CHAPTER 2

Structure of the Space of Scattering States

2.1. Construction and Properties of Particle States

Experimental data of high energy physics typically stem from collision processes, where
incoming particle configurations evolve into outgoing ones. Hence, in order to relate our theo-
retical framework of algebraic quantum field theory to physical phenomena, we have to identify
the states in the theory which can be interpreted as particle configurations. Phenomenologically,
the notion of particle states can be made precise as follows [Haa92]. An n-particle coincidence
experiment at time ¢ is an arrangement of n particle detectors which are far separated from
each other spatially, and switched on during some time interval around ¢. By a state with n
incoming or outgoing particles one means a state which for all times ¢ earlier or later, respec-
tively, than some ¢y gives a signal in at least one n-particle coincidence experiment at ¢ but in no
m-particle coincidence experiment at ¢t if m > n. The theoretical notion corresponding to such
a state within the framework of algebraic quantum field theory is defined by the same words,
now viewed as theoretical notions: A ‘detector’ is a positive element of the observable algebra
with vanishing vacuum expectation value, which is essentially localized in some bounded region
of space-time; A ‘coincidence arrangement’ of detectors is modelled by their product; Finally,
a state is said to ‘give a signal’ in such an arrangement if it assigns an expectation value sig-
nifficantly different from zero to the corresponding product. Note that the detector cannot be
a strictly localized observable due to the Reeh-Schlieder theorem, according to which no local
observable (other than 0) can annihilate the vacuum.

We now address the question of the existence and construction of particle states in the
theory, in the sense of vectors in the Hilbert space H. The question of single particle states
(n = 1) has to be distinguished from that of multiparticle states (n > 1). For the existence of
single particle states, there are no model independent reasons. However, if the spectrum of the
mass operator Pg in a given representation p of the observable algebra contains an eigenvalue m?
(as required from the representations we are interested in, see equation (0.9)), the corresponding
eigenspace ”Hf_,l) indeed satisfies the above criterion for 1-particle states. This is implied as a
special case by the following discussion. Conversely, it has been shown by Enss in [Ens75], that
under certain assumptions on the theory the eigenvectors of the mass operator are the only 1-
particle states . If in addition the eigenvalue m? is isolated, as is the case for our massive single
particle representations (see again equation (0.9)), the construction of multiparticle states from
single particle states is possible in a model independent way. This construction is known as
Haag-Ruelle scattering theory. It has first been carried out by R. Haag [Haa58], and improved
by D. Ruelle who showed [Rue62] that certain assumptions of Haag can be derived from the
Wightman axioms. It has been adapted to the case of particles with braid group statistics by
K. Fredenhagen, M. Gaberdiel and S. Riiger in [FGR96].

It is noteworthy that Wigner’s definition of elementary particles, relying on an eigenvalue
of the mass operator P2, is too restrictive for certain models, even for quantum electrodynam-
ics. For example, a single electron state cannot belong to an eigenspace of P2, as has been
pointed out by B. Schroer [Sch63], who coined the name ‘infraparticles’ for such generalized
particles. The theoretical concept describing both infraparticles and Wigner particles, is that
of ‘particle weights’ introduced by D. Buchholz [Buc87]. It still fits into the phenomenological
characterization of particle configurations given at the beginning of this section.

We briefly sketch the construction of Haag-Ruelle scattering states in the present frame-
work as developped in [FGR96]. Given n single particle vectors, the aim is to construct a
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28 2. STRUCTURE OF THE SPACE OF SCATTERING STATES

corresponding in- or outgoing n-particle vector. The first step is to construct one particle cre-
ation operators which are almost localized and create single particle states with a prescribed
compact momentum support from the vacuum. To this end, let B = (g, B) € F(I) such that
SPp, B} has nonvanishing intersection with the mass hyperboloid H,,, where m is the mass
of a particle described by g in the sense of equation (0.9). Further, let f € S(M?) be a test
function whose Fourier transform

f») *% /d3$ eP f(x (2.1)

has a compact support contained in the open forward light cone V+ and satisfying suppf N
specP, C H,,. For all t € R, let f; be defined by f;(p) := exp(iZ5-=-t) f(p). For large |t|, its
support is essentially contained in the region ¢t V(f), where V(f) is the velocity support of f,

1 .
= — . 2.2
V(f) = suppf (2.2)
More precisely [FGR96, Lemma 3.1], for all ¢ > 0, N € N, there is a constant ¢ > 0 such that
z -N

Ifo(2)] < c ‘dist (; V) + 1\ for all z ¢ ¢tV (f)° . (2.3)

Here, dist is a euclidean metric on M3, and we have used the notation
Ve = {ve M3, dist(v,V) < e} (2.4)

for a compact set V. C M3 and € > 0. Now the announced one particle creation operator is
defined by

- / &z fi(z) a(z,1)(B) € F. (2.5)

For large ||, it is essentially localized in I 4 ¢tV (f)°. This means, that B(f,t) can be ap-
proximated for any & > 0 by field operators B(f,t) localized in I + ¢tV (f), such that
IB(f,t) — Be(f,t)| [t|¥ — 0 for all N € N. Explicitely, B*(f,t) is defined like B(f,t) in
equation (2.5), but with the integral only performed over the region ¢ V(f)°. The vector

B(f,t)@ € HV (2.6)

coincides with (p, (2m)3 f (P,) BR), hence it is independent of ¢ and its spectral support is
contained in suppf N H,,. In particular, it is a single particle vector.

Now we consider n such one particle creation operators essentlally localized in regions which
become mutually spacelike for large ¢t : We choose n localizations Li,.... I, ¢ K and n compact
subsets V4,...,V, of the unit mass shell H , such that for a suitable ¢ > 0 the regions I, +1 V)]
are mutually spacelike for large t. For k = 1,... ,n, let By = (o, Bx) € F(Ii), where gy is a
single particle representation with mass my, and let fi be a testfunction such that supp fk is
contained in my VjF and intersects the energy momentum spectrum specP,, only in H,f, . Here
my, is the mass of the particle described by gr. Then the vector valued function

tHBn(fnat)"'Bl(fht)Q C H@l"'@n (27)

converges for t — 0o, and the limit vector depends, for fixed localizations Iy, only on the single
particle vectors v, := Bg(fr,t) Q. It is interpreted as an outgoing state of n particles with
state vectors 1, and ‘velocity supports’ V. A state vector of n incoming particles may be
defined analogously as the limit for ¢ - —oo of the vectors (2.7), provided the localizations I
and velocity supports V; are chosen such that the regions I} + t V¢ are mutually spacelike for
all ¢ smaller than some to < 0. Since the outgoing and incoming n-particle vectors only depend
on the single particle vectors 4, ... ,%,, and the localizations i= (Il, I ), we may denote
them by

lim B (fnat) o 'Bl(flat) = ’dJn X X ’l/"l(Iai) ) (28)

t—+oo



2.1. CONSTRUCTION AND PROPERTIES OF PARTICLE STATES 29

respectively. The order of factors in these states can be permuted with the commutation rela-
tion (1.53), which survives in the limit ¢ — 00, respectively:

d’(ﬂ"ﬂ)—l(n) XX ’lp(ﬂ’ﬂ')_l(l) (i : (ﬂ-l’”)il; :t)
= (69 o (Pi) (,”I’,n,) ww_l(n) XX 1/J7r_1(1) (i'ﬂilai) . (29)

Here, I-m denotes the natural right action of the permutation group on tupels as defined before
equation (A.1). Let us now examine the dependence of the n-particle vectors on the localizations
I, of the creation operators. As a first step, we exchange one of the localizations: Assume, that
the jth single particle vector can be created also by an operator essentially localized in a
different region, i.e. 1 = D(g,t)Q for some D € F(J), where J + ¢t V(f;)° is causally disjoint
from Iy 4+t V (fx)°, k # j, for large ¢ (or small ¢, respectively), and suppg C suppf;. We exploit
equation (2.9) to commute B;(f;,t) to the right where it is applied to the vacuum and can be
replaced by D(g,t), which we then commute back to the jth position. As a result,

P x oo x (I, 2)

= eq (vi(m; ", m5) ¢ (15, 1)) Wy x - x 9y (I9), %) (2.10)
eo ((p1(mir 1)) i (m3, 1)) o x -+ x 9, A9, 2)

Here, I() € £*™ denotes the tupel arising from I = (L,...,I,) if fj is replaced by J, and T
is any permutation mapping j to 1. In particular, the multiparticle vector does not change at

all if J has the same relative winding numbers as I, with fl, .. ,fk_l,fk+1, ..., In, since pg
only depends on the relative winding numbers. We are led to the following definition.

DEFINITION 2.1. Let V := (V4,...,V,) be a tupel of mutually disjoint compact subsets
of the unit mass shell H;". Let ICQ', and K5, denote the set of tupels I = (Iy,...,I,) in K such
that the regions Ij +tV}, are mutually spacelike for all ¢ larger or smaller, respectively, than
some tg € R. Two tupels I and J in }C{r, will be considered equivalent, if all of their relative
winding numbers coincide, i.e N (I, ;) = N(Jy, J;) for k # 1. The same equivalence relation is
defined on K5;. The corresponding sets of equivalence classes will be denoted by

Xy and Xy,
respectively. Elements of these sets will be denoted by &. Also, we will write ¢ instead of ;.

As the above discussion shows, we may write
P x - xpy(LE) =i9p, X x (6, 5), (2.11)

where £ € X\ﬂ; is the equivalence class of I Working out further the dependence of this vector
on the localizations along the lines of equation (2.10), we are led to the following result. Let

N =) ker mogo N PB, (2.12)
e

where g runs through all n-fold products of irreducible massive single particle representations
of Ay. Here ker moe, denotes the normal subgroup of all b € B, such that moe,(b,1) =1, and
PB,, denotes the pure braid group, i.e. the kernel of the natural homomorphism v from B,
onto S,. Note that the cylinder braid ¢; is in the kernel of all representations me,, hence we
may view them as representations of B, instead of B, (C).

LEMMA AND DEFINITION 2.2. Given a Cartesian product V of n compact mutually dis-
joint subsets of H;", there are maps b$ and by, with

b XE X XE - Ba/n
satisfying the cocycle conditions
D) W) WNE =1 N foral§€ Xy (2.13)
iM) by (6,€) by (€,€") = bv(6,€")  for all §,€',¢" € Xy (2.14)
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and uniquely characterized by the further condition
b (10, [19]) = o (77 m)ppgen (1, 2) - (2.15)

if IO differs from T only in the j th entry. Here, w; € Sn denotes the transposition of 1 and j.
The dependence of outgoing or incoming multiparticle vectors on the localizations is effected by
bir, or by, respectively, as follows. Let v, € 7{8}, with velocity support in V. Then

Yo X X Py (E) = £ (B(E6,E)) o x - X Py (€L 5) for all € €XE.  (2.16)

In equation (2.16), as well as in the following, the embedding B, — Bn, b+ (b,1) is
implicitely understood.

REMARK. The claim follows by iterating the procedure (2.10). Note that only pure braids
can occur in this process. Hence b$ are actually maps into the pure braid group PB, modulo
the intersection of all kermoe,. This is equivalent to our formulation (2.12), which we have
chosen for later conveniance. Equation (2.15) can be put into a more explicit form. Suppose &)
arises from I as described after equation (2.10). According to Definition 1.7, we choose paths
~1 corresponding to Iy, and a path 4 corresponding to J. They start from rq (corresponding to
So), and the respective endpoints will be denoted by r4 and 7. Then

@[i](ﬂflaﬂj)SO[i(j)](Wj;1) = (1),

where b € PB,, is the homotopy class of the S,,-orbit of the path (81, .. , 3,) in (R2\{0})*"\ A,
which is defined by

Bi =(i,% ") * (4,7) x (i,7;) forl1<i<j
ﬁj :(.77’7]_1)* (% HJ,T])*(%,’Y]*’?_l)*(]H %772) *(J;’?) (217)
Br = (k,70) forj<k<n.

We note that it would be more constructive and hence satisfying to have a direct proof that a
B, (C)-valued map by« can be defined with the stated properties, without taking recourse to
the existence of massive single particle representations. We conjecture that this is possible, but
have only shown the case n = 2. Fredenhagen, Gaberdiel and Riiger have solved this problem
for V and £ in a certain class [FGR96, Lemma 3.3].

There is a one-to-one correspondence between X{; and X, and a relation between by, and
by, - It relies on the observation that Ij + tV} are mutually spacelike for large negative ¢ if and
only if —1Ij, + tV}, are mutually spacelike for large positive t. Hence, if € is a map from K into
itself such that @ I ends at —I if I ends at I, and is compatible with relative winding numbers,
then 6 maps X‘J; into X5, and vice versa. A natural choice is as follows. Let T denote time
reversal in M3, Tz := x —2(eq-)eg, where e is the positive timelike unit vector which is stable
under rotations (0,w) € LIL. In coordinates adapted to eg this reads T (z°,%) = (—=2°,%). T
acts on paths in K via T - (Iy, ... ,In) := (T, .. ,T1I,) if our reference cone Sy = I, satisfies
TSo = Sp. This will be assumed in the sequel. T clearly respects homotopy of paths in X, and
hence is well defined on K. Now we define

0-1:=(0,n)-(T-I). (2.18)

This choice for § has the profitable property of preserving relative winding numbers!. Hence
it can be carried over to eqivalence classes of tupels from Definition 2.1: 8-[(I},--- ,I,)] :=
[(6-I;,--- ,6-1,,)]. Tt is also easily seen to be invertible, hence, in view of our above observation,
it maps X¢ onto X5, . Since 8 preserves relative winding numbers, the groupoid homomorphism
e, which is defined in equation (1.49) via the relative winding numbers of &, ... ,&,, coincides
with ¢ge. This implies, in view of the characterization of the maps by, and b5, by equation (2.15),
that by (0-&,0-¢') = b3,(€,¢'). We sum up this discussion in the

Ldefined in equation (1.34).



2.2. STRUCTURE OF THE SPACE OF SCATTERING STATES 31

COROLLARY 2.3. The map 0, defined in equation (2.18), maps X\J; onto Xy, and vice versa,
and satisfies

@oe(m,7") = e (m,7')  for all (m,7') €S, and (2.19)
by (0-¢,6-¢') = b'{,(f, &) forall £,€ € X¢ . (2.20)

The scalar product of two multiparticle vectors with the same localizations has been cal-
culated by Fredenhagen, Gaberdiel and Riiger [FGR96, Theorem 3.2], exploiting a version of
the cluster theorem [Rue62, DHR69a], which has been adapted to the present plektonic setup
in [FGR96, Lemma 2.2]. We state the result in the following theorem.

THEOREM 2.4. Let Vi,...,V, be compact subsets of the unit mass shell H;" and
.71,... ,fn € K be localizations such that for suitable € > 0, the regions I + tV; are mu-
tually spacelike for all t larger (or smaller, respectively) than some to € R. Let further
By = (ok,Br) € f(fk), B, = (ék,Bk) € f(fk), where o and o are irreducible massive
single particle representations with mass my, and let fy, fk be test functions whose Fourier
transforms have support in my V and intersect specP,, only in Hntk. Finally, let T be a local
intertwiner from g1 - - - on to 01 - - - On. Then the scalar product of the multiparticle states arising
from the two sets of single particle states ¥, = Bi(fe,t)Q and v, = Bi(fx,t) Q is given by

1. If o, = o0k for k=1,...,n, then

(b xx Py (@2), T, x o x @ 2) ) = g dn(@ [[ ($oths) - (221)
k=1
{1,.

2. If, on the other hand, gy is inequivalent to o for some k €
scalar product on the left hand side is zero.

.,n}, then the above

In equation (2.21), ¢ denotes the unique left inverse of g, and ¢1 - - - ¢, (T) € Cl has been
identified with a complex number.

2.2. Structure of the Space of Scattering States

From the last theorem it is clear that ‘Jocally’, i.e. for a given compact velocity support?
V C H[*", the n-particle vectors can be viewed as tensor products of single particle vectors,
which in turn can be identified with functions on V. (This is made precise in Corollary 2.6.)
The aim of this section is to reveal the global structure of the space of scattering vectors, i.e.
of sums of vectors of the above type with different velocity supports V. This has been already
achieved in principle in [FGR96]. Here, we refine their results and prove them using concepts
which are adapted to the structure of the space of scattering vectors in a natural way such that
it becomes transparent how the Poincaré group and the P, CT operator act in it. Also, we obtain
Mgller operators which map the outgoing and the incoming scattering states canonically into
one and the same reference Hilbert space, thus opening up the possibility to define in a natural
way the S matrix, which was obscured before by the absence of a canonical comparison map
between the outgoing and incoming reference Hilbert spaces. The following structure emerges.
Let ™H; be the manifold of n noncoinciding velocities,

"Hy := (H"\ Dy)/Sn . (2.22)

Here D,, denotes the set of points (g1,... ,qn) € H{*"™ with ¢; = g; for at least one pair (g;, g;)
with ¢ # j (see Appendix A.1). Since H; is diffeomorphic to R?, the braid group B, is the
fundamental group of "H; and hence acts naturally on its universal covering manifold nH.
3 Tt turns out that the space of n-particle vectors is isomorphic to the space of functions on
nH 1 with values in a direct sum of intertwinerspaces, which satisfy the so-called equivariance
property

P(q) =eb)P(q-b) foralbeB,. (2.23)

2We put the word ‘local’ in quotation marks here to get no confusion with localization in spacetime
3The explicit identification of B, with the fundamental group of ™ H; is given before equation (2.47), and
the action of the fundamental group in the univeral covering space of a manifold is explained in the Appendix.
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Here, ¢ is a representation of B, which is fixed by the homomorphisms €, defined in Def-
inition 1.6 and the ‘fusion rules’ governing the decomposition of products of the considered
massive single particle representations p; into irreducible representations. Note that this space
is isomorphic to the space of square integrable sections in the vector bundle which is associated
to "fIl, viewed as a principal fibre bundle, via €. It must be taken aware that this function
space has no canonical tensor product structure. The space of all scattering vectors is then the
direct sum over all n-particle spaces. This shall be worked out in detail now. A remark on the
notation is in order: The analysis for the outgoing case t — oo is independent from that for the
incoming case. Nonetheless, we will discuss both cases simultaneously throughout this section,
and use superskripts “out,in” or + to distinguish them.

2.2.1. Definition of the Hilbert Space H®* of Scattering Vectors. We consider a
finite number of sectors corresponding to irreducible massive single particle representations of
Ay, labelled by @ = 1,... , N. Out of each sector we pick a localized endomorphism g, € A(Sp)
and collect these (pairwise inequivalent) representations in the set

AW :={p,,a=1,...,N}. (2.24)

Not to burden notation, we will replace ‘g’ and ‘g4, - - - 04, by ‘@’ and ‘a,’ respectively, when-
ever possible, e.g. we will write (a,v) € Ha, Pa, €a instead of (0a, V) € Hyos Pous €ga, --0an -
In particular, the mass of the particle species described by o, will be denoted by m,. We
have seen that n-fold products mgQa, - - - 0a, are representations of .4, which contain n-particle
scattering states

(Qan 3 wn) XX (Qau"nbl) (67 :I:) - Hgal"'gan .

In general, the representation mpgq, - - - 0a, is reducible, and hence vectors of the above form
correspond to mixed states on A4, according to the interpretation (1.8). In order to describe pure
n-particle states, we have to map such vectors onto a fibre H, over an irreducible representation
o, using an intertwiner T from g4, - - 0a, t0 0. The resulting vector will be denoted by

T,‘vbﬂ X=X 1/)1(0,(1,6, :t) = (J|T|Qa1 U Qan) (Qanawﬂ) XX (Qan‘/’l) (EJ :t) ) (225)

and corresponds to a pure state in the sector o describing n particles of types ay,... ,a,. We
define the space of all n particle vectors in H, as follows. Let V =V x-- - x V,, be the Cartesian
product of mutually disjoint compact subsets V; of the unit mass shell H;. Then we define

HM(V)rt and  H(V)T

as the closed subspaces of H, spanned by all outgoing or incoming, respectively, n-particle
vectors with velocity support in 'V of the form (2.25), where & € {1,...,N}*" T is an an
intertwiner in Int(c|ga, - - - 0a, ) such that mo(T) € A(So), &€ € X, and (i, v;) is of the form
B;(fi,t) Q@ with suppf N specP,, C V; and B; = (a;, B;) € F(f,) for a suitable I; chosen such
that (f Tyeos ,fn) is in the class £.4 The space of all outgoing or incoming, respectively, n-particle
vectors in H,, is then defined as

F{(n) outsin . _ (Z H (V)Out:in) , respectively. (2.26)
v

Here the sum and closure are understood within H,. The sum of Hilbert spaces is meant in
the algebraic sense, i.e. it consists of finite linear combinations ¢y = > t¢y. It runs over all
Cartesian products V.= V; x --- x V,, C H*" of mutually disjoint compact subsets V; of the
unit mass shell. Note that the union of all these sets V is a covering of H" \ D,,, where D,
denotes the set defined after equation (2.22). In order to describe the set of all scattering states
on A, in terms of rays in a Hilbert space, we have to consider all particle numbers n > 0
and all sectors [o] which have n-particle states. These are exactly the sectors contained as a
subrepresentation in [ga, « - - 0q,] for some n > 0 and @ € {1,... ,N}*™. We only consider
covariant sectors with finite statistics. Out of every such sector we pick a reference morphism
localized in Sy. For sectors of single particle representations we make the same choice as in
(2.24) for A®_ The collection of these pairwise inequivalent irreducible representations will

4See Definition 2.1.
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be denoted by A. It is countable [Reh90] since we started with a finite set A(Y). Vectors in
different fibres Hy,H,+ (with o 2 ¢') correspond to states carrying different charges and can
therefore show no interference. Hence they must be described by orthogonal vectors. We shall
have occasion to discuss on this issue in Section 4.1. Thus we define the Hilbert space of outgoing
(incoming, respectively) scattering states as the direct sum over all relevant sectors ¢ € A and
all particle numbers n > 0 of the n-particle spaces in H,:

Houtin = G Hien (2.27)

n>0,0€A
Here we understand H°"™ = §,;4 CQ . H"* and " will be viewed as subsets of the
(redundant) bundle H = A(So) x Ho, and also as subspaces of the Hilbert space ®,eaHo -
Continuing the earlier notation, the corresponding decomposition of elements in H°"*" will be
written as 1) = Y. (0,%,) , with ¢, € Hg. The observable algebra is represented in Heun

by the direct sum of representations mgo, and the Poincaré group as in 1, c. f. equations (1.23)
and (1.76):

U(§) (0,%) = (0,Uq (§) %) (2.28)
U(j) (o,9) = (7,Ua(4) ¥) - (2.29)

2.2.2. Reference Hilbert Space, Mgller Operators and S-Matrix. We first need to
make a few remarks on the single particle spaces. We will assume the degeneracies g, of the
representations of the Poincaré group on the single particle spaces as g, = 1, c.f. equation (1.58).
In other words, we assume that ’H((,l) is irreducible and hence describes an elementary particle in
the sense of Wigner.5 Since we discuss scattering theory with particles of different masses m.,
it is advisible to go over from the momenta p € H,, to the velocities ¢ = p/m, € H;. Hence we
will replace L?(H,,,du) by L?>(Hy,du, ), and each U, by the equivalent representation living
on H; which we denote by U.. Explicitely, we then have

WoU(,§) ;00 = Ua(2,§) Wa  for all (z,5) € Pl and

B o (2.30)
WalU(j) |3y = Ua(9) Wa ,
where U, acts on L?(Hy,du,) by
(Ualz,§) 9)(q) = emesatioa®@imed) y (gt .q)  forallge P (2:31)
(Ua() ) (@) = catp(—j-q) - (2.32)

Here ¢, is a complex number of unit modulus, and ¢5 = ¢,. For a given compact subset V of
H,, we denote the closed subspace of vectors in H, with spectral support in m, V' by

HO (V) :=={(e, %), spPatp Cma V' } . (2.33)

Note that this space is identified with {a} x L?(V,du;), the closed span of functions with
support in V, by the intertwiner W,.

LEMMA 2.5. Given any fized I € K, HY (V) is spanned by vectors of the form B(f,t) Q2
as in equation (2.6), where suppf NspecP, CV and B = (o, B) € F(I).

PROOF. Assume 1 € HS)(V) is orthogonal to all vectors of the above form. Since
B(f,t)Q = (a, (QW)%f(Pa) B ), this would imply that g(P,) is orthogonal to B for all
g € C3°(mqa V) and B € F(I). A version of the Reeh-Schlieder theorem [SW64] adapted to the
present setup implies that then g(P,) = 0 for all g € C§°(mq V'), hence spp_ 9 Nmo V = 0.

Since on the other hand the vector ?) is in HD (V) by assumption, it must be zero. O
We come to the case n > 1. Given ¢ € A and an n-tupel @ = (ay,...,a,) of charge labels
a; € {1,..., N}, the space of local intertwiners Int(moo|m0a; - - - 0a, ) (So) has the structure of
a Hilbert space, the scalar product being given by

(T,8)1 = ¢a, -+ Ga, (75 (T*S)) , for T, S € Int(mo0|T00a; * - - 0an ) (So) - (2.34)

50therwise, the subsequent formulas would get more complicated without changing the essence of the
analysis.
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Note that ¢, ---¢a, is a left inverse of gq, - - - 0a,, SO that the right hand side is indeed a
multiple of unity as we have remarked after Definition 1.9. Let F™ be the Hilbert space
consisting of the direct sum of all these intertwiner spaces:

FM= P  Int(moo|mosa, - 0a.)(So) - (2.35)
a€edl,...,N}xn

It is known to be finite dimensional [Reh90]. We denote its elements by (¢|T'|a). The groupoid
homomorphism o = €y, ,... y defined in Lemma and Definition 1.6 induces a unitary

sQan

representation of B,, in Fé"), which we denote by ¢ :
e(d) (o|T|a) := (0| T moea (b, 7) o -771)) (2.36)
= (o|Tmoeqm—1 (07", 1) |a-771)),

where 7 is the permutation associated to b, i.e. 7 = v(b). To verify that ¢ is indeed a represen-
tation, one needs equation (1.44). Note that moe (b, ) is in A(Sp), and that € in fact represents
B, since the additional generator ¢; of B, (C) is in its kernel. Now we can formulate the ‘lo-
cal’ structure of the n-particle spaces, which is an immediate consequence of Theorem 2.4 and
Lemma, 2.5:

COROLLARY 2.6. Let V = V; x --- x V,, be the Cartesian product of mutually disjoint
compact subsets V; of the unit mass shell Hy, and let £ € X¢ or Xy,. Then there is an isometric
isomorphism iJ{,,g 0T Uy ¢ respectively, with

i M (V) LAV, dj M) (2.37)
T¢n X+ X wl(U,a;E;i) = W011¢1 ®®Wa"¢n®(U|W0(T)|a) ) (238)

if ¥, € HS,} (Vk). Here, dfx denotes the (Lorentz invariant) product measure du;'™ on H™.

REMARK. n-particle vectors Ti, X - -+ X ¥4 (0, o, &, £) have so far been defined only if the
single particle vectors are of the form (a;,1;) = B;(fi, 1), see equation (2.25), but due to the

Corollary, they can now be defined for all 9, € HS} (V;) via ('R—L,,g)_l.

We now analyze the ‘global’ structure, i.e. to the structure of HiMeubin 1f no confusion can
arise, we will frequently omit the sub- and superscripts o and (n) of the various Hilbert spaces.
If the outgoing and incoming cases don’t have to be treated differently, we will also frequently
suppress the notation of ‘out,in’ and ‘t’, or replace them by ‘ex’. To analyze the structure of
H{™ ™ we first observe that #(V-7) coincides with H(V) for all 7 € S,, due to equation (2.9).
This is the case even though VN V-7 = () for m # 1, the sets V}, being mutually disjoint. Thus
it is more natural to label H(V) not by the region V, but by the (disjoint) union of all V-7
with 7 € Sy, which in turn will be identified with the subset V /S, := {q-S, | g € V} of "H;.

Hence we define
HID(V)8,) = H (V)X (2.39)

Note that the sum in equation (2.26) runs effectively over the subsets V/S,, of "Hy, where V
is of the admitted type, and that the union of these sets exhausts ™ H;.

On the other hand, we can also identify L?(V,dji; F) canonically with L2(V/S,,du; F),
where dp denotes the canonical measure on ™ H; inherited from du{", i.e., u(V/Sn) = @(V).
To this end, we exploit the fact that VN V.m = 0 for 7 # 1 to identify L2(V; Fi™)® with
the space of permutation invariant functions on the disjoint union U,¢g, V-7, that is the space
Py L2 (Ures, V-3 FS™), where

Poh ® @9 ®T) = ({1 ® - @ ) ®T (2.40)

= (n!)il Z ,LZW(I) Q---® ,(Zw(n) & T.
TESh

6In the sequel, we suppress the notation of the measures if no confusion can arise.
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This space will in turn be viewed as L?(V/S,; Fé")) After this identification, the maps iv ¢ of
Corollary 2.6 are isometries from H(V/S,) onto L2(V/S,; F\™), and read

ivg Tihn X -+ X 1 (0,0,6) = 91 @5+ @5 P @ (0]m0(T) ) , if P, € HE Vi),  (2.41)

where we have written @Zk = W,, Y. Note that this prescription implies that the product

Yr(n) X =+ X (1) has first to be permuted into the unique order such that 1, € HSQ (V).
Hence for the prescription (2.41) to be well-defined, it is essential that the isometries iy ¢ are
still labelled by V, not by V/S,,. In order to reveal the structure of H™ X one has to compute
how the different isometries on the intersections of ‘local’ scattering spaces are related: Given
£ € Xv and & € Xy, we compare iv ¢ and iyr g on H(V/S,) NH(V'/S,). This will involve
the maps b3 (¢,¢') with values in B, /x which have been defined in Lemma 2.2. Obviously,
Lemma 2.2 still holds if we replace N by the normal subgroup of B,, defined by

N :=kereN PB, . (2.42)

LEMMA 2.7. Let V and V' be the Cartesian products of mutually disjoint compact subsets
Vi and V}, respectively, of the unit mass shell Hy such that V /S, N'V'/S,, is nonempty, and
let & and &' be in XE and XE,, respectively. Then for all p € L*(V /S, N'V'/Sy; Fé"))

(iFre (507" 9) (@ = (3% v @) - D@ - (2.43)

Here §$,7£,;V7£ is the locally constant B, (C)/n, -valued function on V /S, N'V'/S,, defined as
follows. V /S, N'V'/S,, is the disjoint union of the sets (V-mrN'V')/Sy,m € Sp, and on each
such set g$,,§,;v,6 takes the constant value

g%,,’&,;v,g (@) =bvirva(€, &) (pe(n™") - NZ) forallge (V-rNV')/S, . (2.44)

PROOF. Let §) = 1 Qs -+ @s Pn ® (0|70(T)|cx) , where ¢y € L2(Vi N V), F), and let
Y =Wt Y. Using equations (2.9) and (2.16), we get

ivigivie = ivig Thn X - x 1 (0, @, )
= ivig Tea (pe(m,m ")) ean (bvanv (€:m,E)) Yrin) X -+ X thr(1y (0, @-m, )
= D) ®s Qs Yu(n) (0] T Mo (0 (m,771)) Eam (bvmnvr (€7, €")) |o-m)
= 12®¢e (bvava(€,&m)pe(n ) 4.

In the last equation we have used

pe(m,m7") = (pen(m), 77 1) = (pe(r ™) a7

and b(¢-m,¢&") = b(¢',&-m)~1. By linearity this equation extends to L*(V-7r N V')/S, : FA).
V/S,NV'/S, is easily seen to be the disjoint union of the sets (V-1 N'V')/S,,m € S,. Hence

the claim follows by decomposing an arbitrary function in L*(V/S, N'V'/ Sn;Fén)) into the
sum of n! functions with the disjoint supports (V-# N'V')/S,,, 7 € Sp. O

Now we claim that the maps f]it,,,f, .v ¢ are the transition functions of a sub-bundle of "H, in
a certain local trivialization. We identify the universal covering manifold manifold nH 1 of "H,
with the set of homotopy classes § = [y] of paths « starting from a base point g, € "H;. We
choose the base point

do '=qp-S. with (2.45)
g0 = (V1+1,1,0),...,(v/n2 +1,n,0)) . (2.46)

Recall that B, is the fundamental group of ("R2?,z,) with the base point z, =
((1,0),...,(n,0)) - Sn. Hence the projection (v/¢7 +¢3 +1,q1,¢2) — (q1,¢2) fixes a diffeo-
morphism of the respective universal covering manifolds, and an identification the fundamental
groups:

m1("H1,qy) = B, . (2.47)
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Now "H 1 is a principal fibre bundle over the base space ™H; with structure group B, the right
action of B,, being given by

q-b=[y=p] ifg=[],b=[4].
Here, v * 8 denotes the path which runs first through g and then through . Consequently,
nHE :="Hy /. (2.48)

is a principal fibre bundle over ™H; with structure group B, /., a so-called reduction of the
bundle "H; [KN63]. It may be viewed as the set of equivalence classes, denoted [v]c, of paths
v with respect to the equivalence relation

yeey it [T €N
For M C ™Hj, we denote by ”ﬁf|M the restriction of the bundle "PNIf to M, i.e. the set of
equivalence classes [y]. of paths ending in M. If no confusion can arise, we will denote points
in "H{ also by q.
LEMMA 2.8. ”ﬁf , considered as a principal fibre bundle, has a local trivialization whose
transition functions are given by §¢',£';v,g- More precisely, for every Cartesian product V of
mutually disjoint compact subsets of Hi and every & € X{,", there is a locally constant map

#ve "Hilvss, = Bula. (2.49)
whose restriction to every fibre ”PNIﬂ{q} is bijective, and which satisfies
Gy c(@b) =@ (@b for allb€ Bu/n, , @€ "Hilvys, - (2.50)

If V' is a second subset of H™ of the above kind and &' € X{,",, then the two corresponding
maps are related by
¢$/,gl (@) 95$,5 @ '= §$/,g:;v,g(¢1) for allqe V/S,NV'/S,. (2.51)

The same statement holds with all ‘+’ signs replaced by ‘-’ signs.

Note that the maps 95%,75 define local trivializations ™H? |y /Sn = V/Sn x Bu/n. by @ =

~t+
(‘I:‘Pv,g(qn-

PRrOOF. Sticking to our notational convention, we suppress the superscripts + frequently.

We first check a necessary condition which the functions gy ¢;v,¢ have to satisfy in order to
be the transition functions in any local trivialization, namely the cocycle conditions

gvevie(@gvievel@ =1-N, forallge V/s, NV'/s,  and
gvrerv e (@) gvievie(@) = gvrgnve(q) forallge V/s, NV /s, N V" /s .

These equations follow from the cocycle properties of the maps by (£,¢'), see Lemma 2.2, and
the homomorphism property of ¢¢(m, 7'). The maps ¢$,£ to be constructed must be constant

(2.52)

on every connected component of ™H¢ |y /s,- Now two points [y]. and [y]; are in the same
connected component of "Hf |y g, if there is a path o in V/S, such that [y~! xa *+'] € N..
Hence the above requirement implies that for for all [y]. € "Hf with (1) € V/S,,

pvellaxil) = pvebl) ifa isapathin V/S, . (2.59)
Let g be the base point of H™ \ D,, defined in equation (2.46). We fix a neighbourhood V,
of gf, and choose §5t € X‘j,cO which will be specified later, and define

Pvoeo(lae) :==1-N., if aisa pathin Vy/S, . (2.54)

Now we will see, how the conditions (2.51) and (2.53) determine @v ¢ up to an overall constant
which is fixed by equation (2.54). Given g, we pick a path 7 representing § and choose m + 1
sets V(,y,v = 0,...,m such that the sets V,)/S, cover v, with V() = Vj. Let further
§w) = 5({5) € X$(V),V =1,...,m, and §q) := Eéc. Now 7 can be written v = v, *- - - *79, where
v, is a path in V(,)/S,. Tterated application of equations (2.51) and (2.53) yields, together
with equation (2.54),

‘15V(m)7§(m) (@ = gv(m)7£(m);v(m—1)1£(m_1) (Ym-1(1)) -~ 'gV(1),E(1);V(o),E(o) (0(1)) - (2.55)
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Now we define ¢v,,, ¢.., Dy this expression. It is well-defined due to the cocycle condi-
tions (2.52), and independent of the path representing §. It is easily seen to be locally constant
and hence smooth, and by construction any two such maps satisfy equation (2.51). From the
definition follows immediately equation (2.51) and that

(ﬁv{ (Qb) = (ﬁv,g ((NI) @Vo,fo (b) for all b € Bn//\/s . (2.56)

Now we consider the restriction of Gy ¢ to the fibre in “H over g € V/S,,. This fibre consists
of the set ¢-b for some fixed g, where b runs through B, /... Hence, the last equation shows
that the restriction of @v ¢ is a bijective map onto B, /., if and only if the map

it :Bn/N. — Bn/n., (2.57)
A (2.58)

is one to one. If this is the case, T is also a group homomorphism due to equation (2.56),

and then the claimed equation (2.50) also holds, with b replaced by i*(b) on its right hand
side. Note that 4+ and i~ depend (only) on the choices of £ and &, . In order to simplify
the formulae, we fix a suitable choice for £ € X¢0 in the following. Namely, we choose &
such that (§), < ... < (&)1 < (0,27) - (& )n, which is equivalent to the condition that
N ((&D)i, (€4);) = 0if i < 4, Thus & is fixed up to a common rotation about multiples of 27
of all (£ ). Projected onto the plane as after equation (2.46), the situation looks as follows.

$ +(1.0 S,*(n0)
: A
By | S
\' ! ! /'/>
. LN} . . [N .
(1,0 (k,0) (k+1,0) (n,0)

Here we have idealized the spacelike cones by rays. It remains to prove that i* is bijective. This
will be achieved by direct calculation. To this end, we first evaluate equation (2.55) further.
Let ¢ = [y]e and let V be a neighbourhood such that ¢ € V/S,. Let further ¥ be the lift of
v to Hy \ Dy, through gi. We choose V,) to be a covering of 4,v = 0,... ,m — 1, such that
V(m-1)/Sn = V/Sn. Then V (,,,_1y = V-1 for some unique permutation 7, and we can calculate
Pv ¢ using equation (2.44):

v,e(@) = (@en(m)-Ne) bvanv sy (Em—1)s Em—2)) - - - bv 1,nv o) 1)+ €(0)) - (2.59)

Now we consider the particular case that ¢ is the M.-orbit of one of the generators ¢ = [By]
of m ("Hi,q,) and that (V,&) = (Vo, &), and compute i+ ([B¢]:). The lift of the representant
Bk of ty to H™ \ D, is pictured in the figure on page 78. We cover this path by a sequence
V) = Vo,.-., V(3 such that Vo C V() D V(5y C V(3 D Vy, and choose appropriate
§m) € X{;m, such that the situation looks as follows (we have pictured only every second step,
in particular only the smaller regions V gy, V2, Viq)):
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) . O/.
k

k+1

One computes for the second of the above steps bir,(g) (€2),83)) = t2 - N, while all other steps

yield trivial b’s. Further, one has Petr, (%) = c;jltkck, and hence equation (2.59) yields

i ([Be)e) = (Per, (i) - Ne) B, (€201 6() = Cigatucr i - Ne
= crtrcyyq th - Ne
=t -NE s i.e.

for our choice of £, it is the identity on B,/ . To compute i~, we recall Corollary 2.3, which
immediately implies that

Gv serv0e(@) = G v (@) forall £ € XT, ¢ € X, . (2.60)

Hence, we fix the choice & = 6-&F, and we choose §oy = 0-562) in the definition (2.55) of

(‘Ov(m), € Then we have

Pyae =Py forall£e X . (2.61)
In particular, we then have i~ = i™, and both automorphisms are the identity on B, /.. as de-
manded in equation (2.50), or more precisely they are just the identifications of 71 ("H1, qq)/ N,
with B, /. of equation (2.47). O

Equation (2.43) implies that 7-{5,“) “* is canonically isomorphic to the Hilbert space of square
integrable sections in the vector bundle which is associated via e to the principle ﬁ~bre bundle
characterized by the transition functions g;—L,,,E,;V,E, i.e. in view of Lemma 2.8, to "HY :

"HE x. F™ = "H, x. F{"™ .

This Hilbert space in turn is in a natural way isomorphic to the space of equivariant functions
on "fIl, which we denote by L2 ("fIl,ES")). The proof of these remarks is standard in fibre
bundle theory, see e.g [KN63]; but instead we will directly define the resulting maps We* :
HM ™ 5 L2("Hy, ™) (ie. the Mgller operators) and prove them to be unitaries. First we
define the reference Hilbert space L2 ("I-Nfl, Fé")). We recall that a function ¢ on nH, into Fg")
is called equivariant with respect to ¢, if it satisfies

(@) =e(d)P(q-b) for all be m ("Hy,qp) - (2.62)

By definition, L2("H , Fé“)) is the Hilbert space completion of the functions on "Hj into F.™)
which are equivariant with respect to € and have finite norm with respect to the scalar product

(00 )= [ (@0 @), duta). (26
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where < , > is the scalar product in Fé"). Finally, we define the refernce Hilbert space H as
the direct sum over all particle numbers n and sectors [o] :

H:=Ce P LX("H,F"). (2.64)
n>0,0€EA
We will denote the elements of this Hilbert space as follows. An equivariant function in
L2("H; ; F{™) can be written as a direct sum of 2V functions ¥ with values in the intertwiner
space F§72 Correspondingly, we decompose a vector ¢ € H as ¢) = Za,n,a 1@,’&.

THEOREM 2.9. H°"* and H™ are in a natural way isomorphic to H. The unitaries effecting
these equivalences are the so-called Mpller operators W+ and W, which are defined as the
linear and isometric extensions of the following operators. Let V be the Cartesian product of

mutually disjoint compact subsets of Hy, and let £ € X%. Then for all 1) € M (V/S,)eutin
s 4 .
. e(Pve(a ive¥)@, faeV/Sn,
Wy)(a) = { (@) W)@ /

-1

2.65
0, else. ( )

In particular, if ¥ = Tipp X -+ - X Y1 (0, , &, £) with ¥, € 7{&1,3 (V&) , then
(W) (@) = (1 ®s -+ @5 Pn) (@) (0] Tea (35 (@), 77") |am) , (2.66)

where 7 is the permutation associated to 95%,7&((}), see (A.4), and where Py := W, Yr.

PROOF. We omit the superscript +. To see that W is well defined on Hi (V/S,)°utin by
equation (2.65), let V' be another Cartesian product of sets, &' € X‘i,,, and ¢ € H(V/S,. N
Hv1/s,,)- This intersection is mapped into L*(V /S, N'V'/Sy,; F) by both i\i,,g and i\i,,,g,. For
qeV/S,NV'/S,, equations (2.51) and (2.43) imply

e(@vie@) " (iview) (@) = (@vie (@) ' elgvesvie(@) (ivew) (@)
=e(@vie (@) (ivie) (q) -

This also shows that the expression is independent of the leaf V over V/S,, which one takes
in evaluating equation (2.65) (note that 1 only carries the information V/S,), and that it is
indedpendent of £ € Xv,. Hence W is well defined on M (V/8p)eutin, Wap is equivariant with
respect to the representation € of 71 (" Hji, qo) on account of equation (2.50). We now show that
W is isometric. Locally, this follows from iv ¢t being isometric. Namely, for all ¢ € H(V/S,)
we have

W |2 = / W)@ [ dula) = / livew)(a)[; duta)
= Jliv.el? =[]

™H; can be exhausted by a family of disjoint subsets V;/S,, where each V; is the Cartesian
product of compact and pairwise disjoint subsets of H;. Hence the finite sums ¢ = > . .. 1,
of vectors 1, € i) (Vi/Sn)®™ with V;/S, N'V;/S, = 0 for i # j already span HM ™ and
it suffices to show that W¥ is isometric on such vectors. From the cluster theorem [FGR96,
Lemma 2.2] one can show in analogy to the derivation of [FGR96, Theorem 3.2], that the spaces

M (V;/S,)°* are pairwise orthogonal if the sets V;/S,, are pairwise disjoint. Hence for % of
the above type we have

12 wall = DMl = DW=l = [1W* Dl

finite

where we have used in the last step that W= maps Hv, /s, into L2 ("H,

v,/8.; F), and that
these subspaces of L2 ("I:jl;F) are also pairwise orthogonal. Finally, one easily checks that
for any V, W* maps ’H,(,")V/Snex onto Lg(“f]ﬂv/sn;F), and since these subspaces span
L2("Hy; F), W* is surjective. O
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REMARK. Anticipating results from the next chapter, some remarks are in order at this
point. 1.) The Mgller operators intertwine the dynamics in #®* with the ‘free’ dynamics, namely
the natural implementation of time translations in L2("Hy, F{™). This is a special case of
Proposition 3.4 in Chapter 3, where this intertwining property is shown for the whole Poincaré
group. 2.) We define the S-matrix as the isometric operator

Si= (W)W Hm — Hou . (2.67)
Due to equation (2.61), we have explicitely
STwn XX ¢1(U7a70'§7 _) = Tlpn XX ¢1(U7a7§7+) . (268)

It will be shown in the next chapter, that it satisfies the familiar commutation relations with
U(P+)Z

U@G) S=SU(G) forallge Pl and
U@j)S=8"U()-

3.) For the case N = 1, i.e. considering only one particle type, the structure coincides with the
one proposed in [MS95]. The same holds for the ray representation of the Poincaré group in the
next chapter.



