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Abstract
Simulations of molecular systems have led to significant discoveries in molecular biology.
The high accuracy of these simulations enables us to understand biological functions
on a molecular scale. In connection with experimental results, they have proved to
be a powerful tool to investigate biological functions. While the applications for such
simulations are countless, in practice it is only possible to simulate small systems due to
computational limitations; reaching biologically relevant time- and length-scales is still
beyond feasibility, even for the most powerful computers. This constraint is commonly
known as the sampling problem. With the progress in hardware development slowing
down, demand for new methods that enable reaching relevant scales is high. This thesis
aims to provide new tools that help molecular simulations reach biologically relevant
scales. It is split into two parts:

The first part provides new methods for rate computations in reactive systems, which
can consist e.g. of a protein-ligand binding, oligomerization, or protein-protein association.
The first method combines Markov state models of molecular kinetics with particle-based
reaction-diffusion (PBRD) to generate a coarse-grained simulation of interacting molecules.
This method conserves the characteristic kinetics of the interactions – at atomistic detail –
observed in molecular dynamics simulations of the interacting molecules in close proximity.
Furthermore, a method is introduced to provide realistic parameters for PBRD simulations.
In particular, it enables for tuning the microscopic parameters of PBRD simulations such
that experimentally obtained rates are reproduced in the dilute limit. This provides a
well-defined starting point to study effects such as crowding, which are common at the
cellular scale.

The second part provides new methods based on Markov chain Monte Carlo. These
can be utilized to speed up the generation of equilibrium samples from the Boltzmann
distribution and thus enabling faster computation of stationary observables. In biological
systems, it is often observed that high barriers in the free energy landscape dramatically
slow down the sampling process. To speed up computations, a whole range of methods
has been developed. The latest advancements are facilitated by the recent rise of machine
learning research, which provides new promising tools to approach the sampling problem
from completely different angles. In this spirit a new method is introduced that aims
for directly proposing transitions between regions of high populations in phase space,
thus directly jumping over energetic barriers. These long-range moves are proposed by a
neural network trained to generate high-efficiency moves, allowing for circumventing the
slow transitions across energy barriers altogether. A second proposed method is based on
the recently developed Boltzmann Generators and aims to combine these with parallel
tempering in order to speed up sampling significantly. To this end, a machine learning
technique is employed which generates samples close to the Boltzmann distribution
at different temperatures. In both of these methods, the convergence to the correct
distribution is ensured by enforcing detailed balance.
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Zusammenfassung
Simulationen molekularer Systeme haben zu bedeutenden Entdeckungen in der Moleku-
larbiologie geführt. Die hohe Genauigkeit dieser Simulationen ermöglicht es, biologische
Prozesse auf molekularer Ebene zu verstehen. In Verbindung mit Experimenten haben
sie sich als leistungsfähiges Werkzeug zur Untersuchung biologischer Funktionen erwiesen.
Während die Anwendungen für solche Simulationen zahllos sind, ist es in der Praxis
aufgrund von beschränkter Rechenleistung nur möglich, kleine Systeme zu simulieren. Das
Erreichen biologisch relevanter Zeit- und Längenskalen ist selbst für die leistungsstärksten
Computer noch nicht möglich. Diese Einschränkung wird allgemein als Samplingproblem
bezeichnet. Da sich die Fortschritte in der Hardwareentwicklung verlangsamen, ist die
Nachfrage nach neuen Methoden, die es ermöglichen, relevante Größenordnungen zu
erreichen, groß. Diese Dissertation zielt darauf ab, neue Werkzeuge bereitzustellen, die
molekularen Simulationen helfen, biologisch relevante Größenordnungen zu erreichen. Sie
ist in zwei Teile aufgeteilt:

Der erste Teil stellt neue Methoden zur Berechnung von Raten in reaktiven Systemen
vor, in diesem Kontext bestehen diese z.B. aus Protein-Ligand-Bindung, Oligomerisierung
oder Protein-Protein-Assoziation. Die erste Methode kombiniert Markov-Modelle von
molekularer Kinetik mit partikelbasierter Reaktionsdiffusion (PBRD), um die wechsel-
wirkenden Moleküle auf gröberen Skalen zu simulieren. Diese Methode bewahrt die
charakteristische Kinetik der Wechselwirkungen im atomaren Detail, die in Molekular-
dynamiksimulationen der Moleküle in unmittelbarer Nähe beobachtet wird. Darüber
hinaus wird eine Methode vorgestellt, um realistische Parameter für PBRD-Simulationen
zu berechnen. Insbesondere ermöglicht dies, die mikroskopischen Parameter von PBRD-
Simulationen so abzustimmen, dass experimentell ermittelte Raten im verdünnten Limit
reproduziert werden. Dies bietet einen wohldefinierten Startpunkt, um Effekte wie
Crowding zu untersuchen, die auf zellulärer Ebene üblich sind.

Der zweite Teil bietet neue Methoden basierend auf Monte-Carlo Methoden. Diese
ermöglichen es, das Erzeugen von Gleichgewichtsproben aus der Boltzmann-Verteilung zu
beschleunigen und somit stationäre Observablen effizienter zu berechnen. In biologischen
Systemen wird oft beobachtet, dass hohe Barrieren in der freien Energie das Erzeugen
von Stichproben dramatisch verlangsamt. Um dies zu beschleunigen, wurden eine ganze
Reihe von Methoden entwickelt. Die jüngsten Entwicklungen in der Forschung zum
maschinellen Lernen bietet neue vielversprechende Ansätze, um das Sampling von sta-
tionären Observablen aus ganz anderen Blickwinkeln zu betrachten. In diesem Sinne wird
eine neue Methode eingeführt, die darauf abzielt, direkt Übergänge zwischen Regionen
mit hoher Population im Phasenraum vorzuschlagen und damit energetische Barrieren
direkt zu überspringen. Diese weitreichenden Vorschläge werden von einem neuronalen
Netzwerk erzeugt, das darauf trainiert ist, hocheffiziente Vorschläge zu erzeugen. Ein
zweites Verfahren basiert auf den kürzlich entwickelten Boltzmann-Generatoren und zielt
darauf ab, diese mit Parallel Tempering zu kombinieren. Dazu wird maschinelles Lernen
verwendet, um Proben nahe der Boltzmann-Verteilung bei verschiedenen Temperaturen
zu erzeugen. Bei beiden Verfahren wird die Konvergenz zur korrekten Verteilung durch
die Einhaltung des detaillierten Gleichgewichts sichergestellt.
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Part I.

Multiscale dynamics of molecular
systems
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1. Introduction

Understanding the interaction between molecules plays an important role in studying
biological processes. In many cases, a biological function is only evident by the way
molecules interact with each other and in the way they transform. Examples of such
include ligand binding [1, 2], complex formation [3, 4], and oligomerization [5, 6]. These
interactions at molecular resolution are fundamental since they dictate the behavior at
much larger scales. Often a small change in these interactions has a large impact on the
whole system; in short, these processes span and couple multiple length- and time-scales.
One might think of a mutation in a crucial part of a protein that affects the living being
as a whole [7].

In many cases, the impact of small changes in the interaction to the behavior of the
whole system is not a priori evident, and it has to be looked at the whole picture level.
Thus, the interaction at small length- and time-scales plays a crucial role in scales far
beyond the molecular scale. This behavior makes simulations on these scales difficult, as
they have to preserve a large level of detail, and in order to reach time- and length-scales
of the process being studied, an enormous amount of computational resources has to
be invested, often to the point that even with the largest of computers, the relevant
scales are far beyond reach. To approach this problem, simulation methods have been
developed that mimic the behavior of short timescales but operate on much larger ones,
commonly approximating the behavior of the system at different levels of coarseness.

In simulations of biological systems, such as proteins, it is often observed that the con-
figuration space Γ of a molecule consists of regions where trajectories tend to concentrate,
named metastable states Ωi ⊂ Γ. These regions are separated by energetic barriers that
are rarely crossed. This gives rise to different relaxation timescales, namely the timescales
at which barrier crossings occur τb, and the relaxation timescale of the dynamics within
the metastable state τm. In these cases, the timescale at which transitions between the
states happen is much larger than the timescale describing the relaxation within the
metastable state, namely τm � τb. The transitions between the metastable states then
no longer exhibit a memory, thus becoming Markovian [8–10]. One interpretation of this
is that, if the position within the metastable state decorrelates much faster than the
transition between the metastable states, it does no longer matter where the metastable
state is entered, as equilibrium within the metastable state is reached before any escape
from it can happen thus rendering the transitions between the metastable states a mem-
oryless stochastic process. The remaining task is then to identify the metastable state
that corresponds to a certain function of the molecule under consideration. Fig. 1.2 (left)
shows a trajectory of the ϕ-angle of the alanine dipeptide molecule. This system has
two metastable regions, which can roughly be characterized by ϕ > 0 and ϕ < 0. Its
dynamics exhibits a typical behavior of spending long times within metastable states
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1. Introduction

Figure 1.1.: Simulation of the binding of carbon monoxide(CO) to moyglobin. The
positions at several points in time of the CO molecules are depicted in blue.
The wireframe spheres show regions in space in which the CO molecules
reside for a long time, thus are identified as metastable states. The red sphere
shows the state in which the CO molecule is considered to be bound to the
heme group of myoglobin, which prohibits the molecule from performing its
proper function: the transport of oxygen in muscle cells.

and randomly switching between the two on a slower timescale.

Especially of interest are the timescales at which the transitions between the states
happen as they give rise to a quantitative analysis of the systems at hand. These are
typically expressed in terms of rates. An example of such a system is the binding of
carbon monoxide (CO) to myoglobin, a molecule responsible for intra-muscular oxygen
transport. Figure 1.1 shows the locations of high density areas of the CO molecules in
the frame of reference of the myoglobin molecule. The binding of the CO to the heme
site inhibits the transport of oxygen in the muscle, hindering it from performing its
function. Understanding the rate at which these competing events occur allows to better
understand the mechanism of CO-related poisoning.

The following section will discuss how binding and unbinding rates can be obtained
formally.
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1.1. Projection into a reaction coordinate

1.1. Projection into a reaction coordinate

In a classical setup, a reaction can be understood as a molecular system overcoming an
energy barrier in the free energy landscape. It is thus of great interest to study rates at
which certain transitions occur. In this context of reactions one often defines a reaction
coordinate y which gives a clear distinction between a system being in the educt- Ωe or
the product-space Ωp, i.e. the reaction having occurred or not. The description of the
dynamics of the system in terms of the reaction coordinate constitutes of a projection
of the high-dimensional phase or configuration space x ∈ Γ, which describes positions
and momenta of all atoms involved, onto a low, possibly one dimensional coordinate on
a manifold y =

∫
Γ δ(y− f(x))dx. The dynamics of the reaction coordinate then give a

reduced description of the dynamics of the whole system. As a result, this significant
dimensionality reduction introduces memory in the friction terms of the system’s dynamics
and entropy terms in the effective potential U(y) (potential of mean force) of the reaction
coordinate. An exact formulation of this procedure is given by [11, 12]. While this
procedure makes the formulation of the problem more tractable, the solution remains
difficult due to the non-Markovian equations of motion.

In cases where noise correlations decay on very fast timescales, a Markovian approxi-
mation can be applied, i.e. a memory-less description of the dynamics of the reaction
coordinate can be recovered [13], which can be described by the Langevin equation

ẏ = v, mv̇ = −U ′(y)− γv + ξ(t), (1.1)

with Gaussian distributed noise with vanishing mean E [ξ(t)] = 0 and Dirac delta
distributed noise correlations E [ξ(t)ξ(s)] = 2kBTγδ(t− s), where m denotes the mass,
kB the Boltzmann constant, T the temperature and γ the damping coefficient. In the
cellular environment, friction is usually high such that momenta of the system decay on
a very fast timescale. This regime is called the overdamped limit and allows for setting
the momenta terms in Eq. (1.1) to zero, greatly simplifying any calculations

γẏ = −U ′(y) + ξ(t). (1.2)

An equivalent description, based on the evolution of densities rather than stochastic
trajectories is given by the Fokker-Planck equation. In the overdamped limit it is given
by the Smoluchowski equation [14]

∂tp(y, t) = ∂yD
[
βU ′(y)p(y, t) + ∂yp(y, t)

]
, (1.3)

with the inverse temperature β = 1/kBT and the diffusion constant D = β/γ. It describes
the time evolution of the probability distribution p(y, t).

These equations are the starting point to compute the rates at which transitions across
the barriers in U occur.
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1. Introduction
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Figure 1.2.: Left: Transitions between metastable states from a simulation of the alanine
dipeptide molecule. The time spent in the metastable states Ω1/2 is long
compared to the relaxation times within the states. Transitions between
the states only occur rarely in this situation τb � τm. Right: Setup of
the Kramers rate calculations. An energetic barrier traps the system in the
bound state. The system is able to escape that state at a rate depending on
the temperature. Figure adapted from [15].

1.2. The Kramers problem: from potentials to rates

Given the assumptions provided above, i.e. that a reaction coordinate can be found, the
friction behaves memoryless on the relevant timescales and a generalized potential U
can be found which describes the system in the reaction coordinate space, a formalism
to compute reaction rates was introduced by Kramers [15]. The Kramers setup studies
reactions that are motivated by crossing an energy barrier in the free energy landscape.
In the example before one might think of the unbinding of the CO of the myoglobin
molecule as such a dissociation reaction C→ A + B, where C is the bound complex and
A and B are the CO and myoglobin respectively.

The Kramers approach studies mean first passage times (MFPT) τ = E [tFP] across a
free energy barrier, where tFP is the time it takes a trajectory starting on one side of
the barrier to cross once, and the average runs over all trajectories crossing the barrier.
It is thus the average time it takes a particle to surpass an energy barrier for the first
time. The MFPT is the inverse of the transition rates k = τ−1. Differential equations of
the MFPT can be derived from the Smoluchowski equation Eq. (1.3) (see e.g. [12] for
details) and for a one-dimensional setup reduces to

D exp (βU(y)) ∂y exp (−βU(y)) ∂yτ(y) = −1. (1.4)

The problem that was studied in Kramers’ original paper [15] is the case when the
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1.3. A data-driven approach to rate calculations

potential is either in the shape of a double well and the transition from one well to
the other is observed or when the escape rate from one of the wells is considered, see
Fig. 1.2 (right). In both cases a universal result is that if the free energy barrier Umax
is considerably higher than the thermal energy kBT , the solution can be found by a
second-order approximation of the potential using the method of steepest descent [16] to
solve the integrals containing the general expressions of the potential functions.

The resulting rate in the overdamped regime is given by [15]

kK = ωminωmax
2πγ e−βEb , (1.5)

where ωmin/max are the curvatures of the potential at the minimum and maximum
respectively, and Eb = (Umax − Umin) is the height of the barrier. This result shows that
the rate of a reaction of this type follows the Van’t Hoff-Arrhenius law [17, 18] which
states that the rate exhibits an exponential scaling with respect to temperature. This
has significant practical implications when it comes to enhanced sampling algorithms for
stationary observables, which will be discussed in Part II.

Note that finding a reaction coordinate is a highly nontrivial task and has severe
limitations in practical problems. It is thus in many cases preferable to find estimates of
rates from simulations of the dynamics of the system at hand. A common method are
Markov state models (MSMs).

1.3. A data-driven approach to rate calculations

Given trajectories from a simulation of a dynamical system, such as molecular dynamics,
rate calculations can be carried out by means of approximating the transfer operator. To
define this operator, one has to ask: what is the probability of finding a system in phase
space point x, given that the dynamical system was started in phase space point y and
propagated for time τ? This probability is called the transfer probability p(y→ x; τ), and
here it is used to describe the action of the underlying dynamics [19]. The propagation
of probability densities p(x, t) in time is formally described by the propagator Pτ :

p(x, t+ τ) = Pτp(x; t) =
∫
p(y→ x; τ)p(y; t) dy (1.6)

The goal is to approximate the propagator in a way that preserves certain aspects of the
underlying dynamics. As the long-time behavior of the system is of special interest, this
is the quantity that is important to be conserved.

It is often useful to consider densities relative to the stationary density π(x) given by

u(x, t) = p(x, t)
π(x) , (1.7)

which defines the propagator relative to the stationary density. This is the transfer
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1. Introduction

operator [9]

u(x, t+ τ) = Tτu(x, t) (1.8)

The definition of densities relative to the stationary density allows for making use of
detailed balance π(x)p (x→ y) = π(y)p(y→ x) to find

u(x, t+τ) = Tτu(x, t) =
∫
π(y)
π(x)p(y→ x; τ)u(y, t) dy =

∫
p(x→ y; τ)u(y, t) dy. (1.9)

For reversible systems Tτ is often called backward propagator, as it appears to evolve
densities backward in time.

A propagation of multiple steps lτ , with some scalar l, can be achieved by sequentially
applying the transfer operator which yields the Chapman-Komlmogorov equation

u (x, t+ lτ) = (Tτ )l u (x, t) . (1.10)

This operator has eigenfunctions ψi(x) and eigenvalues λi: Tτψi(x) = λiψi(x), with
1 6 λi < −1. Furthermore, since this operator is continuous, it posseses a continuous
spectrum of eigenvalues, and sorting them in a descending order λ1 > λ2 . . . . The largest
eigenvalue is unity λ1 = 1, with the corresponding eigenfunction being the identity
ψ1(x) = x.

Utilizing the spectral decomposition of the transfer operator, the Chapman-Kolmogorov
equation can be written as

u(x, t+ lτ) =
∞∑

i=1
λl

i 〈ψi(x), u(x, t)〉π ψi(x), (1.11)

where 〈·, ·〉π denotes the scalar product with respect to the stationary density π. From
this equation, the eigenvalues can be interpreted as timescales

λi(τ) = e−τ/τi , (1.12)

where τi denotes the relaxation timescale of the process ψi. With the assumption
that there exists a separation between the fast and slow processes of the system under
investigation, Eq. (1.11) can be truncated after the m slowest timescales thus only getting
rid of the fast processes which are commonly not the subject that is studied. Note, that
for this separation to hold, the system under consideration must be reversible [9]. The
Chapman-Kolmogorov equation can be rewritten in terms of of the implied timescales of
the m fastest processes

u(x, t+ lτ) ≈ 1 +
m∑

i=2
e−lτ/τi 〈ψi(x), u(x, t)〉π ψi(x). (1.13)

For the truncation after m terms in Eq. (1.13) to be a good approximation, a scale
separation between τm and τm+1 is assumed, s.t. τm � τm+1. Furthermore, τ needs to
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1.3. A data-driven approach to rate calculations

be large compared to τm+1, commonly 3τm+1 < τ is sufficient for practical purposes.
One way of approximating this operator is by a projection of characteristic functions

that span the phase space. This is commonly denoted as an MSM that is introduced in
the following section.

1.3.1. Approximating the slow eigenfunctions of the transfer operator

An approximation to the slow kinetics of the system under investigation can be found
by approximating the m slowest eigenfunctions of the transfer operator. A way to
do so is by Galerkin projection, which descretizes the configuration space using basis
functions χi(x), i = 1, ...,m. In the context of MSMs these are commonly chosen to be
characteristic functions

χi(x) =
{

1 x ∈ Ωi

0 x /∈ Ωi.
(1.14)

where the Ωi form a complete partition of configuration space, i.e. Γ =
⋃n

i=1 Ωi, and have
no overlap, i.e. Ωi ∩ Ωj = ∅ for i 6= j. The configuration space has now been discretized
into a finite state space. The local densities become vectors simply given by projection
onto the basis functions

πj = 〈π, χj〉 =
∫

x∈Ωj

π(x)dx, pj(t) =
∫

x∈Ωj

p(x, t)dx. (1.15)

The transfer operator corresponding to this discretized phase space is a transition matrix,
given by the Galerkin projection of the transfer operator to the basis functions χi [19]:

(Tτ )ij = 〈χj , (Tτχj)〉π
〈χi, χi〉π

. (1.16)

It describes the probability of finding the system in state Ωj at time t+ τ , given that it
was observed in state Ωi at time t.

The transition matrix can be estimated from trajectories of the system x(t). The most
simple way to do so is by generating a count matrix Cij that counts the number of times
the system was found in state Ωi at time t and in state Ωj at time t+ τ . Normalizing
this matrix yields an estimate of the transition matrix

Tij ≈ Cij

n∑
i=1

Cij . (1.17)

More elaborate estimators of the transition matrix have been developed, that e.g. enforce
detailed balance [20].

Using these definitions, the Chapman-Kolmogorov equation Eq. (1.13) can be written
in matrix-vector notation as

p(t+ τ) = T>
τ p(t), (1.18)

9
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Figure 1.3.: Summary of different methods describing reaction and diffusion schemes.
Four of the most relevant models for reaction-diffusion systems find their
application in different regimes of the system of interest. Significant simpli-
fications can be made if particle numbers are high and the system can be
considered well-mixed. Figure adapted from [22]

with the probability mass vectors p(t) = (p1(t), . . . , pn(t)). The combination of a
discretization and the resulting transition matrix is denoted as an MSM.

This approach allows extracting the long-time dynamics of the system under investiga-
tion. Furthermore, it enables extracting information from a multitude of short trajectories,
as the global equilibrium can be reconstructed from counting transitions of trajectories
that have locally equilibrated [9]. This enables estimations of dynamic quantities from
many short trajectories, whose length is only a couple of τ , a significant advantage when
scaling to more data.

A similar description can be found in terms of rate matrices K, with the relation
between transition and rate matrices given by

T = exp (τK) . (1.19)

Markov state models are therefore a suitable method for studying the transition rates
between the metastable states of such systems and have in the past years become a
wide-spread tool for analyzing molecular data [9, 21].

1.4. Macroscopic descriptions of reactive systems

The approach above assumes that simulations can be performed on the molecular level.
For large systems, this is no longer the case and a more coarse description is required.
Furthermore, the Kramers rate discussed above explains reactions on a very detailed
level, namely that reactants are in close proximity. In real-world systems such as cells,
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1.4. Macroscopic descriptions of reactive systems

another crucial part of a reaction is that reactants are able to find one another. This
is commonly denoted as reaction-diffusion and different methods have been developed
depending on the coarseness of the system under investigation. Considering for example
a bi-molecular reaction of type A + B → C. Then the rate k at which the product C
is generated is a two-step process. Reacting particles have to find each other and then
undergo a reaction. The total rate depends on the rate at which the molecules encounter,
namely the encounter rate ke, and the rate at which the transformation to molecule C
occurs, the formation rate kf . The encounter rate is determined by spatial diffusion of
the reactants and effects such as crowding, confining geometries or interaction potentials
are common factors that influence its magnitude [23]. The formation rate on the other
hand is determined by the detailed chemistry of the interacting particles. Again one
might think of overcoming an energy barrier once the particles are in close proximity, as
studied in the Kramers problem. Under the assumption of statistical independence of the
duration of both steps, the total rate is given as the harmonic mean [24–26] of the two

k−1 = k−1
e + k−1

f . (1.20)

Methods modeling reactions typically distinguish along two dimensions which allow
for certain simplifications

• the number of particles N

• the ratio of encounter to formation rate ke/kf

A brief overview of the methods is given in Fig. 1.3 and the main four pillars are discussed
below.

1.4.1. Reaction-diffusion equation

In the case of many reactant particles, the fluctuations around the average number of
particles vanish according to the law of large numbers and, thus, the time evolution of the
number of particles of a species i in a volume Vj can be described by its particle number
Nij(t) = 〈Nij〉(t). In the limit of infinitely small volumes Vj this leads to a description in
terms of local concentrations ci(r, t). The reactive system can be described entirely by the
evolution of the local concentrations of all M particle types C(r, t) = [ci(r, t), . . . , cM (r, t)].
This transition from particles to concentrations has recently been studied in [27]. The
evolution of concentrations is governed by two operators

∂tC(r, t) = DC(r, t) +RC(r, t), (1.21)

namely the diffusion operator D and the reaction operator R. The specific choice of
these operators depends on the problem at hand.

This description is denoted as reaction-diffusion equations and is the general ap-
proach that is required especially in the case of diffusion-influenced reactions, which are
characterized by ke ≈ kf , and diffusion-limited reactions, where ke � kf .
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1. Introduction

The study of bi-molecular reactions in this regime dates back to Smoluchowski in 1917,
who proposed and analyzed a model for coagulation of particles [14] which he described
as a reaction happening instantaneously upon contact. This model was later extended by
Debye [28] by including pair potentials between the reactants which would significantly
influence the encounter rate. His study specifically aimed at including electrostatic
interactions between the particles. An extension of Smoluchowski’s model into a different
direction was performed by Collins and Kimball [24, 29], who introduced a finite rate at
which particles would undergo a reaction upon contact enabling a finite formation rate.
As this model has certain drawbacks in computer simulations, i.e. it requires event-base
algorithms, an alternative microscopic reaction scheme was proposed by Teramoto and
Shigesada [30]. This model, which was further characterized by Doi [31–33] permits
reactions of molecules with a microscopic rate λ, called prospensity [34], as long as they
are in close proximity. This proximity is characterized as the distance between the
particles being lower than a reaction radius R. This model is commonly referred to as
the volume reaction model or simply the Doi model. It is subject to a detailed study in
Chapter 3, where historic results, as well as the general case of volume reactions with
interaction, will be discussed.

1.4.2. Reaction rate equation

In the case of slow reactions ke � kf , the diffusion of particles can be neglected as
the formation of the new species happens on a much slower timescale compared to the
encounter rate. In this reaction-limited regime, particles can encounter many times before
any reaction is taking place. Thus the position of the particles relaxes on a timescale that
allows for a description of the system solely in terms of the total concentration of each
species ci(t) =

∫
ci(r, t)dV . As a result, the evolution of the concentration can solely be

described by a reaction operator R

d
dtC(t) = RC(t). (1.22)

The rates might still be influenced by the diffusion of the particles. This contribution
is readily incorporated into the diffusion operator. The reactive part in the reaction
rate equations is often modeled by the law of mass action, which states, that the rate
of a reaction is proportional to the product of the concentrations of the reactants [35].
One interpretation of this law is that the chance of uniformly distributed particles of
reactants A and B being simultaneously in an infinitesimal volume dV is proportional to
the product of the concentrations of the reactants cAcB and furthermore the reactions
of particles at close proximity occur with a fixed rate k. With the law of mass action,
Eq. (1.22) takes the form of a set of ordinary differential equations. As in the example of
the bimolecular reaction yielding

d
dtcC(t) = kcA(t)cB(t). (1.23)
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1.4. Macroscopic descriptions of reactive systems

This setup is often chosen when describing chemical reactions in a well-stirred setup which
is common under laboratory conditions. In the context of biological systems, a notable
application of these equations is the Michaelis-Menten kinetics [36] which describes the
formation rate of an enzymatic reaction.

1.4.3. Chemical master equation

In the case of fast diffusion and low particle number, the fluctuations in the particle
numbers can no longer be ignored, and instead the instantaneous particle numbers have
to be tracked. Here, the description of the system in terms of concentrations breaks down,
and instead, the time evolution of the number of particles N(t) = [N0(t), . . . , NM (t)]
needs to be considered. This approach is commonly denoted as the chemical master
equation.

1.4.4. Particle-based reaction-diffusion

The fourth case, an interesting one from a biological perspective, is when both diffusion
and reaction happen on a similar timescale, with a small number of particles and
potentially the diffusion no longer being trivial due to diffusive barriers or crowding
effects. This regime requires explicit resolution of the positions of the particles and is
denoted as particle-based reaction-diffusion (PBRD).

For example, one might think of a simulation of a cell, a highly crowded environment,
where the rate of a reaction significantly depends on the rate at which particles encounter
while at the same time reactants might spend longer times in close proximity once
these encounters happen. Such complex systems call for computational models to study
their reactive behavior. At the same time such systems are composed of a multitude of
atoms such that the computational model has to be chosen at a level of coarseness that
corresponds to the length and timescales that are relevant to the system.

A computational model suitable to study such systems is interacting particle reaction
dynamics (iPRD). It models the reacting molecules as point particles. This reaction-
diffusion model commonly utilizes the Doi model to describe reactions on a microscopic
level. In the framework of iPRD these particles are subject to interaction- and external-
forces which are modeled through a potential U . The spatial motion of the reactants is
resolved by overdamped Langevin dynamics. Reactions are usually distinguished between
uni- and bi-molecular. Uni-molecular reactions are of the type A→ B, with a constant
rate λ, essentially modeling a Poisson process. This type of reaction conserves the total
particle number and can e.g. model spontaneous conformational changes of the molecules.
Bi-molecular reaction of type A+B → C can occur with a fixed rate λ if the distance
between two reacting molecules A and B is less than the reaction radius R > |xA − xB|.
This type of reaction can e.g. model the binding of a ligand, or the association of proteins.
Note that when the study of the equilibrium distribution is of interest, these reactions
also have to be reversible, i.e. the reactions C → A + B and B → A have to have a
non-zero chance and their rates have to fulfill detailed balance [37]. The spatial motion
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of the point particles is modeled as overdamped Langevin dynamics

µ−1ẋi = −∇xiU(x) + ξ, (1.24)

where µ denotes the mobility tensor, U the potential and ξ a stochastic force with zero
mean and its variance following the fluctuation-dissipation theorem [12]

E
[
ξ(t)⊗ ξ(t′)

]
= 2kBTµ−1δ(t− t′), E [ξ(t)] = 0. (1.25)

The potential U is used in order to model both crowding effects that occur when many
particles are in a relatively small volume and diffusive barriers that might occur in the
system of interest, e.g. a cell wall that constrains the movement of particles.

This setup to model reactive systems has recently seen more attention as a means to
simulate biological processes that span multiple length- and time-scales [6, 38].

While in principle a powerful tool, care has to be taken when interpreting results
arising from this type of simulations, as they crucially depend on the parameters that
are set for the reactions and interactions, namely the reaction radius R, the rate λ, and
the type of interactions U .

It further has to be mentioned that in between the scenarios discussed here, there
exist a multitude of methods at intermediate resolution, that e.g. compartmentalize the
diffusion into boxes to efficiently describe the reaction kinetics at intermediate timescales.
An exhaustive overview of current methods in reaction-diffusion can be found in Ref. [22].

In this part of the thesis, two novel methods for improving on this reaction-diffusion
model are introduced:

In Chapter 2 a coupling between molecular dynamics simulations and PBRD simulations
is introduced. To this end the relevant processes of the interaction kinetics of the molecules
are extracted by an MSM estimated from short MD simulations. This MSM is used in
the hybrid simulation to model the interaction between the molecules when they are in
proximity, resulting in a jump process in the space of metastable states of the associated
complex. If the molecules are far apart, they are treated as independent particles and
propagated via a PBRD scheme. This novel scheme allows for the study of systems
on longer time- and length-scales than MD alone while preserving the kinetics of the
interaction on the molecular scale.

In Chapter 3 the relationship between the microscopic model parameters of the Doi
model, extended by interaction potentials, to the macroscopic reaction rate, is derived.
Relating these parameters is crucial when parametrizing quantitative iPRD simulations,
as it allows for tuning the microscopic parameters of the simulation model to match e.g.
experimental values in the dilute limit. This provides a well-defined starting point to
study systems on the cellular scale where crowding effects are present.
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2. Coupling Markov state models of
molecular kinetics with reaction-diffusion
simulations

The results of this chapter have been published in:

Manuel Dibak, Mauricio J. del Razo, David De Sancho, Christof Schütte, and
Frank Noé. “MSM/RD: Coupling Markov state models of molecular kinetics
with reaction-diffusion simulations”. In: The Journal of Chemical Physics 148.21
(2018), p. 214107. doi: 10.1063/1.5020294

Parts of text and figures have been adopted unchanged in this chapter. Reproduced from
The Journal of Chemical Physics “MSM/RD: Coupling Markov state models of molecular
kinetics with reaction-diffusion simulations”, Dibak et al., 2018, with the permission AIP
Publishing. Manuel Dibak (MD) and Mauricio J del Razo (MR) contributed equally to
this work. In particular, the contributions of the authors were as follows: Frank Noé
(FN), Christof Schütte, MD and MR conceived the project. MD and MR worked out the
theory and the coupling scheme, performed experiments and visualized the data. David
De Sancho provided molecular dynamics simulations of the myoglobin system. MD, MR
and FN wrote the manuscript.

Summary

Molecular dynamics (MD) simulations are a suitable model for the interactions between
macromolecules with high spatiotemporal resolution. However, their high computational
cost hinders their application to systems spanning large time- and length-scales. Success
in investigating the long-timescale behavior of small to intermediate biomolecules has
recently been found by combining high-throughput MD with Markov state models
(MSMs). However, scaling to larger length-scales or the interaction of many molecules
remains challenging within this model. More suitable for these situations are particle-
based reaction-diffusion (PBRD) simulations, that sacrifice molecular detail in order to
reach larger spatial and temporal scales. Thus, a combination of both, i.e. a coupling
between MSMs and PBRD simulations (MSM/RD) would be highly desirable, as it could
efficiently produce simulations at large length- and time-scales that additionally conserve
the characteristic kinetics observed at the atomistic detail. Such a scheme imitates the
interaction of the molecules in proximity by an MSM derived from molecular simulations
and treats particles independently if they are far away. In this chapter a first step towards
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2. Coupling Markov state models of molecular kinetics with reaction-diffusion simulations

MSM/RD is introduced by laying out a general theory of coupling and proposing an
implementation for association/dissociation of a protein with a small ligand A + B 
 C.
The proposed model is validated on a toy system and an exemplary application is provided
to the diffusion of carbon monoxide into the heme cavity of myoglobin.

2.1. Introduction

Understanding life processes on a fundamental level constitutes a big challenge as they are
inherently multi scale and span multiple length and timescales. This challenge becomes
even more difficult to tackle as the different scales are often tightly bounded and no
single experiment or simulation can probe all time- and length-scales at a high enough
resolution comprehensively. In computer simulations, this dilemma can be mitigated
by multiscale techniques: different parts of the system are described by a high- and a
low-resolution models, and these parts are coupled to give rise to a hybrid simulation. A
famous example of such a multiscale model in biophysical chemistry is the coupling of
quantum mechanics and molecular mechanics (QM/MM) [40].

This chapter lays the foundations for a hybrid simulation technique that couples
two scales that are particularly useful to model intracellular dynamics: a Markov state
model (MSM) of the molecular dynamics (MD) scale that describes structural changes of
biomolecules and their complexes, and the reaction-diffusion scale that describes diffusion,
association and dissociation on the lengthscale of a cell. This novel approach is called
MSM/RD, as it combines the simulation models chosen at these scales:

(i) MSMs of the molecular scale: MD simulation allow for probing molecular processes
at atomic detail, but its usefulness has long been limited by the sampling problem.
Recently, the combination of hard- and software for high-throughput MD simulations
[41–44] with MSMs [9, 45, 46] has enabled the extensive statistical description of
protein folding and conformation changes [47–50], as well as the association of
proteins with ligands [51–55] and even other proteins [56]. Using multi-ensemble
Markov models (MEMMs) [57–60], MSMs can be derived that even capture the
kinetics of ultra-rare events beyond the seconds timescale at atomistic resolution
[2, 61]. MSM approaches can thus model the long-lived states and transition rates
of molecular detail interactions, but the cost of atomistic MD sampling limits them
to relatively small biomolecules and complexes.

(ii) Reaction-diffusion (RD) scale: While atomic detail is relevant for some processes
that affect the cellular scale, it is neither efficient nor insightful to maintain atomic
resolution at all times for cellular processes. A sensible choice for the cellular scale
is particle-based reaction-diffusion (PBRD, Section 1.4.4) dynamics as a reference
model. PBRD simulates particles, representing individual copies of proteins, ligands
or other metabolites. Particles move in space via diffusion and reactive species
will react with a probability according to their reaction rate when being close.
Here, a reaction may represent molecular processes such as binding, dissociation,
conformational change, or actual enzymatic reactions. PBRD acknowledges that
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chemical reactions are inherently discrete and stochastic in nature [62], and that
diffusion in cells is often not fast enough to justify well-stirred reaction kinetics [63–
65]. A large number of recent software packages and codes implement some form of
PBRD [66–74], see also the reviews [38, 75]. The effect of crowders and complicated
boundaries such as membranes on the particle diffusion can be represented by
including interaction forces on the RD scale [72].

In the limit that the conformational transitions of all molecules are fast, the MSM
dynamics of each molecule effectively averages, and the interaction between the molecules
(e.g. association) occurs with suitably averaged rates, reducing the problem to PBRD.
However, when the lifetimes of some conformations are long compared to the typical
time between two molecular interactions, or even the time between successive rebinding
events of two molecules, the conformation dynamics of molecules described by the MSM
part couples with the PBRD dynamics. MSM/RD opens up the possibility to simulate
and analyze such effects quantitatively. For example, bimolecular binding rates from
MD-derived MSMs can be inaccurate due to periodic boundary effects and a short-lived
dissociated state in comparison to the MSM lag-time [56]. MSM/RD can overcome these
issues by extending the diffusion domain available lessening the periodic boundary effects
and increasing the lifetime of the dissociated state.

The ultimate aim of MSM/RD is to produce an efficient multiscale simulation that
reproduces the essential statistical behavior of a practically unaffordable large-scale MD
simulation by employing only statistics obtained from simulations of the constituent
biomolecules in small solvent boxes. Developing a full theory involving rotational diffusion,
three- or more-body interactions, hydrodynamics would be highly complex. Here a first
stab is taken towards this goal by coupling MSM and PBRD scales for bimolecular
systems without large-scale hydrodynamic interactions. An extension of this work has
recently been developed [76], which extends the current method to the interaction of
multiple molecules and rotational motion which allows to study more complex systems,
such as protein-protein association.

A theory of MSM/RD for bimolecular systems is derived as depicted in Fig. 2.1. When
the two molecules are far from each other, they both undergo a diffusion process. When
they come close to each other, molecular interactions, modeled with MD-derived MSMs,
need to be taken into account. Furthermore, an algorithm to couple the MSM and PBRD
scales is developed for the special case of a protein interacting with a ligand, which is one
of the main advances in this chapter. This is not a trivial undertaking since one needs to
solve two problems:

(i) couple the MSM and PBRD part in such a way that the correct macroscopic rates
and equilibrium probabilities are recovered

(ii) develop a suitable MSM discretization such that this coupling can be made

The validity of the theory and algorithms is demonstrated on a toy model of protein-ligand
interaction and on binding of carbon monoxide to myoglobin.

In related work, Refs. [77, 78] have coupled MD with a diffusion scheme. The work
[79] further incorporates milestoning theory [80] to compute the local kinetic information
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MSM	  A	   MSM	  B	  

MSM	  C	   MSM	  C	  

Reac+on-‐diffusion	  	  
dynamics	  

Diffusion	  	  

state	  i	   state	  j	  

Figure 2.1.: Sketch of the MSM/RD scheme. When molecules A and B are not in close
proximity, they diffuse freely. When A and B are close, they merge into a
complex particle C which itself diffuses and whose internal dynamics are
encoded by coupled MSM state transitions. When the molecules transition
into a dissociated state, they are again separated into two separately diffusing
particles A and B with initial positions depending on the last MSM state.
Note that in the dissociated state, molecules A and B could also poten-
tially undergo conformational changes encoded in independent MSM state
transitions. Reprinted from The Journal of Chemical Physics “MSM/RD:
Coupling Markov state models of molecular kinetics with reaction-diffusion
simulations”, Dibak et al., 2018, with the permission of AIP Publishing.
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in terms of transitions between milestones via short MD runs. In contrast with this work,
MSM/RD does not employ direct MD simulations at the “small” scale, but represents
the small scale by an MSM as this allows for operating on roughly the same timesteps
for the small and the large scales. Other works have proposed alternative schemes to
couple random walks (MSMs) with Brownian diffusion schemes, some examples can be
seen in [81–83]. However, these works focus on specific contexts that are not directly
applicable for coupling MD-derived MSMs with reaction-diffusion schemes.

2.2. MSM/RD: coupling Markov state models and
reaction-diffusion

In this section, a theoretical description for MSM/RD is developed. The relevant scenarios
for MSM/RD can be classified by the number of interacting particles, or the related
reaction order:

(i) First-order reactions: isolated diffusing particles can be modeled by an MSM
obtained from MD simulations in a solvent box. The MSM directly translates into a
set of unimolecular reactions that can be implemented in standard PBRD software.
As long as the particles don’t interact, the only effect of different states on the
dynamics are changes between different diffusion constants/tensors.

(ii) Second-order reactions: interactions between two molecules that can be modeled
as bimolecular reactions including protein-ligand or protein-protein association
(A + B → C). As soon as the complex C has been formed, its dynamics may be
described by state transitions of an MSM of the complex.

(iii) Higher-order reactions: simultaneous interactions between more than two molecules.

Here, the focus lays solely on the treatment of second-order reactions. First-order reactions
are trivial state changes of a particle that are occurring as part of the MSM dynamics.
Consistent with current conventions in PBRD frameworks, higher order reaction can
be broken down to second-order reactions. An extension to treat higher-order reactions
explicitly is suggested in Section 2.5.

In order to derive the theory for second-order reactions, the focus lies on the dynamics
of two molecules, A and B. For the sake of simplicity, it is assumed that the two
molecules do not have conformational changes of their own, so they can only diffuse and
interact with each other. However, it is straightforward to extend MSM/RD to include
conformational changes (first-order reactions) coupled with second-order reactions.

2.2.1. The ground truth model with full dynamics
Ground truth is a term often used in machine learning that refers to a reference model
with respect to which modeling errors are measured. In the present context, the ground
truth model contains the two (or more) solute molecules whose interactions will be later
approximated by an MSM in a large-scale simulation, i.e. a simulation box that is not
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truncated after a small solvent boundary as customary for MD simulation. Importantly,
there is no universally correct ground truth, but this model employs the MD simulation
setup and dynamical model chosen by the user for the modeling task at hand. This choice
includes the MD force field, solvation conditions and ion concentration, the protonation
state at the pH of interest or even constant-pH simulations [84], the treatment of
electrostatics, the thermostat, the integrator and time step, etc.

If such a large-scale model were simulated for a long time or with many trajectories, it
would give rise to statistical properties of the solute molecules that MSM/RD aims to
reproduce, such as their equilibrium constants and association rates. However, such a
simulation is in general inefficient or infeasible, and the aim is to reproduce its statistical
properties using an MSM/RD model that is parametrized only using small MD simulations
of the constituent solute molecules and complexes.

For simplicity, the MSM/RD theory is derived using all-atom explicit solvent MD
simulations with a Langevin thermostat as the ground truth, as this setup is frequently
used for MD simulations. However, the MSM/RD results apply more generally, e.g. to
different choices of thermostats or integrators, as the MSM limit for long-time description
of the dynamics and the overdamped limit for long-time and large-scale description of
the solute transport are achieved from a large family of ground truth models.

Langevin dynamics evolve as:

∂txk(t) = vk(t), mk∂tvk(t) = −∇kU (x(t))− γkvk + ξk(t), (2.1)

where xk represents the three-dimensional position of the kth atom in the system (including
the solvent), x(t) = [x1(t), . . . ,xk(t), . . . ,xN (t)], N the total number of atoms, U is
the potential energy and −∇kU is the force acting on the kth particle, mk is the kth

particle mass, γk is the kth damping coefficient, and ξk(t) is a Gaussian random force
such that the expectations of its components satisfy E[ξk,i(t)] = 0 (zero mean) and
E[ξk,i(t)ξk,j(s)] = 2kBTγkδijδ(t− s) with kBT being the thermal energy according to the
fluctuation-dissipation theorem. Simulations utilize finite-time-step approximations of
Eq. (2.1) and use it to generate stochastic trajectories.

A suitable description of the evolution of densities is found in terms of the transfer
operator, which has been introduced in Section 1.3. Here it’s discretized form is used in
the framework of an MSM to model the close distance interaction of the molecules.

A suitable scale separation can be found by treating molecules A and B differently when
they are close together (interacting) and far apart (non-interacting). More specifically
these scales are defined by the distance between the centers of mass of A and B, rAB and
are introduces as:

(i) MSM domain: molecules are in the interaction region I = {x | rAB(x) < R}.

(ii) PBRD domain: molecules are in the outside region O = {x | rAB(x) ≥ R}.

The definition of the interaction radius R will be investigated later. First, the dynamics
in the respective domains is further investigated.
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2.2.2. Markov state models for interacting molecules
Molecules within a distance closer than R are considered to be interacting, hence the
corresponding subset of state space is called I. The kinetics in I are fully described by the
transfer operator Eq. (1.8), which can be approximated by an MSM derived from a MD
simulation that fully includes I (usually plus some extra space, because MD simulations
typically employ periodic rather than spherical boundary conditions). This approximation
implicitly assumes that the interaction forces between proteins or protein-ligand pairs
have decayed to zero at distances R or greater. Note that this assumption requires that
the MD simulation conducted to parametrize an MSM/RD model has a sufficiently large
simulation box, suitable electrostatics treatment and solvation conditions (ions etc.) such
that in the dissociated state the solutes can be in any orientation without significantly
interacting with each other or with their periodic images.

The dynamics in the interaction region I will be approximated by an MSM (see
Section 1.3.1). Estimating a high-quality MSM from MD simulation data can be quite
complex. It typically involves:

(i) Mapping the MD coordinates to a set of features, such as residue distances, contact
maps or torsion angles

(ii) reducing the dimension to slow collective variables (CVs), often based on the
variational approach or conformation dynamics [85, 86] or its special case time-
lagged independent component analysis (TICA) [87, 88] – see [89, 90] for an
overview

(iii) (optionally) embedding the resulting coordinates in a metric space whose distances
correspond to some form of dynamical distance [91, 92]

(iv) discretizing the result space using data-based clustering [45, 93, 94], typically
resulting in 100-1000 discrete states

(v) estimating the transition matrix T(τ) or a transition rate matrix K with T(τ) =
exp (τK) at some lag time τ , and validating it [9, 20, 48, 95]

(vi) As a final step the MSM may be coarse-grained to few metastable states [96–99]

The MSM software packages PyEMMA [93] and MSMbuilder [94] can greatly help to
simplify this process and make it reproducible.

In the case where there are well-defined meta-stable regions in phase space, one
can greatly reduce the number of states in the MSM. One way to simplify the MSM
construction process above and to directly end up with a few-state MSM is to employ
VAMPnets, where the complex MSM construction pipeline is replaced by a neural network
that is trained using the variational approach for Markov processes [100]. Alternatively,
one can replace the discretization step (iv) above by employing a core set approach that
was derived in [95] and further analyzed in [101]. The essential idea is to define the
states as cores around the metastable regions. Due to the metastability, the probability
of finding the system outside of the metastable regions is very small, so to a good
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2. Coupling Markov state models of molecular kinetics with reaction-diffusion simulations

approximation the kinetics can be described as a core-to-core jump process [101]. This
approach will be employed throughout this chapter and explained in more detail in
Section 2.3.

2.2.3. Reaction-diffusion dynamics for noninteracting molecules

When molecules are far apart, and thus in the PBRD domain defined by rAB(x) ≥ R, they
are not directly interacting. As the dynamics of the two molecules are independent, it is
convenient to only track the net diffusion of the centers of mass, rA and rB. Furthermore,
it is assumed that the dynamics in the PBRD domain can be tracked by coarse timesteps
of at least ∆t which exceeds the typical velocity autocorrelation time (picoseconds). At
such timescales, the fast dynamics corresponding to the solvent are averaged out. It is
possible that even longer timesteps are made using an event-based integration scheme
such as first-passage kinetic Monte Carlo (FPKMC) algorithm, Green’s function reaction
dynamics (GFRD)[77] or MD-GFRD [65, 68, 73, 74, 78]. At such timesteps, the Langevin
equation (2.1) becomes an overdamped Langevin equation for the centers of mass of the
two molecules, i.e. the motion is governed by free diffusion:

∂trA(t) = ξA(t), ∂trB(t) = ξB(t), (2.2)

where ξA(t) and ξB(t) are independent white noise vectors with each of their components
satisfying E[ξK,i(t)] = 0 and E[ξK,i(t)ξK,j(s)] = 2DKδijδ(t − s), with K ∈ {A,B}. DA

and DB are the net diffusion coefficients for the centers of mass, which can be obtained
e.g. from MD simulations. Keeping track of only the centers of mass is not sufficient in
cases where the orientation of particles is of significance to the binding process. In these
cases the rotational diffusion has also taken into account in the PBRD domain. However,
as rotational diffusion is not relevant for the examples discussed in this chapter, it is not
further discussed here. For an extension to rotating interaction see [76] or more generally
[102, 103].

In the present case the frame of reference is simply fixed in rA(t). This assumes
that the rotation of A is slower than the diffusion of B, which is true for protein-ligand
systems. It is further assumed that B is a small molecule such that its orientation is not
very relevant, as it will be the case in this implementation of the scheme. This simplifies
Eq. (2.2) into a simple diffusion in rB only

∂trB(t) = ξ(t), (2.3)

with the components of ξ(t) again satisfying E[ξi(t)] = 0 and E[ξi(t)ξ,j(s)] = 2(DA +
DB)δijδ(t− s).

2.2.4. MSM/RD coupled dynamics

The present coupled model only considers interactions between up to two molecules. This
is a frequent assumption in PBRD [67, 68, 72, 74] but may be restrictive from a molecular
standpoint. It is assumed that simultaneous reactions between three or more molecules
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such as A + B + C → D can always be broken down into A + B → AB; AB + C → D
or other bimolecular pathways, and therefore the focus lies on MSM/RD involving two
molecules. As the dynamics in the I and O region are given in terms of states and
coordinates respectively, one needs to recognize that x and y in the transfer density
p(y→ x; τ) can be either coordinates c (center-of-mass position and perhaps orientation
of the molecule) or states s (metastable regions in the coordinate space). In order to
implement the coupling, the following two quantities are defined:

• pentry (ct → xt+∆; ∆), transfer probability of starting in coordinates ct just inside
the MSM domain (rAB(ct) < R) conditioned on hitting only one state xt+∆ = st+∆
in the MSM domain (transition event) or on exiting once the MSM domain
xt+∆ = ct+∆ (return event)

• pexit (st → xt+∆; ∆), transfer probability of starting in state st conditioned on
exiting once the MSM domain xt+∆ = ct+∆ (exit event) or hitting once any other
state (xt+∆ = st+∆).

Once these transfer probabilities are known, the basic MSM/RD algorithm can be intro-
duced where τRD and τMSM correspond to the diffusion and MSM time-step, respectively.
Algorithm 1 shows the details of the implementation.

There are additional issues in specific scheme implementations, such as estimating the
unknown conditional transfer probabilities, and choosing the MSM discretization and R
such that the overall discretization error is small, among others. These issues are non-
trivial and could potentially be tackled with different approaches. To asses the accuracy
of the given approach, relevant macroscopic observable are compared between MSM/RD
simulations and the ground truth. This comparison quantifies how well the ground truth
can be approximated by the MSM/RD simulation. A possible implementation of the
scheme is proposed in the following section.

2.3. An MSM/RD implementation for protein-ligand systems
This section introduces an implementation of the MSM/RD scheme for a special class of
systems: the binding of a small ligand to a protein – a case that is e.g. relevant in the
study of protein-drug binding kinetics [104]. While the theory described above is more
general, implementations to more challenging systems such as protein-protein interaction
are left open to be treated in future contributions. A step towards such systems has been
taken recently in [76]. As a starting point, the macromolecule A is considered fixed at the
origin with fixed orientation and the ligand B freely diffusing around it with an overall
diffusion constant D = DA +DB. The macromolecule has several possible binding sites
given by some interaction potential. In order to present the MSM/RD scheme in detail,
three different types simulations of simulations are introduced:

(i) Reference simulation (ground truth, if available): MD simulation of B and its
interaction with A in a large spherical domain with radius Rs. Unfortunately, refer-
ence simulations of realistic systems are in general not computationally feasible due
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Algorithm 1: Basic MSM/RD algorithm
input : Initial mode (PBRD or MSM)

initial condition (coordinates c0 or state s0, respectively)
t← 0

while t 6 tfinal :
if in PBRD mode :

Propagate ct → ct+τPBRD by diffusion
Update time t← t+ τPBRD
if rAB(ct) < R : // enter MSM domain

Sample next event (xt+∆,∆) from pentry(ct → xt+∆; ∆)
if transition event :

Map to state st+∆ ← xt+∆
Update time t← t+ ∆
Switch to MSM mode

else: // return event
Map to coordinates ct+∆ ← xt+∆
Update time t← t+ ∆

else: // in MSM mode
if st 6= st−τMSM or previous mode 6= MSM mode :

Sample next event (xt+∆,∆) from pexit (st → xt+∆; ∆)
if exit event :

Map to coordinates ct+∆ ← xt+∆
Update time t← t+ ∆
Switch to PBRD mode and break current loop iteration

Propagate st → st+τMSM using the MSM
Update time t← t+ τMSM
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to the time and lengthscales of the simulation. Nonetheless, reference simulations
of simple systems are used to verify the MSM/RD scheme and validate its use in
more complex systems.

(ii) Small-scale simulation (MD simulation): analogous to the reference simulation
with the difference that B is constrained to a small box with periodic boundary
conditions, see Fig. 2.2 (a). As the potential is negligible outside this box, the main
interaction dynamics are extracted from this simulation’s data into an MSM. This
simulation is used to parametrize the MSM/RD model.

(iii) MSM/RD simulation (hybrid model): couples the MSM for short-range in-
teractions derived from the MD simulation (ii) with a diffusion scheme for the
long-range, see Fig. 2.2 (c). The goal of the scheme is to approximate the ground
truth dynamics given by the reference simulation (i).

2.3.1. Estimation

Dynamic properties need to be extracted from the small-scale simulation (ii) in order to
parametrize the MSM/RD scheme. These properties are the state-to-state dynamics and
the coupling between the MSM and the PBRD domain. The state-to-state dynamics are
estimated using an MSM, and the coupling is given in terms of entry and exit events from
the MSM domain. As these events might happen on different timescales, it is favorable to
be free from the fixed time-step that the MSM requires to be well equilibrated. Therefore,
trajectory statistics are used for the entry and exit events.

MSM

As a first step for the construction of the Markov model and MSM/RD parametrization,
a discrete representation of the underlying data needs to be found. This work uses the
core MSM approach [101], which requires the definition of cores as metastable regions
of phase space. Cores are given by spherical domains around the metastable regions in
the MD simulation and can be found using a clustering algorithm. In the core MSM
approach a discrete trajectory is constructed by assigning the last visited state-index to
each point in the trajectory. Note the trajectory may leave the core of a given state and
re-enter multiple times without transitioning to other states. Using this discretization
technique, the discrete trajectories are truncated into three types of trajectories as shown
in Fig. 2.2 (b): i) entry trajectories that start just inside the MSM domain and either
leave the domain next or hit a core inside the domain. ii) transition trajectories that
start in a state and hit another state as next event and iii) exit trajectories that start in
a state and leave the MSM domain as next event. These trajectories are used to estimate
the transfer densities and to parametrize the MSM/RD simulation.

The MSM for the short-range interactions is built using the full discrete trajectories
and the exit trajectories, Fig. 2.2 (b). Following the methods from [9], a transition matrix
T(τ) is estimated, where the entries are the transition probabilities Tij from state i to j.
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(a) (b) (c)

Figure 2.2.: Illustrations of a MD trajectory, its classification to extract the relevant
dynamics and the MSM/RD scheme. (a): Illustration of a trajectory of a
ligand in a MD simulation within a box with periodic boundaries (small-scale
simulation). Note that there are two metastable regions, e.g. binding sites
on a protein, where the ligand stays for a longer time. (b): Illustration of
truncation and classification of the trajectory. The MSM domain is chosen
so the interaction potential is effectively zero outside this region (bath state);
the cores X and Y are chosen to represent the metastable regions in phase
space. The truncated trajectories are classified into entry trajectories (green),
transition trajectories (red) and exit trajectories (blue), which are used for
the coupling in the MSM/RD scheme. In order to obtain the MSM for the
MSM/RD scheme, the system is also classified into three states, the bath state
and the two cores X and Y ; it is also shown when the transition between these
states occur along a trajectory. (c): Representation of the MSM/RD scheme.
The full trajectories from the MD-simulation are used to derive an MSM to
model the dynamics in the MSM domain. The entry and exit trajectories
from the MD-simulation are used to couple the Brownian dynamics in the
diffusion domain with the dynamics in the MSM domain. Reprinted from
The Journal of Chemical Physics “MSM/RD: Coupling Markov state models
of molecular kinetics with reaction-diffusion simulations”, Dibak et al., 2018,
with the permission of AIP Publishing.
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Using the discrete trajectories, count matrices Cfull
ij (τ) from the complete data set and

Cexit
ij (τ) from the exit trajectories are created, which count all the transitions from state

i to j at a lag time τ observed in the respective datasets. As the coupling between the
MSM and PBRD domain is handled separately, the MSM dynamics only accounts for
transitions amongst the cores and therefore the counts arising from exit trajectories have
to be subtracted

Cij(τ) = Cfull
ij (τ)− δijCexit

ij (τ), (2.4)

where δij denotes the Kronecker delta

δij =
{

1 i = j

0 i 6= j.
(2.5)

The transition matrix is then obtained from the given counts Cij using a maximum
likelihood estimator. Note that the commonly used reversible estimator [20], that ensures
detailed balance in the transition matrix, can not be used here, as detailed balance can
not be assumed for these types of count matrices.

Entering the MSM domain

The protocol to enter the MSM domain from the PBRD domain is constructed with the
entry trajectories as defined above. It consists of generating a list Lentry = {centry,xend,∆}
of all start coordinates centry(just inside the MSM domain) and endpoints xend of entry
trajectories and their corresponding times ∆. The endpoints may be either MSM states
or coordinates in the PBRD domain, see Fig. 2.2 (b). The ensemble of trajectories in this
list estimates the conditional transfer probability pentry (ct → st+∆; ∆) (Section 2.2.4)
for several times ∆. In the MSM/RD simulation samples are drawn from this list of
entry points.

Exiting the MSM domain

For each state s of the MSM, all exit and transition trajectories are collected. Additionally
their end-coordinate or -state along with their respective exit time is compiled in the
lists Lexit,s = {cexit,∆} and Ltrans,s = {strans,∆}. The ensemble of trajectories in these
list estimates the conditional transfer probability pexit (st → ct+∆; ∆) (Section 2.2.4) for
several times ∆. The probability of an exit event Pexit,s is simply estimated as the ratio
of exiting trajectories over the total numbers of trajectories,

Pexit,s = # of trajectories in Lexit,s
# of trajectories in Lexit,s and Ltrans,s

. (2.6)
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2.3.2. The MSM/RD algorithm for protein-ligand systems

Based on the estimated quantities defined in the Section 2.3, an implementation for
protein-ligand systems is introduced based of the MSM/RD algorithm from Section 2.2.4.
The algorithm is shown in Algorithm 2.

Algorithm 2: MSM/RD algorithm for protein-ligand systems
input : Initial mode (PBRD or MSM)

initial condition (coordinates c0 or state s0, respectively)
t = 0

while t 6 tfinal :
if in PBRD mode :

Propagate ct → ct+τPBRD by diffusion
t← t+ τP BRD

if rAB(ct) < R : // enter MSM domain
Select trajectory from Lentry = {centry,xend,∆}
with centry closest to ct

if xend is a state : // enter MSM mode
Map to state st+∆ ← xend
Update time t← t+ ∆
Switch to MSM mode

if xend are coordinates : // remain in PBRD mode
Map to coordinates ct+∆ ← xend
Update time t← t+ ∆

else: // in MSM mode
if st 6= st−τMSM or previous mode 6= MSM mode :

Sample exit event with Pexit,s
if exit event :

Uniformly select trajectory from Lexit,s = {cexit,∆}
Map to coordinates ct+∆ ← cexit
Update time t← t+ ∆
Switch to PBRD mode and break current loop iteration

Propagate st → st+τMSM using T(τMSM)
Update time t← t+ τMSM

The diffusion in the PBRD domain is done using a Euler-Maruyama discretization of
Eq. (2.3) [105]. A higher efficiency when simulating the diffusion step can be achieved
with event-based algorithms, like FPKMC or eGFRD [65, 68, 73, 78] for systems with
low particle concentrations. In order to optimize the efficiency of the algorithm, the entry
points of entry trajectories are classified into equal area bins on the sphere. This allows
the algorithm to find the closest trajectory to a given entry point more efficiently. The
partition of the sphere was done following Ref. [106].
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2.3.3. Verification of the MSM/RD scheme

In order to verify the MSM/RD scheme, systems are used for which it is feasible to
perform a reference simulation. The internal dynamics is verified by comparing the first
passage times (FPTs) distributions and mean first passage times (MFPTs) for each pair
of metastable states within region I between the MSM/RD and reference simulations.
The ground truth MFPTs are estimated by computing the FPTs trefij , where the initial
conditions are chosen as the minima Mi and the system is propagated following the
reference simulation until hitting state j (conditioned on not leaving the MSM domain).
For the MSM/RD scheme, the FPTs tMSM

i,j are computed by placing the particle in state
i and propagating the system following the MSM/RD scheme until state j is hit. If
the particle exits the MSM domain before reaching state j, the trajectory is not taken
into account. With a sufficiently large number of generated sampled, the distributions
of FPTs can be estimated by histograms. The MFPTs are estimated as τ ref

ij =trefij and
τMSM

ij =tMSM
ij , respectively. The MFPT relative error between the MSM/RD and the

reference simulations is estimated as

(Erel)ij =
τ ref

ij − τ MSM
ij

τ ref
ij

. (2.7)

Furthermore, in order to verify the coupling between the PBRD and MSM domain,
the unbinding rate koff, the binding rate kon and equilibrium constant Keq. are compared
between the ground truth and MSM/RD simulations. The binding rate and equilibrium
constant are calculated for different particle concentrations c by fixing the radius Rs

of the simulation domain such that c = 1/VPBRD,with VPBRD the volume of the PBRD
domain.

2.4. Experiments

In this section, the MSM/RD scheme from Section 2.3 is applied to two systems. The first
is a simple model of a ligand diffusing in a potential landscape, which is used to verify
that the MSM/RD scheme reproduces the correct dynamics. The second corresponds
to a more realistic MD system, where the binding of carbon monoxide to myoglobin is
studied.

2.4.1. Ligand diffusion in potential landscape

The MSM/RD scheme is implemented in a simple model, where the reference simulation
is available. The model consists of a ligand B under over-damped Langevin dynamics in
a three-dimensional potential landscape

∂tx(t) = −1
γ
∇U(x) + ξ(t), (2.8)
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with U the interaction potential with some macromolecule A fixed at the origin, γ
the damping coefficient, and each component of the noise satisfies E[ξi(t)] = 0 and
E[ξi(t)ξj(s)] = 2Dδijδ(t − s) with D = kBT/γ the diffusion coefficient. A trajectory
density plot of the potential landscape chosen is shown in Fig. 2.3 (a), and it consists of
nine Gaussians with different depths and widths

U(r) = −
9∑

i=1
siN (r; M i,Σi), (2.9)

where N (r; M i,Σi) denotes a Gaussian centered at minimum M i with covariance matrix
Σi, si denotes a scale factor. The small-scale simulation consists of Euler-Maruyama
numerical realizations of Eq. (2.8) under this potential constrained to a box with an edge
length of 6 nm with periodic boundary conditions. The reference simulation is analogous
to the small-scale simulation with the difference that it uses a larger spherical domain
with reflective boundary conditions at a range of radii corresponding to simulations at
different ligand concentrations.

Parametrization of the MSM/RD scheme

A radius of R = 2.5 nm is selected for the MSM domain (I region) since outside this
domain the potential [Eq. (2.9)] is essentially zero. For the estimation of the MSM, 120
small-scale simulation trajectories are generated. Each of these trajectories is run for
107 steps with a time-step of ∆t = 10−4 ns and ever tenth step is recorded. This results
in a total simulation time of t = 1.2× 105 ns.

The cores are defined as spheres with radius 0.2 nm around the minima M i, and the
count matrix of transition between cores is generated from the trajectories following
Eq. (2.4). A maximum likelihood estimator (implemented in PyEMMA [93]) is then
applied to the count matrix to yield the MSM. From these trajectories the lists Lentry,
Lexit,s, Ltrans,s and Pexit,s are also generated which were introduced in Section 2.3.1.

The timescales of the eigenmodes are estimated for different MSM lag times to test how
well the underlying process is estimated by the MSM. The timescales have small variations
for different lag times [Fig. 2.3 (d)], which means the system can be considered Markovian
for all lag times. However, the lag time has to be chosen with care, as a too large lagtime
would mean that relevant fast timescales are not properly resolved which would result
in significant errors. For all further analyses, a lag time of τMSM = 500∆t = 0.05 ns is
considered to be an optimal compromise.

Comparison of dynamic properties

The binding rate is computed by first estimating the first passage time from a uniformly
sampled location closed to the simulation boundary r = RS − δ to any MSM state. The
distance to the boundary is chosen to be δ = 0.05 nm and 104 simulations are used
to obtain and estimate of the average of the MFPTon, from which the binding rate is
calculated as k∗

on = 1/MFPTon. This procedure is performed for both the MSM/RD
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Figure 2.3.: Visualization and verification of results for the model of ligand diffusing in a
potential landscape. (a): Density plot of the position of the ligand in the
three dimensional potential. Red indicates regions of higher density while
blue indicates regions of lower density. (b): Comparison of first passage
times distribution histograms for the transitions with the highest error in (c).
The left pane corresponds to transitions with negative relative error, and the
right pane to transitions with positive relative error. (c): Relative error of
MFPTs conditioned on not leaving the MSM domain between the MSM/RD
and the reference simulation. (d): Implied timescales of the MSM. The
shaded area represents the standard deviation of the bootstrapping sample.
Well converged timescales are observed for all considered lag times. (e): The
rate kon as function of the concentration of the system for the MSM/RD
and reference simulations. (f): Same plot as (e) but for the logarithm of the
equilibrium constant log(Keq). The error bars in (e) and (f) represent the
95 % confidence interval using a bootstrapping approach. Reprinted from
The Journal of Chemical Physics “MSM/RD: Coupling Markov state models
of molecular kinetics with reaction-diffusion simulations”, Dibak et al., 2018,
with the permission of AIP Publishing.
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and the reference simulation, and excellent agreement is observed between the two,
Fig. 2.3 (e).

For the unbinding rate, the inverse process is investigated by starting in an MSM
state and propagating the dynamics until crossing a boundary defined by a sphere with
radius 2.7 nm > R. The reference simulation yields a value of 0.4020.404

0.400 ns−1 (sub- and
superscript indicate lower and upper bound of the 95% percentile) and the MSM/RD
simulation a value of koff = 0.4000.402

0.398 ns−1. Furthermore, the logarithm of the equilibrium
constant log(Keq) = log(koff/k

∗
on) is computed for both models and for the chosen values

of concentrations, resulting in accurate reproduction of the reference values by the
MSM/RD scheme, Fig. 2.3 (f). These experiments verify that the coupling between the
MSM domain and the RD domain works consistently in the MSM/RD simulation scheme.

As a next step it is to be demonstrated, that also the dynamics between the states
inside the MSM are reproduced to a high accuracy. This can be shown by comparing
MFPTs between all pairs of states conditioned on not leaving the MSM domain. In the
reference simulation this is done by placing the particle at position M i and propagating
the system until state j is reached. If the particle leaves the MSM domain before reaching
state j, this trajectory is discarded. For the MSM/RD simulation, the simulation is
simply started in state i and propagated until state j is hit, while discarding trajectories
that leave the MSM domain. This procedure is repeated until 104 successful trajectories
are found for both simulations, which are averaged to obtain the MFPTs. The relative
errors are calculated with Eq. (2.7); all relative errors are below 9 % [Fig. 2.3 (c)]. It is
further observed that negative errors arise for state pairs that are close together and thus
have short passage times. For these transitions, the MFPT in the MSM/RD simulation
is typically overestimated, as short processes are truncated in the MSM estimation.
Moreover, it is observed that the highest positive errors arise for transitions which are
far apart. These are the hardest to sample since for these transitions there is a very high
number of possible long and non-direct transition trajectories, which are less likely to be
observed. Fig. 2.3 (b) gives a closer look at the four transitions with the highest relative
error by directly comparing the histograms of their FPTs. Even though these transitions
have the highest errors, it is observed that the distributions match well. Therefore, it is
verified that the MSM/RD scheme also describes the internal dynamics accurately.

2.4.2. Binding of CO to myoglobin

Myoglobin is a globular protein which is responsible for the transport of oxygen in muscle
tissue. As a competitor, carbon monoxide (CO) can bind to it, thus disabling its function
to transport oxygen. This system is an interesting application of the MSM/RD scheme.
The binding process of CO to myoglobin has recently been studied in MD simulations
by de Sancho et al. [54], whose data is used to parametrize the MSM/RD scheme. The
dataset consist of MD trajectories of 20 CO molecules and one myoglobin protein for a
total simulation time of 500 ns. The MD simulation is confined to a periodic box with
edge length of 5 nm. Despite the fact that only one CO molecule can reside in the binding
pocket, the error of treating 20 CO molecules as being statistically independent is small
within statistical uncertainty as described in [54]. Therefore, the trajectories of the 20
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Figure 2.4.: Definition of the cores (wire frame spheres) within the myoglobin molecule.
The red sphere indicates the bound state and orange spheres the metastable
states. These are resolved in the MSM. The gray spheres correspond to the
states that were not in the connected set and therefore discarded. The blue
dots are positions of the CO molecules for every 50th frame in the vicinity
of the protein. Reprinted from The Journal of Chemical Physics “MSM/RD:
Coupling Markov state models of molecular kinetics with reaction-diffusion
simulations”, Dibak et al., 2018, with the permission of AIP Publishing.

CO molecules are treated independently, effectively increasing the total simulation time
to 10 µs.

Parametrization of MSM/RD scheme

In order to parametrize the scheme, all frames are first aligned using the Cα atoms of the
myoglobin as reference. The cores are identified using the density-based spatial clustering
of applications with noise algorithm (DBSCAN) [107] on the aligned trajectories, which
finds a total of 16 metastable regions/cores. The positions and size of the cores are shown
in Fig. 2.4, where it can be observed that the algorithm correctly identifies regions of
high ligand density, including the myoglobin bound state which is indicated in red. The
radius of the spherical cores is chosen such that 80 % of the datapoints that were assigned
to the respective state are inside the core.

Four states are discarded as they are not part of the largest connected set of the MSM.
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Figure 2.5.: Results of the CO-myoglobin system. (a): Implied timescales of the dynamics
of the CO myoglobin system. The datapoints and shaded area denote the
sample mean and standard deviation of the bootstrapping samples over the
trajectories: from the 20 given trajectories 20 are sampled with replacement.
Over this sample the discretization process is run which returns a sample
of timescales. The trajectory-samples which are not ergodic or do not lead
to a connected count matrix are considered invalid and discarded. Solid
lines are found using the full dataset. (b): Reaction rate as estimated from
multiple simulations at different concentrations. Reprinted from The Journal
of Chemical Physics “MSM/RD: Coupling Markov state models of molecular
kinetics with reaction-diffusion simulations”, Dibak et al., 2018, with the
permission of AIP Publishing.

As the simulation box had been set up to just contain the protein and a 1 nm solvent
layer, the largest MSM domain that still fits inside the box, R = 2.5 nm, is chosen for
the border between MSM and PBRD region. Analogous to the previous example, the
methods from Section 2.3 are used to estimate an MSM for the close-range dynamics and
generate Lentry, Lexit,s, Ltrans,s and Pexit,s to couple the dynamics in the two domains.

The implied timescales of the MSM are computed and a lag time of 150 ps is selected
where timescales are sufficiently converged, Fig. 2.5 (a). The diffusion constant is com-
puted using the mean squared displacement (MSD) of the parts of the CO trajectories that
are far from the protein, with D = ∆MSD(t)/6∆t. Using a linear regression, a diffusion
constant of DCO = 2.5 nm2 ns−1 is found, which is comparable to the experimental value,
which is in the range of DCO = 2.03 nm2 ns−1 (at 20 °C) to DCO = 2.43 nm2 ns−1 (at
30 °C) [108].
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Comparison of dynamic properties

As in the previous example, binding rates are computed by sampling positions uniformly
in the PBRD domain and simulating the MSM/RD model until it reaches the bound
state. For each concentration, 200 trajectories are run to estimate the binding rate k∗

on.
These rates are plotted against the concentration and shown in Fig. 2.5 (b). The reaction
rate kon = 5762

52 µm−1 s−1 is obtained as the slope of the linear fit. For the unbinding rate,
simulations are started in the bound state and MFPTs are collected for leaving the MSM
domain, resulting in a rate of koff = 19.019.2

18.8 µs−1. The resulting equilibrium constant is
found as Keq = kon/koff = 3.03.3

2.7 m−1 and is similar to 3.6 m−1 found by de Sancho et al.
[54], both of which are close to the experimental value of 2.2 m−1[109]. Table 2.1 shows a
comparison of the resulting rates of the different methods. The binding and unbinding
rate found by de Sancho et al. [54], although yielding a similar equilibrium constant, are
both nearly an order of magnitude faster than the ones obtained with MSM/RD (see
2.1). The first indication that the present rates are an improved estimate is the fact that
the kinetics (both the MSM relaxation timescales and kon) are independent of the lag
time, Fig. 2.5 (a).

To validate that the MSM/RD estimates of koff and kon have been estimated without
significant bias, it must be shown that they are statistically consistent with the ground
truth, which in this case is a sufficiently large and sufficiently long MD simulation. Here,
koff can be estimated directly by counting the frequency of ligand dissociation events
from the binding pocket in the underlying MD simulations. Since there are not sufficient
full dissociation pathways from the bound to the dissociated states in the MD data in
order to make a statistically relevant comparison, a more precise estimate is obtained by
computing the MFPT using an MSM directly constructed from the original MD data
with the same discretization as used in the MSM/RD model. This resulted in a reference
estimate of 23.446.6

11.6 µs−1 (95 % percentile computed with 1000 bootstrap samples), which
is consistent with the MSM/RD estimate (Table 2.1).

Unfortunately, this method is not as accurate for the binding rate kon, which is
notoriously difficult to estimate from small MD simulation boxes, where the length of
trajectory segments in which the ligand stays in the dissociated state without touching
the protein or crossing the periodic boundary are short compared to lagtimes τ used in
an MSM approach, resulting in biased estimates [56]. Therefore, another Myoglobin MD
simulation is performed in an eightfold larger periodic box (edge length 10 nm) with the
same CO concentration as in the small MD simulation (resulting in 160 CO molecules)
for a total simulation time of 405 ns. For this data, a direct MSM estimate of the binding
rate yields 74.7130.9

29.9 µm−1 s−1 (95 % percentile computed with 1000 bootstrap samples).
As a result, the MSM/RD binding and dissociation rates are consistent with standard
estimates computed directly from MD simulation, and the MSM/RD modeling error can
be concluded to be statistically insignificant.

Given the consistency of the models, a further comparison is taken with results of
experimental measurements, which is essentially a test of the MD model (e.g. force field,
thermostat, integrator). These are yet a factor 4-5 slower than the estimates obtained
from MSM/RD (kon = 12 µm−1 s−1 and koff = 5.3 µs−1 found in [109]), confirming that
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MSM/RD Reference
(approx. ground

truth)

MSM in [54] Experiment
[109]

Unit

kon 57.062.0
52.0 74.7130.9

27.9 647 12 m−1 µs−1

koff 19.019.2
18.8 23.446.6

11.6 179 5.3 µs−1

Keq 3.03.3
2.7 3.193.8

2.6 3.6 2.2 m−1

Table 2.1.: Rates and equilibrium constants for Myglobin-CO estimated from different
methods. The reference values approximate the ground truth by conducting
a standard MSM-based MFPT estimate from the MD simulation (for kon
a larger simulation box was used to allow for a generous definition of the
dissociated state). Lower- and uppercase numbers show 95 % confidence
intervals of respective numbers

the major part of the difference between the estimates in [54] and the experimental values
could be removed by the fact that MSM/RD is a significantly more accurate model of
the binding kinetics.

2.5. Discussion and outlook

Combining MSMs derived from MD simulations with PBRD simulations is a promising
simulation scheme for reaching longer time- and length-scales. In this chapter, MSM/RD
was introduced and developed, which proposes a coupling of the two methods based on
the distance of the interacting molecules: The molecule’s interaction in close vicinity is
resolved by an MSM by stochastically traversing between its states; in the far distance
regime, where particles no longer interact, the molecules are diffusing independently.
The MSM extracts the characteristic features of the dynamics from several short MD
simulations. This allows for the generation of new data with great accuracy at a much
faster rate than the original MD simulation. This is a clear advantage to comparable
approaches that rely on running explicit MD simulations when molecules are in vicinity
[78, 103]. Specifically, a simulation algorithm for protein-ligand systems is proposed
which allows to study the binding kinetics of such systems. It is observed that the
proposed schemes yields more accurate binding rates than conventional MSM approaches
as it decreases boundary effects and increases the lifetime of the dissociated state. The
scheme can be, in principle, coupled to any PBRD scheme, like over-damped Langevin
dynamics, Langevin dynamics, GFRD [73, 74], and FPKMC algorithm [68], which could
yield additional efficiency and accuracy.

For verification, the MSM/RD scheme was implemented for a simple ligand diffusion
model consisting of a particle diffusing in a potential landscape, which mimics the
interaction between a ligand and a protein. It is observed that the combined MSM/RD
scheme reproduces the correct dynamics of the binding/unbinding processes as compared
to the reference simulation. Especially, it was able to produce an MSM that accurately
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captures the interaction dynamics with a relatively small amount of data. This hints
towards the model being scalable to larger systems with computationally feasible amounts
of MD simulation data.

As a biologically relevant application, the MSM/RD scheme was applied to the binding
of CO to myoglobin. After successfully extracting a self-consistent MSM and the coupling
dynamics from the MD data, it is observed that the equilibrium constant is consistent
with previous experiments and computational results [54, 109]. It is further demonstrated
that the MSM/RD estimates are consistent with the underlying MD simulations and, in
particular, the estimated association rate is consistent with the association rate estimated
from a reference MD simulation conducted in a large simulation box that was not used
to parametrize the MSM/RD model. This is a significant improvement over Ref. [54],
where tenfold higher rates were estimated.

In a recent development [76], the MSM/RD scheme has been extended to enable
rototranslational diffusion of the particles, independent conformational changes, as well
as interaction between multiple molecules. To this end, the theory has been extended to
treat the multiscale scheme in the framework of hybrid switching diffusion. From this
theory, new simulation algorithms were derived which show promising results for toy
systems with anisotropic binding patches and self-assembly of multiple particles. With the
addition of these features, biologically relevant scenarios can be simulated. If, for example,
different conformations of the protein have different ligand association/dissociation rates
and the conformational changes of the protein are rare events, then the conformational
dynamics and the ligand-binding dynamics are non-trivially coupled at high ligand
concentrations. Such coupled binding kinetics is e.g. observed in the trypsin-benzamidine
system [53].

Another biological relevant example on a larger scale is the activation of the calcium
sensor synaptotagmin in neuronal synapses [110]. Here, a locally very high calcium
concentration is created by the opening of voltage-gated calcium channels as a response to
an electric signal. Synaptotagmin then binds up to five calcium ions while going through
different conformations. At the same time, the local calcium concentration is reduced
as ions leave the vicinity due to diffusion. If synaptotagmin successfully binds enough
calcium ions and transitions into an active conformation, it can catalyze the fission of
neuronal vesicles, which transduces the signal to the postsynaptic side. Such scenarios
could be simulated with MSM/RD, by resolving the channels, the synaptotagmin proteins,
and the ions as individual particles. In this scenario, the binding/dissociation kinetics
and conformational changes of synaptotagmin would be encoded in several MSMs, which
describe the kinetics of the interacting molecules. This would allow studying the whole
biological process in one single MSM/RD simulation.

This example illustrates that MSM/RD could be used to study a wide range of systems
and future iterations of the method, including further details of the underlying system
could allow for computational studies of biological processes that are beyond reach with
other methods currently available.
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3. Diffusion-influenced reaction rates in the
presence of pair interactions

The results of this chapter have been published in:

Manuel Dibak, Christoph Fröhner, Frank Noé, and Felix Höfling. “Diffusion-
influenced reaction rates in the presence of pair interactions”. In: The Journal
of Chemical Physics 151.16 (2019), p. 164105. doi: 10.1063/1.5124728

Parts of text and figures have been adopted unchanged in this chapter. Reproduced from
The Journal of Chemical Physics “Diffusion-influenced reaction rates in the presence of
pair interactions”, Dibak et al., 2019, with the permission AIP Publishing.
Manuel Dibak (MD) and Christoph Fröhner (CF) contributed equally to this work. In
particular, the contributions of the authors were as follows: Felix Höfling, MD and CF
conceived the project and laid out the theory. MD implemented the semi-analytical
solution. CF ran and analyzed the iPRD simulations. MD and CF visualized the data.
All contributors wrote the manuscript.

Summary

In a coarse-grained picture, the interaction between two molecules in solution can be
described in terms of bimolecular reactions. Microscopically, bimolecular reactions can
be seen as a two step process: the reactants firstly have to encounter by diffusion and
in a second step, a reaction can take place. The kinetics of these processes depends,
among other factors, on intermolecular forces, such as steric repulsion or electrostatic
interactions. In this chapter, an extension to the Doi reaction model by interaction
potentials is established. This is a key ingredient for interacting particle reaction-dynamics
(iPRD) simulations. Specifically, for a bimolecular reaction, the model parameters of the
microscopic model are related to the macroscopic reaction rate constants, bridging the gap
between the micro- and macroscopic description. To this end, the corresponding reaction-
diffusion equation is solved in the steady-state, yielding semi-analytical expressions
for the macroscopic rate constant and the density profiles. Analytical expressions are
provided for the limiting cases and a perturbative solution is found in the limit slow
reactions. A computationally inexpensive numerical scheme is provided for the general
case, allowing for probing the whole range from slow to fast reactions. It is observed
that the resulting rate uniquely decomposes into encounter and formation rate, with
the interaction potential influencing both subprocesses. As examples, the influence of
a harmonic repulsion and the Lennard-Jones potential on these rates are discussed in
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detail. The theoretical analysis is corroborated by extensive iPRD simulations of the
systems under investigation and excellent agreement is observed.

3.1. Microscopic reaction model

Following the discussion in Section 1.4, this chapter considers a solution of substances A
and B, that undergo the reaction

A + B −−→ A∗ + B, (3.1)

for which the product A* of the reaction falls out of scope, such that it does not need to
be considered further. The concentrations cA and cB of A and B molecules, respectively,
are assumed to be both so dilute that interactions between molecules of the same type
can safely be ignored. (Otherwise, the reaction kinetics would non-trivially depend on
cA and cB and the reaction rate would not be a well-defined constant.) Further, the
concentration of B molecules is assumed to be much smaller than that of A, cB � cA,
i.e., A molecules are abundant relative to Bs and there is no competition for reactants
between the B molecules. Equivalently, substance B is highly diluted, and the problem
can be rephrased as that of a single B molecule surrounded by A molecules in a large, yet
finite volume V . It is convenient to switch to the reference frame of the B molecule, and
a spherical volume V of radius L is chosen; see Fig. 3.1 for an illustration. In a finite
amount of time and for sufficiently large V , the B molecule absorbs only a negligible
fraction of As so that a quasi-steady state can be assumed with the concentration cA

being constant at the boundary ∂V of the volume. This setup can entirely be studied by
only considering the concentration field of species A, cA(r, t), in the frame of reference of
a single B particle. As this is the only concentration field of interest, the subscript A will
be omitted throughout the rest of this chapter c(r, t) = cA(r, t).

The Doi model [30–33] is used as microscopic reaction model, in which A and B
molecules diffuse in space with diffusion constants DA and DB, respectively, forming a
reactive complex whenever an A is separated from a B by less than the reaction distance
R. This reactive complex undergoes reaction (3.1) with a microscopic rate constant or
propensity λ, thus effectively removing A molecules from the system with a frequency K.
More precisely, given a reactive complex, reaction events are triggered by a Poisson clock
with parameter λ. The throughput or velocity of reaction (3.1) is then given by

dcA∗

dt = KcB , (3.2)

where cA∗ is the overall concentration of the reaction product A*.
Similarly to Debye’s work [28], and as commonly done in iPRD simulations [112],

the focus here is on situations where A and B molecules interact physically with each
other according to an isotropic pair potential U(r) = U(|r|); the vector r denotes the
separation of an AB pair. In this setup, the reaction-diffusion equation [Eq. (1.21)] can
be formulated in terms of the average concentration field c(r, t) of A molecules and the
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Figure 3.1.: System of reactive molecules. Molecules of species A diffuse in space and
can react with B molecules if their distance r is smaller than the reaction
radius R. If B particles are scarce, a reasonable assumption is that there is
no competition between them and one can treat only one of them within a
spherical domain of radius L � R. For the analytical treatment, L → ∞,
whereas for numerical methods and simulations L is finite. Reprinted from
The Journal of Chemical Physics “Diffusion-influenced reaction rates in the
presence of pair interactions”, Dibak et al., 2019, with the permission of AIP
Publishing.
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corresponding flux (density) j(r, t). The reaction operator then takes the shape of a
reaction propensity a(r) yielding

∂tc(r, t) = −∇ · j(r, t)− a(r) c(r, t) , (3.3a)

j(r, t) := −D e−βU(r)∇
[
eβU(r)c(r, t)

]
, (3.3b)

with a(r) > 0 and D = DA+DB the relative diffusion constant of the particles; β = 1/kBT
denotes the inverse of the thermal energy scale. Within the Doi model, the propensity
a(r) is implemented in terms of the Heaviside step function,

a(r) = λ θ(R− |r|), (3.4)

such that the B molecule appears as a spherical reactive sink of radius R.
By isotropy of the setup, the steady flux j(r) of A molecules has only a radial component

j(r) that is a function only of the distance r = |r| to the B molecule. It determines the
reaction frequency K through the surface integral

K = −
∫

|r|=R
j(r) · n dσ = −4πR2j(R) , (3.5)

with the surface normal n pointing outwards; the minus sign arises due to the fact that
particles flow from the boundary to the sink at the origin, j(r) < 0. On the other hand,
the law of mass action [Eq. (1.23)] yields the reaction rate equation

dcA∗

dt = kcAcB , (3.6)

in terms of the macroscopic association rate constant k. Comparing to Eq. (3.2), the
latter is related to the microscopic frequency K by k = K/cA, and the reaction rate
constant follows as

k = 4πR2|j(R)|
cA

. (3.7)

The goal of the following sections is to calculate the flux profile j(r) of the quasi-steady
state and thus the macroscopic rate k, focussing on their dependences on the microscopic
reaction parameters, λ and R, and on the pair potential U(r) between A and B molecules.
Note once again that there is no interaction amongst A molecules.

3.2. Solution strategy and classical limiting cases

In this section, the general solution strategy is worked out for the reaction–diffusion
equations, Eq. (3.3), and analytical solution to important subproblems are obtained, which
resemble a number of classical results. The stationary solutions c(r) obeys ∂tc(r) = 0,
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and thus Eq. (3.3a) reduces to

∇ · j(r) = −a(r) c(r). (3.8)

According to the quasi-steady state assumption, c(r) further satisfies the Dirichlet
boundary condition

c(r) = cA , r ∈ ∂V . (3.9)

Restricting to isotropic potentials, the symmetry can be utilized by switching to a single
radial coordinate, r = |r|, with the convention that the flux j(r) = j(r) · r/r points
outwards:

1
r2 ∂rr

2j(r) = −λ θ(R− r) c(r) (3.10)

with

j(r) = −De−βU(r)∂r

[
eβU(r)c(r)

]
. (3.11)

In this case and for an infinitely large volume V , Eq. (3.9) simplifies to c(r →∞) = cA.
To complete the boundary value problem for c(r), the behavior at the coordinate origin

needs to be specified, which is not obvious due to the interaction potential. The total
flux through a ball Bε of radius ε centered at r = 0 obeys:∫

∂Bε

j(r) · n dσ = −
∫

Bε

a(r) c(r) d3r , (3.12)

invoking Gauss’ theorem and inserting Eq. (3.8). Continuity of the solution c(r) together
with the choice for a(r) according to Eq. (3.4) yields 4πε2 j(ε) ' −λc(0) · 4πε3/3, and
thus

j(0) = 0 . (3.13)

It implies a Robin boundary condition for the concentration profile,

lim
r→0

[
βU ′(r) c(r) + ∂rc(r)

]
= 0, (3.14)

which is satisfied by a Boltzmann distribution scaled by a constant factor:

c(r) ∼ exp(−βU(r)) , r → 0, (3.15)

which captures the r-dependence asymptotically.
Note that the preceding derivation does not apply for potentials U(r) that diverge

as r → 0. In this case, the current j(r) is not defined at the origin, r = 0, and, strictly
speaking, this point must be excluded from the integration domain Bε, which forbids the
application of Gauss’ theorem. Yet, the extension of Eq. (3.15) to diverging potentials,
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U(r → 0) = +∞, is motivated physically as it is improbable that any A molecule reaches
the centre of the reaction volume: an upper bound on c(r) is given by the equilibrium
distribution, describing the non-reacting case. In particular, c(r) is continuous in r = 0
and so is ∇ · j(r) by Eq. (3.8), justifying the use of Gauss’ theorem a posteriori.

The step-like reaction propensity in Eq. (3.10) suggests splitting the domain at the
reaction boundary, r = R, and to find separate solutions c≷ and j≷ in both subdomains,
r ≷ R. By inspection of the r.h.s. of Eqs. (3.10) and (3.11), the flux j(r) is finite and
continuous at this interface, which implies that c(r) is continuously differentiable at
r = R. This provides the interface conditions

c>(R) = c<(R) , (3.16)
j>(R) = j<(R) = −K/4πR2, (3.17)

making use of Eq. (3.5) in the last step. Matching the solutions of both subdomains will
thus yield the sought-after reaction frequency K.

3.2.1. Outer solution

In the outer domain (>), where R 6 r <∞, Eq. (3.10) reduces to an equation for the
flux alone, ∂rr

2j>(r) = 0. Integration from the lower boundary, Eq. (3.17), to some
r > R yields:

j>(r) = − K

4πr2 , (3.18)

with unknown rate K. The functional dependence on r is readily understood by the fact
that, in the absence of reactions, the integral flux through spheres of radius r is constant
(Gauss’ theorem). In particular, the solution is compatible with the no-flux condition,
j>(r → ∞) = 0, which is implied by the upper boundary, c>(r → ∞) = cA, together
with the vanishing force, −∇U(r →∞) = 0, and using Eq. (3.11).

A next step is to calculate the concentration profile c>(r) from Eqs. (3.9) and (3.11).
Introducing

g(r) := eβU(r)r−2 (3.19)

for brevity, one finds (K/4πD) g(r) = ∂r

[
eβU(r)c>(r)

]
, and after integration over [r,∞):

c>(r) = e−βU(r)
[
cA −

K

4πD

∫ ∞

r
g(s)ds

]
, (3.20)

which is Debye’s classical result [28]. If the interaction potential is not present (U = 0),
this reduces to the familiar solution of the Dirichlet–Laplace problem:

c>(r) = cA −
K

4πD
1
r
. (3.21)
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For diffusion-limited reactions, that is when product formation is fast and kf � ke in
Eq. (1.20), particles almost surely react on the surface of the reaction volume and the
concentration inside vanishes: c<(r) = 0 for r 6 R. Then by continuity of c(r) at the
interface of the subdomains, Eq. (3.20) is amended by c>(R) = 0 and can be solved for
K. This yields the Debye reaction rate constant k = K/cA, which it identified as the
encounter rate ke in the presence of a pair potential:

ke = 4πD
/∫ ∞

R
g(s)ds . (3.22)

The corresponding concentration profile is given by Eq. (3.20) and reads

c>(r) = cAe−βU(r)
∫ r

R
g(s) ds

/∫ ∞

R
g(s) ds. (3.23)

In particular, c>(r) is independent of the diffusion constant D. For U(r) = 0, these results
recover Smoluchowski’s rate constant [14] k = 4πDR and the profile c>(r) = cA(1−R/r).

3.2.2. Inner solution without potential
In the absence of an interaction potential, Eqs. (3.10) and (3.11) simplify drastically and
the concentration inside c<(r) the reaction volume, 0 6 r 6 R, obeys the Helmholtz
equation(

∂2
r + 2

r
∂r − κ2

)
c<(r) = 0 (3.24)

with the inverse length κ :=
√
λ/D, describing the penetration depth into the reactive

domain. The flux takes the form j<(r) = −D∂rc<(r), which turns the boundary
conditions for the flux, Eqs. (3.13) and (3.17), into von Neumann conditions for the
concentration, c′

<(0) = 0 and c′
<(R) = K/4πDR2. Equation (3.24) is equivalent to(

∂2
r − κ2)[rc<(r)] = 0, and the boundary value problem is solved by [63]

c<(r) = η
sinh(κr)
κr

(3.25)

with the constant η fixed by the upper boundary; in particular, η is proportional to the
reaction frequency K. Matching inner and outer solutions for c(r), Eqs. (3.21) and (3.25),
at the interface, r = R, leads to η = cA/ cosh(κR), and Doi’s result for the reaction rate
constant [31, 63] follows:

k = 4πDR
[
1− tanh(κR)

κR

]
. (3.26)

The solution naturally decomposes as in Eq. (1.20) into Smoluchowski’s encounter rate
ke = 4πDR, see Eq. (3.22), and a formation rate

kf = 4πDR[κR coth(κR)− 1], (3.27)
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with coth(x) = 1/ tanh(x). In the fast-diffusion limit, κR � 1, i.e., when the reaction
propensity λ is low, the formation rate kf ' (4π/3)R3λ is simply the product of the
reaction volume VR = (4π/3)R3 and the propensity, reflecting well-mixed conditions
inside the reaction volume (c<(r) = const). For fast reactions, κR � 1, one obtains
kf ' 4πR2κ−1λ, which is interpreted as reactions being restricted to a volume 4πR2κ−1,
that is a thin shell of radius R and width κ−1.

3.3. Reaction rates and spatial distributions in the presence of
an interaction potential

For the general solution to the reaction–diffusion problem, Eqs. (3.10) and (3.11), in
the presence of an interaction potential, it remains to find a solution inside the reaction
radius (inner domain) and to match it with Eq. (3.20). As boundary condition j<(0) = 0
is used, Eq. (3.13), and the equations for the current j<(r) are solved first.

3.3.1. Constant potential inside the reaction volume
For the special case that the interaction potential is constant within the reaction volume,
i.e., U(r) = U(R) for r 6 R, the solution is analytically accessible. This may be useful
in modelling reactions in electrolytes while neglecting excluded volume effects and is
discussed as a preliminary to the general case. The inner solution is then equals the
non-interacting case, Eq. (3.25), and can be matched with Eq. (3.20) to find the reaction
rate constant

k = 4πD
(

Rg(R)
κR coth(κR)− 1 +

∫ ∞

R
g(r) dr

)−1
. (3.28)

In particular, the encounter rate ke is equal to Debye’s result, Eq. (3.22), whereas the
formation rate is suppressed by a factor R2g(R) = eβU(R) relative to the non-interacting
value, Eq. (3.27), and the total rate is the harmonic mean of both, Eq. (1.20).

3.3.2. Solution for arbitrary potentials
Proceeding along the lines of the potential-free case, Section 3.2.2, a solution to Eqs. (3.10)
and (3.11) is found inside the reaction volume, 0 6 r 6 R, subject to the boundary
conditions Eqs. (3.13) and (3.17). Applying the differential operator e−βU(r)∂reβU(r) on
both sides of Eq. (3.10) and identifying the flux on the right hand side, one finds the
following Dirichlet problem for the dimensionless function ψ(r) := −4πr2j<(r)/K:

ψ′′(r) +
(
βU ′(r)− 2

r

)
ψ′(r)− κ2ψ(r) = 0 , (3.29a)

ψ(0) = 0 , and ψ(R) = 1 . (3.29b)

In the absence of an explicit solution, the method of finite differences [113] is used
to compute, in particular, the derivative on the reaction boundary, ψ′(R). The latter
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3.3. Reaction rates and spatial distributions in the presence of an interaction potential

determines the concentration on the boundary via Eq. (3.10):

c<(R) = ψ′(R)K/4πR2λ . (3.30)

The reaction frequency K is obtained by matching inner and outer solutions for the
concentration, Eq. (3.16). Employing the numerical value for ψ′(R) and the previous
result, Eq. (3.20), to find

K

4πR2λ
ψ′(R) = e−βU(R)

[
cA −

K

4πD

∫ ∞

R
g(s) ds

]
. (3.31)

Solving for K = k/cA, yields an exact, closed expression for the macroscopic rate constant
k, which is one of the main results:

k = 4πD
[∫ ∞

R
g(s)ds+ g(R)ψ′(R)

κ2

]−1
; (3.32)

the pair potential enters through the function g(r) := eβU(r)r−2. The result naturally
displays the decomposition of Eq. (1.20), and the formation rate is identified as

kf = 4πλ
g(R)ψ′(R) , (3.33)

which appears to be proportional to the reaction propensity λ; in fact, the value of ψ′(R),
as given by Eqs. (3.29), indirectly depends on λ as well. Note that the diffusion-limited
encounter rate ke is the same as for the Debye problem, see Eq. (3.22), and the classical
result, k = ke, is recovered in the limit of instantaneous reactions, λ → ∞, i.e., for
vanishing k−1

f .
An alternative expression for the formation rate kf in terms of the concentration

c(R) is obtained by substituting ψ′(R) using Eq. (3.30) and K = kcA, which yields
kf = kcAe−βU(R)/c(R). Employing the decomposition of the total rate k [Eq. (1.20)] and
solving for kf , one finds

kf = ke

[
cAe−βU(R)

c(R) − 1
]
. (3.34)

Interestingly, the formation rate is fully specified by the encounter rate ke and the
concentration at the reaction boundary relative to its equilibrium value. However, the
computation of c(R) requires the full solution of the reaction–diffusion problem.

The concentration profile c(r) follows from integration of Eq. (3.11) in terms of ψ(r)
and using continuity, Eq. (3.16), to eliminate c<(R) to find

c(r) = cAe−βU(r)
[
1− k

4πD

∫ ∞

r
g(s)ψ(s)ds

]
, (3.35)

with the convention ψ(r) = 1 for r > R. Alternatively, the density profile can also be
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3. Diffusion-influenced reaction rates in the presence of pair interactions

found by Eq. (3.10), from the solution ψ(r) as c<(r) = ψ′(r)K/4πr2λ. However, it is
observed that the numerical integration in Eq. (3.35) yields smaller errors.

3.3.3. Perturbative solution for slow reactions

Slow reactions, λ� DR2, corresponding to a well-mixed reaction volume, are described
by a large penetration depth κ−1 � R. This suggests to expand the concentration profile
c<(r) in the small parameter κR� 1, introducing functions c0, c1, . . . :

c<(r) = c0(r) + (κR)2c1(r) +O
(
(κR)4) ; (3.36)

here, terms of order (κR)4 and higher are neglected. Corresponding fluxes j0(r), j1(r), . . .
are defined by virtue of Eq. (3.11). Inserting the expansion into Eq. (3.10) for r 6 R and
sorting by powers of κ2 = λ/D, one finds that the 0th order is satisfied by the equilibrium
distribution in the absence of reactions:

c0(r) = cAe−βU(r) , (3.37)

which is accompanied by a vanishing flux, j0(r) ≡ 0, due to detailed balance. The flux
j1(r) at order (κR)2 obeys

1
r2 ∂rr

2j1(r) = −κ2D c0(r) , (3.38)

which can be integrated to yield

j1(r) = −κ
2DcA

r2

∫ r

0
e−βU(s)s2ds (3.39)

for 0 6 r 6 R, where the boundary condition j(0) = 0 [Eq. (3.13)] was used. With this,
the reaction rate constant k follows from Eq. (3.7) straightforwardly:

k = κ2D

∫ R

0
e−βU(r) 4πr2dr +O

(
(κR)4) . (3.40)

It allows for a simple interpretation valid for slow reactions: the macroscopic rate
k ' λVeff is the product of the reaction propensity λ and an effectively accessible reaction
volume [37],

Veff =
∫

|r|6R
e−βU(r) d3r . (3.41)

3.3.4. Numerical details

The computation of the reaction rate [Eq. (3.32)] for arbitrary potentials and reaction
parameters requires the numerical solution of the boundary-value problem, Eq. (3.29),
and of the integral, Eq. (3.22). To check the numerical implementation, it is compared
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Figure 3.2.: Relative error ∆k/k of the reaction rate constant k of the numerical solu-
tion [Eq. (3.32)] with respect to the analytical solution [Eq. (3.43)] for a
diverging potential [Eq. (3.42)]. The numerical result is obtained for differ-
ent discretisation widths h given in units of the reaction radius R and for
different reactivities κR. The dashed line depicts a linear scaling, ∆k/k ∼ h.
Reprinted from The Journal of Chemical Physics “Diffusion-influenced reac-
tion rates in the presence of pair interactions”, Dibak et al., 2019, with the
permission of AIP Publishing.

to the analytically exactly tractable, albeit peculiar case of a logarithmic potential,

U(r) =
{
−2kBT log(r/R), r < R

0, otherwise.
(3.42)

With this, g(r) = R−2 θ(R − r) is a step function, and the coefficient βU ′(r) − 2/r in
Eq. (3.29a) reduces to −4/r. The differential equation can be solved using computer
algebra, yielding ψ′(R) and the reaction rate according to Eq. (3.32) as

k = 2πDR
{

3− (κR)2

(κR)2 − 2[κR coth(κR)− 1]

}
. (3.43)

The Debye rate was computed via the adaptive quadrature routines from QUADPACK.
For numerical solutions to Eq. (3.29), the method of finite differences [113] was used by
discretising the domain [0, R] into N sub-intervals of equal size h := R/N . Note that at
the outer most grid points, r = 0 and r = R, Eq. (3.29a) does not require evaluation if
central differences are used to compute ψ′(r) and ψ′′(r) from ψ(r). For a range of values
of κR, the error ∆k between the numerical and the analytical results for the rate was
computed, see Fig. 3.2. The relative error ∆k/k scales approximately linearly with h and
decreases with increasing κR. For the worst case studied, κR = 0.1, it was concluded
that an accuracy better than 10−3 is reached by choosing a grid spacing of h = 10−4R,
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3. Diffusion-influenced reaction rates in the presence of pair interactions

which is still well feasible in terms of computational costs. This value of h is used for all
subsequent calculations.

Finally, it was checked that all terms in Eq. (3.29a) are bounded. In particular,
that the term [βU ′(r) − 2/r]ψ′(r) vanishes in the limit r → 0. The expression is
proportional to [βU ′(r) − 2/r]r2c(r) after re-substituting ψ(r) and using Eq. (3.10).
Further, it is anticipated that the concentration profile is bounded from above by the
equilibrium distribution, c(r) 6 cAe−βU(r), as reactions can only lower the concentration
in the reaction volume, see Fig. 3.8. With this, (2/r) r2c(r) → 0 and |βU ′(r) c(r)| 6
cA

∣∣∣∂re−βU(r)
∣∣∣, and it remains to show that

∣∣∣∂re−βU(r)
∣∣∣ r→0−−−→ 0. This is fulfilled by certain

logarithmic potentials, such as in Eq. (3.42), and by algebraically diverging potentials,
βU(r → 0) ' ar−m with a,m > 0. In the latter case, putting y := r−m one finds∣∣∣∂re−βU(r)

∣∣∣ ' amy(m+1)/me−ay → 0 as y →∞.

3.4. iPRD simulations

Complementary to the preceding theoretical analysis, extensive simulations of the micro-
scopic reaction-diffusion dynamics in the steady state were performed in order to measure
the absolute reaction rate k of the reaction (3.1) and the radial distribution function c(r)
of A molecules relative to a B molecule.

3.4.1. Simulation setup and protocol

Stochastic simulations of the interacting particle-based reaction–diffusion dynamics
(iPRD) are performed with the software ReaDDy 2 [69, 112], which integrates the motion
of particles and reactions between them explicitly in three-dimensional space. In ReaDDy,
time is discretised into steps of fixed size ∆t. A single step consists of first integrating
the Brownian motion of molecules via the Euler–Maruyama scheme and then handling
reaction events according to the Doi model (Section 3.1). After each step, one can
evaluate observables, such as the positions of particles or the number of reactions that
occurred.

The simulation setup is constructed spherically symmetric around a single B molecule
in the coordinate origin, as depicted in Fig. 3.1. In particular, a spherical domain of
finite radius L was used, which will be filled with A molecules such that at the boundary,
r = L, the concentration c(L) of A molecules matches a given constant. Within the
whole domain, A particles diffuse subject to the interaction potential U(r), whereas the
B molecule is fixed in space; here, only potentials that are cut off at a distance rc < L are
studied. The conversion reaction (3.1) takes place with reaction propensity λ inside the
sphere with r 6 R. A large number of simulations is run for varying propensity λ and
different potentials U(r), see below. Simulation units were chosen such that distances
are measured in terms of the reaction radius R, energies in terms of the thermal energy
kBT , and times in terms of the combination τd := R2/D, which is proportional to the
time to explore the reaction volume by diffusion. The parameters used are listed in
Table 3.1, in particular, a time step ∆t = 10−4τd was used throughout production runs.
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3.4. iPRD simulations

Quantity Symbol Value Unit

Propensity of reaction (3.1) λ varies τ−1
d

Soft repulsion strength b 40 kBT/R
2

Soft repulsion range r0 1 R
LJ interaction strength ε 1 kBT

LJ interaction range σ (26/7)−1/6 R
LJ cutoff radius rc 2.5 R

Integration time step ∆t 10−4 τd
Radius of simulation domain L 10 R
Width of factory shell ∆L 5 R
Number of factory particles Nf 1.5× 104 1
Propensity to create A f+ 0.01 τ−1

d
Propensity to absorb A f− 0.01 τ−1

d

Table 3.1.: Parameters used in the particle simulations. Basic units of length, time, and
energy are R, τd := R2/D, and kBT , respectively.

This chosen time step is sufficiently small to be suitable for the Lennard-Jones potential,
which generally calls for much smaller integration steps than the harmonic repulsion due
to an increased stiffness.

Aiming at the simulation of a stationary reaction kinetics, the domain is coated by a
factory shell, with radial coordinates in r ∈ [L,L+ ∆L], that yields a constant supply
of A molecules. Adjacent to the shell, for r > L+ ∆L, an external harmonic potential
is added that prevents A molecules from escaping and thereby closing the simulation
domain. The factory shell contains Nf factory (F) particles, which are fixed in space at
random positions according to a uniform distribution. F particles create and absorb A
molecules through the reversible reaction

F
f+−−⇀↽−−
f−

F + A . (3.44)

The forward reaction has propensity f+ and is of fission type: a new A molecule is placed
at a random distance d ∈ [0, Rf ] from the active F particle. The backward reaction is of
fusion type, by which an A molecule is absorbed with propensity f− if it is closer than
Rf to an F particle. Due to the fact that the number of F particles is conserved, the
factory reactions (3.44) are pseudo-unimolecular, i.e. they can be reduced to

A −−⇀↽−− ∅, (3.45)

which leads to a steady-state concentration c(L) of As. The latter depends also on the
outflux K = 4πL2|j(L)| of A molecules, which can diffuse freely into and out of this
shell and migrate towards the origin due to the reaction of interest, Eq. (3.1). Lacking
an a priori knowledge of the concentration c(L) and the concentration cA in the far
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3. Diffusion-influenced reaction rates in the presence of pair interactions

field (r →∞), simulations with a certain set of parameters Nf , f+, f−, and Rf are run
and the resulting value of cA is estimated accurately from the observed steady-state
profile c(r). Specifically, the solution c(r) = cA −K/4πDr [Eq. (3.21)], is fit to the data
for c(r) in the range max(R, rc) 6 r 6 L, where both interactions and reactions are
absent and A molecules diffuse freely. This yields the extrapolated concentration at far
distances, c(r →∞) = cA. Note that the reaction frequency K is directly available from
the simulation by counting reaction events.

The above procedure relies on the fact that shifting the upper boundary from infinity
to r = L merely shifts the concentration c(r) by an additive constant, leaving the integral
flux through spheres of radius r unchanged, provided that r is outside of the interaction
range. This is a consequence of Gauss’s theorem, see also Eq. (3.11). Therefore, simulation
results with a finite volume can be mapped exactly to the infinite case upon using the
effective far-field concentration cA as determined above.

A data production cycle starts with uniformly distributing A molecules in the factory
shell with a concentration that roughly anticipates the expected cA. This initial state
is relaxed by evolving the reaction–diffusion dynamics for a time span of teq = 300τd,
by executing 3 × 105 integration steps with a coarser time step size of ∆t = 10−3τd.
Equilibration is verified by observing that the number of A particles does not vary
significantly. The time step is then decreased to ∆t = 10−4τd and the system equilibrated
for another time span of 30τd. During the subsequent production run of length similar to
teq, the two main observables are recorded:

(i) the concentration profile c(r) as the radial distribution function (RDF) of A
molecules relative to the B molecule in the center, and

(ii) the number of reactions (3.1) that were performed in each integration step, yielding
the reaction frequency K and thus the macroscopic reaction rate constant k = K/cA.

Observing the RDF in the case without a reaction and comparing it against the Boltzmann
distribution is used to verify the time step.

One such simulation procedure took roughly 512 hours on a single CPU. Simulations
were run for 3 different potentials and 5 different propensities. Statistical averages were
taken over 13 independent realisations, altogether yielding 195 simulations that were run
in parallel. The cumulative CPU time amounts to 100,000 hours.

3.4.2. Pair potentials
In the following, two different isotropic pair potentials are considered for the interaction
between A and B molecules, and are compared to the non-interacting case (U = 0). The
employed potentials are visualized in Fig. 3.3, and all relevant parameters are given in
Table 3.1. The first potential describes an ultra-soft steric repulsion, which is common
for macromolecules such as polymer rings [114]. For simplicity, it is assumed that A and
B molecules repel each other only when their centres are within a cutoff radius r0, and a
harmonic form of interaction is used:

U(r) = 1
2b(r − r0)2 , r 6 r0 , (3.46)
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Figure 3.3.: Pair potentials U(r) used in the study of the steady-state reaction kinetics
[Eqs. (3.46) and (3.47)] for the parameters given in Table 3.1. The separation
r of molecule centres is given in units of the reaction radius R, and the
potential energy U is given in terms of the thermal energy kBT ; the shaded
region marks the reaction sphere in which reactions (3.1) can occur. Arrows
indicate the location of the interaction cutoffs. Reprinted from The Journal
of Chemical Physics “Diffusion-influenced reaction rates in the presence of
pair interactions”, Dibak et al., 2019, with the permission of AIP Publishing.
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and U(r) = 0 otherwise; here, b > 0 is a harmonic spring constant chosen to be stiff,
br0 � kBT , and the cutoff is set to be equal to the reaction radius, r0 = R.

The second potential is a commonly truncated form of the Lennard-Jones (LJ) potential,
which combines a strong steric repulsion of nearly overlapping molecules with a short-range
attraction due to van der Waals forces:

U(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
θ(rc − r), (3.47)

with σ and ε > 0 being a length and an energy, respectively, that set the range and
the strength of the interaction. The value of ε is also the depth of the potential well at
r = σ. Here σ is chosen such that the potential minimum lies within the reaction volume,
specifically, the inflection point of U(r) is set at the boundary, R = (26/7)1/6σ ≈ 1.24σ.
The attractive part of the interaction is truncated at rc = 2.5R.

3.5. Results and discussion

3.5.1. Macroscopic rates

Simulation results for the reaction rate constant k as a function of the propensity λ = κ2D
are shown in Fig. 3.4 for the above potentials. They are compared to the theoretical
predictions from the reaction–diffusion problem, Eq. (3.3), as follows: For the non-
interacting case (U = 0), the exact solution is available in closed form, Eq. (3.26). For the
soft repulsion and the LJ potential, the solution is available only in quasi-analytic form,
Eq. (3.32), i.e., the final expressions for k are explicit in terms of a numerical quadrature
as in the Debye problem and the numerical solution to a one-dimensional boundary
value problem in the interior of the reaction sphere, see Section 3.3.4. As dimensionless
control parameter the combination κR = R

√
λ/D is chosen, which distinguishes the

reaction- and diffusion-limited regimes, κR� 1 and κR� 1, respectively. Equivalently,
(κR)2 = λτd controls the reaction propensity relative to the diffusion time τd = R2/D.

For all choices of the potential, the agreement between theory and simulations is
excellent, see Fig. 3.4 (a). In all three cases, the reaction rate k increases monotonically
with the reaction propensity λ and saturates at Debye’s result, Eq. (3.22), for a diffusion-
limited reaction (κR→∞). In this limit, the reaction occurs almost surely upon first
contact and details inside of the reaction volume become irrelevant, the formation rate
diverges, kf → ∞. Note that for the truncated soft repulsion, Eq. (3.46), the limiting
value equals the Smoluchowski rate as the potential is zero in the outer domain. For
slow reactions, κR � 1, the initial increase of k depends quadratically on κR and it
coincides with the prediction k ' λVeff of perturbation theory, Eq. (3.40). This regime is
better visualised by normalising k with the perturbation result for the non-interacting
case, k(0) = λVR, where VR = (4π/3)R3, see Fig. 3.4 (b). From the limit κR → 0 it
is evident that also the constant of proportionality Veff as calculated from Eq. (3.41)
matches very well with the numerical results. For κR = 0.2, noticeable relative deviations
are seen in the simulation data, indicating that the slow-reaction regime is challenging to
explore by the particle-based approaches such as iPRD. The figure shows further that the
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Figure 3.4.: (a): Macroscopic rate constant k as a function of the reactivity κR with
the inverse penetration depth κ =

√
λ/D and the reaction radius R for

different pair potentials U(r). Data are given relative to the Smoluchowski
rate constant 4πDR (grey dashed line) in terms of the relative diffusion
constant D = DA +DB and the reaction radius R. Symbols are results of
interacting particle-based stochastic simulations of the reaction–diffusion
process (iPRD simulations). Solid lines show theoretical predictions obtained
from exact expressions [non-interacting case, Eq. (3.26)] or quasi-analytic so-
lutions [soft harmonic repulsion and LJ potential, Eq. (3.32)] of the reaction–
diffusion problem, Eqs. (3.3). The pink dashed line indicates the Debye
limit, Eq. (3.22), for the LJ potential. (b): Macroscopic rate constant k
as a function of the reactivity κR normalized by the perturbative solution
k(0) ' λVR of the non-interacting case for slow reactions [Eq. (3.40)]. Dashed
lines indicate the ratios of the accessible to the total reaction volume Veff/VR

for each potential [Eq. (3.41)], which is the prediction of the perturbation the-
ory. Reprinted from The Journal of Chemical Physics “Diffusion-influenced
reaction rates in the presence of pair interactions”, Dibak et al., 2019, with
the permission of AIP Publishing.
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Figure 3.5.: Dependence of the partial reaction rates ke and kf on the attractive part
of the LJ potential with depth ε/kBT = 1, which is tested by varying the
interaction range σ for fixed reaction radius R. The rates are normalised by
their values for the non-interacting case, Eqs. (3.22) and (3.27). Black arrows
indicate the zero crossing, the minimum, and the inflection point of the
Lennard-Jones potential. Reprinted from The Journal of Chemical Physics
“Diffusion-influenced reaction rates in the presence of pair interactions”,
Dibak et al., 2019, with the permission of AIP Publishing.

perturbation solution deviates by no less than 10% from the full solution for κR . 0.5.
How is the reaction rate constant k changed due to the presence of the investigated

potentials? A repulsion within the reaction volume slows down the reaction relative to the
non-interacting case, which can be attributed to the greatly diminished accessible reaction
volume (Fig. 3.4, soft repulsion). The effect is most pronounced for slow reactions, which
are most sensitive to a reduction of the actual penetration depth relative to its value κ−1

of the free case. Evaluating Eq. (3.41) for the specific harmonic repulsion used here, Veff
and thus k are reduced by a factor of ≈ 2.2 relative to the non-interacting case.

An attractive interaction between A and B molecules, on the other hand, is expected
to enhance the encounter rate ke and thus to speed up the overall reaction. Already the
short-ranged well of the truncated LJ potential, Eq. (3.47), suffices to increase ke by
12 % with respect to the free case, Eq. (3.22). Noting that only the part of the potential
outside of the reaction volume, r > R, contributes to ke, the dependence on the attraction
can be tested by varying the interaction range σ at fixed R, see Fig. 3.5. The encounter
rate becomes maximal at σ = R, i.e., when the integral in Eq. (3.22) is taken over the
full domain where the potential is negative, U(r) < U(r →∞).

The ramifications of the potential on the formation rate kf are more subtle: the strongly
repulsive part of the LJ potential should lead to a decrease as the accessible reaction
volume is diminished. At the same time, the potential well induces an enrichment of
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κR by changing the propensity λ = κ2D for a Lennard-Jones potential with
energy ε/kBT = 13 and reaction radius σ/R = 0.1. The black dashed line
shows the perturbative solution where k ∝ κ2, and the dotted lines the
respective rates in the non-interacting case. Reprinted from The Journal of
Chemical Physics “Diffusion-influenced reaction rates in the presence of pair
interactions”, Dibak et al., 2019, with the permission of AIP Publishing.

A molecules at the boundary of the reaction volume, which would increase kf . The
combination of both can lead to a non-monotonic dependence of the formation rate on the
position of the reaction boundary relative to the potential well, which indeed is observed
in the numerical solutions to Eq. (3.33), see Fig. 3.5. The position of the maximum in
kf depends on κR and shifts towards larger σ/R for higher reaction propensity. For the
parameters given in Table 3.1, the effectively accessible reaction volume is increased by
≈ 17% over the free volume VR [Fig. 3.4 (b)], and for all κR the overall rate constant k
is larger than for non-interacting molecules.

By the Markov property of the microscopic reaction–diffusion process, the total reaction
rate constant k is the harmonic mean of the partial rates for encounter and formation,
Eq. (1.20), and thus, k is bounded from above by the smaller rate: k 6 min(ke, kf). The
relative importance of both processes depends on the rescaled reaction propensity κR,
which is nicely seen from Fig. 3.6 for the Lennard-Jones potential with σ/R = 0.1 and
ε/kBT = 13. One reads off that the formation and diffusion-limited regimes, where the
other contribution can safely be neglected, are delimited by κR . 10−1 and κR & 101,
respectively. Inbetween, there is a wide window of propensities, where both processes
enter the overall rate constant. Here, an enhanced availability of reactants due to the
deep potential well compensates a slower reaction propensity so that the formation rate
displays an approximately plateau-like behaviour for 0.1 . κR . 0.5. For sufficiently fast
reactions, the accumulation disappears and kf starts increasing again towards its large
κR behaviour, kf ∼ κR, which resembles the potential-free case as reactions are confined
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Figure 3.7.: The macroscopic rate constant k in the presence of a Lennard–Jones potential
with particle diameter σ and energy depth that is equal to the thermal energy
ε = kBT . Here k is a function of the unit–less reactivity κR =

√
λ/DR

and a function of the reaction radius R, with the microscopic rate constant
λ, relative diffusion constant D. k is given in units of 4πDσ, which is the
encounter rate up to particle diameter if no reaction and potential would
be present. Reprinted from The Journal of Chemical Physics “Diffusion-
influenced reaction rates in the presence of pair interactions”, Dibak et al.,
2019, with the permission of AIP Publishing.

to a thin shell near r = R. Note that kf is a monotonic function of κR, which follows
from Eq. (3.34) and anticipating the monotonic decrease of c(R) as κR increases, see
Fig. 3.8.

Motivated by the practical question how to choose the model parameters λ and R for
given reaction rate k and diffusivity D and given interaction potential, the dependence
of k on both the propensity κR and the reaction radius R/σ was further scrutinized,
exemplified for the Lennard-Jones potential (Fig. 3.7). For slow reactions, κR . 1, the
rate constant k is insensitive to the reaction radius. In the diffusion-limited regime,
κR & 10, the rate constant k mainly depends on the reaction radius R/σ and is insensitive
to the value of κR. Inbetween, 1 . κR . 10, both parameters must be adjusted carefully.
From physical considerations, the reaction radius R should be comparable to the molecular
radius σ, which delimits the freedom in the choice of λ.

3.5.2. Concentration profiles

Simulation results for the concentration profile c(r), more precisely, the radial distribution
of A molecules relative to Bs, are shown in Fig. 3.8 for three different propensities λ,
expressed in terms of κ =

√
λ/D, and for the different interactions considered above. The

data are compared to the theoretical predictions developed in Sections 3.2 and 3.3, and
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Figure 3.8.: Radial distribution c(r) of A molecules around a B molecule for different
reaction propensities λ, here expressed by κ =

√
λ/D. The panels show

results for (a) the non-interacting case, (b) the soft harmonic repulsion
[Eq. (3.46)], and (c) a truncated LJ potential [Eq. (3.47)]. Data points
are results from iPRD simulations, and solid lines theoretical predictions
from Eqs. (3.21) and (3.25) for the non-interacting case and from numerical
solutions to Eqs. (3.20) and (3.29) otherwise. Grey dashed lines represent
the limit κR→∞ of almost sure reactions upon contact [Eq. (3.23)]. Grey
shaded areas mark the interior of the reaction volume (r 6 R), and vertical
lines indicate the respective positions rc of the potential cutoffs. Reprinted
from The Journal of Chemical Physics “Diffusion-influenced reaction rates
in the presence of pair interactions”, Dibak et al., 2019, with the permission
of AIP Publishing.

59



3. Diffusion-influenced reaction rates in the presence of pair interactions

the quantitative agreement is very good for all cases studied. Thus, the iPRD simulations
corroborate the theoretical analysis and the numerical results, which in turn are used to
validate the implementation of the simulation algorithm.

For the non-interacting case [Fig. 3.8 (a)], closed analytic expressions for c(r) inside
and outside of the reaction volume are available, Eqs. (3.25) and (3.21), respectively. For
the soft repulsive and the LJ potentials [Eqs. (3.46) and (3.47)], profiles in the outer
domain are obtained from Eq. (3.20) by a quadrature, and in the inner domain from the
numerical solution for ψ′(r) of the boundary value problem, Eq. (3.29). At distances
r > rc, where neither a reaction can occur nor a potential is present, the constant flux
implies for the profile, c(r) = cA(1− k/4πDr), see Eq. (3.21).

For slow reactions, κR� 1, the concentration profile at leading order in κR is expected
to equal the equilibrium distribution, c0(r) = cAe−βU(r), subject to the specific boundary
condition c(r → ∞) = cA [Eq. (3.37)]. Indeed, for κR = 0.5 both the numerical and
simulation results for c(r) are hardly distinguishable from c0(r) in all three cases studied,
see Fig. 3.8; for U = 0 it holds c0(r) = cA everywhere. Upon increasing κR, the
concentration is decreasing uniformly and, in the limit of an instantaneous product
formation, κR→∞, the profile c(r) vanishes inside the reaction volume and approaches
Debye’s solution, Eq. (3.23), outside as expected. For the non-interacting case and the
soft repulsive potential, the latter simplifies to Smoluchowski’s result, c(r) = cA(1−R/r)
for r > R; for the truncated LJ potential used here, the differences are small and hardly
seen in the graph (Fig. 3.8 (c)). Summarising, the equilibrium distribution and Debye’s
solution constitute upper and lower bounds on c(r).

After having understood these limits, the consequences of the interaction potential on
the profiles will be discussed in more detail: Adding a soft repulsion within the reaction
volume to mimic an excluded volume largely reduces the probability of finding a particle
inside the reaction volume [Fig. 3.8 (b)] and thus suppresses the product formation rate
kf [see also Fig. 3.4 (b)]. Yet, the effect is more pronounced for slow reactions as the
interior of the reaction volume becomes less and less accessible upon increasing κR, and it
is concluded that the repulsion is particularly relevant for slow reactions. The attractive
well of the LJ potential on the other hand induces an enrichment of A molecules near
the reaction boundary, which is more developed for smaller κR [Fig. 3.8 (c)].

3.6. Conclusion

Bimolecular association processes A + B → C are fundamental in reactive systems and
can describe many different types of interactions. In this chapter reactions of this type
were studied for molecules that diffuse in space and exhibit interactions between A and
B molecules through a radial potential U(r). With Doi’s volume reaction model as a
microscopic descriptor, the macroscopic reaction constant k, as well as the concentration
profiles c(r) of A particles around B particle were calculated as functions of microscopic
reaction propensity λ and the reaction radius R. In this picture the B molecules are
assumed to be so dilute that interaction between B and reactive competition can be
neglected. The explicit dependence of the model on λ allows systematically probing
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the kinetics from the well-mixed to the diffusion-limited regime. These regimes can be
distinguished by the dimensionless quantity κR :=

√
λ/DR, which is denoted as the

reactivity of an AB pair. The length κ−1 describes how far molecule centers can penetrate
the reaction volume of radius R before they react, with D := DA +DB being the relative
diffusion constant. This approach bridges between the two well-studied cases κR � 1
(reaction-limited or well-mixed) and κR � 1 (diffusion-limited or fast-reaction limit),
where particles immediately react upon contact.

Over the entire spectrum of κR values and for arbitrary pair potentials, the analytical
result for the reaction rate constant exhibits the Markovian decomposition k−1 = k−1

e +k−1
f

into encounter ke and formation kf rates [Eq. (1.20)], where ke is always given by Debye’s
result Eq. (3.22).

In the well-mixed limit, the rate constant is dominated by the formation rate kf .
Here, perturbation theory (see Section 3.3.3) in small values of κR can be used to find
the reaction rate constant k = λVeff , with the effective reaction volume Veff given by
Eq. (3.41). In the absence of a potential, Veff simplifies to the volume of the reactive sphere
VR = (4π/3)R3. The other side of the spectrum constitutes the diffusion-limited regime,
which is dominated by the encounter rate ke: reactions occur almost surely upon entering
the reaction volume. The expression for k derived here reproduces the Smoluchowski
encounter rate k = 4πDR in the absence of potentials and Debye’s result [28], when
particles diffuse subject to an interaction potential U(r).

In the application-relevant diffusion-influenced regime (see Section 3.3), where ke is of
comparable magnitude as kf , semi-analytical expressions were obtained for the rate k and
the local concentration c(r) that require numerical evaluation [Eqs. (3.32) and (3.35)].
Practically, one has to solve a one-dimensional boundary value problem for the reaction-
diffusion equation inside the reaction volume and compute an integral over the domain
outside the reaction volume; the computational costs of both tasks are negligible. The
numerical scheme was tested against explicit analytic solutions for a logarithmically
repulsive potential, for which the system could be solved using a computer algebra system.
A closed expression for the rate k is given for general potentials outside the reaction
volume in the case that molecules do not interact if their centers are within the reaction
volume [Eq. (3.28)]. This may be useful to model, e.g., reactions in electrolytes while
neglecting excluded volume.

The detailed dependence of the rate k on the reactivity parameter κR was studied
for two different potentials: a soft harmonic repulsion inside the reaction volume, and
a truncated Lennard-Jones potential combining excluded volume and attraction. The
numerical results for the rate k and the concentration c(r) show excellent agreement with
extensive iPRD simulations.

The presented model is at the core of iPRD simulations, which permit studying reaction
processes in cells with spatial resolution at different levels of coarse-graining. In these
simulations, the interaction potential U(r) could either be chosen ad hoc, based on physical
insight, or determined as a potential of mean force from atomistic simulations [59, 115,
116]. The found relations between the microscopic parameters λ,R and the macroscopic
rate k enable the development of quantitative iPRD simulations, i.e. the parameters can
be tuned, such that experimental values of k are reproduced. In the present study, the
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3. Diffusion-influenced reaction rates in the presence of pair interactions

dilute limit was explored, where interaction between particles of the same species can be
ignored. This serves as a well-defined starting point to study effects arising from higher
concentration and crowding on the reaction rate and distribution of particles.
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Part II.

Enhanced sampling techniques for
molecular systems in equilibrium
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4. Introduction

The investigation of many problems in statistical physics includes the computation of
equilibrium quantities, common examples of quantities are the magnetization in spin
systems [117, 118] or the binding affinity in biological systems [119, 120]. These quantities
are usually defined as observables of the system under investigation. More specifically,
an observable 〈O〉 is defined as the ensemble average

〈O〉 =
∫

Γ
O (x)µ (x) dx, (4.1)

with configuration space Γ, the Boltzmann distribution µ (x) = Z−1 exp [−βU (x)], where
U (x) denotes the energy of the system, Z =

∫
Γ exp [−βU(x)] dx the canonical partition

function and β = (kBT )−1 the inverse thermal energy with temperature T and Boltzmann
constant kB. Solving this integral is generally very difficult, as systems under investigation
commonly have many degrees of freedom, making it very high dimensional. A common
set of techniques designed to solve such integrals numerically are Monte Carlo (MC)
methods. In these, the ensemble average Eq. (4.1) is approximated using samples {xi}i>0
from the stationary distribution µ(x). This can be denoted using the Dirac measure as
µ(x) ≈

∑
i>0 δ (x− xi). Eq. (4.1) thus reduces to

〈O〉 ≈ ON = 1
N

∑
i>0

O
(
x(i)

)
. (4.2)

According to the central limit theorem, it can be shown that this method converges
to the correct value, limN→∞ON → 〈O〉, if the observable has a finite variance σ2 =
var [O] < ∞ [121]. Furthermore, assuming that the samples are independent and
identically distributed (i.i.d), it can be shown that this limit is reached independently of
the dimensionality of the underlying system as

ON ≈ N
(
〈O〉, σ

2

N

)
, (4.3)

Thus, the error of the MC method scales as O
(
N−1/2

)
. While in low dimensions other

numerical integration methods converge considerably faster, their complexity rapidly
increases with the dimensionality of the system whereas the rather slow convergence of
the MC methods is independent of the dimensionality of the system. Therefore, they are
a common and often the only feasible choice to compute observables in high-dimensional
systems. It should be further noted, that the error in all MC methods scales proportionally
to N−1/2, and the common problem when designing new methods is usually to improve
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the factor of proportionality.
MC samples are either generated dynamically or statically: dynamic Monte Carlo

methods use a Markovian stochastic process to generate a new sample x′ given the current
state x of the system. Evolving this process results in a trajectory of configurations that
are used as samples. Note that this dynamics does not need to correspond to the physical
dynamics of the system. Even though the Markov property holds for this process, a
sequence of samples will still inhibit a certain amount of correlation which reduces the
effective sample size. This is further discussed in Section 4.2.

Static MC generates a set of samples in one shot, e.g. by transforming samples from a
different distribution to the target distribution. Doing this in an exact fashion is generally
not feasible for high-dimensional distribution. Generally, samples will be drawn from a
biased distribution q(x). If µ(x) and q(x) have a sufficient amount of energetic overlap, a
reweighting technique can be applied in order to remove any bias from the samples. This
again reduces the number of effective samples and faces limitations in high dimensions.
This will be further discussed in the following section.

4.1. Importance sampling and reweighting
Directly generating samples that follow the Boltzmann distribution µ(x) is a challenging
task. Suppose however it would be possible to generate i.i.d. samples from an approxima-
tion distribution q(x) with sufficient energetic overlap with µ(x). Then, a method called
importance sampling [122] can be applied. The latter gives a weight wi to all samples
xi drawn from q(x) and is able to compute unbiased expectation values with respect to
µ(x). This can be shown directly from the definition of the expectation by inserting a
factor of unity

〈O〉 =
∫

Γ
O(x)µ(x)dx =

∫
Γ
O(x)µ(x)

q(x) q(x)dx. (4.4)

With samples x1, . . . ,xN ∼ q(x), an estimator of the expectation above can be found as

ÕN =
∑

iO(xi)wi∑
iwi

, (4.5)

with the unnormalized weights wi ∝ µ(xi)/q(xi). Defining the normalized weights as
ŵi = wi/

∑
iwi, this further simplifies to ÕN =

∑
i ŵiO(xi). Note that finding a good

trial distribution q is a highly nontrivial task, especially in high-dimensional systems,
where the fraction of accessible volume is vanishingly small. In these cases, a poor
approximate q may lead to only a few of the samples having substantial weight. To asses
the quality of the generated samples, the efficiency of the sampling has to be investigated.

4.1.1. Sampling efficiency of a static Monte Carlo method
As the weights ŵi in an importance sampling scheme can become vanishingly small,
the question arises, how a certain number of weighted samples from the approximated
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distribution q compares to a set number of samples from the correct target distribution
µ. One way to assess this quantity is to compare the variance between an estimate of a
reweighted observable and direct samples from the target for a fixed number N of i.i.d.
samples. This is expressed in the estimated sample size

ESS = N
varµ

[
ON

]
varq

[
ÕN

] . (4.6)

Following Liu [123], the ESS can be approximated in terms of the coefficient of variation

cv2(w) =
∑

i(wi − w̄)2

(N − 1)w̄2 , (4.7)

with the sample mean w̄, as

ESS = N

1 + cv2(w) . (4.8)

Consider the simple illustrative example of a multivariate Gaussian µ(x) = N (x; 0, 1),
with 1 ∈ Rd×d that is to be approximated with samples from another multivariate
Gaussian with a slightly higher variance q(x) = N (x; 0, 1(1 + ε)), with ε > 0. For this
simple example, the effective sample size can be computed analytically

ESS ≈ N

(1 + ε2/(2ε+ 1))d/2 . (4.9)

This example demonstrates that the effective sample size exponentially decreases with
dimension d. It is therefore expected that this procedure exhibits limitations when it
comes to scaling to systems consisting of many degrees of freedom. In this example,
even a small “error” ε in the proposal distribution leads to an effective sample size that
vanishes exponentially with the dimensionality [124]. Moreover, Bengtsson et al. [125]
have shown that the maximum weight max(ŵi) approaches unity if the number of samples
N grows slower than d1/3, and thus, the computation of expectations as in Eq. (4.4) fails.

4.2. Markov chain Monte Carlo

Generating independent samples as required in the static MC method described above
is in general a very difficult task. The key idea of Markov chain Monte Carlo (MCMC)
methods is that, with the correct update scheme, a Markov chain can be guaranteed to
converge to the stationary distribution µ. This update rule is given by some stochastic
process that generates a transition from state x to state y with probability p(x→ y). In
order to guarantee convergence to the stationary distribution, this update rule has to
fulfill two conditions [126]

(i) irreducibility: for each pair x,y ∈ Γ, where Γ denotes the configuration space, there
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exists an n > 0, s.t. p(x→ y) =
∫

dx1· · ·
∫

dxNp(x→ x1) . . . p(xN → y) > 0, or in
other words each state x can be reached from any other state y in a finite number
of steps

(ii) stationarity: for each y ∈ Γ
∫

dxµ(x) p(x→ y) = µ(y)

The first condition is hard to prove for a general sampler and update rules are commonly
constructed s.t. this property is fulfilled by construction. In the context of physical
problems it is also commonly denoted as ergodicity. The second condition is usually
fulfilled by picking an update rule that fulfills detailed balance

µ (x) p (x→ y) = µ (y) p(y→ x), (4.10)

where p (x→ y) denotes the transition probability from x to y of some stochastic process
K (x→ y), which is denoted as transition kernel. One way to enforce detailed balance
for a stochastic process K (x→ y) that proposes transitions x → y with probability
pprop (x→ y) is using an acceptance/rejection step, which is commonly denoted as
Metropolis-Hastings algorithm [127]. To this end, the transition probability is split into
a proposal and an acceptance probability

p (x→ y) = pprop (x→ y) pacc (x→ y) . (4.11)

using the detailed balance condition Eq. (4.10), a criterion for the acceptance probability
can be found as

pacc (x→ y) = pacc (y→ x) µ (y) pprop (y→ x)
µ (x) pprop (x→ y) , (4.12)

which serves as a condition on the acceptance probability.
With a := [µ (y) pprop (y→ x)] / [µ (x) pprop (x→ y)], the detailed balance equation is
fulfilled for any function fulfilling pacc(a)/pacc(1/a) = a. The function that maximizes
the acceptance probability is the Metropolis-Hastings criterion [122]

pacc (x→ y) = min
{

1, µ (y) pprop (y→ x)
µ (x) pprop (x→ y)

}
, (4.13)

and most MCMC algorithms use this criterion in order to enforce detailed balance.
An example of the standard MCMC algorithm is shown in Algorithm 3. MCMC
algorithms differ mainly in the used proposal kernels. A simple implementation draws
the proposed new configuration y from a Gaussian centered at the current position
pprop (x→ y) = N

(
y; x, σ2), with fixed variance σ2. In this case the proposal probability

is symmetric, meaning pprop(x → y) = pprop(y → x) and the acceptance probability
Eq. (4.13) simplifies to

pacc (x→ y) = min {1, µ (y) /µ (x)} = min {1, exp [−β (U(y)− U(x))]} . (4.14)

While this approach is straightforward, it also has several drawbacks: Convergence of
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Algorithm 3: Standard MCMC algorithm
input : ls = [ ] : empty list for samples

pprop : proposal density
Niterations : number of generated samples
x0 : initial configuration

x← x0
while i 6 Niterations :

y← sample from pprop(x→ y) ;
pacc ← pacc(x→ y) (Eq. 4.13)
if r ∼ U(0, 1) < pacc :

x← y
ls.append (x)
i← i+ 1

output : list of samples ls

this method is rather slow, as samples are highly correlated due to them being only small
displacements in configurations space. The relation between efficiency and correlation is
discussed in the following section. Furthermore crossing energy barriers is difficult, as
steps climbing free energy hills are more likely to be rejected, thus further increasing
correlations in the sampled configurations. This led to the development of many methods
that aim towards overcoming these problems and lead to a more rapid convergence of
the estimator O. These will be discussed in Section 4.4.

4.3. Efficiency of an MCMC sampler

As noted above, the samples generated from a sequential Monte Carlo sampler are
correlated, as a proposed state y is conditioned on the previous state x. While the
error in the sampled observable is of the order O(N−1/2), the pre-factor of that scaling
depends on the underlying sampling algorithm. Following [123], the efficiency of an
MCMC sampler generating a sequence of samples x1, . . . ,xN , all distributed according
to the stationary distribution µ(x), can be assessed by observing the variance of the
estimator of the observable under investigation O = 1

N

∑
iO(xi). The variance is given

by

var
[
O
]

= var
[∑N

i=1O(xi)
N

]
= σ2

N

[
1 + 2

N−1∑
i=1

(
1− i

N

)
%i

]
≈ σ2

N

[
1 + 2

∞∑
i=1

%i

]
, (4.15)

where σ2 = var[O] and %i = corr [O(x1), O(x1+i)] denotes the normalized time lagged
autocorrelation of O. Here, the stationarity of the Markov chain was used in the
first equality, stating that for j > i the autocorrelation only depends on the lag time
corr [O(xi), O(xj)] = corr [O(x1), O(x1+j−i)]. Furthermore, terms of O(N−2) were omit-
ted in the approximation.
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Defining the integrated autocorrelation time as

τint(O) = 1
2

inf∑
i=− inf

%i = 1
2 +

∞∑
i=1

%i, (4.16)

the variance of the sampler of the mean can be expressed as

Nvar (O) = 2τint(O)σ2. (4.17)

Comparing the variance Eq. (4.17) with that of an estimator using i.i.d. samples Eq. (4.3),
one observes that the error is equivalent to a sampler using Neff = N/2τint(O) i.i.d.
samples. Thus, this quantity can be considered the effective sample size of a sampler and
it can be used as a basis for comparison between different types of samplers. Furthermore,
this gives rise to the sampling efficiency, which can be defined as effective sample size per
sample

η = Neff
N

= (2τint)−1 (4.18)

Generally, the sampler with larger efficiency η is preferable.
For large lag times i is is often observed that the autocorrelation time exhibits an

exponential decay |%i| = exp [−i/τexp (O)] on a timescale τexp(O). With the definition of
the integrated autocorrelation time Eq. (4.16) it can be shown that

τint(O) = 1
2 +

∞∑
i=1

%i =
∞∑

i=0
e−i/τexp(O) − 1

2 = 1
2 coth

(
1

2τexp(O)

)
≈ τexp(O), (4.19)

where the geometric series was used in the third equality and the approximation holds
for large τexp(O) [123].

In the case of a discrete phase space S the transition probabilities are given by the
transition matrix T. The slowest relaxation time, which is defined by the timescale of the
slowest process of the system τexp = supO∈L2(S) τexp(O) is then connected to the second
largest eigenvalue λ2 of the transition matrix T through τexp = − lnλ2 [128].

This allows for estimating the efficiency of a sampler using Gaussian displacements
in a system exhibiting a free energy barrier in configuration space. Returning to the
example of transitioning an energy barrier in configuration space (Section 1.2), where the
transition rate is proportional to kK = exp (−Eb/kBT ). Standard MCMC with Gaussian
displacements approximates overdamped Brownian dynamics [129] and therefore the
transition rate of such an MCMC sampler is expected to be proportional to kK. Thus,
the integrated autocorrelation time is also approximated to be τexp = k−1

K , meaning that
the efficiency η = 1/2τint ∝ kK of a Gaussian MCMC sampler exhibits Arrhenius-like
scaling log η ∝ (kBT )−1. This results in extremely slow convergence when high barriers
are present in the energy landscape. This problem led to a vast development of enhanced
MCMC methods. The following section introduces some of the most common techniques
in this field.
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4.4. Enhanced Markov chain Monte Carlo techniques

In this section, several improvements of the MCMC algorithm utilizing symmetric
Gaussian displacements are discussed.

4.4.1. Multi-temperature methods

A set of common techniques that aims at increasing the sampling efficiency utilizes
the fact that the transition rate over energy barriers kK exhibits Arrhenius-like scaling,
log kK ∝ (kBT )−1, and thus samplers running at higher temperatures are producing
uncorrelated samples at a higher frequency.

The two most widely recognized methods in this class are simulated [130, 131] and paral-
lel tempering [132–134] which operate on a family of distributions

{
µi (x) = Z−1

i exp−U(x)/kBTi

}
i6NT

parameterized by a set of NT temperatures {Ti}i6NT
. In these types of sampling algo-

rithms, the lowest temperature is the one of interest and higher temperatures are chosen
with the sole purpose of enhancing the transition rates over the free energy barriers. The
method then utilizes temperature exchange moves to mix the configurations between
the different temperatures. In order to fulfill detailed balance, these methods rely on
a significant overlap of the energetic distributions at different temperatures, therefore
these have to be chosen carefully. Specifically, for a system of size N , the number of
required temperature approximately scales as

√
N [134]. One way of reducing the required

number of replicas is by utilizing nonequilibrium simulations [135]. These are performed
by swapping the temperatures between the proposed configurations and allowing for
relaxation of the energies in the process. The heat that is dissipated in the process has
to be taken into account when accepting the resulting move.

Simulated tempering (ST) defines the target distribution on an augmented space
A = Γ× I, where I = {1, . . . , NT } is a set of discrete temperature indices. The density
of (x, i) ∈ A is given by

µST (x, i) ∝ ci exp [−U(x)/kBTi] , (4.20)

where the ci are pre-defined constants that need to be set such that each temperature
level roughly has the same probability of being visited. The ST proposal kernel consists
of a convex combination of two steps that either operate on the state space variable x
and propose a step (x, i)→ (y, i), or operate on the temperature index i, and propose a
step (x, i)→ (x, j). Both steps enforce detailed balance in the augmented space (x, i).
To obtain the samples at the correct temperature, a final marginalization step has to be
taken. Intuitively this algorithm implements Simulated Annealing [136] into an MCMC
sampler which can be understood as heating up the system to overcome energy barriers
with cooling down to relax the energies, similar to annealing procedures in metallurgy.
Temperature swaps are usually proposed between neighboring temperatures only, in order
to maximize the acceptance probability of these moves. Under the assumption of tuning
the parameters ci to achieve equal population across all temperatures, the diffusion in
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the temperature space takes the form of a symmetric random walk in one dimension.
This results in a mixing time of O(N2

T ), which limits the number of temperatures that
can be used efficiently [123].

Furthermore, under the assumptions above, only a number of 1/NT of the samples are
drawn from the distribution at the temperature of interest, which leads to an efficiency of
η ≈ 1/ (NT τint). Assuming that the sampler in the augmented space transitions energy
barriers as quickly as the highest temperature, the integrated correlation time is reduced
to τint ≈ exp(EB/kBTmax). With these assumptions, the highest temperature must be at
least Tmax = T0 ln τint/ (ln τint − lnNT ) for the sampler to be as efficient as just running
sampling at the lowest temperature NT times longer.

Parallel Tempering (PT) also operates at multiple temperatures. The major difference
is, that NT copies, each at its own temperature Ti, are propagated simultaneously. Thus,
instead of handling an augmented space as in ST, the sampler operates in the product
space ST1 × · · · × STN

. The joint probability of samples in this space is given by

µPT(x1, . . . ,xNT
) =

NT∏
i=1

µTi(xi). (4.21)

Again, the system can be propagated in two different fashions. Either all samples are
propagated at their respective temperature (x1, . . . ,xNT

) →
(
y1, . . . ,yNT

)
, or sam-

ples can be swapped between two different temperatures (x1, . . . ,xi, . . .xj , . . . ,xNT
)→

(x1, . . . ,xj , . . .xi, . . . ,xNT
). Accepting swapping moves with probability

pacc ((Ti, Tj)→ (Tj , Ti)) = min {1, exp [U(xi)− U(xj)] [1/Ti − 1/Tj ]} (4.22)

enforces detailed balance in the temperature product space and ensures convergence to
the Boltzmann distribution at each temperature.

The efficiency of the scheme still depends on the chosen dynamics in the configuration
space. In this scheme, several copies of the system are propagated at the same time. This
also has to be reflected when computing the efficiency. Specifically, as only the lowest
temperature is of importance, NT update steps have to be performed in order to generate
one new sample. Following Eq. (4.18), the efficiency for a parallel tempering sampler is
therefore

ηPT = (2NT τint(O))−1. (4.23)

An augmented scheme for improved dynamics at several temperatures including a deep
learning approach will be discussed in Chapter 6.

Population Annealing Another multi-temperature method is population annealing [137].
In this algorithm, many replicas of the system are initialized at a high temperature. The
temperature is then sequentially reduced (TN−1, . . . , T0), where Ti > Ti+1, and T0 is the
target temperature. At each step, the samples are redrawn with the (unnormalized)
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probabilities wj ∝ exp [− (βi − βi−1)Ej ], where Ej is the energy of replica j. This
ensures that the samples are close to equilibrium at the given temperature. However, the
resampled configuration is going to be correlated, as it might contain multiple copies of
the same configurations. Additionally, it might also be biased, as the low energy tails are
expected to be missing in the ensemble. Both of these problems are partially addressed
by running a fixed number of MCMC moves after re-sampling which ensures relaxation of
the energies at the current temperature and additionally aids to decorrelate samples [138,
139].

Different versions of these algorithms exist when the ensemble under consideration is
not that of constant temperature. A more general approach to the sampling with several
ensembles is the replica-exchange or Hamiltonian exchange method [140].

4.4.2. Nonequilibrium path sampling

One potential strength of the MCMC method is that a proposed transition x→ y does not
need to follow a physical path in phase space. This is utilized in a class of methods [141,
142] which uses short out-of-equilibrium simulations in order to generate far-ranging
MCMC moves. The recently developed non-equilibrium chain Monte Carlo [143] gives a
general framework for using non-equilibrium processes as a proposal density. A proposal
step is generated by applying a sequence of perturbation kernels αi(x,y) and propagation
kernels Ki(x,y). The full propagation protocol is given by alternating the perturbation
and propagation kernels Λ = (α1,K1, . . . , αN ,KN ). The perturbation kernels are meant
to drive the system out of equilibrium, while the propagation kernels are meant to
relax the system toward equilibrium. Applying these kernels consecutively results in a
non-equilibrium path

x = x0
α1−→ x∗

1
K1−−→ x1

α2−→ · · · αN−−→ x∗
N

KN−−→ xN = y. (4.24)

The reverse protocol, denoted as Λ̃ =
(
α̃N , K̃N , . . . , α̃1, K̃1

)
, where the ζ̃ denotes the

inverse of the protocol ζ. Computing the exact proposal probability of such a move is
in general not feasible, as the dynamics inherently are stochastic and depend on many
intermediate states which would have to be integrated over. Thus fulfilling detailed balance
with such a move is not tractable. However, the notion of superdetailed balance [144]
can be fulfilled with such a move, which constitutes a detailed balance of the conditional
path probabilities:

pacc = min {1, exp(−β∆U + ∆S)} , (4.25)

where ∆S = log p(xN → · · · → x0; Λ̃)− log p(x0 → · · · → xN ; Λ) denotes the difference
in logarithmic path probability, between the forward and backward path under the
propagation kernels Λ. A connection between the path probabilities and the dissipated
heat is given by the Crooks fluctuation theorem [145]. The perturbation kernels in this
method usually drive the system along a pre-defined reaction coordinate. An exact
perturbation protocol has therein to be crafted by hand and the final acceptance ratio
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crucially depends on it.
This method has recently been applied in the machine learning community as a way

to implement a more complex family of transformations called stochastic normalizing
flows [146], which combine deterministic proposals with stochastic dynamics in order to
generate a sample.

4.4.3. Biased potential methods

Several methods make use of a small set of coordinates, called collective coordinates,
which are considered relevant for the dynamics of interest of the molecules. The system of
interest is then biased along these coordinates, to either drive the system systematically or
allow for faster transitions along them. Samples from the unbiased Boltzmann distribution
can then be generated by a reweighting step Section 4.1. Metadynamics [147] biases
the potential on the collective variables in an iterative fashion, where the bias potential
is increased in areas where the system resides a long time, thus, pushing the system
out of metastable states. The bias potentials are chosen to be Gaussian-shaped with a
user-defined width. Recent developments suggest the usage of deep learning to find an
optimal bias potential [148]. Umbrella sampling [149] runs several sampling iterations
with bias potentials, so-called umbrellas, placed along a single collective coordinate, the
reaction coordinate, and thus, pulls the system from one end to the other. All of these
methods require prior knowledge of coordinates which are relevant for the dynamics of
the molecule of interest.

4.4.4. Hamiltonian Monte Carlo

The autocorrelation of a Markov chain can further be reduced by designing better
proposals. To this end, care has to be taken such that the benefit of generating better
steps does not outweigh their computational cost. One important method for this is
Hamiltonian Monte Carlo (HMC) [150]. The HMC method augments the configuration
space with auxiliary variables x → (x,p), which are distributed as pA(p), propagates
the sample in augmented space by some dynamics (x′,p′) = D(x,p) and computes a
proposal in the augmented space x→ (x,p)→ (x′,p′)→ x′. Defining the Hamiltonian
in augmented space H(x,p) = U(x)− kBT log pA(p), it can be shown that accepting a
step generated in this fashion with probability

pacc
(
(x,p)→ (x′,p′)

)
= min {1, exp [−β∆H] | det JD(x,p)|} , (4.26)

with ∆H = H(x,p)−H(x′,p′), and JD the Jacobian of the dynamics D, fulfills detailed
balance in configuration space. The augmented distribution pA is commonly chosen to
be a Maxwell Boltzmann distribution. With this choice, H takes the form of a classical
Hamiltonian, which lead to naming this method Hamiltonian Monte Carlo. Furthermore,
choosing a dynamics that preserves H resembles the classical Hamiltonian dynamics of

74



4.4. Enhanced Markov chain Monte Carlo techniques

the system. Integrating Hamilton’s equations

∂tx = ∂pH, ∂tp = −∂qH, (4.27)

(x′,p′) = D(x,p) =
∫ ∆t

0
(ẋ, ṗ)dt, (4.28)

for some time ∆t preserves the Hamiltonian ∆H = 0 and furthermore, according to
Liouville’s theorem, also preserves the volume | det JD| = 1. Thus, such a proposed
move has acceptance probability pacc(x → x′) = 1. In practice, due to errors arising
from numerical integration, the acceptance probability will eventually be lower. As
numerical errors accumulate with an increase of the integration time ∆t, a decrease of
the acceptance probability is observed with an increase of the integration time. The
correct choice of the integrator and integration time is important, and a trade-off between
precision and computational cost has to be considered when selecting them. A common
choice for the numerical integration method in this context is the leapfrog integrator
[151].

However, the dynamics D that generates a new proposal does not need to have any
physical meaning and in many situations, it is favorable to choose a function that
generates far-reaching moves that have a lower acceptance rather than short-ranged
moves with high acceptance, as these moves will drastically reduce the autocorrelation
time. Methods such as smart darting Monte Carlo make use of this, which is introduced
in the following section.

4.4.5. Smart darting Monte Carlo

The convergence rate of a MCMC sampler is limited by the transition rate over the largest
free energy barriers in the system which is a function of the barrier height as discussed
above. This limitation of the convergence rate is especially evident in situations where
states are disconnected and finding e.g. a reaction coordinate that could be used to drive
the system is challenging. Different approaches have been developed for these scenarios:
Smart Darting Monte Carlo [152, 153] introduces kernels that propose far-ranging moves
that allow for direct transitions between regions in phase space of high population. This
approach completely ignores energy barriers between the metastable states. To this end,
free energy minima mi are identified in a first exploration step. Then small spheres
are defined around these minima. In the sampling run, the sampler proposes direct
transitions between these spheres by translation. Say the system is currently in sphere
i, then a proposal to a randomly selected sphere j is generated by y = x + dij , where
dij = mj −mi denotes the displacement from center i to j. In order for detailed balance
to hold, the resulting y then needs to be in sphere j. These moves are alternated with
local exploration moves, such as standard MCMC. In high dimensions, however, the
fraction of the spheres in the total volume becomes vanishingly small, and therefore
finding a sphere by random exploration becomes unlikely.

This problem is partially circumvented in ConfJump [154] by mapping the current
state to the closest energy minimum and attempting a long-range move by translation to
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another energy minimum. The method focuses on the sampling of molecules and these
long-range moves are proposed by transforming the current configuration to internal
coordinates and performing a translation there. Again is has to be checked that the
probability of this proposal is balanced to ensure convergence.

In Chapter 5 a new sampling scheme along the lines of these methods is introduced. It
uses general invertible functions in order to propose the new, far-reaching moves. These
are parametrized by neural networks and trained on samples of the individual metastable
states. This has significant advantages over using a simple translation between the
metastable states, as the invertible function can learn the local free energy landscape
around the minima and propose moves with higher acceptance probability accordingly.

4.5. Deep learning approaches for MC methods

With the current rise of attention that the field of deep learning has seen, new methods
have been developed which use deep neural networks (DNNs) to construct MCMC moves.
Recently proposed methods use DNNs for approximating the target Boltzmann distribu-
tion [155] or projecting onto high probability manifolds [156]. Two recent approaches use
reversible network architectures to improve HMC: A-NICE-MC [157] proposes steps by
applying volume-preserving transformations that operate on the augmented configuration
space. Another approach [158] augments the leapfrog algorithm with DNNs and thereby
altering the classical path of the system. Both are trained for sampling efficiency in an
unsupervised fashion and therefore rely on random exploration of configuration space in
order to find metastable states.

In Boltzmann generators [159, 160] reversible DNNs are used to draw statistically
independent equilibrium samples of condensed matter systems and protein molecules
in an importance sampling framework. This method uses deep learning for sampling a
target distribution by combining an exact probability generator such as a normalizing
Flow [161, 162] with reweighting (Section 4.1).

These new methods are facilitated by the recent development of new neural network
architectures that enable for inexpensive inversion and computation of Jacobians, named
flows

4.5.1. Flows

Both, MCMC and reweighting rely on the computation of a likelihood associated with
a proposed move or sample y, in order to fulfill detailed balance or compute weights
respectively. If such a move or sample is generated by a function y = f(x), this likelihood
can be computed by the change of variable formula, which states that for an invertible
function f : Rd → Rd, and a random variable X with distribution pX(x), the density of
the transformed variable y = f(x) is given by

pY (y) = pX(x) |det Jf (x)|−1 . (4.29)

Utilizing a neural network to parametrize the function f therefore requires two properties:
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• invertibility: the inverse of a function f−1 needs to exist and its computation needs
to be feasible

• the Jacobian determinant det Jf (x) =
∣∣∣∂fi(x)

∂xj

∣∣∣ needs to be easily computable.

While it is usually possible to compute the Jacobian of a deep neural network (DNN),
only a few of the DNN-architectures are invertible. Furthermore, the computation of the
Jacobian of a general function can become extremely computationally expensive. A class
of neural network architectures that fulfill these conditions are called flows. Recently
many new types of flows have been proposed [146, 157, 162–164]. A flow usually consists of
a sequence of transformations fi, with the total transformation given by the composition
y = fN ◦ · · · ◦ f1(x). Furthermore, let x(i) = fi ◦ · · · ◦ f1(x) denote the output of the
i-th transformation. A wide variety uses so-called coupling layers to ensure invertibility
and easy computation of the Jacobian. In coupling layers, the coordinates x(i) ∈ Rd are
split into two channels x(i)

1 ∈ Rd1 ,x(i)
2 ∈ Rd2 , with d1 + d2 = d. The update of one set

of coordinates is then given by an invertible parametrized scalar function hΘ(·) whose
parameters Θ = Θ(x(i)

2 ) are a function of the second set of coordinates. This function
is applied element-wise on the first set of coordinated, while other set of coordinates is
simply kept constant

x(i+1)
1,j = h

Θ
(

x(i)
2

) (x(i)
1,j

)
(4.30)

x(i+1)
2 = x(i)

2 ,

which can be inverted by applying the inverse h−1
Θ in the first line. Furthermore, it results

in a triangular Jacobian, whose determinant is easily computed as the product over its
diagonal entries

det Jfi
=
∏
j

∂hΘ(x(i)
2 )(x

(i)
1,j)/∂x(i)

1,j . (4.31)

In the following step, the coordinate sets are swapped, and x(i+2)
2,j = h

Θ
(

x(i+1)
1

)(x(i+1)
2,j ),

while x(i+2)
1 = x(i+1)

1 . Stacking multiple of these building blocks enables for complicated
transformations, as information can flow between the different sets of coordinates. The
Jacobian of the full transformation f is then given by the sum of the Jacobians of the
partial transformations det Jf (x) =

∏
i det Jfi

The most simple transformation defined by this procedure is the nonlinear independent
component estimation (NICE) [157], where hΘ(y)(x) = x + Θ(y). Here, Θ can be an
arbitrary function. Thus, a multilayer perceptron (MLP), as a general function estimator,
is a common choice for Θ. Further generalizations use an affine transformation, which is
denoted as real-valued non-volume preserving transformation (RNVP) [162], or general
invertible functions parametrized by splines [165]. The work presented in this thesis
mostly makes use of the RNVP structure [162]. For this flow structure, the updates take
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Figure 4.1.: Architecture of the RNVP networks. The input configuration x is separated
into two channels x(1)

1 ,x(1)
2 . At the first iteration only subsets x(1)

2 is fed
into the neural networks S1, T1 allowing for nonlinear transformations. The
outputs of the neural networks S1, T1 are respectively multiplied and added
to the other subset x(1)

1 to arrive at x(1)
1 , while x(1)

2 is kept constant. In the
following iteration, the subsets are swapped and x(2)

2 gets transformed by
functions depending only on x(1)

1 . Stacking many of these iterations allows
for a complex transformation that can easily be inverted.

the form[
x(i+1)

1
x(i+1)

2

]
=

 x(i)
1 � exp

[
s(i)

(
x(i)

2

)]
+ T (i)

(
x(i)

2

)
x(i)

2

 , (4.32)

[
x(i+2)

1
x(i+2)

2

]
=

 x(i+1)
1

x(i+1)
2 � exp

[
s(i+1)

(
x(i+1)

1

)]
+ T (i+1)

(
x(i+1)

1

)  , (4.33)

where si, Ti : Rd1/2 → Rd2/1 are DNNs and � denotes the element-wise multiplication.
Due to the simple form of the transformation, the log Jacobian can easily be computed
as log |det Jfi

| =
∑

j s
(i)
j . A diagrammatic description of this transformation is shown

in Fig. 4.1. As denoted later on in Chapter 6, it is in some cases favorable to keep
transformations volume preserving, i.e. with log | det J | = 0. This can be achieved
straightforwardly by subtracting the mean from the scaling parameters s(i) = s̃(i) −∑

j s̃
(i)
j /ds, where s̃(i) is the output of the MLP and ds its dimensionality. This structure

allows the flow to exchange volume between the coordinates while preserving the total
volume under the transformation.

These flows can also be used in a static Monte Carlo framework in which they serve a
proposal distribution for reweighting.
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4.5.2. Normalizing flows and Boltzmann Generators

A class of methods [161, 166–168] utilizes flows in combination with the change of variable
formula for densities [Eq. (4.29)] to transform samples z from a distribution pZ(z) to the
target distribution pX(x) by a transformation x = g(z). The distribution pZ is usually
denoted as latent distribution and is commonly chosen such that i.i.d. samples can easily
be generated from it. A common choice is a standard Gaussian distribution pZ = N (0, 1),
thus normalizing the configuration space distribution pX by the transformation g−1.
Generating i.i.d. samples from x ∼ pX then becomes as easy as sampling z ∼ pZ(z) and
computing x = g(z). However, finding the correct transformation g is a difficult task.

This is exactly what flows were designed for: approximate the function g by a flow
f , which gives rise to a distribution qX(x) = pZ(f−1(x))| det Jg−1(x)|. Further train
f , such that qX ≈ pX by minimizing some (statistical) divergence D(pX ||qX). This
method is called normalizing flows as it utilizes a flow to normalize a distribution. A
recent development of normalizing flows in the field of statistical physics is Boltzmann
Generators (BG) [146, 159], which aims at generating samples from the Boltzmann
distribution pX = µ. To this end, some samples from the Boltzmann distribution,
which follow some empirical sampling distribution %(x), are usually required for training.
BG minimize a combination of the forward and backward Kulback-Leibler divergence
DKL(q||p) =

∫
dxp(x) log p(x)/q(x) between q(x) and µ(x) [159, 169]:

DKL(%X ||qX) = Ex∼%X

[1
2

∥∥∥f−1(x)
∥∥∥2
− log |det Jf−1(x)|

]
+ const. (4.34)

DKL(qX ||µ) = Ez∼pZ [βU(f(z))− log | det Jf (z)|] + const., (4.35)

where the term Eq. (4.34) is commonly denoted as negative log likelihood nll(%X ||qX).
Training a BG usually consists of minimizing a convex combination of Eqs. (4.34)
and (4.35).

As recovering the exact Boltzmann distribution is extremely hard in high dimensions,
a final reweighting step can be taken in order to obtain unbiased ensemble averages.
As the flow provides an exact likelihood method, unnormalized weights can easily be
computed in terms of importance sampling and using Eq. (4.4), these are found as

w = exp {−βU(f(z))}
pZ(z) | det Jf (z)|. (4.36)

With these weights, the bias introduced by the deviation between the output distribution
qZ and the target distribution µ can be compensated, ensuring the convergence of
observables.

Twofold contribution in the field of enhanced sampling methods has been made in the
course of this thesis:

With Neural Mode Jump Monte Carlo, a new method has been developed that allows
for MCMC proposals that directly transition between metastable states. To this end
flows are trained to propose these transitions directly. This allows for circumventing the
problem of slow convergence across free energy barriers. The method is introduced in
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the following chapter.
Furthermore, an extension in the BG framework has been developed that allows for

generating output distributions that exhibit the same Arrhenius-like scaling behavior as
the Boltzmann distribution. This extension allows for training at higher temperatures
where high-quality training samples are more easily accessible. Following this training
the BG can be used to sample at a lower temperature for more efficient sampling or at
multiple temperatures to investigate temperature-dependent observables. The method
can further be utilized in a PT framework to generate a highly efficient sampler. It is
introduced in Chapter 6.
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The results of this chapter have been published in:

Luigi Sbailò, Manuel Dibak, and Frank Noé. “Neural mode jump Monte
Carlo”. In: The Journal of Chemical Physics 154.7 (2021), p. 074101. doi:
10.1063/5.0032346

Parts of text and figures have been adopted unchanged in this chapter. Reproduced from
The Journal of Chemical Physics “Neural mode jump Monte Carlo”, Sbailò et al., 2021,
with the permission AIP Publishing.
Luigi Sbailò (LS) and Manuel Dibak (MD) contributed equally to this work. In particular
the contribution was as follows: all authors conceived the project, LS and MD worked
out the theory, performed experiments and visualized the data. MD implemented the
training and sampling algorithms. All contributors wrote the manuscript.

Summary
Markov chain Monte Carlo methods are a powerful tool for computing equilibrium
observables in complex high-dimensional systems. In molecular systems these methods
often exhibit a slow convergence, as transitions over large energy barriers drastically slow
down the generation of uncorrelated samples. Methods such as smart darting Monte
Carlo partially address this issue, by directly proposing moves between energy wells,
thus completely ignoring the barriers in-between. However, these often face problems,
as they can not account for the energy surface around these minima, which can be
very rigid, leading to this method having a very poor acceptance probability. In this
chapter, a novel method is proposed, which increases convergence in systems composed of
many metastable states. This method aims to connect metastable regions directly using
invertible functions that generate long-ranging proposal moves in the MCMC framework.
These functions are parametrized by flows, a type of neural network architecture suitable
for this application. During training, the flow optimizes the acceptance probability of
large jumps between minima in the free energy landscape. A comprehensive theory, as
well as a training scheme for the network, are provided and the method is demonstrated
on example systems.

5.1. Introduction
The generation of long-range moves as proposed in the schemes introduced in Section 4.4.5
is challenging when the energy landscape is rough, since the potential energy surface in
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the region surrounding local minima can drastically change among the different minima.
In this case, using trivial translation as long-range moves would most likely cause large
energy differences, causing proposed moves likely to be rejected. In order to generate
moves with high acceptance probability, trial moves should pair points in either metastable
state in a way that minimizes the energy difference, thus constructing a bijection between
configurations in either well.

Constructing such bijection manually would require detailed knowledge of the system
and is practically impossible in multi-dimensional systems. Recent advances in the field
of machine learning have permitted to deal with problems that were not solvable with a
sole human understanding, and, more specifically, flows (Section 4.5.1) are an ideal tool
to provide such a bijection.

In this chapter, neural mode jump Monte Carlo (Neural MJMC) is presented, a novel
method to efficiently sample the equilibrium distribution of complex many-body systems
with unbiased Markov chains. In this scheme, reversible neural networks are trained to
propose long-range neural moves that directly connect different metastable states, as
neural moves do not depend on the physical path connecting start and endpoint. The
method requires prior knowledge of the position of the metastable states in configuration
space, which could be obtained from e.g. x-ray scattering or NMR experiments from which
starting points in different conformations can be generated [171]. Possible applications
range from proteins with multiple metastable states (e.g. Kinases) to solid-state systems
with multiple phases, where configurations in either phase can easily be generated, but
observing the transition is rare. Local displacements, e.g. by Gaussian displacements, and
neural moves are randomly alternated in a combined scheme to accelerate the convergence
rate of Markov chains. Configurations from different metastable states are used to train
the networks, which are optimized to produce high acceptance probability moves. The
local moves ensure the ergodicity of the scheme, while neural moves accelerate convergence
to equilibrium, realizing an accurate and deep exploration of the configuration space.

In Neural MJMC, the proposal probability is split into two steps: firstly, a proposal
density is selected from a pre-defined list of proposal densities on the current state x,
then a new state y is drawn from the selected proposal density. Proposal densities
are distinguished between local proposals and neural proposals, where local proposals
generate local moves, e.g. through random displacement with Gaussian increments, and
neural proposals connect different metastable states with global moves.

5.2. Theory

Assume that the configuration space Γ is decomposed into a number of non-overlapping
subsets called cores {Ωα}α6N ⊂ Γ, with ∪αΩα = Γ, each representing one of the N
metastable states. The neural proposal kernel Kαβ is defined as the density that proposes
transitions from the core Ωα to the core Ωβ. Assuming the system is in state x ∈ Ωα,
the probability to select the neural proposal Kαβ is denoted as pαβ(x). Once Kαβ has
been selected, a state y ∈ Ωβ is drawn from the selection probability pαβ

prop(x→ y).
A neural proposal Kαβ can only be selected within the core Ωα and with constant prob-
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ability pαβ(x) = pαβχΩα(x), where χΩ(x) denotes the characteristic function, Eq. (1.14).
Assuming that each pair of states (α, β) is only connected by one neural proposal Kαβ

and that there exists an inverse proposal Kβα connecting β with α, a proposed move
starting in Ωα with selected neural proposal Kαβ fulfills detailed balance if it is accepted
with probability

pαβ
acc(x→ y) = min

{
1,
µ(y) pβα p

βα
prop(y→ x)

µ(x) pαβ p
αβ
prop(x→ y)

}
, (5.1)

which follows from the Metropoli-Hastings criterion Eq. (4.13). The neural proposal Kαβ

and its inverse Kβα connecting the cores Ωα and Ωβ are furthermore parametrized as
a bijective function fαβ(·) pairing the states defined in the two cores, i.e. y = fαβ(x),
f−1

αβ (y) = x, ∀x ∈ Ωα, where x ∈ Ωα , y ∈ Ωβ. Thus for each pair of different cores
(Ωα,Ωβ) a bijective function fαβ(·) is defined. The probability distribution of neural
proposals is then represented with Dirac delta distributions and the acceptance specifies
to

pαβ
acc(x→ y) = min

{
1,
µ(y) pαβ δ(x− f−1

αβ (y))
µ(x) pβα δ(y− fαβ(x))

}
. (5.2)

Using the change of variable formula in the Dirac distribution δ(x−f−1
αβ (y)) =

∣∣∣det Jfαβ
(x)
∣∣∣ δ(y−

fαβ(x)) , with the Jacobian Jfαβ
(x) of the function fαβ, the acceptance probability for

neural moves can be simplified to

pαβ
acc(x→ y) = min

{
1, µ(y) pαβ

µ(x) pβα

∣∣∣det Jfαβ
(x)
∣∣∣} . (5.3)

In case the local proposal (α = β) is selected, the inverse move is only possible with
another local proposal Kαα. Note that a local move may leave the current core and the
proposal probability for the inverse move might change. Thus the acceptance probability
for a local move reduces to

pαα
acc(x→ y) = min

{
1,
µ(y)

∑
β χΩβ

pββ

µ(x)pαα

}
. (5.4)

In order to ensure ergodicity, there needs to be a finite probability of selecting the local
proposal in all cores. Figure 5.1 gives a graphical description of the sampling scheme and
Algorithm 4 summarizes the Neural MJMC sampling scheme.

5.3. Optimal proposal density

To achieve fast decorrelation of the Markov chain, the neural proposal functions fαβ

should maximize the acceptance in both directions. This is quantified by maximizing the
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5. Neural Mode Jump Monte Carlo

Algorithm 4: Neural MJMC sampling scheme
input : ls = [ ] : empty list for samples

{pαβ} : proposal selection probabilities
{fαβ}: proposal functions
x← x0 : starting point of sampling
Niterations : number of generated samples
σlocal : standard deviation of local moves

while i 6 Niterations :
draw proposal density Kαβ from {pαβ}
if α = β : // propose local move

w← sample from N (0,1)
y← x + w · σlocal
pacc ← pαα

acc(x→ y) (Eq. 5.4)
else: // propose neural move

y = fαβ(x)
pacc ← pαβ

acc(x→ y) (Eq. 5.3)
if r ∼ U(0, 1) < pacc :

x← y
ls.append (x)
i← i+ 1

output : list of samples ls

expected log probability that the moves proposed by fαβ are accepted in both directions

max
fαβ

log Ex∼Ωα [pacc(x→ y)pacc(y→ x)] > max E {log [pacc(x→ y)ppacc(y→ x)]}

= max
fαβ

E [min (0, log g) + min(0,− log g)] = max
fαβ

E [min(log g,− log g)]

= max
fαβ

E [− |log g|] , (5.5)

where g := µ(y) pαβ

µ(x) pβα

∣∣∣det Jfαβ
(x)
∣∣∣ and using Jensen’s inequality [172] in the first line. Using

the stationary distribution in the canonical ensemble µ(x) ∝ exp(−βU(x)), with the
thermal energy β−1 = kBT , the potential energy U(x) of the system under consideration
and assuming that fαβ is a bijection between the cores (α, β), the equation above can be
rewritten to find

min
fαβ

E
[
β
∣∣∣∆Uαβ(x) + kBT log

∣∣∣det Jfαβ
(x)
∣∣∣+ ∆Rαβ

∣∣∣] , (5.6)

with the potential difference ∆Uαβ(x) := U(x)− U(fαβ(x)) and the log selection ratio
∆Rαβ := −kBT log pαβ/pβα. Note that the term inside the modulus is equivalent to the
Kulback-Leibler divergence between the transformed distribution fαβ(Ωα) and the target
distribution Ωβ as found in [159].
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5.4. Neural network architecture and training

Figure 5.1.: Schematic figure of Neural MJMC scheme. Given configuration x in core
Ω1 there are three neural and one local proposals available, as denoted by
arrows. One of these is selected and a new state y is proposed. Reprinted
from The Journal of Chemical Physics “Neural mode jump Monte Carlo”,
Sbailò, Dibak, and Noé, 2021, with the permission of AIP Publishing.

This result can be interpreted in a physically meaningful manner by applying the tri-
angular inequality E [− |log g|] > − |E [log g]|, identifying ∆S = −kBE

[
log

∣∣∣det Jfαβ
(x)
∣∣∣]

as the change of differential entropy (see Appendix B for details) and ∆U = E [∆Uαβ(x)]
as the change of internal energy under the transformation fαβ(x). It is observed that
the expected log acceptance is lower bound by the absolute change in free energy
∆F = ∆U − T∆S under the transformation fij(·) divided by thermal energy

E {log [pacc(x→ y)pacc(y→ x)]} > −β |∆F + ∆Rαβ| . (5.7)

This results shows that the proposal selection ratio Rij can be used to tune the bi-
directional acceptance probability.

5.4. Neural network architecture and training
As neural moves are defined with invertible functions, it is necessary to choose neural
networks that are invertible. Furthermore, the Jacobian of the transformation needs to
be computable at a reasonable cost. A class of neural network architectures designed for
this task are are flows [157, 161–163, 173]. Section 4.5.1 gives an introduction to flows
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5. Neural Mode Jump Monte Carlo

and introduces some common variants thereof.
In order to ensure that the output of the network fαβ(·) is in the correct well, a

harmonic bias potential centered in the target core is added during training

Ubias(x) =
{
k (x− xα)2 x ∈ Ωα

k (x− xβ)2 x ∈ Ωβ

, (5.8)

where xα is the reference configuration in core α and the spring constant k is a hyper-
parameter, resulting in the biased system Ũ(x) = U(x) + Ubias(x) used during training.
The network is trained in several stages, gradually lowering the strength of the bias
potential. To find the reference configurations xα k-means clustering [174] is run on
samples generated from local MCMC sampling in either well. Training sets of both of
the wells are generated for a set of gradually decreasing bias strengths {ki}i6Nk

. After
convergence of the training at ki, the training set is exchanged and training is restarted
with ki+1 6 ki. This allows for a slowly expanding training set, which enables the
network to learn how to generate meaningful moves on a gradually more complex set of
training data. The loss that is to be minimized during training is given by the negative
bi-directional acceptance Eq. (5.6):

Lacc = Ex∼Ωα

{[
∆Ũαβ(x) + kBT log

∣∣∣det Jfαβ
(x)
∣∣∣]2} , (5.9)

where the square of the norm is used to penalize high energies. Training is performed in
the forward and backward direction and the same loss applies to samples from core Ωβ

with exchanged labels α↔ β.

5.5. Numerical experiments

Neural MJMC is demonstrated on two examples: a two-dimensional potential landscape
with three minima and a system consisting of two dimer particles which are suspended in
a bath of repulsive particles. The functional form of the potentials and detailed training
parameters are given in Appendix A.2.

As a good compromise between computational cost and expressiveness, RNVP [162] are
used as network structure for these examples. See Section 4.5.1 for a detailed description
of this flow architecture.

5.5.1. Gaussian triple well

As an example for a system with multiple states, Neural MJMC is demonstrated on
a two-dimensional potential landscape consisting of 3 Gaussian shaped wells. The 3
cores are defined by a Voronoi tessellation [175] of the configurations space for which the
minima of the Gaussians are used as centers. The functional form and its parameters is
given in Appendix A.2.1.

Each flow fαβ is trained independently on configurations sampled from the minima.

86



5.5. Numerical experiments

Figure 5.2.: Two-dimensional histogram (center) of samples from the 2D Gaussian triple
well potential generated by Neural MJMC with a short section of the Markov
chain (orange solid line) and marginal distributions pX (top) and pY (right).
The black dashed line depicts the border between the states which are defined
by a Voronoi tessellation. Convergence to the correct Boltzmann distribution
can be observed from the histograms of the marginal distributions, where the
green line is the reference solution from numerical integration of the system’s
Boltzmann distribution. Reprinted from The Journal of Chemical Physics
“Neural mode jump Monte Carlo”, Sbailò, Dibak, and Noé, 2021, with the
permission of AIP Publishing.
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Figure 5.3.: 2D histograms of the solvent particles of the training data that was used
at different strengths of the bias potential. At a high bias strength k, the
particles are highly localized which enables the neural network to learn
the mean position of the particles. The particles are less localized with a
decrease in the strength of the bias potential k, thus enabling to learn an
approximation to the true particle distribution.

In the sampling step, 100 independent trajectories of length 105 steps are generated
and averaged. The marginal distributions pX and pY which are the projections of the
Boltzmann distribution on the X and Y axes are compared and great agreement is
observed to results from numerical integration of the Boltzmann distribution, Fig. 5.2.

5.5.2. Dimer in repulsive Lennard Jones bath

As a bigger challenge, Neural MJMC is applied to a two-dimensional system composed of
a bistable dimer immersed in a bath of strongly repelling particles and confined to a box.
The bistable dimer potential has a minimum in the closed and open configurations, which
are separated by a high energy barrier, Fig. 5.4 (right bottom). Opening and closing of
the dimer requires a concerted motion of the solvent particles, that makes it difficult
to sample the physical path connecting the two configurations. Appendix A.2.2 gives a
detailed description of the system.

The open and closed configuration serve as cores [Fig. 5.4 (right top)] in Neural MJMC
and are distinguished by the distance between the dimer particles. The neural network
is trained on states sampled independently in the closed and open configuration at
four different bias strengths with 105 samples for each well and bias. Figure 5.3 shows
histograms of the solvent particles of the open configuration at the different bias strengths
ki used for training. As the system is invariant under permutation of solvent and dimer
particles, neural moves would have to be learned independently for each permutation
of the system That is clearly infeasible as the number of permutation scales factorially
with the number of particles. This problem is circumvented by permutation reduction,
i.e. exchanging the labels of the particles such that the labeling is consistent. This is
accomplished by re-labeling the particles such that the distance to a reference configuration
in each metastable state is minimized. To this end the Hungarian algorithm [176] is used
to find the permutation of particle indices that minimizes the distance to the reference
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Figure 5.4.: Left Free energy along the distance between the dimer particles. The
corresponding bands represent reference values obtained by umbrella sampling
with the standard error given by their thickness. The neural network has been
trained at temperature T = T0, then simulations at different temperatures
have been performed using Neural MJMC. Simulations are run for 1.5× 107

steps, and error bars are generated from several sampling runs. In this
figure, it is observed that Neural MJMC correctly samples the free energy
along the reaction coordinate of the system at different temperatures. Right
top: Reference configurations in the closed (left) and open (right) dimer
configuration. The dimer particles are displayed in blue, and solvent particles
in gray. The strongly repulsive potential does not allow for significant
overlap between particles at equilibrium. Right bottom: Dimer interaction
potential Ed as a function of the dimer distance. Reprinted from The Journal
of Chemical Physics “Neural mode jump Monte Carlo”, Sbailò, Dibak, and
Noé, 2021, with the permission of AIP Publishing.
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Figure 5.5.: Left: Dimer distance over a single realization using Neural MJMC (top), and
using local MCMC (bottom), with histograms of the dimer distance obtained
by the displayed trajectory on the right, where the reference value is displayed
by the black dashed line. Spontaneous transitions with local MCMC are not
observed at this time-scale. Neural MJMC explores both metastable states
in the trajectory multiple times and correctly reproduces the distribution
of dimer distances. Right: Autocorrelation of the dimer distance. Neural
moves allow for a fast exploration of both metastable states, accelerating the
production of uncorrelated samples. In this figure, it is evident that Neural
MJMC frequently generates uncorrelated samples, and short trajectories are
sufficient to reconstruct the right distribution. In contrast, configurations
generated with local MCMC are highly correlated, as they do not cross the
energy barrier. Reprinted from The Journal of Chemical Physics “Neural
mode jump Monte Carlo”, Sbailò, Dibak, and Noé, 2021, with the permission
of AIP Publishing.

configuration.
Each neural network in the RNVP architecture consists of three hidden layer with

76 nodes. The transformation consists of a total of 20 RNVP layers and contains
approximately 1.4× 106 trainable parameters. Neural MJMC is used to generate a single
trajectory with 1.5× 107 steps, where the probability of neural moves is set to 1 %. In
terms of computational performance, sampling with Neural MJMC is approximately a
factor of four slower than MCMC with local displacements for this system. This slow
down arises from the evaluation of the network and the remapping of particles. As a
reference value, umbrella sampling [149] is used to sample the free energy along the
dimer distance. To this end, 20 umbrellas are used along the dimer distance and the
biased configurations are sampled with MCMC. The free energy is calculated using the
multistate Bennet acceptance ratio [177] method.

Neural moves cause direct transitions between the two metastable states and thus
a rapid exploration of the configuration space. The convergence to the Boltzmann
distribution is observed as shown in Fig. 5.4 (left). An estimate for the crossing time
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with only local moves can be found to be at the order of 1012 sampling steps at T = 1
from the Kramers problem (Section 1.2) which make exhausting simulations, using local
moves only, infeasible. In Neural MJMC many crossings of the energy barrier can be
observed, Fig. 5.5 (left). This is also reflected in the autocorrelation function where
samples generated with local MCMC remain highly correlated, while it decays in Neural
MJMC simulations on a scale of approximately 105 sampling steps, Fig. 5.5 (right). Thus
generating the desired uncorrelated samples of the equilibrium distribution.

5.6. Conclusion and outlook

This chapter presented Neural Mode Jump Monte Carlo (Neural MJMC), a novel method
that allows for efficient sampling of the Boltzmann distribution of complex systems
composed of metastable states. The method uses invertible neural networks architectures,
called flows, in order to parametrize bijections between metastable regions in phase space
and optimizes these for bi-directional acceptance probability. To this end, samples from
either metastable state are required during training, which can e.g. be generated using
local MCMC moves only. To ensure the ergodicity of the scheme, it combines short steps
given by random displacements and large jumps between metastable states. This allows
the method to converge quickly to the Boltzmann distribution. This approach is especially
advantageous in systems where large potential barriers are providing obstacles to the
convergence of other methods, which is often observed in molecular systems. The method
is demonstrated on two toy examples, one with several bijections in two dimensions and
a high dimensional system consisting of a particle dimer in a bath of Lennard-Jones
particles, which exhibits a highly rigid free energy surface. On both toy systems, it is
shown that samples generated by Neural MJMC follow the correct Boltzmann distribution.
Further, it is observed that the method is able to generate equilibrium samples in systems,
where the standard MCMC method with local displacements fails.

The sampling efficiency of this method highly depends on the quality of the generated
samples, which again crucially depends on the network architecture that is used in the
implementation. Considering the great attention the field of invertible network structures
is currently facing, it would be no surprise to see dramatic improvements in terms of
computational efficiency and expressiveness of such invertible networks, which in turn
would allow studying more complex problems. An important step to further generalization
is the incorporation of physical symmetries into the network architecture. Many recent
advances when applying machine learning to physical problems make use of a symmetric
representation [178–180]. This has also been applied to the field of invertible networks
[181] and using an architecture that preserves symmetries appears promising to allow for
scaling of the proposed method to even bigger systems.

To utilize this method to study molecules, a suitable representation of the molecule is
of high significance. One approach is to represent the molecule in terms of bonds and
angles. This has recently been shown to generate promising results in other methods
that rely on the generation of configurations using flows [146, 160] and an extension of
the method proposed here is straightforward.
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One drawback that the method in its current implementation faces is that it requires
training a new neural network for each combination of states. For systems with many
metastable states, this might be a hurdle as it requires training O(N2) networks to fully
parametrize the transition kernels between all combinations of metastable states. A
possible way to solve this problem would be to train a transformation fi to the latent
space for each of the metastable states, where the structure of the latent space is given
by e.g. a Gaussian distribution as in Boltzmann Generators [159], but restricted to
one metastable state Ωi, resulting in a set of flows {fi}, that share the same latent
space structure. When using these flows to sample the system, a proposal y could then
be generated by composing a forward and backward transformation y = f−1

j ◦ fi(x),
where x ∈ Ωi and j is drawn randomly from transition probabilities pij . This would
require training only one flow per metastable state, thus requiring only N such invertible
functions.
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The results of this chapter have been published in:

Manuel Dibak, Leon Klein, and Frank Noé. “Temperature Steerable Flows and
Boltzmann Generators”. 2021. arXiv: 2108.01590

Parts of text and figures have been adopted unchanged in this chapter. The manuscript
has been submitted and is currently under review.
Manuel Dibak (MD) and Leon Klein (LK) contributed to this work equally. In particular
the contributions were as follows: All contributors conceptualized the work. MD and
LK layed out the theory. MD implemented the sampling algorithms. MD and LK
performed the numerical experiments. MD visualized the results. All contributors wrote
and approved the manuscript.

Summary

Boltzmann generators (BG) approach the sampling problem in many-body physics by
combining a normalizing flow and a statistical reweighting method to generate samples of
a physical system’s equilibrium density. The equilibrium distribution is usually defined by
an energy function and a thermodynamic state, such as a given temperature. Accessing
multiple thermodynamic states with a single BG would highly improve the applicability of
the method. In this chapter temperature-steerable flows (TSF) are proposed which are a
type of BG able to generate a family of probability densities parametrized by a choosable
temperature parameter. To this end, a temperature scaling condition is derived, which
provides a condition to the scaling behavior of the flow. Two different flow architectures
are proposed which follow this scaling condition to a good approximation. TSFs can be
embedded in a generalized ensemble sampling framework such as parallel tempering in
order to sample a physical system across multiple temperatures. The temperature scaling
property of the proposed flows is verified on toy systems and an application of either
of the proposed flows is given on physically relevant systems, namely the XY model
and the alanine dipeptide molecule, showing that temperature-dependent quantities
can accurately be recovered in the first system and that the sampling efficiency can be
enhanced using MCMC moves proposed by the TSF at different temperatures.
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6. Temperature-steerable flows

6.1. Introduction

In the canonical ensemble the stationary distribution of configurations x is given by the
Boltzmann distribution

µτ (x) ∝ exp(−U(x)/τ), (6.1)

where the thermal energy τ = kBT is proportional to the temperature T and kB is the
Boltzmann constant. In order to reach all thermodynamic states, it would be desirable
to sample a family of densities parameterized by the thermodynamic control variables τ .

Recently, there has been a lot of interest to train normalizing flows [161, 162, 166–168,
170, 182] to sample densities of many-body physics systems such as Eq. (6.1) directly
without having to run long, correlated simulation chains. Normalizing flows transform
an easy to sample prior distribution pZ(z), e.g. a multivariate normal distribution, via a
transformation x = f(z) to the output distribution pX(x). If f(z) is invertible, pX(x)
can be computed by the change of variable formula

pX(x) = pZ(z) |det Jf (z)|−1 , (6.2)

where |det Jf (z)|−1 is the inverse of the Jacobian. Boltzmann Generators (BGs) (Sec-
tion 4.5.2) combine normalizing flows to minimize the distance between Eq. (6.1) and
Eq. (6.2) with a statistical reweighting or resampling method to generate unbiased sam-
ples from Eq. (6.1). This and similar approaches have been used to sample configurations
of molecular and condensed matter systems [146, 159], spin models [183, 184], and gauge
configuration in lattice quantum chromodynamics [185, 186].

Constructing flow architectures whose samples change in a predictable manner in
response to changes at the input are important for physics and other disciplines. Equivari-
ant flows maintain group transformations such as rotation and permutation throughout
the flow [181, 187, 188]. Here, the focus lies on a specific form of equivariant flow which
is better described as steerable, as its output is controlled by a parameter. The aim is to
learn a flow whose output distribution follows

pτ
X (x) ∝ exp (−U(x)/τ) , (6.3)

where the control parameter τ corresponds to the thermal energy.
Specifically, TSFs are introduced, which correctly parametrize the output distribution

pX of a normalizing flow f by a temperature variable τ . The following section introduces
a condition for such flows and uses it to develop two different realizations of TSFs. The
temperature steering property of the proposed flow architectures is verified on simple
toy systems and an application of each TSF is provided on more complex systems. One
architecture is applied to the XY model, which shares similarities with the Ising model,
but utilizes continuous spins. In this system, it finds the correct temperature dependence
of the magnetization. The other architecture is applied to the alanine dipeptide molecule,
where it is shown that the TSF is capable of producing samples close to equilibrium
at different temperatures. Furthermore, it can be turned into a multi-temperature BG
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by using it as a proposal density in a PT framework, reducing autocorrelation times
significantly compared to conventional PT.

6.2. Temperature-steerable flows
Up to a normalization constant, a change to temperature τ ′ of the Boltzmann distribution
corresponds to raising it by the power of κ = τ/τ ′, µτ ′(x) ∝ [µτ (x)]κ . Using Eq. (6.2)
it is observed that the output distribution of a flow scales equivalently to a Boltzmann
distribution, if for any two temperatures τ, τ ′

pτ ′
Z (z)

∣∣∣det Jfτ ′ (z)
∣∣∣−1
∝
[
pτ

Z(z) |det Jfτ (z)|−1
]κ
. (6.4)

Thus, flows are considered to be temperature scaling, if they preserve this scaling
condition. Two instances of flows that preserve this proportionality can be found by
either keeping the Jacobian constant and preserving the scaling condition in the prior, or
selecting a constant prior and fulfilling the scaling condition in the flow.

6.2.1. Temperature-steerable flows by volume preservation
The proportionality in the prior distribution can be matched by selecting a Gaussian
prior pτ

Z(z) = N (z; 0, τ), which fulfills pτ ′
Z (z) ∝ [pτ

Z(z)]κ. This results in a condition on
the Jacobian of the flow

|det Jfτ (z)|κ ∝
∣∣∣det Jfτ ′ (z)

∣∣∣ . (6.5)

This condition is met by volume-preserving flow layers, i.e.
∣∣∣det Jfτ ′ (z)

∣∣∣ = 1, such as

NICE [182], or flows with constant Jacobian, i.e.
∣∣∣det Jfτ ′ (z)

∣∣∣ = const. The latter are
considered more expressive, as they are able to correct for difference in entropy between
the prior and the target distribution.

The recently proposed stochastic normalizing flows (SNF) [146] can be used to construct
TSFs. Here, a type of SNF is used which is motivated by HMC and utilizes operations
in an augmented space, where the auxiliary momenta are distributed according to a
distribution pA (see Section 4.4.4 for details on HMC). However, in contrast to the original
HMC method [150], the system is not propagated by Hamiltonian dynamics, but rather
a learned deterministic flow D which takes this role. This flow shares similarities to other
augmented flows, such as Hamiltonian flows [189, 190] and Augmented Normalizing Flows
(ANFs) [191]. To sample from the model, i.e. x = fτ (z); z ∼ pτ

Z(z), the flow consists of
three consecutive steps

(i) Sample the latent space variable z ∼ pτ
Z(z)

(ii) Sample auxiliary momenta q ∼ pτ
A(q), defining the point in latent phase space

υ = (z,q)

(iii) Propagate the point to phase space by the dynamics γ = (x,p) = D(υ)
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Figure 6.1.: Schematic figures of the two proposed TSF architectures. Top: Volume
preserving augmented flow. Auxiliary momenta q are drawn to define a point
in the augmented space (z,q). A volume-preserving flow is used to transform
the augmented variable to the augmented configuration space, where it is
projected onto the configuration space variable x. In these flows, the outputs
of the multi-layer perceptron (MLP) used to generate the scaling variables
are normalized. The first layer multiplies the latent space coordinates z
with a scalar factor k, which adjusts for difference in entropy between latent
and phase space. Bottom: Temperature steerable NSF architecture with
uniform prior. Samples from the uniform distribution are split into two
channels which condition the NSF transformation of the other channel. The
parameters for the NSF are transformed to the given temperature. This
is followed by several layers of NICE transformations in order to model
correlations in the system while preserving the volume.
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(iv) Project onto the configuration variables x
With the flow described above, a TSF can be constructed by choosing pτ

A(q) = N (q; 0, τ)
and choosing a dynamics D with a constant Jacobian, thus satisfying the temperature
scaling condition Eq. (6.4). A convenient way of constructing volume preserving dynamics,
i.e. |det JD(υ)| = 1, is obtained by altering the RNVP network structure (Section 4.5.1),
such that the product of the outputs of the scaling layers is equal to unity. This is done
by subtracting the mean of the log outputs from each scaling layer, similar to [192]. In
addition to the volume preserving RNVP layers, the latent space coordinates are scaled
by a trainable scalar, which allows to adjust for entropy difference between the prior and
the target. The resulting Jacobian factor is a constant and, hence, still fulfills the scaling
condition. The flow architecture is shown in Fig. 6.1 (top).

This architecture can also be viewed as an instance of an ANF, where the augmented
prior distribution pτ

Υ (υ) = pτ
Z(z)pτ

A(q) is mapped to the joint output distribution pτ
Γ (γ)

via the invertible dynamics D. The joint target distribution is given by µτ (x)pτ
A(p). As

the flow fulfills the temperature scaling condition, a temperature change of the prior, i.e.
τ → τ ′, will change the output accordingly. In the case of a factorized output distribution
pτ

Γ (γ) = pτ
X (x) pτ

A (p), the marginal distribution pτ
X (x) is scaled correctly as well. This

is ensured if the joint target distribution is matched correctly.

6.2.2. Temperature-steerable flows with uniform prior
In order to fulfill the temperature steering condition in the flow, it has to be taken
into account, that changing the Jacobian will also change the output of the flow, i.e.
f−1

τ (x) 6= f−1
τ ′ (x). This can be circumvented by selecting a prior for which pZ(z) = const.,

namely the uniform distribution U . This approach only allows using one of these layers,
as the same problem arises with subsequent layers.

While finding a flow architecture that precisely reproduces the temperature scaling
property is difficult, a good approximation can be found using Neural Spline Flows (NSF)
[163].

A spline flow uses coupling layers as introduced in Section 4.5.1. The transformation
of each element of the input vector is given by an invertible scalar function yi = h(xi)
defined on the unit interval h : [0, 1] → [0, 1], s.t. h(0) = 0 and h(1) = 1. For this
transformation to be invertible, it needs to be monotonous. It can be interpreted as
the cumulative distribution function corresponding of a probability density function p
defined on the unit interval. In neural spline flows, this function h(x) is approximated by
a spline s(x), a piecewise defined function, which is invertible in each interval. The spline
is parametrized by N nodes and slopes (x(i), y(i), δ(i)) which are the function’s values and
derivatives y(i) = h(x(i)), δ(i) = p(x(i)). It then interpolates the function values between
these coordinates. There exists a whole range of different ways to define a spline. The
recently proposed NSF [163] use quadratic rational splines [193] and have been shown to
perform best in a series of tasks. Thus, these have been utilized in this work.

A quadratic rational spline can alternatively be defined by splitting the unit interval
[0, 1] into N bins. The corresponding spline is then parametrized by N bin-widths, bin-
heights and slopes (wi, bi, δi), with

∑
iwi = 1 and

∑
i bi = 1. Assuming that the spline is
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an approximation of h(x), it is found that bi =
∫ xi+wi

xi
p(x)dx, with xi =

∑i−1
j=1wi. For

the temperature scaling to hold, it is assumed that p(x) is of the form p(x) = exp(βv(x))
for some continuous function v(x).

To parametrize the transformation at temperature τ by a spline, its slopes need to be
given by δi = exp(βvi), with vi = v(xi). The bin-heights can be approximated by the mean
value theorem bi =

∫ xi+wi
xi

p(x)dx ≈ exp(βṽi)wi, with ṽi = v(ξ) for some ξ ∈ [xi, xi+1].
With these assumptions, the temperature steerable spline flow is parametrized by N
values of (w̃i, vi, ṽi) from which the bin widths, heights and slopes at temperature τ are
computed as

wτ
i = w̃i/

∑
i

w̃i (6.6)

bτ
i = exp(τ ṽi)wi/

∑
i

exp(τ ṽi)wi, (6.7)

δτ
i = exp(τvi). (6.8)

Thus the transformation is fully parametrized by the set of N values (wi, vi, ṽi) per di-
mension of the transformed channel, and the temperature parameter τ . These parameters
are generated by a NN.

With this type of flow it is possible to adjust the parameters given the temperature,
s.t. the temperature scaling is approximately correct. The NSF are especially useful
when transforming a quantity with circular symmetry, such as angles, as they can easily
be adjusted to satisfy the periodicity of the variables [194]. In practice, a one layer
temperature scaling NSF will not be able to capture potentially complex correlations in
the system. This can be achieved by adding volume preserving flows, i.e. NICE [157] to
obtain a more expressive transformation, see Fig. 6.1 (bottom).

6.2.3. Training procedure

As in [159], the TSFs are trained by a convex combination of a maximum-likelihood
(forward KL) and energy-based (reverse KL) loss L = (1− λ)LML + λLKL, where the
mixing parameter λ can be changed during training. The maximum likelihood loss
minimizes the negative log likelihood (nll), Eq. (4.34), which requires samples from
the target distribution µτ (x). Available samples typically do not exactly follow this
distribution, as otherwise the sampling problem would be solved already. Instead suppose
the samples follow the empirical sampling distribution %X(x), which can, for example,
be obtained from short simulations that have not fully converged yet. The forward
KL-divergence is given by

nll = LML = Ex∼%X(x)
[
− log pZ(f−1(x))− log

∣∣∣det Jf−1(x)
∣∣∣] (6.9)
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In the case of the volume preserving TSF described in Section 6.2.2, the flow needs to
match between the augmented distribution and the ML-loss can be expressed as

LML = Eγ∼%Γ(γ)
[
− log pΥ(D−1(γ))− log |det JD−1(γ)|

]
. (6.10)

As the target energy U(x) is defined by the physical system of interest, optimization can
also be performed with energy-based training which minimizes the reverse KL divergence
via the variational free energy

LKL = Ez∼pZ(z) [U(fτ (z))− log |det Jfτ (z)|] (6.11)
LKL = Eυ∼pΥ(υ) [U(D(υ))− log |det JD(υ)|] , (6.12)

where the last line shows the loss for the augmented TSF.

6.3. Unbiased sampling: importance weights and latent Monte
Carlo

One way to generate samples using the TSF is by directly sampling from the prior and
transforming the samples to configuration space at the desired temperature. As the TSF
is only an approximation to the Boltzmann distribution, these samples will generally be
biased.

6.3.1. Reweighting scheme
In order to generate unbiased samples, two different methods are used here: Firstly, the
generated distribution is used as a proposal distribution for a reweighting scheme as
described in Section 4.1. This involves computing a weight wi for each sample xi. An
observable can then be computed as a weighted average 〈O〉 =

∑
iwiO(xi)/

∑
iwi, with

unnormalized weights wi = exp [−βU(xi)− log pX(xi)]. This only works if the energetic
overlap between the generated distribution and the Boltzmann distribution is sufficiently
large. In the case of a TSF, the (unnormalized) weights take the form

wi = exp
[
−κ

(
u(xi) + log pτ0

Z (zi) + log
∣∣∣det Jfτ0

(zi)
∣∣∣)] , (6.13)

with u(x) = U(x)/τ0 and the relative temperature κ factors out in the exponential due
to the temperature scaling condition.

6.3.2. Temperature steerable flows as proposal density
Another approach for producing unbiased samples from Eq. (6.1) with the augmented
TSF is MCMC. In a sampling scheme similar to HMC (see Section 4.4.4), a proposal x′

is generated from configuration x by the following steps:

(i) sample auxiliary momenta p ∼ pτ
A (p) to define γ = (x,p)
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6. Temperature-steerable flows

(ii) apply the inverse dynamics υ = D−1(γ)

(iii) add a random displacement υ′ = υ+ ξ in latent space, with ξ ∼ N (0, σ2) with some
variance σ

(iv) transform back into configuration space (x′,p′) = D(υ′).

Accepting such a step with acceptance probability

pτ
acc
(
(x,p)→ (x′,p′)

)
= min

{
1, exp

[
−β

(
U(x′)− U(x) +

∥∥p′∥∥2
/2− ‖p‖2 /2

)]}
(6.14)

enforces detailed balance in configuration space and thus ensures convergence to the
Boltzmann distribution. This can be seen from Eq. (4.26) by noting that the dynamics
D is volume preserving and the random displacement in the latent space is symmetric.

As the TSF is able to generate distributions at several temperatures, the MCMC moves
can be combined with temperature based enhanced sampling techniques, such as the ones
discussed in Section 4.4.1. Here PT is selected for such simulations. In PT, sampling
is performed at a set of temperatures in parallel. Additionally to TSF-MCMC steps,
samples can randomly be exchanged between two randomly chosen temperatures. This
allows the sampler to overcome energy barriers quickly at high temperatures while still
preserving details of the wells at lower temperatures. Following Eq. (4.22), for a random
swap of temperatures between two samples xi and xj at temperatures τi and τj , detailed
balance is preserved by the acceptance probability

pacc ((τi, τj)→ (τj , τi)) = min {1, exp [(U(xi)− U(xj)) (1/τi − 1/τj)]} . (6.15)

A summary of the sampling algorithm is given in Algorithm 5.

6.4. Experiments
The instantiations of the TSFs introduced in Section 6.2 are demonstrated on different test
models. Firstly, the temperature scaling is demonstrated for both proposed architectures
on fundamental test systems. Furthermore, it is demonstrated that both instantiations
are able to produce meaningful results in more complex applications. Namely, it is
demonstrate that the TSF is able to reproduce the equilibrium properties in a spin
system and it is shown that it is able to generate samples of the alanine dipeptide
molecule close to the Boltzmann distribution. Furthermore, it is demonstrated that the
MCMC scheme results in unbiased samples with fast decorrelation times.

6.4.1. Temperature steered inversion sampler
To demonstrate the temperature steering capability of the temperature steerable NSF, the
method is applied to two test system, namely the Prinz potential [9] and the asymmetric
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6.4. Experiments

Algorithm 5: Parallel tempering combined with TSF sampling algorithm.
input : ls = [ ] : empty list for samples

τ : list of NT temperatures
state← init state : Nτ initial configurations
D: volume preserving TSF
Niterations: number of generated samples
npropagate: number of propagation steps
nswap: number of temperature swaps

for i← 1 to Niterations do
for j ← 1 to npropagate do

for k ← 1 to Nτ do
x← statek

p← sample from pτk
A

(z,q)← D−1((x,p))
ω← sample from N (0, σ1)
(z ′,q ′)← (z,q) + ω
(x ′,p ′)← D((z ′,q ′))
pacc ← pτkacc((x,p)→ (x ′,p ′)), Eq. (6.14)
if r ∼ U(0, 1) < pacc :

statek ← x ′

for j ← 1 to nswap do
randomly select α, β 6 Nτ , α 6= β
x← stateα

y← stateβ

pacc ← pacc((τα, τβ)→ (τβ, τα)), Eq. (6.15)
if r ∼ U(0, 1) < pacc :

stateα ← y
stateβ ← x

ls.append (state)
output : list of samples ls
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Figure 6.2.: Temperature steerable spline flow as a trained inverse sampler for 1D densities.
The two figures on the left show an application to the asymmetric double
well potential and the two on the right to the Prinz potential [9]. The free
energies are given in units of kBT . In these units, the free energy curves
nearly coincide for different temperatures, demonstrating the temperature
steering property.

double well potential. The explicit energies of these systems are given in Appendix A.1.1.
For these simple 1D densities only one transformation with fixed weights is used. The
training is performed by purely energy based training [Eq. (4.35)] at temperature T0. A
generally good fit to the ground truth is observed, Fig. 6.2 (top row). The temperature
steering property is evident by observing, that the free energy curves closely coincide
at the three different temperatures when expressed in terms of their respective thermal
energy, Fig. 6.2 (bottom row).

6.4.2. Mixture of multi dimensional double wells
The TSF architecture introduced in Section 6.2.1 is applied to a toy system consisting of a
mixture of multi-dimensional double wells which are mixed via a correlation matrix. The
energy of this system is given by U(x) = Udw(Ax), with Udw(x) =

∑d
i aixi + bx2

i + cxi
4.

The parameter vector a and correlation matrix A are chosen at random. The system
is studied at dimensions d = {5, 20}. In order to compare the capabilities of generating
distributions at different temperatures, the TSF is compare with a RNVP flow with
comparable numbers of trainable parameters.

Fig. 6.3 (left) shows the marginal density of the first 5 coordinates of the 20d system.
The Boltzmann Generators are trained at T = T0 and then analyzed by comparing the
nll [Eq. (6.10)] of equilibrium samples, which were generated by Gaussian increment
MCMC in combination with PT at 100 temperatures in the range T = 0.1T0 to T = 10T0,
Fig. 6.3 (right). For the 5d system it is observed that both network structures perform
equally well in the close vicinity of the training temperature, however the TSF exhibits
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Figure 6.3.: Results for the multi-dimensional double well system. Left: marginal density
of the first 5 coordinates of the 20d system. Right: comparison of the nll
as a function of the temperature between the TSF and the RNVP network
structure in the 5 dimensional (top) and 20 dimensional case (bottom).
The dashed line indicates the training temperature T = 1

a significantly lower nll at temperatures further away from the ones it was trained on.
In the case of the 20d system, the TSF consistently outperforms the RNVP even at the
training temperature. This indicates that the TSF is a more expressive network structure
with stronger temperature scaling.

6.4.3. XY-model

As an example with angular symmetry, the XY model [195] is investigated. It can be
considered a version of the Ising model with continuous spins on the unit circle. For
the experiments, the two dimensional lattice is chosen to be quadratic with N × N
spins. The spins si = (cos θi, sin θi)T are represented by their angle θi ∈ [−π;π] relative
to the X-axes. A configuration is denoted as S = (θ1, . . . , θN2)T . Similar to the Ising
model, each spin interacts with its four nearest neighbors and an additional external field
h = (h, 0) .

The Hamiltonian of the system is given by

H(S) = −J
∑

<ij>

si · sj −
∑

i

h · si

= −J
∑

<ij>

cos(θi − θj)−
∑

i

h cos(θi), (6.16)

where
∑

<ij> denotes the sum over all pairs of nearest neighbor with periodic boundaries
and J is the interaction constant. For the experiments, the interaction energy is chosen
to be J = h = kBT0 and a lattice size of 16× 16 spins is selected. Figure 6.4 (bottom)
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Figure 6.4.: Results of the TSF trained on the two dimensional XY model. Top: Distribu-
tion of energies at the training temperature T0 and the samples temperature
T = 0.5T0 obtained by MCMC, TSF and TSF with reweighting. Middle:
Magnetization as a function of the temperature compared between the TSF
and MCMC samples. Bottom: Exemplary samples of the system at two
different temperatures. The higher degree of order is evident from these
samples.
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6.4. Experiments

Figure 6.5.: Results for Alanine Dipeptide (D) in implicit solvent. A, B, E, F: Density
of φ, ψ variables from different methods. A: TSF samples generated at
the training temperature of T = 600 K (ground truth is B). E: Samples
generated with the same TSF at T = 300 K to be compared (ground truth
is F). Histograms of the dihedral angle φ are shown in C for T = 600 K and
in G for T = 300 K. H: Energy histograms at the different temperatures.
D: Alanine Dipeptide molecule.

shows example configurations as 0.5T0 and T0. As temperature dependent observable,
the mean squared magnetization per spin

〈M2〉
N2 = 1

N2

〈∑
i

si · si

〉

is compared between the different methods. Reference configurations are generated using
Glauber dynamics [196], which can be considered a MCMC scheme with single random
spin perturbations. The TSF consists of a uniform prior, a temperature scaled NSF,
followed by 7 blocks of circular NICE, Fig. 6.1 (bottom). The details of the network are
given in Appendix A.1. Training is performed solely with the energy based loss Eq. (4.34)
at a convex combination of temperatures T = {0.5 T0, T0, 1.3T0}. After training, samples
are generated at temperatures ranging 0.5T0, 0.6T0, . . . , T0. The benchmark for the
computation of the means squared magnetization is generated by long runs of Glauber
dynamics. The distribution of energies, observed in the reference simulation, is precisely
recovered by the TSF through reweighting at temperatures T = T0 and T = 0.5 T0,
Fig. 6.4 (top). Furthermore, the measurements of the mean squared magnetization
exhibits excellent agreement between Glauber dynamics and the TSF, Fig. 6.4 (middle).
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Figure 6.6.: Autocorrelation of the φ angle as a function of underlying MCMC/MD steps.
The autocorrelation function decays more rapidly in the TSF-PT method.
This hints toward this method being more sampling efficient. Non-traversing
trajectories of the REMD method (as observed in Fig. 6.7) were excluded in
the calculation of the autocorrelation.

6.4.4. Alanine Dipeptide

The augmented TSF is further tested on the Alanine Dipeptide molecule in an implicit
solvent model. For this system, an invertible transformation to internal coordinates is used
in order to represent the molecule in terms of distances and angles of the molecule’s bonds.
In order to investigate the temperature scaling aspect, sets of samples at temperatures
T = {300 K, 600 K} are generated using MD. The goal of this study is to use the samples
at T = 600 K to train the TSF and then use the TSF to sample at T = 300 K. The MD
set at T = 300 K serves as ground truth for comparison. The TSF is used to generate
samples in configuration space and compare the Ramachandran plots and distributions
of the φ angle (Fig. 6.5). Good agreement is observed at the training temperature
(Fig. 6.5 (A to C)). At T = 300K (Fig. 6.5 (E to G)) the TSF still finds the major minima
at around φ ≈ −2, but under-samples the minimum at φ ≈ 1. This deviation from the
target distribution is likely stemming from limited expressivity of the flow. The correct
distribution of the φ angle is recovered when using the Monte Carlo scheme in a PT
fashion (Fig. 6.5 (C and G)). To this end parallel tempering is run with 8 temperatures
in the range 300 K to 600 K. Furthermore, the output of the TSF closely recovers the
distribution of energies (Fig. 6.5 (H)) at both temperatures.

To assess the efficiency of the sequential sampling procedure, it is compared to the
replica exchange molecular dynamics simulation (REMD) at the same temperatures. It is
observed that within 10× 106 steps of the REMD simulation, only 7 out of 10 independent
runs transition between the metastable states, whereas all 10 independent runs transition
with the TSF-PT method, which additionally only consists of 4× 106 steps, Fig. 6.7.
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Figure 6.7.: Trace plots and autocorrelation of the φ angle in the sampling runs of the
alanine dipeptide molecule at T = 300 K. Left for replica exchange molecular
dynamics (REMD), right for TSF-PT. The numbers in the legends of the acf
plots are the integrated autocorrelation times τint. These are omitted in the
3 trajectories of the REMD method that do not show any transition between
the states. In the TSF-PT method, more frequent transitions between the
metastable states at φ < 0 and φ > 0 are observed. This is also reflected
in the integrated autocorrelation times, which are considerably lower for
TSF-PT.
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Table 6.1.: Efficiency as the number of effective steps per underlying sampling step for
different sampling methods.

Method: TSF-PT REMD MD(600K) MD(300K)

η × 104 1.36 0.32 0.38 0.02

Furthermore, the autocorrelation of the slowest process [Fig. 6.6 (bottom)], which are
the transitions along the φ angle, decays considerably faster in the TSF-PT method.
Additionally, the sampler efficiency η = Neff/N according to Eqs. (4.18) and (4.23) is
compared between the different methods, where N is the number of underlying MCMC
steps and Neff is the number of effective sample size. The comparison Table 6.1 shows
that the TSF-PT method produces independent samples at about four times the rate of
the REMD method and significantly faster than MD at the target temperature.

The correct distribution can also be recovered by the importance sampling method
(Section 4.1). However, this approach relies on weights being clipped appropriately, as
otherwise the weight of a single sample will outweigh all the others, resulting in a large
bias as discussed in Section 4.1.1. In this scenario the weight clipping scheme proposed
in Ref. [197] is used in which a truncation value of the weights has to be defined and
weights higher than that value are clipped. As the results heavily depend on the clip
value, the MCMC method is considered to be preferable.

6.5. Discussion
Temperature-steerable flows (TSF) constitute a novel type of flow architecture, that
correctly scales the output distribution of a Boltzmann Generator (BG) with temperature.
In this chapter, a condition for such flows was formulated and two different realizations
for a TSF were introduced. It was shown that this type of flow can be used to train a BG
at one temperature and generate distributions at lower temperatures. The temperature
steering property of the two proposed flow architectures was verified on simple test
systems and possible applications were shown on more complex systems. For the XY
model, the method was able to predict the correct temperature dependence of the
magnetization after only using energy-based training on a set of temperatures. A second
example demonstrated a use case of a TSF: A TSF that generates samples of the alanine
dipeptide molecule was trained at a high temperature, where samples could easily be
generated by conventional MD. The trained TSF was then utilized to generate samples
at a considerably lower temperature. To this end, the TSF was embedded in a parallel
tempering framework, where the MCMC proposals were generated with the TSF at
different temperatures. With this method, the Boltzmann distribution could be accurately
recovered. Furthermore, it was shown, that the sampling efficiency of this combined
TSF-PT sampler outperforms conventional REMD in the given system.
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Appendix A.

Detailed description of the systems and
networks

A.1. Temperature-steerable flows

A.1.1. One dimensional test systems

The Prinz potential [9] is a one dimensional test system defined by the energy

UP(x) = 4
[
x8 + 0.8e−80x2 + 0.2e−80(x−0.5)2 + 0.5e−40(x+0.5)2]

. (A.1)

The energy of the one dimensional asymmetric double well is given by

UDW(x) = a x+ b x2 + c x4, (A.2)

with a = 0.5, b = −4 and c = 1.

A.1.2. Alanine dipeptide system

The following table gives the force fields and parameters used for the simulations of the
alanine dipeptide molecule in implicit solvent.

Force Fields Amber ff99SB-ILDN
Amber ff99-OBC

Number Atoms 22
Total simulation time 600K 10 ns
Total simulation time 300K 1 ms

PT temperatures [K] 300.0, 331.2, 365.7, 403.8,
445.8, 492.2, 543.4, 600.0

A.1.3. Network parameters

Training of the networks was performed using Adam [198]. The examples using the
volume preserving layers utilize the ReLU[199] activation function in the translation
blocks, and a tanh activation in the scaling blocks. The examples NNs in the neural
spline flows use Swish[200] as activation function. The parameters of each of the neural
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Table A.1.: Network parameters used in the examples of Chapter 6
System parameters coupling blocks hidden dimensions

DW 5 22k 20 [10, 20, 20, 10]
DW 20 330k 50 [20, 40, 40, 20]
Ala2 1.9M 50 [49, 98, 98, 49]
Prinz 30 1 -
Asym DW 30 1 -
XY-model 8.5M 7 [256, 256, 256]

networks used in the examples of the chapter are given in Table A.1.

A.2. Neural Mode Jump Monte Carlo

Here, the exact functional form of the potentials used to demonstrate the Neural MJMC
method in Chapter 5 are provided

A.2.1. Triple well potential

Triple well potential is a 2D potential surface given by

V (x) =
∑

i

−a exp
[
− (x−mi)T Σi (x−mi)

]
+ b ‖x‖2 , (A.3)

with b = 0.1kBT/l, a = 5kBT and other parameters given in table A.2, where l is an
(arbitrary) length-scale of the system.

Table A.2.: Parameters of the triple well potential. All quantities are given in units of
the (arbitrary) length scale l

i (Σi)11 (Σi)22 (mi)1 (mi)2

1 0.5 0.3 −2.2 −1
2 0.5 0.4 0 2
3 0.4 0.5 2 −0.8

A.2.2. Dimer in a Lennard Jones bath

The dimer system is adapted from Ref. [159]. It consists of N = 38 particles in 2
dimensions, two of which are considered the dimer, which additional interact via a double
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well interaction Ud. Its potential energy is given by

U(x1, . . . ,xN ) = Ubox(x1, . . . ,xN ) + Urep(x1, . . . ,xN ) (A.4)
+ Ud(x1,x2), with (A.5)

Ubox(x1, . . . ,xN ) = kbox

N∑
i=1

2∑
d=1

θ (|xi,d| − lbox) (|xi,d| − lbox)2 , (A.6)

Urep(x1, . . . ,xN ) = ε
∑
j6N

∑
i<j

(i,j)6=(1,2)

(
r−1

m ‖xi − xj‖2
)−12

, (A.7)

Ud(x,y) = ad (x,y) + bd (x,y)2 + cd (x,y)4 (A.8)

+ kd

[
(x1 + y1)2 + x2

2 + y2
2

]
, (A.9)

with d (x,y) = 2
(
‖x− y‖22 − d0

)
and the Heaviside step function θ(x). The specific

parameters used in this paper are given in table A.3.

Table A.3.: Parameters of the particle dimer system. Basic unit of energy and length are
given as kBT and rm respectively.
Quantity Symbol Value Unit

Number of particles N 38 1
Box spring constant kbox 100.0 kBT/r

2
m

Box edge length lbox 3.0 rm
Repulsion strength ε 1. kBT
Mean squared dimer distance d0 1.5 r2

m
Dimer potential slope a 0 kBT/r

2
m

Dimer quadratic term b -25
(
kBT/r

2
m
)2

Dimer quartic term c 10
(
kBT/r

2
m
)4

Dimer spring constant kd 20 kBT/r
2
m

A.2.3. Network parameters
The RNVP network consists of several subsequent blocks as depicted in Fig. 4.1. Each of
these blocks consists of 4 independent networks, two for scaling and two for translation.
All networks use leaky ReLU in each hidden layer. The output of the scaling networks
uses a hyperbolic tangent scaled by a trainable scalar. The output of the translation
networks is linear. Adam [198] is used as optimizer with standard parameters and a
learning rate depending on the system. Table A.4 gives an overview of the exact network
architectures and hyperparameters used in the experiments.
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Appendix A. Detailed description of the systems and networks

Table A.4.: Parameters of the RNVP networks used in the experiments
DW particles

Number of RNVP blocks 10 20
Hidden dimensions [20, 20, 20] [76, 76, 76]
Number of parameters 3.6× 104 1.4× 106

Number of training samples 1× 105 1× 105
per bias and core
Bias strengths /kBT/r

2
m [10, 0] [500, 10, 5, 2]

Learning rate 10−3 [10−3,10−4,10−4,10−5]
Batchsize 2000 8192
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Appendix B.

Differential entropy difference

The differential entropy of a distribution pX defined on a region Ω ⊂ RN is defined as

SX = −kB

∫
Ω
pX(x) log pX(x)dx. (B.1)

For a bijective function y = f(x), the change of variable formula [Eq. (4.29)] can be
applied to compute the change in differential entropy under the transformation. With
the transformed density being pY (y) = pX(f−1(y))

∣∣∣det Jf−1(y)
∣∣∣ this yields

SX = −kB
∫

f(Ω)
pY (y) log pY (y)

∣∣∣det Jf−1(y)
∣∣∣ dy

= SY − kB
∫

f(Ω)
pY (y) log

∣∣∣det Jf−1(y)
∣∣∣ dy. (B.2)

Thus the difference in differential entropy under the transformation f(·) is given as

∆S = SY − SX = −kBEx∼pΩ [log |det Jf (x)|] , (B.3)

where the inverse function theorem was used to compute the Jacobian.
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