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Abstract: Aim was to develop a user-friendly method for creating parametric maps that would
provide a comprehensible visualization and allow immediate quantification of radiomics features. For
this, a self-explanatory graphical user interface was designed, and for the proof of concept, maps were
created for CT and MR images and features were compared to those from conventional extractions.
Especially first-order features were concordant between maps and conventional extractions, some
even across all examples. Potential clinical applications were tested on CT and MR images for the
differentiation of pulmonary lesions. In these sample applications, maps of Skewness enhanced the
differentiation of non-malignant lesions and non-small lung carcinoma manifestations on CT images
and maps of Variance enhanced the differentiation of pulmonary lymphoma manifestations and
fungal infiltrates on MR images. This new and simple method for creating parametric maps makes
radiomics features visually perceivable, allows direct feature quantification by placing a region of
interest, can improve the assessment of radiological images and, furthermore, can increase the use of
radiomics in clinical routine.

Keywords: image enhancement; diagnostic techniques and procedures; image processing;
computer-assisted

1. Introduction

Radiomics are an emerging means in image analysis [1–4] that allow quantitative im-
age assessment beyond morphologic and macroscopic characteristics [5]. For this, statistics
of the grey level composition in a region of interest (ROI) are calculated, resulting in many
different quantitative texture features that can be statistically analyzed and linked to an
outcome [5]. Numerous studies have shown the potential of radiomics in the differentiation
of various pathological entities [6–9]. Thus, the spectrum of possible applications is huge.
A very specific application, for example, is the differentiation of pulmonary lymphoma
manifestations and non-lymphoma infiltrates in suspected fungal pneumonia in hema-
tooncologic patients [10]. In this collective, the first-order feature Variance has shown to
be a useful parameter [11]. However, regardless of the application, all approaches so far
typically require image segmentation before feature extraction, and often, basic program-
ming skills can be of help [12]. Finally, the process usually results in exclusively abstract
numerical values.

A recent article by Pinto dos Santos et al. discussed the translational gap of radiomics
into clinical routine and saw the lack of reliable and reproducible results from high-evidence
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studies as one of the main reasons [13]. We believe that the usability of the method should
also be simplified. Beyond that, a graphical representation of features in parametric maps
and fusion images would visualize features in a comprehensible way, which could help to
easier understand the information they convey and, thus, to draw immediate conclusions.

The aim of this project, therefore, was to develop a straightforward, user-friendly
method for creating parametric maps. For the proof of concept, feature values retrieved
from the maps were compared to those from conventional extractions. Potential clinical
applications were tested on CT and MR images for the differentiation of pulmonary lesions.

2. Materials and Methods
2.1. Concept of the Parametric Map Creation Tool

Creating the parametric maps should be as simple as possible. The basic idea was
that the user chooses a folder containing an examination in DICOM-format, adjusts the
extraction settings, clicks “start” and receives the desired parametric map(s) in DICOM-
format. We chose Python as the programming language, because it is platform-independent,
and since the feature extraction should be done with PyRadiomics [14], no cross-language
interfaces would be required.

Figure 1 summarizes the workflow of the program up to the final parametric map.
After import, the examination image data are converted to the NRRD-format (“nearly raw
raster data”) using simpleITK [15]. A second NRRD-file of the same dimensions is created
to contain a grid of volumes of interest (VOI), i.e., a grid that divides the image into small
blocks. These VOIs, in turn, are produced by three cascaded loops, each for each spatial
dimension (x-, y-, z-axis). The VOI size, and thus the resolution of the resulting parametric
map, can be defined by the user either pixel- or voxel-wise. Each VOI is assigned a unique,
incremental ID. Figure 2 shows the graphical user interface with settings for the feature
extraction and the resolution of the parametric map. After the grid is generated, the image-
NRRD and the grid-NRRD are parsed to PyRadiomics for the actual feature calculation for
each VOI. The results are stored in a CSV-file with each row representing a single VOI and
each column displaying a different feature value. In the next step, the parametric map is
created by filling the grid-NRRD with the data from the CSV-file by matching the VOI-ID.
The resulting feature map is then reconverted to the DICOM file format by again using
simpleITK and is now readable by standard image viewers. If supported by the viewer,
parametric maps can also be used as an overlay to anatomic images in fusion images.

2.2. Settings for PyRadiomics

Configuring PyRadiomics for the feature extraction allows adjustment of a vast num-
ber of parameters. As the intention was to design a tool for the easy creation of parametric
maps, we provide options to adjust basic settings. However, a future version of the tool
could include a section for advanced settings.

Figure 1. Summarized workflow of the program up to the final parametric map.
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Figure 2. Graphical user interface. After importing the original images, the user can adjust settings
for the feature extraction and define the resolution of the parametric map. Once the features are
calculated, parametric maps can be exported in the DICOM format by choosing the feature from
a list.

2.3. Proof of Concept Examples

To demonstrate the concept, sample maps for all features available in PyRadiomics
were created. For CT images, these samples included a ROI in segments VII/VIII in an
otherwise unremarkable liver, where parametric maps were created with two different
resolutions. Another CT was considered of a bronchial carcinoma. For MR images, a
glioblastoma and a hepatocellular carcinoma (HCC) were included. Details of the feature
extraction and image acquisition are given in electronic Tables S1–S4. The same settings
and ROIs for both the conventional extraction and the parametric maps were used for cor-
responding images. Values obtained from the maps and the conventional extraction were
then compared feature by feature in tables, and features with a deviation between −20% to
+20% from the conventional extraction were highlighted and considered concordant.

2.4. Evaluation of Clinical Application

Two potential clinical applications were investigated. For CT images, the differentia-
tion of non-malignant lesions and non-small cell lung carcinoma (NSCLC) manifestations
was evaluated on 12 patients from the Lung Image Database Consortium (LIDC) and Image
Database Resource Initiative (IDRI) dataset [16] (Patient IDs non-malignant: 0162, 0183,
0221, 0257, 0277, 0510; NSCLC: 0163, 0203, 0242, 0267, 0454, 0470).

For MR images, the differentiation of pulmonary lymphoma manifestations and non-
lymphoma infiltrates in suspected fungal pneumonia in T1-weighted thoracic MR images
was evaluated in 12 hematooncologic patients (six lymphoma manifestations and six non-
lymphoma infiltrates in suspected fungal pneumonia; characteristics shown in electronic
Table S5). The images were acquired on a clinical scanner (Magnetom Skyra, Siemens
Healthineers, Erlangen, Germany; Volumetric interpolated breath-hold examination [VIBE],
slice 3 mm, TR 5.4 ms, TE 2.0 ms, Flip 9◦, matrix 320 × 195, individual field of view).
Standard of reference was histopathologic workup or clinical diagnosis including criteria
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according to the European Organization for Research and Treatment of Cancer/Invasive
Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious
Diseases Mycoses Study Group (EORTC/MSG) [17]. The patients were part of a collective
reported before [18].

To identify relevant features, first a conventional segmentation and feature extraction
was performed. The results were used to define cutoff values in a ROC analysis using
Youden’s index [19]. For simplicity, only the best-performing feature was considered.

During the actual reading, the lesions were first rated based on morphologic cri-
teria (CT: non-malignant, NSCLC, unclear; MR: non-lymphoma, lymphoma, unclear).
Afterwards, the mean value of the previously determined feature was retrieved from the
corresponding map with a manually drawn ROI and the lesion was rated only by consid-
ering the cutoff value. Time to diagnosis during the reading was assessed. The primary
reading was done by an experienced, board-certified radiologist (S.N.N., with 10 years of
experience) and repeated after 6 weeks to assess intrarater reliability. To test for interrater
reliability, two additional readings were done by two experienced radiology residents
(D.K., with 5 years of experience, and L.J.J., with 4 years of experience).

To assess the inter- and intrarater reliability of the qualitative ratings based on morpho-
logic criteria, Fleiss’ and Cohen’s Kappa were calculated and rated according to Landis and
Koch (0.00–0.20 slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 substantial, 0.81–1.00
almost perfect) [20].

To assess interrater agreement of the quantitative feature values, intraclass correlation
coefficient (ICC) estimates and their 95% confidence intervals were calculated based on a
mean-rating (k = 3), absolute-agreement, two-way random-effects model. For assessment
of intrarater agreement, ICC estimates and their 95% confidence intervals were calculated
based on a mean-rating (k = 2), absolute-agreement, two-way mixed-effects model. Intra-
and interrater reliability was rated according to Koo et al. (ICC < 0.5, poor; 0.5–0.75,
moderate; 0.75–0.9, good; >0.9, excellent) [21].

3. Results

A tool with a graphical user interface was designed and works as desired: the user can
select a DICOM-folder, adjust settings, and receive a parametric map in DICOM format.

3.1. Proof of Concept Examples

All parametric maps were successfully created. The first-order feature Root Mean
Squared is shown in Figure 3 for the ROI in liver segments VII/VIII. To see a full list of
all values, please review electronic Table S5. Considering the feature class, first-order and
GLCM, and considering the map resolution, 10 × 10 × 10 px (i.e., the lower resolution)
revealed more concordant feature values in relation to the conventional extraction.

Figure 3. Samples of an abdominal CT (A) with corresponding maps for the feature Root Mean Squared (RMS), with
a resolution of 5 × 5 × 5 mm in (B) and 10 × 10 × 10 px in (C). Scale indicates 2 cm. The value for RMS in the liver
parenchyma from the conventional extraction and for both maps was 1060. Details of the scan and feature extraction as well
as a full list of all values is available in electronic Table S1.

As further examples, the first-order feature Mean is exemplary shown in Figure 4 for
the CT of a bronchial carcinoma, the first-order feature Robust Mean Absolute Deviation
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for the MRI of a glioblastoma in Figure 5, and the first-order feature Variance for the MRI
of an HCC in Figure 6.

Figure 4. CT of a bronchial carcinoma (A) with a corresponding map for the feature Mean with a
resolution of 5 × 5 × 5 mm in (B). Scale indicates 2 cm. The value for Mean from the conventional
extraction was 24.9 and 22.2 for the map. Details are available in electronic Table S2.

Figure 5. MRI of a glioblastoma (A) with a corresponding map for the feature Robust Mean Absolute
Deviation (RMAD) with a resolution of 3 × 3 × 3 mm in (B). Scale indicates 2 cm. The value for
RMAD from the conventional extraction was 42.3 and 18.0 for the map. Details are available in
electronic Table S3.

Figure 6. MRI of a hepatocellular carcinoma (A) with a corresponding map for the feature Variance
with a resolution of 3 × 3 × 3 mm in (B). Scale indicates 2 cm. The value for Variance from the
conventional extraction was 882 and 108 for the map. Details are available in electronic Table S4.

For the CT of a bronchial carcinoma, the feature class first-order and GLCM again
revealed the highest number of concordant feature values, although the total number
of features with a deviation between −20% and +20% was lower than for the example
considering liver segments VII/VIII. For the MR images, concordant feature values tended
to include more higher-order features. Considering all CT and MR images, eight features
still pertained concordant values. The stability of all features is summarized in electronic
Table S6.
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3.2. Clinical Application

For the CT images, the feature Skewness was identified, and the cutoff value was set
at −0.11 (area under the curve (AUC) 0.83, p < 0.05; positive test result: NSCLC), where
NSCLC manifestations showed lower and benign lesions higher values.

For the MR images, the feature Variance was identified and the cutoff value was set at
1363 (AUC 0.89, p < 0.001; positive test result: lymphoma), where lymphoma manifestations
showed lower and non-lymphoma infiltrates showed higher values.

For the CT images, the diagnosis based on morphological criteria was correct in six
cases, wrong in three cases and remained unclear in three cases. Using the cutoff value
on parametric maps led to 10 correct and two false diagnoses (two benign lesions showed
lower values of Skewness, i.e., they were falsely positive classified as malignant). Time to
diagnosis using the maps was only dependent on the time drawing the ROI (mean: 5 s),
while the morphologic interpretation took longer on average (mean: 17 s) and did not
always lead to a decision.

For the MR images, the diagnosis based on morphological criteria was correct in
eight cases, wrong in two cases, and remained unclear in two cases. Using the cutoff
value on parametric maps led to 10 correct and two false diagnoses (one non-lymphoma
infiltrate showed lower values of Variance, i.e., was falsely positive classified as lymphoma,
and one pulmonary lymphoma manifestation showed higher values, i.e., was falsely
negative classified as non-lymphoma infiltrate). Time to diagnosis using the maps was only
dependent on the time drawing the ROI (mean: 5 s), while the morphologic interpretation
took longer on average (mean: 14 s) and did not always lead to a decision. Examples are
shown in Figure 7.

Figure 7. The upper row shows a pulmonary lymphoma manifestation in the right upper lobe with
the T1-weighted (T1w) image in (A) and the corresponding map of Variance in (B). In (C), an overlay
was created, also showing a ROI to retrieve Variance within the lesion. The lower row shows a
non-lymphoma infiltrate in suspected fungal pneumonia in the left upper lobe with the T1w image in
(D), the corresponding map of Variance in (C), and the overlay in (F). In (A,D), the lesions are shown
in a magnified section in the upper right corner. The scale indicates 1 cm. (E) is the corresponding
map of Variance of (D). The VISAGE Viewer was used to create the overlay map and to perform the
measurements (Visage Imaging Client 7.1.15; Visage Imaging GmbH, Berlin, Germany).

For the CT images, intrarater reliability was substantial (kappa 0.67) and interrater
variability was moderate (kappa 0.59) considering morphological criteria only. Considering
the extracted values of Skewness, both intra- and interrater reliability were excellent (ICC
0.99 each; p < 0.001).

For the MR images, intrarater and interrater reliability was substantial (kappa 0.67
and 0.79, respectively) considering morphological criteria only. Considering the extracted
values of Variance, both intra- and interrater reliability were excellent (ICC 0.98 and 0.99,
respectively; p < 0.001).
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4. Discussion

A simplified and user-friendly method to create parametric maps for the visualiza-
tion and quantification of radiomics features was developed. This approach is suitable
for everyday use and does not require programming skills. If overlay maps are used in
fusion images, they allow the simultaneous assessment of texture features and morpho-
logical criteria, provide a more comprehensive perception, and allow for an immediate
quantification. For example, as shown above, fusion images can improve the differentia-
tion of non-malignant pulmonary lesions and NSCLC manifestations on CT images or of
pulmonary lymphoma manifestations and non-lymphoma infiltrates in suspected fungal
pneumomia on MR images, while also shortening the time to diagnosis.

We consider a visual presentation and immediate assessment of radiomics features
important for their inclusion in the diagnostic workflow. If radiologists had parametric
maps for radiomics features directly at hand when reporting and if standard values or
cutoffs to different entities or conditions were known, simply placing a ROI could be very
helpful in making a diagnosis. Until now, a radiomics analysis usually requires several
steps from image segmentation to feature extraction and ultimately provides only numeric
data without a visual representation.

4.1. Parameter Selection

The concept of radiomics consists of a large number of features, which also means
that simply applying all of them will not be expedient. Rather, the selection must be made
based on the question, e.g., the differentiation of pulmonary lymphoma manifestations
and non-lymphoma infiltrates was chosen as an example, because a recent study required
only the feature Variance [11]. Our approach would also allow to combine features in a
radiomic signature [22], which in turn could be visualized in another, specific parametric
map: since the numerical values for each VOI are stored, calculations could be made and
results represented in an additional map.

A general downside of radiomics studies is outlined in a literature review by Chetan
and Gleeson, in which “the same radiomic feature was rarely identified as being predictive
of treatment response in NSCLC by more than one study. This is partly explained by the
extensive heterogeneity between individual studies” [23] and is furthermore in line with
concerns raised by Pinto dos Santos et al., as outlined in the introduction [13]. Thus, if
parametric maps were to be used in clinical routine, further studies would be needed to
identify reproducible features suitable for specific settings.

Our results, however, revealed concordant feature values both within the imaging
modalities, but also even across all CT and MR images. Interestingly, four GLCM features
(ID, IDM, IDMN, Inverse Variance) and one GLSZM feature (Small Area Emphasis) were
among them aside from three first-order features (Mean, Median, Root Mean Squared).
Against this background, these features may be particularly suitable for parametric maps. Yet,
any change in the combination of scanners, settings, images, etc. can lead to different results.

4.2. Parametric Map Resolution/VOI Size

The VOI size can be arbitrarily chosen by the user resulting in varying resolutions
of the map. While a higher resolution can be desirable, this is associated with higher
computing time. A lower resolution, on the other hand, might fail to reasonably assess
smaller lesions. One future approach in this regard might be real-time adjustment of
the resolution, e.g., with lower resolutions used for the detection of lesions and higher
resolutions for their evaluation. In addition to this, the VOI size might directly affect
specific parameters known to be confounded by volume (e.g., Energy) [24].

Of course, the extracted features do not represent a single structure or lesion, because
the VOIs are solely defined by the grid. Hence, most VOIs will comprise parts of different
structures while not including the whole lesion. It is known that features already vary
when the edge or core region of a lesion is considered [25]. Against this background,
values represented within the parametric maps, even when attributable to a single lesion,
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are unlikely to be identical to those from a dedicated ROI of the same lesion. Never-
theless, especially values for first-order features from the parametric maps and from the
conventional extractions were concordant. Beyond that, the mere correlation of anatomic
information with a visual representation of radiomics features could already be considered
a key advantage of this approach.

The use of a cutoff values led to two incorrect diagnoses in each of our small studies of
potential clinical applications. Reviewing those cases showed that one of the misdiagnosed
lesions on the CT images was subsolid, what may have relevantly influenced Skewness,
and the other, defined as “unknown”, was very large, and thus, may not even be falsely
classified by the cutoff. On the MR images, the misdiagnosed lymphoma manifestation
was located centrally and adjacent to many different structures (i.e., blood vessels, bronchi,
fat, bone) and also showed slight motion artifacts, which likely increased the level of
Variance. On the other hand, the misdiagnosed non-lymphoma infiltrate was located
peripherally, and the patient already received treatment for over a week, which made the
lesion already appear very homogenous to the naked eye. Nevertheless, we would like to
point out that we still consider the results with AUCs of 0.83 and 0.89 very promising, as
they were achieved in this very first approach without any prior experience and without
any finetuning of the settings. Values retrieved from the parametric maps furthermore
showed excellent intra- and interrater for both CT and MR images as opposed to only
substantial intra- and moderate interrater reliability for CT and substantial intra- and good
interrater reliability for MR images for assessment based on morphologic criteria.

Although no direct comparison to the results of other studies is possible, a study
by Baeßler et al. also showed an improvement in diagnosis of chronic vs. acute heart
failure-like myocarditis, by applying texture analysis to myocardial T1 and T2 maps vs.
applying the maps alone (AUC up to 0.85 vs. 0.51) [26].

4.3. Computing Time

Since the computing time depends on many parameters, it is not possible to make a
general statement. As a rule of thumb, the calculation time can be estimated by multiplying
the total number of voxels in the grid with the time required for a conventional extraction
from a single region of interest. However, since the number of voxels, e.g., in a segmented
tumor, is likely larger than that in a grid-voxel, one can expect the true calculation time to
be slightly shorter.

Basically, of course, the higher the resolution of the grid and underlying image, the
higher the computing time. For example, the maps for MR images were calculated faster
than those for CT images, which can be explained by their different intrinsic resolutions,
especially slice thickness. The complexity of the features is also different, which again
results in different computing requirements. In order to reduce the computing time, only
relevant blocks of slices from the original images were used in our examples.

4.4. Limitations

Without a doubt, the process of creating the parametric maps can be further simplified
for the clinical application, e.g., by pre-processing images in the background to provide
maps once a study is opened for reporting. This way, no third-party software would be
necessary for the radiologist at all.

In addition, involving young residents in the evaluation of a new method may rele-
vantly influence the results of inter- and intrarater reliability. In this study, however, both
residents were advanced, so no overall influence from different experience levels is to
be expected.

We would also like to underline that while the program used here was written with
the greatest possible care and tested for different settings, we cannot rule out bugs. Rather,
the program must be considered an early alpha version.

Furthermore, various fields of application, various radiomics features, and various
ways to display the parametric maps exist; thus, any change in the setup can affect the
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output of this method. In consequence, standards would have to be evaluated and defined
for specific diagnoses and differential diagnoses, specific imaging modalities, and technical
and vendor-specific parameters as well as the reconstruction algorithm.

5. Conclusions

We developed a new tool that provides a simple method for creating parametric maps
that makes radiomics features visually perceivable and immediately quantifiable. This
approach can improve the assessment of radiological images and, furthermore, increase
the use of radiomics in clinical routine.
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