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Abstract

In addiction, there are few human studies on the neural basis of cue-induced changes

in value-based decision making (Pavlovian-to-instrumental transfer, PIT). It is espe-

cially unclear whether neural alterations related to PIT are due to the physiological

effects of substance abuse or rather related to learning processes and/or other etio-

logical factors related to addiction. We have thus investigated whether neural activa-

tion patterns during a PIT task help to distinguish subjects with gambling disorder

(GD), a nonsubstance-based addiction, from healthy controls (HCs). Thirty GD and

30 HC subjects completed an affective decision-making task in a functional magnetic

resonance imaging (fMRI) scanner. Gambling-associated and other emotional cues

were shown in the background during the task. Data collection and feature modeling

focused on a network of nucleus accumbens (NAcc), amygdala, and orbitofrontal cor-

tex (OFC) (derived from PIT and substance use disorder [SUD] studies). We built and

tested a linear classifier based on these multivariate neural PIT signatures. GD sub-

jects showed stronger PIT than HC subjects. Classification based on neural PIT signa-

tures yielded a significant area under the receiver operating curve (AUC-ROC) (0.70,

p = 0.013). GD subjects showed stronger PIT-related functional connectivity

between NAcc and amygdala elicited by gambling cues, as well as between amygdala

and OFC elicited by negative and positive cues. HC and GD subjects were thus dis-

tinguishable by PIT-related neural signatures including amygdala–NAcc–OFC func-

tional connectivity. Neural PIT alterations in addictive disorders might not depend on

the physiological effect of a substance of abuse but on related learning processes or

even innate neural traits.
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1 | INTRODUCTION

In addictive disorders, a cue can be any formerly neutral stimulus that

has been repeatedly paired with the effects of the addictive behav-

ior.1 The effect of increased responsivity toward addiction-related

cues is termed cue reactivity and is pivotal in explaining a range of

behaviors related to addictive disorders, such as arousal, attentional

bias, craving, and relapse.1–3

In line with this, subjects suffering from gambling disorder

(GD) display increased neural activity elicited by addiction-related

cues and a reduced neural response toward stimuli signaling

natural rewards,4,5 just like patients suffering from substance use

disorders (SUDs).2,3

Besides cue reactivity, and again just like in SUDs, GD subjects

display impaired value-based decision making. For example, GD sub-

jects show increased risk taking, higher discounting of delayed

rewards (delay discounting), and reduced loss aversion.6–10

Impaired value-based decision making in addiction may partly be

explained, or even further exacerbated, by cues that modulate

decision-making processes. The modulating influence of conditioned

cues on instrumental behavior (e.g., cue-related increase of vigor with

which a behavior is displayed or increase of likelihood of choosing a

certain option) has been termed Pavlovian-to-instrumental transfer

(PIT).11,12 Interestingly, PIT effects can persist even when the out-

come of the instrumental behavior has been devalued,13,14 and a

stronger PIT has been associated with heightened impulsivity15 and

with reduced model-based behavior.16 Therefore, PIT has gained

considerable attention in addiction research. Increased PIT has been

associated with SUDs in animal studies17,18 and in human stud-

ies.19,20 It is especially important to know whether these effects are

related to substance abuse or also present in behavioral addictions,

such as GD.

Indeed, there is evidence that delay discounting is increased

under the influence of high-craving gambling cues versus low-craving

gambling cues.21,22 Further, Genauck et al.23 used a mixed-gambles

task coupled with emotional and gambling-related cues (affective

mixed-gambles task) to estimate subject-specific behavioral PIT

parameters with regards to loss aversion. The authors found that

gambling-cue-related shifts in general gamble acceptance especially

contributed to distinguishing GD subjects from healthy control

(HC) subjects. Cue-induced changes in loss-aversion, however, did not

contribute. In the present study, subjects performed a very similar

affective mixed-gambles task in a functional magnetic resonance

imaging (fMRI) scanner. Genauck et al.23 successfully used the behav-

ioral data of the present study as an independent sample to validate

their HC–GD classifier. However, it remains to be elucidated which

neural correlates of PIT distinguish GD from HC.

If there are neural PIT signatures associated with GD, then this

would be additional evidence for functional brain changes related to

addictive disorders independent of a substance of abuse.5,24,25 Our

study is the first to investigate functional brain changes in GD com-

pared with HC related to cue-induced changes in value-based deci-

sion making. We expected that neural PIT signatures derived from

SUD studies should underlie behavioral PIT increase also in GD and

thus lend themselves to distinguish GD from HC subjects.

At the neural level, PIT depends on the functions of amygdala and

the ventral striatum (VS/nucleus accumbens [NAcc]).12,26 Garbusow

et al.19 distinguished alcohol-dependent relapsers from abstainers

using a NAcc PIT signal, reaching an accuracy of 71% in leave-one-out

cross-validation. Note that cue reactivity, which PIT arguably is based

upon, is also associated with altered activity of amygdala and NAcc in

addictive disorders.3

In addition to possible activity differences in limbic regions being

associated with PIT, NAcc–amygdala connectivity plays a role in

decision-making changes due to emotional cues.27 Other authors have

argued that Pavlovian influence on instrumental behavior require the

modulation of ongoing processes in the striatum by the amygdala.28

Bidirectional NAcc–amygdala connectivity could thus be enhanced in

GD subjects during presentation of addiction-relevant cues. Holmes

et al.29 further suggest a contribution of the orbital frontal cortex in

integrating information about Pavlovian and instrumental processes,

together with the striatum and amygdala. The affective neuroscience

of decision through reward-based evaluation of alternatives

(ANDREA) model makes similar predictions when explaining transient

changes in gamble acceptance in decision-making tasks30 (Figure S3).

In particular, the ANDREA model suggests that the evaluation of a

gamble involving possible gains and losses leads to a subjective value

signal in the orbitofrontal cortex (OFC). Amygdala inputs to OFC can

modulate those subjective value representations when positively val-

ued or salient stimuli (e.g., gambling cues) are shown in the back-

ground. Because there is some evidence that GD subjects show cue-

induced changes in instrumental behavior and decision making in

response to gambling cues, putatively related to stronger behavioral

PIT effects,21–23 this could mean that gambling cues increase the sub-

jective gamble value represented in OFC via amygdala projections.

We thus expected that stronger gambling-cue PIT-related functional

connectivity from amygdala to OFC should help distinguish GD

from HC.

In summary, we hypothesized that a neural PIT signature made

up of several PIT-related fMRI contrasts could distinguish GD from

HC subjects. We therefore compiled per subject a feature vector com-

prised of cue reactivity and PIT-related contrasts in amygdala and

NAcc and of functional connectivity parameters in a network of NAcc,

amygdala, and OFC. Hence, the feature vector represented each sub-

ject's neural PIT signature, in the form of multiple fMRI aggre-

gates.31,32 We used all subjects' neural PIT signatures to estimate a

classifier that would distinguish GD from HC subjects. We expected

that PIT-related predictors would be found among the most important

ones followed by the cue-reactivity predictors. Using cross-validation,

we assessed the generalizability of this classifier to new samples. Clas-

sifying GD and HC subjects using multivariate patterns aims to bring

us closer to a clinically relevant characterization of the neural distur-

bances related to GD, especially when there are many relevant vari-

ables involved.31,33–35 To our knowledge, our study is the first one to

use fMRI-based classification for investigating GD and its neural basis

of increased PIT.
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2 | METHODS AND MATERIALS

2.1 | Sample

The GD group consisted of subjects who were active gamblers

(mainly slot machine), whereas the HC group consisted of subjects

that had none or little experience in gambling. We recruited GD

subjects via eBay classifieds and notices in Berlin casinos and gam-

bling halls. GD subjects were diagnosed using the German short

questionnaire for gambling behavior (KFG) (cutoff ≥16).36 The KFG

classifies subjects according to DSM-IV criteria for pathological

gambling. However, in the following, we use the DSM-5 term

“gambling disorder” interchangeably, because the criteria largely

overlap. For further information on administered questionnaires,

see Supplement S1.1. There were 13 subject dropouts due to tech-

nical errors, positive drug screenings, incidental cerebral anatomical

findings, or MRI contraindications. We dropped five more subjects

to improve the matching of the groups on covariates of no interest

(age, smoking severity, education, and see Table 1). The final sam-

ple consisted of 30 GD and 30 HC subjects (Table 1). GD and HC

were matched on relevant variables (net personal income, age, and

alcohol use), except for years in school (primary and secondary).

We thus tested for stability of our classifier by adjusting for years

in school.

2.2 | Procedure and data acquisition

Before scanning, all subjects underwent urine drug testing to exclude

any influence of cannabis, amphetamines, cocaine, methamphet-

amines, opiates, or benzodiazepines. They then were instructed on

the task and completed the affective mixed gamble task in a 3-Tesla

SIEMENS Trio MRI (two runs of about 23 min). Echo-planar imaging

(EPI) scans were acquired, as well as structural MRI. For further details

on MRI sequences, see Supplement S1.5.

2.3 | Affective mixed-gambles task

We built on established mixed-gambles tasks10,37 and cued mixed-

gambles tasks.23,27 As affective cues, four sets of images were assem-

bled: (1) 67 gambling images, showing a variety of gambling scenes,

and paraphernalia (gambling cues); (2) 31 images showing negative

consequences of gambling (negative cues); (3) 31 images showing posi-

tive effects of abstinence from gambling (positive cues); and (4) 24 neu-

tral International Affective Picture System (IAPS) images (neutral cues).

For a detailed description of the images and their categories, see Sup-

plement S1.2. Subjects were each given 20€ for wagering during the

task (Figure 1). Gambles were created by randomly drawing with

replacement from a matrix with possible gambles consisting of

TABLE 1 Sample characteristics, means, and p values calculated by two-sided permutation test

Variable HC (30) SE GD (30) SE Pooled SE p perm test

Years in school 10.87 0.19 10.13 0.24 0.21 0.031

Vocational school 2.73 0.29 2.07 0.25 0.27 0.108

Net personal income 1028.61 92.27 1105.89 138.93 115.6 0.667

Personal debt 8500 3396.88 24 000 9590.36 6493.62 0.097

Fagerström 1.97 0.43 3.03 0.51 0.47 0.138

Age 35.37 1.66 37.37 2.01 1.84 0.459

AUDIT 4.8 0.59 4.87 1.05 0.82 1

BDI-II 5.1 1.03 11.57 1.72 1.38 0.002

SOGS 1.73 0.47 8.8 0.67 0.57 <0.001

KFG 2.37 0.74 35 1.64 1.19 <0.001

BIS-15 31.8 0.99 36.33 1.08 1.03 0.004

GBQ persistence 1.96 0.2 3.28 0.19 0.2 <0.001

GBQ illusions 2.41 0.24 3.73 0.22 0.23 <0.001

Ratio female 0.20 — 0.20 — — 1.000

Ratio unemployed 0.17 — 0.20 — — 1.000

Ratio smokers 0.60 — 0.77 — — 0.262

Ratio right-handed 0.97 — 0.84 — — 0.204

Note: chi-square test used; years in school, years in primary and secondary school; vocational school is vocational school and university; Fagerström,

smoking severity.

Abbreviations: AUDIT, alcohol use disorders identification test; BDI II, Beck's Depression Inventory; BIS-15, short version of the Barratt Impulsiveness

Scale for impulsivity; GBQ persistence and GBQ illusions, from the Gamblers' Beliefs Questionnaire; KFG, Kurzfragebogen zum Glückspielverhalten, Short

Questionnaire Pathological Gambling, German diagnostic tool and severity measure based on the DSM-IV; SE, bootstrapped standard errors; SOGS, South

Oaks Gambling Screen (for sources of questionnaires, see Supplement S1.1).
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12 levels of gains (14, 16, …, 36) and 12 levels of losses (−7, −8, …,

−18).10,37,38 In every subject, we stratified gambles according to mean

and variance of gain, loss, gamble variance, and Euclidean distance

from gamble matrix diagonal (ed, i.e., gamble difficulty). We informed

subjects that after completing the experiment, five of their gamble

decisions with ratings of “somewhat yes” or “yes” would be randomly

chosen and played for real money.

2.4 | Cue ratings

After the task, subjects rated all cues using the Self-Assessment

Manikin (SAM) assessment technique (valence, arousal, and domi-

nance)39 and additional visual analog scales. Additional questions

were: (1) “How strongly does this image trigger craving for gam-

bling?”; (2) “How appropriately does this image represent one or

more gambles?”; (3) “How appropriately does this image represent

possible negative effects of gambling?”; and (4) “How appropriately

does this image represent possible positive effects of gambling absti-

nence?” All cue ratings were z-standardized within subject. Cue rat-

ings were analyzed one-by-one using linear mixed-effects regression,

using lmer from the lme4 package in R,40 where cue category (and, in

the respective models, clinical group) denoted the fixed effects and

subjects and cues denoted the sources of random effects. Model

comparisons were used to test for the effect of cue category and

group and their interaction using χ2-square difference tests. We

report relevant contrast-βs only if the overall effect of the relevant

factor (group, category, and groupXcategory) was significant. For sig-

nificance testing of those contrast-βs, we use Wald z tests as

implemented in lme4.

2.5 | Behavioral data

Choice data were modeled within each subject's behavioral data by

submitting dichotomized choices (somewhat no and no: 0;

F IGURE 1 The affective mixed-gambles task. One trial is depicted. Subjects first saw a fixation cross with variable intertrial-interval (ITI, 4 to
8 s). Then, a cue with randomly chosen affective content (67 gambling related, 45 drawn with replacement from 31 with positive consequences
of abstinence, 45 drawn with replacement from 31 with negative consequences of gambling, 45 drawn with replacement from 24 neutral images,
i.e., 202 trials) was presented for about 4 s. Subjects were instructed to remember the cue for a paid recognition task after all trials. Then, a
gamble involving a possible gain and a possible loss was superimposed on the cue (e.g., −11 and +32). Subjects were instructed to shift their
attention at this point to the proposed gamble and evaluate it (decision phase). Position of gain and loss was counterbalanced (left/right). Gain
was indicated by a “+” sign and loss by a “−” sign. After again 4 s (jittered) the response options appeared and subjects were asked to indicate
their willingness to accept the gamble between four levels of acceptance (yes, somewhat yes, somewhat no, no37; here translated from the
German version, which used “ja, eher ja, eher nein, nein”) (motor phase). Direction of options (from left to right or vice versa) and side of gain
amount was random. Directly after decision, the ITI started. If subjects failed to respond within 2.5 s, ITI started and trial was counted as missing.
RT: reaction time
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somewhat yes and yes: 1) into logistic regression. We dichotomized

choices to increase the precision when estimating behavioral param-

eters, in line with previous studies.10,23,37 Predictors were central-

ized values of gain, centralized absolute values of loss, Euclidean

distance (ed) from gamble matrix as indicator of gamble simplicity

(see Figure S1),37 and cue category (c). 12 steps of gain (14, 16,

18, …, 36) and 12 steps of loss (−7, −8, −9, …, −18) formed a

12-by-12 gamble matrix, which was aggregated to 4-by-4 (e.g., gain

steps 14, 16, and 18 were all denoted as 16 and loss steps −18,

−17, and −16 were denoted as −17) as done in previous fMRI ver-

sions of this task.10,37 We defined the gamble value (Q) on single-

trial level as

Q= β0 + xgain �βgain + xloss �βloss + ed �βed + cT �βc: ð1Þ

We call this model the laec model. Here, cTis a transposed col-

umn vector, denoting the dummy code of the cue's category on

any given trial and βc is a column vector holding the regression

weights describing the shift in gamble value with respect to the

cue category. Hence, cT * βc is a scalar product describing the addi-

tive effect of cue category. We fit the logistic regression based on

Equation 1 with …

P gamble acceptanceð Þ= 1
1 + exp −Qð Þ , ð2Þ

within a generalized linear mixed-effects model, using glmer from

the lme4 package in R.40 Here, gain, loss, ed, and cue category den-

oted the fixed effects and subjects and cues denoted the sources of

random effects. To test if the groups differed in the parameters of

the laec model, we expanded the model by an additional fixed

effect of group modulating the effect of gain, loss, ed, and cue cate-

gory (laecg). Statistical testing of the model comparison was per-

formed using χ2-difference tests and by comparing the Akaike (and

Bayesian) information criterion of the baseline model (laec) with that

of the full model (laecg). For statistical tests of single parameters in

the laecg model, we used Wald z tests as implemented in lme4. For

more analyses of the behavioral data, please see Sections S1.4 and

S2.1. Because the current behavioral experiment was used almost in

an identical fashion in a different sample of 30 HC and 30 GD sub-

jects23 and because in that study a classifier was trained on the

basis of the behavioral data to distinguish GD from HC subjects at

a performance of area under the receiver operating curve (AUC-

ROC) = 0.689, p = 0.002, the analysis of behavioral data was of

minor importance for the current study in favor of the analysis of

neural data. We thus applied the classifier of Genauck et al.23 to

the current data set to see if similar behavioral patterns distin-

guished GD from HC in the current study. The classifier put most

importance on the shift of acceptance rate by cue categories in the

background and minor difference on loss aversion differences

between groups.

2.6 | FMRI data

2.6.1 | Preprocessing and single-subject model of
fMRI data

Imaging analyses were performed in SPM12 running on Matlab

(R2014a). Please see Supplement S1.5 for description of preprocessing

of MRI data. We modeled the preprocessed fMRI single-subject data

based on the laec model10,23,37 using three onset regressors (Cue, Cue

plus gamble, and Cue plus gamble plus response option). The first and

second onset regressors, each with their parametric modulators,

modeled cue reactivity and PIT, respectively (Supplement S1.6).

2.6.2 | Extracting fMRI features for classifier
building

We were interested whether PIT fMRI contrasts from certain brain

regions (regions of interest, ROIs) could predict if a subject belongs to

the HC or the GD group. We hence extracted the mean activity

for cue reactivity (gambling, negative, positive; pmod(1–3) of

onset regressor 1) and for the PIT contrasts (acceptXgambling,

acceptXnegative, acceptXpositive; pmod(5–7) of onset regressor 2)

using the within-subject means from the ROIs NAcc R/L and amyg-

dala R/L. NAcc and amygdala ROIs were taken from the Neu-

romorphometrics SPM12 brain atlas.

To keep in line with accounts of PIT depending on NAcc–Amy

connectivity27,28 and on amygdala-OFC connectivity29,30 (Figure S3),

we also extracted functional connectivity (generalized psycho-

physiological interaction, gPPI)41 for the PIT contrasts. We used the

seeds amygdala R/L and NAcc R/L (see Supplement S1.7). For the

seeds amygdala R/L, we extracted the mean from target ROIs OFC

R/L (four subregions on either side) and from target ROIs NAcc

R/L. For the seeds NAcc R/L, we extracted from the target ROIs Amy

R/L. Information from left medial OFC was not available due to signal

loss in that region. Collecting all the extracts per subject, we had at

this point for each subject a vector representing his or her specific

neural PIT pattern. We z-standardized this vector for each subject.

We then reduced the dimensionality of this vector for each subject by

computing within-subject means, collapsing for each ROI left and right

(see Supplement S1.8).

To check for overall task signal, we checked for PIT effects in

amygdala and NAcc across groups and for cue reactivity difference

between groups in amygdala, NAcc, and OFC using years in school as

a covariate of no interest in all cases.

2.6.3 | Building the classifier based on fMRI data

The neural PIT vectors per subject were stacked into a data set.

Because HC and GD were not perfectly matched on years in school,

we added this variable to the data set, which was then submitted to

logistic elastic net regression, with group as dependent variable.
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Elastic net regression is well suited for cases where there are few

observations and many predictor variables that may contain groups of

correlated variables32,33,42 (see Supplement S1.9). Using tuning of its

two hyperparameters,42 it is also well suited to produce models that

do not overfit but generalize well to new data. The algorithm tuned

for optimal generalization performance on out-of-sample data using

the AUC-ROC.32,33 AUC-ROC ranges from 0.5 (chance) to 1 (perfect

sensitivity and specificity).

We assessed the generalizability of the above algorithm 1000

times via 10-fold cross-validation, which yielded a distribution of clas-

sifiers and thus of AUC-ROCs. Note that the cross-validation to esti-

mate generalizability led to the cross-validations used in the elastic

net regression to become nested.32 For a graphical illustration of the

algorithm with cross-validation to estimate the generalization perfor-

mance, see Figure 2. The data and R Code can be found here: https://

github.com/pransito/PIT_GD_MRI_release. To compute a p value

denoting the significance of classification improvement (full model

vs. baseline model, i.e., model with only years of education as predic-

tor), we compared the sampled distributions of classification perfor-

mance under the full model versus under the baseline model23

(Supplement S1.10).

After assessing the generalizability of the model by cross-vali-

dation, we fit the model to the entire data set (no splitting in

training and test data) in order to build the final interpretable and

reportable classifier. Because the modeling is probabilistic, we

repeated this 1000 times. We plotted the ensuing distribution of

regression weight vectors as per-parameter means with 95% per-

centile bounds.

2.6.4 | Inspecting the classifier based on fMRI data

In order to interpret the final classifier's regression weights as an acti-

vation pattern (a), that is, to know how greatly each predictor contrib-

uted to distinguishing GD from HC subjects in the classifier, we

calculated

a= cov Xð Þ� w, ð3Þ

43where w is the regression weight vector (a column vector), or in

other words, the classifier. X is the matrix of predictors for all subjects,

and cov(X) is the covariance matrix of X. Additionally, we calculated

between-group t tests (HC vs. GD) for all predictors.

2.6.5 | Extending the inspection of classification
performance

In order to assess the informational value of multiple classes of fea-

tures, we explored the AUC-ROC on the test data when training on

different combinations of features (Table S2). We especially explored

an fMRI-only model with only the single-subject cue reactivity con-

trasts, and we used the behavior-only model as done in Genauck

et al., 23 as well as an fMRI-behavior model to check whether the PIT-

related fMRI signal holds additional classificatory value above and

beyond behavioral features when distinguishing HC from GD

subjects.

F IGURE 2 Classifier building algorithm with cross-validation (CV) to estimate generalization error. Nested CV was used for tuning the
hyperparameters of the elastic net regression.42 This was done repeatedly with different nested CV folds (10 times, 10-fold nested CV) to
estimate a robust mean model within each repetition of classifier estimation
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2.7 | Ethics

Subjects gave written informed consent. The study was conducted in

accordance with the World Medical Association Declaration of Hel-

sinki and approved by the ethics committee of Charité–Uni-

versitätsmedizin Berlin.

3 | RESULTS

3.1 | Cue ratings

Subjects perceived cues as intended and similar to a previous sample

of HC and GD subjects23 (Supplement S2.2). Gambling cues elicited

more craving compared with neutral in GD subjects than in HC sub-

jects (GD gambling > neutral: β = 1.749, HC gambling > neutral:

β = 0.719, p(GD > HC) < 0.001).

3.2 | Behavioral choice data

Comparing the laecg to the laec models, we observed a significant χ2

difference test result (χ2 = 26.6, df = 7, p < 0.001; with ΔAIC = 12.6,

ΔBIC = −39.0). The analogous comparison of the models without ed,

lac versus lacg yielded a very similar result: χ2 = 15.8, df = 6,

p < 0.015; with ΔAIC = 3.7, ΔBIC = −40.0. Inspecting the estimated

parameters of the laecg model, we observed that acceptance rate dur-

ing neutral images with all other parameters at zero (i.e., at their mean,

except for ed, actually zero) was for HC: 59.0% and for GD: 38.8%,

pWald = 0.155. Gambling cues were associated with stronger increase

in gamble acceptance in GD subjects (Δ% = 44) than in HC subjects

(Δ% = −8, pWald = 0.003). The same was true for negative (GD:

Δ% = 23, HC: Δ% = −16, pWald = 0.049) and positive cues (GD:

Δ% = 23, HC: Δ% = 0, pWald = 0.030) (Figure 3). Groups did not differ

in loss aversion (see Supplement S2.1). A group classifier estimated on

external data23 depending also largely on parameter group differences

in acceptance rate per cue category (mainly driven by GD subjects

accepting gambles more during presentation of gambling pictures in

the background than HC subjects) and hardly on loss aversion differ-

ences yielded good performance on the current behavioral data set

(AUC-ROC = 0.65, p = 0.47).23

3.3 | Neural effects and prediction of group using
fMRI data

Exploring whole-group mass-univariate statistical maps, during the

cue-only phase, we saw activity in medial prefrontal, anterior cingu-

lum, insula, occipital cortex, precuneus, and fusiform gyrus in T-

maps for the respective cue category contrasts against neutral

images (Figure S8). Sensitivity to loss and gain contrasts in whole-

group mass-univariate contrasts showed activity in inferior anterior

cingulate cortex (ACC), medial prefrontal cortex, and occipital gyrus

(Figure S9). Gamble acceptance X cue-category versus gamble

acceptance X neutral category (i.e., PIT) contrasts showed no sub-

threshold activity for gambling cues, only a small effect in superior

frontal gyrus for HC > PG. For negative images, we saw, only for

accXneg < accXneu, ventral medial prefrontal, inferior ACC activity

and for positive cues (accXpos > accXneu) inferior occipital gyrus

activity.

Using our ROIs relevant to the current study, across groups and

in line with previous findings,12,19,26,28 there was for gambling-cues

PIT a significant effect in right amygdala: [15 −6 −15], pSVC = 0.027,

puncor = 0.003, k = 17. Further, there was for the cue reactivity con-

trast HC > GD (positive cues) a significant effect in left NAcc: [−6 6 –

6], pSVC = 0.033, puncor = 0.005, k = 4, and in right NAcc: [6 9 –6],

pSVC = 0.035, puncor = 0.007, k = 4.

The mean AUC-ROC of the full classifier using neural PIT signa-

tures was 70.0% (mean for the baseline classifier, that is, covariate-

only classifier: 61.5%, p = 0.013) (Figure S6).

F IGURE 3 Shift in acceptance rate during gambles per category and group. Left: thick lines are mean acceptance rates of HC and GD. Thin
lines are single-subject mean acceptance rates of HC and GD subjects. Right: Based on the laecg model. GD subjects show stronger increase in
gamble acceptance (compared with neutral) in comparison with HC subjects during the presentation of all three cue categories in the background.
Stars denote significant post hoc contrasts, where black stars indicate sig. group comparison and purple stars indicate significant difference from
0 within group. CIs based on standard errors of parameter estimates
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Inspecting the final classifier's logistic regression weights (see

Figure 4) (after transformation to predictor importance, see Equation

3, and according to t tests), we saw that the top predictor was

negative-cues-PIT-related functional connectivity from amygdala to

anterior OFC, with a negative sign (Figure 4). This means that the

stronger not accepting a gamble was associated with increase in cor-

relation between amygdala and anterior OFC, the less likely the sub-

ject was a GD person (and rather a HC subject). In other words, GD

subjects showed lower such functional connectivity than HC. The

next top three predictors were gambling-cues-related functional con-

nectivity from NAcc to amygdala (positive sign), positive-cues-related

functional connectivity from amygdala to lateral OFC (positive sign),

and years in school (negative sign) (see Figure 4, Figure S7). Simple

cue reactivity and simple PIT-related activity in NAcc and amygdala

did not contribute significantly to the classifier's performance in dis-

tinguishing GD from HC.

3.4 | Extending the inspection of classification
performance

In line with the fact that cue reactivity contrasts in the fMRI model

were nonsignificant in predictor importance, we see that the cue-

reactivity-only fMRI classification model performed worse than a full

model. Note that the full fMRI-behavior model performed better than

the behavior-only model on test data (AUC = 0.75 vs. AUC = 0.65,

p = 0.031, Figure 5, Table S2).

4 | DISCUSSION

The influence of cues onto value-based decision making may be reg-

arded as a form of PIT, the increase of which has been associated with

addictive disorders in general.17,19,20

F IGURE 4 Estimated predictor importance. Points and quantiles are estimated predictor importance with 95% quantiles over 1000 classifier

estimation rounds. The larger the absolute size of an importance value, the stronger the predictor adds to distinguishing HC from GD in the
classifier. Positive predictor importance values mean that GD subjects showed stronger such activity than HC subjects and vice versa. Bars show
t values of simple between-group t tests. Significant t tests are highlighted (Welch-test, p < 0.05, two-sided). Delimitations are at 1.96 and −1.96
to mark points of statistical significance for t test. Importance values/t values are grouped by the kind of fMRI predictor: cue reactivity related,
PIT related, Psychological-physiological interaction (i.e., PPI) related. PPIs are further grouped by seed region and target extraction (e.g., “to OFC”).
PIT: Pavlovian-to-instrumental transfer; OFC: orbital frontal cortex; AOFC, LOFC, POFC, MOFC: anterior, lateral, posterior, medial orbital frontal
cortex; R: right; For graphical overview of results, see Fig. S7
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We hypothesized that GD subjects should be distinguishable by

neural PIT signatures based on fMRI contrasts recorded during an

affective mixed-gambles task. We therefore built a classifier using

fMRI PIT contrasts to distinguish GD from HC subjects focusing on

brain structures known to be relevant in PIT, like amygdala and NAcc.

We also incorporated amygdala's connectivity to OFC and amygdala's

and NAcc's connectivity to each other. We further included neural

cue reactivity contrasts as predictors. These predictors yielded a neu-

ral PIT signature per subject, which could be used to classify subjects

into the GD or HC group.

Our results support our first hypothesis, showing that neural PIT

signatures based on fMRI data gathered from the affective mixed-

gambles task may successfully classify out-of-sample subjects into GD

and HC, with a cross-validated mean AUC-ROC of 70.0% (p = 0.013).

This performance on out-of-sample data is similar to other studies

using MRI data for classification in the field of addictive disor-

ders.31,32,35 To our knowledge, however, the present study is the first

one to use fMRI classification for investigating a behavioral addiction,

namely, GD, and the neural basis of increased PIT. This means that it

is possible to characterize a nonsubstance-related addiction to a con-

siderable degree by a distinct neuro-functional signature, namely, a

neural PIT signature in a network of amygdala, NAcc, and OFC,

derived from PIT and SUD literature. This further implies that addic-

tive disorders, in general, may be associated with PIT-related neural

changes, independent of a substance of abuse, which means that neu-

ral PIT changes may be a product of addiction-related learning44,113ff

and neural plasticity or even of an innate trait.45

Concerning the predictors in the classifier, we hypothesized that

gambling-cue PIT-related functional connectivity from amygdala to

OFC should be increased. We found that multiple PIT-related

functional connectivities from amygdala to OFC were significant pre-

dictors in the classifier. For example, gambling-cues PIT-related func-

tional connectivity from amygdala to OFC was increased in GD

compared with HC subjects, in line with the above hypothesis and in

line with the hypothesis that in GD subjects amygdala modulates the

value computation in OFC, when addiction-related cues are presented

in the background.29,30 Furthermore, the top predictor in the classifier

was PIT-related functional connectivity from amygdala to anterior

OFC in trials with a negative cue, with a negative predictor weight.

This means that the stronger the rejection of a gamble during the pre-

sentation of negative cues was associated with an increase in correla-

tion between amygdala and anterior OFC, the less likely the subject

was a GD person (and rather a HC subject). In other words, GD sub-

jects showed weaker such functional connectivity than HC. GD sub-

jects, compared with HC subjects, showed significantly more gambling

during the presentation of negative cues than during the presentation

of neutral cues. HC subjects may not show this effect because of

stronger signal transmission related to negative cues from amygdala

to OFC. Similarly, it has been found that reduced loss aversion in GD

subjects was associated with reduced loss-related functional connec-

tivity from amygdala to ventral medial prefrontal cortex in a pure

mixed-gambles task.10 This highlights that impaired decision making in

GD during a pure mixed-gambles task, as well as during an affective

mixed-gambles task, may draw from the same functional neural

substrate.

Exploratively, we looked at the next two top predictors

expecting that PIT-related (as opposed to purely cue reactivity

related) neural predictors should be among these. Indeed, we found

that the next top predictor was gambling-cues PIT-related functional

connectivity from NAcc to amygdala (positive sign), a connectivity

F IGURE 5 Multiple classifiers' performances against random and baseline classifiers. The classifier using all fMRI contrasts from the PIT
neural search space performs better than all other classifiers, except for the classifier using all fMRI contrasts and the behavioral features. cr: cue-
reactivity-related contrasts in amygdala and nucleus accumbens
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important for cue-induced effects in mixed-gambles tasks.27 This

means that the more gamble acceptance during presentation of gam-

bling cues was associated with an increase in correlation between

NAcc and amygdala, the more likely the subject was a GD person. In

other words, GD subjects showed stronger such functional connec-

tivity than HC. NAcc is seen as encoding temporal difference predic-

tion errors, that is, it fires when an unexpected reward signal is

perceived from one moment to the next.46 GD subjects rated gam-

bling pictures as more craving-inducing and reacted with significantly

stronger gamble acceptance increase than HC when gambling-

associated cues were shown in the background. We also saw an

important regression weight given to gambling-cues PIT-related func-

tional connectivity from amygdala to OFC, in line with our initial

hypothesis. Therefore, it may be that gambling cues elicit a prediction

error in NAcc that modulates amygdala activity, which in turn modu-

lates the value representation in OFC in such a way that GD subjects

are more inclined than HC subjects to accept the gamble at hand.

This is in line with a previous study, where it has been found that

GD subjects display increased functional connectivity from amygdala

to posterior OFC related to increasing possible gains in a pure mixed-

gambles task.10 This highlights again that impaired decision making in

GD during a pure mixed-gambles task, as well as during an affective

mixed-gambles task may draw from the same functional neural sub-

strate. Also, it has been observed before that NAcc and amygdala

seem to hold relevant signal related to PIT in healthy subjects26 and

to increased PIT in addicted subjects.19 Interestingly, previous stud-

ies19,20 have observed that in recently detoxified treatment-seeking

AD patients, images of alcoholic beverages in the background have a

suppressing effect on the instrumental task in the foreground. Con-

trarily, we have seen that gambling cues elicit a stronger gamble

acceptance increase in GD than in HC. This may be because we have

included only active non-treatment-seeking gamblers, who perhaps

work less against their automated response toward addiction-

related cues.

The third top predictor was also PIT related, in line with our

hypothesis that PIT-related predictors should be more important than

cue reactivity predictors. It was positive-cues PIT-related functional

connectivity from amygdala to lateral OFC. This means that the stron-

ger the acceptance of a gamble during the presentation of positive

cues was associated with an increase in correlation between amygdala

and OFC, the more likely the subject was a GD person. In other words,

GD subjects showed stronger such functional connectivity than

HC. This may be parallel to the finding on behavioral level that GD

subjects react with more gambling increase to positive pictures than

HC subjects. It seems that both positive cues and gambling cues lead

to increased gambling and similarly increased connectivity between

amygdala and OFC in GD subjects. Also, negative cues lead to

increased gambling. This is surprising because one could have

expected to see decreased gambling during negative and positive cues

or no effect of those cue categories.23 On the other hand, perhaps all

three cue categories have special salience for GD subjects modulating

the propensity to accept gambles. Future studies should further

explore the effect of positive and negative stimuli on gambling in GD.

Considering the predictor importance of all fMRI contrasts, cue

reactivity predictor importance values are relatively small, and the

classifier draws more on PIT-related variables (the top-three predic-

tors were PIT related). We also saw that the cue-reactivity-only fMRI

classifier showed worse performance than the complete PIT fMRI

classifier. This emphasizes the importance of PIT as a defining marker

for addictive disorders beyond cue reactivity. Further, we saw that

the complete PIT fMRI-behavior model performed better than the

complete PIT fMRI model without behavioral parameters and better

than the behavior-only model.23 This suggests that PIT is not only

behaviorally defined but may extend to multivariate neural signals

enhancing the characterization of GD. The additional classificatory

value of PIT-related neural signal should be explored in future studies.

This is because different subjects may show different pat-

terns/intensities related to the same PIT behavioral effect, and this in

turn may be related to different levels of GD classification propensity.

It may also mean that, in the long run, fMRI signal could enhance diag-

nostics in addictive and related disorders.31,32,35

We used the same cues as Genauck et al.23 in a new sample of

GD and HC subjects, and, in line with that study, we also observed

that GD subjects rate the gambling cues as more craving inducing.

Also in the other categories, cues were perceived as expected. The

ratings and the result that neural PIT signatures successfully distin-

guish GD from HC subjects reinforce the notion that GD subjects' cue

reactivity facilitates riskier decision making when addiction-related

cues are presented in the background of a gamble task.

Changes in NAcc's structure47 and function22,25 related to GD

have been observed in previous studies. The same is true for amyg-

dala's structure48 and function,10 as well as for OFC's structure49 and

function.5 Our study adds to these findings by considering the func-

tions of these structures concurrently and in a network. Our results

support the notion that GD, similar to SUD, is characterized by neural

incentive sensitization4,5 such that in GD a network of amygdala,

NAcc and OFC facilitate gambling decisions in the face of

gambling cues.

5 | STRENGTHS AND LIMITATIONS

The main strength of our study is that we have used a classification

approach to assess the usefulness of known neural PIT contrasts to

characterize GD in out-of-sample data. Using this approach, we have

estimated the single-subject relevance of these fMRI signals. Our

results therefore have not only explanatory value in elucidating the

basis of increased PIT in GD, but also predictive value, given that they

are likely to be found in new samples of GD and matched HC sub-

jects.34 Furthermore, we are to our knowledge the first to address the

neural underpinnings of PIT in a behavioral addiction using a machine

learning approach. Unfortunately, we have no independent validation

sample to externally validate our results.23,35 Further studies are

needed to collect such data.

This study is driven by the question whether neural signatures

related to addictive disorders (such as PIT-related neural signatures,

10 of 12 GENAUCK ET AL.



known from studies related to alcohol dependence) are dependent on

a substance of abuse or perhaps on learning or even innate traits. We

thus investigated an addictive disorder without a substance of abuse

(GD) against HCs. However, a more direct test of this hypothesis

would be to test directly against other substance-based addictive dis-

orders.10 This was not done in the current study but is an important

perspective for future studies.

As we have laid out, there are multiple ways in which the brain

may produce an overt PIT, involving at least amygdala, NAcc, and

OFC. To increase statistical power, we have omitted other conceptu-

alization of PIT, for example, as an interference task, and hence any

limbic-dorso-lateral-prefrontal connectivity.50 Future studies should

explore this. In the current study, we did not address the distinction

between outcome-specific and general PIT.13,17,50 This would be a

valuable next step for future studies in GD.

6 | CONCLUSION

We have observed that it is possible to classify HC and GD subjects

on the basis of the neural correlates of PIT in a network of NAcc,

amygdala, and OFC. Our findings further the understanding of GD

and show that PIT is relevant for characterizing nonsubstance-related

addictive disorders also on neural level. PIT alterations at the neural

level related to an addictive disorder might thus not depend on the

direct effect of a substance of abuse, but rather on related learning

processes or even on innate traits.
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