid, the same holds for the
diagonal matrix Di from (4.2.17). Due to the Kronecker product structure of A

according to Remark 4.1.3, the restriction and prolongation between different grids
can be performed in the usual way, see [34] for details, whereas the vector b needs
a recalculation with the new basis functions.

Now, let v ∈ R
P+1 be the coefficient vector of vν

i ∈ Dν
i with

vν
i (p, π) =

P
∑

k=0

vikΨk(π)rν
i (p)

and v = Bv ∈ R
Π its local evaluation by means of the matrix B from (4.2.12). Then,

inserting (4.3.8) into (4.3.10), passing to matrix notation, omitting all constant
terms, and using (4.2.16) and (4.2.17), we can rewrite the minimization problem
(4.3.10)–(4.3.11) as

argmin
v∈RΠ

1

2






v

T Div +
∑∑

(p,π)∈N◦
 (ūP,ν

 )

H ′(ūP,ν
 )

(

1√
ηπ

vπ

)2

(rν
i (p))2hpηπ







−






v

T Bbi − v
T B[Aw]i −

∑∑

(p,π)∈N◦
 (ūP,ν

 )

H ′(ūP,ν
 )vπr

ν
i (p)wν

i−1(p, π)hp
√
ηπ

−
∑∑

(p,π)∈N◦
 (ūP,ν

 )

H(ūP,ν
 )vπr

ν
i (p)hp

√
ηπ +

∑∑

(p,π)∈N◦
 (ūP,ν

 )

H ′(ūP,ν
 )vπr

ν
i (p)ūP,ν

 (p, π)hp
√
ηπ







(4.3.13)

with constraints

ϕ
ūP,ν


(p, π) − wν

i−1(p, π) ≤ 1√
ηπ

vπr
ν
i (p) ≤ ϕūP,ν


(p, π) − wν

i−1(p, π). (4.3.14)
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At this point, we have Π = P + 1 constrained one-dimensional quadratic problems
which are uncoupled. As in Proposition 4.2.7, we can deduce the analogy in each
step with the constrained minimization of the smooth energy J π + φπ

ūP,ν


and its

Newton linearization

J π
ūP,ν


=

1

2
aπ

ūP,ν


(·, ·) − ℓπ
ūP,ν


(·)

for all π ∈ QP as resulting from the stochastic collocation approach, cf. Re-
mark 4.3.6. This enables us to transfer the basic theory from Kornhuber [69] to our
case. In particular, there exist damping parameters ϑν

i,π ∈ [0, 1] (see [69, Section 4])
such that

J π(wν
i (π)) + φπ

ūP,ν


(wν
i (π)) ≤ J π(wν

i−1(π)) + φπ
ūP,ν


(wν

i−1(π)) (4.3.15)

if
wν

i (π) = wν
i−1(π) + ϑν

i,πv
ν
i (π) ∀π ∈ QP (4.3.16)

in the collocation approach, which means

wν
i (p, π) = wν

i−1(p, π) + ϑν
i,π

1√
ηπ

vπr
ν
i (p)

in our setting. Defining
ϑν

i := min
π
ϑν

i,π (4.3.17)

and using the identity

B̌[w]i + ϑν
i H− 1

2 v = B̌([w]i + ϑν
i v),

it is easy to see that the next iterate defined as

wν
i = wν

i−1 + ϑν
i v

ν
i (4.3.18)

provides the energy reduction

J (wν
i ) + φūP,ν


(wν

i ) ≤ J (wν
i−1) + φūP,ν


(wν

i−1). (4.3.19)

With this choice of ϑν
i , we obtain the monotone coarse grid correction

CP,ν
 (ūP,ν

 ) = ūP,ν
 +

N+NS
∑

i=N+1

ϑν
i v

ν
i (4.3.20)

with local damping, which satisfies condition (4.3.2) and preserves therefore global
convergence in light of Theorem 4.3.1.

In order to obtain optimal numerical complexity with O(N · Π) point operations
for each iteration step

(uP
 )ν+1 = CP,ν



(

MP


(

(uP
 )ν
))

,

the implementation as a multigrid V-cycle in which calculations of corrections on a
level ı ∈ {0, . . . , } only require to access information on nodes p ∈ Nı is necessary.
To this end, we introduce new local coarse grid obstacles ψν

i
, ψ

ν

i ∈ V ν
i which satisfy

ϕ
ūP,ν


(p, π) − wν

i−1(p, π) ≤ ψν

i
(p, π) ≤ 0 ≤ ψ

ν

i (p, π) ≤ ϕūP,ν


(p, π) − wν
i−1(p, π)

∀p ∈ N ∀π ∈ QP .
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The inductive construction of such obstacles presented in [68, Section 3.1.3] can be
used immediately in our setting by just performing it successively for each fixed
π ∈ QP . The local constraints Dν

i in the local problems (4.3.10) are then given by

Dν
i := {v ∈ V ν

i : ψν

i
≤ v ≤ ψ

ν

i } , i = N + 1, . . . , N +NS ,

and the constraints (4.3.14) in the uncoupled problem read

ψν

i
(p, π) ≤ 1√

ηπ
vπr

ν
i (p) ≤ ψ

ν

i (p, π). (4.3.21)

By using these constraints, we have found a ν-independent coarse grid correction
CP,std

 = CP,ν
 and call this iteration the stochastic version of the standard monotone

multigrid method (sSMMG)

(uP
 )ν+1 = CP,std



(

MP
j

(

(uP
 )ν
))

, ν ≥ 0. (4.3.22)

At this point, several remarks are in order.

Remark 4.3.4. This method has the drawback that it provides, due to the defini-
tion of KūP,ν


, the trivial correction vν

i = 0 whenever

(

(int supp(rν
i )) ×QP

)

∩ N •
 (ūP,ν

 ) 6= ∅. (4.3.23)

The same problem occurs in the deterministic case [18, p. 114], where a possible

remedy is a modification of the basis functions s
(ı)
p ∈ ΛS . This leads to the truncated

monotone multigrid method (TMMG), see [68] for details.

Note that (4.3.23) holds already if there is only one π ∈ QP such that ūP,ν
 (p, π)

takes a critical value for a p ∈ int supp(rν
i ). Thus, it is advisable to concentrate on

the uncoupled constraint (4.3.14) whenever transferring ideas of the TMMG method
to our setting.

Remark 4.3.5. The choice (4.3.17) of the damping parameter ϑν
i seems to be

stricter than necessary. Another possibility consists in taking the diagonal matrix
Θν

i = diag(θν
i,π) ∈ R

Π×Π and to retransform it. Note that the matrix

Θ̃ν
i := B̌−1Θν

i B̌ = BT H
1
2 Θν

i H− 1
2 B,

which then occurs as damping in the coarse grid correction step

wν
i = wν

i−1 + Θ̃ν
i v

ν
i (4.3.24)

instead of (4.3.18), is no longer diagonal.

Remark 4.3.6. In this remark, we enlighten the coarse grid correction from the
stochastic collocation approach mentioned in (4.3.15). Let ūP,ν

 (π) be the smoothed

iterate at π ∈ QP from (4.2.4) or (4.2.28), which is the same according to Theo-
rem 4.2.8. Defining

KūP,ν


(π) := {w(π) ∈ S : ϕ
ūP,ν


(p, π) ≤ w(p, π) ≤ ϕūP,ν


(p, π) ∀p ∈ N} (4.3.25)

and

φπ
ūP,ν


: w 7→

∑

p with

(p,π)∈N◦

 (ūP,ν
 )

Φ(w(p, π))hp ∀w(·, π) ∈ KūP,ν


(π), (4.3.26)
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the Newton linearization J π
ūP,ν


of the smooth energy J π + φπ

ūP,ν


reads

J π
ūP,ν


(w) :=

1

2
aπ

ūP,ν


(w,w) − ℓπ
ūP,ν


(w) :=

1

2

(

aπ(w,w) + (φπ
ūP,ν


)′′(ūP,ν

 (π))(w,w)
)

−
(

ℓπ(w) − (φπ
ūP,ν


)′(ūP,ν

 (π))w + (φπ
ūP,ν


)′′(ūP,ν

 (π))(ūP,ν
 (π), w)

)

. (4.3.27)

Using the same nodal basis (4.3.12), one can see analogously to Proposition 4.2.7
that the minimization

wūP,ν


(π) ∈ KūP,ν


(π) : J π
ūP,ν


(wūP,ν


(π)) ≤ J π

ūP,ν


(v) ∀v ∈ KūP,ν


(π) (4.3.28)

can be written equivalently as (4.3.13)–(4.3.14). This justifies the derivation of
(4.3.19) from (4.3.15).

Comparing the new coarse grid corrections in the iterates (4.3.16) and (4.3.18), one
can see that they are no longer identical (after transformation). This is due to
(4.3.17), which also causes the inconvenience described in the second paragraph of
Remark 4.3.4. This difference is resolved if one takes the damping matrix Θ̃ν

i as in
(4.3.24).

From a computational point of view, it is however expedient to solve directly the
minimizations (4.3.28) for all π ∈ QP and to retransform the solution to the PC
basis afterwards. This procedure allows in particular the use of existing numerical
multigrid solvers for deterministic problems without extensive changes in the code.

Remark 4.3.7. The results in this section can be applied to many other functions Φ
without any changes. We refer to [69] for the treatment of more general functions
and to [68] for the case of more than two critical values.

Remark 4.3.8. We close this section with a look at the limit cases for the Brooks–
Corey parameter functions as introduced in (1.1.18) and (1.1.20). As mentioned in
Remark 3.2.32, the function Φ is then linear on the interval [uc,∞), and we obtain
with the subdifferential

∂Φ(u) = H̃(u) =











∅ for u < uc

(−∞, θM ] for u = uc

θM for u > uc

(4.3.29)

a linear constrained problem, where uc ∈ {−2,−1} according to the considered
setting. Using (4.3.29) in (4.2.25), the one-dimensional problems illustrated in Fig-
ure 4.2 become very easy. Furthermore, since uc remains the only critical value, we
can choose as the constraint set the whole convex set KP

 from (3.3.30), i.e.

KūP,ν


= KP
 .

Moreover, by the linearity of Φ with Φ′′ ≡ 0 and Φ(0) = 0, we have

φ′
ūP,ν


(ūP,ν

 )w = φūP,ν


(w),

from which follows that the constrained Newton linearization (4.3.10) is just the
original problem (4.3.1) with Rν = ΛS due to

JūP,ν


= J + φūP,ν


= J + φP
 (4.3.30)

on KP
 ; consequently, (4.3.13) reduces to (4.2.19). In particular, damping is no

longer necessary and we end up with a block version of a usual multigrid method
for a linear constrained problem.
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4.3.3 Numerical results

The similarity of the nonlinear fine grid solver and the coarse grid correction in our
sSMMG method with their deterministic counterparts within a stochastic colloca-
tion approach suggests that we can transfer known robustness and efficiency results
(see Kornhuber [68] and following works) of the deterministic standard monotone
multigrid method to our case. In order to underline this, we will investigate the
convergence rates observed when applying our method to the two-dimensional test
problem from the previous chapter.

Recall the setting of Subsection 3.4.2. We employ a tensor product PC basis created
from Hermite polynomials in ZP and a nested sequence of triangulations T with
corresponding nodal bases for finite element spaces S. We use the sSMMG solver
as a V (3, 3) cycle with 3 pre-smoothing and 3 post-smoothing steps, where the fine
grid smoother MP

j is the nonlinear Block Gauß–Seidel method with transforma-

tion from Subsections 4.2.1–4.2.2 and the coarse grid correction CP,std
 is defined in

Subsection 4.3.2 with damping matrix Θ̃ν
i from (4.3.24). We take the solution from

former time step as initial iterate (uP
 )0 and perform multigrid iterations ν = 0, 1, . . .

until the relative accuracy condition

‖(uP
 )ν∗ − (uP

 )ν∗−1‖a

‖(uP
 )ν∗‖a

≤ TOL (4.3.31)

with TOL = 10−12 is satisfied, where we utilize the energy norm

‖v‖2
a := a(v, v) ∀v ∈ S ⊗ZP . (4.3.32)

In order to determine the average convergence rate ̺, we take the geometric mean
of the relative corrections in relation to the previous corrections, i.e.

̺ =

(

ν∗

∏

ν=2

‖(uP
 )ν − (uP

 )ν−1‖a

‖(uP
 )ν−1 − (uP

 )ν−2‖a

)

1
ν∗−1

=

(

‖(uP
 )ν∗ − (uP

 )ν∗−1‖a

‖(uP
 )1 − (uP

 )0‖a

)
1

ν∗−1

.

(4.3.33)

We want to carry out a comparison with usual standard monotone multigrid method
(SMMG) from [68] if applied within the stochastic collocation approach from 4.1.2.
In this case, we solve for each π ∈ C = QP , where QP is the quadrature point set
corresponding to ZP , with the SMMG method in a V (3, 3) cycle until the accuracy
condition

‖(u)
ν∗

(π) − (u)
ν∗−1(π)‖a,π

‖(u)ν∗(π)‖a,π
≤ TOL (4.3.34)

is satisfied for iterates (u)
ν(π) ∈ S. Here, we use the norm

‖v‖2
a,π := aπ(v, v) ∀v ∈ S

and the average convergence rates

̺π =

(‖(u)
ν∗

(π) − (u)
ν∗−1(π)‖a,π

‖(u)1(π) − (u)0(π)‖a,π

)

1
ν∗−1

instead of (4.3.32) and (4.3.33), respectively. Note that this is done independently
for each π ∈ C such that we obtain different number of iterates ν∗ = ν∗(π) and
different convergence rates ̺π for different collocation points.

First, we take fixed PC order P1 = P2 = 3 and vary the maximal refinement level .
Comparing the convergence rates of the sSMMG method with the minimal and
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 min ̺π ̺ max ̺π

4 0.036 0.143 0.142
5 0.181 0.272 0.254
6 0.253 0.362 0.357
7 0.333 0.482 0.490
8 0.476 0.667 0.671

Table 4.1: Convergence rates for varying maximal refinement level .

maximal convergence rates of the SMMG in the collocation approach, we detect in
Table 4.1 that ̺ and maxπ ̺

π develop more or less identically. This suggests that
convergence results for SMMG can be transferred to the sSMMG method.

P1

P2

0 1 2 3 4 5 6

0.373 0.396 0.359 0.369 0.371 0.363 0.366
0 0.475 0.491 0.475 0.478 0.477 0.489 0.477

0.373 0.400 0.373 0.391 0.385 0.393 0.391
0.367 0.370 0.367 0.343 0.362 0.360 0.346

1 0.490 0.474 0.490 0.489 0.482 0.478 0.488
0.380 0.393 0.405 0.400 0.387 0.401 0.418
0.342 0.372 0.336 0.342 0.342 0.347 0.340

2 0.487 0.489 0.487 0.482 0.487 0.492 0.487
0.421 0.404 0.436 0.439 0.421 0.445 0.465
0.364 0.367 0.336 0.333 0.341 0.335 0.347

3 0.507 0.487 0.508 0.482 0.501 0.490 0.491
0.464 0.417 0.480 0.490 0.464 0.488 0.507
0.362 0.358 0.344 0.340 0.343 0.325 0.335

4 0.496 0.484 0.498 0.487 0.493 0.497 0.493
0.504 0.419 0.531 0.534 0.504 0.541 0.563
0.354 0.359 0.354 0.334 0.338 0.345 0.336

5 0.509 0.503 0.526 0.486 0.503 0.488 0.501
0.559 0.434 0.588 0.592 0.559 0.607 0.630
0.357 0.353 0.341 0.325 0.338 0.334 0.326

6 0.501 0.495 0.504 0.484 0.498 0.500 0.494
0.650 0.432 0.664 0.662 0.650 0.662 0.675

Table 4.2: Convergence rates for varying maximal polynomial degree P1 and P2.

Another interesting result is given in Table 4.2, where we fix the maximal refinement
level  = 7 and solve the problem for different PC orders P1 and P2. Recall that
the size of the PC basis is (P1 + 1) · (P2 + 1) and that we can connect a quadrature
point set QP to each of these basis sets. In each field of Table 4.2, one can read the
following information:

min ̺π

̺
max ̺π

Hence, ̺ with values 0.47–0.52 remains almost constant for different polynomial
degrees and is therefore mainly dependent on the refinement level  and the problem
— like its deterministic counterpart. For the collocation, the values of minπ ̺

π are
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also almost constant for different collocation point sets while maxπ ̺
π is increasing

as |C| becomes larger. This is a consequence of the fact that deterministic problems
are solved for more and more extreme collocation points π with corresponding
K(·, π) the larger |C| is.

Note that the collocation approach solves successively for each π ∈ C and treats all
single problems in an equal way by solving them up to a precision determined by
(4.3.34). If, however, one wants to compute moments like E[u], the values of the
solution u(π) for such extreme π only contribute to a more and more negligible ex-
tent to this evaluation, since the quadrature weights corresponding to these points
tend to zero. On the other hand by the definition of the norm (4.3.32), this dis-
tinction into more important and less important collocation and quadrature points
is detected by the sSMMG method and part of the stopping condition (4.3.31),
which prevents the increase of the convergence rates for large Pr, as can be seen in
Table 4.2. This underlines the efficiency of the sSMMG solver and points the way
of how to make the collocation approach more efficient: it is expedient to perform
each SMMG step parallel for all π ∈ C, to create after each multigrid step the ap-
proximated function as in (4.1.17) and to use a weighted norm which is equivalent
to (4.3.32) to determine the stopping condition for all multigrid iterations.

4.4 Post-processing

The results presented in this chapter allow the approximation of the function
u(x, ξ(ω)) ∈ H1(D) ⊗ L2(Ω) and its representation as

u(x, ξ(ω)) =

N
∑

i=1

P
∑

k=0

uiks
()
pi

(x)Ψk(ξ(ω)) ∈ S ⊗ZP . (4.4.1)

Whilst the pointwise knowledge of u in x ∈ D is of main interest, it is hardly
relevant to know the specific value of u in a certain ω ∈ Ω; instead of that, we
want to be able to compute statistics and probability density functions and to
make statements about certain probabilities. In this section, we will show how
appropriate and powerful the PC representation (4.4.1) is to achieve this goal.

We start with some elementary definitions which can be found in textbooks in
statistics like [36].

Definition 4.4.1. Let X be a random variable on Ω. Then

mX
n := E [Xn]

is called the moment of order n of X and

µX
n := E [(X − E[X ])n]

is called the central moment of order n of X if the respective expectation values
exist.

The most common statistics which describe the nature of X besides the expection
value mX

1 = E[X ] are the following.
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Definition 4.4.2. Let X be a random variable on Ω. Then we call

Var[X ] := E
[

(X − E[X ])2
]

,

γ1[X ] :=
E
[

(X − E[X ])3
]

E [(X − E[X ])2]
3/2

,

γ2[X ] :=
E
[

(X − E[X ])4
]

E [(X − E[X ])2]
2

the variance Var[X ], the skewness γ1[X ] and the kurtosis γ2[X ] of X if the respec-
tive expectation values exist and the denominators are not zero.

Obviously, these values can be rewritten according to

Var[X ] = µX
2 = mX

2 − (mX
1 )2, (4.4.2)

γ1[X ] =
µX

3

(µX
2 )3/2

=
mX

3 − 3mX
2 m

X
1 + 2(mX

1 )3

(mX
2 − (mX

1 )2)3/2
, (4.4.3)

γ2[X ] =
µX

4

(µX
2 )2

=
mX

4 − 4mX
3 m

X
1 + 6mX

2 (mX
1 )2 − 3(mX

1 )4

(mX
2 − (mX

1 )2)2
. (4.4.4)

The statistics from Definition 4.4.2 are hence known once either the moments or
central moments have been computed.

Writing the solution u from (4.4.1) as

u(x, ξ(ω)) =

P
∑

k=0

uk(x)Ψk(ξ(ω)), (4.4.5)

it is easy to see that the moments of order n of u(x, ·) are given by

mu
n(x) = E [un(x, ·)] =

P
∑

k1=0

· · ·
P
∑

kn=0

(

n
∏

i=1

uki(x)

)

E

[

n
∏

i=1

Ψki

]

. (4.4.6)

For {Ψk} = {Ψc
k} or {Ψk} = {Ψt

k}, the central moments are computed in one go,
since

µu
n(x) = E [(u(x, ·) − E[u(x, ·)])n] =

P
∑

k1=1

· · ·
P
∑

kn=1

(

n
∏

i=1

uki(x)

)

E

[

n
∏

i=1

Ψki

]

.

due to (3.3.11) and E[u(x, ·)] = u0(x). Here, the expectation values on the right-
hand side of (4.4.6) can be calculated once and stored for the rest of the time.
Observe that E[Ψk1 ] and E[Ψk1Ψk2 ] in the case n = 1 and n = 2 are already known
from the assembly in Subsection 4.1.1, whereas the expectation values for higher
order n, for example E[Ψk1Ψk2Ψk3 ] for k1, k2, k3 = 0, . . . , P in the case n = 3, have
to be computed by now using quadrature formulas of appropriate order.

In our hydrological setting, we are rather interested in the statistics of the physical
pressure p(x, ·) = κ−1(u(x, ·)) than in the corresponding values of u. Since the
Kirchhoff transformation κ is not linear in general, a direct conversion from, say,
Var[u](x) to Var[p](x) is not possible (cf. (2.3.7)). Rather, we compute the moments

mp
n(x) = E [pn(x, ·)] = E

[

(

κ−1(u(x, ·))
)n
]

directly be means of high-order stochastic quadrature and obtain the desired values
via (4.4.2)–(4.4.4).
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In order to answer questions like (Q3) from the introduction, it is moreover essential
to know at arbitrary x ∈ D the probability density functions pdfu

x : R → R
+ and

pdfp
x : R → R

+, which are defined such that

P(a ≤ u(x, ·) ≤ b) =

∫ b

a

pdfu
x(s) ds and P(a ≤ p(x, ·) ≤ b) =

∫ b

a

pdfp
x(s) ds,

respectively, or, equivalently, the corresponding cumulative distribution functions
cdfu

x : R → [0, 1] and cdfp
x : R → [0, 1] with

cdfu
x(y) = P(u(x, ·) ≤ y) =

∫ y

−∞
pdfu

x(s) ds, (4.4.7)

cdfp
x(y) = P(p(x, ·) ≤ y) =

∫ y

−∞
pdfp

x(s) ds. (4.4.8)

A direct estimation of pdfu
x from the representation (4.4.5) is possible in special

cases, for instance if the underlying random variables ξr from (3.1.11) are Gaussian,
cf. [102] and the references therein; our approach, however, should work for arbitrary
ξr and for the density functions of u as well as of p = κ−1(u). To this end, we
introduce for fixed x ∈ D a partition A = {A1, . . . , ANA

} of the space Ω(M) and
approximate the functions u(x, ·) and p(x, ·) by step functions with values u(x, āi)
and p(x, āi) for certain points āi ∈ Ai. An estimation of the distribution functions
is then obtained by

cdfu
x(y) =

∑

Ai∈A
u(x,āi)≤y

P
(M)(Ai) and cdfp

x(y) =
∑

Ai∈A
p(x,āi)≤y

P
(M)(Ai).

The functions pdfu
x and pdfp

x can then be derived by virtue of (4.4.7) and (4.4.8).

At the end of the following chapter with a hydrological example, the described post-
processing methods will be applied and will provide further insights for the analysis
of the problem.
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Chapter 5

A hydrological example

This final chapter is devoted to the application of the presented results to a typical
hydrological problem. Our computations are carried out on a realistic geometry,
and we describe which further numerical challenges are connected with it. Then,
we use measured data to create the Karhunen–Loève expansion for the permeability
and solve the Richards equation over a certain time interval. Our aim is to point
out the benefits and the limits of the polynomial chaos approach and our solution
method.

5.1 Line smoothers for an anisotropic grid

We consider the bend of a river passing through a landscape. In horizontal direction
the region is of the size 1500 × 1500 [m2], while in z-direction the geometry is
depending on the surface of the landscape and the aquifers and is varying between
4 and 14 [m]. This is depicted in Figure 5.1, where the river is colored in blue and
the z-direction is scaled (throughout this chapter) by the factor 20.

We take a spatial grid as it is often utilized in the hydrological context. Recalling
the coordinates x = (x1, x2, z) ∈ D from Chapter 1, the coarse grid consists of
hexahedra and is constructed in the following way: first, create a regular two-
dimensional grid in the horizontal x1-x2-plane consisting of 302 squares with size
50×50; then divide the line along the z-axis at each grid point (x1, x2) into intervals
in order to create grid points (x1, x2, zi) with zmin = z1 < z2 < . . . < z7 = zmax.
We obtain a total of 312 · 7 = 6727 nodes and 302 · 6 = 5400 hexahedral elements
in six layers on top of each other, see Figure 5.2. The fine grids are obtained by
uniform refinement and feature the following size:

level  # elements # nodes

0 5 400 6 727
1 43 200 48 373
2 345 600 366 025
3 2 764 800 2 845 969

The form of the Richards equation and the structure of the grid need further at-
tention. First, we detect that the convective part in (3.2.2) can cause stability
problems. This is often solved by upwind schemes and artificial viscosity (see [61,
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Figure 5.1: The computational domain in original scale (left) and scaled in z-
direction (right).

Figure 5.2: The coarse grid.

Chapter 9]). For the deterministic Richards equation and under consideration of the
special form of the grid, where nodes lie on top of each other on lines parallel to the
z-axis, we refer to the investigations in [18]. Since these modifications only affect
the spatial discretization of the differential operators, we can adopt this approach
immediately to our case, see the assembling procedure in Subsection 4.1.1.

Secondly, observe that the elements are anisotropic, because hz ≪ hx1 = hx2 , if hz

denotes the maximal diameter of an element parallel to the z-axis. As can be seen
by transformation, this is equivalent to an anisotropic problem on an isotropic grid,
since

−ux1x1 − ux2x2 −
1

ε
uzz = 0 in [0, 1]3

yields the same discretization as

−ux1x1 − ux2x2 − uzz = 0 in [0, 1]2 × [0,
√
ε]

for the simple Laplace’s equation. It is known (see [56, Chapter 10]) that conver-
gence rates for multigrid solvers with Gauß–Seidel pre-smoothers tend to 1 as ε→ 0.
A possible remedy proposed in [21] are line smoothers in direction of the anisotropy.
We will extend this idea to our case with obstacle conditions and stochastic coor-
dinates for the coarse grid corrections as described in Subsection 4.3.2.

At the beginning, we define a line N [i]
ı as the set of nodes p ∈ Nı having the same

x1 and x2 coordinates, see the marked nodes in Figure 5.3. Let N
[ ]
ı denote the

number of lines and n
[i]
ı the number of nodes in N [i]

ı . For example in our coarse

grid ı = 0, we identify N
[ ]
0 = 312 lines each consisting of n

[i]
0 = 7 nodes. Define

Rν,[i]
ı :=

{

s(ı)p : s(ı)p (q) = 0 for all q /∈ N [i]
ı

}
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Figure 5.3: The line smoother solves along the z-axis.

as the set of nodal basis functions corresponding to the line N [i]
ı . We want to

apply the line smoother in the coarse grid correction CP,ν
 and solve the quadratic

obstacle problem (4.3.9) by a successive minimization as in (4.3.10), but now in

the subspaces V ν
[i] = spanR

ν,[i]
ı ×ZP for all lines [i] = 1, . . . , N

[ ]
ı obtaining iterates

wν
[i] = wν

[i−1] + vν
[i] and for all levels ı = ,  − 1, . . . , 0. The only modification

compared with the method described in (4.3.10)–(4.3.22) is that we now encounter

blocks of size (P +1) ·n[i]
ı and that we have to solve within this block in a way that

the energy reduction property (4.3.19) is still valid.

To this end, denote by Aφ and bφ the matrix and vector to aūP,ν


(·, ·) and ℓūP,ν


(·)
from (4.3.8), respectively, and by Aπ,φ and bπ,φ the matrix and vector to their
counterparts aπ

ūP,ν


(·, ·) and ℓπ
ūP,ν


(·) from (4.3.27), respectively. We assume again

that we have a tensor product PC basis {Ψk} = {Ψt
k} and adopt the notation from

Subsections 4.2.1 and 4.2.2 with the modification that the block diagonal matrix B

with entries Bjj = B ∈ R
Π×(P+1) is now of the size B ∈ R

n[i]
ı Π×n[i]

ı (P+1). The
minimization problem (4.3.10)–(4.3.11) within the introduced subspaces V ν

[i] is

arg min

v̄∈R
n
[i]
ı (P+1)

1

2
(w + v)T Aφ(w + v) − (w + v)T bφ

subject to ϕ
ūP,ν


(p, π) ≤ wν

[i−1](p, π) + vν
[i](p, π) ≤ ϕūP,ν


(p, π) ∀π ∈ QP ∀p ∈ N,

(5.1.1)

where the long block vector v ∈ R
Nı(P+1) as coefficient vector of vν

[i] has the block

entry v[i] = v̄ and v[j] = 0 for [j] 6= [i]. In the same way as in the derivation of
(4.3.13), (5.1.1) can be rewritten with v = Bv[i] as

argmin

vπ∈R
n
[i]
ı

1

2
v

T
π

[

BA
φ
[i][i]B

T
]

ππ
vπ − v

T
π

[

B
(

b
φ
[i] − [Aφw][i]

)]

π

subject to ϕ
ūP,ν


(pj , π) − wν

[i−1](pj , π) ≤ 1√
ηπ

[vπ ]j ≤ ϕūP,ν


(pj , π) − wν
[i−1](pj , π)

∀pj ∈ N [i]
ı (5.1.2)

for all π ∈ QP , since we have again the uncoupling in the quadrature points π ∈ QP ,
and which is (up to a scalar factor) the same as the minimization problem from the
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collocation approach reading

argmin

v
π∈R

n
[i]
ı

1

2
(vπ)T

[

Aπ,φ
]

[i][i]
vπ − (vπ)T

(

b
π,φ
[i] −

[

Aπ,φwπ
]

[i]

)

subject to ϕ
ūP,ν


(pj , π) − wν

[i−1](pj , π) ≤ vν
[i](pj , π) ≤ ϕūP,ν


(pj , π) − wν

[i−1](pj , π)

∀pj ∈ N [i]
ı (5.1.3)

with vπ as coefficient vector of vν
[i](π), see the arguments in the proof of Theorem

4.2.8. The matrix
[

BA
φ
[i][i]B

T
]

ππ
=
[

Aπ,φ
]

[i][i]
∈ R

n[i]
ı ×n[i]

ı describes aπ
ūP,ν


(s

(ı)
pj1
, s

(ı)
pj2

)

for nodal basis functions s
(ı)
pj1
, s

(ı)
pj2

∈ R
ν,[i]
ı in the one-dimensional vertical line N [i]

ı

and is thus (after ordering) a tridiagonal matrix Tπ,[i]. This means that whether us-
ing the stochastic collocation or the stochastic Galerkin approach with transforma-

tion, one ends up for each π ∈ QP and each line N [i]
ı with a quadratic minimization

problem of the form

argmin

v∈R
n
[i]
ı

1

2
vT Tπ,[i]v − vT rπ,[i] (5.1.4)

with constraints as in (5.1.2) or (5.1.3), respectively. This can be solved by any
adequate descent method provided that it yields the energy reduction

J (wν
[i]) + φūP,ν


(wν

[i]) ≤ J (wν
[i−1]) + φūP,ν


(wν

[i−1]). (5.1.5)

For our computations, we solve (5.1.4) by an iteration (vk)k by taking a variant
of the truncated nonsmooth Newton multigrid method from [51, Section 6] with
a projected Gauß–Seidel method as pre-smoother, a linear correction ck which is
obtained by the solution of

Tπ,[i]ck = rπ,[i] − Tπ,[i]vk−1,

and a damping in order to provide (5.1.5). Finally incorporate the constraints

ψν

j
, ψ

ν

j from (4.3.21) for all pj ∈ N [i]
ı into the current block iteration step to reduce

numerical complexity. With these modifications to our sSMMG method, we observe
in the following computations average convergence rates ranging from 0.9 to 0.95.

5.2 Solution of the Richards equation

In this final section, we present an example of the stochastic Richards equation for
the three-dimensional domain introduced at the beginning of this chapter.

We solve for the pressure p, which is given in meters of water column and set
atmospheric pressure equal to 0 [m]. We use the Brooks–Corey model from Section
1.1 corresponding to sandy soil with λ = 1, e(λ) = 5, uc = −1.25, θm = 0.2,
θM = 0.95. The bubbling pressure is given by −0.1 [m]. Since we normalized
pb = −1 [m] throughout this thesis, we introduce the dimensionless factor pr such
that prpb = −0.1 [m]. Consequently, the Kirchhoff transformation to obtain the
generalized pressure u reads u = κ(p/pr) and p = prκ

−1(u). Other parameters in
our model are n = 0.35, ρ = 103 [kg/m3], g = 10 [m/s], and η = 10−3 [kg/ms].

Our goal is to model the infiltration of river water into a dry soil. Figure 5.4
shows the deterministic initial condition p0(x) = p(t = 0, x). In the riverbed, the
pressure is equal to the water column above, i.e. equal to the difference between the
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Figure 5.4: The initial condition p0(x).

Figure 5.5: The function exp(K̄).

water table of the river and the ground. The water table is modeled with a linear
incline along the course of the river and is constant in time. Thus, we use Dirichlet
boundary conditions in the riverbed which are constant in t. The remaining top
surface is modeled with Dirichlet boundary conditions equal to the atmospheric
pressure (we will not consider seepage faces which can be modeled by Signorini
boundary conditions, cf. [18]), and the same pressure can be found in the soil layers
directly below the surface. The rest of the soil has the initial pressure −5 [m], which
means that it is completely dry. Finally, all remaining boundaries (the vertical ones
and the one at the bottom of our domain) have Neumann conditions fN = 0.

Let us now create the stochastic permeability K. We assume a lognormal distri-
bution as it is usually done in hydrology (see the references in Remarks 2.3.8 and
3.1.27) and consider

K(x, ω) = exp

(

K̄(x) +
M
∑

r=1

√

λrgr(x)ξr(ω)

)

(5.2.1)

with normally distributed ξr ∝ N (0, 1). In order to calculate the eigenfunctions
gr, knowledge of the covariance structure is needed. Frequently used in hydrology
(see e.g. [44, 76, 100, 106]) is the exponential covariance kernel from Appendix A.
For our three-dimensional domain D with points x = (x1, x2, z) and x̃ = (x̃1, x̃2, z̃),
take

VK(x, x̃) = exp

(

−
( |x1 − x̃1|2

γ2
1

+
|x2 − x̃2|2

γ2
2

+
|z − z̃|2
γ2
3

)1/2
)

. (5.2.2)

As correlation lengths, we estimate from the data γ1 = 200, γ2 = 150, γ3 = 5, which
is in accordance with estimates from other measurements (cf. [44, Section 6.1]). The
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Figure 5.6: The eigenfunctions gr, r = 1, . . . , 4.

next step is to assemble the matrices in the generalized eigenvalue problem

Vg = λMg

from (3.1.36). This is done on level  = 0 such that V is a dense 6727×6727-matrix.
Using common eigenproblem solvers, one obtains the following eigenvalues:

λ1 = 1 328 177

λ2 = 955 317

λ3 = 884 811

λ4 = 691 483

λ5 = 617 473

λ6 = 514 826

. . .

We decide to truncate the expansion for all λi < λ1/2, which means M = 4.
Note that the numerical complexity increases rapidly with M and that less strict
truncations (e.g. λi < λ1/10 withM = 26 or λi < λ1/100 withM = 143) would lead
to stochastic dimensions where the polynomial chaos approach is no longer superior
to the Monte Carlo method. The corresponding eigenfunction gr are normalized
and interpolated to the refined grids, see Figure 5.6. Finally, the function K̄(x) is
given by the measured data, where we have exp(K̄(x)) = 10−13 [m2] on the surface
and a variation exp(K̄(x)) ∈ [2.5 · 10−10, 5.5 · 10−10] [m2] in the remaining soil, see
Figure 5.5. Altogether, the stochastic permeability K(x, ω) varies over a broad
range and satisfies

P
(

K(x, ω) ∈ [7.9 · 10−12, 1.1 · 10−8]
)

≥ 0.989

outside the surface.

For the time evolution, we fix a constant time step size τ = 100 [s]. As spatial
grid, we choose the uniformly refined grid with  = 2 such that we perform our
multigrid solver on three different grid levels. In order to choose the dimension of
the PC basis, we proceed by applying an adaptive algorithm following an idea in
[12, Section 9.3]. Start with P1 = P2 = P3 = P4 = 0, shortly (0, 0, 0, 0), solve the
Richards equation for the first time step, and compute E0 = E[u]. Then, carry
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Figure 5.7: E[p] and Var[p] at t = 100.

Figure 5.8: E[p] and Var[p] at t = 200.

Figure 5.9: E[p] and Var[p] at t = 500.

Figure 5.10: E[p] and Var[p] at t = 1 000.
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Figure 5.11: E[p] and Var[p] at t = 2 000.

Figure 5.12: E[p] and Var[p] at t = 5 000.

Figure 5.13: E[p] and Var[p] at t = 10 000.

Figure 5.14: E[p] and Var[p] at t = 15 000.
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Figure 5.15: γ1[p] and γ2[p] at t = 15 000.

out the same for P1 = 1 and P2 = P3 = P4 = 0, shortly (1, 0, 0, 0), and obtain
E1 = E[u]. If

‖E1 − E0‖L2(D)

‖E0‖L2(D)
> TOL,

accept this step and compute E2 = E[u] for the PC basis set (1, 1, 0, 0), otherwise
reject this step and compute E1 = E[u] for the set (0, 1, 0, 0). In the following,
increase successively the polynomial degrees in each dimension r = 1, . . . , 4 until

‖Ei − Ei−1‖L2(D)

‖Ei−1‖L2(D)
< TOL

for all possible steps i. Doing this for TOL = 5 · 10−4, we end up with the set
(3, 1, 1, 1), i.e. we have P1 = 3, P2 = P3 = P4 = 1, which means P + 1 = 32.
Consequently, the total number of degrees of freedom is 366 025 × 32 = 11 712 800
for each time step.

Figures 5.7–5.14 show the results of the time evolution until T = 15 000 [s] at
selected time steps. The left pictures always display the expectation value E[p] and
the right pictures the variance Var[p]. We changed the angle of view and cut the
spatial domain into slices to focus on the relevant processes in the soil.

One can observe in the left pictures that the infiltration mainly takes place be-
low the riverbed (where the maximal pressure difference can be found) and that
this infiltration proceeds in vertical direction due to the gravitational parts in the
Richards equation. For t > 5 000, the soil below the riverbed is fully saturated and
water flows in adjacent regions (in horizontal direction). One can also detect an
infiltration in the remaining parts of the domain outside the riverbed, which takes
place on a larger time scale and which is depending on the size of the permeability
(it is higher in the southern part of the domain, here at the right-hand side of the
pictures). Looking at the evolution of the variance in the right pictures, it is clear
that it is zero at the Dirichlet boundaries and in the region where the pressure
remains equal to −5. Apart from that, the variance is also small in regions which
are already saturated, e.g. in the soil below the riverbed for t > 5 000, while we
observe the greatest variance near the saturation front, where the determination
whether the soil is saturated or not strongly depends on the randomness of the
stochastic permeability K. A comparison of the variance for t = 1 000 in Figure
5.10 and t = 10 000 in Figure 5.13 also suggests that the variance is higher the
faster the saturation front is moving. This answers questions (Q1) and (Q2) from
the introduction.

This variability near the saturation front and the resulting asymmetry of the dis-
tribution can also be measured by the higher moments γ1[p] and γ2[p], see Figure
5.15 for t = 15 000. The reason for the special form of these moments is elucidated

128



−5 −0.1
0

1

2

3

 

 

t=5000
t=10000
t=15000

Figure 5.16: y 7→ pdfp
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Figure 5.17: y 7→ cdfp
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if we plot the probability density function at a point x̄, which is located 10m south
of the river bank and approximately 3.50m below the surface. As shown in Figure
5.16, where the solid blue line indicates t = 15 000, the density function has two
peaks, which corresponds to the fact that the soil can be still unsaturated (with a
pressure p(x̄, ω) ≈ −5) or already saturated (with a pressure p(x̄, ω) > −0.1). The
value P(p(x̄, ·) ∈ [−4.9,−0.1]) < 0.03 supports the observation that the infiltration
proceeds very fast at the saturation front with corresponding steep gradients in
spatial direction.

We are now ready to answer question (Q3) from the introduction. Observe first
that the expectation value alone—which can also be computed by Monte Carlo
methods—does not provide information about this task, since we obtain

E[p](t = 5 000, x̄) = −3.604,

E[p](t = 10 000, x̄) = −0.650,

E[p](t = 15 000, x̄) = −0.157,

which could suggest that the soil is still unsaturated. Consulting the cumulative
distribution functions cdfp

x̄(·) in Figure 5.17 for t ∈ {5 000, 10 000, 15 000}, which
are generated by the representation of p(t, x, ω) in the stochastic domain by means
of polynomial chaos, however, one can read

P(soil saturated in x̄ at t = 5 000) = P(p(5 000, x̄, ·) ≥ −0.1)

= 1 − cdf
p(5 000,x̄,·)
x̄ (−0.1) ≈ 43.6%,

P(soil saturated in x̄ at t = 10 000) ≈ 79.1%,

P(soil saturated in x̄ at t = 15 000) ≈ 94.0%

immediately. Finally, question (Q4) can be answered in the same way.

These results show that the methods developed in this thesis can be applied to
realistic hydrological problems.
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Appendix A

Exponential covariance

We consider the exponential covariance kernel

VK(x1, x2) = exp(−|x1 − x2|/γ) (A.1)

with a parameter γ > 0. This kernel represents Markov processes and is used
extensively to model processes in various fields [115, Section 31]. The parameter γ
denotes the correlation length since the correlation between two points x1, x2 ∈ D
attenuates rapidly for small γ. In the limit γ → 0, the corresponding process tends
to white noise [115, Section 14].

We derive the eigenvalues and eigenfunctions of the operator (3.1.13) for the kernel
(A.1) in the one-dimensional case D = (−a, a), i.e. solve

∫ a

−a

e−|x1−x2|/γgr(x2) dx2 = λrgr(x1).

We split up the integral according to

∫ x

−a

e−(x−x2)/γgr(x2) dx2 +

∫ a

x

e(x−x2)/γgr(x2) dx2 = λrgr(x) (A.2)

and differentiate twice with respect to x to obtain

− 1

γ

∫ x

−a

e−(x−x2)/γgr(x2) dx2 +
1

γ

∫ a

x

e(x−x2)/γgr(x2) dx2 = λrg
′
r(x) (A.3)

and
1

γ2
λrgr(x) −

2

γ
gr(x) = λrg

′′
r (x). (A.4)

Introducing the new variables

ϑ2
r :=

2

γλr
− 1

γ2
, (A.5)

we can write (A.4) as

g′′r (x) + ϑ2
rgr(x) = 0.

All solutions of this ordinary differential equation have the form

gr(x) = αr cos(ϑrx) + βr sin(ϑrx), (A.6)
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and we take the boundary conditions

g′r(a) +
1

γ
gr(a) = 0, g′r(−a) −

1

γ
gr(−a) = 0 (A.7)

derived from (A.2) and (A.3) into account. Combining (A.6) and (A.7) and dividing
the equations by the factor cos(ϑra), we deduce that the (normalized) eigenfunctions
gr are given by

gr(x) =











sin(ϑrx)
q

a− sin(2ϑra)
2ϑr

if r is even

cos(ϑrx)
q

a+
sin(2ϑra)

2ϑr

if r is odd,
(A.8)

where ϑr are the solutions of the transcendental equations

ϑr +
1

γ
tan(ϑra) = 0 for r even (A.9)

1

γ
− ϑr tan(ϑra) = 0 for r odd. (A.10)

The corresponding eigenvalues are given by

λr =
2

γ(ϑ2
r + 1

γ2 )

due to (A.5). We can easily notice from (A.9) and (A.10) that

ϑr ∈
[

(r − 1)π

2a
,
rπ

2a

]

∀r = 1, 2, . . .

such that we can estimate

λr ≤ 2

γ

(

(

(r−1)π
2a

)2

+ 1
γ2

) =
8a2γ

((r − 1)γπ)2 + (2a)2
(A.11)

and

λr ≥ 2

γ
(

(

rπ
2a

)2
+ 1

γ2

) =
8a2γ

(rγπ)2 + (2a)2
. (A.12)

These calculations can be adapted to arbitrary intervals D = (a, b) by translating
and to d dimensions by taking products if the covariance kernel remains separable,
e.g. in the case

VK(x, x̃) = exp

(

−
d
∑

i=1

|xi − x̃i|/γi

)

for x = (x1, . . . , xd), x̃ = (x̃1, . . . , x̃d) ∈ D =
∏d

i=1(ai, bi) ⊂ R
d.
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Appendix B

Orthogonal polynomials

We summarize the definitions and properties of some important orthogonal poly-
nomials. For theoretical background, we refer to the monograph [41].

Denote by {Qk(x)} the set of orthogonal polynomials with regard to a nonnegative
integrable function on R called the weight function w : R → R, i.e.

∫

I

Qk(x)Ql(x)w(x) dx = ekδkl,

where I ⊂ R is the support of w.

The polynomials Qk are given by the three-term recurrence relation

Qk+1(x) = (akx+ bk)Qk(x) − ckQk−1(x) (B.1)

with initial conditions Q−1(x) = 0 and Q0(x) = 1. Another possibility to determine
the “classical” polynomials is Rodrigues’ formula

Qk(x) =
1

dkw(x)

dk

dxk

(

w(x) (P (x))
k
)

with a polynomial P (x) which is at most quadratic and standardization factors dk.

B.1 Hermite polynomials

Consider the normal distribution N (0, 1) with density function

w(x) =
1√
2π
e−x2/2. (B.2)

The corresponding orthogonal polynomials {Qk} = {Hk} are called the Hermite
polynomials given by the recurrence relation

Hk+1(x) = xHk(x) − kHk−1(x)

or the formula

Hk(x) = (−1)kex2/2 dk

dxk
e−x2/2.

They have the support I = R and satisfy
∫ ∞

−∞
Hk(x)Hl(x)w(x) dx = k!δkl.
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The polynomials up to order six read

H0(x) = 1,

H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x,

H6(x) = x6 − 15x4 + 45x2 − 15.

For the normal distribution N (µ, σ2) with expectation µ, variance σ2 and density
function

w(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (B.3)

scale the Hermite polynomials

H
(µ,σ2)
k (x) = Hk

(

x− µ

σ

)

.

B.2 Legendre polynomials

Consider the uniform distribution U (−1, 1) with density function

w(x) =
1

2

on I = [−1, 1]. The corresponding orthogonal polynomials {Qk} = {Lek} are called
the Legendre polynomials given by the recurrence relation

Lek+1(x) =
2k + 1

k + 1
xLek(x) − k

k + 1
Lek−1(x)

or the formula

Lek(x) =
1

2kk!

dk

dxk

(

(x2 − 1)k
)

.

The orthogonality condition reads
∫ 1

−1

Lek(x)Lel(x)w(x) dx =
1

2k + 1
δkl,

and the first polynomials up to order six are given by

Le0(x) = 1,

Le1(x) = x,

Le2(x) =
1

2
(3x2 − 1),

Le3(x) =
1

2
(5x3 − 3x),

Le4(x) =
1

8
(35x4 − 30x2 + 3),

Le5(x) =
1

8
(63x5 − 70x3 + 15x),

Le6(x) =
1

16
(231x6 − 315x4 + 105x2 − 5).
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For the uniform distribution U (a, b) on the more general support I = [a, b], take
the density

w(y) =
1

b− a

and scale the polynomials by y = b−a
2 x+ a+b

2 .

B.3 Jacobi polynomials

Consider the beta distribution B(α, β;−1, 1) with density function

w(x) =
Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)
(1 − x)α(1 + x)β (B.4)

on the support I = [−1, 1]. The parameters α, β > −1 determine the shape of the
distribution and Γ(·) denotes the gamma function interpolating the factorial. The
name of the distribution derives from the beta function

B(x) :=
Γ(x)Γ(y)

Γ(x + y)

used as the normalization factor in (B.4). The corresponding orthogonal polyno-

mials {Qk} = {Ja
(α,β)
k } are called the Jacobi polynomials given by the recurrence

relation (B.1) with

ak =
(2k + α+ β + 1)(2k + α+ β + 2)

2(k + 1)(k + α+ β + 1)
,

bk = − β2 − α2

(2k + α+ β)(2k + α+ β + 2)
ak,

ck =
2(k + α)(k + β)

(2k + α+ β)(2k + α+ β + 1)
ak

or by Rodrigues’ formula

(1 − x)α(1 + x)βJa
(α,β)
k (x) =

(−1)k

2kk!

dk

dxk

(

(1 − x)k+α(1 + x)k+β
)

.

Then, we obtain the orthogonality condition

∫ 1

−1

Ja
(α,β)
k (x)Ja

(α,β)
l (x)w(x) dx

=
Γ(α+ k + 1)Γ(β + k + 1)Γ(α+ β + 2)

k!(2k + α+ β + 1)Γ(α+ β + k + 1)Γ(α+ 1)Γ(β + 1)
δkl.

For α = β = 0, we recover the Legendre polynomials, more precisely we have

Ja
(0,0)
k = Lek.

For the beta distribution B(α, β; a, b) on the more general support I = [a, b], take
the density

w(y) =
Γ(α+ β + 2)

(b − a)α+β+1Γ(α+ 1)Γ(β + 1)
(b− y)α(y − a)β

and scale the polynomials by y = b−a
2 x+ a+b

2 .
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B.4 Laguerre polynomials

Consider the gamma distribution G (α) with density function

w(x) =
e−x

Γ(α+ 1)
xα

on the support I = [0,∞). The parameter α > −1 determines the shape of the
distribution and Γ(·) denotes the gamma function interpolating the factorial. The

corresponding orthogonal polynomials {Qk} = {La
(α)
k } are called the Laguerre poly-

nomials given by the recurrence relation

La
(α)
k+1(x) =

2k + α+ 1 − x

k + 1
La

(α)
k (x) − k + α

k + 1
La

(α)
k−1(x)

or by Rodrigues’ formula

La
(α)
k (x) =

exx−α

k!

dk

dxk

(

e−xxk+α
)

.

The Laguerre polynomials are orthogonal according to

∫ ∞

0

La
(α)
k (x)La

(α)
l (x)w(x) dx =

1

k!

Γ(α+ k + 1)

Γ(α+ 1)
δkl,

and the first polynomials up to order 3 are given by

La
(α)
0 (x) = 1,

La
(α)
1 (x) = −x+ α+ 1,

La
(α)
2 (x) =

1

2

(

x2 − 2(α+ 2)x+ (α+ 2)(α+ 1)
)

,

La
(α)
3 (x) =

1

6
(−x3 + 3(α+ 3)x2 − 3(α+ 2)(α+ 3)x+ (α+ 1)(α+ 2)(α+ 3)).

If X ∝ G (α), then it has the expectation value E[X ] = α + 1. In order to satisfy
condition (3.1.19) in the Karhunen–Loève expansion, one can scale y = x− (α+1).
Note that the gamma distribution is bounded from below and hence a practical
approximation of the normal distribution since the distribution of (X −E[X ]) con-
verges to N (0, α+ 1).
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Appendix C

Gaussian quadrature

We recall the notation from Appendix B. We assume that the moments

mn :=

∫

R

xn w(x) dx (C.1)

exist and are finite. Moreover, for sake of simplicity, let the (possibly unbounded)
support I of the weight function w(x) be a connected interval.

In order to approximate the integral

∫

I

f(x)w(x) dx, (C.2)

we take as usual the sum
k
∑

i=1

f(π
(k)
i )η

(k)
i (C.3)

with quadrature weights ηi given by

η
(k)
i =

∫

I

L(k)
i (x)w(x) dx,

where π
(k)
i are certain points in the interval I and L(k)

i are the Lagrange polyno-

mials with L(k)
i (π

(k)
j ) = δij . The Gaussian quadrature now consists in choosing

as evaluation points π
(k)
i the zeros of Qk, i.e. of the orthogonal polynomial with

respect to w(·). This is possible due to the following theorem.

Theorem C.1 ([41]). All zeros π
(k)
i of Qk are real, simple, and located in the

interior of the support interval I. Furthermore, the zeros of Qk+1 alternate with
those of Qk, i.e.

π
(k+1)
1 < π

(k)
1 < π

(k+1)
2 < π

(k)
2 < . . . < π

(k)
k < π

(k+1)
k+1 .

It is well known that the weights η
(k)
i are always positive and that this quadrature

has order 2(k+1), i.e. it computes polynomials of degree 2k+1 exactly, see [97, The-
orem 3.6.12]. To perform the Gaussian quadrature, we only need to know the zeros
and the weights. They can be computed directly from the orthogonal polynomials,
see [31, Subsection 9.3.2], or by the recursion formula (B.1) with the coefficients of
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the corresponding orthogonal polynomials. For the classical polynomial sets, these
values are tabulated [98] or can be computed by codes like GAUSSQ [1].

For the next results, we concentrate on weight functions which satisfy the moment
estimate

mn < C R2n (2n+ 1)! (C.4)

with constants C and R. The first useful theorem states that the zeros of the
orthogonal polynomials are “dense” in I.

Theorem C.2 ([105]). Let condition (C.4) hold for certain constants C and R.
Then for any given interval (a, b) ⊂ I, there is a number N such that there are

quadrature points π
(k)
i with π

(k)
i ∈ (a, b) for all k > N .

The next theorem states under which conditions on the integrand f we achieve
convergence of the quadrature.

Theorem C.3 ([105]). If the moments satisfy condition (C.4) for certain constants
C and R, then the quadrature formula (C.3) converges to (C.2) for any integrable
function f satisfying the inequality (for sufficiently large x)

|f(x)| < er|x|

|x|1+α
,

where r = 1/R and 0 < α < 1.

In special cases, we can say even more. According to Uspensky [105], we obtain
convergence if

|f(x)| < ex2

|x|1+α
, 0 < α < 1,

for the weight function w(x) = e−x2

or, more generally,

|f(x)| < e
x2

2σ2

|x|1+α
, 0 < α < 1,

for the density (B.3) of N (0, σ2).
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List of Symbols

Miscellaneous

(·, ·)0,0, (·, ·)1,0 scalar product on tensor space 20
(·, ·)X scalar product on X 17
〈·, ·〉 Euclidean scalar product 107

V ′〈·, ·〉V duality bracket 14
| · |p p-norm in R

d 82
‖ · ‖0,0, ‖ · ‖1,0 norm on tensor space 20
‖ · ‖X norm on X
A⊗B operator tensor product 21
E ⊗ F Kronecker product 87
x⊗ y tensor product 18
X ⊗ Y tensor space 18
1(·) constant one function 47
1X(·) indicator function on X 41
2X power set of X 16

Greek letters

γ covariance parameter 34, 131
γ1[X ] skewness of random variable X 118
γ2[X ] kurtosis of random variable X 118
ΓD Dirichlet boundary 12
ΓN Neumann boundary 12
δij Kronecker delta
∂D boundary of D 12
∂vF directional derivative of F 47
∂F (·) subdifferential of F 54
η viscosity 8
ηπ, ηπi quadrature weights 62
θ(·) saturation 7
θm, θM minimal/maximal saturation 8
ϑν

i,π, ϑν
i damping factor 112

κ(·) Kirchhoff transformation 8
λ pore size distribution factor 8
λr eigenvalues in the KL expansion 32
Λ, ΛD

 nodal basis on level  64
ΛS multilevel nodal basis 111
µX

n central moment of order n of random vari-
able X

117

µπ eigenvalue of Ā 99
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ξr, ξ random variables from the Karhunen–
Loève expansion

32, 38

π, πi quadrature points 62
Π cardinality of QP 62
ρ density of the water 7
̺, ̺π convergence rate 115
σ(·), σr(·) positive weight function 67
σ(X) sigma-algebra generated by random vari-

able X
16

τ , τn time step size 14, 44

φ̂(·), φ(·) convex functional 15, 47
φy(·), φπ(·) convex functional 90
φP

 (·), φūP,ν


(·) discrete convex functional 65, 110

φy
j (·), φπ

j (·) discrete convex functional 92

ϕ
ūP,ν


(·), ϕūP,ν


(·) constraints in the Newton linearization 109

Φ(·), Φ̂(·) antiderivative of H , convex function 10, 15, 46
χE characteristic function of the set E 109

ψν

i
(·), ψν

i (·) constraints in the Newton linearization 112

ψr
k(·), Ψk(·) orthogonal polynomials 58, 59
Ψ(·) obstacle function 72
{Ψc

k}, {Ψt
k}, {Ψb

k} polynomial chaos basis 60, 61
ω sample in Ω 17
Ω sample space 16
Ω(M) stochastic space 38
Ωr stochastic space Ωr = ξr(Ω) 38

Roman letters

â(·, ·), a(·, ·), aūP,ν


(·, ·) bilinear form 15, 45, 110

ay(·, ·), aπ(·, ·), aπ
ūP,ν


(·, ·) bilinear form 90, 114

A, Ā, Aπ stiffness matrix 87, 98, 102
b, bπ coefficient vector 88, 102

B, B̌, B local evaluation matrix 98, 103, 105, 122
B(α, β; a, b) beta distribution 135
Bor(X) Borel sets on X 17
cπ row of B 99
cdfu

x(·), cdfp
x(·) cumulative distribution function of random

variable u or p
119

C collocation point set 90
C0

σ(Ω(M)), C0
σ,0(Ω

(M)) space of continuous, bounded (and decreas-
ing) functions on Ω(M) w.r.t. σ

67

C∞
0 (X) space of smooth functions with compact

support
13, 20

Ck(X) space of k times continuously differentiable
functions

CK(·, ·) correlation of K 30
CK correlation operator w.r.t. K 31
CP,ν

 coarse grid correction 108
d spatial dimension 12
domA domain of an operator (Chapter 2) 21
domF effective domain of a functional (Ch. 3) 50
dom∂F domain of a subdifferential 54
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D spatial domain 12
D special diagonal matrix 100
D tensor space of smooth functions with com-

pact support
20

Dν
i constraint set 111

e(λ) Brooks–Corey factor 8
ez vector in direction of gravity 12
E set of events 16
E[X ] expectation of random variable X 17
f(·) source function, right-hand side function 8, 26
fN(·) function on ΓN 12, 26
g gravitational constant 7
gr(·) eigenfunctions of the KL expansion 32
G (α) gamma distribution 136
h piezometric head 7
h mesh size on level  63
hp weighting factor to a node p 65

H(·), H̃(·) generalized saturation 9, 55
H scaling matrix 102
H0, H∞ limit cases of H 11
H1/2(Γ) trace space 13
H1

ΓD
(D) Sobolev space with homogeneous Dirichlet

boundary conditions on ΓD

45

H1(D;L2(X)) Sobolev space of functions D → L2(X) 20
Hk(X), Hk

0 (X) Sobolev space 13
Hk(·) Hermite polynomials 133
I identity matrix 61, 99
I P Lagrange interpolant operator 63
IS linear interpolation operator 66
J (·), JūP,ν


(·) quadratic functional 49, 110

J y(·), J π(·), J π
ūP,ν


(·) quadratic functional 92, 114

Ja
(α,β)
k (·) Jacobi polynomials 135

kr(·) relative permeability 8
K(·) permeability 8, 22, 42
K̄(·) expectation of permeability K(·) 30
K̄ convex set (obstacle problem) 72

K̂, K, KΓD convex set 13, 25, 39, 45, 53
Kc hydraulic conductivity 7
KM (·) truncated KL expansion of K(·) 33
Kmin, Kmax bounds of permeability K(·) 12
KP

 , KūP,ν


discrete convex set 64, 110

Ky
 , Kπ

 discrete convex set 92

ℓ̂(·), ℓ(·), ℓūP,ν


(·) linear functional 15, 46, 110

ℓy(·), ℓπ(·), ℓπ
ūP,ν


(·) linear functional 90, 114

L2(0, T ;X) L2 space of functions (0, T ) → X 13
L2(X,µ;H), L2(X,µ) L2 space w.r.t. measure µ 19
Lp(X) space of Lebesgue integrable functions 13, 17

Lπi(·), Lr,πr
i
(·), L(k)

i (·) Lagrange polynomials 62, 137

La
(α)
k (·) Laguerre polynomials 136

Lek(·) Legendre polynomials 134
mX

n moment of order n of random variable X 117
M length of Karhunen–Loève expansion 33
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MP
 , Mπ

 Block Gauß–Seidel iteration operator 96, 102
n outer normal 12
n(·) porosity of the soil 8
N (µ, σ2) normal distribution 133
N cardinality of N 63
N, ND

 set of nodes on level  63, 64
N •

 (v), N ◦
 (v) set of critical/regular nodes 109

NMC number of Monte Carlo iterations 27, 93
p node in the triangulation T 64
p(·) pressure 7, 22
p0(·) initial condition 123
pb bubbling pressure 8
pdf(·), pdfr(·) probability density function of ξ and ξr 38
pdfu

x(·), pdfp
x(·) probability density function of random

variable u or p
119

P probability measure 16
P , P0, Pr size of PC basis 60

P
(M) probability measure on Ω(M) 38

PP projection operator to ZP 59
PX distribution of random variable X 17

Polk(X) space of polynomials of degree ≤ k defined
on X

60

Q time cylinder 13
QP quadrature point set 62
rν
i multilevel basis function 107

s
()
p , s

()
i nodal basis function on level  64, 86

supp(f) support of a function f 20
S, SD

 finite element space on level  64
t time variable 7
t triangle in T 63
tn time step 14, 44
trΓ trace operator on Γ 13, 26
T end time 8
T triangulation of D on level  63
u(·) generalized pressure 9, 22
u coefficient vector 88
u0(·) initial condition 62
uc critical generalized pressure 9
uD(·) function on ΓD 12, 26
uP

 , u discrete solution 70, 90
(uP

 )ν , ūP,ν
 Block Gauß–Seidel iterate 95, 108

U (a, b) uniform distribution 134
v, v̄, vπ , v coefficient vector 98, 98, 103, 105
v(·) water flux 7, 12, 23
VK(·, ·) covariance of K 30
VK covariance operator w.r.t. K 33
Var[X ] variance of random variable X 17, 118
w, w, wπ coefficient vector 98, 100, 103
wν

i intermediate iterate 95
x point in D 7
z vertical coordinate 7
ZP polynomial chaos space 59
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[73] Olivier P. Le Mâıtre, Omar M. Knio, Habib N. Najm, and Roger G. Ghanem.
A stochastic projection method for fluid flow: I. Basic formulation. J. Comp.
Phys., 173(2):481–511, 2001.
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random fields by generalized fast multipole methods. J. Comp. Phys., 217(1):
100–122, 2006.

[96] Liang-Sheng Shi, Jin-Zhong Yang, Shu-Ying Cai, and Lin Lin. Stochastic
analysis of groundwater flow subject to random boundary conditions. J. Hy-
drodyn., 20(5):553–560, 2008.

[97] Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis.
Springer, 1980.

[98] Arthur H. Stroud and Don Secrest. Gaussian Quadrature Formulas. Prentice
Hall, 1966.

[99] Witold G. Strupczewski, Vijay P. Singh, and Stanislaw Weglarczyk. Asymp-
totic bias of estimation methods caused by the assumption of false probability
distribution. J. Hydrol., 258:122–148, 2002.

[100] Edward A. Sudicky. A natural gradient experiment on solute transport in a
sand aquifer: Spatial variability of hydraulic conductivity and its role in the
dispersion process. Water Resour. Res., 22(13):2069–2082, 1986.

[101] Bruno Sudret and Armen Der Kiureghian. Stochastic finite elements and
reliability: A state-of-the-art report. Technical Report UCB/SEMM–2000/08,
University of California, Berkeley, 2000.

[102] Bruno Sudret, Marc Berveiller, and Maurice Lemaire. A stochastic finite
element procedure for moment and reliability analysis. Rev. Eur. Méca. Num.,
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Zusammenfassung

Bei numerischen Berechnungen stößt man immer wieder auf die Schwierigkeit,
daß gewisse Parameter in den beschreibenden Modellen aufgrund von Meßunge-
nauigkeiten oder ihrer starken Variabilität nur mit einer gewissen Unsicherheit
bestimmt werden können. In den letzten Jahren hat sich das Interesse an der
Quantifizierung dieser Unsicherheiten und deren Auswirkungen auf die Lösung der
numerischen Simulationen erhöht, wobei sich die sogenannte Polynomial-Chaos-
Methode in einer Vielzahl von Anwendungen als effizientes Verfahren zur Beant-
wortung dieser Fragestellung erwiesen hat.

Das Ziel der vorliegenden Dissertation besteht in der Anwendung dieser Methode auf
die Richards-Gleichung zur Modellierung von Grundwasserströmungen in gesättig-
ten und ungesättigten Böden. Die Schwierigkeiten bei der numerischen Behand-
lung dieser Gleichung liegen darin begründet, daß die Sättigung und die hydrau-
lische Leitfähigkeit, die in den Orts- und Zeitableitungen auftauchen, nichtlinear
von der Lösung abhängen. Die Berücksichtigung unsicherer Parameter, worunter
stochastische Anfangs- und Randbedingungen, vor allem aber eine stochastische
Permeabilität fallen können, führt letztendlich auf die Untersuchung einer stocha-
stischen Variationsungleichung zweiter Art mit Hindernisbedingungen und einem
nichtlinearen konvexen Funktional in Form eines Superpositionsoperators.

Die Betrachtung von Variationsungleichungen im Zusammenhang mit unsicheren
Parametern und der Polynomial-Chaos-Methode ist neu, so daß zunächst eine schwa-
che Formulierung des Problems hergeleitet wird, bevor die Approximation der Para-
meter durch eine Karhunen-Loève-Entwicklung erfolgt. Für das zeitdiskrete Pro-
blem läßt sich nun durch Umformulierung in ein konvexes Minimierungsproblem
die Existenz einer eindeutigen Lösung u in einem Tensorraum beweisen. Hiernach
erfolgt die Diskretisierung mit finiten Elementen und polynomiellen Ansatzfunktio-
nen, wobei das konvexe Funktional mit geeigneten Gauß-Quadratur-Formeln appro-
ximiert wird. Für den Spezialfall eines stochastischen Hindernisproblems wird die
Konvergenz der Lösung des diskretisierten Problems gegen die Lösung u bewiesen.
Hinzu kommen numerische Untersuchungen zur Abschätzung des Diskretisierungs-
fehlers, die mit bekannten Resultaten für den linearen Fall verglichen werden.

Im zweiten Teil der Arbeit wird ein effizientes numerisches Verfahren zur Lösung des
diskretisierten Minimierungsproblems entwickelt. Als Grundlage dient ein Block-
Gauß-Seidel-Verfahren, das global konvergiert und in dem eine Transformation zur
Entkopplung der stochastischen Koeffizienten vorgestellt wird, die die Brücke zwi-
schen stochastischen Galerkin- und stochastischen Kollokationsverfahren schlägt.
Das ermöglicht letzthin auch die Erweiterung zu Mehrgitterverfahren, um die Kon-
vergenzgeschwindigkeit deutlich zu verbessern.

Zum Abschluß wird die Leistungsfähigkeit des entwickelten Verfahrens an einem
realistischen Beispiel mit lognormalverteilter Permeabilität und exponentieller Ko-
varianz gezeigt.
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Lebenslauf

Mein Lebenslauf wird aus Gründen des Datenschutzes in der elektronischen Fassung
meiner Arbeit nicht veröffentlicht.
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