
The Tensor-Train Format and Its Applications
Modeling and Analysis of Chemical Reaction Networks,

Catalytic Processes, Fluid Flows, and Brownian Dynamics

Dissertation zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von

Patrick Gelß

Berlin 2017

Erstgutachter: Prof. Dr. Christof Schütte
Freie Universität Berlin
Fachbereich Mathematik und Informatik
Arnimallee 6
14195 Berlin

Zweitgutachter: Prof. Dr. Reinhold Schneider
Technische Universität Berlin
Institut für Mathematik
Straße des 17. Juni 136
10623 Berlin

Tag der Disputation: 28. Juni 2017

Copyright © 2017 by Patrick Gelß

Abstract

The simulation and analysis of high-dimensional problems is often infeasible due
to the curse of dimensionality. In this thesis, we investigate the potential of ten-
sor decompositions for mitigating this curse when considering systems from several
application areas. Using tensor-based solvers, we directly compute numerical solu-
tions of master equations associated with Markov processes on extremely large state
spaces. Furthermore, we exploit the tensor-train format to approximate eigenval-
ues and corresponding eigentensors of linear tensor operators. In order to analyze
the dominant dynamics of high-dimensional stochastic processes, we propose sev-
eral decomposition techniques for highly diverse problems. These include tensor
representations for operators based on nearest-neighbor interactions, construction
of pseudoinverses for tensor-based reformulations of dimensionality reduction meth-
ods, and the approximation of transfer operators of dynamical systems. The results
show that the tensor-train format enables us to compute low-rank approximations
for various numerical problems as well as to reduce the memory consumption and
the computational costs compared to classical approaches significantly. We demon-
strate that tensor decompositions are a powerful tool for solving high-dimensional
problems from various application areas.

iii

Acknowledgements

I would like to take this opportunity to express my gratitude to all those who
encouraged me to write this thesis. First and foremost, I would like to thank
my supervisor Christof Schütte for his continuous support and guidance as well as
for offering me the possibility of writing this thesis. I wish to express my sincere
appreciation to Stefan Klus for proofreading this thesis and for providing valuable
comments and suggestions. I have greatly benefited from his support and advice.
My gratitude also goes to Sebastian Matera for drawing my attention to various
application areas for tensors since the beginning of my PhD.
Special thanks should be given to Thomas von Larcher for providing me with

CFD data and to Sebastian Peitz for his visualizations. Additionally, I want to
thank all the people from the Biocomputing Group at the FU Berlin, the members
of the CRC 1114, and the research group around Reinhold Schneider at TU Berlin
for the interesting discussions and valuable inputs.
Finally, I would like to thank my family and friends for their support during the

preparation of this work. In particular, I am deeply grateful to Nadja. Without her
love and help during the last years this all would not have been possible.

This research has been funded by the Berlin Mathematical School and the Einstein
Center for Mathematics.

v

To my son, Finn.

Contents

1. Introduction 1

Part I: Foundations of Tensor Approximation 5

2. Tensors in Full Format 7
2.1. Definition and Notation. 7
2.2. Tensor Calculus . 9

2.2.1. Addition and Scalar Multiplication 9
2.2.2. Index Contraction . 10
2.2.3. Tensor Multiplication 10
2.2.4. Tensor Product . 12

2.3. Graphical Representation . 13
2.4. Matricization and Vectorization 15
2.5. Norms . 17
2.6. Orthonormality . 19

3. Tensor Decomposition 23
3.1. Rank-One Tensors . 23
3.2. Canonical Format . 24
3.3. Tucker and Hierarchical Tucker Format 27
3.4. Tensor-Train Format . 29

3.4.1. Core Notation . 31
3.4.2. Addition and Multiplication. 32
3.4.3. Orthonormalization . 35
3.4.4. Calculating Norms. 36
3.4.5. Conversion . 38

3.5. Modified Tensor-Train Formats 41
3.5.1. Quantized Tensor-Train Format 42
3.5.2. Block Tensor-Train Format 43
3.5.3. Cyclic Tensor-Train Format 44

4. Optimization Problems in the Tensor-Train Format 47
4.1. Overview . 47
4.2. (M)ALS for Systems of Linear Equations 48

4.2.1. Problem Statement . 48
4.2.2. Retraction Operators 49
4.2.3. Computational Scheme 52
4.2.4. Algorithmic Aspects . 54

4.3. (M)ALS for Eigenvalue Problems. 57
4.3.1. Problem Statement . 57
4.3.2. Computational Scheme 58

4.4. Properties of (M)ALS . 59
4.5. Methods for Solving Initial Value Problems 61

vii

Part II: Progress in Tensor-Train Decompositions 63

5. Tensor Representation of Markovian Master Equations 65
5.1. Markov Jump Processes. 65
5.2. Tensor-Based Representation of Infinitesimal Generators 66

6. Nearest-Neighbor Interaction Systems in the Tensor-Train Format 69
6.1. Nearest-Neighbor Interaction Systems 69
6.2. General SLIM Decomposition. 71
6.3. SLIM Decomposition for Markov Generators. 74

7. Dynamic Mode Decomposition in the Tensor-Train Format 79
7.1. Moore-Penrose Inverse . 79
7.2. Computation of the Pseudoinverse 80
7.3. Tensor-Based Dynamic Mode Decomposition 82

8. Tensor-Train Approximation of the Perron–Frobenius Operator 87
8.1. Perron–Frobenius Operator . 87
8.2. Ulam’s Method . 88

Part III: Applications of the Tensor-Train Format 93

9. Chemical Reaction Networks 95
9.1. Elementary Reactions . 95
9.2. Chemical Master Equation . 96
9.3. Numerical Experiments . 97

9.3.1. Signaling Cascade . 97
9.3.2. Two-Step Destruction 103

10.Heterogeneous Catalysis 109
10.1.Heterogeneous Catalytic Processes 109
10.2.Reduced Model for the CO Oxidation at RuO2 110
10.3.Numerical Experiments . 113

10.3.1. Scaling with System Size 113
10.3.2. Varying the CO Pressure 114
10.3.3. Increasing the Oxygen Desorption Rate. 117

11.Fluid Dynamics 119
11.1.Computational Fluid Dynamics. 119
11.2.Numerical Examples . 120

11.2.1. Rotating Annulus . 120
11.2.2. Flow Around a Blunt Body 123

12.Brownian Dynamics 125
12.1.Langevin Equation . 125
12.2.Numerical Experiments . 126

12.2.1. Two-Dimensional Triple-Well Potential 126
12.2.2. Three-Dimensional Quadruple-Well Potential. 128

viii

13.Summary and Conclusion 131

14.References 133

A. Appendix 145
A.1. Proofs . 145

A.1.1. Inverse Function for Little-Endian Convention 145
A.1.2. Equivalence of the Master Equation Formulations. 147
A.1.3. Equivalence of SLIM Decomposition and Canonical Represen-

tation . 148
A.1.4. Equivalence of SLIM Decomposition and Canonical Represen-

tation for Markovian Master Equations 149
A.1.5. Functional Correctness of Pseudoinverse Algorithm 150

A.2. Algorithms . 152
A.2.1. Orthonormalization of Tensor Trains 152
A.2.2. ALS for Systems of Linear Equations 153
A.2.3. MALS for Systems of Linear Equations 154
A.2.4. ALS for Eigenvalue Problems 155
A.2.5. MALS for Eigenvalue Problems 156
A.2.6. Compression of Two-Dimensional TT Operators 157
A.2.7. Construction of SLIM Decompositions for Markovian Master

Equations . 158
A.3. Deutsche Zusammenfassung (German Summary) 159
A.4. Eidesstattliche Erklärung (Declaration) 160

ix

List of Figures

2.1. Low-dimensional tensors represented by arrays 7
2.2. Graphical representation of tensors 14
2.3. Graphical representation of tensor contractions 14
2.4. Orthonormal tensors . 20
2.5. QR decompositions of a tensor . 21
2.6. Singular value decomposition of a tensor 21

3.1. Graphical representation of the Tucker format and the HT format . . 28
3.2. Graphical representation of tensor trains 30
3.3. The TT format as a special case of the HT format 31
3.4. Multiplication of two tensor-train operators 34
3.5. Orthonormal tensor trains . 35
3.6. Left-orthonormalization of a tensor train 36
3.7. Calculating the 2-norm of a tensor train 37
3.8. Conversion from full format into TT format 39
3.9. Conversion from TT into QTT format 43
3.10. Block tensor-train format . 44
3.11. Cyclic tensor-train format . 45

4.1. Construction of the retraction operators for ALS 50
4.2. Construction of the retraction operators for MALS 51
4.3. Orthonormality of the retraction operators 52
4.4. Illustration of ALS . 54
4.5. Illustration of MALS . 55

6.1. Visualization of nearest-neighbor interaction systems 69

7.1. Computation of the pseudoinverse of a tensor train 81

8.1. Box discretization for Ulam’s method 88

9.1. Visualization of the signaling cascade 98
9.2. Results for the 20-dimensional signaling cascade 102
9.3. Visualization of the two-step destruction process 103
9.4. Mean concentrations for the two-step destruction 105
9.5. QTT ranks for the two-step destruction 106

10.1. Reduced model for the CO oxidation at RuO2(110) 110
10.2. CPU times for increasing number of dimensions 113
10.3. Correlations of active sites for varying CO pressure 116
10.4. Coverages and TOF for increasing CO pressure 117
10.5. Computational complexity for increasing oxygen desorption rate . . . 118
10.6. Numerical solutions for increasing oxygen desorption rate 118

11.1. Differentially heated rotating annulus 120

xi

11.2. Results for the rotating annulus . 121
11.3. Simulation of the flow around a blunt body 123
11.4. Results for the flow around a blunt body 124

12.1. Two-dimensional triple-well potential 126
12.2. Results for the triple-well potential 127
12.3. Three-dimensional quadruple-well potential 128
12.4. Results for the quadruple-well potential 129

xii

List of Tables

4.1. Computational complexity of (M)ALS 60

9.1. Solving the cascade problem in the TT format 101
9.2. Solving the cascade problem in the QTT format 102
9.3. Solving the destruction problem in the QTT format 106

10.1. Elementary reaction steps and corresponding rate constants 111
10.2. Computation of stationary distributions for varying CO pressure . . 115

11.1. TDMD applied to the rotating annulus 122
11.2. TDMD applied to the flow around a blunt body 124

12.1. Approximation of the Perron–Frobenius operator for the triple-well
potential . 128

12.2. Approximation of the dominant eigenpairs for the quadruple-well po-
tential with threshold ε = 0 . 129

12.3. Approximation of the dominant eigenpairs for the quadruple-well po-
tential with thresholds ε > 0 . 130

xiii

List of Algorithms

1. Computation of the 2-norm of tensor trains 37
2. Conversion of tensors in full format into the TT format 38
3. Conversion of TT operators into the QTT format 42

4. Partial left-orthonormalization of tensor trains 80
5. Partial right-orthonormalization of tensor trains 81
6. Pseudoinversion of tensor trains. 82

7. TT approximation of the Perron–Frobenius operator (2D) 89
8. TT approximation of the Perron–Frobenius operator (3D) 90

9. Left-orthonormalization of tensor trains 152
10. Right-orthonormalization of tensor trains 152
11. ALS for Systems of Linear Equations 153
12. MALS for Systems of Linear Equations 154
13. ALS for Eigenvalue Problems . 155
14. MALS for Eigenvalue Problems . 156
15. Compression of two-dimensional TT operators 157
16. Construction of SLIM decompositions for MMEs 158

xiv

List of Abbreviations

ALS alternating linear scheme (cf. §4.1ff.)
BTT block tensor train (cf. §3.5.2)
CFD computational fluid dynamics (cf. §11.1)
CME chemical master equation (cf. §5.2, §9.2)
CO carbon monoxide (cf. §10.2)
CO2 carbon dioxide (cf. §10.2)
CRN chemical reaction network (cf. §9.1)
CTT cyclic tensor train (cf. §3.5.3)
cus coordinatively unsaturated site (cf. §10.2)
DMD dynamic mode decomposition (cf. §7.3)
HT hierarchical Tucker (cf. §3.3)
kMC kinetic Monte Carlo (cf. §10.1)
MALS modified alternating linear scheme (cf. §4.1ff.)
MME Markovian master equation (cf. §5.1)
NNIS nearest-neighbor interaction system (cf. §6.1)
O oxygen (cf. §10.2)
ODE ordinary differential equation (cf. §4.5)
QTT quantized tensor train (cf. §3.5.1)
RuO2 ruthenium dioxide (cf. §10.2)
SCR single-cell reaction (cf. §6.3)
SDE stochastic differential equation (cf. §12.1)
SVD singular value decomposition (cf. §2.6)
TCR two-cell reaction (cf. §6.3)
TDMD tensor-based dynamic mode decomposition (cf. §7.3)
TOF turn-over frequency (cf. §10.3.2)
TT tensor train (cf. §3.4ff.)

xv

List of Symbols

Symbols

〈 . , . 〉 Euclidean inner product
〈 . , . 〉•,...,• index contraction (cf. §2.2.2)
[.] core notation (cf. §3.4.1)
• operator expression of a tensor (cf. §2.1)
•, . . . , • multi-index notation (cf. §2.4)
•T transpose of a matrix or a tensor (cf. §2.1)
•T rank-transpose of TT core (cf. §3.4.1)
•−1 inverse of a matrix or inverse function

•
∣∣∣∣•• matricization of a tensor (cf. §2.4)

× Cartesian product of sets
⊗,
⊗

tensor product of two or more tensors (cf. §2.2.4)
‖ . ‖p p-norm of a vector or tensor (cf. §2.5)
‖ . ‖F Frobenius norm of a matrix or tensor operator (cf. §2.5)

Greek Letters

δi,j Kronecker delta with respect to natural numbers i and j
Θi cell of an NNIS (cf. §6.1)
Σ diagonal matrix of an SVD
τ step size
φN little-endian bijection (cf. §2.4)
ξµ, ξi,µ, ξi,i+1,µ vectors of net changes (cf. §5.2, §6.3)

Latin Letters

A, G, H linear tensor operators (cf. §2.1)
A(i), G(i), H(i) TT cores of linear tensor operators (cf. §3.4)
A, U , V matrices
aµ reaction propensity (cf. §5.2)
aµ, ai,µ, ai,i+1,µ propensity tensors (cf. §5.2, §6.3)
d order of a tensor (cf. §2.1)
eIE,k residual error for implicit Euler method (cf. §4.5)
eTR,k residual error for trapezoidal rule (cf. §4.5)

xvi

eλ, eλk approximation errors for eigenvalues (cf. §11.2.1)
eϕ, eϕk approximation errors for eigentensors (cf. §11.2.1)
Gµ, Gi,µ, Gi,i+1,µ multidimensional shift operator (cf. §5.2, §6.3)
Gi(.) shift matrix (cf.§5.2)
I identity matrix
= imaginary part of a complex number
I identity tensor (cf. §2.1)
L(.) left-unfolding of a TT core (cf. §3.4.3)
M , N , P index sets (cf. §2.1)
mat(.) natural matricization (cf. §2.4)
N set of natural numbers {1, 2, . . . }
N0 set N ∪ {0} = {1, 2, . . . }
Nd, Nd0 vectors with elements in N and N0, respectively
O(.) Landau symbol
P (X, t) probability of being in state X at time t (cf. §5.1)
P(t) probability tensor (cf. §5.2)
r, R ranks of tensor decompositions
Rµ, Ri,µ, Ri,i+1,µ elementary reactions (cf. §5.2, §6.3)
R(.) right-unfolding of a TT core (cf. §3.4.3)
R field of real numbers
Rm, Rn vectors with elements in R
Rm×n real matrices with m rows and n columns
RM , RN tensor spaces (cf. §2.1)
RM×N , RN×P spaces of linear tensor operators (cf. §2.1)
S state space
T,U,V tensors
T(i), U(i), V(i) TT cores of tensor trains (cf. §3.4)
tr(.) trace of a tensor in CTT format (cf. §3.5.3)
v, w vectors
vec(.) natural vectorization (cf. §2.4)
X state of a system

xvii

1
Introduction

Over the last years, low-rank tensor approaches have become an important tool
for the mathematical modeling and numerical simulation of high-dimensional sys-
tems as well as for the approximation of high-dimensional functions. Tensor-based
methods have been successfully used in many different application areas such as
quantum physics [1, 2], chemical reaction dynamics [3, 4, 5, 6], stochastic queuing
problems [7, 8, 9], machine learning [10, 11, 12], and high-dimensional data anal-
ysis [13, 14]. In our sense, tensors are viewed as multidimensional generalizations
of matrices, represented by arrays with several indices. The number of elements of
these tensors grows exponentially with the number of dimensions, and so does the
storage consumption. This phenomenon is referred to as the curse of dimensionality.
The interest in tensor decompositions has been growing rapidly within the scientific
computing community as recently developed formats for the representation of ten-
sors in form of tensor networks [15, 16] have shown that it is possible to mitigate
the curse of dimensionality and to tackle high-dimensional systems and large-scale
problems which could not be analyzed by conventional numerical methods before.
That is, different tensor formats such as the tensor-train format (TT format) [17]
enable the simulation and analysis of high-dimensional problems without an expo-
nential scaling of the memory consumption and the computational complexity with
the number of dimensions. Typically, the applications require the approximation of
the solutions of systems of linear equations, eigenvalue problems, ordinary/partial
differential equations, or completion problems, see e.g. [9, 18, 19, 20]. The aim is
to carry out all numerical computations directly in suitable tensor formats without
the decomposition of tensors in full format.
There are different opinions on the origin of the tensor concept, cf. [21]. In 1846,

the word “tensor” (latin: tendere, tensus – to stretch/spread [22]) was first used in
a mathematical sense by William Rowan Hamilton [23], introducing the word as a
term for the norm of a quaternion. Half a decade later, Woldemar Voigt was the
first who related tensors to the contemporary meaning as a generalization of scalars,
vectors and matrices [24]. Interestingly, Josiah Willard Gibbs extended Hamilton’s
idea already in the early 1880s and considered linear vector functions which he
called dyadics. Not until 1901 did he publish his ideas together with Edwin Bidwell
Wilson [25], introducing a concept that came very close to the theory of tensors as
we understand it nowadays. However, the origin of tensors may also be traced back
to the field of differential geometry during the 19th century, including the work of
Carl Friedrich Gauß [26], Elwin Bruno Christoffel [27], Gregorio Ricci–Curbastro
[28], and Tullio Levi–Civita [29]. Their concepts then also played an important role
in the work of James Clerk Maxwell [30, 31], resulting in what we call Maxwell’s

1

2 1. Introduction

stress tensors. Eventually, the framework of tensors received broader acceptance
around 1916 when Albert Einstein published the general theory of relativity [32]
using the language of tensors.
The foundation of tensor decompositions is provided by the so-called tensor prod-

uct, which enables us to decompose high-dimensional tensors into several smaller
tensors. The simplest form of tensor decompositions is given by so-called rank-
one tensors, i.e. the representation of a tensor as the tensor product of a set of
vectors. Extending the concept of rank-one tensors, the main idea of more com-
plex tensor decompositions is the representation of high-dimensional tensors as a
network of low-dimensional tensors coupled by so-called ranks. These ranks have
a strong influence on the capability of representing a given tensor as well as on
the required memory. The initial concept of tensor decompositions was introduced
in 1927 by Frank Hitchcock who presented the idea of expressing a tensor as the
sum of a finite number of rank-one tensors [33] – the so-called canonical format,
also abbreviated as CANDECOMP [34] and PARAFAC for Parallel Factor Anal-
ysis [35]. Unfortunately, even though the canonical format would be optimal in
terms of memory consumption, it is numerically unstable [36, 37]. In 1963, Led-
yard Tucker introduced the Tucker format [38, 39], which is known in quantum
chemistry in the context of the multiconfiguration time-dependent Hartree method
[40]. On the one hand, tensors represented in the Tucker format with fixed ranks
form an embedded manifold [41] and, thus, we can rely on robust algorithms. On
the other hand, the storage consumption of Tucker tensors depends exponentially
on the number of dimensions. One of the most promising tensor formats is the
so-called TT format developed by Ivan Oseledets and Eugene Tyrtyshnikov in 2009,
see [16, 17, 42]. It is a special case of the almost simultaneously proposed Hierar-
chical Tucker Format (HT format) [43, 44], which combines the advantages of the
canonical format and the Tucker format, i.e. the storage consumption of a tensor in
HT format does not depend exponentially on the number of dimensions and there
exist robust algorithms for the computation of best approximations. In quantum
physics, the TT format is known as matrix product state representation and was
already introduced in 1987 [45]. However, the concept of tensor decompositions and
approximations is rather new in the field of numerical mathematics, providing the
opportunity for broad theoretical and experimental research. For an overview of
different low-rank tensor approximation approaches, we refer to [46]. In this work,
we will particularly focus on linear tensor operators in the TT format defined on
extremely large state spaces and the solution of corresponding systems of linear
equations or eigenvalue problems. Algorithms for solving such systems in the TT
format are, for instance, the alternating linear scheme (ALS) and the modified al-
ternating linear scheme (MALS), see [37]. The basic idea is to fix all components of
the tensor network except for one. This yields a series of low-dimensional problems,
which can then be solved using classical numerical methods. The efficiency of the
tensor-based algorithms depends strongly on the TT ranks of the operator. Thus,
it is important to be able to find low-rank representations of a given tensor, which
is one of the most challenging tasks in tensor-based problem formulations.
In order to understand the dynamical properties of stochastic processes on high-

dimensional state spaces, one can describe many systems byMarkov processes which

3

are continuous in time and discrete in space, see e.g. [47]. A jump then corresponds
to the execution of a particular event changing the state of the system. In prac-
tice, the state spaces of these models may be extremely high-dimensional making it
impossible to solve the corresponding Markovian master equation (MME) [48] by
using classical numerical methods. A common approach to circumvent the curse of
dimensionality is the application of Monte Carlo methods [49, 50, 51], which sim-
ulate trajectories of the stochastic processes and estimate considered quantities by
statistical averaging. However, a drawback of Monte Carlo methods is the large
number of simulations needed to capture relevant dynamics. Because of this limi-
tation, we exploit the TT format in order to numerically approximate the solution
of the master equation directly by using implicit integration schemes such as the
implicit Euler method or the trapezoidal rule.
In particular, we consider interaction networks described by an MME that can be

written in a tensor-based notation and solved by the methods explained above. In
[9], we derived systematic TT decompositions for high-dimensional systems based
on nearest-neighbor interactions, which can represent highly diverse physical or
biological systems, e.g. coupled laser arrays [52], n-body dynamics [53], and chemical
reaction networks [49]. With the aid of these decompositions, we can reduce the
storage consumption as well as the computational effort significantly. We have also
shown that the rank of the corresponding TT operator does not depend on the
number of dimensions in some cases. Thus, the storage consumption as well as the
computational complexity scale linearly with the system size.
As we presented in [6] and [9], TT decompositions for nearest-neighbor interaction

systems can be used to model processes from the field of heterogeneous catalysis,
which is a key technology for sustainable energy conversion and modern reaction
technologies, see e.g. [54, 55]. We considered a reduced model for the CO oxidation
at a catalytic surface and computed stationary probability distributions over the
possible surface configurations in order to investigate the catalytic efficiency under
various conditions. In our experiments, we saw that the TT approach provides high
numerical accuracy over a large range of input parameters for the model and shows
a better scaling behavior than Monte Carlo methods for a sequence of problems with
increasing stiffness. Thus, mitigating the curse of dimensionality by using low-rank
TT representations, we may be able to understand the interplay of the elementary
surface reactions making up different catalytic cycles.
Another application of the TT format is the extension of the dynamic mode de-

composition (DMD). Introduced by Peter Schmid et al. in 2008 [56, 57], DMD can be
used to analyze complex dynamical systems by decomposing high-dimensional data
into coupled spatial-temporal modes [58]. Assuming a linear relationship between
different snapshots of the system, DMD computes eigenvalues and corresponding
eigenvectors, which often represent coherent structures, for instance, in flow fields.
We proposed a tensor-based dynamic mode decomposition in [14], where we showed
how to construct pseudoinverses of given tensor trains without approximation in or-
der to compute the DMD modes directly in the TT format. With the aid of several
fluid dynamics problems such as the Kármán vortex street [59], we illustrated the
efficiency of the TT approach.
The global behavior of dynamical systems can also be analyzed by computing

4 1. Introduction

the eigenvalues and corresponding eigenfunctions of linear transfer operators [60]
associated with the system. One important operator which is frequently used to
gain insight into the system’s behavior is the Perron–Frobenius operator [61, 62].
Eigenfunctions of this operator can be used to understand the long-term behav-
ior of a dynamical system and to detect metastable sets in the state space. By
using certain disretization techniques, the eigenfunctions can be approximated by
the eigenvectors of a finite-dimensional counterpart of the Perron–Frobenius opera-
tor. However, approximating eigenfunctions of high-dimensional transfer operators
is in general infeasible due to the curse of dimensionality. Using (M)ALS in com-
bination with a modified TT format, we will show that the use of low-rank tensor
approximations potentially enables the computation of these eigenfunctions.
This thesis is organized in three parts. In Part I, we will introduce the framework

for tensor decompositions. Tensors in full format are described Chapter 2, several
tensor formats are explained in Chapter 3, and the background on optimization
problems in the TT format is provided in Chapter 4. In Part II, we will present
our own contributions to the concept of TT decompositions based on our publica-
tions [6, 9, 14], see Chapters 5–7. Furthermore, we show the first steps towards
the approximation of transfer operators and their eigenfunctions using (M)ALS in
Chapter 8. We will also illustrate the performance of the different tensor-based ap-
proaches by considering several examples from various application areas in Part III.
That is, we will consider chemical reaction networks in Chapter 9, repeat our ex-
periments for a heterogeneous catalytic process from [6] in Chapter 10, and show
examples for fluid and molecular dynamics in Chapters 11 and 12, respectively. We
will conclude with a brief summary and possibilities for further research in Chap-
ter 13.

“Doubtless we cannot see that other higher Spaceland
now, because we have no eye in our stomachs.”

Edwin A. Abbott,
Flatland: A Romance of Many Dimensions

Part I

Foundations of Tensor
Approximation

Part I of this thesis will focus on the theoretical foundations of tensor decomposi-
tions. In Chapter 2, we will introduce tensors in general. Our considerations will
include basic definitions and mathematical operations as well as graphical represen-
tations of tensors. Important concepts such as matricizations and orthonormality
of tensors will also be presented. Various tensor formats will be explained in Chap-
ter 3. In particular, we will focus on the tensor-train format and modified versions
of it. In Chapter 4, we will then consider optimization tasks in these formats and
give algorithms for solving systems of linear equations and eigenvalue problems.

6

2
Tensors in Full Format

In this chapter, we will introduce the theoretical framework of tensors and clarify
the notational conventions which will later be used in the context of tensor de-
compositions and approximations. We will give an overview of basic mathematical
operations for tensors that arise from generalizing standard matrix addition and
multiplication. Furthermore, we will introduce index contractions and the tensor
product which will be necessary in order to develop the different tensor formats
appearing in this work. We will also present a graphical representation of tensors
that we will use at several points to visualize tensor operations. An important tool
in the context of tensor decompositions are matricizations and vectorizations of ten-
sors, which will be described subsequently. At the end of this chapter, we will use
matricizations and vectorizations to define norms for tensors and to generalize the
concept of orthonormality.

2.1. Definition and Notation

There are different approaches for defining tensors in mathematics and physics.
In this work, tensors are viewed as multidimensional generalizations of matrices,
represented by arrays with d indices:

T ∈ Rn1×···×nd , (2.1.1)

where ni ∈ N for i = 1, . . . , d, d ∈ N. The different dimensions ni of the array are
called modes and the total number of modes d is called the order of the tensor.
Examples for low-dimensional tensors are shown in Figure 2.1.


1
0
1
1
0


(a)


1 0 1 0
0 1 1 0
1 1 0 1
1 0 1 0
0 1 0 1


(b)

1 0 1 1
1 0 0 0
0 1 1 0

0 1 1 0
1 0 0 1
1 1 1 1

1 1 0 1
0 1 1 0
1 0 0 1


(c)

Figure 2.1: Low-dimensional tensors represented by arrays: (a) A tensor of order 1 is a
vector. (b) A tensor of order 2 is a matrix. (c) A tensors of order 3 can be visualized as
layers of matrices.

7

8 2. Tensors in Full Format

Throughout this work, we will denote tensors by bold letters and refer to an
element of a tensor T by using subscript indices, i.e. Tx1,...,xd ∈ R with 1 ≤ xi ≤ ni
for i = 1, . . . , d. For a more compact notation, we define

RN = Rn1×···×nd , (2.1.2)

with the mode set or index set N = (n1, . . . , nd)
T ∈ Nd. On the one hand, we

will treat mode sets as vectors of natural numbers to point out the ordering, on
the other hand, we will consider unions and intersections of mode sets where we
do not pay attention to the orderings. At the respective passages in the text,
this will be indicated. Note that the ordering of N matters and any reordering
N ′ = (nj1 , . . . , njd)

T of N would induce a reordering of the elements of T ∈ RN
into a new tensor T′ ∈ RN ′ .
The storage consumption of a (non-sparse) tensor of the form (2.1.1) can be

estimated as O(nd), where n is the maximum of all mode sizes n1, . . . , nd. That is,
the number of elements of a tensor grows exponentially with the order. Due to this
so-called curse of dimensionality, storing a d-dimensional tensor may be infeasible
for growing d. Therefore, we require special representations and approximations of
tensors, which we will introduce in the next chapter.
In this work, we also consider linear operators G acting on tensor spaces with the

same order:

G : RN → RM , T 7→ G ·T,

with N = (n1, . . . , nd)
T and M = (m1, . . . ,md)

T . Tensor operators G are multidi-
mensional generalizations of matrices with pairs of modes. We define these operators
as tensors in

RM×N = R(m1×n1)×···×(md×nd). (2.1.3)

Note that other definitions of RM×N by reordering the modes m1, . . . ,md and
n1, . . . , nd are also possible. It will later become clear why the order of the modes
as given in (2.1.3) is justified. Similar to the standard matrix-vector product, the
tensor (G ·T) ∈ RM is given by

(G ·T)x1,...,xd :=

n1∑
y1=1

· · ·
nd∑
yd=1

Gx1,y1,...,xd,yd ·Ty1,...,yd . (2.1.4)

Equation (2.1.4) represents a special case of so-called index contractions, see Sec-
tion 2.2.2.

Example 2.1.1. The identity tensor I ∈ RN×N with N = (n1, . . . , nd)
T ∈ Nd is

2.2. Tensor Calculus 9

defined by

Ix1,y1,...,xd,yd = δx1,y1 · . . . · δxd,yd ,

where δxi,yi , i = 1, . . . , d, denotes the Kronecker delta.

For several of the following theorems, we exploit the fact that we can asso-
ciate a tensor T ∈ RN , N = (n1, . . . , nd)

T ∈ Nd, with a tensor T ∈ RN×1,
1 = (1, . . . , 1)T ∈ Nd, by defining

Tx1,1,...,xd,1 = Tx1,...,xd . (2.1.5)

The transpose of an operator G ∈ RM×N is given by the tensor GT ∈ RN×M with

GT
x1,y1,...,xd,yd

= Gy1,x1,...,yd,xd . (2.1.6)

The transpose of a tensor T ∈ RN is then given by TT ∈ R1×N with

TT = T
T
. (2.1.7)

If we fix certain indices, colons are used to indicate the free modes (cf. Matlab
colon notation), e.g. for a tensor T ∈ RN , N = (n1, . . . , nd)

T , we obtain

Tx1,:,x3,:,x5,...,xd ∈ Rn2×n4 and Tx1,:,...,:,xd ∈ Rn2×···×nd−1 .

2.2. Tensor Calculus

In this section, we will give an overview of basic mathematical operations for tensors.
We will first introduce the addition of tensors and the multiplication by scalar
values, which both are analogous to the addition and scalar multiplication in the
matrix and vector case. After that, we will consider index contractions of tensors in
general and the multiplication of two tensors in particular. We will see that many
operations from standard linear algebra can be easily adapted to tensors. At the
end of this section, we will define the tensor product, which provides the basis for
tensor decompositions and approximations introduced in the next chapter.

2.2.1. Addition and Scalar Multiplication

The sum of two tensors T and U in the same tensor space RN , N = (n1, . . . , nd)
T ,

is a tensor whose entries are computed by adding corresponding elements.

10 2. Tensors in Full Format

Definition 2.2.1. For tensors T ∈ RN and U ∈ RN , N = (n1, . . . , nd)
T ∈ Nd, the

sum T + U is given by

(T + U)x1,...,xd = Tx1,...,xd + Ux1,...,xd . (2.2.1)

The multiplication by a scalar is also performed elementwise, equivalent to the
multiplication of a matrix or a vector by a scalar.

Definition 2.2.2. For a tensor T ∈ RN , N = (n1, . . . , nd)
T ∈ Nd, and a scalar

λ ∈ R, the product λ ·T is given by

(λ ·T)x1,...,xd = λ ·Tx1,...,xd . (2.2.2)

It is easy to prove that the addition is commutative and associative. Furthermore,
the distributive property holds for the scalar multiplication. Thus, together with
the above definitions, RN forms a linear space in the classical sense.

2.2.2. Index Contraction

An operation that we will frequently use in this work is the contraction of one or
more common indices of two given tensors. Let T and U be two tensors sharing a
set of indices, i.e.

T ∈ Rm1×...×md×p1×...×pf ,

U ∈ Rn1×...×ne×p1×...×pf .

Without loss of generality, we can assume that the common dimensions of T and
U are the last modes of both tensors. If that is not the case, the modes of the
tensors are reordered such that the condition is fulfilled. The contraction of the
modes p1, . . . , pf of T and U results in a new tensor V ∈ Rm1×···×md×n1×···×ne with

Vx1,...,xd,y1,...,ye =

p1∑
z1=1

· · ·
pf∑
zf=1

Tx1,...,xd,z1,...,zf ·Uy1,...,ye,z1,...,zf .

Considering the above operation as a generalization of the inner product of two
vectors, we write V = 〈T,U〉p1,...,pf .

2.2.3. Tensor Multiplication

The multiplication of tensors is a specific form of index contraction. It can be seen
as a generalization of the standard matrix-by-matrix product.

2.2. Tensor Calculus 11

Definition 2.2.3. For tensors G ∈ RM×N and H ∈ RN×P with index sets
M = (m1, . . . ,md)

T , N = (n1, . . . , nd)
T , and P = (p1, . . . , pd)

T , the product
G ·H ∈ RM×P is defined as

(G ·H)x1,y1,...,xd,yd =

n1∑
z1=1

. . .

nd∑
zd=1

Gx1,z1,...,xd,zd ·Hz1,y1,...,zd,yd , (2.2.3)

for 1 ≤ xi ≤ mi and 1 ≤ yi ≤ pi, i = 1, . . . , d.

As described in (2.1.5), we can associate any tensor T ∈ RN of order d with a
tensor T ∈ RN×1, 1 = (1, . . . , 1)T . In this way, we define two special cases related
to Definition 2.2.3, namely the right multiplication of an operator G ∈ RM×N with
a tensor T ∈ RN and the left multiplication with the transpose (2.1.7) of a tensor
T ∈ RM . The first can be seen as the counterpart of multiplying a matrix and
a column vector, the second as the counterpart of multiplying a row vector and a
matrix. For the right multiplication of G with a tensor T ∈ RN , see (2.1.4), we
obtain G ·T ∈ RM , where

(G ·T)x1,...,xd =
(
G ·T

)
x1,1,...,xd,1

=

n1∑
y1=1

· · ·
nd∑
yd=1

Gx1,y1,...,xd,yd ·Ty1,1,...,yd,1,

with T as mentioned before. The left multiplication of an operator G ∈ RM×N
with the transpose of T ∈ RM is given by TT ·G ∈ R1×N , where

(
TT ·G

)
1,y1,...,1,yd

=

m1∑
x1=1

· · ·
md∑
xd=1

TT
1,x1,...,1,xd

·Gx1,y1,...,xd,yd , (2.2.4)

for 1 ≤ yi ≤ ni, i = 1, . . . , d. The result of (2.2.4) is then the transpose of GT ·T
which is shown by the following theorem.

Lemma 2.2.4. For operators G,H ∈ RM×N and a scalar λ ∈ R, we obtain the
following properties:

(i)
(
GT
)T

= G,
(ii) (G + H)T = GT + HT ,
(iii) (λ ·G)T = λ ·GT .

For G ∈ RM×N and H ∈ RN×P it holds that

(iv) (G ·H)T = HT ·GT .

12 2. Tensors in Full Format

Proof. Properties (i), (ii), and (iii) follow directly from the definition of the trans-
pose (2.1.7) and Definitions 2.2.1 and 2.2.2. For property (iv), consider

(G ·H)Tx1,y1,...,xd,yd = (G ·H)y1,x1,...,yd,xd

=

n1∑
z1=1

· · ·
nd∑
zd=1

Gy1,z1,...,yd,zd ·Hz1,x1,...,zd,xd

=

n1∑
z1=1

· · ·
nd∑
zd=1

HT
x1,z1,...,xd,zd

·GT
z1,y1,...,zd,yd

=
(
HT ·GT

)
x1,y1,...,xd,yd

,

with 1 ≤ xi ≤ pi and 1 ≤ yi ≤ mi for i = 1, . . . , d.

2.2.4. Tensor Product

In order to mitigate the curse of dimensionality, we will rely on low-parametric
representations of tensors. For an understanding of the different tensor formats in
the next chapter, let us recall the definition of the outer product. For two vectors
v ∈ Rm and w ∈ Rn, the outer product v ⊗ w ∈ Rm×n corresponds to the dyadic
product introduced in [25]:

v ⊗ w = v · wT .

Thus, the outer product of two vectors defines a matrix with

(v ⊗ w)i,j = vi · wj .

The outer product is a special case of the more general tensor product which may
be applied to tensors with arbitrary numbers of modes.

Definition 2.2.5. The tensor product of two tensors T ∈ Rm1×...×md and
U ∈ Rn1×...×ne defines a tensor T⊗U with

(T⊗U)x1,...,xd,y1,...,ye = Tx1,...,xd ·Uy1,...,ye ,

where 1 ≤ xi ≤ mi for i = 1, . . . , d and 1 ≤ yj ≤ nj for j = 1, . . . , e.

In other words, the tensor product of two tensors T and U defines a tensor of
order d + e that contains all modes m1 to md and n1 to nd. The tensor product
is a bilinear map, i.e. if we fix one of the tensors we get a linear map on the space

2.3. Graphical Representation 13

where the other tensor lives such that the following conditions are satisfied

(i) (T1 + T2)⊗U = T1 ⊗U + T2 ⊗U,

(ii) T⊗ (U1 + U2) = T⊗U1 + T⊗U2,

(iii) (λ ·T)⊗U = T⊗ (λ ·U) = λ · (T⊗U),

for T,T1,T2 ∈ Rm1×...×md , U,U1,U2 ∈ Rn1×...×ne , and λ ∈ R. The tensor product
is associative but non-commutative.
As the following theorem will show, the multiplication of tensor products acts

elementwise, i.e. multiplying two tensor products with appropriate modes yields the
same result as multiplying the corresponding tensors and then computing the tensor
product.

Theorem 2.2.6. Let G ∈ RM×N and H ∈ RN×P with G = G1 ⊗ G2 and
H = H1 ⊗H2, where

G1 ∈ R(m1×n1)×...×(me×ne), G2 ∈ R(me+1×ne+1)×...×(md×nd),

H1 ∈ R(n1×p1)×...×(ne×pe), H2 ∈ R(ne+1×pe+1)×...×(nd×pd).

Then, the product of G and H is given by

G ·H = (G1 ⊗G2) · (H1 ⊗H2) = (G1 ·H1)⊗ (G2 ·H2) .

Proof. For 1 ≤ xi ≤ mi and 1 ≤ yi ≤ pi, i = 1, . . . , d, we obtain

(G ·U)x1,y1,...,xd,yd =

n1∑
z1=1

· · ·
nd∑
zd=1

Gx1,z1,...,xd,zd ·Hz1,y1,...,zd,yd

=

n1∑
z1=1

· · ·
nd∑
zd=1

(G1)x1,z1,...,xe,ze · (G2)xe+1,ze+1,...,xd,zd

· (H1)z1,y1,...,ze,ye · (T2)ze+1,ye+1,...,zd,yd

= (G1 ·H1)x1,y1,...,xe,ye · (G2 ·H2)xe+1,ye+1,...,xd,yd

= ((G1 ·H1)⊗ (G2 ·H2))x1,y1,...,xd,yd .

2.3. Graphical Representation

When working with high-dimensional tensors, precise descriptions of tensor opera-
tions might be confusing or unclear because of the large number of indices involved
in the equations. Therefore, it is worthwhile to make use of a diagrammatic nota-
tion in order to visualize calculations. For this representation, which is motivated

14 2. Tensors in Full Format

by [37], we depict a tensor T ∈ RN , N = (n1, . . . , nd)
T , as a circle with d arms

indicating the set of modes n1, . . . , nd. Figure 2.2 shows some examples.

n1

(a)

n1 n2

(b)

n1

n2

n3

(c)

n2
n4

n1

n3

(d)

n1n2

n3
n4

n5

(e)

Figure 2.2: Graphical representation of tensors: (a) Tensor of order 1 (vector). (b) Tensor
of order 2 (matrix). (c) Tensor of order 3. (d) Tensor of order 4. (e) Tensor of order 5.

It is also possible to visualize tensor networks, i.e. couplings of several tensors, in
this way. An index contraction of two or more tensors is represented by connecting
corresponding arms, see Figure 2.3.

n1

(a)

n2n1

(b)

n2

n1
n3

n4

(c)

n2

n1
n3 n6

n5

n4

n8

n7

(d)

Figure 2.3: Graphical representation of tensor contractions: (a) Inner product of two
vectors. (b) Matrix-vector product. (c) Two-dimensional contraction of two tensors.
(d) Contraction of three tensors.

Figure 2.3 (a) and (b) show the inner product of two vectors and a matrix-vector
multiplication, respectively. The contractions depicted in Figure 2.3 (c) and (d)
correspond to the equations

Tx1,x2 =

n3∑
x3=1

n4∑
x4=1

(T1)x1,x2,x3,x4 · (T2)x3,x4 ,

and

Tx1,x2,x4,x5,x7,x8 =

n3∑
x3=1

n6∑
x6=1

(T1)x1,x2,x3 · (T2)x3,x4,x5,x6 · (T3)x6,x7,x8 ,

respectively. We will deploy the graphical notation to describe linear tensor opera-
tions and tensor algorithms. If it is clear which modes are depicted by all arms, we
will omit the labeling.

2.4. Matricization and Vectorization 15

2.4. Matricization and Vectorization

To describe matricizations and vectorizations – also called tensor unfoldings [37] –
we first define a bijection φN for the index set N = (n1, . . . , nd)

T ∈ Nd with

φN : {1, . . . , n1} × · · · × {1, . . . , nd} → {1, . . . ,
d∏

k=1

nk},

(x1, . . . , xd) 7→ φN (x1, . . . , xd).

Using the little-endian convention, the bijection is defined as

φN (x1, . . . , xd) = 1 + (x1 − 1) + . . .+ (xd − 1) · n1 · . . . · nd−1

= 1 +

d∑
k=1

(xk − 1)
k−1∏
l=1

nl.
(2.4.1)

Of course, one can choose any possible bijection between {1, . . . , n1}×. . .×{1, . . . , nd}
and {1, . . . ,

∏d
k=1 nk}. However, henceforth we will assume φN to be defined as

above. If the definition of N is clear from the context, we use the multi-index
notation

x1, . . . , xd = φN (x1, . . . , xd). (2.4.2)

Theorem 2.4.1. The function φN is bijective with inverse φ−1N given by
φ−1N (x1, . . . , xd) = (ϕ1, . . . , ϕd) with

ϕi =

⌊
x1, . . . , xd − 1−

∑d
k=i+1(ϕk − 1)

∏k−1
l=1 nl∏i−1

l=1 nl

⌋
+ 1,

for 1 ≤ i ≤ d− 1. It holds that ϕi = xi.

The proof of Lemma 2.4.1 can be found in Appendix A.1.1. Now, let
N ′ = (nk1 , . . . , nke)

T and N ′′ = (nl1 , . . . , nlf)T , d = e + f , denote two ordered
subsets of N = (n1, . . . , nd)

T with properties

(i) N ′ ∪N ′′ = N ,
(ii) N ′ ∩N ′′ = ∅, (2.4.3)

where property (i) does not take the orderings of N , N ′, and N ′′ into account.
With the aid of the bijection given in (2.4.1), we now define matricizations and
vectorizations of tensors.

16 2. Tensors in Full Format

Definition 2.4.2. Let N = (n1, . . . , nd)
T be an index set and T ∈ RN a tensor.

For two ordered subsets N ′ = (nk1 , . . . , nke)
T and N ′′ = (nl1 , . . . , nlf)T of N which

satisfy (2.4.3), the matricization of T with respect respect to N ′ and N ′′ is given by

(
T

∣∣∣∣N ′′N ′

)
xk1 ,...,xke ,xl1 ,...,xlf

= Tx1,...,xd . (2.4.4)

If we consider an operator G ∈ RM×N = R(m1×n1)×...×(md×nd) and its “natural”
matricization, we write

mat(G) = G

∣∣∣∣NM . (2.4.5)

A vectorization of a tensor T ∈ RN is given by a matricization of T where we
define N ′ = N (or a reordering of N) and N ′′ = ∅.

Definition 2.4.3. Let N = (n1, . . . , nd)
T be an index set and T ∈ RN a tensor.

For a reordering N ′ = (nk1 , . . . , nkd)
T , the vectorization of T is given by

(
T

∣∣∣∣N ′
)
xk1 ,...,xkd

= Tx1,...,xd .

Analogously to (2.4.5), if we consider a tensor T ∈ RN and its “natural” vectoriza-
tion, we write

vec(T) = T

∣∣∣∣N . (2.4.6)

Furthermore, for the tensor T ∈ RN×1 as defined in (2.1.5), it holds that

mat(T) = T

∣∣∣∣1N = T

∣∣∣∣N = vec(T).

Unless otherwise specified, we henceforth regard a vectorization of a tensor
T ∈ RN as a column vector. Matricizations and vectorizations are consistent with
the scalar multiplication and addition of tensors as the following lemma shows.

Lemma 2.4.4. Let λ ∈ R and G,H ∈ RM×N be two tensor operators with index
sets M and N . For the scalar multiplication λ ·T as defined in (2.2.2), it holds that

mat (λ ·T) = λ ·mat (T) .

2.5. Norms 17

For the addition T + U as defined in (2.2.1), it holds that

mat (T + U) = mat (T) + mat (U) .

Proof. The first assertion is clear since multiplication by a scalar is performed
elementwise on the entries of T. Following from the definition of matricizations, we
obtain

(mat (T + U))x1,...,xd,y1,...,yd = (T + U)x1,y1,...,xd,yd
= Tx1,y1,...,xd,yd + Ux1,y1,...,xd,yd

= (mat (T))x1,...,xd,y1,...,yd + (mat (U))x1,...,xd,y1,...,yd ,

for 1 ≤ xi ≤ mi and 1 ≤ yi ≤ ni, i = 1, . . . , d.

The product of two operator matricizations also corresponds to the matricization
of their tensor product.

Theorem 2.4.5. Let G ∈ RM×N and H ∈ RN×P be two tensor operators with
index sets M,N,P ∈ Nd. For the product G ·H as defined in (2.2.3), it holds that

mat(G ·H) = mat(G) ·mat(H). (2.4.7)

Proof. The assertion follows from

(mat(G ·H))x1,...,xd,y1,...,yd = (G ·H)x1,y1,...,xd,yd

=

n1∑
z1=1

· · ·
nd∑
zd=1

Gx1,z1,...,xd,zd ·Hz1,y1,...,zd,yd

=

n1·...·nd∑
z=1

(mat(G))x1,...,xd,z · (mat(H))z,y1,...,yd ,

for 1 ≤ xi ≤ mi and 1 ≤ yi ≤ pi, i = 1, . . . , d.

If P = (1, . . . , 1)T in Theorem 2.4.5, we can identify H with a tensor T ∈ RN
and (2.4.7) becomes vec(G ·T) = mat(G) · vec(T).

2.5. Norms

Similar to classical linear algebra, we define p-norms for tensors. In order to avoid
confusion, we will distinguish between norms for tensors in RN and tensor operators
in RM×N .

18 2. Tensors in Full Format

Definition 2.5.1. For any real number p ≥ 1, the p-norm of a tensor T ∈ RN is
defined as

‖T‖p =

 n1∑
x1=1

· · ·
nd∑
xd=1

(Tx1,...,xd)
p

1/p

. (2.5.1)

We will make no distinction in the notation for p-norms of tensors and p-norms
of vectors, because it holds that

‖T‖p = ‖vec(T)‖p , (2.5.2)

where vec(T) denotes the “natural” vectorization of T, see (2.4.6). We are aware
of several publications, e.g. [42, 63], where the norm (2.5.1) for p = 2 is called
Frobenius norm. However, since we distinguish between tensors in RN and RM×N ,
we also distinguish between 2-norms of tensors T ∈ RN and Frobenius norms of
tensors G ∈ RM×N . The 2-norm of T ∈ RN can be expressed using the definition
of the transpose of T given in (2.1.7), i.e.

‖T‖2 =
√
TT ·T. (2.5.3)

Due to the relation given in (2.5.2), we know that ‖ . ‖p as a function from RN to R
is indeed a norm, i.e. it has the following properties for all λ ∈ R and all T,U ∈ RN :

(i) ‖λ ·T‖p = |λ| · ‖T‖p,
(ii) ‖T + U‖p ≤ ‖T‖p + ‖U‖p,
(iii) ‖T‖p = 0⇒ T = 0 ∈ RN .

Equation (2.5.2) also implies that RN is a Banach space since the vectorized coun-
terpart of any Cauchy sequence (Tk)k∈N in RN converges in Rn1·...·nd . Considering
operators G ∈ RM×N , we adopt the Frobenius norm for matrices and define

‖G‖F =

√√√√ m1∑
x1=1

n1∑
y1=1

· · ·
md∑
xd=1

nd∑
yd=1

(Gx1,y1,...,xd,yd)
2. (2.5.4)

Analogously to (2.5.2), we again have a simple connection to the classical counter-
part of (2.5.4):

‖G‖F = ‖mat(G)‖F ,

2.6. Orthonormality 19

where mat(G) denotes the “natural” matricization of G, see (2.4.5).

Theorem 2.5.2. The Frobenius norm for tensors is sub-multiplicative and compat-
ible with the 2-norm, i.e. for G ∈ RM×N , H ∈ RN×P , and T ∈ RN , we obtain

‖G ·H‖F ≤ ‖G‖F · ‖H‖F and ‖G ·T‖2 ≤ ‖G‖F · ‖T‖2 .

Proof. We show that ‖ . ‖F is sub-multiplicative, the proof for compatibility with
the 2-norm is analogous. Because the classical Frobenius norm for matrices is sub-
multiplicative, it holds that

‖G ·H‖F = ‖mat (G) ·mat (H)‖F
≤ ‖mat (G)‖F · ‖mat (H)‖F
= ‖G‖F · ‖H‖F .

2.6. Orthonormality

The last section of this chapter generalizes the concept of orthonormal matrices to
tensors of higher order. Henceforth, we will call a matrix A ∈ Rm×n orthonormal
with respect to the rows if

A ·AT = I ∈ Rm×m.

Analogously, we call a matrix A ∈ Rm×n orthonormal with respect to the columns if

AT ·A = I ∈ Rn×n.

That is, a matrix is orthonormal with respect to the rows (columns) if the rows
(columns) form an orthonormal set. This basic concept can be adapted to tensors
in the following way.

Definition 2.6.1. Let T ∈ RN , N = (n1, . . . , nd)
T , be a tensor and N ′, N ′′ ⊂ N a

splitting of the modes with N ′ = (nk1 , . . . , nke)
T and N ′′ = (nl1 , . . . , nlf)T , e+f = d.

T is called orthonormal with respect to N ′ if the matricization of T with respect to
the sets N ′ and N ′′ (2.4.4) satisfies

T

∣∣∣∣N ′′N ′
·
(
T

∣∣∣∣N ′′N ′

)T
= T

∣∣∣∣N ′′N ′
·T
∣∣∣∣N ′N ′′ = I ∈ RN

′×N ′ .

Note that a reordering within the sets N ′ and N ′′ would not affect the orthonor-

20 2. Tensors in Full Format

mality of the tensor T. Furthermore, it is necessary that

e∏
i=1

nki ≤
f∏
i=1

nli ,

since the rows of T

∣∣∣∣N ′′N ′
have to form an orthonormal set. In order to visualize

orthonormal tensors we make use of the graphical representation described in Sec-
tion 2.3. We draw half filled circles indicating the orthonormality, cf. [37]. Figure 2.4
shows the notation for a tensor T ∈ RN and sets N ′, N ′′ ⊂ N as above.

nk1
nk2...
nke

nl1
nl2...
nlf

(a)

nk1
nk2...
nke

nk1
nk2...
nke

...

(b)

Figure 2.4: Orthonormal tensors: (a) Graphical representation of a tensor T ∈ RN which
is orthonormal with respect to the set N ′ = (nk1 , . . . , nke)T ⊂ N . (b) Tensor multiplication
of T and TT . The result is the identity tensor in RN ′×N ′

.

With the definitions above, we can also describe QR decompositions and singular
value decompositions (SVD) for tensors. Just as one can decompose a matrix into
a product of an orthonormal matrix and an upper triangular matrix, it is possible
to perform a QR decomposition (or SVD) of a tensor or rather of a matricization
of it. As a reminder, any real matrix A ∈ Rm×n can be decomposed as

A = Q ·R,

where Q is an orthonormal matrix with respect to its columns, i.e. QT ·Q = I and
R is an upper triangular matrix. For m ≤ n, we obtain Q ∈ Rm×m and R ∈ Rm×n.
If m > n, a reduced QR decomposition – or thin QR factorization [64] – can be
computed, i.e. Q ∈ Rm×n and R ∈ Rn×n.
Furthermore, A ∈ Rm×n can be decomposed as

A = U · Σ · V T ,

where U and V are orthonormal with respect to their columns and Σ is a diagonal
matrix containing the singular values of A. If we consider a full SVD, U and V
are also orthonormal with respect to their rows and Σ may contain diagonal entries
equal to zero. However, in what follows, we will require that only the non-zero
singular values σ1, . . . , σs, s ≤ min{m,n}, are stored in the diagonal of Σ resulting
in a compact SVD. Additionally, we assume that these singular values are sorted in
decreasing order, i.e. σ1 ≥ σ2 ≥ . . . ≥ σs > 0.

2.6. Orthonormality 21

nk1
nk2...
nke

nl1
nl2...
nlf

s
=

nk1
nk2...
nke

nl1
nl2...
nlf

(a)

nk1
nk2...
nke

nl1
nl2...
nlf

s
=

nk1
nk2...
nke

nl1
nl2...
nlf

(b)

Figure 2.5: QR decompositions of a tensor: (a) QR decomposition corresponding to (2.6.1).
(b) QR decomposition corresponding to (2.6.2).

Given a tensor T ∈ RN and a mode splitting N ′, N ′′ ⊂ N with sets
N ′ = (nk1 , . . . , nke)

T and N ′′ = (nl1 , . . . , nlf)T , we can compute two different kinds

of QR decompositions by either computing a QR factorization of T
∣∣∣∣N ′′N ′

or T

∣∣∣∣N ′N ′′ ,
respectively. In these cases, we obtain

T

∣∣∣∣N ′′N ′
= Q ·R = Q

∣∣∣∣sN ′ ·R
∣∣∣∣N ′s , (2.6.1)

and

(
T

∣∣∣∣N ′′N ′

)T
= Q ·R = Q

∣∣∣∣sN ′′ ·R
∣∣∣∣N ′s ⇔ T

∣∣∣∣N ′′N ′
= R

∣∣∣∣sN ′ ·Q
∣∣∣∣N ′s , (2.6.2)

respectively. It holds that s ≤ min{
∏e
i=1 nki ,

∏f
i=1 nli}. Figure 2.5 shows the

graphical notation of these decompositions after reshaping the matricizations of Q

and R. If we compute an SVD of T
∣∣∣∣N ′′N ′

, the resulting tensor network is orthonormal

on both of its sides, see Figure 2.6.

nk1
nk2...
nke

nl1
nl2...
nlf

s s
=

nk1
nk2...
nke

nl1
nl2...
nlf

Figure 2.6: Singular value decomposition of a tensor: The matricization of T with respect
to the mode sets N ′ and N ′′ is decomposed into two orthonormal tensors and a matrix
containing the singular values (depicted by a small circle).

3
Tensor Decomposition

In this chapter, we will describe tensor approximations and decompositions in de-
tail. Over the last decades, various tensor formats have been developed. The com-
mon basis of these formats is the tensor product which enables us to decompose
high-dimensional tensors into several smaller tensors. Here, we will focus on the
so-called tensor-train format, which is a promising candidate for approximating
high-dimensional tensors by low-rank decompositions. After introducing rank-one
tensors, the canonical format, and the (hierarchical) Tucker format, we will explain
the basic concept of the tensor-train format and show how to generalize well-known
operations of standard matrix and vector calculus. Furthermore, we will describe
three formats related to tensor trains, namely the quantized tensor-train format, the
block tensor-train format, and the cyclic tensor-train format. Note that, in what
follows, we will use the notation of tensors (T, U, G, etc.) for different formats.

3.1. Rank-One Tensors

The very basis of tensor decompositions as presented in this work is the idea to
consider high-dimensional tensors that can be represented as tensor products of a
set of vectors, so-called rank-one tensors [65] or elementary tensors [66].

Definition 3.1.1. A tensor T ∈ RN , RN = Rn1×···×nd , of order d is called rank-one
tensor if it can be written as the tensor product of d vectors, i.e.

T =

d⊗
i=1

T(i) = T(1) ⊗ · · · ⊗T(d), (3.1.1)

where T(i) ∈ Rni for i = 1, . . . , d.

Any element ofT is then the product of the corresponding elements of the different
vectors T(1), . . . ,T(d). That is, we can write

Tx1,...,xd =

d∏
i=1

T(i)
xi = T(1)

x1 · . . . ·T
(d)
xd
.

If we consider linear operators G ∈ RM×N with RM×N = R(m1×n1)×···×(md×nd),

23

24 3. Tensor Decomposition

that can be expressed as rank-one tensors, the components G(i) are matrices, i.e.

G =

d⊗
i=1

G(i) = G(1) ⊗ · · · ⊗G(d), (3.1.2)

with G(i) ∈ Rmi×ni for i = 1, . . . , d. The storage consumption of rank-one tensors
can be estimated as O(n ·d) for tensors T ∈ RN and O(m ·n ·d) for tensor operators
G ∈ RM×N , where m and n are the maximums of all mode sizes given by M and
N , respectively. Note that the rank-one decompositions given in (3.1.1) and (3.1.2)
are not unique in the sense that we can multiply every component T(i) (or G(i))
with a scalar value λi ∈ R as long as they satisfy

∏d
i=1 λi = 1.

As already mentioned in the previous chapter, we can always associate a tensor
T ∈ RN with a tensor T ∈ RN×1, see (2.1.5). For that reason, we will only consider
addition and multiplication rules for rank-one operators. The rules then apply to
any rank-one decomposition. Let us consider the multiplication of two rank-one
tensor operators G ∈ RM×N and H ∈ RN×P with index sets M , N , and P . One
can see that the product G ·H ∈ RM×P as defined in (2.2.3) is again a rank-one
tensor, since it follows from Theorem 2.2.6 that

G ·H =

(
d⊗
i=1

G(i)

)
·

(
d⊗
i=1

H(i)

)
=

d⊗
i=1

(
G(i) ·H(i)

)
, (3.1.3)

where G(i) ∈ Rmi×ni and H(i) ∈ Rni×pi for i = 1, . . . , d. Contrary to this, the sum
of two rank-one tensors might not be a rank-one tensor.
In general, an approximation of a given tensor by a rank-one tensor is rather

inaccurate. However, we can extend the basic idea of rank-one tensors for more
complex tensor decompositions and approximations as shown in the next sections.

3.2. Canonical Format

The idea of the canonical format is to express a tensor as the sum of a finite number
of rank-one tensors [33].

Definition 3.2.1. A tensor T ∈ RN is said to be in the canonical format if

T =

r∑
k=1

d⊗
i=1

T
(i)
k,: =

r∑
k=1

T
(1)
k,: ⊗ · · · ⊗T

(d)
k,: ,

with cores T(i) ∈ Rr×ni for i = 1, . . . , d, where r is called the canonical rank of the
decomposition.

Here, we add an additional dimension to the components T(i). Fixing the first

3.2. Canonical Format 25

index, T(i)
k,: ∈ Rni denotes the (transposed) k-th row of the matrix T(i). Any element

of T can be written as

Tx1,...,xd =

r∑
k=1

d∏
i=1

T
(i)
k,xi

=

r∑
k=1

T
(1)
k,x1
· . . . ·T(d)

k,xd
.

Definition 3.2.2. A tensor operator G ∈ RM×N is said to be in the canonical
format if

G =
r∑

k=1

d⊗
i=1

G
(i)
k,:,: =

r∑
k=1

G
(1)
k,:,: ⊗ · · · ⊗G

(d)
k,:,:,

with cores G(i) ∈ Rr×mi×ni for i = 1, . . . , d.

The elements of G can then be written as

Gx1,y1,...,xd,yd =
r∑

k=1

d∏
i=1

G
(i)
k,xi,yi

=
r∑

k=1

G
(1)
k,x1,y1

· . . . ·G(d)
k,xd,yd

.

In fact, any tensor can be represented as a linear combination of such elementary
tensors. The crucial point is the number of required rank-one tensors. If the rank r
is small enough, we may reduce the storage consumption of an order-d tensor with
the aid of the canonical format significantly. Instead of an exponential dependence
as in the full format, the storage only depends linearly on the number of dimensions
for tensors in the canonical format.

Lemma 3.2.3. The storage consumptions of tensors T ∈ RN and G ∈ RM×N
in the canonical format can be estimated as O(rT · n · d) and O(rG · m · n · d),
respectively, where rT, rG ∈ N are the canonical ranks of T and G. The number m
is the maximum of all mode sizes of M ∈ Nd and n is the maximum of all mode
sizes of N ∈ Nd.

Proof. The storage consumption of a core T(i) ∈ RrT×ni is estimated as O(rT · n)
and the storage consumption of a coreG(i) ∈ RrG×mi×ni is estimated as O(rG·m·n).
Summation over all cores concludes the proof.

Similar to full tensors and rank-one tensors, we can again associate a tensor
T ∈ RN in canonical format with rank r with a canonical tensor operatorT ∈ RN×1,
1 = (1, . . . , 1)T , by setting

T
(i)
k,xi,1 = T

(i)
k,xi

,

for k = 1, . . . , r, xi = 1, . . . , ni, and i = 1, . . . , d. Note that T also has rank r.

26 3. Tensor Decomposition

Furthermore, the transpose of a tensor operator G ∈ RM×N in canonical format
is given by

GT =

r∑
k=1

d⊗
i=1

(
G

(i)
k,:,:

)T
. (3.2.1)

Multiplying a canonical tensor with a scalar λ ∈ R means multiplying every rank-
one tensor with λ. Thus, scalar multiplication has no influence on the rank of a
tensor in canonical format. When adding two tensors in canonical format, the rank
of the resulting tensor is less than or equal to the sum of the ranks of both addends.
That is, adding two tensor operators G1 ∈ RM×N with canonical rank r1 ∈ N and
G2 ∈ RM×N with canonical rank r2 ∈ N, we obtain in general

G = G1 + G2 =

r1+r2∑
k=1

d⊗
i=1

G
(i)
k,:,:,

with

G
(i)
k,:,: =


(
G

(i)
1

)
k,:,:

, if 1 ≤ k ≤ r1,

(
G

(i)
2

)
k−r1,:,:

, if r1 + 1 ≤ k ≤ r1 + r2,

for i = 1, . . . , d. Considering the multiplication of two tensor operators G1 ∈ RM×N
and G2 ∈ RN×P in the canonical format, the upper bound for the canonical rank of
G1 ·G2 is equal to the product of the ranks of G1 and G2. It follows from (3.1.3)
that a canonical representation of the product of G1 and G2 is given by

G = G1 ·G2 =

r1∑
k1=1

r2∑
k2=1

d⊗
i=1

((
G

(i)
1

)
k1,:,:
·
(
G

(i)
2

)
k2,:,:

)
. (3.2.2)

Using the notation from Section 2.4, we can write (3.2.2) as

G =

r1·r2∑
k=1

d⊗
i=1

G
(i)
k,:,:,

with G
(i)

k1,k2,:,:
=
(
G

(i)
1

)
k1,:,:
·
(
G

(i)
2

)
k2,:,:

.

In practice, adding and multiplying canonical tensors can be extremely expensive

3.3. Tucker and Hierarchical Tucker Format 27

in terms of storage consumption and computational cost. Additionally, even if the
canonical format can be used for low-parametric decompositions of high-dimensional
tensors, it has a crucial drawback. Because canonical tensors with bounded rank r do
not form a manifold, robust algorithms for the computation of best approximations
are not available. In the canonical format, optimization problems can be ill-posed
[36], with the result that the best approximation may not even exist. However, we
will make use of the canonical format later, e.g. to describe tensor decompositions
of master equations. For more information on working with canonical tensors, we
refer to [67].

3.3. Tucker and Hierarchical Tucker Format

Compared to the canonical format, the Tucker format [38, 39] provides the ad-
vantage of being algorithmically stable, i.e. a best approximation of a given tensor
always exists [68]. The basic idea is to decompose a tensor into several factor ma-
trices and a core tensor which has the same order as the given tensor but smaller
mode sizes.

Definition 3.3.1. A tensor T ∈ RN is said to be in the Tucker format if

T =

r1∑
k1=1

· · ·
rd∑

kd=1

(
T

(1)
:,k1
⊗ · · · ⊗T

(d)
:,kd

)
·Uk1,...,kd

=
(
T(1) ⊗ · · · ⊗T(d)

)
·U,

where U ∈ Rr1×···×rd is called Tucker core, T(i) ∈ Rni×ri, i = 1, . . . , d, are called
Tucker factors and the numbers ri are called Tucker ranks.

The canonical format can be viewed as a special case of the Tucker format with
r1 = r2 = · · · = rd =: r and a core tensor U ∈ Rr×···×r defined by

Uk1,...,kd = δk1,...,kd ,

where δk1,...,kd is a generalized form of the Kronecker delta with

δk1,...,kd =

{
1, if k1 = k2 = · · · = kd,

0, otherwise.

A graphical representation of a Tucker tensor T ∈ RN is shown in Figure 3.1 (a).
As mentioned before, unlike the canonical format, the Tucker format does not

suffer from the ill-posedness of approximation problems. However, the storage con-
sumption of canonical tensors only depends linearly on the order which is not the
case for Tucker decompositions.

28 3. Tensor Decomposition

r1 r2 r3 r4 r5

n1 n2 n3 n4 n5

(a)

n1 n2 n3 n4 n5

(b)

Figure 3.1: Graphical representation of the Tucker format and the HT format: (a) Tensor
of order 5 in Tucker format, the bar depicts the Tucker core and the Tucker factors are
represented by the circles. (b) Tensor of order 5 in HT-format, the circles at the inner
nodes of the partition tree are transfer tensors, the circles at the leaves are matrices where
one dimension corresponds to a mode of the represented tensor.

Lemma 3.3.2. The storage consumption of a tensor T ∈ RN in the Tucker format
can be estimated as O(r · n · d + rd), where r ∈ N is the maximum of all Tucker
ranks, n ∈ N is the maximum of all mode sizes of N , and d ∈ N is the order of T.

Proof. The storage of the d Tucker factors can be estimated as O(r · n · d). Ad-
ditionally, the Tucker core is a d-dimensional tensor. The number of its entries is
bounded by rd.

This shows that the curse of dimensionality may not be mitigated by this ap-
proach. Due to the exponential scaling in d, we would only benefit from the Tucker
format if we assume the ranks to be small enough. Therefore, the idea of the Tucker
representation was generalized to tree-structured tensor decompositions, namely the
so-called hierarchical Tucker format (HT format), see [43, 44, 66]. In this framework,
a tensor is partitioned into a dimension tree with matrices at its leaves containing
the modes of the tensor. These matrices are linked by the so-called transfer ten-
sors, which are located at all inner nodes of the partition tree. An example for
the graphical representation of a tensor T ∈ RN in the HT format is shown in
Figure 3.1 (b).
The HT format combines the advantages of the canonical format and the Tucker

format. Firstly, there exist robust algorithms to compute best approximations and,
secondly, the storage consumption of a tensor in HT format does not depend expo-
nentially on the order d.

Lemma 3.3.3. The storage consumption of a tensor T ∈ RN in the HT format can
be estimated as O(r · n · d + r3 · d), where r ∈ N is the maximum of all HT ranks,
n ∈ N is the maximum of all mode sizes of N and d ∈ N is the order of T.

Proof. Following the definition of the HT format, a partition tree is a full binary
tree, i.e. a tree in which every node has either zero or two children. In a non-empty
full binary tree, the number of leaves and the number of internal nodes differ by one.

3.4. Tensor-Train Format 29

That is, there are d− 1 transfer tensors of order 3 (each mode is bounded by r) and
there are d leaves, whose storage consumption can be estimated as O(r · n · d).

Since we will focus on a special case of the HT format, we refer the interested
reader to [15] and [69] for more details about tensor decompositions and computa-
tions in the HT format in general.

3.4. Tensor-Train Format

In terms of storage consumption and computational robustness, a promising can-
didate is the tensor-train format (TT format) [16, 17], which combines the main
advantages of the canonical format and the Tucker format. Again, the idea is to
decompose tensors T ∈ RN and G ∈ RM×N into d component tensors T(i) and
G(i), respectively.

Definition 3.4.1. A tensor T ∈ RN is said to be in the TT format if

T =

r0∑
k0=1

· · ·
rd∑

kd=1

d⊗
i=1

T
(i)
ki−1,:,ki

=

r0∑
k0=1

· · ·
rd∑

kd=1

T
(1)
k0,:,k1

⊗ · · · ⊗T
(d)
kd−1,:,kd

.

The tensors T(i) ∈ Rri−1×ni×ri of order 3 are called TT cores and the numbers ri
are called TT ranks. It holds that r0 = rd = 1 and ri ≥ 1 for i = 1, . . . , d− 1.

Any element of T can then be written as

Tx1,...,xd =

r0∑
k0=1

· · ·
rd∑

kd=1

T
(1)
k0,x1,k1

· . . . ·T(d)
kd−1,xd,kd

= T(1)
:,x1,: · . . . ·T

(d)
:,xd,:

. (3.4.1)

Since the right-hand side of (3.4.1) has to be scalar, it is necessary that r0 = rd = 1.
As we will explain later, this condition can be generalized to r0 = rd ≥ 1 yielding a
modified version of the TT format, see Section 3.5.3. The TT ranks determine the
storage consumption of a tensor train and have a strong influence on the possible
complexity, i.e. the capability of representing a given tensor as a tensor train. The
lower the ranks, the lower are the memory consumption and computational costs.

Definition 3.4.2. A tensor operator G ∈ RM×N is said to be in the TT format if

G =

r0∑
k0=1

· · ·
rd∑

kd=1

d⊗
i=1

G
(i)
ki−1,:,:,ki

=

r0∑
k0=1

· · ·
rd∑

kd=1

G
(1)
k0,:,:,k1

⊗ · · · ⊗G
(d)
kd−1,:,:,kd

,

with TT cores G(i) ∈ Rri−1×mi×ni×ri for i = 1, . . . , d and r0 = rd = 1.

30 3. Tensor Decomposition

Again, assuming r0 = rd = 1, any element of G can then be written as

Gx1,y1,...,xd,yd = G(1)
:,x1,y1,: · . . . ·G

(d)
:,xd,yd,:

.

The transpose of a tensor G ∈ RM×N in the TT format is given by

GT =

r0∑
k0=1

· · ·
rd∑

kd=1

d⊗
i=1

(
G

(i)
ki−1,:,:,ki

)T
,

which corresponds to the definitions of the transpose in full format (2.1.6) and
canonical format (3.2.1). Figure 3.2 shows the graphical representation of a tensor
train T ∈ RN and a TT operator G ∈ RM×N . As described in Section 2.3, a core
is depicted by a circle with different arms indicating the modes of the tensor and
the rank indices. We regard the first and the last TT core as matrices due to the
fact that r0 = rd = 1. Analogously, the first and the last core of G are interpreted
as tensors of order 3.

r1 r2 r3 r4

n1 n2 n3 n4 n5

(a)

r1 r2 r3 r4

m1 m2 m3 m4 m5

n1 n2 n3 n4 n5

(b)

Figure 3.2: Graphical representation of tensor trains: (a) Tensor of order 5 in TT format,
the first and the last core are matrices, the other cores are tensors of order 3. (b) Linear
operator of order 10 in TT format, the first and the last core are tensors of order 3, the
other cores are tensors of order 4.

As for the canonical format, the storage consumption for tensors in the TT format
only depends linearly on the number of dimensions.

Lemma 3.4.3. The storage consumptions of tensors T ∈ RN and G ∈ RM×N in
the TT format can be estimated as O(r2T · n · d) and O(r2G ·m · n · d), respectively,
where rT, rG ∈ N are maximums of all TT ranks of T and G. The number m is
the maximum of all mode sizes of M ∈ Nd and n is the maximum of all mode sizes
of N ∈ Nd.

Proof. The storage consumption of each of the d cores T(i) ∈ Rri−1×ni×ri can be es-
timated as O(r2 · n). The storage consumption of each of the d cores
G(i) ∈ Rri−1×mi×ni×ri can be estimated as O(r2 ·m · n).

The TT format can be seen as a special case of the hierarchical Tucker format
[66], see Figure 3.3. Thus, we benefit from the properties of the HT format, i.e. the
non-exponential dependence on the order and the well-posedness of optimization

3.4. Tensor-Train Format 31

problems. That is, the main advantages of the TT format, compared to the canoni-
cal format, is its stability from an algorithmic point of view. The existence of a best
approximation with bounded TT ranks is always ensured [37, 70]. Hence, the TT
format format is stable in the sense that we can compute quasi-optimal approxima-
tions by sequences of SVDs [17, 69]. With the TT format, we are able to mitigate
the curse of dimensionality as long as the ranks and modes are of manageable size.

n1

n2

n3

n4

n5

Figure 3.3: The TT format as a special case of the HT format: At every level, one mode
is separated. As indicated by the dashed rectangles, the TT representation is obtained by
contracting a matrix at a leaf with the corresponding transfer tensor

3.4.1. Core Notation

For the sake of comprehensibility, we represent the TT cores as two-dimensional
arrays containing vectors or matrices as elements, respectively. For a given tensor
train T ∈ RN with cores T(i) ∈ Rri−1×ni×ri , a single core is written as

[
T(i)

]
=


T

(i)
1,:,1 · · · T

(i)
1,:,ri

...
. . .

...

T
(i)
ri−1,:,1

· · · T
(i)
ri−1,:,ri

 . (3.4.2)

For a given operator G ∈ RM×N with cores G(i) ∈ RRi−1×mi×ni×Ri , each core is
written as

[
G(i)

]
=


G

(i)
1,:,:,1 · · · G

(i)
1,:,:,Ri

...
. . .

...

G
(i)
Ri−1,:,:,1

· · · G
(i)
Ri−1,:,:,Ri

 . (3.4.3)

32 3. Tensor Decomposition

We then use the notations

T =
[
T(1)

]
⊗ · · · ⊗

[
T(d)

]
and G =

[
G(1)

]
⊗ · · · ⊗

[
G(d)

]
for tensor trains T ∈ RN and G ∈ RM×N , respectively, cf. [71]. The corresponding
operations can be regarded as a generalization of the standard matrix multiplication,
where the cores contain matrices as elements instead of scalar values. Just like
multiplying two matrices, we compute the tensor products of the corresponding
elements and then sum over the columns and rows, respectively. We will use the
core notation to derive compact representations of tensor trains and tensor-train
operators. Furthermore, for given TT cores (3.4.2) and (3.4.3), we define the rank-
transposed cores

[
T(i)

]T ∈ Rri×ni×ri−1 and
[
G(i)

]T ∈ RRi×mi×ni×Ri−1 as

[
T(i)

]T
=


T

(i)
1,:,1 · · · T

(i)
ri−1,:,:,1

...
. . .

...

T
(i)
1,:,:,ri

· · · T
(i)
ri−1,:,:,ri

 ,

and

[
A(i)

]T
=


A

(i)
1,:,:,1 · · · A

(i)
si−1,:,:,1

...
. . .

...

A
(i)
1,:,:,si

· · · A
(i)
si−1,:,:,si

 . (3.4.4)

Note that the vectors/matrices within the cores are not transposed, only the outer
indices of each element are interchanged.

3.4.2. Addition and Multiplication

In this section, we will only focus on TT operators G ∈ RM×N since the calcula-
tion rules can then be applied to any tensor T ∈ RN by considering T ∈ RN×1
with 1 = (1, . . . , 1)T , see Section 2.1. For a TT decomposition T with cores
T(i) ∈ Rri−1×ni×ri , the cores of T are defined as T(i) ∈ Rri−1×ni×1×ri with

T
(i)
ki−1,xi,1,ki = Tki−1,xi,ki ,

where we just inserted a mode with mode size 1.

3.4. Tensor-Train Format 33

As it is the case for the ranks of canonical tensors, the TT ranks of G = G1 +G2

are bounded by the sum of the TT ranks of G1 ∈ RM×N and G2 ∈ RM×N .

Theorem 3.4.4. For tensor operators G1,G2 ∈ RM×N with TT representations

G1 =
[
G

(1)
1

]
⊗ · · · ⊗

[
G

(d)
1

]
, G2 =

[
G

(1)
2

]
⊗ · · · ⊗

[
G

(d)
2

]
,

the sum G = G1 + G2 is given by

G =
[[

G
(1)
1

] [
G

(1)
2

]]
⊗


[
G

(2)
1

]
0

0
[
G

(2)
2

]
⊗ · · ·

· · · ⊗


[
G

(d−1)
1

]
0

0
[
G

(d−1)
2

]
⊗


[
G

(d)
1

]
[
G

(d)
2

]
 .

Proof. For i ∈ {2, . . . , d− 1}, it holds that


[
G

(i)
1

]
0

0
[
G

(i)
2

]
⊗


[
G

(i+1)
1

]
⊗ · · · ⊗

[
G

(d)
1

]
[
G

(i+1)
2

]
⊗ · · · ⊗

[
G

(d)
2

]
 =


[
G

(i)
1

]
⊗ · · · ⊗

[
G

(d)
1

]
[
G

(i)
2

]
⊗ · · · ⊗

[
G

(d)
2

]
 .

Thus, we obtain

G =
[[

G
(1)
1

] [
G

(1)
2

]]
⊗


[
G

(2)
1

]
⊗ · · · ⊗

[
G

(d)
1

]
[
G

(2)
2

]
⊗ · · · ⊗

[
G

(d)
2

]


=
[
G

(1)
1

]
⊗ · · · ⊗

[
G

(d)
1

]
+
[
G

(1)
2

]
⊗ · · · ⊗

[
G

(d)
2

]
.

The TT ranks of the product of two tensor-train operators G ∈ RM×N and
H ∈ RN×P are bounded by the products of the TT ranks of G and H, see Theo-
rem 3.4.5. The multiplication of two tensor-train operators is depicted in Figure 3.4.

Theorem 3.4.5. For two tensor operators G1 ∈ RM×N and G2 ∈ RN×P with TT
representations

G1 =
[
G

(1)
1

]
⊗ · · · ⊗

[
G

(d)
1

]
, G2 =

[
G

(1)
2

]
⊗ · · · ⊗

[
G

(d)
2

]
,

34 3. Tensor Decomposition

the TT cores of the product G = G1 ·G2 =
[
G(1)

]
⊗ · · · ⊗

[
G(d)

]
are given by

G
(i)

ki−1,li−1,:,:,ki,li
=
(
G

(i)
1

)
ki−1,:,:,ki

·
(
G

(i)
2

)
li−1,:,:,li

,

for i = 1, . . . , d.

Proof. Assume G1 has TT ranks r0, . . . rd and G2 has TT ranks s0, . . . , sd. Then
we obtain

G =

r0∑
k0=1

· · ·
rd∑

kd=1

s0∑
l0=1

· · ·
sd∑
ld=1

G
(1)

k0,l0,:,:,k1,l1
⊗ · · · ⊗G

(d)

kd−1,ld−1,:,:,kd,ld

=

r0∑
k0=1

· · ·
rd∑

kd=1

(
G

(1)
1

)
k0,:,:,k1

⊗ · · · ⊗
(
G

(d)
1

)
kd−1,:,:,kd

·
s0∑
l0=1

· · ·
sd∑
ld=1

(
G

(1)
2

)
l0,:,:,l1

⊗ · · · ⊗
(
G

(d)
2

)
ld−1,:,:,ld

.

The computation of the product G = G1 · G2 can be implemented efficiently
using Algorithm 4 from [42].

r1 r2 r3 r4

m1 m2 m3 m4 m5

n1 n2 n3 n4 n5

· s1 s2 s3 s4

n1 n2 n3 n4 n5

p1 p2 p3 p4 p5

=

s1 s2 s3 s4

p1 p2 p3 p4 p5

r1 r2 r3 r4

m1 m2 m3 m4 m5

=
r1 · s1 r2 · s2 r3 · s3 r4 · s4

m1 m2 m3 m4 m5

p1 p2 p3 p4 p5

Figure 3.4: Multiplication of two tensor-train operators: Two TT operators G ∈ RM×N
(blue) and H ∈ RN×P (orange) of order 10 are multiplied by contracting the modes
n1, . . . , nd, which is depicted by joining corresponding arms. The result (green) is a tensor
in RM×P .

3.4. Tensor-Train Format 35

3.4.3. Orthonormalization

In Section 2.6, we introduced the notion of orthonormality for tensors. Now, we ex-
tend the definition to TT decompositions T ∈ RN . With respect to Definition 2.4.2,
we consider a TT core T(i) ∈ Rri−1×ni×ri and its matricizations

L
(
T(i)

)
= T(i)

∣∣∣∣riri−1,ni
and R

(
T(i)

)
= T(i)

∣∣∣∣ni,riri−1

. (3.4.5)

The matricization L
(
T(i)

)
is called the left-unfolding ofT(i) andR

(
T(i)

)
is called

the right-unfolding of T(i), cf. [37]. We will use these specific matricizations several
times in the next chapters. A TT core is called left-orthonormal if its left-unfolding
is orthonormal with respect to the columns, i.e.

(
L
(
T(i)

))T
· L
(
T(i)

)
= T(i)

∣∣∣∣ri−1,ni

ri
·T(i)

∣∣∣∣riri−1,ni
= I ∈ Rri×ri .

A TT core whose right-unfolding is orthonormal with respect to the rows, i.e.

R
(
T(i)

)
·
(
R
(
T(i)

))T
= T(i)

∣∣∣∣ni,riri−1

·T(i)

∣∣∣∣ri−1

ni,ri
= I ∈ Rri−1×ri−1 ,

is called right-orthonormal. We also call TT decompositions of tensors T ∈ RN left-
and right-orthonormal, respectively. See Figure 3.5 for details.
Algorithms for the left- and right-orthonormalization, respectively, can be found

in Appendix A.2. Left-orthonormalization, see Algorithm 9, produces a tensor
train where all cores except for the last one are left-orthonormal whereas right-
orthonormalization, see Algorithm 10, produces a tensor train where all cores ex-
cept for the first one are right-orthonormal. Figure 3.6 shows a visualization of
the left-orthonormalization of a TT decomposition. Note that a tensor train T re-
mains the same if we apply the Algorithms 9 or 10 to it. The algorithms simply
compute a different but equivalent representation. Additionally, left- and right-
orthonormalization of a TT decomposition may decrease the TT ranks due to the
applied SVDs.

n1 n2 n3 nd−2 nd−1 nd

(a)

n1 n2 n3 nd−2 nd−1 nd

(b)

Figure 3.5: Orthonormal tensor trains: (a) Left-orthonormal tensor train with first d− 1
cores being left-orthonormal. (b) Right-orthonormal tensor train with last d− 1 cores being
right-orthonormal. See Section 2.6 for an explanation of the graphical notation.

36 3. Tensor Decomposition

Initial tensor train
n1 n2 n3 nd−1 nd

r1 r2 rd−1

Apply SVD

n1 n2 n3 nd−1 nd

r2 rd−1

Update next core

n1 n2 n3 nd−1 nd

s1 r2 rd−1

Apply SVD

n1 n2 n3 nd−1 nd

s1 rd−1

Update next core

n1 n2 n3 nd−1 nd

s1 s2 rd−1

...
...

Left-orthonormalized tensor train
n1 n2 n3 nd−1 nd

s1 s2 sd−1

Figure 3.6: Left-orthonormalization of a tensor train: After applying an SVD, the non-
orthonormal part (depicted by a small circle) is shifted to the next core. This procedure is
repeated until the first d− 1 cores are left-orthonormal.

3.4.4. Calculating Norms

Especially for estimating the errors of TT approximations in the following chapters,
we will need to calculate norms of high-dimensional tensors in the TT format. In
particular, we are interested in the 2-norm of a tensor train T ∈ RN . As mentioned
in Section 2.5, the p-norm of T is equal to the classical p-norm of its vectorization.
However, since the storage consumption of vec(T) may be extremely high, we need
to compute the norm of T in a more efficient way. From (2.5.3), we know it holds
that ‖T‖2 =

√
TT ·T. Thus, one way to calculate ‖T‖2 would be the computation

of a sequence of tensor contractions, i.e. the TT cores of T and TT are contracted
stepwise from left to right. This is described in Algorithm 1.
In order to calculate the 2-norm of T, we store the tensor train T itself and,

additionally, compute a tensor C of order 4 and a matrix D in each step, see
Algorithm 1. The storage of C and D can be estimated as O(r4), where r is the
maximum of all TT ranks of T and n is the maximum of all mode sizes in N . Thus,
the storage consumption of Algorithm 1 is estimated as O(r · n · d+ r4).

3.4. Tensor-Train Format 37

Algorithm 1 Computation of the 2-norm of tensor trains

Input: Tensor train T ∈ RN with cores T(1), . . . ,T(d) and ranks r0, . . . , rd.
Output: 2-norm of T.

1: Define D ∈ Rr1×r′1 , r1 = r′1, by D =
〈
T(1),T(1)

〉
r0,n1

, where r1 is the rank index
of the first argument and r′1 is the rank index of the second argument.

2: for i = 2, ..., d do
3: Define C ∈ Rri−1×ri×r′i−1×r′i by C =

〈
T(i),T(i)

〉
ni
.

4: Set D to 〈D,C〉ri−1,r′i−1
, resulting in D ∈ Rri×r′i .

5: end for
6: Set ‖T‖2 =

√
D.

If the given tensor T is left- or right-orthonormal, respectively, we can apply
an even more efficient technique to compute ‖T‖2. If T is left-orthonormal, con-
tracting the first d − 1 cores results in an identity matrix in Rrd−1×rd−1 . If T is
right-orthonormal, contracting the last d − 1 cores results in an identity matrix in
Rr1×r1 . See Figure 3.7 for a visualization. That is, the 2-norm of T is then given
by
∥∥L (T(d)

)∥∥
2
and

∥∥R (T(1)
)∥∥

2
, respectively.

r1 r2 rd−1

r1 r2 rd−1

=

r2 rd−1

r2 rd−1

I = · · · = I

(a)

r1 rd−2 rd−1

r1 rd−2 rd−1

=

r1 rd−2

r1 rd−2

I = · · · = I

(b)

Figure 3.7: Calculating the 2-norm of a tensor train: (a) For left-orthonormal ten-
sor trains, the contraction of the first d − 1 cores successively yields an identity matrix.
(b) Correspondingly, for right-orthonormal tensor trains, the contraction of the last d − 1
cores successively yields an identity matrix.

Moreover, we are interested in the 1-norm of tensor trains T ∈ RN . In particular,
we will compute TT approximations of tensors representing probability distributions
which should satisfy ‖T‖1 = 1. Unfortunately, there is no algorithm available for
an efficient computation of the 1-norm. However, if we assume that all entries of
T are non-negative – or that the absolute values of all negative entries are small

38 3. Tensor Decomposition

enough to neglect them – we can calculate/approximate ‖T‖1 simply by

‖T‖1 ≈ TT · ([11]⊗ · · · ⊗ [1d]) ,

with 1i = (1, . . . , 1)T ∈ Rni .

3.4.5. Conversion

As stated by the Eckart–Young theorem [72], computing a truncated SVD of a
matrix A ∈ Rm×n with m ≥ n, i.e. Ã = U ΣV T where Σ only contains the r largest
singular values of A, yields the best rank-r approximation of A with respect to
the Frobenius norm. Although there is no such clear statement for orders d > 2,
we generalize that concept and apply a sequence of SVDs in order to convert a
given tensor T ∈ RN from full format into the TT format. Algorithm 2, which was
presented in [42], can be used to compute an exact (ε = 0) or an approximated
(ε > 0) TT decomposition of T, respectively. Due to the similar structure to
Algorithm 9, the algorithm below produces a left-orthonormal tensor train. The
diagrammatic notation of Algorithm 2 is shown in Figure 3.8.

Algorithm 2 Conversion of tensors in full format into the TT format

Input: Tensor T ∈ RN in full format and a threshold ε.
Output: Approximation U of T in TT format with cores U(1), . . . ,U(d) and ranks

r0, . . . , rd.

1: Set r0 = 1 and rd = 1.
2: for k = 1, ..., d− 1 do

3: A = T

∣∣∣∣nk+1,...,nd

rk−1,nk
.

4: Compute SVD of A, i.e. A = U ΣV T with Σ ∈ Rs×s.
5: Set rk ≤ s to the smallest index such that

√
σ2rk+1

+ · · ·+ σ2s ≤ ε.
6: Discard rows and columns of U , Σ, and V corresponding to singular values

σrk+1
, . . . , σs.

7: Define U(k) ∈ Rrk−1×nk×rk such that L
(
U(k)

)
= U .

8: Define remainder T = ΣV T ∈ Rrk×nk+1·····nd .
9: end for

10: Set d-th core to U
(d)
:,:,1 = T.

At each step the matrix A is approximated by a truncated SVD using only the sin-
gular values σ1, . . . , σrk . Assume we calculate an SVD of A, i.e.
A = U ΣV T with Σ ∈ Rs×s, and split Σ into Σ1 = diag(σ1, . . . , σrk , 0, . . . , 0)
and Σ2 = diag(0, . . . , 0, σrk+1

, . . . , σs). Then, the Frobenius norm of A − Ã with

3.4. Tensor-Train Format 39

Ã = U Σ1 V
T is given by

∥∥∥A− Ã∥∥∥
F

=
∥∥U Σ2 V

T
∥∥
F

= ‖Σ2‖F =
√
σ2rk+1

+ · · ·+ σ2s .

It was shown in [42] that the TT approximation U – obtained by applying Algo-
rithm 2 with threshold ε to a tensor T – satisfies ‖T−U‖2 ≤ ε

√
d− 1.

Initial tensor
n1 n2 · · · nd−1 nd

Isolate first mode
n1 n2 · · · · · nd

Apply SVD

n1 n2 · · · · · nd

Isolate second mode
n1 n2 n3 · · · · · nd

Apply SVD

n1 n2 n3 · · · · · nd

...
...

Tensor-train approximation

n1 n2 nd−1 nd

Figure 3.8: Conversion from full format into TT format: By reshaping and applying
SVDs, one mode is isolated in every step. The matrix U of an SVD defines the separated
TT core while the matrices Σ (depicted by the small circles) and V (depicted by the bars)
define the remainder.

40 3. Tensor Decomposition

The principle shown in Algorithm 2 can also be used to convert a given operator
G ∈ RM×N into the TT format. In general, we do, however, not want to compute
a tensor in full format and then convert it to the TT format – especially we do not
convert full representations of linear operators. Instead, we construct tensor opera-
tors describing a specific system directly as a tensor train, i.e. we compute an exact
TT decomposition. In this way, we do not have to deal with the storage consump-
tion of tensor operators in full format. Additionally, all the numerical computations
should ideally be directly carried out in the TT format such that we automatically
compute low-rank approximations without necessitating the conversion to the TT
format.
In what follows, we will particularly consider tensor operators whose canonical

representations are known. The aim is then to convert these representations into
the TT format obtaining low-rank decompositions. If a tensor operator GM×N can
be written in canonical format as

G =
r∑

k=1

G
(1)
k,:,: ⊗ · · · ⊗G

(d)
k,:,:,

it can be represented in the TT format as

G =
[(

G(1)
)
1,:,:
· · ·

(
G(1)

)
r,:,:

]
⊗


(
G(2)

)
1,:,:

0
. . .

0
(
G(2)

)
r,:,:

⊗ · · ·

· · · ⊗


(
G(d−1))

1,:,:
0

. . .
0

(
G(d−1))

r,:,:

⊗

(
G(d)

)
1,:,:

...(
G(d)

)
r,:,:

 .

Except for the first and the last rank, the ranks of this decomposition are all equal
to r. However, r is just an upper bound for the TT ranks. In specific cases, there
exist low-rank TT decompositions of G with ranks much smaller than r. We will
consider such TT operators particularly in Section 6.

Example 3.4.6. As a simple example for a tensor whose TT ranks are smaller
than its canonical rank, consider the matrices

I =

(
1 0
0 1

)
, J =

(
0 1
1 0

)
,

and the canonical tensor

G = J ⊗ I ⊗ I + I ⊗ J ⊗ I + I ⊗ I ⊗ J. (3.4.6)

3.5. Modified Tensor-Train Formats 41

The canonical rank of G is r = 3. However, G can be represented as a tensor-train
operator with decomposition

G =
[
J I
]
⊗
[
I 0
J I

]
⊗
[
I
J

]
, (3.4.7)

which has TT ranks 1, 2, 2, 1.

The TT representation given in (3.4.7) is a special case of the more general SLIM
decomposition, which we will present in Section 6. If we consider higher orders for
G and – at the same time – keep the alternating canonical structure (3.4.6), the
ranks of the TT representation (obtained by increasing the number of middle cores
in (3.4.7)) do not grow, i.e. the TT ranks are then given by 1, 2, 2, . . . , 2, 1. This
property will be investigated in detail later. Moreover, the Example 3.4.6 above
shows that conversions from the TT format into the canonical format may lead to
very large canonical ranks.
For the sake of completeness, we also present a method to convert a given Tucker

tensor into the TT format. Given a tensor T ∈ RN in the Tucker format with
Tucker factors T

(i)
TF ∈ Rni×ri , i = 1, . . . , d, and Tucker core U ∈ Rr1×···×rd , a TT

decomposition ofT can be obtained by computing a TT representation of the Tucker
core. Consider

T =
(
T

(1)
TF ⊗ · · · ⊗T

(d)
TF

)
·U

=
(
T

(1)
TF ⊗ · · · ⊗T

(d)
TF

)
·
([

U(1)
]
⊗ · · · ⊗

[
U(d)

])
,

with U(i) ∈ Rsi−1×ri×si . The decomposition
[
U(1)

]
⊗ · · · ⊗

[
U(d)

]
is a TT represen-

tation of the Tucker core U. Following the multiplication rules, the contraction of
the modes of the cores of TTF and U results in

T
(i)
ki−1,:,ki

= T
(i)
TF ·U

(i)
ki−1,:,ki

,

for i = 1, . . . , d and ki = 1, . . . , si. The ranks of the TT decomposition of T are
equal to the TT ranks of U, i.e. if we find a low-rank representation for the Tucker
core, we can provide a low-rank representation for the whole tensor in TT format.

3.5. Modified Tensor-Train Formats

In this section, we will consider three different tensor representations which are
based on slight modifications of the TT format, namely the quantized tensor-train
format, the block tensor-train format, and the cyclic tensor-train format. In short,
we will call these representations QTT, BTT, and CTT format, respectively.

42 3. Tensor Decomposition

3.5.1. Quantized Tensor-Train Format

The QTT format [73] can be approached from different perspectives. On the one
hand, it can be regarded as the TT decomposition of an appropriately quantized
tensor, i.e. given a tensor G ∈ RM×N and factorizations of the modes

mi = mi,1 · . . . ·mi,ci and ni = ni,1 · . . . · ni,ci ,

with mi,j , ni,j ∈ N for i = 1, . . . , d and j = 1, . . . , ci, we define the corresponding
quantization

G′ ∈ R(m1,1×n1,1)×···×(m1,c1×n1,c1)×···×(md,1×nd,1)×···×(md,cd×n1,cd
)

by

G′x1,1,y1,1,...,x1,c1 ,y1,c1 ,...,xd,1,yd,1,...,xd,cd ,yd,cd
= Gx1,y1,...,xd,yd ,

where xi = xi,1, . . . , xi,ci and yi = yi,1, . . . , yi,ci for i = 1, . . . , d. A TT decomposition
of G′ then represents a QTT decomposition of the former tensor G. The ranks of
this decomposition are called QTT ranks. On the other hand, we can construct a
QTT decomposition of G directly from its TT decomposition. Here, the TT cores
G(i), i = 1, . . . , d, are divided into ci smaller cores, see Algorithm 3 and Figure 3.9.

Algorithm 3 Conversion of TT operators into the QTT format

Input: TT operator G ∈ RM×N with cores G(1), . . . ,G(d) and mode factoriza-
tions mi = mi,1 · . . . ·mi,ci , ni = ni,1 · . . . · ni,ci for i = 1, . . . , d.

Output: QTT representation GQTT with cores Gi,j
QTT, i = 1, . . . , d, j = 1, . . . , ci.

1: for i = 1, . . . , d do
2: Reshape G(i) ∈ Rri−1×mi×ni×ri to H ∈ Rri−1×mi,1×ni,1×···×mi,ci×ni,ci×ri .
3: Set ri,0 = ri−1.
4: for j = 1, . . . , ci − 1 do

5: Set H = H

∣∣∣∣mi,j+1,ni,j+1,...,mi,ci ,ni,ci ,ri

ri,j−1,mi,j ,ni,j
.

6: Compute SVD of H, i.e. M = U ΣV T with Σ ∈ Rri,j×ri,j .
7: Set the QTT core G

(i,j)
QTT to a reshaped version of U with(

G
(i,j)
QTT

)
ki,j−1,xi,j ,yi,j ,ki,j

= Uki,j−1,xi,j ,yi,j ,ki,j
.

8: DefineH = ΣV T and reshape toH ∈ Rri,j×mi,j+1×ni,j+1×···×mi,ci×ni,ci×ri .
9: end for

10: Set G(i,ci)
QTT = H

11: end for

3.5. Modified Tensor-Train Formats 43

Using the QTT format is only advantageous if the QTT ranks stay small. As it
can be seen in Algorithm 3, this has not to be the case in general. The QTT ranks
ri,j are only bounded by

max{ri,j−1 ·mi,j · ni,j , mi,j+1 · ni,j+1 · · · · ·mi,ci · ni,ci · ri},

and, thus, may increase rapidly during the quantization indicating that the TT
cores G(i) cannot be represented by low-rank QTT decompositions. However, we
will consider a chemical system in Section 9.3.1 where the benefit of the QTT format
in terms of numerical efficiency can be shown. Working with the QTT format, all
properties from the TT format are directly applicable.

n1,1

m1,1

n1,2

m1,2

n1,c1

m1,c1

n2,1

m2,1

n2,2

m2,2

n2,c2

m2,c2

nd,1

md,1

nd,2

md,2

nd,cd

md,cd

n1

m1

n2

m2

nd

md

Figure 3.9: Conversion from TT into QTT format: Each core is divided into several cores
with smaller mode sizes.

3.5.2. Block Tensor-Train Format

With the aid of the BTT format [19], several tensors can be represented simul-
taneously by one decomposition. Compared to the standard TT format, the idea
here is to add an extra index to one of the TT cores. Hence, the tensor trains
T1, . . . ,Tb ∈ RN are said to be in the BTT format if they share d − 1 cores and
only differ in one core, i.e. for k = 1, . . . , b we can write

Tk =
[
T(1)

]
⊗ · · · ⊗

[
T(p−1)

]
⊗
[
T

(p)
k

]
⊗
[
T(p+1)

]
⊗ · · · ⊗

[
T(d)

]
, (3.5.1)

where T(i) ∈ Rri−1×ni×ri for i 6= p. The core T(p) can be seen as a tensor of order 4

in Rrp−1×np×rp×b with additional mode b. We then set T(p)
k = T

(p)
:,:,:,k and obtain the

representation (3.5.1). Figure 3.10 shows a visualization of a tensor in BTT format.
By a combination of index permutations and decomposing/contracting the cores,

the mode b can be shifted to a neighboring core of T(p). Thus, we will write in short
T ∈ RN×b for a BTT decomposition T that represents b tensor trains T1, . . . ,Tb at
once. It will be clear from the context to which core the extra index b is attached.

44 3. Tensor Decomposition

We will use the BTT format in order to simultaneously approximate several eigen-
tensors corresponding to an eigenvalue problem formulated in the TT format. This
method will be described in detail in Section 4.3 and numerical examples will be
given in Chapter 12.

n1 np−1 np

b

np+1 nd

Figure 3.10: Block tensor-train format: One of the cores has an extra index b such that
the decomposition above represents b different tensor trains.

3.5.3. Cyclic Tensor-Train Format

The last modified TT format we introduce in this work is the so-called CTT format
or cyclic matrix product states [66]. Instead of requiring r0 = rd = 1 for the first
and the last TT ranks, we now connect the cores in a cycle with r0 = rd. A CTT
representation of a tensor T is then given by

T =

r1∑
k1=1

· · ·
rd∑

kd=1

T
(1)
kd,:,k1

⊗ · · · ⊗T
(d)
kd−1,:,kd

, (3.5.2)

with T(i) ∈ Rri−1×ni×ri and CTT ranks r1, . . . , rd. A graphical representation of
the CTT format is shown in Figure 3.11.
The contraction of the rank indices r1, . . . , rd−1 of all cores in (3.5.2) yields a

super-core of the form


T

(1,...,d)
1,:,...,:,1 . . . T

(1,...,d)
1,:,...,:,rd

...
. . .

...
T

(1,...,d)
rd,:,...,:,1

. . . T
(1,...,d)
rd,:,...,:,rd

 , (3.5.3)

where

T(1,...,d)
p,:,...,:,q =

r1∑
k1=1

· · ·
rd−1∑

kd−1=1

T
(1)
p,:,k1

⊗ · · · ⊗T
(d)
kd−1,:,q

∈ Rn1×···×nd ,

for 1 ≤ p, q ≤ rd. In order to obtain the full representation of T, we then compute

3.5. Modified Tensor-Train Formats 45

the trace of the core given in (3.5.3), i.e.

T = tr
([

T(1)
]
⊗ · · · ⊗

[
T(d)

])
=

rd∑
kd=1

T
(1,...,d)
kd,:,...,:,kd

.

Due to the cyclic structure of a CTT representation of a tensor T, we can easily
change the ordering of the modes n1, . . . , nd. Given a CTT decomposition as de-
fined in (3.5.2), a cyclic permutation of the cores yields a tensor whose indices are
permuted correspondingly. That is, if we define

T̃ = tr
([

T(m)
]
⊗ · · · ⊗

[
T(d)

]
⊗
[
T(1)

]
⊗ · · · ⊗

[
T(m−1)

])
, (3.5.4)

with 1 ≤ m ≤ d, we obtain

T̃xm,...,xd,x1,...,xm−1 = Tx1,...,xm−1,xm,...,xd . (3.5.5)

Of course, the consideration above also holds for the TT format and the canonical
format since both can be seen as special cases of the QTT format. We will use the
CTT format to express pseudoinverses in Section 7.

n1 n2 n3 nd−1 nd

r1 r2 rd−1

rd

Figure 3.11: Cyclic tensor-train format: Cores are coupled in a cycle, which can be seen
as a generalization of the TT format by requiring that r0 = rd ≥ 1.

4
Optimization Problems in the

Tensor-Train Format

In this chapter, we will explain how to solve optimization tasks in the TT format.
There are two types of optimization problems of interest for us: systems of lin-
ear equations and eigenvalue problems. First, we will give an overview of different
optimization algorithms proposed so far. After that, we will focus on two spe-
cific methods, namely the alternating linear scheme and the modified alternating
linear scheme, see [37]. Based on the problem statement, we will consider algo-
rithmic aspects as well as intrinsic properties, e.g. convergence criteria and com-
putational complexity. Both schemes will provide the basis for the examination of
high-dimensional systems in Part III of this thesis.

4.1. Overview

In order to solve optimization problems in the TT format such as systems of linear
equations and eigenvalue problems, respectively, different algorithms have been pro-
posed in recent years. Based on alternating optimizations of the TT cores of a given
tensor train, the alternating linear scheme (ALS) [37] can be seen as the foundation
of various methods. It optimizes a tensor train by constructing low-dimensional
systems of linear equations (or eigenvalue problems) for each core, which then can
be solved by standard numerical methods. Given an initial guess of the solution,
ALS updates the TT cores successively during two bidirectional half sweeps. An
intrinsic property of the ALS algorithm is that the TT ranks are fixed during the
whole iteration, which can be either seen as an advantage or as a disadvantage. On
the one hand, if our initial guess already has high TT ranks and we want to prevent
that these ranks increase, ALS has lower computational costs than MALS and the
accuracies of the computed approximations are comparable. On the other hand, if
the TT ranks are low enough and can be adapted during the optimization steps,
ALS may not be the first choice. In this case, one can employ algorithms such
as, for instance, the modified alternating linear scheme (MALS) [37]. The basic
principle of MALS is the optimization of two TT cores at once by calculating an
optimized super-core, which represents the contraction of two adjacent TT cores.
This super-core is then decomposed and the single components build the updated
TT cores. This method is strongly related to the density matrix renormalization
group algorithm from quantum mechanics [1].
Another way to adapt the TT ranks is the application of alternating minimal

energy methods [74]. The idea of these algorithms is to expand the TT cores of an

47

48 4. Optimization Problems in the Tensor-Train Format

initial guess by a residual tensor train, which is optimized by an ALS-like algorithm.
However, the convergence observed in numerical experiments is comparable to the
one of MALS, see [74]. Thus, in this work, we will focus on ALS and MALS.

4.2. (M)ALS for Systems of Linear Equations

This section is about the approximate solution of a system of linear equations given
in TT format, where we assume that the corresponding TT operator is symmet-
ric positive definite. A direct way to solve systems of linear equations represented
by tensor trains would be to compute the corresponding matricizations and vec-
torizations, respectively, and express the linear equations in a classical way using
matrices and vectors. Applying Algorithm 2 to the obtained solution would then
yield an (approximate) solution in the TT format of the original system. However,
our assumption is that the matricizations/vectorizations cannot be computed as the
number of dimensions and/or the mode sizes are too large making it impossible to
store those tensor unfoldings. In particular, the matricization of the TT operator
can quickly consume a large amount of memory – even for a rather small number of
dimensions. Thus, we need to compute an approximation of the solution of a given
system directly in the TT format.

4.2.1. Problem Statement

We consider a system of linear equations

A ·T = U, (4.2.1)

which is given in the TT format with tensor trains A ∈ RN×N and T,U ∈ RN . As
before, the index set N is given by N = (n1, . . . , nd)

T ∈ Nd with d ∈ N. The spaces
RN and RN×N are defined as in (2.1.2) and (2.1.3), respectively. We assume that
the TT operator A is symmetric positive definite. That is, similar to classical linear
algebra, it holds that

(i) Ax1,y1,x2,y2,...,xd,yd = Ay1,x1,y2,x2,...,yd,xd for any
X = (x1, . . . , xd) ∈ S and Y = (y1, . . . , yd) ∈ S,

(ii) TT ·A ·T > 0 for any tensor T ∈ RN , T 6= 0,

(4.2.2)

where the space S is defined by

S = {1, . . . , n1} × {1, . . . , n2} × · · · × {1, . . . , nd},

4.2. (M)ALS for Systems of Linear Equations 49

and 0 denotes the tensor in RN with 0x1,...,xd = 0 for all X = (x1, . . . , xd) ∈ S. The
properties given in (4.2.2) are equivalent to

(i) Ax,y = Ay,x for 1 ≤ x, y ≤ n1 · . . . · nd,

(ii) vT ·A · v > 0 for any vector v ∈ Rn1·...·nd , v 6= (0, . . . , 0)T ,

where we consider the natural matricization A of the operator A, see Section 2.4.

Theorem 4.2.1. The solution of the system of linear equations (4.2.1) is the min-
imizer of the functional J given by

J(T) =
1

2
TT AT − UT T. (4.2.3)

Proof. From Theorem 2.4.5, we know that the equation (4.2.3) is equivalent to

J(T) =
1

2
vec(T)T ·mat(A) · vec(T)− vec(U)T · vec(T)

=
1

2
〈mat(A) · vec(T), vec(T)〉 − 〈vec(U), vec(T)〉,

with 〈·, ·〉 denoting the scalar product in Euclidean space. Thus, we can consider a
classical system of the form Av = w and the functional J(v) = 1

2〈A · v, v〉 − 〈w, v〉
in order to prove the assertion. Assume that the vector v is the solution of Av = w.
Since A is symmetric positive definite, A is also invertible and, therefore, v is the
unique solution. The gradient of J at point v is given by

∇J(v) = Av − w = 0.

The Hessian matrix of J is equal to the positive definite matrix A, which implies
that v is the minimizer of the functional J . If, on the other hand, the vector v
minimizes the functional J , it holds that ∇J(v) = 0 and therefore Av = w.

4.2.2. Retraction Operators

The key quantities which we will consider in order to describe ALS and MALS are
the so-called retraction operators, see [37], which are defined in terms of a tensor
train T ∈ RN with modes n1, . . . , nd and TT ranks r0, . . . , rd.

Definition 4.2.2. The retraction operator Qi ∈ Rn1×···×nd×m for ALS with
m = ri−1 · ni · ri, is defined as the tensor which results from replacing the i-th
TT core of a given tensor train T with I(i) ∈ Rri−1×ni×ri×m. The tensor I(i) is

50 4. Optimization Problems in the Tensor-Train Format

given by

I
(i)

ki−1,xi,ki,li−1,yi,li
= δki−1,li−1

· δxi,yi · δki,li . (4.2.4)

In (4.2.4), we use the notation introduced in Section 2.4. The tensor I(i) can be
seen as a permuted and reshaped version of an identity tensor, see Example 2.1.1. In
order to describe the construction of the retraction operatorQi, we use the graphical
representation introduced in Section 2.3, see Figure 4.1.

m = ri−1 · ni · ri

n1 n2 ni−1 ni ni+1 nd−1 nd

r1 ri−1 ri rd−1

Figure 4.1: Construction of the retraction operators for ALS: For the construction of Qi,
the TT cores T(j) (depicted by gray circles), j 6= i, are coupled with the tensor I(i) of order
4 (depicted by a white circle).

Contracting Qi with a vector v ∈ Rm results in a tensor train T′ ∈ RN which has
the same cores as the tensor trainT except for the i-th core. This TT core is replaced
by a tensorized version of v, also called folding [37]. For the sake of simplicity, we
write Qi · v instead of the contraction notation 〈Qi, v〉m, see Section 2.2.2. We then
obtain

Qi · v =
[
T(i)

]
⊗ · · · ⊗

[
T(i−1)

]
⊗
[
〈I(i), v〉m

]
⊗
[
T(i+1)

]
⊗ · · · ⊗

[
T(d)

]
. (4.2.5)

with

(
〈I(i), v〉m

)
ki−1,xi,ki

=

ri−1∑
li−1=1

ni∑
yi=1

ri∑
li=1

I
(i)

ki−1,xi,ki,li−1,yi,li
· vli−1,yi,li

=

ri−1∑
li−1=1

ni∑
yi=1

ri∑
li=1

δki−1,li−1
· δxi,yi · δki,li · vli−1,yi,li

= vki−1,xi,ki
.

In a similar way, we define the retraction operator Qi,i+1, i = 1, . . . , d − 1, for
MALS.

4.2. (M)ALS for Systems of Linear Equations 51

m = ri−1 · ni · ni+1 · ri+1

n1 n2 ni−1 ni ni+1 ni+2 nd−1 nd

r1 ri−1 ri+1 rd−1

Figure 4.2: Construction of the retraction operators for MALS: For the construction of
Qi,i+1, the TT cores T(j) (depicted by gray circles), j 6= i and j 6= i + 1, are coupled with
the tensor I(i,i+1) of order 5 (depicted by a white circle).

Definition 4.2.3. The retraction operator Qi,i+1 ∈ Rn1×···×nd×m for MALS,
m = ri−1 · ni · ni+1 · ri+1, is defined as the tensor which results from replacing
the i-th and the (i + 1)-th TT core of a given tensor train T with the tensor
I(i,i+1) ∈ Rri−1×ni×ni+1×ri+1×m. I(i,i+1) is given by

I
(i,i+1)

ki−1,xi,xi+1,ki+1,li−1,yi,yi+1,li+1
= δki−1,li−1

· δxi,yi · δxi+1,yi+1 · δki+1,li+1
. (4.2.6)

See Figure 4.2 for a visualization of Qi,i+1. Analogously to (4.2.5), we then define
the product Qi,i+1 · v with v ∈ Rm as

Qi,i+1 · v =
[
T(i)

]
⊗ · · · ⊗

[
T(i−1)

]
⊗
[
V
]
⊗
[
T(i+1)

]
⊗ · · · ⊗

[
T(d)

]
, (4.2.7)

with V = 〈I(i,i+1), v〉m ∈ Rri−1×ni×ni+1×ri+1 being a super-core containing the
modes ni and ni+1. By decomposing this core, i.e. applying a QR factorization

or SVD to V

∣∣∣∣ni+1,ri+1

ri−1,ni
and folding the resulting matrices, we obtain two TT cores

V1 ∈ Rri−1×ni×ri and V2 ∈ Rri×ni+1×ri+1 , where ri is the new TT rank given by
the (truncated) decomposition, such that

Qi,i+1 · v =
[
T(i)

]
⊗ · · · ⊗

[
T(i−1)

]
⊗
[
V1

]
⊗
[
V2

]
⊗
[
T(i+2)

]
⊗ · · · ⊗

[
T(d)

]
.

With the aid of the retraction operators, we are able to construct a series of
reduced systems of linear equations by fixing all cores except one (ALS) or two
(MALS), respectively. The solution of the lower-dimensional system then repre-
sents the vectorization of the optimized TT core. However, before we go into the
details in the next section, we show that the retraction operators Qi and Qi,i+1

are orthonormal under the assumption that the cores have an orthonormal struc-
ture, cf. [37]. Similar to the notations (4.2.5) and (4.2.7) for the multiplication
of the retraction operators with a vector, we introduce the notations QT

i ·Qi and
QT
i,i+1 · Qi,i+1, respectively, for the contraction of the operators with themselves,

cf. Figure 4.3.

52 4. Optimization Problems in the Tensor-Train Format

m

m

n1 ni−1 ni ni+1 nd =

m

m

= I ∈ Rm×m

(a)

m

m

n1 ni−1 ni ni+1 ni+2 nd =

m

m

= I ∈ Rm×m

(b)

Figure 4.3: Orthonormality of the retraction operators: (a) Contraction of Qi with itself.
Since left- and right-orthonormal cores cancel out, the result is the identity matrix in Rm×m
with m = ri−1 ·ni · ri. (b) Contraction of Qi,i+1 with itself, the result is the identity matrix
in Rm×m with m = ri−1 · ni · ni+1 · ri+1.

Theorem 4.2.4. Provided that the TT cores T(j) are left-orthonormal for
j = 1, . . . , i − 1 and right-orthonormal for j = i + 1, . . . , d (j = i + 2, . . . , d for
MALS), the retraction operators Qi and Qi,i+1 satisfy

QT
i ·Qi = I ∈ R(ri−1·ni·ri)×(ri−1·ni·ri),

and

QT
i,i+1 ·Qi,i+1 = I ∈ R(ri−1·ni·ni+1·ri+1)×(ri−1·ni·ni+1·ri+1),

where I denotes the identity matrix in the respective space.

Proof. As illustrated in Figure 4.3, the contraction of the retraction operators
yields a sequence of identity matrices, cf. Figure 3.7, leading to the contraction of
I(i) and I(i,i+1) with themselves. It follows from the definitions (4.2.4) and (4.2.6)
that the results are identity matrices.

4.2.3. Computational Scheme

Instead of finding the minimizer of the functional J given in (4.2.3) in a single step,
which may be infeasible for high-dimensional tensors, the idea of ALS and MALS,

4.2. (M)ALS for Systems of Linear Equations 53

respectively, is to optimize the TT cores of a given initial guess T ∈ RN successively.
In order to do that, we consider the corresponding functionals of the form

(J ◦Qi)(v) =
1

2
vTQT

i AQiv − vTQT
i U, (4.2.8)

or, in the MALS case,

(J ◦Qi,i+1)(w) =
1

2
wTQT

i,i+1AQi,i+1w − wTQT
i,i+1U, (4.2.9)

where Qi and Qi,i+1 are the retraction operators as defined above. The arguments
v and w are vectors of suitable length, i.e. v ∈ Rri−1·ni·ri and w ∈ Rri−1·ni·ni+1·ri+1 .
For stationary points, the gradients of (4.2.8) and (4.2.9), respectively, are equal to
zero, i.e.

∇(J ◦Qi)(v) = QT
i AQiv −QT

i U = 0 ∈ Rri−1·ni·ri ,

∇(J ◦Qi,i+1)(w) = QT
i,i+1AQi,i+1w −QT

i,i+1U = 0 ∈ Rri−1·ni·ni+1·ri+1 .

Thus, we can solve a lower-dimensional classical system of linear equations in order
to optimize a single TT core. Defining Ai = QT

i AQi, ui = QT
i U,

Ai,i+1 = QT
i,i+1AQi,i+1, and ui,i+1 = QT

i U, the optimization problems in each
iteration step correspond to solving

Aiv = ui, i = 1, . . . , d, (4.2.10)

and

Ai,i+1w = ui,i+1, i = 1, . . . , d− 1, (4.2.11)

respectively. As shown in [37], the matrices Ai and Ai,i+1 are symmetric positive
definite.

Theorem 4.2.5. Assuming that the fixed TT cores satisfy the properties described
in Theorem 4.2.4, the systems of linear equations of the form (4.2.10) and (4.2.11),
respectively, have a unique solution.

Proof. Since the TT operator A is symmetric, it holds that ATi = Ai and
ATi,i+1 = Ai,i+1. Furthermore, Qi and Qi,i+1 are injective with left inverses QT

i

and QT
i,i+1, respectively. Therefore, Qiv = 0 (Qi,i+1w = 0) if and only if v = 0

(w = 0). This and property (ii) from (4.2.2) imply that vTAiv > 0 for v 6= 0 and
wTAi,i+1w > 0 for w 6= 0. Thus, the matrices Ai and Ai,i+1 are symmetric positive
definite and (4.2.10) and (4.2.11) have a unique solution.

54 4. Optimization Problems in the Tensor-Train Format

Given a right-orthonormal tensor train T, the basic idea of ALS and MALS,
respectively, is to optimize the cores T(1) to T(d) (first half sweep) ensuring that the
corresponding retraction operators satisfy the properties described in Theorem 4.2.4
in every iteration step. Afterwards, the cores are optimized in reverse order (second
half sweep). The result is then again a right-orthonormal tensor train approximating
the solution of (4.2.1). This procedure can also be repeated in order to increase the
accuracy of the solution. Adaption to left-orthonormal tensor trains is also possible.
Here, we describe both computational schemes using the graphical representation
of tensor trains, see Figure 4.4 and Figure 4.5. A consideration from an algorithmic
point of view is given in the next section. Further properties of the ALS and MALS
algorithms for systems of linear equations will be examined in Section 4.4.

LA
i−1 RA

i+1

LU
i−1 RU

i+1

Qi

A

QT
i

=

U

QT
i

Figure 4.4: Illustration of ALS: The tensor I(i) is omitted for the sake of simplicity. The
TT operator A (depicted by orange circles) is contracted with the retraction operator Qi

(depicted by blue circles) from both sides. Contracting the tensor train U (depicted by
green circles) with the retraction operator provides the right-hand side. The aim is to find
an optimized tensor core (red circle) such that the contraction with QT

i AQi yields QT
i U.

The tensors LA
i−1 and RA

i+1 can be used for the evaluation of the left-hand side.

4.2.4. Algorithmic Aspects

In order to ensure the left- and right-orthonormality, respectively, of the fixed TT
cores in every iteration step (and therefore the stability of the method), (M)ALS
decomposes the updated TT core T(i) ∈ Rri−1×ni×ri , which is obtained by solving
(4.2.10) and folding the solution, see [37]. That is, during the first half sweep of
ALS, we apply a full QR decomposition and only keep the left-orthonormal part,
i.e. after computing the decomposition of the left-unfolding (3.4.5)

L
(
T(i)

)
= Q ·R, (4.2.12)

with Q ∈ R(ri−1·ni)×ri and R ∈ Rri×ri , we set T(i) to a reshaped version of Q such
that L

(
T(i)

)
= Q. The non-orthonormal part is then shifted to the next core,

4.2. (M)ALS for Systems of Linear Equations 55

i.e. we compute R · R
(
T(i+1)

)
, where R

(
T(i+1)

)
denotes the right-unfolding of

T(i+1), and set the (i + 1)-th core to the folding of the result. However, we can
omit the latter calculation since the succeeding TT core is optimized in the next
iteration step anyway.

LA
i−1 RA

i+2

LU
i−1 RU

i+2

Qi,i+1

A

QT
i,i+1

=

U

QT
i,i+1

Figure 4.5: Illustration of MALS: Again, the tensor I(i,i+1) is omitted. This time, A (de-
picted by orange circles) and U (depicted by green circles) are contracted with the retraction
operator Qi,i+1 (depicted by blue circles). The aim is to find an optimized super-core (de-
picted by red circles) which provides, after decomposing, the updated cores T(i) and T(i+1).
The tensors LA

i−1 and RA
i+2 can be used for the evaluation of the left-hand side.

During the back sweep of ALS, the orthonormalization is adapted to the inverted
direction. Now, we compute

(
R
(
T(i)

))T
= Q ·R ⇔ R

(
T(i)

)
= RT ·QT , (4.2.13)

with Q ∈ R(ni·ri)×ri−1 and R ∈ Rri−1×ri−1 , and set T(i) to a reshaped version of
QT . Again, we can omit the contraction of the matrix RT with the core T(i−1).
Eventually, when optimizing the first core at the end of the second half sweep, T(1)

is set to the folded solution of (4.2.10), without subsequent decomposition.
Considering the optimization of T(i) and T(i+1) by employing MALS, we only

keep the core T(i) during the first half sweep and the core T(i+1) during the second
half sweep. We apply a compact SVD of the solution w of (4.2.11), i.e. we reshape
w ∈ Rri−1·ni·ni+1·ri+1 into W ∈ R(ri−1·ni)×(ni+1·ri+1) and compute

W = U · Σ · V T , (4.2.14)

with U ∈ R(ri−1·ni)×s, Σ ∈ Rs×s, and V ∈ R(ni+1·ri+1)×s. Note that Σ only contains
the non-zero singular values of W such that s ≤ min{ri−1 ·ni, ni+1 · ri+1}. Further-
more, we also consider a truncation of the SVD (4.2.14) in order to control the TT
ranks of the tensor train T. For increasing i, we set the TT core T(i) to a reshaped

56 4. Optimization Problems in the Tensor-Train Format

version of U . During the back sweep, the core T(i+1) is replaced by a folding of
V T . In the last iteration step of the second half sweep (solve A1,2 v = u1,2), we
additionally set T(1) to a reshaped version of U · Σ such that the output of MALS
is again a right-orthonormal tensor train.

The algorithms iteratively compute the tensors needed for the construction of
the systems of linear equations (4.2.10) and (4.2.11), respectively. Considering Fig-
ure 4.4, the matrix Ai can be seen as a contraction of a tensor LA

i−1 of order 3
from the left and a tensor RA

i+1, also of order 3, from the right with the TT core
A(i) of the operator. The matrix Ai is then the matricization of the result, where
corresponding free modes are joined in order to form the row and column indices,
i.e.

Ai =

〈〈
LA
i−1,A

(i)
〉
Ri−1

,RA
i+1

〉
Ri

∣∣∣∣r̃i−1,ñi,r̃i

ri−1,ni,ri
, (4.2.15)

with Ri−1 and Ri being the rank indices of A(i) and ri−1 and ri being the rank
indices of T(i). The quantities r̃i−1, ñi, and r̃i are introduced for a better overview.
They represent the upper free modes from PT

i AQi in Figure 4.4. For the tensors
LA
i , i = 0, . . . , d − 1, and RA

i , i = 2, . . . , d + 1 , we define LA
0 = 1 and RA

d+1 = 1.
Then, the preceding/succeeding tensors can be computed by the recursive formulae

LA
i =

〈〈〈
LA
i−1,T

(i)
〉
ri−1

,A(i)

〉
Ri−1,ni

,T(i)

〉
r̃i−1,ñi

for 1 ≤ i ≤ d− 1, (4.2.16)

and

RA
i =

〈〈〈
RA
i+1,T

(i)
〉
ri
,A(i)

〉
Ri,ni

,T(i)

〉
r̃i,ñi

for 2 ≤ i ≤ d, (4.2.17)

respectively. Analogously to (4.2.15), ui is the contraction of U(i) ∈ Rsi−1×ni×si

with recursively defined order-2 tensors LU
i−1 and RU

i+1 (LU
0 = RU

d+1 = 1), i.e.

ui =

〈〈
LU
i−1,U

(i)
〉
si−1

,RU
i+1

〉
si

∣∣∣∣ri−1,ni,ri
,

where

LU
i =

〈〈
LU
i−1,T

(i)
〉
ri−1

,U(i)

〉
si−1,ni

for 1 ≤ i ≤ d− 1, (4.2.18)

4.3. (M)ALS for Eigenvalue Problems 57

and

RU
i =

〈〈
RU
i+1,T

(i)
〉
ri
,U(i)

〉
si,ni

for 2 ≤ i ≤ d. (4.2.19)

This is also shown in Figure 4.4. The computations (4.2.16), (4.2.17), (4.2.18),
and (4.2.19) can be done, for instance, in Matlab using the functions permute
and reshape. However, the matrix Ai does not have to be computed explicitly.
Applying iterative solvers for systems of linear equations with symmetric positive
definite matrices, see [64], we can reduce the computational effort for evaluating
Ai v significantly, cf. [37]. Furthermore, the quantities RA

i and RU
i for i = d, . . . , 2

can be precomputed such that we only have to construct the tensors LA
i and LU

i

during the first half sweep. For the second half sweep, we then keep LA
i and LU

i

for i = 1, . . . , d− 1 and compute the tensors RA
i and RU

i for a certain number i at
each iteration step.
The systems of linear equations (4.2.11) corresponding to MALS – if computed

explicitly – are given by

Ai,i+1 =

〈〈〈
LA
i−1,A

(i)
〉
Ri−1

,A(i+1)

〉
Ri

,RA
i+2

〉
Ri+1

∣∣∣∣r̃i−1,ñi,ñi+1,r̃i

ri−1,ni,ni+1,ri
,

and

ui,i+1 =

〈〈〈
LU
i−1,U

(i)
〉
si−1

,U(i+1)

〉
si

,RU
i+2

〉
si+1

∣∣∣∣ri−1,ni,ni+1,ri
,

for i = 1, . . . , d−1, see Figure 4.5. The pseudocodes of ALS and MALS are presented
in Algorithm 11 and in Algorithm 12, respectively, see Appendix A.2.

4.3. (M)ALS for Eigenvalue Problems

After describing (M)ALS for systems of linear equations, we now want to consider
eigenvalue problems in the TT format. As we will see, the basic procedures of ALS
and MALS for eigenvalue problems are similar to the ones for systems of linear
equations. The main difference is the type of optimization problem which has to be
solved in the iteration steps.

4.3.1. Problem Statement

We consider an eigenvalue problem

A ·T = λ ·T, T 6= 0 (4.3.1)

58 4. Optimization Problems in the Tensor-Train Format

which is given in the TT format with tensor trains A ∈ RN×N and T ∈ RN . Note
that also 0 is a tensor in RN . The scalar λ ∈ R is then an eigenvalue of A and it
holds that mat(A) · vec(T) = λ · vec(T). Again, we assume that the TT operator
A is symmetric, but not necessarily positive definite. In order to find solutions of
(4.3.1), it was shown in [37] that we can consider a functional J which is given by
the Rayleigh quotient [75].

Theorem 4.3.1. The solutions of the eigenvalue problems (4.3.1) are the stationary
points of the functional J given by

J(T) =
1

2

TTAT

TTT
. (4.3.2)

Proof. As in the proof of Theorem 4.2.1, we can reduce (4.3.1) to a standard
eigenvalue problem Av = λv with a symmetric matrix A and a vector v. Thus, we
consider the functional J(v) = (vTAv)/(2vT v) with

∇J(v) =
‖v‖22 ·Av − (vTAv) · v

‖v‖42
.

For stationary points, it then holds that

Av =
vTAv

vT v
v,

where the fraction on the right-hand side is exactly the Rayleigh quotient of A and
v. We see that any stationary point v has to be an eigenvector of the matrix A.
Assuming the corresponding eigenvalue is λv, we indeed obtain

Av =
vTλvv

vT v
v = λvv.

4.3.2. Computational Scheme

By following Theorem 4.3.1, we will focus on finding stationary points of the func-
tional J instead of considering the eigenvalue problem (4.3.1). Similar to the treat-
ment of systems of linear equations, we want to optimize the TT cores of an initial
guess iteratively by considering the function composition

(J ◦Qi)(v) =
1

2

vTQT
i AQiv

vTQT
i Qiv

.

4.4. Properties of (M)ALS 59

Assuming that the fixed TT cores satisfy the properties described in Theorem 4.2.4,
it holds that

∇(J ◦Qi)(v) = 0 ⇔ Aiv =
vTAiv

vT v
v,

where Ai = QT
i AQi and the fraction on the right-hand side is the Rayleigh quotient

of Ai and v. Thus, in order to compute the smallest or largest eigenvalue of the TT
operator A, we minimize or maximize, respectively, the functional J ◦Qi which is
the same as finding the smallest/largest eigenvalue of Ai.
Additionally, we utilize the BTT format, see Section 3.5.2. As presented in [19],

it is possible to approximate the b smallest and largest eigenvalues, respectively, of
the operator A in one step. That is, we compute the b smallest/largest eigenvectors
of Ai and then adapt the orthonormalization procedure of ALS such that the extra
index is shifted to the next core. Since a tensor in BTT format represents different
tensor trains by replacing only one core, it is extremely unlikely to be able to
accurately approximate a large number of eigentensors at once. However, as we will
see in Chapter 12, one can find examples where it is possible to compute the most
interesting eigenvalues and eigentensors of a TT operator simultaneously.
For MALS, we compute the extremal eigenvalues of the matrix Ai,i+1 and then

split the resulting tensor in an orthonormal part and a part carrying the extra in-
dex b. As for systems of linear equations, we rely on iterative solvers for symmetric
eigenvalue problems, see [64]. Again, cf. Section 4.2.4, we combine the basic compu-
tational scheme of ALS and MALS, respectively, with the recursive computation of
the tensors LA

i , R
A
i and an orthonormalization procedure which also shifts the BTT

mode b. The resulting methods are shown in Algorithm 13 and 14, respectively, see
Appendix A.2.

4.4. Properties of (M)ALS

At the end of this chapter, we want to mention important properties of (M)ALS
including computational aspects and convergence properties. Table 4.1 shows the
computational complexities of Algorithms 11-14, see Appendix A.2. Here, we denote
the maximum TT rank of T and U by r, the maximum TT rank of A by R, and
the maximum mode size by n.
For solving systems of linear equations as well as for the calculation of eigen-

values, the computations of the essential tensors (i.e. LAi , LUi , RA
i , RU

i) can be
estimated by O(d r3R2 n2). Applying iterative solvers for the low-dimensional sub-
problems, e.g. conjugate gradient method or power iteration [64], the dominant
operations are the evaluations of Ai v and Ai,i+1 v, respectively. This can be done
in O(r3R2 n2) (ALS) and O(r3R2 n3) (MALS), respectively, contracting the cor-
responding tensors in a suitable way, cf. [37]. Multiplication by d and the number
of maximum iterations γ of the inner solvers yields the estimations for (M)ALS for
systems of linear equations. Considering eigenvalue problems, we obtain the same
complexities for the approximation of one eigenpair. Thus, the computation of the b

60 4. Optimization Problems in the Tensor-Train Format

Table 4.1.: Computational complexity of (M)ALS: The number d denotes the order of the
involved tensors, n the maximum of all mode sizes, r and R the maximum TT ranks of the
tensor trains in RN and of the TT operator in RN×N , respectively, γ the number of itera-
tions of iterative solvers for the low-dimensional systems, and b the number of eigenvalues
and eigentensors to be computed using the (M)ALS algorithms.

Algorithm Complexity
ALS for systems of linear equations O(γ d r3R2 n2)

MALS for systems of linear equations O(γ d r3R2 n3)
ALS for eigenvalue problems O(b γ d r3R2 n2)
MALS for eigenvalue problems O(b γ d r3R2 n3)

smallest/largest eigenvalues has the time complexities given in Table 4.1. Note that
the QR-factorizations and SVDs implemented in the (M)ALS algorithms are also
included in the estimations. Computing a QR factorization of a matrix A ∈ Rk×l,
k ≥ l requires O(k l2), see [64], while an SVD requires O(k l2 + l3), see [76]. Storing
all involved tensors requires O(d r2R2 n2).
As we have already shown, the reduced matrices Ai and Ai,i+1 are symmetric

if the TT operator A itself is symmetric and, additionally, positive definite if A
is positive definite. Let Λmin and Λmax denote the smallest and largest eigenvalue,
respectively, of the operator A. Due to the symmetry of A, the extremal eigenvalues
λmin, λmax of the reduced matrices satisfy

λmin = min
v∈Rm
v 6=0

vT Av

vT v
≥ min

T∈RN
T6=0

TT AT

TT T
= Λmin,

and

λmax = max
v∈Rm
v 6=0

vT Av

vT v
≤ max

T∈RN
T6=0

TT AT

TT T
= Λmax,

with A = Ai, m = ri−1 ·ni ·ri and A = Ai,i+1, m = ri−1 ·ni ·ni+1 ·ri+1, respectively.
If A is also positive definite, all eigenvalues of A and A are positive. As shown in
[37], we obtain for the condition numbers

cond(A) =
λmax

λmin
≤ Λmax

Λmin
= cond(A).

That is, for any optimization step of (M)ALS, the condition number of Ai and
Ai,i+1, respectively, is bounded by the condition number of the given TT operator.
For systems of linear equations, if the given TT operator A ∈ RN×N is not sym-

4.5. Methods for Solving Initial Value Problems 61

metric positive definite, we could consider the operator AT A, which is the counter-
part to a Gram matrix. The solution of the system A ·T = U is also the solution of
the normal equation (ATA) ·T = ATU with ATA being symmetric positive defi-
nite. However, as we explained in Section 3.4.2, the TT ranks are squared due to the
multiplication of two tensor trains. That is, the treatment of ATA may be much
more expensive in terms of computational complexity and storage consumption than
the treatment of A. Additionally, it holds that cond(ATA) = cond(A)2.
In [37], it was shown that ALS and MALS for systems of linear equations and

eigenvalue problems are monotonic in the sense that J(U) ≤ J(T), where J is
one of the functionals (4.2.3), (4.3.2) and U is the result of (M)ALS after one
half sweep with initial guess T. But, even though it is clear that the treatment
of the functionals is equivalent to solving the original problems, we cannot ensure
the convergence of ALS to the solution (or a low-rank TT approximation of it)
in any case. We have to include the possible existence of local minima/maxima
of the parametrized problems – even if the minimum/maximum of the functional
J is unique. However, extensive numerical tests and practical experience show a
remarkable convergence behavior of (M)ALS. Furthermore, there are cases where
the convergence of (M)ALS can be shown. Under several assumptions, the local
linear convergence of ALS for convex functionals was proven in [77]. Additionally,
one can ensure the convergence of ALS to an exact TT decomposition under certain
conditions if the algorithm is used for the approximation of a given tensor T with
known TT ranks, see [37].

4.5. Methods for Solving Initial Value Problems

The algorithms introduced in the previous sections will be later employed for the
purpose of solving initial value problems, in particular ordinary differential equations
(ODEs) given by a Markovian master equation, see Section 5, together with an
initial probability distribution P0 ∈ RN at time t0 = 0. In order to compute
time-dependent or stationary distributions, we will use implicit integration schemes
such as the implicit Euler method [78] or the trapezoidal rule [79]. The reason
for this is that the calculation of the distribution Pk+1 at time tk+1 from Pk at
time tk requires at least one multiplication of a TT operator with a tensor train
when applying explicit methods to linear ODEs. As mentioned in Section 3.4.2,
the product has TT ranks equal to the products of the corresponding ranks of
both tensors. Thus, after each iteration, we would have to truncate the ranks of
the resulting tensor Pk+1 in order to keep the computations feasible, e.g. by using
Algorithm 10 in combination with truncated SVDs.
For an implicit method, on the other hand, we have to solve a system of linear

equations in the TT format at every iteration step. One of the most basic implicit
schemes is the implicit Euler method, which, for a linear ODE

d

dt
P(t) = AP(t), (4.5.1)

62 4. Optimization Problems in the Tensor-Train Format

with A ∈ RN×N (in TT format), requires to solve systems of linear equations of the
form

(I− τA)Pk = Pk−1, k > 0, (4.5.2)

where τ ∈ R+ denotes the step size and I ∈ RN×N is the identity tensor, see
Example 2.1.1. For later considerations, we define the residual error eIE,k as

eIE,k =
‖(I− τA)Pk −Pk−1‖2

‖Pk−1‖2
, (4.5.3)

where ‖ . ‖2 denotes the 2-norm considered in Section 2.5 and Section 3.4.4. Using
an integration scheme of higher order, we will also apply the second-order trapezoidal
rule for transient processes. The systems of linear equations in each integration step
then become

(
I− τ

2
A
)
Pk =

(
I +

τ

2
A
)
Pk−1, k > 0. (4.5.4)

In this case, the residual error for the evaluation of the accuracy of our results is
given by

eTR,k =

∥∥(I− τ
2A
)
Pk −

(
I + τ

2A
)
Pk−1

∥∥
2∥∥(I + τ

2A
)
Pk−1

∥∥
2

. (4.5.5)

In order to approximate the solutions of (4.5.2) and (4.5.4), ALS and MALS,
respectively, are used. In addition to the fact that implicit integration schemes are
more suitable for the solution of stiff equations than explicit methods, we have con-
trol over the ranks of the TT approximations without implementing computationally
expensive tensor multiplications and subsequent rank truncations.
If the ODE (4.5.1) converges to a unique stationary distribution, we can reformu-

late the problem of computing this distribution as an eigenvalue problem. That is,
we consider the problem

(I + A)P = λP, ‖P‖1 = 1, (4.5.6)

using the methods presented in Section 4.3.

“It is the curse of dimensionality, a malediction that
has plagued the scientist from the earliest days.”

Richard Bellman,
Adaptive Control Processes: A Guided Tour

Part II

Progress in Tensor-Train
Decompositions

In Part II of this thesis, we will present our own contribution to the concept of
tensor-train decompositions, see [6, 9, 14]. After proposing a method to reformulate
Markovian master equations in a tensor-based notation in Chapter 5, we will intro-
duce SLIM decompositions corresponding to nearest-neighbor interaction systems
in Chapter 6. Furthermore, in Chapter 7, we will describe how to compute pseu-
doinverses of certain matricizations of a tensor and present a tensor-based version
of the dynamic mode decomposition. In Chapter 8, we will show how to compute
a finite-dimensional approximation of the Perron–Frobenius operator in the tensor-
train format.

64

5
Tensor Representation of

Markovian Master Equations

In this chapter, we will explain how to derive tensor representations of Markovian
master equations [48] corresponding to potentially high-dimensional systems. A
special type of Markovian master equation describing the time-evolution of chemical
systems, the chemical master equations [80], was already considered in a tensor-
based context, e.g. in [4, 5]. Here, we will extend this method in order to express
arbitrary Markovian master equations in a tensor notation.

5.1. Markov Jump Processes

Let us first recapitulate the definition of a continuous-time Markov process on
a finite state space S. A so-called Markov jump process is a stochastic process
{X (t) : t ∈ R+

0 }, see e.g. [81], that has the Markov property [47]

P(X (tk+1) = Xk+1 | X (tk) = Xk ∧ X (tk−1) = Xk−1 ∧ · · · ∧ X (t0) = X0)

= P(X (tk+1) = Xk+1 | X (tk) = Xk),
(5.1.1)

for any finite set 0 ≤ t0 < t1 < · · · < tk < tk+1 of times and corresponding set
X0, X1, . . . , Xk+1 of states in S. Here, P denotes the probability measure corre-
sponding to the probability space of the stochastic process. In particular, we will
consider homogeneous Markov jump processes where the right-hand side of (5.1.1)
only depends on δt = tk+1 − tk.
Now, let P (X, t) = P(X (t) = X) denote the probability that the system is in state

X ∈ S at time t under the condition that it was in state X0 at time t0. For the
sake of simplicity, the dependence on the initial state is omitted. The probability
distribution P (X, t) then obeys a Markovian Master Equation (MME) [48], given
by

∂

∂t
P (X, t) =

∑
Y

W (X|Y)P (Y, t)−
∑
Y

W (Y |X)P (X, t), (5.1.2)

65

66 5. Tensor Representation of Markovian Master Equations

where W (Y |X) is the transition rate to go from state X to state Y , i.e.

W (Y |X) = lim
t↘0

P(X (t) = Y |X (0) = X)− P(X (0) = Y |X (0) = X)

t
,

for all X,Y ∈ S. If we consider a finite state space, i.e. we identify the states by the
set of natural numbers S = {1, . . . , n}, n ∈ N, we can express (5.1.2) as an ODE of
the form

∂

∂t
P (t) = W T · P (t), (5.1.3)

with P (t) = (P (1, t), . . . , P (n, t))T ∈ Rn and W = (W (y|x))x,y∈S . The matrix
W ∈ Rn×n is called rate matrix or infinitesimal generator and it holds that
W (y|x) ≥ 0 for all x, y ∈ S, x 6= y, and

∑
y∈SW (y|x) = 0, see [82].

5.2. Tensor-Based Representation of Infinitesimal
Generators

The reformulation (5.1.3) is only feasible if we consider a moderate number of states.
The aim here is to obtain a tensor-based counterpart of (5.1.3) for Markov jump
processes on potentially high-dimensional state spaces. To achieve this, we first
rewrite (5.1.2) in the form of a chemical master equation (CME). The reason for
that is, on the one hand, that we can later apply this reformulation directly to
chemical reaction networks considered in Chapter 9 and, on the other hand, that
more general Markov processes on high-dimensional state spaces can be expressed
in this notation, see [6, 9] as well as Chapter 10. Furthermore, the theory for
tensor-based reformulations of CMEs was already provided in, e.g., [5].
If W (Y |X) 6= 0, we say there is an event Rµ, µ ∈ N, that causes a transition from

state X to Y , Y 6= X. We assume that the state space is given by

S = {1, . . . , n1} × {1, . . . , n2} × · · · × {1, . . . , nd}, (5.2.1)

such that a state X ∈ S is a vector (x1, . . . , xd)
T ∈ Nd. We denote the net changes

in the state vector X caused by a single execution of the event Rµ by the vector
ξµ ∈ Zd, i.e.

ξµ = Y −X = (y1 − x1, . . . , yd − xd)T . (5.2.2)

Assuming that the event Rµ – defined by the vector ξµ – can be executed for different
states, i.e. the transition rates for going from X to X + ξµ are non-zero for several

5.2. Tensor-Based Representation of Infinitesimal Generators 67

states X ∈ S, we furthermore define the event propensity aµ as

aµ(X) = W (X + ξµ|X). (5.2.3)

Note that aµ is only non-zero if X and X + ξµ are both in S and X complies with
the requirements that Rµ can be executed, otherwise we set aµ(X) = 0. Thus,
summing over all possible events R1, . . . ,RM,M∈ N, we obtain

∂

∂t
P (X, t) =

M∑
µ=1

aµ(X − ξµ)P (X − ξµ, t)− aµ(X)P (X, t). (5.2.4)

Due to the summation in (5.2.4), we consider exactly all possible states from which
X can be reached and all states that can be reached from X by a single execution
of one of the events Rµ. In fact, equation (5.2.4) has the same structure as a CME.
However, a state does not necessarily represent numbers of molecules as it is the
case for classical CMEs, see Section 9.2.

In order to express (5.2.4) using tensors, we identify each propensity function
aµ : S → R with a tensor aµ ∈ Rn1×···×nd , i.e. for a state X = (x1, . . . , xd)

T ∈ S,
we define

(aµ)x1,...,xd = aµ(X), (5.2.5)

for µ = 1, . . . ,M. Expressing the propensity tensors in the canonical format, we
write

aµ =

rµ∑
k=1

(
a(1)µ

)
k,:
⊗ · · · ⊗

(
a(d)µ

)
k,:
, (5.2.6)

with cores a(i)µ ∈ Rrµ×ni and canonical rank rµ. Additionally, we gather the proba-
bilities P (X, t) in a tensor P(t) ∈ Rn1×···×nd with

(P(t))x1,...,xd = P (X, t).

Definition 5.2.1. Let Gi(k) ∈ Rni×ni denote the shift matrix given by
(Gi(k))x,y := δy−x,k, where δy−x,k represents the Kronecker delta. Then the multi-
dimensional shift operators Gµ and G0 are defined as

Gµ = G1(−ξµ(1))⊗ · · · ⊗Gd(−ξµ(d))

68 5. Tensor Representation of Markovian Master Equations

and

G0 = G1(0)⊗ · · · ⊗Gd(0) =: I.

Note that Gi(0) is simply the identity matrix in Rni×ni . With the aid of this
definition, we now reformulate (5.2.4) in a more compact way as

∂

∂t
P(t) =

M∑
µ=1

(Gµ − I) · diag(aµ)

 ·P(t), (5.2.7)

where we define diag(aµ) to be the tensor product of matrices containing the entries
of
(
a(1)µ

)
k,:
, . . . ,

(
a(d)µ

)
k,:

as diagonals, i.e.

diag(aµ) =

rµ∑
k=1

diag

((
a(1)µ

)
k,:

)
⊗ · · · ⊗ diag

((
a(d)µ

)
k,:

)
, (5.2.8)

for µ = 1, . . . ,M.

Theorem 5.2.2. For any state X = (x1, . . . , xd)
T ∈ S, it holds that

(
∂

∂t
P(t)

)
x1,...,xd

=
∂

∂t
P (X, t).

The proof of Theorem 5.2.2 can be found in Appendix A.1.2 as well as in [6]. In
what follows, we will refer to the tensor operator

A =

M∑
µ=1

(Gµ − I) · diag(aµ) (5.2.9)

as the master-equation operator. The MME (5.2.7) can then be written as
∂
∂tP(t) = A · P(t). The aim is to solve the tensor-based MME by using numer-
ical integration schemes in order to compute stationary distributions as well as to
analyze the transient behavior of the probability distributions. The resulting sys-
tems of linear equations can be solved by applying (M)ALS, see Section 4.

6
Nearest-Neighbor Interaction Systems

in the Tensor-Train Format

An important question when modeling tensor-based networks is the ordering of the
TT cores corresponding to different dimensions of the state space. Dimensions that
strongly correlate should ideally be represented by adjacent TT cores. A specific
type of networks are nearest-neighbor interaction systems, which can be expressed
by a specific TT representation that we presented in [9]. We will see that, using the
proposed TT decomposition, such a system corresponds to the topology of the TT
format.

6.1. Nearest-Neighbor Interaction Systems

Consistent with the terminology of coupled cell systems, see e.g. [83], a nearest-
neighbor interaction system (NNIS) is a network of interacting systems. These
systems, called cells, are coupled in a chain or a ring, i.e. we consider a finite
number of cells Θ1, . . . ,Θd only allowing single-cell events on Θi, i ∈ {1, . . . , d},
and interactions involving two adjacent cells Θi and Θi+1, i ∈ {1, . . . , d− 1}. If the
considered system is cyclic, we also include possible interactions between Θd and
Θ1. Figure 6.1 shows the possible coupling structures of an NNIS.

Θ1 Θ2 Θ3 . . . Θd

(a)

Θ1

Θ2

Θ3

Θd

(b)

Figure 6.1: Visualization of nearest-neighbor interaction systems: Events/interactions
involve only one cell or two cells, respectively. (a) Visualization of a non-cyclic NNIS.
(b) Visualization of a cyclic NNIS.

69

70 6. Nearest-Neighbor Interaction Systems in the Tensor-Train Format

Assuming that each cell Θi can be in ni different states, which are identified by
the set of natural numbers {1, . . . , ni}, the state space S is given by

S = {1, . . . , n1} × {1, . . . , n2} × · · · × {1, . . . , nd}.

Thus, a state of the system is described by a vector X = (x1, . . . , xd)
T ∈ S. In

general, a tensor T ∈ RN = Rn1×···×nd based on nearest-neighbor interactions can
be expressed in the canonical format as

Tx1,...,xd =
d∑
i=1

(Si)xi +
d−1∑
i=1

(Ki,i+1)xi,xi+1
+ (Kd,1)xd,x1 , (6.1.1)

with vectors Si ∈ Rni representing the single-cell events and matrices
Ki,i+1 ∈ Rni×ni+1 representing interactions between the cells Θi and Θi+1. The
last term in (6.1.1) is only required for cyclic NNISs, i.e. the matrix Kd,1 is only
nonzero if there is at least one interaction between Θd and Θ1. An NNIS is called
homogeneous if the cell types and the events/interactions do not depend on the cell
number, i.e.

S1 = S2 = · · · = Sd and K1,2 = K2,3 = · · · = Kd−1,d (= Kd,1),

otherwise we call the system heterogeneous. Consequently, it also holds that the
modes n1, . . . , nd are equal for homogeneous systems. By computing QR decomposi-
tions of the matricesKi,i+1, i = 1, . . . , d, we can construct canonical representations,
i.e.

Ki,i+1 = Q ·R =

βi∑
µ=1

Li,µ ⊗Mi+1,µ, (6.1.2)

with Li,µ ∈ Rni being the µth column of Q, Mi+1,µ ∈ Rni+1 being the (transposed)
µth row of R, and βi being the matrix rank of Ki,i+1 for i = 1, . . . , d. Note that we
set Kd,d+1 = Kd,1 and Md+1,µ = M1,µ. We can now reformulate (6.1.1) as

Tx1,...,xd =

d∑
i=1

(Si)xi +

d∑
i=1

βi∑
µ=1

(Li,µ ⊗Mi+1,µ)xi,xi+1
, (6.1.3)

with xd+1 = x1. Analogously to (6.1.1), a linear operator A ∈ RN×N corresponding

6.2. General SLIM Decomposition 71

to an NNIS can be expressed elementwise as

Ax1,y1,...,xd,yd =

d∑
i=1

(Si)xi,yi +

d−1∑
i=1

(Ki,i+1)xi,yi,xi+1,yi+1
+ (Kd,1)xd,yd,x1,y1 . (6.1.4)

Here, the components Si are matrices and Ki,i+1 are tensors of order 4. Similar

to (6.1.3), by applying QR factorizations to the matricizations Ki,i+1

∣∣∣∣ni+1,ni+1

ni,ni
, we

obtain

Ax1,y1,...,xd,yd =

d∑
i=1

(Si)xi,yi +

d∑
i=1

βi∑
µ=1

(Li,µ ⊗Mi+1,µ)xi,yi,xi+1,yi+1
, (6.1.5)

with matrices Li,µ ∈ Rni×ni and Mi+1,µ ∈ Rni+1×ni+1 (with i + 1 =̂ 1). That is, a
tensorT ∈ RN and a tensor operatorA ∈ RN×N , both describing an NNIS, have the
same type of elementwise representation. Only the types of the components differ,
i.e. the representations are either given by tensor products of vectors or matrices.
As already considered in [5, 9], simple examples for tensors of this form are Ising
models [84, 85] and linearly coupled oscillators [86, 87].

6.2. General SLIM Decomposition

In general, an NNIS can be represented by a canonical tensor constructed only
with elementary tensors where at most two (adjacent) components are unequal to
a vector of ones or to the identity matrix, respectively. That is, the tensor T given
in (6.1.3) can be written as

T =S1 ⊗ 12 ⊗ · · · ⊗ 1d + . . . + 11 ⊗ · · · ⊗ 1d−1 ⊗ Sd

+

β1∑
µ=1

L1,µ ⊗M2,µ ⊗ 13 ⊗ · · · ⊗ 1d

+ . . .

+

βd−1∑
µ=1

11 ⊗ · · · ⊗ 1d−2 ⊗ Ld−1,µ ⊗Md,µ

+

βd∑
µ=1

M1,µ ⊗ 12 ⊗ · · · ⊗ 1d−1 ⊗ Ld,µ,

(6.2.1)

72 6. Nearest-Neighbor Interaction Systems in the Tensor-Train Format

with 1i = (1, . . . , 1)T ∈ Rni and the same components Si, Li,µ, and Mi+1,µ as in
(6.1.3). Considering the tensor operator A given in (6.1.5), we can write

A =S1 ⊗ I2 ⊗ · · · ⊗ Id + . . . + I1 ⊗ · · · ⊗ Id−1 ⊗ Sd

+

β1∑
µ=1

L1,µ ⊗M2,µ ⊗ I3 ⊗ · · · ⊗ Id

+ . . .

+

βd−1∑
µ=1

I1 ⊗ · · · ⊗ Id−2 ⊗ Ld−1,µ ⊗Md,µ

+

βd∑
µ=1

M1,µ ⊗ I2 ⊗ · · · ⊗ Id−1 ⊗ Ld,µ,

(6.2.2)

with identity matrices Ii ∈ Rni×ni and the same components Si, Li,µ, and Mi+1,µ

as in (6.1.5).

In what follows, we will only describe how to derive operator representations in
the TT format since the derivations for (6.2.1) and (6.2.2) are almost identical.
Considering a heterogeneous and cyclic NNIS, we first define the TT cores Li and
Mi+1, i = 1, . . . , d− 1, which contain all matrices Li,µ and Mi+1,µ, respectively, for
µ = 1, . . . , βi, i.e.

[Li] =
[
Li,1 . . . Li,βi

]
∈ R1×ni×ni×βi ,

[Mi+1] =
[
Mi+1,1 . . . Mi+1,βi

]T ∈ Rβi×ni+1×ni+1×1.

Furthermore, for the interactions between the cells Θd and Θ1, we define

[Ld] =
[
Ld,1 . . . Ld,βd

]T ∈ Rβd×nd×nd×1,
[M1] =

[
M1,1 . . . M1,βd

]
∈ R1×n1×n1×βd .

Here, we use the core notation and the definition of a rank-transposed TT core,
see Section 3.4.1. As we already discussed in Section 3.4.5, it is often possible to
derive more compact tensor decompositions in the TT format than in the canonical
format. Let Ii = Ii ∈ Rni×ni and Ji ∈ Rβd×ni×ni×βd be a TT core with

[Ji] =

Ii 0
. . .

0 Ii

 .

6.2. General SLIM Decomposition 73

Since the rank-one tensors of the canonical representation (6.2.2) differ only in a
small number of cores, we can write A as a TT decomposition given by

A =
[
S1 L1 I1 M1

]
⊗


I2 0 0 0
M2 0 0 0
S2 L2 I2 0
0 0 0 J2

⊗ · · ·

· · · ⊗


Id−1 0 0 0
Md−1 0 0 0
Sd−1 Ld−1 Id−1 0

0 0 0 Jd−1

⊗

Id
Md

Sd
Ld

 .
(6.2.3)

From now on, we will call the TT decomposition given in (6.2.3) SLIM decompo-
sition. The origin of this term is explained by the structure of the first core. The
proof of the next theorem can be found in Appendix A.1.3.

Theorem 6.2.1. The SLIM decomposition given in (6.2.3) corresponds to the canon-
ical decomposition given in (6.2.2).

The TT ranks of the decomposition (6.2.3) are given by r0 = rd = 1 and
ri = 2 + βi + βd for i = 1, . . . , d − 1. To reduce the storage consumption, the
different TT cores can be stored as sparse arrays.

Lemma 6.2.2. The storage consumption of the SLIM decomposition (6.2.3) (in
sparse format) can be estimated as

O

(
d∑
i=1

(βi−1 + βi + 1) · n2i +
d−1∑
i=2

(βd + 2) · ni + n1 + nd

)
,

with β0 = βd.

Proof. We assume the matrices of the core elements Si, Li, and Mi, i = 1, . . . , d, to
be dense, i.e. the storage consumption of a single matrix is then estimated as O(n2i).
Since Ii = I ∈ Rni×ni has only ni entries, we obtain O(ni) for the components Ii.
Analogously, we can estimate the storage of Ji as O(βd · ni). Thus, we obtain the
following storage estimates for the different TT cores:

A(1) : O
(
(βd + β1 + 1)n21 + n1

)
,

A(i), 2 ≤ i ≤ d− 1 : O
(
(βi−1 + βi + 1)n2i + (2 + βd)ni

)
,

A(d) : O
(
(βd−1 + βd + 1)n2d + nd

)
.

Summation over all cores concludes the proof.

74 6. Nearest-Neighbor Interaction Systems in the Tensor-Train Format

Assuming that the ranks βi and dimensions ni are bounded (or even fixed) for an
increasing number of cells, we obtain a linear growth of the storage consumption.
The SLIM decomposition (6.2.3) holds for all heterogeneous and cyclic NNISs. For
homogeneous systems, it can be simplified to

A =
[
S L I M

]
⊗


I 0 0 0
M 0 0 0
S L I 0
0 0 0 J

⊗ · · · ⊗

I 0 0 0
M 0 0 0
S L I 0
0 0 0 J

⊗

I
M
S
L

 . (6.2.4)

Thus, the advantage of the SLIM decomposition is the repeating pattern of TT
cores. That is, if we increase or decrease the number of cells, we only insert or remove
a TT core, respectively. Since a cyclic system has at least three cells (two coupled
cells are represented by (6.2.5)), the first and the last core in (6.2.4) remain fixed
while the number of cores in between is arbitrary, but must be greater than zero. If
there are no interactions between the cells Θd and Θ1, the SLIM decomposition for
a heterogeneous NNIS is given by

A =
[
S1 L1 I1

]
⊗

 I2 0 0
M2 0 0
S2 L2 I2

⊗
 Id−1 0 0
Md−1 0 0
Sd−1 Ld−1 Id−1

⊗
 Id
Md

Sd

 . (6.2.5)

If the NNIS is additionally homogeneous, we obtain the simplest form of a SLIM
decomposition:

A =
[
S L I

]
⊗

 I 0 0
M 0 0
S L I

⊗
 I 0 0
M 0 0
S L I

⊗
 I
M
S

 .

6.3. SLIM Decomposition for Markov Generators

In our work, we are particularly interested in NNISs corresponding to Markovian
master equations, cf. Section 5. The interactions – denoted as elementary reactions
R – in such systems can be described in one of the following forms:

(i) R : xi → yi,
(ii) R : xi, xi+1 → yi, yi+1,
(iii) R : xd, x1 → yd, y1.

(6.3.1)

For i = 1, . . . , d, the values xi, yi ∈ {1, . . . , ni} represent the state of Θi before and
after the event R was executed, respectively.

6.3. SLIM Decomposition for Markov Generators 75

A single-cell reaction (SCR) only changes the state of one cell, whereas a two-cell
reaction (TCR) changes the states of two adjacent cells. TCRs of the form (iii) only
occur in cyclic systems. Furthermore, elementary reactions either depend only on
the state of a single cell or on the states of two adjacent cells. That is, any reaction
propensity, cf. (5.2.6), corresponding to an SCR Ri,ν on cell Θi has the form

ai,ν = 11 ⊗ · · · ⊗ 1i−1 ⊗ ai,ν ⊗ 1i+1 ⊗ · · · ⊗ 1d, (6.3.2)

with ai,ν ∈ Rni and ν = 1, . . . , αi, where αi ∈ N is the number of all SCRs on Θi.
The reaction propensity ai,i+1,µ corresponding to a TCR Ri,i+1,µ acting on the cells
Θi and Θi+1, i = 1, . . . , d− 1, can be expressed as

ai,i+1,µ = 11 ⊗ · · · ⊗ 1i−1 ⊗ ai,i+1,µ ⊗ 1i+2 ⊗ · · · ⊗ 1d, (6.3.3)

with ai,i+1,µ ∈ Rni×ni+1 and µ = 1, . . . , βi, where βi ∈ N is the number of all TCRs
between Θi and Θi+1. Similar to (6.1.2), we decompose ai,i+1,µ into

ai,i+1,µ =

ri,i+1,µ∑
k=1

(
a
(1)
i,i+1,µ

)
k,:
⊗
(

a
(2)
i,i+1,µ

)
k,:
.

Thus, the reaction propensities can be written as

ai,i+1,µ =

ri,i+1,µ∑
k=1

12 ⊗ · · · ⊗ 1i−1 ⊗
(

a
(1)
i,i+1,µ

)
k,:
⊗
(

a
(2)
i,i+1,µ

)
k,:
⊗ 1i+2 ⊗ · · · ⊗ 1d.

For the propensity tensor corresponding to the reactions between Θd and Θ1, we
obtain

ad,1,µ =

rd,1,µ∑
k=1

(
a
(2)
d,1,µ

)
k,:
⊗ 12 ⊗ · · · ⊗ 1d−1 ⊗

(
a
(1)
d,1,µ

)
k,:
, (6.3.4)

for µ = 1, . . . , βd. The representation (6.3.4) can be derived by decomposing a
permuted propensity tensor ãd,1,µ, cf. (3.5.4) and (3.5.5), with

(ãd,1,µ)x2,...,xd,x1 = (ad,1,µ)x1,x2,...,xd ,

and rotating the cores back, see [9] for further details. For the reactions (6.3.1), we

76 6. Nearest-Neighbor Interaction Systems in the Tensor-Train Format

then obtain the following diagonalizations of the propensity tensors:

(i) I ⊗ · · · ⊗ I ⊗ diag (ai,ν)⊗ I ⊗ · · · ⊗ I,

(ii)
∑ri,i+1,µ

k=1 I ⊗ · · · ⊗ I ⊗ diag

((
a
(1)
i,i+1,µ

)
k,:

)
⊗ diag

((
a
(2)
i,i+1,µ

)
k,:

)
⊗ I ⊗ · · · ⊗ I,

(iii)
∑rd,1,µ

k=1 diag

((
a
(2)
d,1,µ

)
k,:

)
⊗ I ⊗ · · · ⊗ I ⊗ diag

((
a
(1)
d,1,µ

)
k,:

)
,

for ν = 1, . . . , αi and µ = 1, . . . , βi. For an SCR Ri,ν , the vectors of net changes,
cf. (5.2.2), have the form

ξi,ν = (0, . . . , 0, pi,ν , 0, . . . , 0)T , (6.3.5)

with pi,ν ∈ Z. Considering a TCR Ri,i+1,µ, it holds that

ξi,i+1,µ = (0, . . . , 0, pi,i+1,µ, qi,i+1,µ, 0, . . . , 0)T , (6.3.6)

with pi,i+1,µ, qi,i+1,µ ∈ Z. Following Definition 5.2.1, the multidimensional shift
operators corresponding to the SCRs and TCRs, respectively, are given by

(i) Gi,ν = I ⊗ · · · ⊗ I ⊗Gi(−pi,ν)⊗ I ⊗ · · · ⊗ I,

(ii) Gi,i+1,µ = I ⊗ · · · ⊗ I ⊗Gi(−pi,i+1,µ)⊗Gi+1(−qi,i+1,µ)⊗ I ⊗ · · · ⊗ I,

(iii) Gd,1,µ = G1(−qd,1,µ)⊗ I ⊗ · · · ⊗ I ⊗Gd(−pd,1,µ).

Considering the MME (5.2.7), we can now write the master-equation operator A
defined in (5.2.9) as

A =
d∑
i=1

αi∑
ν=1

Ai,ν +

d−1∑
i=1

βi∑
µ=1

Ai,i+1,µ +

βd∑
µ=1

Ad,1,µ, (6.3.7)

with

(i) Ai,ν = (Gi,ν − I) · diag (ai,µ),

(ii) Ai,i+1,µ = (Gi,i+1,µ − I) · diag (ai,i+1,µ),

(iii) Ad,1,µ = (Gd,1,µ − I) · diag (ad,1,µ).

6.3. SLIM Decomposition for Markov Generators 77

Identifying the cell pair (Θd,Θ1) and all corresponding quantities with (Θd,Θd+1),
we now define the matrices

S̃i,ν = diag (ai,ν), Si,ν = Gi(−pi,ν) · S̃i,ν ,

L̃i,µ,k = diag

((
a
(1)
i,i+1,µ

)
k,:

)
, Li,µ,k = Gi(−pi,i+1,µ) · L̃i,µ,k,

M̃i+1,µ,k = diag

((
a
(2)
i,i+1,µ

)
k,:

)
, Mi+1,µ,k = Gi+1(−qi,i+1,µ) · M̃i+1,µ,k,

(6.3.8)

for i = 1, . . . , d, ν = 1, . . . , αi, µ = 1, . . . , βi, and k = 1, . . . , ri,i+1,µ. Due to the
bilinearity of the tensor product, see Section 2.2.4, we define

Si =

αi∑
ν=1

(
Si,ν − S̃i,ν

)
. (6.3.9)

Moreover, we gather all the matrices Li,µ,k, L̃i,µ,k and Mi+1,µ,k, M̃i+1,µ,k in the TT
cores Li and Mi+1, respectively. The cores are then defined as

[Li] =
[
Li,1,1 −L̃i,1,1 . . . Li,βi,ri,i+1,βi

−L̃i,βi,ri,i+1,βi

]
︸ ︷︷ ︸

∈R1×ni×ni×(βi·ri,i+1,βi
)

,

[Mi+1] =
[
Mi+1,1,1 M̃i+1,1,1 . . . Mi+1,βi,ri,i+1,βi

M̃i+1,βi,ri,i+1,βi

]T
︸ ︷︷ ︸

∈R(βi·ri,i+1,βi
)×ni+1×ni+1×1

,
(6.3.10)

for i = 1, . . . , d− 1, and

[Ld] =
[
Ld,1,1 −L̃d,1,1 . . . Ld,βd,rd,1,βd −L̃d,βd,rd,1,βd

]T
︸ ︷︷ ︸

∈R(βd·rd,1,βd
)×nd×nd×1

,

[M1] =
[
M1,1,1 M̃1,1,1 . . . M1,βd,rd,1,βd

M̃1,βd,rd,1,βd

]
︸ ︷︷ ︸

∈R1×n1×n1×(βd·rd,1,βd
)

,
(6.3.11)

for the reactions on the cell pair (Θd,Θ1), respectively. Here, we use the notation
for rank-transposed cores given in (3.4.4). The TT cores above can now be inserted
into (6.2.3) resulting in the SLIM decomposition of the generator A.

Theorem 6.3.1. The SLIM decomposition of the form (6.2.3) with components
given in (6.3.9), (6.3.10), and (6.3.11) is a TT representation of the MME operator
(6.3.7).

78 6. Nearest-Neighbor Interaction Systems in the Tensor-Train Format

The proof of Theorem 6.3.1 can be found in Appendix A.1.4. Note that the
application of Algorithm 15, see Appendix A.2.6, may reduce the number of com-
ponents within the above TT cores, since (6.3.10) and (6.3.11) do not necessarily
have to be the smallest possible cores (in terms of TT ranks) in order to represent
the core products [Li]⊗ [Mi+1] and [M1]⊗ [Ld], respectively. These core products
are essential parts of SLIM decompositions, see the proof of Theorem 6.2.1 in Ap-
pendix A.1.3. In lines 3 and 4 of Algorithm 15 we use the multi-index notation
as defined in (2.4.2). The automatic construction of the SLIM decomposition of a
master-equation operator corresponding to a (cyclic or non-cyclic) NNIS is imple-
mented in Algorithm 16, see Appendix A.2.7. If the NNIS is cyclic, we again set
Θd+1 = Θ1, nd+1 = n1, Rd,d+1,µ = Rd,1,µ and so forth.
In Chapters 9 and 10, we will show examples for SLIM decompositions on high-

dimensional state spaces, where the corresponding master-equation operators de-
scribe chemical reaction networks and heterogeneous catalytic processes, respec-
tively. Additionally, we gave an example for a traffic problem in [9], where we
computed the distribution of cars at a toll station. Since many different physical
and biological systems can be represented as NNISs, SLIM decompositions may also
be exploited in further application areas.

7
Dynamic Mode Decomposition in the

Tensor-Train Format

In this chapter, we will derive a tensor-based version of the dynamic mode decom-
position [56, 57]. For this purpose, we will describe how to compute pseudoinverses
of certain matricizations of a tensor T ∈ RN . As we have shown in [14], informa-
tion about these pseudoinverses can be directly deduced from the TT representation
of T after some orthonormalization steps. Using this information, we are able to
compute pseudoinverses of tensor unfoldings without necessitating the solution of an
optimization problem, cf. [88], and therefore can construct exact TT decompositions
of DMD modes.

7.1. Moore-Penrose Inverse

In classical linear algebra, the pseudoinverse (orMoore–Penrose inverse) of a matrix
A ∈ Rm×n is a generalization of the inverse matrix.

Definition 7.1.1. Given a matrix A ∈ Rm×n, the pseudoinverse A+ ∈ Rn×m is
defined by the properties

(i) AA+A = A,

(ii) A+AA+ = A+,

(iii) (AA+)T = AA+,

(iv) (A+A)T = A+A.

The pseudoinverse A+ is unique for all real or complex matrices A. Given an
(underdetermined or overdetermined) system of linear equations of the form Ax = y
with x ∈ Rn and y ∈ Rm, the vector A+y is a solution of the least-squares problem

min
x∈Rn

‖Ax− y‖2 . (7.1.1)

Furthermore, it can be computed by a (compact/reduced) SVD. That is, we assume
that the SVD of A is given by

A = U ΣV T , (7.1.2)

79

80 7. Dynamic Mode Decomposition in the Tensor-Train Format

where U ∈ Rm×r and V ∈ Rn×r with UTU = V TV = I. As in the previous
chapters, Σ = diag(σ1, . . . , σr) ∈ Rr×r denotes the diagonal matrix containing only
the non-zero singular values (sorted in decreasing order) of A. The pseudoinverse
A+ can then be computed by

A+ = V Σ−1 UT , (7.1.3)

where Σ−1 = diag(σ−11 , . . . , σ−1r).

7.2. Computation of the Pseudoinverse

Given a tensor T ∈ RN in TT format, i.e. T =
[
T(1)

]
⊗ · · · ⊗

[
T(d)

]
, we consider a

matricization (or unfolding)

T = T

∣∣∣∣nl+1,...,nd

n1,...,nl
,

where 1 ≤ l ≤ d, see Section 2.4. In order to directly construct the pseudoinverse
T+ from a TT representation of T, we apply the two orthonormalization procedures
shown in Algorithms 4 and 5. The difference to Algorithm 9 and Algorithm 10,
respectively, is that we here do not orthonormalize the complete tensor train. That
is, Algorithm 4 left-orthonormalizes the TT cores from T(1) to T(l) for 1 ≤ l ≤ d−1
while Algorithm 5 right-orthonormalizes the cores from T(l) to T(d) for 2 ≤ l ≤ d.
Similar to the statements in Section 3.4.3, both algorithms compute different but

equivalent representations of the tensor T. By using SVDs instead of QR factor-
izations, it is also possible to truncate the TT cores during the orthonormalization
processes, cf. Algorithm 2. However, this would then result in the pseudoinverse of
an approximation of the given tensor T.

Algorithm 4 Partial left-orthonormalization of tensor trains

Input: Tensor train T ∈ RN with TT cores T(i) ∈ Rri−1×ni×ri , i = 1, . . . , d, and
core number l, 1 ≤ l ≤ d− 1.

Output: Tensor train T with left-orthonormal cores T(1), . . . ,T(l).

1: for i = 1, . . . , l do
2: Compute QR factorization of the left-unfolding L

(
T(i)

)
, i.e. L

(
T(i)

)
= Q·R

with Q ∈ Rri−1·ni×s and QT ·Q = I.
3: Define U ∈ Rri−1×ni×s as a reshaped version of Q with Uk,x,l = Qk,x,l.
4: Define V ∈ Rs×ni+1×ri+1 by R (V) = R · R

(
T(i+1)

)
.

5: Set T(i) to U, T(i+1) to V, and ri to s.
6: end for

7.2. Computation of the Pseudoinverse 81

Algorithm 5 Partial right-orthonormalization of tensor trains

Input: Tensor train T ∈ RN with TT cores T(i) ∈ Rri−1×ni×ri , i = 1, . . . , d, and
core number l, 2 ≤ l ≤ d.

Output: Tensor train T with right-orthonormal cores T(l), . . . ,T(d).

1: for i = d, . . . , l do
2: Compute QR factorization of the right-unfolding

(
R
(
T(i)

))T , i.e.
R
(
T(i)

)
= RT ·QT with QT ∈ Rs×ni·ri and QT ·Q = I.

3: Define U ∈ Rs×ni×ri as a reshaped version of QT with Uk,x,l = QT
k,x,l

.

4: Define V ∈ Rri−2×ni−1×s by L (V) = L
(
T(i−1)) ·RT .

5: Set T(i) to U, T(i−1) to V, and ri−1 to s.
6: end for

With the aid of Algorithms 4 and 5, pseudoinverses of arbitrary tensor unfoldings
T with respect to the dimensions (1, . . . , l) and (l + 1, . . . , d) can be constructed
by computing a global SVD of the whole tensor train. After left-orthonormalizing
the cores T(1), . . . ,T(l) and right-orthonormalizing the cores T(l+1), . . . ,T(d), the
pseudoinverse T+ can be obtained by reordering the cores. This is illustrated in
Figure 7.1. Algorithm 6 shows the procedure for computing the pseudoinverse.
Note that the pseudoinverse depends on the matricization of the tensor T. For
different matricizations, we also obtain different pseudoinverses.

(a)

n1 n2 nl nl+1 nd−1 nd

1 r1 rl rd−1 1

(b)

n1 n2 nl nl+1 nd−1 nd

1 r1 rl rl rd−1 1

Σ

(c)

n1 n2 nlnl+1 nd−1 nd

rd−1 1 r1rl rl

Σ−1

Figure 7.1: Computation of the pseudoinverse of a tensor train: a) Initial tensor T.
b) Left- and right-orthonormalization of the tensor cores. c) Representation of the pseu-
doinverse T+.

82 7. Dynamic Mode Decomposition in the Tensor-Train Format

Algorithm 6 Pseudoinversion of tensor trains.

Input: Tensor train T ∈ RN and core number l, 2 ≤ l ≤ d.

Output: Pseudoinverse of T = T

∣∣∣∣nl+1,...,nd

n1,...,nl
.

1: Left-orthonormalize T(1), . . . ,T(l−1) and right-orthonormalize T(l+1), . . . ,T(d)

using Algorithms 4 and 5.
2: Compute SVD of L

(
T(l)

)
, i.e. L

(
T(l)

)
= UΣV T with Σ ∈ Rs×s.

3: Define U ∈ Rrl−1×nl×s as a reshaped version of U with Uk,x,l = Uk,x,l.
4: Define V ∈ Rs×nl+1×rl+1 by R (V) = V T · R

(
T(l+1)

)
.

5: Set T(l) to U, T(l+1) to V, and rl to s.

6: Define Ũ =
(∑r0

k0=1 · · ·
∑rl−1

kl−1=1T
(1)
k0,:,k1

⊗ . . .⊗T
(l)
kl−1,:,:

) ∣∣∣∣rln1,...,nl
.

7: Define Ṽ =
(∑rl+1

kl+1=1 · · ·
∑rd

kd=1T
(l+1)
:,:,kl+1

⊗ . . .⊗T
(d)
kd−1,:,kd

) ∣∣∣∣rlnl+1,...,nd
.

8: Define T+ = Ṽ Σ−1 ŨT .

Theorem 7.2.1. Given a tensor T and core number 1 ≤ l ≤ d−1, Algorithm 6 com-
putes the pseudoinverse with respect to the dimensions (1, . . . , l) and (l + 1, . . . , d).

The proof of Theorem 7.2.1 can be found in Appendix A.1.5. The algorithm above
computes the pseudoinverse of the matricization of T with respect to the dimensions
(1, . . . , l) and (l+1, . . . , d) whether or not the TT cores of T are orthonormal. If, for
instance, all TT cores T(1), . . . ,T(d−1) are already left-orthonormal, the application
of Algorithm 4 can be skipped. The algorithm is then modified such that only the
cores T(l+2), . . . ,T(d) are right-orthonormalized.
An important aspect is that we do not need to compute the pseudoinverse of T

explicitly. Instead, we only orthonormalize the TT cores and compute the matrix
Σ by executing the lines 1 to 5 of Algorithm 6. We then store the representation

T+ =

r1∑
k1=1

· · ·
rd−1∑

kd−1=1

σ−1kl ·T
(l+1)
kl,:,kl+1

⊗ . . .⊗T
(d)
kd−1,:,1

⊗T
(1)
1,:,k1

⊗ . . .⊗T
(l)
kl−1,:,kl

,

which can be either regarded as the sum of rl tensor trains scaled by σ−11 , . . . , σ−1rl
or as a cyclic tensor train as depicted in Figure 7.1, cf. Section 3.5.3.

7.3. Tensor-Based Dynamic Mode Decomposition

First introduced in 2008 by Schmid et al. [56, 57], dynamic mode decomposition
(DMD) is widely used to identify low-order dynamics by decomposing high-
dimensional data into coupled spatial-temporal modes [58]. Applied to time-series
flow field data, these modes often correspond to coherent structures in the flow.
DMD constitutes an effective tool for the analysis of the behavior of complex dy-

7.3. Tensor-Based Dynamic Mode Decomposition 83

namical systems and is related to the principle component analysis [89]. Based on
our work in [14], we show an extension of DMD – so-called tensor-based dynamic
mode decomposition (TDMD) – that exploits the TT format in order to compute
DMD modes and corresponding eigenvalues. In this way, we may reduce the com-
putational complexity and the storage consumption, which enables us to mitigate
the curse of dimensionality when considering high-dimensional dynamical systems.
In Chapter 11, we will give different examples from fluid dynamics to illustrate the
efficiency of TDMD.

Consider a fluid flow on a domain Ω ⊂ Rd (d = 2, 3), e.g., described by Navier–
Stokes equations, see Section 11.1. We assume that the flow field is interpolated on a
rectangular grid at equidistant time points and represented by a set of m snapshots

T0,T1, . . . ,Tm. (7.3.1)

For instance, each tensor Tk could contain the vorticities or the velocity magni-
tudes at the grid points corresponding to the interpolated flow field data such that
Tk ∈ RN = Rn1×···×nd with the modes ni being the numbers of grid points in
each dimension. Assuming there exists a linear TT operator A that describes the
dynamics of the system such that

Tk = A ·Tk−1, (7.3.2)

we define the tensors X,Y ∈ Rn1×···×nd×m with

X:,...,:,k = Tk−1 and Y:,...,:,k = Tk, (7.3.3)

for k = 1, . . . ,m. The linear relationship (7.3.2) can then be expressed as

Y = A ·X, (7.3.4)

with matricizations

X = X

∣∣∣∣mn1,...,nd
, Y = Y

∣∣∣∣mn1,...,nd
, and A = mat(A).

See Section 2.4 for a description of the used notation. Let n denote the product of
all modes of N , i.e. n = n1 · . . . · nd. A solution of the minimization problem

min
A∈Rn×n

‖AX − Y ‖F

84 7. Dynamic Mode Decomposition in the Tensor-Train Format

is given by

A = Y X+, (7.3.5)

where ‖ . ‖F denotes the (classical) Frobenius norm. This property of the pseudoin-
verse X+ is an extension of the statement about the solution of the least-squares
problem (7.1.1).
A way to analyze a given flow field is the application of DMD to the matrices X

and Y . Defined as the eigenvalues and corresponding eigenvectors of the matrix A,
DMD eigenvalues and modes contain dynamically relevant information about the
flow field. The idea of TDMD is to extract this information directly in the TT format
without reshaping the tensors X and Y into matrices. For this purpose, we use the
results from the previous section, where we have shown that the pseudoinverse of
X can be computed by Algorithm 6 with the tensor X in TT format as input.
By applying TDMD to the snapshots T0,T1, . . . ,Tm, we consider a reduced

matrix Ã instead of computing A explicitly. Assume that the compact SVD of X
is given by X = UΣV T , then it holds that A = Y V Σ−1UT , see (7.1.2) and (7.1.3).
We define the reduced matrix Ã as

Ã = UTY V Σ−1. (7.3.6)

Theorem 7.3.1. The matrix A defined in (7.3.5) and the matrix Ã defined in (7.3.6)
share the same non-zero eigenvalues.

Proof. If λ is an eigenvalue of A corresponding to the eigenvector v, i.e. Av = λv,
then it follows that Ãw = λw with w = UT v. Conversely, if we have Ãw = λw and
define v = 1

λY V Σ−1w, then it holds that Av = λv.

There are different algorithms to compute the DMD modes of the matrix A.
Here, we consider the standard DMD as well as the exact DMD algorithm. A
detailed description of both DMD versions and the relation between the modes can
be found in [58]. Both methods require the computation of the eigenvalues and
eigenvectors of the reduced matrix Ã. Given an eigenvector w with Ãw = λw, the
mode corresponding to the eigenvalue λ for the standard DMD algorithm is defined
as

ϕ = Uw. (7.3.7)

For the exact DMD algorithm, the mode corresponding to λ is given by

ϕ =
1

λ
Y V Σ−1w. (7.3.8)

7.3. Tensor-Based Dynamic Mode Decomposition 85

As we already mentioned in the previous section, we do not compute the pseu-
doinverse X+ explicitly. The matrix X can be expressed – after applying the steps
1 to 5 of Algorithm 6 – as X = UΣV T , with

U =

 r0∑
k0=1

· · ·
rd−1∑

kd−1=1

X
(1)
k0,:,k1

⊗ . . .⊗X
(d)
kd−1,:,:


︸ ︷︷ ︸

=U

∣∣∣∣rdn1,...,nd
, V = X(d+1)

︸ ︷︷ ︸
=V

∣∣∣∣rdm , (7.3.9)

and Σ being the diagonal matrix resulting from executing step 2 of Algorithm 6.
Thus, the pseudoinverse of X is given by X+ = V Σ−1UT . Using similar matriciza-
tions, but not requiring any special properties as left- or right-orthonormality of the
TT cores, we can also represent the tensor unfolding Y as a matrix product, i.e.
Y = P ·Q with

P =

 s0∑
l0=1

· · ·
sd−1∑
ld−1=1

Y
(1)
l0,:,l1

⊗ . . .⊗Y
(d)
ld−1,:,:


︸ ︷︷ ︸

=P

∣∣∣∣sdn1,...,nd
, Q = Y(d+1)

︸ ︷︷ ︸
=Q

∣∣∣∣msd . (7.3.10)

Combining the matrix representations of X+ and Y , we can express the matrices A
and Ã as

A = Y ·X+ = P Q · V Σ−1 UT ,

and

Ã = UT P QV Σ−1, (7.3.11)

respectively, cf. (7.3.5) and (7.3.6). In order to compute Ã, we do not have to
construct the matrices U and P explicitly. We can reduce the computational cost by
splitting (7.3.11) into different parts. The product UTP ∈ Rrd×sd can be calculated
by

UTP = 〈U,P〉n1,...,nd
(7.3.12)

with the tensors U and P given in (7.3.9) and (7.3.10), respectively. Similarly, for
the product QV ∈ Rsd×rd it holds that

QV = 〈Q,V〉m . (7.3.13)

86 7. Dynamic Mode Decomposition in the Tensor-Train Format

Using (7.3.12) and (7.3.13), we can compute both parts without leaving the TT
format, i.e. we do not need to convert any tensor decomposition into full format.
Given the decompositions of U and P defined in (7.3.9) and (7.3.10), respectively,
the contraction (7.3.12) resembles a multiplication of two tensor trains, which can
be implemented efficiently using Algorithm 4 from [42]. Afterwards, we multiply
the three low-dimensional matrices (UTP), (QV), and Σ−1. The latter is just a
diagonal matrix containing the reciprocals of the singular values in Σ.
We can express the DMD modes using the tensor trains X and Y, respectively,

modifying only the last core. Assume that the eigenvalues and corresponding eigen-
vectors of the reduced matrix Ã are given by λ1, . . . , λc and w1, . . . , wc, respectively.
In order to calculate the DMD modes of A according to the standard DMD algo-
rithm, we only replace the last TT core of X. Considering (7.3.7), we define the
matrix W ∈ Rrd×c as

W:,j = wj ,

for j = 1, . . . , c. The DMD modes of A can then be expressed in a TT representation
Φ ∈ Rn1×···×nd×c, i.e.

Φ =
[
X(1)

]
⊗ · · · ⊗

[
X(d)

]
⊗
[
W
]
. (7.3.14)

It holds that

ϕj =

(
Φ

∣∣∣∣cn1,...,nd

)
:,j

, (7.3.15)

where ϕj is the DMD mode (in vector form) corresponding to the eigenvector wj ,
see (7.3.7). Considering the exact DMD algorithm, the tensor train Φ representing
all DMD modes (7.3.8) is given by

Φ =
[
Y(1)

]
⊗ · · · ⊗

[
Y(d)

]
⊗
[
QV Σ−1WΛ−1

]
, (7.3.16)

with the diagonal matrix Λ containing the eigenvalues λ1, . . . , λc. Here, the relation
(7.3.15) applies with ϕj being of the form (7.3.8).

8
Tensor-Train Approximation of the

Perron–Frobenius Operator

In this chapter, we will show the first attempts to compute eigenvalues and eigenten-
sors of finite-dimensional approximations of the so-called Perron–Frobenius operator
using the (M)ALS algorithms. Other tensor-based methods for the numerical ap-
proximation of the Perron–Frobenius operator were already considered by Klus et
al. in [13]. After we give the definition of the Perron–Frobenius operator, we will
introduce Ulam’s method, which is a frequently used method for the discretization
of the Perron–Frobenius operator.

8.1. Perron–Frobenius Operator

Consider a (nonlinear) dynamical system with evolution rule F : S → S, S ⊆ Rd.
The function F describes the time-dependent evolution of a state, i.e. F gives the
future state of the system (after a short time interval) following from the current
state. The Perron–Frobenius operator P with P : L2(S)→ L2(S) is defined by

∫
S
g(s) · Pf(s)dµ(s) =

∫
S

(g ◦ F)(s) · f(s)dµ(s), (8.1.1)

for all f, g ∈ L2(S), see [61], where µ is a given probability measure. An eigenfunc-
tion f with eigenvalue λ of the Perron–Frobenius operator is given by

Pf = λf.

The long-term behavior of a dynamical system can then be understood by an-
alyzing the spectrum of P since the eigenfunctions can be used to decompose the
dynamical system into fast and slow processes. For λ = 1, the eigenfunction f rep-
resents the invariant measure of the system. The magnitude of the second largest
eigenvalue can be interpreted as the rate at which initial densities converge to the
invariant measure, called the rate of mixing in [61]. Moreover, the leading eigenval-
ues with magnitude close to one correspond to decay rates associated to the slow
dynamics and the eigenfunctions corresponding to these eigenvalues can be used to
find almost-invariant (or metastable) sets [90].
Another important operator, which enables the analysis of the global behavior

87

88 8. Tensor-Train Approximation of the Perron–Frobenius Operator

of dynamical systems, is the Koopman operator [62, 91]. The Koopman operator
is the adjoint of the Perron–Frobenius operator and was already considered in a
tensor-based context by Klus et al. in [13]. Instead of describing the evolution of
densities, the Koopman operator describes the evolution of observables, see [92].
However, we will here focus on the Perron–Frobenius operator with the intention
to consider other so-called transfer operators, see e.g. [60], in future research. The
aim is to exploit the TT format for computing finite-dimensional approximations
of the eigenfunctions of the Perron–Frobenius operator and gaining insight into the
system’s behavior. If the eigenfunctions can be approximated accurately by low-
rank TT decompositions, we may significantly reduce the required time and memory
to solve the involved eigenvalue problems.

8.2. Ulam’s Method

A standard method to compute finite-dimensional approximations of the Perron–
Frobenius operator is Ulam’s method, see e.g. [13, 61], which is based on the dis-
cretization of the domain S. That is, we cover the d-dimensional domain by a finite
number of disjoint boxes. If we assume that S ′ is an axis-oriented hyperrectangle
in Rd, i.e.

S ′ = [a1, b1]× · · · × [ad, bd] = {(s1, . . . , sd)T ∈ Rd : si ∈ [ai, bi] for i = 1, . . . , d},

with S ⊆ S ′, we partition each interval [ai, bi] into ni subintervals such that the
boxes are given by B(x1, . . . , xd), 1 ≤ xi ≤ ni. See Figure 8.1 for box discretizations
of two- and three-dimensional domains.

B(1, 1) B(2, 1) B(3, 1)

B(1, 2) B(2, 2) B(3, 2)

B(1, 3) B(2, 3) B(3, 3)

(a) (b)

Figure 8.1: Box discretization for Ulam’s method: (a) Two-dimensional domain covered
by boxes of equal size. Transition rates obtained by counting test points are visualized by
the different opacities. (b) Three-dimensional domain covered by boxes of different size.

Now, we define the indicator function for the box B(x1, . . . , xd) as

1x1,...,xd(s) =

{
1, if s ∈ B(x1, . . . , xd),

0, otherwise.

8.2. Ulam’s Method 89

Equation (8.1.1) then becomes

∫
S
1Y (s) · P1X(s)dµ(s) =

∫
S

(1Y (s) ◦ F)(s) · 1X(s)dµ(s), (8.2.1)

with X = (x1, . . . , xd)
T and Y = (y1, . . . , yd)

T . Since the right-hand side of (8.2.1)
corresponds to µ(F−1(B(Y)) ∩B(X)), we can express the relationship by a tensor
P ∈ RN×N with index set N = (n1, . . . , nd)

T ∈ Nd and entries

Px1,y1,...,xd,yd =
µ(F−1(B(Y)) ∩B(X))

µ(B(X))
.

That is, each entry of P represents the probability of a point in S being mapped
from box B(x1, . . . , xd) to box B(y1, . . . , yd) by the dynamical system.

Choosing a large ensemble of test points in S – per box B(x1, . . . , xd) we consider
m randomly chosen points skx1,...,xd ∈ S∩B(x1, . . . , xd), k = 1, . . . ,m – and applying
the evolution rule F , we count how many points are mapped from B(x1, . . . , xd) to
B(y1, . . . , yd). Here, we assume that all simulated particles go from one box to
another and no test point is mapped outside the domain by the dynamical system.

Algorithm 7 TT approximation of the Perron–Frobenius operator (2D)
Input: List of all simulated transitions in the form of row vectors

(xµ,1, xµ,2, yµ,1, yµ,2) for µ = 1, . . . ,m · n1 · n2.
Output: Finite-dimensional TT approximation P of the corresponding Perron–

Frobenius operator P.

1: Find all unique combinations (x̂1, ŷ1), . . . , (x̂r, ŷr) of (xµ,1, yµ,1), where
µ = 1, . . . ,m · n1 · n2 and r ≤ m · n1 · n2.

2: Define TT core P(1) as a tensor in R1×n1×n1×r with all entries equal to 0.
3: for ν = 1, . . . , r do
4: Set P(1)

1,x̂ν ,ŷν ,ν
= 1.

5: end for
6: Define TT core P(2) as a tensor in Rr×n2×n2×1 with all entries equal to 0.
7: for µ = 1, . . . ,m · n1 · n2 do
8: Set P

(2)
ν,xµ,2,yµ,2,1

to P
(2)
ν,xµ,2,yµ,2,1

+ 1, where ν is the index such that

P
(1)
1,xµ,1,yµ,1,ν

= 1.
9: end for

10: Set P to (1/m) ·P.

90 8. Tensor-Train Approximation of the Perron–Frobenius Operator

The entries of P can then be estimated as

Px1,y1,...,xd,yd =
1

m

m∑
k=1

1y1,...,yd

(
F
(
skx1,...,xd

))
.

Since the entries are normalized by the number of test points in B(x1, . . . , xd),
the matricization of P is a row-stochastic matrix. Thus, the operator P, which
represents the finite-dimensional approximation of the Perron–Frobenius operator
P, defines a Markov chain on the state space {1, . . . , n1} × · · · × {1, . . . , nd}.
For two- and three-dimensional state spaces S, a direct construction of P in the

TT format is shown in Algorithm 7 and 8, respectively. The input of both algorithms
is a list of all observed transitions containing the box indices for each test point.
That is, a transition from box B(x1, . . . , xd) to B(y1, . . . , yd) is represented by a
row vector (x1, . . . , xd, y1, . . . , yd). Note that the TT representations of the tensor
operator P computed by Algorithm 7 and 8, respectively, may not have minimal
rank, e.g. depending on the structure of P(2), the operator P for two-dimensional
systems may be compressed using Algorithm 15.

Algorithm 8 TT approximation of the Perron–Frobenius operator (3D)
Input: List of all simulated transitions in the form of row vectors

(xµ,1, xµ,2, xµ,3, yµ,1, yµ,2, yµ,3) for µ = 1, . . . ,m · n1 · n2 · n3.
Output: Finite-dimensional TT approximation P of the corresponding Perron–

Frobenius operator P.

1: Find all unique combinations (x̂1, ŷ1), . . . , (x̂r1 , ŷr1) of (xµ,1, yµ,1), where
µ = 1, . . . ,m · n1 · n2 · n3 and r1 ≤ m · n1 · n2 · n3.

2: Define TT core P(1) as a tensor in R1×n1×n1×r1 with all entries equal to 0.
3: for ν = 1, . . . , r1 do
4: Set P(1)

1,x̂ν ,ŷν ,ν
= 1.

5: end for
6: Find all unique combinations (x̂1, ŷ1), . . . , (x̂r2 , ŷr2) of (xµ,3, yµ,3), where
µ = 1, . . . ,m · n1 · n2 · n3 and r2 ≤ m · n1 · n2 · n3.

7: Define TT core P(3) as a tensor in Rr2×n3×n3×1 with all entries equal to 0.
8: for ν = 1, . . . , r2 do
9: Set P(3)

ν,x̂ν ,ŷν ,1
= 1.

10: end for
11: Define TT core P(2) as a tensor in Rr1×n2×n2×r2 with all entries equal to 0.
12: for µ = 1, . . . ,m · n1 · n2 · n3 do
13: Set P(2)

ν,xµ,2,yµ,2,ν̃
to P

(2)
ν,xµ,2,yµ,2,ν̃

+ 1, where ν and ν̃ are the indices such that

P
(1)
1,xµ,1,yµ,1,ν

= 1 and P
(3)
ν̃,xµ,3,yµ,3,1

= 1.
14: end for
15: Set P to (1/m) ·P.

8.2. Ulam’s Method 91

Moreover, the storage consumption of P in (sparse) TT format is slightly larger
than the storage consumption of the matricization of P in sparse format. This is
an issue, which may be resolved in future research. After expressing the tensor
operator P in the TT format, we will use the (M)ALS algorithms for eigenvalue
problems together with the BTT format – see Algorithms 13 and 14 – in order
to compute the leading eigenvalues and corresponding (right-)eigentensors of PT .
These eigentensors then approximate the eigenfunctions of the Perron–Frobenius
operator.

“The purpose of computing is insight, not numbers.”

Richard W. Hamming,
Numerical Methods for Scientists and Engineers

Part III

Applications of the
Tensor-Train Format

In Part III of this thesis, numerical experiments from different application areas will
be presented. We will give a brief overview of each topic before considering related
examples. In Chapter 9, the tensor-train approach will be applied to the chemical
master equation. In Chapter 10, we will consider a more general Markovian master
equation describing a heterogeneous catalytic process. Numerical examples from
the fields of fluid and molecular dynamics will be given in Chapters 11 and 12, re-
spectively.
The experiments were performed on a Linux machine with 128 GB RAM and an

Intel Xeon processor with a clock speed of 3 GHz and 8 cores. The algorithms were
implemented in MATLAB R2015a using a compound of cell arrays and multidimen-
sional matrices for tensors in the TT format.

94

9
Chemical Reaction Networks

Chemical reaction networks [93] model basic reactions between different chemical
species. The aim is to analyze the time-dependent progression in order to under-
stand and to simulate basic processes that occur in nature such as gene expression
profiles and signal transduction [94, 95]. Many of these processes are described by
low numbers of interacting species and chemical reactions resulting from collisions
between different molecules, see e.g. [96]. In such systems, stochastic kinetics are
used to describe the system dynamics since deterministic approaches are not able to
include the molecular fluctuations, which play an important role for the behavior of
the system, cf. [97]. After giving a brief overview of the mathematical description of
chemical reaction networks, we will illustrate the efficiency of the (Q)TT approach
for solving high-dimensional chemical master equations using two examples.

9.1. Elementary Reactions

In what follows, we will consider homogeneous chemical reaction networks (CRN) of
constant volume V . The systems include molecules of d chemically active species Si,
i = 1, . . . , d, which can react inM reaction channels Rµ, µ = 1, . . . ,M. We suppose
that each reaction Rµ is an elementary reaction, i.e. Rµ occurs in a single reaction
step without intermediate stages. A possible state of the system is represented by
a vector X = (x1, . . . , xd)

T ∈ Nd0, which contains the numbers of molecules of each
species. Given the system in state X at time t, the fundamental hypothesis of
stochastic reaction kinetics, see [80], is that the probability of a single firing of Rµ
inside V in an infinitesimal time interval [t, t+ δt) is given by

aµ(X)δt+ o(δt),

where aµ is a positive, real valued function, called the reaction propensity. Here,
o(δt) denotes the Bachmann–Landau notation, i.e. o(δt) is a function f(δt) with
f(δt)/δt = 0 for δt→ 0.
Let rµ,i ∈ N0 and pµ,i ∈ N0 denote the stoichiometric coefficients representing the

number of molecules of species Si that react and are produced due to a single firing
of Rµ, respectively. We can then generally describe a CRN as the set of elementary
reactions

Rµ : rµ,1S1 + . . .+ rµ,dSd → pµ,1S1 + . . .+ pµ,dSd, µ = 1, . . . ,M.

95

96 9. Chemical Reaction Networks

Furthermore, we will denote the net changes in the number of molecules of the
species caused by a single firing of Rµ by

ξµ = (ξµ,1, . . . , ξµ,d)
T ∈ Zd,

with ξµ,i = pµ,i − rµ,i for µ = 1, . . . ,M and i = 1, . . . , d.
Elementary reactions are classified by their molecularity, which represents the

number of reactant molecules involved in a single firing of the reaction. We will
only consider unimolecular and bimolecular reactions since termolecular reactions
are rare due to the fact that they require the collision of three particles at the
same place and time, i.e. all three reactant molecules have to collide simultaneously
with each other with sufficient energy. Apparently, many termolecular reactions are
the combined result of two bimolecular reactions and one unimolecular reaction,
cf. [98]. Furthermore, there are no known elementary reactions involving four or
more molecules, see [99, 100].
Note that the notation used here is the same as in Section 5. However, in the

context of chemical systems, an event is called elementary reaction and the event
propensity, see (5.2.3), is called reaction propensity.

9.2. Chemical Master Equation

The fundamental equation of stochastic reaction kinetics is the chemical master
equation (CME), which is a first-order ordinary differential equation describing the
time-evolution of a CRN [80]. Unfortunately, even though the CME has relative
simple structure, analytical solutions exist only for special cases since the state space
grows exponentially with the number of species and therefore direct approaches are
computationally infeasible for larger CRNs. A common way to simulate the system’s
behavior is the stochastic simulation algorithm [49, 101], which is based on a large
ensemble of realizations of the process associated with the CME. Hence, if some
events in the system are rare, we need a large number of realizations to ensure a
sufficient sampling. Using the results from Section 5, the approach we propose in
this work is to solve the CME directly by using the TT format (or QTT format) in
order to mitigate the curse of dimensionality. Similar approaches can be found in
[4] and [5].
For a given initial state X0 ∈ Nd0 at time t0 ∈ R, we denote the probability that

the CRN is in state X ∈ Nd0 at time t ≥ t0 by P (X, t). As it was done in Section 5,
we again omit the dependence on the initial state X0 in the notation for the sake of
simplicity. The CME is given by

∂

∂t
P (X, t) =

M∑
µ=1

(aµ(X − ξµ)P (X − ξµ, t)− aµ(X)P (X, t)) . (9.2.1)

If (X−ξµ) /∈ Nd0 for a µ ∈ {1, . . . ,M}, we set aµ(X−ξµ) = 0 and P (X−ξµ, t) = 0.

9.3. Numerical Experiments 97

Equation (9.2.1) can be directly derived from the fundamental hypothesis, see [80].
We assume that the probability distribution vanishes outside a bounded domain
and therefore is negligible above a certain number of molecules. Therefore, we
truncate the considered state space to a finite domain, cf. [102]. That is, we assume
0 ≤ xi ≤ ni ∈ N for i = 1, . . . , d. The CME (9.2.1) was already given in Section
5 as a special case of MMEs. However, the state space for chemical systems is of
a slightly different structure than it was the case for Markov processes in general,
cf. (5.2.1). Representing the number of molecules, the state space S is given by

S = {0, . . . , n1} × {0, . . . , n2} × · · · × {0, . . . , nd}, (9.2.2)

For a state vector X = (x1, . . . , xd) ∈ S, we again associate tensors with the func-
tions P and aµ, i.e. we define

(P(t))x1+1,...,xd+1 = P (X, t),

and

(aµ)x1+1,...,xd+1 = aµ(X).

Note that the indices of P and aµ start at 1, but each xi can be 0 for i = 1, . . . , d.
As a result, it holds that P,aµ ∈ Rn1+1×...×nd+1. Thus, truncating the state space
and using the relations above, we can write down the tensor-based counterpart of
(9.2.1) as

∂

∂t
P(t) =

M∑
µ=1

(Gµ − I) · diag(aµ)

 ·P(t) = A ·P(t), (9.2.3)

where Gµ are the multidimensional shift operators given in Definition 5.2.1 and I is
the identity tensor, see Example 2.1.1. The diagonalized propensities diag(aµ) are
given by (5.2.6) and (5.2.8).

9.3. Numerical Experiments

9.3.1. Signaling Cascade

The first example is a cascading process on a genetic network consisting of genes
of species S1, . . . ,Sd. As we described in [9], the system can be expressed as an
NNIS, see Section 6.1, where the cells represent the adjacent genes and a state of a
cell corresponds to the number of proteins. The structure of this system is shown
in Figure 9.1. The reactions and corresponding reaction propensities for a state
X = (x1, . . . , xd) ∈ Nd0 are:

98 9. Chemical Reaction Networks

Creation of the first protein corresponding to species S1:

R1 : ∅→ S1, a1(X) = 0.7.

Creation of a protein corresponding to species Si, 2 ≤ i ≤ d:

Ri : Si−1 → Si−1 + Si, ai(X) =
xi−1

5 + xi−1
.

Destruction of a protein corresponding to species Si, 1 ≤ i ≤ d:

Ri+d : Si → ∅, ai+d(X) = 0.07xi.

Cascading processes defined by the creation and destruction reactions above have
already been considered using different methods. In [103], the 3-dimensional case
was treated using a sparse grid technique. Later, the cascade model with 20 genes
was analyzed using a greedy algorithm in the canonical format, see [104]. A tensor-
train approach was introduced in [5], where the chemical master equation corre-
sponding to the 20-dimensional problem was solved numerically using a simultane-
ous space-time discretization approach. Here, we will simply employ the trapezoidal
rule as described in Section 4.5 in order to compute the numerical solution of the
corresponding MME within the time interval [0, 300].

∅

∅ ∅ ∅

S1 S2 . . . Sd

Figure 9.1: Visualization of the signaling cascade: The genes of species S1, . . . ,Sd produce
proteins affecting the expression of subsequent genes. Additionally, the produced proteins
are destructed over time.

Starting with an initial state where all numbers of proteins are zero, the proba-
bility density function for any xi ≥ 63 is below machine precision for all times t ≥ 0
and i = 1, . . . , d, see [5]. Therefore, we consider a finite state space

S = {0, . . . , 63} × · · · × {0, . . . , 63}.

The corresponding NNIS is non-cyclic and heterogeneous since the first creation
reaction differs from the other creation reactions. In [5], one can find an exact TT
decomposition of the MME operator of this system. However, the system can be
represented using a SLIM decomposition, which we presented in [9]. Written as

9.3. Numerical Experiments 99

rank-one tensors, the reaction propensities have the form

a1 = 0.7 · 1⊗ · · · ⊗ 1, ad+1 =

 0.07 · 0
...

0.07 · 63

⊗ 1⊗ · · · ⊗ 1,

a2 =


0

5+0
...
63

5+63

⊗ 1⊗ · · · ⊗ 1, ad+2 = 1⊗

 0.07 · 0
...

0.07 · 63

⊗ 1⊗ · · · ⊗ 1,
...

...

ad = 1⊗ · · · ⊗ 1⊗


0

5+0
...
63

5+63

⊗ 1, a2d = 1⊗ · · · ⊗ 1⊗

 0.07 · 0
...

0.07 · 63

 ,

where 1 = (1, . . . , 1) ∈ R64. The vectors of net changes are all zero except for one
entry, i.e.

ξ1 =
(
1 0 · · · 0

)
, ξd+1 =

(
−1 0 · · · 0

)
,

...
...

ξd =
(
0 · · · 0 1

)
, ξ2d =

(
0 · · · 0 −1

)
.

Now, for the sake of simplicity, we define the shift matrices G↓ := Gi(−1) and
G↑ := Gi(1) for i = 1, . . . , d, i.e.

G↓ =


0 0
1 0

.
0 1 0

 and G↑ =


0 1 0

0
. . .
. . . 1

0 0

 , (9.3.1)

cf. Section 5.2. The corresponding shift operators for the creation and destruction
reactions are then given by

G1 = G↓ ⊗ I ⊗ · · · ⊗ I, . . . , Gd = I ⊗ · · · ⊗ I ⊗G↓,

and

Gd+1 = G↑ ⊗ I ⊗ · · · ⊗ I, . . . , G2d = I ⊗ · · · ⊗ I ⊗G↑.

100 9. Chemical Reaction Networks

In the canonical format, we can now express the MME operator as

A = 0.7 ·G↓ ⊗ I ⊗ · · · ⊗ I − 0.7 · I ⊗ I ⊗ · · · ⊗ I

+ H1 ⊗G↓ ⊗ I ⊗ · · · ⊗ I − H1 ⊗ I ⊗ · · · ⊗ I

+ . . .

+ I ⊗ · · · ⊗ I ⊗H1 ⊗G↓ − I ⊗ · · · ⊗ I ⊗H1 ⊗ I

+ (G↑ ·H2)⊗ I ⊗ · · · ⊗ I −H2 ⊗ I ⊗ · · · ⊗ I

+ . . .

+ I ⊗ · · · ⊗ I ⊗ (G↑ ·H2) − I ⊗ · · · ⊗ I ⊗H2,

with identity matrix I ∈ R64×64 and

H1 = diag

(
0

5
,
1

6
, . . . ,

63

68

)
, H2 = 0.07 · diag(0, 1, . . . , 63),

where diag(v) denotes the square diagonal matrix with the elements of the vector
v ∈ R64 on the main diagonal. By defining

S∗ = 0.7 ·
(
G↓ − I

)
, S =

(
G↑ − I

)
·H2,

L = H1, I = I, M = G↓ − I,

we obtain the SLIM decomposition

A =
[
S∗ L I

]
⊗

 I 0 0
M 0 0
S L I

⊗ · · · ⊗
 I 0 0
M 0 0
S L I

⊗
 I
M
S

 , (9.3.2)

which has TT ranks equal to 3 for any number of species.

Considering a network of d = 20 genes, we use this example to demonstrate
the advantage of the QTT approach over a direct formulation of the system in
TT format. We quantize the state space, i.e. the operator A ∈ RM×N with index
sets M = N = (64, . . . , 64)T ∈ N20 is further decomposed into a QTT operator
Ã ∈ RM̃×Ñ with the index sets M̃ = Ñ = (2, . . . , 2)T ∈ N120 by using Algorithm 3.
That is, each TT core of A is split into six QTT cores. The result is then an
operator with QTT ranks bounded by 12. Even though some of the QTT ranks of
Ã are higher than the TT ranks of A, we can reduce the computational effort for
solving the MME significantly by quantizing the state space.

9.3. Numerical Experiments 101

Table 9.1.: Solving the cascade problem in the TT format: Maximum relative errors and
CPU times depending on the bound of the TT ranks of the initial guess. The bound is
denoted as TT rank.

TT rank maxk{eTR,k} CPU time
1 1.73e−01 9.86 s
2 1.38e−01 24.62 s
3 8.77e−02 74.95 s
4 5.90e−02 207.26 s
5 4.71e−02 497.60 s
6 2.43e−02 1422.10 s

For both the TT and QTT approach, we fix the step size to τ = 1 for all 300
steps and start with an initial distribution P0 with

(P0)x1,x2,...,x20 =

{
1, if x1 = x2 = · · · = x20 = 1,

0, otherwise,

such that the concentration of each species is zero at the beginning. The ALS
algorithm, see Section 4.2, is used for solving the systems of linear equations of the
form (4.5.4) at each iteration step of the implicit Euler method. As an initial guess
for the first system of linear equations, we define a uniformly distributed tensor,
i.e. all entries of the initial guess are equal and sum up to 1. Subsequently, the
computed distribution after one time step is then used as initial guess for the next
system of linear equations. The resulting tensors Pk, k = 1, . . . , 300, representing
the probability distributions over all states at times tk = k · τ are then normalized
such that ‖Pk‖1 = 1, assuming that the absolute values of potentially negative
entries are small enough to be omitted, see Section 3.4.4. Note that the MME
operator (9.3.2) is non-symmetric and therefore the systems of linear equations
of the form (4.5.4) are non-symmetric. Since the operators of the corresponding
normal equations, cf. Section 4.4, are extremely ill-conditioned, we apply ALS to
the non-symmetric systems directly, cf. [5]. After computing the numerical solution,
we calculate the relative errors eTR,k of the systems of linear equations at each
iteration step, see (4.5.5), in order to estimate the accuracy. Tables 9.1 and 9.2
show the maximum relative errors and the CPU times depending on the ranks for
the TT and the QTT approach, respectively. The results show that we obtain a
better accuracy while reducing the required CPU time, even with higher ranks. For
instance, in order to get an error bound of approximately 2.5%, we only need around
105 s to compute the numerical solution of the MME in QTT format with rank
bound 11. In contrast to that, the CPU time needed for a comparable accuracy
using the TT approach is nearly 14 times larger. Additionally, the computation
times increase at a much lower rate for the QTT approach than for the direct TT
approach.

102 9. Chemical Reaction Networks

Table 9.2.: Solving the cascade problem in the QTT format: Maximum relative errors and
CPU times depending on the bound of the QTT ranks of the initial guess. The bound is
denoted as QTT rank.

QTT rank maxk{eTR,k} CPU time
2 3.73e−01 25.68 s
4 1.50e−01 28.10 s
6 6.99e−02 52.09 s
8 3.81e−02 77.87 s
10 2.20e−02 103.79 s
12 1.64e−02 151.23 s

After computing the numerical solution of the MME, we are interested in the
mean concentrations of all species over time. The average number of molecules of
species Si at time tk is given by

xi(tk) =
∑
X∈S

xi · (Pk)x1+1,...,xd+1 . (9.3.3)

Figure 9.2 (a) shows the mean concentrations over the time interval [0, 300]. Note
the time delay between equal concentrations of the different species, which is typical
for cascading processes. We estimate the closeness to the stationary distribution,
see Figure 9.2 (b), in terms of the right-hand side of (9.2.3) since ‖A ·Pk‖2 should
be close to 0 for accurate approximations of the stationary distribution.

x
i
(t

)

Mean concentrations

0 50 100 150 200 250 300
0

2

4

6

8

10

species 1

species 2

species 3

species 4

species 5

species 6

species 7

...

t

(a)

‖A
·P

k
‖

Closeness to stationary distribution

0 50 100 150 200 250 300
10

-4

10
-3

10
-2

10
-1

10
0

k

(b)

Figure 9.2: Results for the 20-dimensional signaling cascade: (a) Mean concentrations
over time. (b) Closeness to the stationary distribution. The values are calculated from the
numerical solution obtained by the QTT approach with rank bound 12. The same qualitative
behavior can be observed when using a direct TT formulation of the problem.

9.3. Numerical Experiments 103

As one can see in Figure 9.2 (b), the norms of A ·Pk stagnate at a level of around
0.17 in the first part of the time interval and decrease rapidly within the second
part. The location of the kink approximately corresponds to the changing behavior
of the mean concentrations plotted in Figure 9.2 (a). When the average numbers of
molecules are close to the steady state for each species, the tensor approximations
of the probability distributions converge faster to the stationary distribution.

9.3.2. Two-Step Destruction

As a second example, we consider a two-step mechanism where molecules of a certain
species S1 react with molecules of another species S2 and form an intermediate
species. After a second reaction with S2, the resulting product then vanishes in
time. Realistic examples of chemical reactions based on two-step mechanisms are
the reaction between iodine monochloride and hydrogen [105, 106] as well as the
reaction between carbon monoxide and nitrogen dioxide [107, 108]. In order to
model the destruction process, we consider a CRN including four species S1, . . . ,S4

and three reactions defined as

R1 : S1 + S2 → S3

R2 : S3 + S2 → S4

R3 : S4 → ∅

A visualization of the system is shown in Figure 9.3. Following the rate law
for chemical reactions, see e.g. [106], we assume that the corresponding reaction
propensities are given by a1(X) = k1x1x2, a2(X) = k2x2x3 and a3(X) = k3x4
with rate constants (k1, k2, k3) = (1, 2, 1) and X = (x1, x2, x3, x4)

T being the
state of the system. We consider a finite state space S of the form (9.2.2), where
n1 = n3 = n4 = 2m − 1 and n2 = 2m+1 − 1.

S1

S2 S2

S3 S4 ∅

Figure 9.3: Visualization of the two-step destruction process: After two consecutive bi-
molecular reactions with molecules of species S2, the final products degrade over time. Note
that no molecules of species S1 and S2, respectively, are created.

104 9. Chemical Reaction Networks

The CME operator, see (9.2.3), of this system is then given by

A =
3∑

µ=1

(Gµ − I) · diag(aµ),

with

G1 =


0 1

0
. . .
. . . 1

0

⊗


0 1

0
. . .
. . . 1

0

⊗


0

1
. . .
. . . 0

1 0

⊗


1

1
. . .

1

 ,

G2 =


1

1
. . .

1

⊗


0 1

0
. . .
. . . 1

0

⊗


0 1

0
. . .
. . . 1

0

⊗


0

1
. . .
. . . 0

1 0

 ,

G3 =


1

1
. . .

1

⊗


1

1
. . .

1

⊗


1

1
. . .

1

⊗


0 1

0
. . .
. . . 1

0

 ,

and

a1 = k1 ·


0
1
...
n1

⊗


0
1
...
n2

⊗


1
1
...
1

⊗


1
1
...
1

 ,

a2 = k2 ·


1
1
...
1

⊗


0
1
...
n2

⊗


0
1
...
n3

⊗


1
1
...
1

 ,

a3 = k3 ·


1
1
...
1

⊗


1
1
...
1

⊗


1
1
...
1

⊗


0
1
...
n4

 ,

see Chapter 5 for details regarding the construction.

9.3. Numerical Experiments 105

In the TT format, the tensor operator A can be expressed as

A =
[
I1 −D1 G↑1 ·D1

]
⊗

G↑2 ·D2 I2 −D2 0 0
0 0 0 D2 0

0 0 0 0 G↑2 ·D2



⊗


G↑3 ·D3 0 0

0 I3 0
0 0 D3

0 0 I3
0 0 G↓3

⊗
 G↓4
G↑4 ·D4 −D4

I4

 ,
(9.3.4)

where Ii, Di, G
↑
i , G

↓
i ∈ R(ni+1)×(ni+1) with Ii = I, Di = diag(0, . . . , ni), and the

shift matrices G↑i and G↓i of the form (9.3.1).
In order to illustrate the efficiency of the tensor approach, we set the exponent m

to natural numbers between 2 and 5. That is, the number of states we consider in
this experiment reaches from 29 to 221, which is rather small compared to the state
space from the previous experiment. However, the following example shows that
the efficiency of the tensor approach strongly depends on the structure of the given
system, i.e. the amount of states with non-vanishing probabilities is more crucial
than the total number of states.

Mean concentrations

0 0.5 1 1.5 2
0

5

10

15

20

25

30
species 1

species 2

species 3

species 4

t

Figure 9.4: Mean concentrations for the two-step destruction: The average numbers of
molecules of the different species change rapidly at the beginning and then slowly converge
to the steady state of all molecules being vanished.

We apply Algorithm 3 again and decompose the TT cores of (9.3.4) into m and
m + 1 QTT cores, respectively. All mode sizes of the quantized operator are then
equal to 2. Starting with an initial state X0 = (2m − 1, 2m+1 − 2, 0, 0), we can
ensure that the probabilities for states outside the state space S are 0 since no
molecules of S1 are produced and the maximum number of molecules of S3 and S4,
respectively, is bounded by the maximum number of molecules of S1. In order to
simulate the conversion of all molecules, we set the initial number of molecules of
S2 to 2n1 = 2m+1 − 2.

106 9. Chemical Reaction Networks

Table 9.3.: Solving the destruction problem in the QTT format: Maximum relative errors
and CPU times depending on the exponent m determining the size of the state space S.

m maxk{eIE,k} CPU time
2 2.15e−02 1.47 s
3 8.57e−02 64.12 s
4 1.32e−01 431.83 s
5 1.31e+00 834.67 s

We employ the implicit Euler method in combination with MALS, see Chapter 4,
to compute the numerical solution of the MME up to t = 10. Here, we let MALS
adapt the TT ranks of the probability tensors during the computation, but only
allow TT ranks not greater than 30. Starting with a step size of 0.001, we compute
the numerical solution on the time interval [0, 0.1]. As we observed in our experi-
ments, the probability distribution over the state space changes rather slowly after
this time interval. Thus, we then compute 9 steps each with step sizes 0.1 and 1,
respectively. Table 9.3 shows the CPU times and maximum approximation errors
of the form (4.5.3) depending on the exponent m. The error increases with growing
m since the rank bound for MALS causes a loss in accuracy. In particular, higher
QTT ranks would be needed for approximating the transient process corresponding
to values of m larger than 4.

QTT ranks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5

10

15

20

25

30

35

t=0

t=0.001

t=0.003

t=0.005

t=0.01

t=0.05

t=0.1

t=10

rank index

Figure 9.5: QTT ranks for the two-step destruction: The adaption of the QTT ranks
by MALS corresponds to the density of the probability distributions. When the number
of states with non-vanishing probability increases, higher QTT ranks are needed for the
approximation.

Form = 4, the mean concentrations of the species over time as given in (9.3.3) are
shown in Figure 9.4. We only show the varying concentrations over the time interval
[0, 2]. After t = 2, the first three species are almost fully converted and the number of
molecules of species S4 is monotonically decreasing. The same qualitative behavior
can be observed for other values of m, even roughly for m = 5. After the probability
distribution changes rapidly within the time interval [0, 1], the QTT approximations
slowly converge to the stationary distribution, which is also reflected in the QTT

9.3. Numerical Experiments 107

ranks of the approximations. The QTT ranks naturally decrease when the numerical
solution gets closer to the steady state, which can be represented as a rank-one tensor
where the probability is concentrated in the state X = (0, 0, 0, 0)T ∈ S. Figure 9.5
shows the QTT ranks of the probability distributions at certain time steps. In
accordance with the convergence behavior observed in Figure 9.4, the QTT ranks
for m = 4 increase rapidly at the beginning and then start to decrease after t ≈ 2.
At t = 10, almost all molecules (and therefore the probabilities for most states) are
vanished such that the distribution at that point can be represented by a tensor
with QTT ranks bounded by 15.

10
Heterogeneous Catalysis

This chapter is based on our work in [6] and [9]. We will show how to exploit the
TT format in order to mitigate the curse of dimensionality for a reduced model of
the oxidation of carbon monoxide on a catalytic surface, see [109, 110, 111]. A cen-
tral objective of heterogeneous catalytic processes is to investigate the stationary
behavior of a catalyst. Therefore, our experiments will focus on computing sta-
tionary probability distributions. After giving a brief introduction of heterogeneous
catalytic processes and describing the considered model, we will examine the com-
putational complexity for increasing system size and for various reaction conditions
in Section 10.3.1. Furthermore, we will compare the results obtained by the TT
approach with kinetic Monte Carlo simulations in Section 10.3.2 and illustrate the
efficiency of the TT approach in Section 10.3.3 by considering a numerical example
with increasing stiffness.

10.1. Heterogeneous Catalytic Processes

Catalysts are substances that facilitate chemical reactions without being consumed
in the process. Heterogeneous catalysts are usually solid materials while the re-
actants are gases or liquids. These reactants are adsorbed onto the surface of the
catalyst at so-called active sites. Apart from the actual chemical reactions on the
catalytic surface, further possible events are the diffusion of the reactant molecules
as well as the desorption of the products. Processes where heterogeneous cataly-
sis plays an important role range from artificial photo-synthesis [54] to automotive
exhaust gas cleaning [55]. More examples for the economic importance of heteroge-
neous catalysts can be found in [112, 113].
When modeling heterogeneous catalytic processes, direct molecular dynamics sim-

ulations of rare-event systems are limited in the sampling they can achieve since
chemical reactions are – on a time scale of molecular motion – rare transitions
from one metastable basin to another [114]. However, due to rapid motion within
each basin, we can assume that the next transition only depends on the current
metastable state. Thus, if we only consider the sequence of these metastable states,
the coarse-grained dynamics can be modeled as a Markov jump process, see Sec-
tion 5.1, where each jump corresponds to the execution of a particular reaction
event. The state space of these processes is in general extremely high-dimensional
such that standard numerical techniques cannot be applied. Assuming negligible
correlations between species at different active sites, a simple approach to evalu-
ate the surface kinetics is the mean-field approximation. However, when applied

109

110 10. Heterogeneous Catalysis

to general many-body systems, mean-field approximations might lead to inaccurate
results [110, 115, 116]. A rather modern approach to analyze the chemical kinet-
ics is the application of the kinetic Monte Carlo (kMC) method [50, 51, 117], also
known as stochastic simulation algorithm, cf. Section 9.2. The drawback of the kMC
method is the large number of simulations needed to capture the relevant dynamics.
Thus, there is a demand for methods which can overcome the disadvantages of those
methods while maintaining the scaling behavior of the computational complexity
with growing number of dimensions.

10.2. Reduced Model for the CO Oxidation at RuO2

Ruthenium dioxide (RuO2(110), where (110) is the index, see [118]) is a promising
catalyst for different oxidation reactions [119]. Here, we consider the oxidation
of carbon monoxide (CO) at the surface. Given gaseous oxygen (O2) and CO as
reactants binding to the RuO2(110) surface, carbon dioxide (CO2) is produced and
desorbed from the surface.

(a) (b) (c)

Figure 10.1: Reduced model for the CO oxidation at RuO2(110): (a) Top view of the
RuO2(110) surface showing the two prominent adsorption sites, bridge sites between the
ruthenium atoms in blue and cus sites on the ruthenium atoms in red. (b) Two-dimensional
lattice model of the coarse-grained surface composed of alternating rows of bridge and cus
sites. (c) One-dimensional lattice model completely composed of cus sites.

The considered microkinetic model for the CO oxidation at RuO2(110) was pre-
sented by Reuter et al. in 2004 [109, 120]. It is derived by using density-functional
theory [121] together with transition-state theory [122] and reproduces experimental
findings reasonably well. A top view of the surface model is shown in Figure 10.1 (a).
Considering a rectangular lattice with alternating columns of so-called bridge sites
and coordinatively unsaturated sites (cus), see Figure 10.1 (b), we are interested in
the limit of very large lattices since the typical lattice spacing is very small (a few
Ångström) compared to the size of the catalyst. Thus, periodic boundaries will
be employed to mimic an infinite system. Each adsorption site has three different
states:

1 =̂ empty, 2 =̂ O-covered, 3 =̂ CO-covered.

10.2. Reduced Model for the CO Oxidation at RuO2 111

The possible reaction events are:

• unimolecular adsorption of CO on bridge and cus sites, respectively,

• unimolecular desorption of CO on bridge and cus sites, respectively,

• dissociative adsorption of O2 on two neighboring sites of any kind,

• associative desorption of O2 from two neighboring sites of any kind,

• diffusion of CO and O, respectively, to a neighboring site of any kind,

• associative desorption of CO2 from neighboring sites of any kind.

We assume the same environmental conditions as in [110]. In detail, these are a
fixed O2 pressure of pO2 = 1 atm, a fixed temperature T = 600 K, and a varying CO
pressure pCO ∈ [10−4, 102] atm. This set of gas-phase conditions is representative for
so-called in-situ experiments, i.e. the conditions are close to the operation conditions
for a catalyst in a realistic scenario. As the rate of CO adsorption depends linearly
on the CO pressure, the interval for pCO corresponds to kAdCO ∈ [104, 1010] s−1.
In [110, 123], it has been found that the chemical kinetics predominantly take

place only on the cus sites. Thus, we omit all reactions involving bridge sites and
restrict to a reduced model of non-communicating columns of cus sites. In this
way, the problem becomes one-dimensional in the form of a ring consisting of d
cus sites, see Figure 10.1 (c). Table 10.1 summarizes the elementary reactions and
corresponding rate constants.

Table 10.1.: Elementary reaction steps and corresponding rate constants: The reactions
are defined on two neighboring cus sites Θi and Θj, except for adsorption and desorption
of CO, which are defined only on one cus site Θi.

Adsorption
RAd
O2

: ∅i + ∅j → Oi + Oj , kAdO2
= 9.7 · 107s−1

RAd
CO : ∅i → COi , kAdCO = 104 − 1010s−1

Desorption
RDe
O2

: Oi + Oj → ∅i + ∅j , kDe
O2

= 2.8 · 101s−1

RDe
CO : COi → ∅i , kDe

CO = 9.2 · 106s−1

RDe
CO2

: COi + Oj → ∅i + ∅j , kDe
CO2

= 1.7 · 105s−1

Diffusion
RDiff
O : Oi + ∅j → ∅i + Oj , kDiff

O = 0.5s−1

RDiff
CO : COi + ∅j → ∅i + COj , kDiff

CO = 6.6 · 10−2s−1

112 10. Heterogeneous Catalysis

The first time, we considered the CO oxidation at a RuO2(110) surface in the
context of TT decompositions, see [6], we constructed the corresponding master
equation operator (5.2.9) by hand. However, as we later showed in [9], the system
is a cyclic, homogeneous NNIS, see Section 6.1, and therefore can be expressed as
a SLIM decomposition given in (6.2.4). The cells Θ1, . . . ,Θd then represent the
adsorption sites on the surface. In order to construct the operator corresponding to
the MME, we use Algorithm 16 with inputs

ai,1 =
(
kAdCO 0 0

)
, pi,1 = +2,

ai,2 =
(

0 0 kDe
CO
)
, pi,2 = −2,

ai,i+1,1 =

 kAdO2
0 0

0 0 0
0 0 0

 , [pi,i+1,1, qi,i+1,1] = [+1, +1],

ai,i+1,2 =

 0 0 0
0 kDe

O2
0

0 0 0

 , [pi,i+1,2, qi,i+1,2] = [−1, −1],

ai,i+1,3 =

 0 0 0
0 0 0
0 kDe

CO2
0

 , [pi,i+1,3, qi,i+1,3] = [−2, −1],

ai,i+1,4 =

 0 0 0
0 0 kDe

CO2

0 0 0

 , [pi,i+1,4, qi,i+1,4] = [−1, −2],

ai,i+1,5 =

 0 0 0
kDiff
O 0 0
0 0 0

 , [pi,i+1,5, qi,i+1,5] = [−1, +1],

ai,i+1,6 =

 0 kDiff
O 0

0 0 0
0 0 0

 , [pi,i+1,6, qi,i+1,6] = [+1, −1],

ai,i+1,7 =

 0 0 0
0 0 0

kDiff
CO 0 0

 , [pi,i+1,7, qi,i+1,7] = [−2, +2],

ai,i+1,8 =

 0 0 kDiff
CO

0 0 0
0 0 0

 , [pi,i+1,8, qi,i+1,8] = [+2, −2],

for i = 1, . . . , d, where ad,d+1,µ = ad,1,µ and [pd,d+1,µ, qd,d+1,µ] = [pd,1,µ, qd,1,µ].
The output of Algorithm (16) is then an MME operator A ∈ R(3×3)×···×(3×3) in
TT format with ranks equal to 16, which is the same size as the operator in [6].
Using this exact tensor-train decomposition, we can compute stationary and time-
dependent probability distributions by formulating eigenvalue problems or applying
implicit time propagation schemes combined with ALS, see Chapter 4. In [6], we
carried out several numerical experiments, which we repeat here with improved
computational capabilities using the derived SLIM decomposition. The results of
these computations are shown in the next section.

10.3. Numerical Experiments 113

10.3. Numerical Experiments

10.3.1. Scaling with System Size

In this experiment, we examine the dependence of the computational complexity
on the system size by increasing the number of sites and measuring the CPU time
needed to approximate the stationary distribution for pCO = 1 atm (kAdCO = 108s−1).
For each number of sites, we start with a fully O-covered surface represented by a
tensor P0 with rank-one decomposition

P0 =

0
1
0

⊗
0

1
0

⊗ · · · ⊗
0

1
0

 .

Employing the implicit Euler method and using ALS to solve the resulting systems
of linear equations given in (4.5.2), we start with a step size of 10−10 and double
the step size after each step. For the first system of linear equations, we set the
initial guess to a uniformly distributed tensor train, cf. Section 9.3.1, and use the
solution of each iteration step as the initial guess for the next system. Different tests
have shown that repeating ALS twice at each time step with a rank bound of 10 is
sufficient to keep the residual errors given in (4.5.3) below 10−4 and to accurately
approximate the stationary distribution within 20 steps, i.e. ‖A ·P20‖2 is less than
or close to 1 for all tested numbers of dimensions. For low dimensions, we observed
that the relative error between the real stationary distribution and the vectorization
of P20 is much smaller than 1%.

T

Time per SLE

0 40 80 120 160 200
0

0.5

1

1.5

2

d

(a)

T

CPU time

0 40 80 120 160 200
0

10

20

30

40

d

(b)

Figure 10.2: CPU times for increasing number of dimensions: (a) CPU time in seconds
over order d for computing the stationary distribution. (b) Average time in seconds over
order d for solving one system of linear equations (SLE).

Figure 10.2 shows the CPU times for the entire computations as well as the average
time needed for solving a single system of linear equations in the TT format. It
follows from the estimation of the computational complexity of ALS, see Table 4.1,
that the CPU times scale linearly with the number of dimensions, cf. Figure 10.2 (a).
This is also reflected in the time needed for solving the whole problem as shown in
Figure 10.2 (b). Note that the largest systems of linear equations we consider have

114 10. Heterogeneous Catalysis

3200 ≈ 1095 unknowns, which is far beyond the capabilities of classical methods for
solving systems of linear equations. Using the TT approach, we are able to compute
the numerical solution of the corresponding MME within approximately 30 seconds.

10.3.2. Varying the CO Pressure

In this section, we approximate the stationary distributions for several values of the
CO pressure. We then extract key quantities describing the efficiency of the catalyst
from these distributions, namely the turn-over frequency (TOF) and the coverages.
The TOF represents the number of reactions of a specific type executed per unit
time and unit surface. In our case, it measures how often CO2 is produced, i.e.

TOF =
kDe
CO2

d

∑
i∈{1,...,d}

∑
j∈{i−1,i+1}

P(CO on Θi ∧O on Θj), (10.3.1)

where P(CO on Θi∧O on Θj) denotes the probability for finding CO on site Θi and
O on a neighboring site Θj . Note that we here identify the sites Θj for j = 0 and
j = d + 1 with Θd and Θ1, respectively. Since the TOF depends strongly on the
amount of COmolecules and oxygen atoms adsorbed on the catalytic surface, we also
consider the coverages, which are the average numbers of the different occupation
types per total number of sites, i.e. P(∅ on Θi), P(O on Θi), and P(CO on Θi) for
any site Θi, i = 1, . . . , d. Due to the homogeneous structure of the system, the
coverages are translationally invariant, e.g. it holds that P(∅ on Θi) = P(∅ on Θj)
for different sites Θi and Θj . Additionally, the TOF given in (10.3.1) may be
expressed without summation over all sites. Assuming the same reaction conditions
as in [110], we vary the CO pressure between 10−4 atm and 102 atm and compare the
results of the TT approach with results obtained by highly accurate kMC simulations
carried out with the kmos package [51]. For both methods, we set the number of
adsorption sites to 20.

Table 10.2 shows the used methods and TT ranks for different values of the CO
pressure pCO ∈

[
10−4, 102

]
. For parameter values pCO < 1 atm, we obtain accurate

approximations of the stationary distribution by applying ALS to an eigenvalue
problem of the form (4.5.6). Systems with higher CO pressure are simulated by
applying the implicit Euler method to the MME with an empty surface as initial
state. We solve the systems of linear equations given in (4.5.2) by using ALS with
the distribution computed in the previous step as input tensor. The initial guess
for the system corresponding to the first iteration step is a uniformly distributed
tensor train with rank bound as shown in Table 10.2. Note that all rank bounds
for the TT approximations and also the number of steps and the step sizes of the
implicit Euler method were determined through multiple numerical experiments.
We implemented a simple step-size adaptation based on the alteration of ‖A ·Pk‖2
in each iteration step and tested different TT ranks for the first initial guess.

10.3. Numerical Experiments 115

Table 10.2.: Computation of stationary distributions for varying CO pressure: For the
different CO pressures, either the stationary distribution is approximated by formulating an
eigenvalue problem (EVP) or by employing the implicit Euler method (IEM). Additionally,
we show the chosen bound of the TT ranks, the required computation time, and the closeness
to the stationary distribution ‖A ·Pstat‖2, where A is the respective MME operator and
Pstat is the computed approximation.

pCO in atm Method TT ranks Closeness CPU time
10−4 EVP 4 0.003 3.44
10−3.5 EVP 5 0.006 2.88
10−3 EVP 6 0.004 8.36
10−2.5 EVP 7 0.002 5.14
10−2 EVP 11 0.008 3.52
10−1.5 EVP 12 0.003 5.11
10−1 EVP 12 0.005 4.25
10−0.5 EVP 11 0.019 7.65
100 IEM 14 0.138 6.63
100.1 IEM 17 0.181 15.12
100.2 IEM 20 0.322 46.41
100.3 IEM 25 0.525 140.92
100.4 IEM 33 0.908 403.49
100.5 IEM 39 4.240 740.48
100.6 IEM 40 33.562 744.34
100.7 IEM 39 37.197 813.51
100.8 IEM 40 12.017 786.94
100.9 IEM 39 6.859 791.25
101 IEM 40 5.937 853.65
101.5 IEM 21 0.026 51.08
102 IEM 16 0.097 17.70

We only used TT ranks not higher than 40 with the aim to compute an approxi-
mation Pstat of the stationary distribution such that ‖A ·Pstat‖2 < 1. As one can
see, this threshold is not reached for all CO pressures. From an algebraic point
of view, the complexity of the corresponding stationary distributions in full tensor
format cannot be accurately approximated with the same TT ranks as used for low
CO pressures. An explanation for this effect is that the probability at low pressures
is concentrated in a rather small number of possible surface arrangements, while
the full tensors of the stationary distributions at high pressures are dense and the
probabilities of a large amount of surface configurations do not vanish. Additionally,
we observed that higher TT ranks do not necessarily imply a better accuracy, which
can have multiple reasons such as the chosen scheme for the step size adaptation or
the application of the ALS algorithm to non-symmetric systems. Overall, Table 10.2
shows that the TT ranks and CPU times increase as pCO gets closer to 100.7 and
that it is easier to approximate the stationary distributions in terms of CPU time
and closeness to the stationary distribution for low than it is for high CO pressures.

116 10. Heterogeneous Catalysis

For the considered values of the CO pressure, we now want to investigate the
correlation lengths of the cus sites. Since the system is translationally invariant, the
total correlation [124] for the site distance l ∈ {1, . . . , 10} is defined as the Kullback–
Leibler divergence [125] from P(x1 = i ∧ x1+l = j) to P(x1 = i)P(x1+l = j), i.e.

C(l) =
1

9

3∑
i=1

3∑
j=1

P(x1 = i ∧ x1+l = j) · log

(
P(x1 = i ∧ x1+l = j)

P(x1 = i)P(x1+l = j)

)
,

where x1 and x1+l are the states of the active sites Θ1 and Θ1+l. Comparing Figure
10.3, where we show the normalized correlations C̃(l) = C(l)/C(1) for different CO
pressures, with Table 10.2, we see a close connection between the computational
effort for approximating the stationary distribution and the correlation length for
the corresponding CO pressure. The reason for this may be that much higher TT
ranks would be needed in order to represent the dependence among the set of active
sites. For high correlation lengths, the calculation of the TT approximations is more
expensive than for low correlation lengths, where we are able to keep the TT ranks
and CPU time at a small level.

l

Total correlations

α

Figure 10.3: Correlations of active sites for varying CO pressure: Values of the correlation
function C̃ for distances l = 2, . . . , 10 over exponents α with pCO = 10α atm.

Finally, Figure 10.4 shows the TOF over the CO pressure interval and an area
plot of the coverages , respectively. In accordance with the results obtained by kMC
simulations, we observe three characteristic regimes. At low CO pressures, the sur-
face is almost fully O-covered, while at high pressures the surface is almost fully
CO-covered. Additionally, there is an intermediate regime, where the probabilities
for all possible site occupations do not vanish. Within this regime, the fraction of
empty sites reaches its highest value of approximately 1.2%. The TOF is monotoni-
cally increasing on the CO pressure interval

[
10−4, 100

]
and has its maximum in the

intermediate regime at pCO ≈ 5 atm, were both reactants for the CO formation are
available in sufficient amount on the surface. Additionally, the position of the peak
corresponds to the longest correlation lengths as shown in Figure 10.3 and there-
fore to the most expensive calculations. We observe an almost perfect agreement
when comparing the TOF obtained by the TT approach and by kMC simulations in
Figure 10.4 (b). This shows that the presented approach is able to produce results
with high accuracy while keeping the computational effort on a low level.

10.3. Numerical Experiments 117

P(
·

on
Θ
i
)

Coverages

10
-4

10
-3

10
-2

10
-1

10
0
 10

1
 10

2

0

0.2

0.4

0.6

0.8

1

pCO

(a)

T
O

F

Turn-over frequency

10
-4

10
-3

10
-2

10
-1

10
0
 10

1
 10

2

10
-4

10
-2

10
0

10
2

10
4

10
6

kMC

TT

pCO

(b)

Figure 10.4: Coverages and TOF for increasing CO pressure: (a) Mean coverages of
the cus sites over CO pressure pCO. Blue: empty, green: O-covered, yellow: CO-covered.
(b) Turn-over frequency of the catalyst over pCO. Blue line: TOF obtained with kMC, black
circles: values computed with tensor-train approach

10.3.3. Increasing the Oxygen Desorption Rate

We use the last experiment in this chapter to demonstrate the advantage of the
TT approach over the kMC method when considering stiff problems, i.e. when the
time scales of elementary reactions differ significantly from each other, cf. [126]. In
terms of kMC simulations, the system fluctuates only between a small number of
short-lived states and a high number of Monte Carlo steps is needed to ensure an
sufficient sampling. If the stiffness of the system is increased even further, reaching
a certain final time also requires a larger number of simulation steps.
Setting the CO pressure to pCO = 10−4 atm, the catalytic surface (after relaxation

time) is almost fully O-covered, see Figure 10.4 (a). The dominant processes then
are the oxygen adsorption and desorption. We increase the stiffness of the system
by multiplying the rate constant kDe

O2
of the oxygen desorption by a parameter λ

between 1 and 106. Considering 10 cus sites, we compute the numerical solution of
the MME up to 1 second – starting with an empty surface and ending close to the
steady state – by employing the kMC method and the tensor approach, respectively.
For the TT approach, we use a combination of the implicit trapezoidal rule and the
implicit Euler method to approximate the transient process. That is, starting with a
step size τ = 10−11 and increasing the exponent of τ after each ten steps, we use the
second-order trapezoidal rule for the first 40 iteration steps, where the probability
distributions over the state space are changing rapidly. The implicit Euler method is
used for the last 70 iteration steps since we observed a better convergence behavior
for larger step sizes compared to the application of the trapezoidal rule. We suppose
that this is a consequence of the implicit Euler method being L-stable, which means
that instabilities are damped when using larger step sizes. Overall, we compute
110 steps with step sizes from 10−11 to 10−1. The TT ranks are chosen in such a
way that we keep the relative errors given in (4.5.3) and (4.5.5), respectively, below

118 10. Heterogeneous Catalysis

0.05 and converge to an approximation Pstat of the stationary distribution with
‖APstat‖2 ≤ 1.

TT ranks

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

λ

(a)

Relative CPU time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

kMC

TT

λ

(b)

Figure 10.5: Computational complexity for increasing oxygen desorption rate: (a) TT
ranks used for computing the probability distributions. (b) Relative CPU times of the kMC
and TT approach.

Figure 10.5 shows the used TT ranks and the relative CPU times. We divided
all CPU times by the time needed to compute the numerical solution for λ = 1
in order to compare the behavior of both approaches for systems with increasing
stiffness. In absolute times, the kMC method is still faster than the TT approach.
However, the relative CPU times for the kMC method increase linearly with λ
while the computational complexity of the TT approach grows at much lower rate.
The results indicate that the improvement of tensor-based (implicit) integration
schemes may lead to a better performance than kMC simulations for problems with
increasing stiffness. Considering Figure 10.6, we see that the norm of the computed
probability distributions converges to approximately 1 for small values of λ. That
is, the stationary distribution for these cases is concentrated in the state of a fully
O-covered surface. For higher values of λ, the probability distributions spread over
various surface configurations, which can be explained by the shorter times of oxygen
atoms staying on the surface.

Numerical solutions

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0

0.2

0.4

0.6

0.8

1

=10
0

=10
1

=10
2

=10
3

=10
4

=10
5

=10
6

λ

Figure 10.6: Numerical solutions for increasing oxygen desorption rate: The 2-norms
of the computed probability distributions are plotted for different values of the stiffness
parameter. The norm of the approximated stationary distribution decreases for growing λ.

11
Fluid Dynamics

In this chapter, we consider the application of TDMD to different simulations of
fluid flows. After a brief description of the analysis of fluid dynamics problems by
means of computer-based simulation, we show two illustrative examples. The first
example is a time series showing wave patterns formed in the temperature field of
a rotating fluid. The second example, which we also considered in [14], is a three-
dimensional simulation of the flow around a blunt body. For both examples, we
will apply the methods described in Section 7.3 in order to compute (exact) DMD
modes and corresponding eigenvalues directly in the TT format.

11.1. Computational Fluid Dynamics

The term computational fluid dynamics (CFD) refers to the analysis of fluid flow
problems arising from different subdisciplines of fluid dynamics such as aerody-
namics [127, 128], hydrodynamics [129, 130], and heat transfer [131, 132]. The
mathematical models of fluid flows are often given by Navier–Stokes equations and
related fluid descriptions as the Euler or Boussinesq equations, see e.g. [133]. The
general formulation of the Navier–Stokes equations for compressible flows, i.e. flows
with non-constant fluid density, is

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+ µ∆~v + (ζ + µ)∇(∇ · ~v) + f, (11.1.1)

where ~v is the fluid velocity, p is the pressure, ρ is the fluid density, and f is an
external body force. The constants µ and ζ denote the dynamic viscosity (resistance
to shearing flows) and the volume viscosity (resistance to volume compression and
expansion), respectively. Together with the principles of mass and energy conserva-
tion, these equations constitute the basic mathematical model of CFD.

Depending on the underlying assumptions, the fluid velocity, its pressure and
other quantities can be approximated on the computational domain by discretiz-
ing the model equations, e.g. by using the finite volume method [134] and solving
the corresponding algebraic equations. For further details about CFD and fluid
modeling, we refer to [133, 135].

119

120 11. Fluid Dynamics

11.2. Numerical Examples

11.2.1. Rotating Annulus

The first example for the application of TDMD is a differentially heated annulus
in rotation. Introduced by Fultz in 1959 as a laboratory model for atmospheric
circulation [136], the underlying physics have been of great interest in experimental
and numerical research, see e.g. [137, 138, 139, 140]. A schematic drawing of the
apparatus is shown in Figure 11.1 (a). The rotating tank is filled with de-ionized
water and the outer wall is heated, whereas the inner wall is cooled. If the rotation
rate is high enough, drifting wave patterns in the temperature distribution are
formed.
The system can be numerically modeled by a Boussinesq approximation. That is,

we consider the incompressible case of the Navier–Stokes equations given in (11.1.1)
together with an equation for the heat flow within the fluid. The three equations
for the Boussinesq approximation are then given by

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p+ ν∆~v +

δρ

ρ
gez − 2Ωez × ~v,

∇ · ~v = 0,

∂T

∂t
+ (~v · ∇)T = κ∆T.

(11.2.1)

Here, ν = µ/ρ denotes the kinematic viscosity of the fluid, δρ is the difference
between the density of the given fluid parcel and the reference density ρ, and κ
is the thermal diffusivity. The last two terms on the right-hand side of the first
equation describe the gravitational and the Coriolis force, respectively, where ez
denotes the unit vector in vertical direction.

(a) (b) (c)

Figure 11.1: Differentially heated rotating annulus: (a) Schematic drawing of the labora-
tory set-up. The annular gap ranges from 4.5 cm to 12 cm in radial direction and the water
depth is 13.5 cm. The kinematic viscosity and the thermal diffusivity of the fluid are given
by 1.004mm2/s and 0.1434mm2/s, respectively. (b) A single representative snapshot of the
temperature field (in terms of temperature difference) in the considered slice, viewed from
above. (c) The same snapshot projected to a rectangle with periodic boundaries (at the left
and right side). For both pictures, data values less than 2K are mapped to the minimum
of the colormap in order to compare both visualizations.

11.2. Numerical Examples 121

Given time-series data computed with the EULAG flow solver [141], we want to
compute the exact DMD modes of the flow from the temperature fields at different
time points directly in the TT format, cf. (7.3.16). We assume a rotation rate
of 0.635 rad/s and a radial temperature gradient of 6.7K, i.e. the outer and the
inner wall have a temperature of 16.65◦C and 23.35◦C, respectively. Under these
forcing parameters, the formation of a four-fold symmetric wave pattern in the fluid
can be observed. As an introductory example for the application of TDMD, we
consider a single horizontal slice of the three-dimensional system. Similar patterns
as shown in 11.1 (b) can be observed throughout all horizontal slices of the annulus.
The fluid temperature fields of the different snapshots are then interpolated on a
circular grid and projected to a rectangle with periodic boundaries, see Figure 11.1
(c). By restricting the analysis only to the essential part of the temperature field and
projecting it to a rectangular grid, we obtain an almost linear relationship between
time-shifted snapshots since, on a coarse level, the temperature distribution at time
t + δt is approximately the translated distribution at time t. The existence of a
linear operator representing this relationship is the main assumption of DMD, see
Section 7.3.
We extract one complete rotation of the wave pattern from the given data. That

is, we consider 626 snapshots represented by matricesTk ∈ R106×720, k = 0, . . . , 625.
The time step between two consecutive snapshots is δt = 0.954 s. As described in
(7.3.3), we then define the tensors X,Y ∈ R106×720×625 as

X:,:,k = Tk−1 and Y:,:,k = Tk, (11.2.2)

for k = 1, . . . , 625.

(a)

(b)

(d)

(c)

(e)

1

0.5

0

-0.5

-1

Figure 11.2: Results for the rotating annulus: (a) DMD mode corresponding to
eigenvalue λ = 1, which can be interpreted as the average temperature field. The
other modes correspond to the following eigenvalues: (b) λ ≈ exp(4 · i · (2π/625)).
(c) λ ≈ exp(8 · i · (2π/625)). (d) λ ≈ exp(12 · i · (2π/625)). (e) λ ≈ exp(16 · i · (2π/625)).
Only the real parts of the DMD modes are shown.

122 11. Fluid Dynamics

Table 11.1.: TDMD applied to the rotating annulus: Influence of the truncation parameter
ε on the ranks, runtimes, and accuracy of the first two considered DMD modes.

Mode (a) Mode (b)
Threshold TT ranks CPU time eλ eϕ eλ eϕ
ε = 0 [1, 106, 625 , 1] 2.85 s 0 0 0 0
ε = 1 [1, 61, 625 , 1] 2.69 s 1.85e−10 6.12e−06 9.46e−09 3.56e−04
ε = 5 [1, 38, 316 , 1] 0.67 s 2.41e−07 3.17e−04 6.71e−06 6.49e−03
ε = 10 [1, 30, 169 , 1] 0.29 s 3.23e−07 8.89e−04 6.82e−05 2.88e−02

Without truncation, the TT ranks of both tensors are given by [1, 106, 625, 1]. As
we have discussed in [14], we assume that the data matrices X and Y are already
given in the TT format. For instance, that could mean that the set of partial differ-
ential equations of the form (11.2.1) is numerically solved by applying an appropriate
time-stepping scheme combined with (M)ALS. However, we here apply Algorithm 2
to convert the snapshot tensors given in (11.2.2) into the TT format. Thus, we can
reduce the TT ranks and the computation time for exact TDMD by increasing the
threshold ε in Algorithm 2. We considered another two-dimensional flow problem in
[14], where we showed that one can significantly decrease the computation time for
TDMD while obtaining only small numerical errors for the low-rank approximation.
The same applies for the rotating annulus. For ε = 0, the computation time for
the TT approach (the runtime of Algorithm 2 not included) is approximately 3 s,
whereas the CPU time for the classical DMD method using matricizations of X and
Y is around 6 s. For ε > 0, the computation times are even much smaller than
3 s. Five of the computed DMD modes can be seen in Figure 11.2 and Table 11.1
shows – corresponding to the different values of ε – the TT ranks, CPU times, and
approximation errors eλ and eϕ defined as

eλ =

∣∣∣λ− λ̃∣∣∣
|λ|

and eϕ =
‖ϕ− ϕ̃‖2
‖ϕ‖2

, (11.2.3)

respectively, where λ and ϕ are the DMD eigenvalue and mode for ε = 0 and λ̃ and
ϕ̃ are the approximations for ε > 0. We normalized each mode such that the largest
absolute value is 1. Almost all computed eigenvalues lie on the unit circle, i.e. most
eigenvalues λ can be written as λ = exp(i · k · (2π/625)), where i is the imaginary
unit and k ∈ N. For each mode ϕ, the corresponding frequency, see e.g. [142, 143],
is then defined as

ω =
=(log(λ))

∆t
≈ k · 2π

t∗
, (11.2.4)

where λ is the eigenvalue corresponding to ϕ and t∗ is the total time for one complete
rotation of the wave pattern. One can see in Figure 11.2 that larger structures
correspond to lower frequencies, whereas smaller structures correspond to higher
frequencies, cf. [57]. Note that these frequencies are also reflected in the patterns
shown in Figure 11.2 (b)–(e).

11.2. Numerical Examples 123

11.2.2. Flow Around a Blunt Body

The second example, which we already considered in [14], shows the flow around a
blunt body in three dimensions on the domain Ω = [0, 25]× [0, 15]× [0, 10]. Inside
the domain, we place a conical object with the center axis at (x1, x2) = (5, 7.5) and
diameters given by D1 = 0.8 at the boundaries and D2 = 1.6 in the middle of the
channel. See Figure 11.3, where we display the streamlines of the velocity field at
two different time steps. Additionally, periodic boundary conditions in the x2- and
the x3-direction are applied. The mathematical model of this system is given by the
incompressible Navier–Stokes equations, i.e. the velocity field ~v is divergence-free
and (11.1.1) simplifies to

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+ µ∆~v + f.

Similar examples governed by solving the three-dimensional incompressible Navier–
Stokes equations can be found in [142, 144, 145].

(a) (b)

Figure 11.3: Simulation of the flow around a blunt body: The flow is visualized at different
time points t = 30 s and t = 300 s, respectively, by using streamlines which are inserted at
the inflow and slightly above and below the cone axis, respectively. The streamlines are
colored corresponding to the velocity magnitude.

Using the OpenFOAM toolbox [146] and discretizing the domain by a rectangular
grid with approximately 106 degrees of freedom, we compute 1001 snapshots of the
system. These snapshots are then interpolated on an equidistant, rectangular grid,
where n1 = 150, n2 = 85, and n3 = 80 are the numbers of grid points in each dimen-
sion. Here, we are interested in the velocity magnitude |~v| =

√
v21 + v22 + v23. That

is, the tensors X and Y, which contain the (shifted) snapshots, are elements of the
tensor space R150×85×80×1000. Figure 11.4 shows a few computed DMD modes with
their corresponding frequency, which is given by (11.2.4). Similar to the previous
example, low frequencies indicate slowly rotating vortices, whereas high frequencies
indicate fast rotating vortices. Figure 11.4 also shows that larger structures again
correspond to lower frequencies and smaller structures correspond to higher frequen-
cies. Additionally, the results reveal a tendency for larger structures to originate
from the middle of the conical object and for smaller structures from the (periodic)
boundaries of the object.

124 11. Fluid Dynamics

Table 11.2.: TDMD applied to the blunt body problem: Influence of the truncation param-
eter ε on the TT ranks, runtimes, and accuracies of the leading DMD modes.

Mode (a) Mode (b)
Threshold TT ranks CPU time eλ eϕ eλ eϕ
ε = 0 [1, 150, 6083, 1000, 1] 134 s 0 0 0 0
ε = 0.01 [1, 150, 4708, 1000, 1] 102 s 6.29e−07 6.33e−04 1.53e−07 2.88e−04
ε = 0.05 [1, 150, 3649, 641, 1] 52 s 1.11e−04 3.64e−02 3.05e−05 2.37e−02
ε = 0.1 [1, 148, 3003, 527, 1] 35 s 1.38e−04 6.92e−02 1.26e−04 3.65e−02
ε = 0.5 [1, 135, 1624, 343, 1] 14 s 2.62e−04 8.69e−02 9.61e−05 5.55e−02
ε = 1 [1, 130, 1199, 278, 1] 8 s 4.34e−04 1.72e−01 1.80e−04 1.06e−01

Note that storing the tensor operator A (7.3.2) as well as its matricization A
(7.3.4) in full format would require more than 7.5TB. By applying Algorithm 2, we
convert the tensors X and Y into the TT format using different thresholds ε in order
to illustrate the efficiency of TDMD particularly for low TT ranks. In Table 11.2,
where we compare the approximation of the first two modes, the resulting ranks,
runtimes, and relative errors (11.2.3) for increasing values of ε are shown. As one
can see, the initially high ranks of X and Y can be reduced without losing too much
accuracy in the approximations of the DMD modes and corresponding eigenvalues.
For ε = 0, the runtime of the TDMD approach is slightly higher than the runtime
of conventional DMD for this problem, which is approximately 125 s. However, the
time can be significantly decreased using different thresholds in (0, 1].
All pictures shown in this section and further visualizations can also be found

in [14].

(a) λ = 0.998 + 0.049i, ω = 0.4906 (b) λ = 0.997 + 0.075i, ω = 0.7508

(c) λ = 0.992 + 0.117i, ω = 1.1740 (d) λ = 0.929 + 0.369i, ω = 3.7809

Figure 11.4: Results for the flow around a blunt body: Modes with corresponding eigen-
values close to 1 are visualized by iso-surfaces of the velocity magnitude.

12
Brownian Dynamics

The aim of this chapter is to gain insight into the global behavior of Brownian sys-
tems by analyzing the eigenvalues and eigenfunctions of the corresponding Perron–
Frobenius operator with the aid of Ulam’s method, see Chapter 8. For this purpose,
we will consider two examples for the approximation of the Perron–Frobenius oper-
ator in the TT format. We will use the Algorithms 13 and 14 to approximate the
eigenfunctions and therefore to find invariant densities and metastable conforma-
tions of the considered systems. Note that this chapter only shows the first steps
towards the approximation of transfer operators and their eigenfunctions in the TT
format using (M)ALS for eigenvalue problems. There are still open questions such
as how to reduce the ranks of the computed TT operator without overly changing
the approximated dynamics or how to find the optimal orientation of coordinate
axes in order to represent the eigenfunctions by low-rank tensors, cf. [13].

12.1. Langevin Equation

Brownian dynamics denote methods to simulate the irregular motion of particles
in a fluid due to collisions with the solvent molecules. The standard mathematical
model for the dynamics of these molecular systems is the Langevin equation [147].
The general form of this stochastic differential equation (SDE), see [148], is given
by

m
d2X

dt2
(t) = −∇V (X(t))− γ dx

dt
(t) +R(t),

where m is the mass of the particle, V is an external potential, γ is a damping
coefficient, and R is a stochastic process representing the effect of the collisions
with the molecules of the fluid. Assuming the presence of an external force field,
Brownian dynamics can be described by an overdamped Langevin equation. That is,
because of the small mass of the considered particles, it is assumed that the inertia
of these particles is negligible compared to the damping force. An overdamped
Langevin equation can be written in differential form as

dX(t) = −∇V (X(t))dt+ σdW (t), (12.1.1)

125

126 12. Brownian Dynamics

where the parameter σ is called diffusion coefficient. The force acting on a particle
at various positions in space is given by the conservative force field F = −∇V and
the Brownian motion is realized by the (multidimensional) Wiener process W , see
e.g. [48].
In the next section, we will consider two simple examples for overdamped Langevin

equations in order to illustrate the efficiency of the TT approach when approxi-
mating eigenfunctions of the Perron–Frobenius operator and identifying metastable
conformations.

12.2. Numerical Experiments

12.2.1. Two-Dimensional Triple-Well Potential

In order to compare the results obtained by the TT approach with the exact eigen-
pairs of an approximation of the Perron–Frobenius operator, we first choose a two-
dimensional example on a rather small domain. We consider the Brownian motion
of particles in a potential V taken from [60], which is defined as

V (x, y) = 3 e−x
2−(y− 1

3
)2 − 3 e−x

2−(y− 5
3
)2 − 5 e−(x−1)

2−y2

− 5 e−(x+1)2−y2 + 2
10 x

4 + 2
10

(
y − 1

3

)4
,

where (x, y) ∈ S = [−2, 2]× [−1, 2] is the position of a particle. See Figure 12.1 for
a visualization of the potential.

y

Potential

-2 -1 0 1 2

2

1.5

1

0.5

0

-0.5

-1

-3

-2

-1

0

1

2

3

4

x

Figure 12.1: Two-dimensional triple-well potential: Two deep wells are located at (−1, 0)
and (1, 0), respectively, and a shallow well is located at (0, 1.5).

The corresponding SDE in differential form is given by (12.1.1) with X = (x, y)
and σ = 1.09. The domain S is subdivided into 50× 50 boxes of equal size and the
Euler–Maruyama method [149] is used to compute the trajectories of the randomly
generated test points. We set the step size to h = 10−5 and integrate the SDE with
initial conditions given by the positions of the test points from t0 = 0 to t1 = 0.1.

12.2. Numerical Experiments 127

In order to apply Algorithm 7, we recorded the transitions of 500 test points per
box. The corresponding approximation of the Perron–Frobenius operator is then a
TT operator P ∈ R(50×50)×(50×50) with ranks [1, 1459, 1]. That is, all entries of P
can be represented by a TT decomposition with a rank nearly half as high as the
rank of a full-rank TT operator with [1, 2500, 1]. However, as we already mentioned
in Section 8.2, the storage consumption of P in the TT format is slightly larger than
the storage consumption of the matricization of P in sparse format.

After computing the approximation of the Perron–Frobenius operator in the TT
format by using Algorithm 7, we now want to analyze the slow dynamics of the
system represented by the left-eigentensors of P. In contrast to [13], where a global
power iteration method was applied to the system, we here approximate the three
leading eigenvalues λ1, λ2, λ3 and corresponding eigentensors ϕ1, ϕ2, ϕ3 ∈ R50×50 of
P by using ALS in combination with the BTT format, see Sections 4.3 and 3.5.2,
respectively. The results are shown in Figure 12.2. As already discussed in [62],
the system has different metastable sets located at the wells of the potential. The
second eigenfunction depicted in Figure 12.2 (b) separates the two deep wells and is
close to zero at the shallow well, whereas the third eigenfunction separates the two
deep wells from the shallow well, see Figure 12.2 (c). In Figure 12.2 (d) and (e),
respectively, we also show the second and the third eigenfunctions of the Koopman
operator, which are represented by the right-eigentensors of P and correspond to
the same eigenvalues λ2 and λ3, respectively. As described in Section 8.1, these
eigenfunctions encode the same information as the eigenfunctions of the Perron–
Frobenius operator.

Invariant density

y

-2 -1 0 1 2

2

1.5

1

0.5

0

-0.5

-1 0

0.02

0.04

0.06

0.08

0.1

x

(a)

Sub-dominant eigenfunctions

-2 0 2

2

0.5

-1

(b)

-2 0 2

2

0.5

-1

(d)

-2 0 2

2

0.5

-1

(c)

-2 0 2

2

0.5

-1

(e)

1

0.5

0

-0.5

-1

Figure 12.2: Results for the triple-well potential: (a) Eigentensor of the Perron–Frobenius
operator corresponding to eigenvalue λ1 = 1 representing the invariant density of the sys-
tem. (b) Eigentensor corresponding to λ2 = 0.9919. (c) Eigentensor corresponding to
λ3 = 0.9249. The approximated eigenfunctions of the Koopman operator corresponding to
λ2 and λ3, respectively, are shown in (d) and (e).

128 12. Brownian Dynamics

Table 12.1.: Approximation of the Perron–Frobenius operator for the triple-well potential:
Eigenvalues and corresponding approximation errors.

k λk eλk eϕk
1 1.0000 4.61e−04 3.83e−02
2 0.9919 5.04e−07 3.33e−02
3 0.9249 6.61e−05 3.48e−02

Note that the TT operator P is not symmetric, which is the main assumption
for applying ALS to eigenvalue problems. However, Table 12.1 shows that we still
are able to compute accurate approximations of the eigenpairs (λk, ϕk), k = 1, 2, 3,
by a direct application of the algorithm. We set the TT ranks of the initial guess
to [1, 11, 1], which is the smallest possible TT rank such that the relative errors
eϕk = ‖ϕk − ϕ̃k‖2 / ‖ϕk‖2 are below 10% after two runs of ALS. Here, ϕk is the
exact eigenvector computed by using classical methods and ϕ̃k is the vectorization
of the eigentensor obtained from the TT approach. Furthermore, the relative errors
of the corresponding eigenvalues given by eλk = |λk − λ̃k|/ |λk| are even smaller,
which shows the applicability of ALS to non-symmetric eigenvalue problems.

12.2.2. Three-Dimensional Quadruple-Well Potential

As the second example, we consider the Brownian motion of particles in a three-
dimensional potential V given by

V (x, y, z) = Vx(x) + Vy(y) + Vz(z) = (x2 − 1)2 + (y2 − 1)2 + z2,

with (x, y, z) ∈ S = [−2, 2]×[−2, 2]×[−2, 2]. In Figure 12.3, we plot the components
Vx, Vy, and Vz for the respective domains.

V
x

x-component

-2 -1 0 1 2
0

2

4

6

8

10

x

(a)

V
y

y-component

-2 -1 0 1 2
0

2

4

6

8

10

y

(b)

V
z

z-component

-2 -1 0 1 2
0

2

4

6

8

10

z

(c)

Figure 12.3: Three-dimensional quadruple-well potential: The respective components in x-
and y-direction are biquadratic functions. The z-component of the potential is a parabola.

12.2. Numerical Experiments 129

Table 12.2.: Approximation of the dominant eigenpairs for the quadruple-well potential
with threshold ε = 0: Eigenvalues and corresponding approximation errors.

k λk eλk eϕk
1 1.0000 2.66e−15 2.93e−14
2 0.7611 2.92e−15 1.29e−13
3 0.7566 1.91e−15 2.60e−13

The corresponding Langevin equation is given by (12.1.1) with X = (x, y, z) and
σ = 0.7. This time, we subdivide the domain S into 25×25×25 boxes and simulate
100 test points per box, whose trajectories are computed by the Euler–Maruyama
method with step size h = 10−3 and a lag time of 10. That is, the TT operator
P is constructed by using Algorithm 8 with a list of 1562500 transitions as input.
Even though the potential can be written as the sum of one-dimensional functions,
the numerically computed approximation of the Perron–Frobenius operator cannot
be represented as a low-rank TT operator. The TT ranks of P, which are given by
[1, 509, 493, 1], are nearly as large as the ranks of a full-rank TT operator given by
[1, 252, 252, 1]. Note that the TT operator P is again not symmetric.

In order to compute the eigentensors of P, we apply the MALS algorithm for
eigenvalue problems in combination with the BTT format, see Appendix A.2.5.
Here, we do not restrict the TT ranks of the eigentensors, but apply truncated
SVDs for the splitting of the computed super-cores, i.e. we discard all singular
values σi with σi/σ1 < ε, where ε is a given threshold. As before, we assume
that the singular values are sorted in decreasing order. For ε = 0, we compute
the three dominant eigenvalues and corresponding eigentensors, whose TT ranks
are then given by [1, 75, 25, 1]. That is, MALS constructs an exact full-rank BTT
representation of the three eigentensors. Table 12.2 shows the computed eigenvalues
as well as the relative errors eλk and eϕk as defined in the previous section. The
eigentensors of the TT approximation of the Perron–Frobenius operator are shown
in Figure 12.4.

λ = 1

-2
2-2

0

00

2

-22

0.02

0.04

0.06

0.08

0.1

0.12

(a)

λ = 0.7611

-2
2-2

0

00

2

-22

-0.1

-0.05

0

0.05

0.1

(b)

λ = 0.7566

-2
2-2

0

00

2

-22

-0.1

-0.05

0

0.05

0.1

(c)

Figure 12.4: Results for the quadruple-well potential: The eigentensors corresponding to
the dominant eigenvalues are shown in a three-dimensional scatter plot, where the color and
size of the circles is determined by the entries of the eigentensors.

130 12. Brownian Dynamics

Table 12.3.: Approximation of the dominant eigenpairs for the quadruple-well potential
with thresholds ε > 0: Influence of the truncation parameter ε on the ranks, runtimes, and
accuracy of the dominant eigenpair.

Threshold BTT ranks CPU time eλ1 eϕ1

ε = 10−5 [1, 62, 21, 1] 11.2484 s 6.44e−15 8.57e−06
ε = 10−4 [1, 59, 20, 1] 9.7492 s 7.48e−07 4.02e−05
ε = 10−3 [1, 56, 18, 1] 8.3734 s 2.65e−05 1.12e−03
ε = 10−2 [1, 26, 10, 1] 3.9754 s 4.83e−04 2.81e−02
ε = 10−1 [1, 2, 1, 1] 2.6695 s 2.09e−04 9.83e−02
ε = 100 [1, 1, 1, 1] 2.3911 s 5.71e−03 3.17e−01

As expected, the system has four metastable sets at the wells of the potential.
Furthermore, these wells are separated pairwise by the eigenfunctions ϕ2 and ϕ3.
The CPU time for the computation of the eigenpairs using MALS with ε = 0 is
approximately 15.5 s. We now increase the threshold ε for the truncated SVDs and
compare the result for the dominant eigenpair with the exact solutions obtained
by applying classical methods (CPU time of approximately 8.4 s). As we see in
Table 12.3, we can reduce the computation time by truncating the ranks of the
eigentensors given in BTT format and still obtain very accurate approximations
of λ1 and ϕ1 for most of the considered truncation parameters. In particular, it
is possible to approximate the eigentensor corresponding to the eigenvalue λ = 1
with TT ranks [1, 2, 1, 1] and a relative error of less than 10%. Relying on future
improvements of the proposed methods, this example shows that the TT approach
for the approximation of eigenfunctions of the Perron–Frobenius and other transfer
operators can be a powerful tool for certain problems.

13
Summary and Conclusion

In this thesis, we demonstrated the broad spectrum of application areas where
tensor-based approaches are promising tools for tackling high-dimensional prob-
lems. In particular, we investigated the benefit of the TT format for the numerical
solution of master equations in tensor notation and for the approximation of eigen-
values and eigentensors. We provided exact TT decompositions of linear tensor
operators and described how to compute stationary and time dependent distribu-
tions. The overall aim was to mitigate the curse of dimensionality by reducing the
memory consumption and the computational costs of various numerical problems.
We showed that, at the same time, the TT format can provide accurate results even
when restricting/truncating the TT ranks of our approximations. Using the TT
format and its modifications, we were able to gain insight into the dynamics and
structures of different problems. Some of these problems could not be solved before
using classical numerical methods. The main contributions of this thesis were:

• tensor-based representations of Markovian master equations,

• tensor decompositions of linear operators representing systems
based on nearest-neighbor interactions,

• tensor-based extension of the dynamic mode decomposition,

• TT approximations of Perron–Frobenius operators and their
eigenvalues and corresponding eigenfunctions

After we have shown how to reformulate a given master equation in tensor nota-
tion, we introduced the SLIM decomposition for nearest-neighbor interaction sys-
tems and presented algorithms which can be used to automatically construct this
decomposition for Markovian generators. By exploiting the coupling structure of
such systems, we successfully demonstrated that it is possible to compute low-rank
tensor decompositions of high-dimensional tensors representing time-dependent and
stationary probability distributions, respectively. In particular, the storage con-
sumption of SLIM decompositions increases only linearly with the network size for
homogeneous systems. We expect this specific TT decomposition to be suitable for
many systems based on nearest-neighbor interactions. Here, we considered exam-
ples for chemical reaction networks and the CO oxidation on a catalytic surface but
also other nearest-neighbor interaction systems are of high interest for us. Addition-
ally, we want to generalize our proposed method to more complex processes such as

131

132 13. Summary and Conclusion

next-nearest-neighbor interaction systems and other systems with certain coupling
structures. An open question in this context is the optimal arrangement of the cores
of a tensor network since the concept of nearest-neighbor interactions showed that
the TT format is extremely sensitive to the correlation between the dimensions of
the state space.
For the tensor-based dynamic mode decomposition, we showed that the TT cores

implicitly contain information about the pseudoinverse of certain tensor unfoldings.
Under the assumption that the data is already given in the TT format, we can
therefore efficiently compute DMD modes directly as low-rank tensor representa-
tions. We demonstrated the performance of TDMD for two different fluid dynamics
problems. Compared to the classical DMD algorithm, we were able to reduce the
time for the computation of the modes significantly. Other variants and extensions
of DMD related to different transfer operators such as the Koopman operator will
be included in our future work.
In order to compute finite-dimensional approximations of the Perron–Frobenius

operator for dynamical systems, we explained how to exploit the TT format and
presented corresponding algorithms for two- and three-dimensional systems. We
tested the tensor-based approach on two examples for the Brownian motion of par-
ticles under the influence of force fields. Our experiments showed that it is possi-
ble to compute accurate low-rank approximations of several eigenfunctions of the
Perron–Frobenius operator simultaneously. However, as a first step towards the TT
approximation of transfer operators, we assumed that the force fields were given by
well-aligned potentials. By finding the optimal orientation of the coordinate axes
for more complex dynamics, it might be possible to represent weak couplings be-
tween different dimensions by TT cores with small ranks. Our future research will
include the approximation of other transfer operators and their eigenfunctions as
well as higher-dimensional problems, e.g. molecular systems with a larger number
of degrees of freedom, in order to analyze the scaling and to improve the efficiency
of the proposed methods.
To solve optimization problems in the form of systems of linear equations and

eigenvalue problems, respectively, we employed the ALS and MALS algorithms. In
general, the convergence of these methods is still an open issue. Local convergence
has been proven, but only under conditions that are hard to verify. An important
aspect is that both algorithms are particularly designed for systems with symmetric
(and positive definite) TT operators. Nevertheless, we obtained highly accurate
approximations of the solutions for various non-symmetric problems. This is an
effect which cannot be entirely explained at the moment. The development of
tensor-based solvers for non-symmetric operators as well as suitable preconditioners
may be a major topic in the future. Additionally, the combination with higher-
order time integration schemes and the application to different ordinary and partial
differential equations such as the Fokker–Planck equation is planned.
In our opinion, the further improvement of tensor-based approaches is a promis-

ing direction for mitigating the curse of dimensionality for many high-dimensional
problems. We believe that the mathematical framework presented in this work is
another step towards a broader applicability of tensor decompositions.

14
References

[1] S. R. White, Density matrix formulation for quantum renormalization
groups, Physical Review Letters 69 (19) (1992) 2863–2866. doi:10.1103/
PhysRevLett.69.2863.

[2] H. D. Meyer, F. Gatti, G. A. W. (eds.), Multidimensional quantum dynamics:
MCTDH theory and applications, Wiley-VCH Verlag GmbH & Co. KGaA,
2009. doi:10.1002/9783527627400.ch3.

[3] T. Jahnke, W. Huisinga, A dynamical low-rank approach to the chemical
master equation, Bulletin of Mathematical Biology 70 (8) (2008) 2283–2302.
doi:10.1007/s11538-008-9346-x.

[4] V. Kazeev, M. Khammash, M. Nip, C. Schwab, Direct solution of the chemical
master equation using quantized tensor trains, PLoS Comput Biol 10 (3)
(2014) e1003359. doi:10.1371/journal.pcbi.1003359.

[5] S. Dolgov, B. Khoromskij, Simultaneous state-time approximation of the
chemical master equation using tensor product formats, Numerical Linear
Algebra with Applications 22 (2) (2015) 197–219. doi:10.1002/nla.1942.

[6] P. Gelß, S. Matera, C. Schütte, Solving the master equation without kinetic
Monte Carlo: Tensor train approximations for a CO oxidation model, Journal
of Computational Physics 314 (2016) 489–502. doi:10.1016/j.jcp.2016.
03.025.

[7] P. Buchholz, Product form approximations for communicating Markov pro-
cesses, Performance Evaluation 67 (9) (2010) 797–815. doi:10.1016/j.peva.
2009.12.005.

[8] D. Kressner, F. Macedo, Low-rank tensor methods for communicating Markov
processes, Quantitative Evaluation of Systems, Lecture Notes in Computer
Science 8657 (2014) 25–40.

[9] P. Gelß, S. Klus, S. Matera, C. Schütte, Nearest-neighbor interaction systems
in the tensor-train format, Journal of Computational Physics 341 (2017) 140–
162. doi:10.1016/j.jcp.2017.04.007.

[10] G. Beylkin, J. Garcke, M. J. Mohlenkamp, Multivariate regression and ma-
chine learning with sums of separable functions, SIAM Journal on Scientific
Computing 31 (3) (2009) 1840–1857. doi:10.1137/070710524.

133

http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1002/9783527627400.ch3
http://dx.doi.org/10.1007/s11538-008-9346-x
http://dx.doi.org/10.1371/journal.pcbi.1003359
http://dx.doi.org/10.1002/nla.1942
http://dx.doi.org/10.1016/j.jcp.2016.03.025
http://dx.doi.org/10.1016/j.jcp.2016.03.025
http://dx.doi.org/10.1016/j.peva.2009.12.005
http://dx.doi.org/10.1016/j.peva.2009.12.005
http://dx.doi.org/10.1016/j.jcp.2017.04.007
http://dx.doi.org/10.1137/070710524

134

[11] A. Novikov, D. Podoprikhin, A. Osokin, D. Vetrov, Tensorizing neural net-
works, in: C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett
(Eds.), Advances in Neural Information Processing Systems 28 (NIPS), Cur-
ran Associates, Inc., 2015, pp. 442–450. arXiv:1509.06569v2.

[12] N. Cohen, O. Sharir, A. Shashua, On the expressive power of deep learning:
A tensor analysis (2015). arXiv:1509.05009.

[13] S. Klus, C. Schütte, Towards tensor-based methods for the numerical approx-
imation of the Perron–Frobenius and Koopman operator, Journal of Compu-
tational Dynamics 3 (2). doi:10.3934/jcd.2016007.

[14] S. Klus, P. Gelß, S. Peitz, C. Schütte, Tensor-based dynamic mode decompo-
sition, ArXiv e-prints: arXiv:1606.06625.

[15] W. Hackbusch, S. Kühn, A new scheme for the tensor representation, The
journal of Fourier analysis and applications 15 (5) (2009) 706–722. doi:10.
1007/s00041-009-9094-9.

[16] I. V. Oseledets, A new tensor decomposition, Doklady Mathematics 80 (1)
(2009) 495–496. doi:10.1134/S1064562409040115.

[17] I. V. Oseledets, E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or
how to use SVD in many dimensions, SIAM Journal on Scientific Computing
31 (5) (2009) 3744–3759. doi:10.1137/090748330.

[18] J. Ballani, L. Grasedyck, A projection method to solve linear systems in tensor
format, Numerical linear algebra with applications 20 (1) (2013) 27–43. doi:
10.1002/nla.1818.

[19] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, D. V. Savostyanov, Com-
putation of extreme eigenvalues in higher dimensions using block tensor
train format, Computer Physics Communications 185 (4) (2014) 1207–1216.
doi:10.1016/j.cpc.2013.12.017.

[20] H. Rauhut, R. Schneider, Z. Stojanac, Tensor completion in hierarchical tensor
representations, ArXiv e-prints.

[21] K. Reich, Die Entwicklung des Tensorkalküls: Vom absoluten Differentialka-
lkül zur Relativitätstheorie, Science Networks, Historical Studies, Birkhäuser
Basel, 1994. doi:10.1007/978-3-0348-8486-0.

[22] H.-J. Dirschmid, Tensoren und Felder, Springer, 1996. doi:10.1007/
978-3-7091-6589-8.

[23] W. R. Hamilton, On some extensions of quaternions, Philosophical Magazine
7 (1854) 492–499.

[24] W. Voigt, Die fundamentalen physikalischen Eigenschaften der Krystalle in
elementarer Darstellung, Veit u. Co, 1898.

http://arxiv.org/abs/1509.06569v2
http://arxiv.org/abs/1509.05009
http://dx.doi.org/10.3934/jcd.2016007
http://arxiv.org/abs/1606.06625
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1134/S1064562409040115
http://dx.doi.org/10.1137/090748330
http://dx.doi.org/10.1002/nla.1818
http://dx.doi.org/10.1002/nla.1818
http://dx.doi.org/10.1016/j.cpc.2013.12.017
http://dx.doi.org/10.1007/978-3-0348-8486-0
http://dx.doi.org/10.1007/978-3-7091-6589-8
http://dx.doi.org/10.1007/978-3-7091-6589-8

135

[25] E. B. Wilson, J. W. Gibbs, Vector analysis: A text-book for the use of students
of mathematics & physics, Founded upon the lectures of J. W. Gibbs, Charles
Scribner’s Sons, 1901.

[26] C. F. Gauß, Disquisitiones generales circa superficies curvas, Typis Dieterichi-
anis, 1828.

[27] E. B. Christoffel, Über die Transformation der homogenen Differentialaus-
drücke zweiten Grades, Journal für die reine und angewandte Mathematik 70
(1869) 46–70.

[28] G. Ricci-Curbastro, Résumé de quelques travaux sur les systèmes variables de
fonctions associés à une forme différentielle quadratique, Bulletin des Sciences
Mathématiques 16 (2) (1892) 167–189.

[29] M. M. G. Ricci, T. Levi-Civitai, Méthodes de calcul différentiel absolu et
leurs applications, Mathematische Annalen 54 (1–2) (1900) 125–201. doi:
10.1007/BF01454201.

[30] J. C. Maxwell, A treatise on electricity and magnetism, Vol. 1, Oxford, Claren-
don Press, 1873.

[31] J. C. Maxwell, A treatise on electricity and magnetism, Vol. 2, Oxford, Claren-
don Press, 1873.

[32] A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Annalen der
Physik 354 (1916) 769–822. doi:10.1002/andp.19163540702.

[33] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of
products, Journal of Mathematics and Physics 6 (1927) 164–189. doi:
10.1002/sapm192761164.

[34] J. D. Carroll, J. J. Chang, Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of ’Eckart-Young’ decomposition,
Psychometrika 35 (3) (1970) 283–319. doi:10.1007/BF02310791.

[35] R. A. Harshman, Foundations of the parafac procedure: Models and condi-
tions for an “explanatory” multi-modal factor analysis, UCLA Working Papers
in Phonetics 16 (1970) 1–84.

[36] V. de Silva, L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank
approximation problem, SIAM Journal on Matrix Analysis and Applications
30 (3) (2008) 1084–1127. doi:10.1137/06066518X.

[37] S. Holtz, T. Rohwedder, R. Schneider, The alternating linear scheme for tensor
optimization in the tensor train format, SIAM Journal on Scientific Comput-
ing 34 (2) (2012) A683–A713. doi:10.1137/100818893.

[38] L. R. Tucker, Implications of factor analysis of three-way matrices for mea-
surement of change, in: C. W. Harris (Ed.), Problems in measuring change,
University of Wisconsin Press, 1963, pp. 122–137.

http://dx.doi.org/10.1007/BF01454201
http://dx.doi.org/10.1007/BF01454201
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1002/sapm192761164
http://dx.doi.org/10.1002/sapm192761164
http://dx.doi.org/10.1007/BF02310791
http://dx.doi.org/10.1137/06066518X
http://dx.doi.org/10.1137/100818893

136

[39] L. R. Tucker, The extension of factor analysis to three-dimensional matri-
ces, in: H. Gulliksen, N. Frederiksen (Eds.), Contributions to mathematical
psychology, Holt, Rinehart and Winston, 1964, pp. 110–127.

[40] M. H. Beck, A. Jäckle, G. A. Worth, H. D. Meyer, The multiconfiguration
time-dependent Hartree (MCTDH) method: A highly efficient algorithm for
propagating wavepackets, Physics Reports 324 (2000) 1–105. doi:10.1016/
S0370-1573(99)00047-2.

[41] O. Koch, C. Lubich, Dynamical tensor approximation, SIAM Journal on
Matrix Analysis and Applications 31 (5) (2010) 2360–2375. doi:10.1137/
09076578X.

[42] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Com-
puting 33 (5) (2011) 2295–2317. doi:10.1137/090752286.

[43] A. Arnold, T. Jahnke, On the approximation of high-dimensional differen-
tial equations in the hierarchical Tucker format, BIT Numerical Mathematics
54 (2) (2013) 305–341. doi:10.1007/s10543-013-0444-2.

[44] C. Lubich, T. Rohwedder, R. Schneider, B. Vandereycken, Dynamical ap-
proximation by hierarchical Tucker and tensor-train tensors, SIAM Jour-
nal on Matrix Analysis and Applications 34 (2) (2013) 470–494. doi:
10.1137/120885723.

[45] I. Affleck, T. Kennedy, E. H. Lieb, H. Tasaki, Rigorous results on valence-bond
ground states in antiferromagnets, Physical Review Letters 59 (7) (1987) 799–
802. doi:10.1103/PhysRevLett.59.799.

[46] L. Grasedyck, D. Kressner, C. Tobler, A literature survey of low-rank tensor
approximation techniques, GAMM-Mitteilungen 36 (1) (2013) 53–78. doi:
10.1002/gamm.201310004.

[47] W. J. Anderson, Continuous-time Markov chains: An applications-oriented
approach, Springer Series in Statistics, Springer New York, 2012. doi:10.
1007/978-1-4612-3038-0.

[48] N. G. van Kampen, Stochastic processes in physics and chemistry, 3rd Edi-
tion, North-Holland Personal Library, Elsevier B.V., 2007. doi:10.1016/
B978-044452965-7/50008-8.

[49] D. T. Gillespie, A general method for numerically simulating the stochas-
tic time evolution of coupled chemical reactions, Journal of Computational
Physics 22 (4) (1976) 403–434. doi:10.1016/0021-9991(76)90041-3.

[50] A. P. J. Jansen, An introduction to Monte Carlo simulations of surface reac-
tions (2003). arXiv:cond-mat/0303028v1.

[51] M. J. Hoffmann, S. Matera, K. Reuter, kmos: A lattice kinetic Monte Carlo
framework, Computer Physics Communications 185 (7) (2014) 2138–2150.
doi:10.1016/j.cpc.2014.04.003.

http://dx.doi.org/10.1016/S0370-1573(99)00047-2
http://dx.doi.org/10.1016/S0370-1573(99)00047-2
http://dx.doi.org/10.1137/09076578X
http://dx.doi.org/10.1137/09076578X
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1007/s10543-013-0444-2
http://dx.doi.org/10.1137/120885723
http://dx.doi.org/10.1137/120885723
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1002/gamm.201310004
http://dx.doi.org/10.1002/gamm.201310004
http://dx.doi.org/10.1007/978-1-4612-3038-0
http://dx.doi.org/10.1007/978-1-4612-3038-0
http://dx.doi.org/10.1016/B978-044452965-7/50008-8
http://dx.doi.org/10.1016/B978-044452965-7/50008-8
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://arxiv.org/abs/cond-mat/0303028v1
http://dx.doi.org/10.1016/j.cpc.2014.04.003

137

[52] H. G. Winful, S. S. Wang, Stability of phase locking in coupled semiconductor
laser arrays, Applied Physics Letters 53 (1988) 1894–1896. doi:10.1063/1.
100363.

[53] J. B. Griffiths, The theory of classical dynamics, Cambridge University Press,
1985.

[54] Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photo-
catalysts, Chemical Society Reviews 42 (7) (2013) 2568–2580. doi:10.1039/
C2CS35355E.

[55] H. Gandhi, G. Graham, R. McCabe, Automotive exhaust catalysis, Journal of
Catalysis 216 (1–2) (2003) 433–442. doi:10.1016/S0021-9517(02)00067-2.

[56] P. J. Schmid, J. L. Sesterhenn, Dynamic mode decomposition of numerical
and experimental data, 61st Annual Meeting of the APS Division of Fluid
Dynamics 53 (15) (2008) 208.

[57] P. J. Schmid, Dynamic mode decomposition of numerical and experimen-
tal data, Journal of fluid mechanics 656 (2010) 5–28. doi:10.1017/
s0022112010001217.

[58] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, J. N. Kutz, On
dynamic mode decomposition: Theory and applications, Journal of Compu-
tational Dynamics 1 (2) (2014) 391–421. doi:10.3934/jcd.2014.1.391.

[59] T. von Kármán, Aerodynamics: Selected topics in the light of their historical
development, Dover Publications, 2004.

[60] C. Schütte, M. Sarich, Metastability and Markov state models in molecu-
lar dynamics: Modeling, analysis, algorithmic approaches, Courant Lecture
Notes, Courant Institute of Mathematical Sciences, 2013.

[61] G. Froyland, G. A. Gottwald, A. Hammerlindl, A computational method to
extract macroscopic variables and their dynamics in multiscale systems, SIAM
Journal on Applied Dynamical Systems 13 (4) (2014) 1816–1846. doi:10.
1137/130943637.

[62] S. Klus, P. Koltai, C. Schütte, On the numerical approximation of the Perron–
Frobenius and Koopman operator, Journal of Computational Dynamics 3 (1)
(2016) 51–79. doi:10.3934/jcd.2016003.

[63] L. D. Lathauwer, B. D. Moor, J. Vandewalle, A multilinear singular value
decomposition, SIAM Journal on Matrix Analysis and Applications 21 (4)
(2000) 1253–1278. doi:10.1137/S0895479896305696.

[64] G. H. Golub, C. F. V. Loan, Matrix computations, 4th Edition, Johns Hopkins
Studies in the Mathematical Sciences, Johns Hopkins University Press, 2013.

http://dx.doi.org/10.1063/1.100363
http://dx.doi.org/10.1063/1.100363
http://dx.doi.org/10.1039/C2CS35355E
http://dx.doi.org/10.1039/C2CS35355E
http://dx.doi.org/10.1016/S0021-9517(02)00067-2
http://dx.doi.org/10.1017/s0022112010001217
http://dx.doi.org/10.1017/s0022112010001217
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.1137/130943637
http://dx.doi.org/10.1137/130943637
http://dx.doi.org/10.3934/jcd.2016003
http://dx.doi.org/10.1137/S0895479896305696

138

[65] S. Friedland, V. Mehrmann, R. Pajarola, S. K. Suter, On best rank one ap-
proximation of tensors, Numerical Linear Algebra with Applications 20 (2013)
942–955. doi:10.1002/nla.1878.

[66] W. Hackbusch, Tensor spaces and numerical tensor calculus, Vol. 42 of
Springer Series in Computational Mathematics, Springer, 2012. doi:10.1007/
978-3-642-28027-6.

[67] T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM
Review 51 (3) (2009) 455–500. doi:10.1137/07070111X.

[68] O. Koch, C. Lubich, Dynamical tensor approximation, SIAM Journal on
Matrix Analysis and Applications 31 (5) (2010) 2360–2375. doi:10.1137/
09076578X.

[69] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM
Journal on Matrix Analysis and Applications 31 (4) (2010) 2029–2054. doi:
10.1137/090764189.

[70] A. Falcó, W. Hackbusch, On minimal subspaces in tensor representations,
Foundations of Computational Mathematics 12 (6) (2012) 765–803. doi:
10.1007/s10208-012-9136-6.

[71] V. Kazeev, O. Reichmann, C. Schwab, Low-rank tensor structure of linear
diffusion operators in the TT and QTT formats, Linear Algebra and its Ap-
plications 438 (11) (2013) 4204–4221. doi:10.1016/j.laa.2013.01.009.

[72] C. Eckart, G. Young, The approximation of one matrix by another of lower
rank, Psychometrika 1 (3) (1936) 211–218. doi:10.1007/BF02288367.

[73] B. N. Khoromskij, O(d log n)-quantics approximation of n-d tensors in high-
dimensional numerical modeling, Constructive Approximation 34 (2) (2011)
257–280. doi:10.1007/s00365-011-9131-1.

[74] S. V. Dolgov, D. V. Savostyanov, Alternating minimal energy methods for
linear systems in higher dimensions, SIAM Journal on Scientific Computing
36 (5) (2014) A2248–A2271. doi:10.1137/140953289.

[75] Y. Saad, Numerical methods for large eigenvalue problems, Society for Indus-
trial and Applied Mathematics, 2011. doi:10.1137/1.9781611970739.

[76] T. Bouwmans, N. S. Aybat, E. Zahzah, Handbook of robust low-rank and
sparse matrix decomposition: Applications in image and video processing,
CRC Press, 2016.

[77] T. Rohwedder, A. Uschmajew, On local convergence of alternating schemes
for optimization of convex problems in the tensor train format, SIAM Journal
of Numerical Analysis 51 (2) (2013) 1134–1162. doi:10.1137/110857520.

[78] J. C. Butcher, Numerical methods for ordinary differential equations, 3rd
Edition, John Wiley & Sons, 2016.

http://dx.doi.org/10.1002/nla.1878
http://dx.doi.org/10.1007/978-3-642-28027-6
http://dx.doi.org/10.1007/978-3-642-28027-6
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1137/09076578X
http://dx.doi.org/10.1137/09076578X
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1007/s10208-012-9136-6
http://dx.doi.org/10.1007/s10208-012-9136-6
http://dx.doi.org/10.1016/j.laa.2013.01.009
http://dx.doi.org/10.1007/BF02288367
http://dx.doi.org/10.1007/s00365-011-9131-1
http://dx.doi.org/10.1137/140953289
http://dx.doi.org/10.1137/1.9781611970739
http://dx.doi.org/10.1137/110857520

139

[79] A. Iserles, A first course in the numerical analysis of differential equations,
Cambridge University Press, 2009.

[80] D. T. Gillespie, A rigorous derivation of the chemical master equation, Physica
A 188 (1-3) (1992) 404–425. doi:10.1016/0378-4371(92)90283-V.

[81] R. F. Bass, Stochastic processes:, Cambridge University Press, 2011. doi:
10.1017/CBO9780511997044.

[82] J. R. Norris, Markov chains, Cambridge University Press, 1997. doi:10.1017/
CBO9780511810633.

[83] Z. Lin, Distributed control and analysis of coupled cell systems, VDM Verlag,
2008.

[84] W. Lenz, Beiträge zum Verständnis der magnetischen Eigenschaften in festen
Körpern, Physikalische Zeitschrift 21 (1920) 613–615.

[85] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift für Physik 31
(1925) 253–258.

[86] S. Lievens, N. Stoilova, J. V. der Jeugt, Harmonic oscillators coupled by
springs: Discrete solutions as a Wigner quantum system, Journal of math-
ematical physics 47 (11) (2006) 113504. doi:10.1063/1.2364183.

[87] M. B. Plenio, J. Hartley, J. Eisert, Dynamics and manipulation of entangle-
ment in coupled harmonic systems with many degrees of freedom, New Journal
of Physics 6. doi:10.1088/1367-2630/6/1/036.

[88] N. Lee, A. Cichocki, Regularized computation of approximate pseudoinverse
of large matrices using low-rank tensor train decompositions, SIAM J. Matrix
Analysis Applications 37 (2) (2016) 598–623. doi:10.1137/15M1028479.

[89] B. W. Brunton, L. A. Johnson, J. G. Ojemann, J. N. Kutz, Extracting spatial-
temporal coherent patterns in large-scale neural recordings using dynamic
mode decomposition, Journal of Neuroscience Methods 258 (2016) 1–15. doi:
10.1016/j.jneumeth.2015.10.010.

[90] G. Froyland, P. K. Pollett, R. M. Stuart, A closing scheme for finding almost-
invariant sets in open dynamical systems, Journal of Computational Dynamics
1 (1) (2014) 135–162. doi:10.3934/jcd.2014.1.135.

[91] M. O. Williams, I. G. Kevrekidis, C. W. Rowley, A data-driven approx-
imation of the Koopman operator: Extending dynamic mode decomposi-
tion, Journal of Nonlinear Science 25 (6) (2015) 1307–1346. doi:10.1007/
s00332-015-9258-5.

[92] M. Budišić, R. Mohr, I. Mezić, Applied Koopmanism, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 22 (4) (2012) 047510. doi:10.1063/1.
4772195.

http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1017/CBO9780511997044
http://dx.doi.org/10.1017/CBO9780511997044
http://dx.doi.org/10.1017/CBO9780511810633
http://dx.doi.org/10.1017/CBO9780511810633
http://dx.doi.org/10.1063/1.2364183
http://dx.doi.org/10.1088/1367-2630/6/1/036
http://dx.doi.org/10.1137/15M1028479
http://dx.doi.org/10.1016/j.jneumeth.2015.10.010
http://dx.doi.org/10.1016/j.jneumeth.2015.10.010
http://dx.doi.org/10.3934/jcd.2014.1.135
http://dx.doi.org/10.1007/s00332-015-9258-5
http://dx.doi.org/10.1007/s00332-015-9258-5
http://dx.doi.org/10.1063/1.4772195
http://dx.doi.org/10.1063/1.4772195

140

[93] G. Oster, A. Perelson, Chemical reaction networks, IEEE Transactions on Cir-
cuits and Systems 21 (6) (1974) 709–721. doi:10.1109/TCS.1974.1083946.

[94] M. Padidam, Chemically regulated gene expression in plants, Current opin-
ion in plant biology 6 (2) (2003) 169–177. doi:10.1016/s1369-5266(03)
00005-0.

[95] B. B. Aldridgea, J. M. Burke, D. A. Lauffenburger, P. K. Sorger, Physico-
chemical modelling of cell signalling pathways, Nature Cell Biology 8 (11)
(2006) 1195–1203. doi:10.1038/ncb1497.

[96] S. K. Upadhyay, Chemical kinetics and reaction dynamics, Springer Nether-
lands, 2006. doi:10.1007/978-1-4020-4547-9.

[97] R. Srivastava, L. You, J. Summers, J. Yin, Stochastic vs. deterministic mod-
eling of intracellular viral kinetics, Journal of Theoretical Biology 218 (2002)
309–321. doi:10.1006/yjtbi.3078.

[98] D. T. Gillespie, The chemical Langevin equation, Journal of Chemical Physics
113 (1) (2000) 297–306.

[99] R. Chang, Physical chemistry for the biosciences, University Science Books,
Mill Valley, 2005.

[100] D. W. Oxtoby, H. P. Gillis, A. Campion, Principles of modern chemistry, 7th
Edition, Cengage Learning, Independence, 2012.

[101] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions,
Journal of Physical Chemistry 81 (25) (1977) 2340–2361. doi:10.1021/
j100540a008.

[102] B. Munsky, M. Khammash, The finite state projection algorithm for the solu-
tion of the chemical master equation, The Journal of Chemical Physics 124 (4)
(2006) 044104. doi:10.1063/1.2145882.

[103] M. Hegland, C. Burden, L. Santoso, S. MacNamara, H. Booth, A solver for
the stochastic master equation applied to gene regulatory networks, Journal
of Computational and Applied Mathematics 205 (2) (2007) 708–724. doi:
10.1016/j.cam.2006.02.053.

[104] A. Ammar, E. Cueto, F. Chinesta, Reduction of the chemical master equation
for gene regulatory networks using proper generalized decompositions, Inter-
national Journal for Numerical Methods in Biomedical Engineering 28 (9)
(2012) 960–973. doi:10.1002/cnm.2476.

[105] D. R. Herschbach, Molecular dynamics of elementary chemical reactions, in:
B. G. Malmström (Ed.), Chemistry, 1981-1990, World Scientific, 1992, pp.
265–314.

[106] K. W. Kolasinski, Physical chemistry: How chemistry works, John Wiley &
Sons, 2016.

http://dx.doi.org/10.1109/TCS.1974.1083946
http://dx.doi.org/10.1016/s1369-5266(03)00005-0
http://dx.doi.org/10.1016/s1369-5266(03)00005-0
http://dx.doi.org/10.1038/ncb1497
http://dx.doi.org/10.1007/978-1-4020-4547-9
http://dx.doi.org/10.1006/yjtbi.3078
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1063/1.2145882
http://dx.doi.org/10.1016/j.cam.2006.02.053
http://dx.doi.org/10.1016/j.cam.2006.02.053
http://dx.doi.org/10.1002/cnm.2476

141

[107] J. Kotz, P. Treichel, J. Townsend, Chemistry and chemical reactivity, Volume
2, Cengage Learning, 2008.

[108] D. L. Reger, S. R. Goode, D. W. Ball, Chemistry: Principles and practice,
Available Titles OWL Series, Cengage Learning, 2009.

[109] K. Reuter, M. Scheffler, First-principles kinetic Monte Carlo simulations for
heterogeneous catalysis: Application to the CO oxidation at RuO2(110), Phys-
ical Review B 73 (4) (2006) 045433. doi:10.1103/PhysRevB.73.045433.

[110] S. Matera, H. Meskine, K. Reuter, Adlayer inhomogeneity without lateral in-
teractions: Rationalizing correlation effects in CO oxidation at RuO2(110)
with first-principles kinetic Monte Carlo, Journal of Chemical Physics
134 (064713). doi:10.1063/1.3553258.

[111] G. J. Herschlag, S. Mitran, G. Lin, A consistent hierarchy of generalized
kinetic equation approximations to the master equation applied to surface
catalysis, The Journal of Chemical Physics 142 (23) (2015) 234703. doi:
10.1063/1.4922515.

[112] J. Hagen, Industrial catalysis: A practical approach, John Wiley & Sons,
2015.

[113] G. Rothenberg, Catalysis: Concepts and green applications, Wiley-VCH Ver-
lag GmbH & Co. KGaA, 2008. doi:10.1002/9783527621866.

[114] K. Reuter, First-principles kinetic Monte Carlo simulations for heterogeneous
catalysis: Concepts, status, and frontiers, in: O. Deutschmann (Ed.), Model-
ing and Simulation of Heterogeneous Catalytic Reactions: From the Molecu-
lar Process to the Technical System, Wiley-VCH Verlag GmbH & Co. KGaA,
2011, pp. 71–112. doi:10.1002/9783527639878.ch3.

[115] B. Temel, H. Meskine, K. Reuter, M. Scheffler, H. Metiu, Does phenomeno-
logical kinetics provide an adequate description of heterogeneous catalytic
reactions?, Journal of Chemical Physics 126 (20) (2007) 204711. doi:
10.1063/1.2741556.

[116] M. Rieger, J. Rogal, K. Reuter, Effect of surface nanostructure on tempera-
ture programmed reaction spectroscopy: First-principles kinetic Monte Carlo
simulations of CO oxidation at RuO2(110), Physical Review Letters 100 (1)
(2008) 016105. doi:10.1103/PhysRevLett.100.016105.

[117] M. Stamatakis, D. G. Vlachos, Unraveling the complexity of catalytic reac-
tions via kinetic Monte Carlo simulation: Current status and frontiers, ACS
Catalysis 2 (12) (2012) 2648–2663. doi:10.1021/cs3005709.

[118] C. Kittel, Introduction to solid state physics, 8th Edition, John Wiley & Sons,
Inc, 2004.

http://dx.doi.org/10.1103/PhysRevB.73.045433
http://dx.doi.org/10.1063/1.3553258
http://dx.doi.org/10.1063/1.4922515
http://dx.doi.org/10.1063/1.4922515
http://dx.doi.org/10.1002/9783527621866
http://dx.doi.org/10.1002/9783527639878.ch3
http://dx.doi.org/10.1063/1.2741556
http://dx.doi.org/10.1063/1.2741556
http://dx.doi.org/10.1103/PhysRevLett.100.016105
http://dx.doi.org/10.1021/cs3005709

142

[119] H. Over, M. Muhler, Catalytic CO oxidation over ruthenium-bridging the
pressure gap, Progress in Surface Science 72 (1–4) (2003) 3–17. doi:10.
1016/S0079-6816(03)00011-X.

[120] K. Reuter, D. Frenkel, M. Scheffler, The steady state of heterogeneous catal-
ysis, studied by first-principles statistical mechanics, Physical Review Letters
93 (11) (2004) 116105. doi:10.1103/PhysRevLett.93.116105.

[121] D. S. Sholl, J. A. Steckel, Density functional theory, John Wiley & Sons, Inc.,
2009. doi:10.1002/9780470447710.ch1.

[122] E. Vanden-Eijnden, F. A. Tal, Transition state theory: Variational formu-
lation, dynamical corrections, and error estimates, The Journal of Chemical
Physics 123 (18) (2005) 184103. doi:10.1063/1.2102898.

[123] H. Meskine, S. Matera, M. Scheffler, K. Reuter, H. Metiu, Examination of
the concept of degree of rate control by first-principles kinetic monte carlo
simulations, Surface Science 603 (10) (2009) 1724–1730. doi:10.1016/j.
susc.2008.08.036.

[124] S. Watanabe, Information theoretical analysis of multivariate correlation, IBM
Journal of Research and Development 4 (1) (1960) 66–82. doi:10.1147/rd.
41.0066.

[125] S. Kullback, R. A. Leibler, On information and sufficiency, The Annals of
Mathematical Statistics 22 (1) (1951) 79–86. doi:10.1214/aoms/1177729694.

[126] S. Guerrero, E. E. Wolf, Monte Carlo simulation of stiff systems of catalytic
reactions by sampling normally distributed rate probabilities, AIChE Journal
55 (11) (2009) 3022–3025. doi:10.1002/aic.11941.

[127] A. P. Gaylard, A. J. Baxendale, J. P. Howell, The use of CFD to predict
the aerodynamic characteristics of simple automotive shapes, SAE Technical
Paper (1998).

[128] A. M. Biadgo, A. Simonovič, J. Svorcan, S. Stupar, Aerodynamic character-
istics of high speed train under turbulent cross winds: A numerical investiga-
tion using unsteady-RANS method, FME Transactions 42 (1) (2014) 10–18.
doi:doi:10.5937/fmet1401010B.

[129] A. Goto, M. Zangeneh, Hydrodynamic design of pump diffuser using inverse
design method and CFD, Journal of Fluids Engineering 124 (2) (2002) 319–
328. doi:10.1115/1.1467599.

[130] L. Huilin, D. Gidaspow, Hydrodynamics of binary fluidization in a riser: CFD
simulation using two granular temperatures, Chemical Engineering Science
58 (16) (2003) 3777–3792. doi:10.1016/S0009-2509(03)00238-0.

[131] S. Arulanandam, K. Hollands, E. Brundrett, A CFD heat transfer analysis of
the transpired solar collector under no-wind conditions, Solar Energy 67 (1–3)
(1999) 93–100. doi:10.1016/S0038-092X(00)00042-6.

http://dx.doi.org/10.1016/S0079-6816(03)00011-X
http://dx.doi.org/10.1016/S0079-6816(03)00011-X
http://dx.doi.org/10.1103/PhysRevLett.93.116105
http://dx.doi.org/10.1002/9780470447710.ch1
http://dx.doi.org/10.1063/1.2102898
http://dx.doi.org/10.1016/j.susc.2008.08.036
http://dx.doi.org/10.1016/j.susc.2008.08.036
http://dx.doi.org/10.1147/rd.41.0066
http://dx.doi.org/10.1147/rd.41.0066
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1002/aic.11941
http://dx.doi.org/doi:10.5937/fmet1401010B
http://dx.doi.org/10.1115/1.1467599
http://dx.doi.org/10.1016/S0009-2509(03)00238-0
http://dx.doi.org/10.1016/S0038-092X(00)00042-6

143

[132] J. C. Han, S. Dutta, S. Ekkad, Gas turbine heat transfer and cooling technol-
ogy, 2nd Edition, CRC Press, 2012.

[133] J. H. Ferziger, M. Peric, Computational methods for fluid dynamics, Springer
Berlin Heidelberg, 2012.

[134] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, Handbook of
numerical analysis 7 (2000) 713–1018.

[135] C. B. Laney, Computational gasdynamics, Cambridge University Press, 1998.

[136] D. Fultz, R. R. Long, G. V. Owens, W. Bohan, R. Kaylor, J. Weil, Studies
of thermal convection in a rotating cylinder with some implications for large-
scale atmospheric motions, American Meteorological Society, 1959. doi:10.
1007/978-1-940033-37-2.

[137] T. von Larcher, C. Egbers, Experiments on transitions of baroclinic waves
in a differentially heated rotating annulus, Nonlinear Processes in Geophysics
12 (6) (2005) 1033–1041. doi:10.5194/npg-12-1033-2005.

[138] U. Harlander, J. Wenzel, K. Alexandrov, Y. Wang, C. Egbers, Simultaneous
piv and thermography measurements of partially blocked flow in a differen-
tially heated rotating annulus, Experiments in Fluids 52 (4) (2012) 1077–1087.
doi:10.1007/s00348-011-1195-y.

[139] T. von Larcher, A. Fournier, R. Hollerbach, The influence of a sloping bottom
endwall on the linear stability in the thermally driven baroclinic annulus with
a free surface, Theoretical and Computational Fluid Dynamics 27 (3) (2013)
433–451. doi:10.1007/s00162-012-0289-3.

[140] T. von Larcher, A. Dörnbrack, Numerical simulations of baroclinic driven flows
in a thermally driven rotating annulus using the immersed boundary method,
Meteorologische Zeitschrift 23 (6) (2015) 599–610. doi:10.1127/metz/2014/
0609.

[141] J. M. Prusa, P. K. Smolarkiewicz, A. A. Wyszogrodzki, EULAG, a compu-
tational model for multiscale flows, Computers & Fluids 37 (9) (2008) 1193–
1207. doi:10.1016/j.compfluid.2007.12.001.

[142] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, D. S. Henningson, Spectral
analysis of nonlinear flows, Journal of Fluid Mechanics 641 (2009) 115–127.

[143] D. Duke, J. Soria, D. Honnery, An error analysis of the dynamic mode de-
composition, Experiments in Fluids 52 (2) (2012) 529–542. doi:10.1007/
s00348-011-1235-7.

[144] V. Kalro, T. Tezduyar, Parallel 3D computation of unsteady flows around
circular cylinders, Parallel Computing 23 (9) (1997) 1235–1248. doi:10.1016/
S0167-8191(97)00050-1.

http://dx.doi.org/10.1007/978-1-940033-37-2
http://dx.doi.org/10.1007/978-1-940033-37-2
http://dx.doi.org/10.5194/npg-12-1033-2005
http://dx.doi.org/10.1007/s00348-011-1195-y
http://dx.doi.org/10.1007/s00162-012-0289-3
http://dx.doi.org/10.1127/metz/2014/0609
http://dx.doi.org/10.1127/metz/2014/0609
http://dx.doi.org/10.1016/j.compfluid.2007.12.001
http://dx.doi.org/10.1007/s00348-011-1235-7
http://dx.doi.org/10.1007/s00348-011-1235-7
http://dx.doi.org/10.1016/S0167-8191(97)00050-1
http://dx.doi.org/10.1016/S0167-8191(97)00050-1

144

[145] W. von Funck, T. Weinkauf, H. Theisel, H. P. Seidel, Smoke surfaces: An in-
teractive flow visualization technique inspired by real-world flow experiments,
IEEE Transactions on Visualization and Computer Graphics 14 (6) (2008)
1396–1403. doi:10.1109/TVCG.2008.163.

[146] H. Jasak, A. Jemcov, Z. Tukovic, OpenFOAM: A C++ library for complex
physics simulations, in: International workshop on coupled methods in nu-
merical dynamics, 2007, pp. 1–20.

[147] D. S. Lemons, A. Gythiel, Paul Langevin’s 1908 paper “On the theory of
Brownian motion” [“Sur la théorie du mouvement brownien,” C. R. Acad.
Sci. (Paris) 146, 530–533 (1908)], American Journal of Physics 65 (11) (1997)
1079–1081. doi:10.1119/1.18725.

[148] T. Schlick, Molecular modeling and simulation: An interdisciplinary guide,
Vol. 21, Springer New York, 2010. doi:10.1007/978-1-4419-6351-2.

[149] P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equa-
tions, Stochastic Modelling and Applied Probability, Springer Berlin Heidel-
berg, 2013. doi:10.1007/978-3-662-12616-5.

http://dx.doi.org/10.1109/TVCG.2008.163
http://dx.doi.org/10.1119/1.18725
http://dx.doi.org/10.1007/978-1-4419-6351-2
http://dx.doi.org/10.1007/978-3-662-12616-5

A
Appendix

A.1. Proofs

A.1.1. Inverse Function for Little-Endian Convention
(Lemma 2.4.1)

For this proof, we use the fact that

c∑
k=1

(xk − 1)
k−1∏
l=1

nl <
c∏
l=1

nl, (∗)

for c ∈ N with 1 ≤ c ≤ d. This can be easily shown using mathematical induction.
Here, we show that ϕi = xi for i = 1, . . . , d, which is also done using mathematical
induction.

Basis:

From the definition of φN (x1, . . . , xd) = x1, . . . , xd given in (2.4.1), we obtain for
i = d

ϕd =

⌊
x1, . . . , xd − 1∏d−1

l=1 nl

⌋
+ 1

=

⌊∑d
k=1(xk − 1)

∏k−1
l=1 nl∏d−1

l=1 nl

⌋
+ 1

=


∑d−1

k=1(xk − 1)
∏k−1
l=1 nl∏d−1

l=1 nl︸ ︷︷ ︸
=:α

+xd − 1

+ 1.

From (∗) we know that α < 1. This implies

ϕd = bα+ xd − 1c+ 1

= xd − 1 + 1

= xd.

145

146 A. Appendix

Inductive step:

Assume the statement is true for an i with 1 < i ≤ d, i.e. ϕi = xi, . . . , ϕd = xd.
Using (∗), we obtain

ϕi−1 =

⌊
x1, . . . , xd − 1−

∑d
k=i(ϕk − 1)

∏k−1
l=1 nl∏i−2

l=1 nl

⌋
+ 1

=

⌊∑d
k=1(xk − 1)

∏k−1
l=1 nl −

∑d
k=i(xk − 1)

∏k−1
l=1 nl∏i−2

l=1 nl

⌋
+ 1

=

⌊∑i−2
k=1(xk − 1)

∏k−1
l=1 nl∏i−2

l=1 nl
+ xi−1 − 1

⌋
+ 1

= xi−1.

A.1. Proofs 147

A.1.2. Equivalence of Master Equation Formulations
(Theorem 5.2.2)

Following the definition of the tensor multiplication, see e.g. [66], we can write

(
∂

∂t
P(t)

)
x1,...,xd

=

M∑
µ=1

(Gµ − I) · diag(aµ)

 ·P(t)


x1,...,xd

=

M∑
µ=1

n1∑
y1=1

· · ·
nd∑
yd=1

((Gµ − I) · diag(aµ))x1,y1,...,xd,yd · (P(t))y1,...,yd .

Furthermore, it holds that

((Gµ − I) · diag(aµ))x1,y1,...,xd,yd =

n1∑
z1=1

· · ·
nd∑
zd=1

(Gµ)x1,z1,...,xd,zd

· (diag(aµ))z1,y1,...,zd,yd

−
n1∑
z1=1

· · ·
nd∑
zd=1

(I)x1,z1,...,xd,zd

· (diag(aµ))z1,y1,...,zd,yd .

Considering Definition 5.2.1 of the shift operators, this results in

(diag(aµ))x1−ξµ(1),y1,...,xd−ξµ(d),yd − (diag(aµ))x1,y1,...,xd,yd .

Just as aµ(X) and P (X, t) are set to zero if X /∈ S, we set

(diag(aµ))x1−ξµ(1),y1,...,xd−ξµ(d),yd = 0,

if xk − ξµ(k) /∈ {1, . . . , ni} for a k ∈ {1, . . . , d}. Analogously, we do the same for
(P(t))x1−ξµ(1),...,xd−ξµ(d). Due to the construction of diag(aµ), we finally obtain

(
∂

∂t
P(t)

)
x1,...,xd

=
M∑
µ=1

aµ(X − ξµ)P (X − ξµ, t)− aµ(X)P (X, t) =
∂

∂t
P (X, t).

148 A. Appendix

A.1.3. Equivalence of SLIM Decomposition and Canonical
Representation (Theorem 6.2.1)

Consider the first two TT cores of the SLIM decomposition, given by

[
S1 L1 I1 M1

]
⊗


I2 0 0 0
M2 0 0 0
S2 L2 I2 0
0 0 0 J2

 =

[
S1 ⊗ I2 + I1 ⊗ S2 + [L1]⊗ [M2] I1 ⊗ [L2] I1 ⊗ I2 [M1]⊗ [J2]

]
.

Successively, we obtain

A =



S1 ⊗ I2 ⊗ · · · ⊗ Id−1 + . . .
· · ·+ I1 ⊗ · · · ⊗ Id−2 ⊗ Sd−1

+[L1]⊗ [M2]⊗ I3 ⊗ · · · ⊗ Id−1 + . . .
· · ·+ I1 ⊗ · · · ⊗ Id−3 ⊗ [Ld−2]⊗ [Md−1]

I1 ⊗ · · · ⊗ Id−2 ⊗ [Ld−1]

I1 ⊗ · · · ⊗ Id−1

[M1]⊗ [J2]⊗ · · · ⊗ [Jd−1]



T

⊗


Id
Md

Sd
Ld



= S1 ⊗ I2 ⊗ · · · ⊗ Id + · · ·+ I1 ⊗ · · · ⊗ Id−1 ⊗ Sd

+ [L1]⊗ [M2]⊗ I3 ⊗ · · · ⊗ Id + · · ·+ I1 ⊗ · · · ⊗ Id−2 ⊗ [Ld−1]⊗ [Md]

+ [M1]⊗ [J2]⊗ · · · ⊗ [Jd−1]⊗ [Ld] ,

which is exactly the same expression as (6.2.2).

A.1. Proofs 149

A.1.4. Equivalence of SLIM Decomposition and Canonical
Representation for Markovian Master Equations
(Theorem 6.3.1)

Consider the different parts of (6.3.7). It follows from the definitions given in (6.3.9),
(6.3.10), and (6.3.11), that

αi∑
ν=1

Ai,ν = I1 ⊗ · · · ⊗ Ii−1 ⊗ Si ⊗ Ii+1 ⊗ · · · ⊗ Id,

βi∑
µ=1

Ai,i+1,µ = I1 ⊗ · · · ⊗ Ii−1 ⊗ [Li]⊗ [Mi+1]⊗ Ii+2 ⊗ · · · ⊗ Id,

and

βd∑
µ=1

Ad,1,µ = [M1]⊗ [J2]⊗ · · · ⊗ [Jd−1]⊗ [Ld] ,

respectively. As we have shown in the proof of Theorem 6.2.1, see Appendix A.1.3,
the SLIM decomposition given in (6.2.3) equals

d∑
i=1

I1 ⊗ · · · ⊗ Ii−1 ⊗ Si ⊗ Ii+1 ⊗ · · · ⊗ Id

+

d−1∑
i=1

I1 ⊗ · · · ⊗ Ii−1 ⊗ [Li]⊗ [Mi+1]⊗ Ii+2 ⊗ · · · ⊗ Id

+ [M1]⊗ [J2]⊗ · · · ⊗ [Jd−1]⊗ [Ld] .

Thus, the MME operator (6.3.7) can be represented by the SLIM decomposition
with components of the form (6.3.9), (6.3.10), and (6.3.11).

150 A. Appendix

A.1.5. Functional Correctness of Pseudoinverse Algorithm
(Theorem 7.2.1)

Since the left- and right-orthonormalization as well as the application of the SVD
in step 2 of Algorithm 6 do not change the tensor T itself, we can express the
matricization of T with respect to the dimensions (1, . . . , l) and (l + 1, . . . , d) as

T

∣∣∣∣nl+1,...,nd

n1,...,nl
= Ũ Σ Ṽ T ,

with Ũ , Σ, and Ṽ as given in Algorithm 6. Now, we only have to show that
ŨT · Ũ = Ṽ T · Ṽ = I ∈ Rrl×rl . We obtain

ŨT · Ũ =

 r0∑
k0=1

· · ·
rl−1∑

kl−1=1

T
(1)
k0,:,k1

⊗ . . .⊗T
(l)
kl−1,:,:

∣∣∣∣rln1,...,nl

T

·

 r0∑
k′0=1

· · ·
rl−1∑

k′l−1=1

T
(1)
k′0,:,k

′
1
⊗ . . .⊗T

(l)
k′l−1,:,:

∣∣∣∣rln1,...,nl
.

Considering an entry of ŨT · Ũ and using (3.2.2), we then get

(
ŨT · Ũ

)
x,y

=

 r0∑
k0=1

· · ·
rl−1∑

kl−1=1

T
(1)
k0,:,k1

⊗ . . .⊗T
(l)
kl−1,:,x

∣∣∣∣n1,...,nl

T

·

 r0∑
k′0=1

· · ·
rl−1∑

k′l−1=1

T
(1)
k′0,:,k

′
1
⊗ . . .⊗T

(l)
k′l−1,:,y

∣∣∣∣n1,...,nl

=

r0∑
k0=1

· · ·
rl−1∑

kl−1=1

r0∑
k′0=1

· · ·
rl−1∑

k′l−1=1

l∏
i=1

(
T

(i)
ki−1,:,ki

)T
·T(i)

k′i−1,:,k
′
i
,

with kl = x and k′l = y. Since T(1) is left-orthonormal and r0 = 1, we obtain(
T

(1)
1,:,k1

)T
·T(1)

1,:,k′1
= δk1,k′1 . This implies that

(
ŨT · Ũ

)
x,y

is only nonzero if k1 = k′1.

Now, we include the next core. This yields

r1∑
k1=1

r1∑
k′1=1

δk1,k′1 ·
(
T

(2)
k1,:,k2

)T
·T(2)

k′1,:,k
′
2

=

r1∑
k1=1

(
T

(2)
k1,:,k2

)T
·T(2)

k1,:,k′2
=

(
T

(2)
:,:,k2

∣∣∣∣r1,n1

)T
·T(2)

:,:,k′2

∣∣∣∣r1,n1

= δk2,k′2

A.1. Proofs 151

since T(2) is also left-orthonormal. Successively, it then follows that for
(
ŨT · Ũ

)
x,y

to be nonzero that ki = k′i for i = 2, . . . , l − 1. Thus, we obtain

(
ŨT · Ũ

)
x,y

=

rl−1∑
kl−1=1

(
T

(l)
kl−1,:,x

)T
·T(l)

kl−1,:,y
=

(
T(l)

:,:,x

∣∣∣∣rl−1,nl

)T
·T(l)

:,:,y

∣∣∣∣rl−1,nl
.

Note that T(l) is also left-orthonormal due to the construction (see steps 3 and 4 of
Algorithm 6) and therefore

ŨT · Ũ = I ∈ Rrl×rl .

Analogously, it can be shown that Ṽ T · Ṽ = I using the right-orthonormality of
T(l+1), . . . ,T(d). It follows that the pseudoinverse calculated by Algorithm 6 satisfies
the equations given in Definition 7.1.1, e.g.

T

∣∣∣∣nl+1,...,nd

n1,...,nl
·
(
T

∣∣∣∣nl+1,...,nd

n1,...,nl

)+

·T
∣∣∣∣nl+1,...,nd

n1,...,nl
= Ũ Σ Ṽ T · Ṽ Σ−1 ŨT · Ũ Σ Ṽ T

= Ũ Σ Ṽ T

= T

∣∣∣∣nl+1,...,nd

n1,...,nl
.

152 A. Appendix

A.2. Algorithms

A.2.1. Orthonormalization of Tensor Trains

Algorithm 9 Left-orthonormalization of tensor trains

Input: Tensor train T ∈ RN with cores T(1), . . . ,T(d) and ranks r0, . . . , rd.
Output: Left-orthonormalized T with TT ranks s0, . . . , sd, si ≤ ri.

1: Set s0 = sd = 1.
2: for i = 1, ..., d− 1 do
3: M = L

(
T(i)

)
.

4: Compute SVD of M , i.e. M = U ΣV T with Σ ∈ Rsi×si , si ≤ ri.
5: Update T(i) ∈ Rsi−1×ni×si such that L

(
T(i)

)
= U .

6: Define W = ΣV T · R
(
T(i+1)

)
.

7: Update T(i+1) ∈ Rsi×ni+1×ri+1 such that R
(
T(i+1)

)
= W .

8: end for

Algorithm 10 Right-orthonormalization of tensor trains

Input: Tensor train T ∈ RN with cores T(1), . . . ,T(d) and ranks r0, . . . , rd.
Output: Right-orthonormalized T with TT ranks s0, . . . , sd, si ≤ ri.

1: Set s0 = sd = 1.
2: for i = d, ..., 2 do
3: M = R

(
T(i)

)
.

4: Compute SVD of M , i.e. M = U ΣV T with Σ ∈ Rsi−1×si−1 , si−1 ≤ ri−1.
5: Update T(i) ∈ Rsi−1×ni×si such that R

(
T(i)

)
= V T .

6: Define W = L
(
T(i−1)) · U Σ.

7: Update T(i−1) ∈ Rri−2×ni−1×si such that L
(
T(i+1)

)
= W .

8: end for

A.2. Algorithms 153

A.2.2. ALS for Systems of Linear Equations

Algorithm 11 ALS for Systems of Linear Equations

Input: Symmetric positive definite TT operator A ∈ RN×N , a right-hand side
U ∈ RN and a right-orthonormal initial guess T ∈ RN .

Output: Updated approximation T of the solution of A ·T = U.

1: Set LA
0 = LU

0 = RA
d+1 = RU

d+1 = 1.
2: for i = d, . . . , 2 do
3: Compute RA

i and RU
i by using formulae (4.2.17) and (4.2.19).

4: end for
5: for i = 1, . . . , d− 1 do
6: if i > 1 then
7: Compute LA

i−1 and LU
i−1 by using formulae (4.2.16) and (4.2.18).

8: end if
9: Apply iterative solver to find the solution v of Ai v = ui.

10: Reshape v into a tensor V ∈ Rri−1×ni×ri .
11: Apply QR factorization, i.e. L (V) = Q ·R, cf. (4.2.12).
12: Set T(i) to a reshaped version of Q such that L

(
T(i)

)
= Q.

13: end for
14: Compute LA

d−1 and LU
d−1.

15: for i = d, . . . , 1 do
16: if i < d then
17: Compute RA

i+1 and RU
i+1.

18: end if
19: Apply iterative solver to find the solution v of Ai v = ui.
20: Reshape v into a tensor V ∈ Rri−1×ni×ri .
21: if i > 1 then
22: Apply QR factorization, i.e. R (V) = RT ·QT , cf. (4.2.13).
23: Set T(i) to a reshaped version of QT such that R

(
T(i)

)
= QT .

24: else
25: Set T(i) to V.
26: end if
27: end for

154 A. Appendix

A.2.3. MALS for Systems of Linear Equations

Algorithm 12 MALS for Systems of Linear Equations

Input: Symmetric positive definite TT operator A ∈ RN×N , a right-hand side
U ∈ RN and a right-orthonormal initial guess T ∈ RN .

Output: Updated approximation T of the solution of A ·T = U.

1: Set LA
0 = LU

0 = RA
d+1 = RU

d+1 = 1.
2: for i = d, . . . , 3 do
3: Compute RA

i and RU
i by using formulae (4.2.17) and (4.2.19).

4: end for
5: for i = 1, . . . , d− 1 do
6: if i > 1 then
7: Compute LA

i−1 and LU
i−1 by using formulae (4.2.16) and (4.2.18).

8: end if
9: Apply iterative solver to find the solution v of Ai,i+1 v = ui,i+1.

10: Reshape v into a tensor V ∈ Rri−1×ni×ni+1×ri+1 .

11: Apply (truncated) SVD, i.e. V
∣∣∣∣ni+1,ri+1

ri−1,ni
= U ΣV T , cf. (4.2.14).

12: Set T(i) to a reshaped version of U such that L
(
T(i)

)
= U .

13: end for
14: for i = d− 1, . . . , 1 do
15: if i < d− 1 then
16: Compute RA

i+2 and RU
i+2.

17: end if
18: Apply iterative solver to find the solution v of Ai,i+1 v = ui,i+1.
19: Reshape v into a tensor V ∈ Rri−1×ni×ni+1×ri+1 .

20: Apply (truncated) SVD, i.e. V
∣∣∣∣ni+1,ri+1

ri−1,ni
= U ΣV T .

21: Set T(i+1) to a reshaped version of V T such that R
(
T(i+1)

)
= V T .

22: end for
23: Replace T(1) such that L

(
T(1)

)
= U · Σ.

A.2. Algorithms 155

A.2.4. ALS for Eigenvalue Problems

Algorithm 13 ALS for Eigenvalue Problems

Input: Symmetric TT operator A ∈ RN×N and a right-orthonormal initial guess
T ∈ RN in TT format.

Output: Approximation of the b smallest/largest eigenvalues Λ1, . . . ,Λb and cor-
responding eigentensors T ∈ RN×b in BTT format.

1: Set LA
0 = LU

0 = RA
d+1 = RU

d+1 = 1.
2: for i = d, . . . , 2 do
3: Compute RA

i and RU
i by using formulae (4.2.17) and (4.2.19).

4: end for
5: for i = 1, . . . , d− 1 do
6: if i > 1 then
7: Compute LA

i−1 and LU
i−1 by using formulae (4.2.16) and (4.2.18).

8: end if
9: Apply iterative solver in order to find the b smallest/largest eigenpairs

(λ1, v1), . . . , (λb, vb) of Ai.
10: Reshape (v1, . . . , vb) ∈ R(ri−1·ni·ri)×b into a tensor V ∈ Rri−1×ni×ri×b.

11: Apply truncated QR factorization, i.e. compute V

∣∣∣∣ri,bri−1,ni
= Q · R with

Q ∈ R(ri−1·ni)×ri .
12: Set T(i) to a reshaped version of Q such that L

(
T(i)

)
= Q.

13: end for
14: Compute LA

d−1 and LU
d−1.

15: for i = d, . . . , 1 do
16: if i < d then
17: Compute RA

i+1 and RU
i+1.

18: end if
19: Apply iterative solver in order to find the b smallest/largest eigenpairs

(λ1, v1), . . . , (λb, vb) of Ai.
20: Reshape (v1, . . . , vb) ∈ Rb×(ri−1·ni·ri) into a tensor V ∈ Rri−1×ni×ri×b.
21: if i > 1 then

22: Apply truncated QR factorization, i.e. compute V

∣∣∣∣b,ri−1

ni,ri
= Q · R with

Q ∈ R(ni·ri)×ri−1 .
23: Set T(i) to a reshaped version of QT such that R

(
T(i)

)
= QT .

24: else
25: Set T(i) to V and Λk = λk for k = 1, . . . , b.
26: end if
27: end for

156 A. Appendix

A.2.5. MALS for Eigenvalue Problems

Algorithm 14 MALS for Eigenvalue Problems

Input: Symmetric TT operator A ∈ RN×N and a right-orthonormal initial guess
T ∈ RN in TT format.

Output: Approximation of the b smallest/largest eigenvalues Λ1, . . . ,Λb and cor-
responding eigentensors T ∈ RN×b in BTT format.

1: Set LA
0 = LU

0 = RA
d+1 = RU

d+1 = 1.
2: for i = d, . . . , 3 do
3: Compute RA

i and RU
i by using formulae (4.2.17) and (4.2.19).

4: end for
5: for i = 1, . . . , d− 1 do
6: if i > 1 then
7: Compute LA

i−1 and LU
i−1 by using formulae (4.2.16) and (4.2.18).

8: end if
9: Apply iterative solver in order to find the b smallest/largest eigenpairs

(λ1, v1), . . . , (λb, vb) of Ai,i+1.
10: Reshape the matrix (v1, . . . , vb) ∈ R(ri−1·ni·ni+1·ri+1)×b into a tensor

V ∈ Rri−1×ni×ni+1×ri+1×b.

11: Apply (truncated) SVD, i.e. compute V

∣∣∣∣ni+1,ri+1,b

ri−1,ni
= U ΣV T .

12: Set T(i) to a reshaped version of U such that L
(
T(i)

)
= U .

13: end for
14: Compute LA

d−1 and LU
d−1.

15: for i = d− 1, . . . , 1 do
16: if i < d− 1 then
17: Compute RA

i+1 and RU
i+1.

18: end if
19: Apply iterative solver in order to find the b smallest/largest eigenpairs

(λ1, v1), . . . , (λb, vb) of Ai,i+1.
20: Reshape the matrix (v1, . . . , vb)

T ∈ Rb×(ri−1·ni·ni+1·ri+1) into a tensor
V ∈ Rb×ri−1×ni×ni+1×ri+1 .

21: Apply (truncated) SVD, i.e. compute V

∣∣∣∣ni+1,ri+1,b

ri−1,ni
= U ΣV T .

22: Set T(i+1) to a reshaped version of V T such that R
(
T(i+1)

)
= V T .

23: end for
24: Replace T(1) such that L

(
T(1)

)
= U · Σ and set Λk = λk for k = 1, . . . , b.

A.2. Algorithms 157

A.2.6. Compression of Two-Dimensional TT Operators

Algorithm 15 Compression of two-dimensional TT operators

Input: TT operator G =
[
G(1)

]
⊗
[
G(2)

]
∈ Rm×m×n×n with TT cores

G(1) ∈ R1×m×m×r and G(2) ∈ Rr×n×n×1.
Output: TT operator H =

[
H(1)

]
⊗
[
H(2)

]
with TT rank s ≤ r and H = G.

1: Compute full tensor G and reshape it as a matrix G ∈ R(m·m)×(n·n).
2: Apply compact singular value decomposition, i.e. G = UΣV T with
U ∈ R(m·m)×s, Σ ∈ Rs×s, and V ∈ R(n·n)×s.

3: Define H(1) ∈ R1×m×m×s by H
(1)
1,x,y,k = Ux,y,k.

4: Define H(2) ∈ Rs×n×n×1 by H
(2)
k,x,y,1 = (ΣV T)k,x,y.

158 A. Appendix

A.2.7. Construction of SLIM Decompositions for Markovian
Master Equations

Algorithm 16 Construction of SLIM decompositions for MMEs
Input: Single-cell reactions (SCR)

For each cell Θi, 1 ≤ i ≤ d, and every Ri,ν , ν = 1, . . . , αi, define the
net change pi,ν ∈ Z (see (6.3.5)) and the vector ai,ν ∈ Rni (see (6.3.2))
containing the values of the corresponding reaction propensity.
Two-cell reactions (TCR)
For each pair of cells Θi, Θi+1, 1 ≤ i ≤ d − 1 (1 ≤ i ≤ d if cyclic), and
every Ri,i+1,µ, µ = 1, . . . , βi, define the net changes pi,i+1,µ, qi,i+1,µ ∈ Z
(see (6.3.6)) and the matrix ai,i+1,µ ∈ Rni×ni+1 (see (6.3.3)) containing
the values of the corresponding reaction propensity.

Output: SLIM decomposition of master equation operator A given in (6.2.3) and
(6.2.5), respectively.

1: for i = 1, . . . , d do
2: Compute Si =

∑αi
ν=1 (Gi(−pi,ν)− I) · diag (ai,ν) as defined in (6.3.9).

3: end for
4: for i = 1, . . . , d− 1 (i = 1, . . . , d if NNIS is cyclic) do
5: for µ = 1, . . . , βi do
6: Compute canonical representation of propensity ai,i+1,µ, i.e.

ai,i+1,µ =
∑ri,i+1,µ

k=1

(
a
(1)
i,i+1,µ

)
k,:
⊗
(

a
(2)
i,i+1,µ

)
k,:
.

7: Compute Li,µ,k, L̃i,µ,k, Mi+1,µ,k, and M̃i+1,µ,k as defined in (6.3.8).
8: end for
9: Construct Li and Mi+1 as defined in (6.3.10) and (6.3.11).

10: Apply Algorithm 15 to [Li]⊗ [Mi+1] in order to compress the cores Li and
Mi+1.

11: end for

A.3. Deutsche Zusammenfassung (German Summary) 159

A.3. Deutsche Zusammenfassung (German Summary)

In den letzten Jahren sind Tensorzerlegungen zu einem wichtigen Werkzeug sowohl
für die mathematische Modellierung von hochdimensionalen Systemen als auch für
die Approximation von hochdimensionalen Funktionen geworden. Tensorbasierte
Methoden werden bereits in unterschiedlichsten Anwendungsgebieten erfolgreich
eingesetzt. Wir betrachten Tensoren als eine Verallgemeinerung von Matrizen mit
einer Vielzahl von Indizes. Die Zahl der Elemente eines solchen Tensors – und
somit sein Speicherbedarf – wächst dabei exponentiell mit der Zahl der Dimensio-
nen. Dieses Phänomen wird als Fluch der Dimensionalität bezeichnet. Das Interesse
in Tensorzerlegungen wächst stetig, da unlängst entwickelte Tensorformate gezeigt
haben, dass es möglich ist diesen Fluch zu umgehen und hochdimensional Systeme
zu betrachten, welche vorher nicht mit konventionellen numerischen Methoden un-
tersucht werden konnten. Typische Anwendungsbereiche umfassen das Lösen von
linearen Gleichungssystemen, Eigenwertproblemen und gewöhnlichen wie auch par-
tiellen Differentialgleichungen.
Die hier vorgestellten Methoden umfassen die tensorbasierte Darstellung von

Markovschen Mastergleichungen, die Tensorzerlegung von linearen Operatoren
bezüglich Nächste-Nachbarn-Interaktionen, die tensorbasierte Erweiterung der Dy-
namic Mode Decomposition und die Approximation des Perron-Frobenius-Operators.
Dabei konzentrieren wir uns in dieser Arbeit auf das sogenannte Tensor-Train-
Format. Unsere Experimente zeigen, dass wir mithilfe dieser Darstellung präzise Ap-
proximationen der Lösungen von linearen Gleichungssystemen und Eigenwertprob-
lemen bestimmen können, um zum Beispiel stationäre Wahrscheinlichkeitsverteilun-
gen zu berechnen. Im Vergleich zu klassischen Methoden ist es dabei möglich den
Rechenaufwand und die damit verbundene Rechenzeit deutlich zu senken. Wir sind
somit in der Lage, Einblicke in die Dynamiken und Strukturen von hochdimension-
alen Systemen zu gewinnen. Unserer Auffassung nach, bilden die hier präsentierten
Methoden einen weiteren Beitrag zu den Anwendungsmöglichkeiten von Tensorzer-
legungen.
Diese Dissertation ist in drei Teile gegliedert. In Teil I erläutern wir das Grund-

konzept von Tensorzerlegungen. Tensoren im Allgemeinen werden in Kapitel 2 und
verschiedene Tensorformate werden in Kapitel 3 vorgestellt. In Kapitel 4 beleuchten
wir die Lösungsmethoden für Optimierungsprobleme im TT-Format. Teil II widmet
sich unseren oben beschriebenen Beiträgen zum Konzept von Tensorzerlegungen,
siehe Kapitel 5 bis 7. Des Weiteren zeigen wir die ersten Schritte in Richtung der
Approximation von Transferoperatoren und ihrer Eigenfunktionen in Kapitel 8. Die
Leistungsfähigkeit von verschiedenen tensorbasierten Methoden wird in Teil III an-
hand mehrerer Beispiele aus unterschiedlichsten Anwendungsgebieten verdeutlicht.
Wir betrachten chemische Reaktionsnetzwerke in Kapitel 9, heterogene katalytische
Prozesse in Kapitel 10 und Beispiele aus dem Bereich der Fluid- und Moleküldy-
namik in Kapitel 11 bzw. 12. Den Abschluss dieser Arbeit bildet eine Zusammen-
fassung und ein Ausblick auf weitere Forschungsmöglichkeiten in Kapitel 13.

160 A. Appendix

A.4. Eidesstattliche Erklärung (Declaration)

Ich versichere hiermit an Eides statt, dass diese Arbeit von niemand anderem
als meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte,
Bücher, Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben. Zitate
aus fremden Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher
in gleicher oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und
auch nicht veröffentlicht.

Berlin, den 24. April 2017

Patrick Gelß

	Title Page
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	List of Symbols
	Introduction
	Foundations of Tensor Approximation
	Tensors in Full Format
	Definition and Notation
	Tensor Calculus
	Addition and Scalar Multiplication
	Index Contraction
	Tensor Multiplication
	Tensor Product

	Graphical Representation
	Matricization and Vectorization
	Norms
	Orthonormality

	Tensor Decomposition
	Rank-One Tensors
	Canonical Format
	Tucker and Hierarchical Tucker Format
	Tensor-Train Format
	Core Notation
	Addition and Multiplication
	Orthonormalization
	Calculating Norms
	Conversion

	Modified Tensor-Train Formats
	Quantized Tensor-Train Format
	Block Tensor-Train Format
	Cyclic Tensor-Train Format

	Optimization Problems in the Tensor-Train Format
	Overview
	(M)ALS for Systems of Linear Equations
	Problem Statement
	Retraction Operators
	Computational Scheme
	Algorithmic Aspects

	(M)ALS for Eigenvalue Problems
	Problem Statement
	Computational Scheme

	Properties of (M)ALS
	Methods for Solving Initial Value Problems

	Progress in Tensor-Train Decompositions
	Tensor Representation of Markovian Master Equations
	Markov Jump Processes
	Tensor-Based Representation of Infinitesimal Generators

	Nearest-Neighbor Interaction Systems in the Tensor-Train Format
	Nearest-Neighbor Interaction Systems
	General SLIM Decomposition
	SLIM Decomposition for Markov Generators

	Dynamic Mode Decomposition in the Tensor-Train Format
	Moore-Penrose Inverse
	Computation of the Pseudoinverse
	Tensor-Based Dynamic Mode Decomposition

	Tensor-Train Approximation of the Perron–Frobenius Operator
	Perron–Frobenius Operator
	Ulam's Method

	Applications of the Tensor-Train Format
	Chemical Reaction Networks
	Elementary Reactions
	Chemical Master Equation
	Numerical Experiments
	Signaling Cascade
	Two-Step Destruction

	Heterogeneous Catalysis
	Heterogeneous Catalytic Processes
	Reduced Model for the CO Oxidation at RuO2
	Numerical Experiments
	Scaling with System Size
	Varying the CO Pressure
	Increasing the Oxygen Desorption Rate

	Fluid Dynamics
	Computational Fluid Dynamics
	Numerical Examples
	Rotating Annulus
	Flow Around a Blunt Body

	Brownian Dynamics
	Langevin Equation
	Numerical Experiments
	Two-Dimensional Triple-Well Potential
	Three-Dimensional Quadruple-Well Potential

	Summary and Conclusion
	References
	Appendix
	Proofs
	Inverse Function for Little-Endian Convention
	Equivalence of the Master Equation Formulations
	Equivalence of SLIM Decomposition and Canonical Representation
	Equivalence of SLIM Decomposition and Canonical Representation for Markovian Master Equations
	Functional Correctness of Pseudoinverse Algorithm

	Algorithms
	Orthonormalization of Tensor Trains
	ALS for Systems of Linear Equations
	MALS for Systems of Linear Equations
	ALS for Eigenvalue Problems
	MALS for Eigenvalue Problems
	Compression of Two-Dimensional TT Operators
	Construction of SLIM Decompositions for Markovian Master Equations

	Deutsche Zusammenfassung (German Summary)
	Eidesstattliche Erklärung (Declaration)

