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Abstract 

Cytochrome P450 (CYP) enzymes are monooxygenases that catalyze the oxidation of 

structurally diverse substrates and are present in various lifeforms, including humans. 

Human CYPs catalyze the metabolism of xenobiotics including drugs and are involved 

in the essential biosynthesis of steroids, vitamins, and lipids. CYP-catalyzed 

metabolism and biosynthesis has been extensively studied recently, but several CYPs 

remain understudied despite their potential role in key biotransformation pathways. 

For these so-called ‘orphaned CYPs’, physiological function and structure are yet 

unknown, such as for CYP4A22 and 4Z1. CYP4A22 catalyzes the ω-hydroxylation of 

arachidonic acid to the angiogenic 20-hydroxyeicosatetraenoic acid. CYP4Z1 is 

overexpressed in breast cancer and other malignancies, which is correlated with tumor 

progression. Hence, CYP4Z1 is considered a promising breast cancer target that was 

not previously addressed by small molecule inhibitors. Here, we report our efforts to 

deorphanize CYP4A22 and 4Z1 together with our experimental partner Prof. Bureik. 

We were the first to predict the structure of CYP4A22 and 4Z1 by homology modeling 

and overcame the challenge of low-sequence similarity templates by incorporating 

substrate activities. We applied substrate docking and 3D pharmacophore modeling 

to rationalize how the binding site structure determines structure-activity 

relationships (SAR) trends. The well-known structural flexibility of CYPs was partially 

accounted for by molecular dynamics simulations. For the first time, enzyme-substrate 

interactions dynamics were analyzed with our novel dynamic pharmacophore 

approach, which led to the prediction of key residues. For CYP4A22, a residue 

influencing ω-hydroxylation (Phe320) and two binding residues (Arg96 and Arg233) 

were predicted. For CYP4Z1, the key role of Arg487 and assisting role of Asn381 for 

substrate binding were predicted, which was validated by in vitro mutational studies. 

The thereby validated CYP4Z1 model and substrate SAR were used in a virtual 

screening campaign resulting in a new potent and selective CYP4Z1 inhibitor (IC50: 

63 ± 19 nM). Taken together, we established an in vitro/in silico deorphanization 

protocol that shed light on the structure-function relationships of CYP4A22 and 4Z1. 

This enabled us to discover a potent inhibitor of CYP4Z1 that will allow further studies 

on the physiological and pathophysiological role of the enzyme and might be further 
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improved to target CYP4Z1 in a new therapeutical approach. Similar workflows could 

easily be applied to study other neglected enzymes in metabolism and other 

biotransformation pathways.  
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Zusammenfassung 

Cytochrom P450 (CYP)-Enzyme sind Monooxygenasen, die die Oxidation strukturell 

diverser Substrate katalysieren und in verschiedenen Lebensformen, einschließlich 

des Menschen, vorkommen. Menschliche CYPs katalysieren den Metabolismus von 

Xenobiotika einschließlich Arzneistoffen und sind an der essenziellen Biosynthese von 

Steroiden, Vitaminen und Lipiden beteiligt. CYP-katalysierter Metabolismus und 

Biosynthese wurden in der Vergangenheit intensiv untersucht, aber einige CYPs sind 

trotz ihrer potenziellen Rolle in wichtigen Biotransformationswegen noch wenig 

erforscht. Für diese so genannten „orphaned“ oder „verwaisten“ CYPs, sind 

physiologische Funktion und Struktur noch unbekannt, wie z.B. CYP4A22 und 4Z1. 

CYP4A22 katalysiert die ω-Hydroxylierung von Arachidonsäure zu der angiogenen 

20-Hydroxyeicosatetraensäure. CYP4Z1 wird bei Brustkrebs und anderen malignen 

Erkrankungen überexprimiert, was mit der Tumorprogression korreliert ist. Daher 

wird CYP4Z1 als ein vielversprechendes Brustkrebs-Target angesehen, das bisher 

nicht durch niedermolekulare Inhibitoren adressiert wurde. Hier berichten wir über 

unsere Bemühungen, CYP4A22 und 4Z1 zusammen mit unserem experimentellen 

Partner Prof. Bureik zu deorphanisieren. Wir waren die Ersten, die die Struktur von 

CYP4A22 und 4Z1 durch Homologiemodellierung vorhersagten und überwanden die 

Herausforderung der Templates mit geringer Sequenzähnlichkeit, indem wir 

Substrataktivitäten mit einbezogen. Wir wendeten Substrat-Docking und 3D-

Pharmakophor-Modellierung an, um zu rationalisieren, wie die Struktur der 

Bindungstasche die Trends der Struktur-Aktivitäts-Beziehungen (SAR) bestimmt. Die 

bekannte strukturelle Flexibilität von CYPs wurde partiell durch Molekulardynamik-

Simulationen berücksichtigt. Zum ersten Mal wurde die Dynamik der Enzym-

Substrat-Interaktionen mit unserem neuartigen dynamischen Pharmakophor-Ansatz 

analysiert, was zur Vorhersage von wichtigen Aminosäuren führte. Für CYP4A22 

wurde eine Aminosäure, die die ω-Hydroxylierung beeinflusst (Phe320) und zwei 

Bindungsaminosäuren (Arg96 und Arg233) vorhergesagt. Für CYP4Z1 wurde die 

Schlüsselrolle von Arg487 und die unterstützende Rolle von Asn381 für die 

Substratbindung vorhergesagt, welche durch in vitro Mutationsstudien validiert 

wurde. Das dadurch validierte CYP4Z1-Modell und die Substrat-SAR wurden in einer 
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virtuellen Screening-Kampagne verwendet, die zu einen neuen potenten und 

selektiven CYP4Z1-Inhibitor führte (IC50: 63 ± 19 nM). Zusammengenommen haben 

wir ein in vitro/in silico Deorphanisierungsprotokoll etabliert, welches die Struktur-

Funktionsbeziehungen von CYP4A22 und 4Z1 beleuchtet. Dies versetzte uns in die 

Lage einen potenten Inhibitor von CYP4Z1 zu entdecken, der weitere Studien über die 

physiologische und pathophysiologische Rolle des Enzyms ermöglichen wird und 

möglicherweise weiter verbessert werden kann, um CYP4Z1 in einem neuen 

therapeutischen Ansatz zu adressieren. Ähnliche Arbeitsabläufe könnte leicht 

angewendet werden, um andere vernachlässigte Enzyme im Metabolismus und 

anderen Biotransformationswegen zu untersuchen. 
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1 Introduction 

1.1 The Human Cytochrome P450 Enzyme Family 

Cytochrome P450 (CYP or P450) enzymes are present in many lifeforms, such as 

plants, fungi, bacteria, and animals [1, 2]. CYP enzymes form a superfamily of 

monooxygenases that catalyze the insertion of a single oxygen into a substrate R (see 

Equation 1) [3]. The remaining oxygen atom of the dioxygen molecule is reduced to 

water. The reaction mechanism is discussed later in detail (see 1.2 The Chemistry of 

Human Cytochrome P450 Enzymes). 

 

In order to bind the dioxygen for catalysis, CYPs use a prosthetic group named heme B 

(Figure 1). Prosthetic groups are cofactors that tightly bind to the enzyme. Heme B 

consists of an iron atom that is coordinated by a protoporphyrin IX moiety [4]. When 

the heme iron is at its ferrous state (Fe2+) and binds carbon monoxide, an absorption 

maximum at 450 nm can be observed for the enzyme in the visible spectrum. This 

observation led to the names “pigment 450”, “P450”, and “P-450” for the enzyme 

family [5]. 

 

Figure 1. Heme B is the prosthetic group of cytochrome P450 enzymes. In 3D the heme is shown as ball and stick. 
Iron is shown as a large orange sphere, oxygen atoms are colored red, and nitrogens are colored, and carbons are 
light grey. Hydrogens have been omitted in both representations. 

CYP genes are named after a general nomenclature that starts with the abbreviation 

CYP and is followed by a number that denotes the CYP family. The subsequent letter 

 𝑅𝐻 + 𝑂2 + 2𝐻
+ + 2𝑒−

[𝐶𝑌𝑃]
→    𝑅𝑂𝐻 + 𝐻2𝑂 Equation 1 
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indicates the subfamily and the last number in the name stands for the individual CYP 

isoform or isoenzyme. For example, the gene name CYP1A2 represents the second 

CYP isoform of the CYP1A subfamily in the CYP1 family. CYP families show at least 

40% and subfamilies at least 55% sequence identity [2]. 

Table 1. Overview of the 57 human CYP enzymes. CYP families are indicated by background coloring. The 
following abbreviations are used DR drugs, ES eicosanoids, SS sex steroids, XB xenobiotics. 

Gene name Expression location [6] Function(s) [7] 

CYP1A1 Lung, several 
extrahepatic sites 

metabolism of ES; XB 

CYP1A2 Liver metabolism of ES; DR and XB 

CYP1B1 Several extrahepatic 
sites 

metabolism of ES; XB 

CYP2A6 Liver, lung, and 
several extrahepatic 
sites 

metabolism of ES; DR and XB 

CYP2A7 unknown nitrosamine metabolism 

CYP2A13 Nasal tissue metabolism of ES; DR and XB 

CYP2B6 Liver, Lung metabolism of ES; DR and XB 

CYP2C8 Liver metabolism of ES; DR and XB 

CYP2C9 Liver metabolism of ES; DR and XB; contributes to 
warfarin metabolism 

CYP2C18 Liver metabolism of ES; DR and XB 

CYP2C19 Liver metabolism of ES; DR and XB 

CYP2D6 Liver metabolism of ES; DR and XB 

CYP2E1 Liver, Lung, other 
tissues 

metabolism of ES; DR and XB 

CYP2F1 Lung metabolism of ES; DR and XB 

CYP2J2 Lung metabolism of ES; DR and XB 

CYP2R1 Liver vitamin D 25-hydroxylase 

CYP2S1 Lung metabolism of ES; DR and XB; retinoids 

CYP2U1 Thymus, brain metabolism of ES; long-chain fatty acids; DR 
and XB 

CYP2W1 Tumors metabolism of ES; DR and XB 

CYP3A4 Liver, small intestine metabolism of ES, SS; greater than or equal to 
60% of all clinically used DR; XB 

CYP3A5 Liver, lung metabolism of ES, SS; DR and XB 

CYP3A7 Fetal liver metabolism of ES, SS; DR and XB 

CYP3A43 Brain, liver metabolism of ES, SS; DR and XB 

CYP4A11 Liver, kidney metabolism of ES, medium- and long-chain fatty 
acids; DR and XB 

CYP4A22 Liver, kidney function(s) unknown 

CYP4B1 Lung metabolism of ES; DR and XB 
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Gene name Expression location [6] Function(s) [7] 

CYP4F2 Liver metabolism of ES; DR and XB; contributes to 
warfarin metabolism 

CYP4F3 Neutrophils metabolism of ES; DR and XB 

CYP4F8 Seminal vesicles metabolism of ES; DR and XB 

CYP4F11 Liver function(s) unknown 

CYP4F12 Liver metabolism of ES; DR and XB 

CYP4F22 Liver function(s) unknown 

CYP4V2 Eye function(s) unknown 

CYP4X1 Liver, brain function(s) unknown; anandamide metabolism 
in brain 

CYP4Z1 Mammary gland metabolism of ES, fatty acids; DR and XB 

CYP5A1 Platelets eicosanoid metabolism (thromboxane A2 
synthase), participates in platelet aggregation 
(official gene name: TBXAS1) 

CYP7A1 Liver associated with elevated LDL-cholesterol levels; 
cholesterol 7a-hydroxylase, biosynthesis of bile 
acids, metabolism of oxysterols 

CYP7B1 Brain oxysterol 7a-hydroxylase, neurosteroid 7a-
hydroxylase 

CYP8A1 Aorta, others eicosanoid metabolism (prostacyclin (PGI2) 
synthase), participates in platelet disaggregation 
(official gene name: PTGIS) 

CYP8B1 Liver sterol 12a-hydoxylase 

CYP11A1 Adrenals, other 
steroidogenic tissue 

cholesterol side-chain cleavage 

CYP11B1 Adrenals steroid 11b-hydroxylase 

CYP11B2 Adrenals steroid 11b- and 18-hydroxylase and 18-oxidase 

CYP17A1 Steroidogenic tissue steroid 17a-hydroxylase, 17,20-lyase 

CYP19A1 Steroidogenic tissue, 
adipose 

androgen aromatase, oestrogen synthetase 

CYP20A1 Liver, other tissue function(s) unknown 

CYP21A2 Steroidogenic tissue steroid 21-hydroxylase 

CYP24A1 Kidney vitamin D 24-hydroxylase 

CYP26A1 Several retinoid acid inactivation (hydroxylase) 

CYP26B1 Brain retinoid acid inactivation (hydroxylase) 

CYP26C1 unknown retinoid acid inactivation (hydroxylase) 

CYP27A1 Liver bile acid biosynthesis, sterol 27-hydroxylase, 
vitamin D 25-hydroxylase 

CYP27B1 Kidney 25-hydroxy-vitamin D 1a-hydroxylase 

CYP27C1 Liver function(s) unknown 

CYP39A1 Liver, other tissues oxysterol 7a-hydroxylase 

CYP46A1 Brain cholesterol 24-hydroxylase (brain) 

CYP51A1 Liver, testes lanosterol 14a-demethylase 
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In humans, 57 unique CYP isoforms are known (Table 1) out of 13,000 sequenced CYPs 

in animals [8]. They are mainly expressed in the liver, but also in various other tissues. 

Human CYPs are essential biochemical tools that contribute to the biosynthesis of 

steroids, vitamins, and lipids [6, 7, 9-11]. CYP enzymes are known for their pivotal role 

in the metabolism of drugs and other chemicals foreign to the body, which are referred 

to as xenobiotics [6, 9, 12]. CYPs are involved in the metabolic fate of 75% of all drugs 

[6, 12]. Often, CYPs are not only involved in the metabolism of endogenous 

compounds or xenobiotics but also might act on both substrate groups [9], as apparent 

from Table 1. Some CYPs are also involved in genetic diseases and cancer [6, 7] or 

constitute drug targets themselves [6, 9, 13]. So far, research focused on drug 

metabolizing CYPs; hence, there are still CYP enzymes without known physiological 

function, which are also referred to as orphaned or neglected CYPs [14, 15]. Recently, 

all 57 human CYP isoforms have been expressed in their functional form and 

enzymatic activity was shown for the orphaned CYP2A7, CYP4A22, and CYP20A1 for 

the first time [16].  

1.2 The Chemistry of Human Cytochrome P450 Enzymes 

CYP enzymes are monooxygenases that facilitate the insertion of a single oxygen atom 

into the substrate as mentioned previously. Chemicals that are inert under 

physiological conditions, such as alkanes, can be oxygenated by the catalysis of CYPs 

at body temperature. Most CYP-catalyzed biotransformation reactions are carried out 

by the reactive iron-oxo species of CYPs named Compound I (Figure 2) [3, 17-21]. 

Compound I is a positively charged species that contains the heme, a cysteine as the 

fifth ligand, and an oxygen atom as the sixth ligand. The electron deficiency of 

Compound I makes it an ideal oxidant [3, 17-19]. Compound I was first described in 

1976 by the laboratories of Groves and Coon [20, 21]. The production of Compound I 

is the focus of biochemical CYP activity. The impact of CYPs on the substrate 

conversion itself is mainly of steric nature [22]. The shape of the catalytic pocket of the 

CYP enzyme influences the steric accessibility of the substrate and thereby the stereo- 

and regioselectivity of the reaction [23] (see 1.3 The Structure of Human Cytochrome 

P450 Enzymes). 
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Most CYP-catalyzed oxidations follow a general catalytic reaction cycle with eight 

steps (Figure 2) [3, 24]. In the resting state (step 1) the heme iron is in its ferric (Fe3+) 

state and is coordinated by a water molecule. The substrate binds, which initiates step 

2; the first electron is transferred for the reduction of ferric to ferrous iron [25, 26]. This 

also acts as a protection mechanism against the formation of toxic superoxides and 

peroxides and waste of redox equivalents. For microsomal CYPs, the required 

electrons are in most cases provided by the redox partner cytochrome P reductase 

(POR, NADPH-P450 reductase) and in some cases by cytochrome b5. For some 

bacterial or mitochondrial CYPs, electrons can also originate from ferredoxin [24].  

 

Figure 2. The catalytic reaction cycle of cytochrome P450 enzymes. Adapted from [27]. 

Substrate binding usually leads to the exit of active site waters including the water 

coordinating the heme iron. Consequently, the ferric iron switches from the low spin 

(S=1/2) hexacoordinated to the high spin (S=5/2) pentacoordinated state, which has 

an increased redox potential. The increased redox potential accelerates the reduction 

to ferrous iron (Fe2+) in step 3. Now dioxygen can bind to the ferrous iron. The iron 
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transfers one electron to the dioxygen and returns to its ferric state. The dioxygen is 

reduced to superoxide in step 4. Another single electron is transferred and leads to the 

reduction of dioxygen to peroxide in step 5. Protonation of the distal oxygen leads to 

a hydroperoxide intermediate in step 6. In step 7 the distal oxygen undergoes a second 

protonation, which leads to the cleavage of the O-O bond. The distal oxygen atom 

leaves as a water molecule and a π-cationic ferryl-oxo intermediate is formed, which 

is also referred to as the previously described Compound I. An “oxygen rebound” 

mechanism was proposed as follows; Compound I cleaves off a hydrogen atom from 

the targeted C-H bond of the substrate R. This is the rate-limiting step of substrate 

oxidation and results in a hydroxyl radical. The hydroxyl radical is bound to the heme 

iron and subsequently reacts with the substrate’s carbon radical [20, 21]. The final 

product is an oxygenated metabolite in state 8 that can now leave the active site. The 

heme iron is again coordinated by a water molecule and the rest state 1 is reached [3, 

24]. The CYP enzyme can now accommodate the next substrate for oxygenation. 

The spectrum of biotransformation reactions catalyzed by CYPs can go beyond simple 

substrate oxygenation (Figure 3) [22, 24, 28, 29]. The most common biotransformation 

of xenobiotics is the hydroxylation of aliphatic and aromatic carbon atoms catalyzed 

by CYPs (Figure 3, reactions 1 and 6) [29]. During the hydroxylation reaction, an 

oxygen atom is inserted into a carbon-hydrogen bond, which results in a new hydroxy 

moiety. Aromatic hydroxylation produces an epoxide intermediate, which then opens 

and reorients to a phenolic moiety [22, 28]. The epoxide of an aromatic ring or a carbon-

carbon double bond can also be the product in cases where epoxide opening is not 

possible (Figure 3, reaction 11). Dealkylation reactions can occur when a carbon atom 

that is bonded to a heteroatom, such as nitrogen, oxygen, or sulfur, is hydroxylated. In 

a subsequent reaction, the bond between heteroatom and hydroxylated carbon is 

broken. The final products are a protonated heteroatom moiety and an aldehyde group 

on the carbon. In amines or ethers, this biotransformation reaction is called N- or O-

dealkylation [22, 28] (Figure 3, reactions 4 and 5). Nitrogen, sulfur, or phosphorus 

atoms can also be oxygenated by CYPs (Figure 3, reactions 7 to 10). The time-limiting 

step here is the transfer of a single electron from the heteroatom to Compound I, which 

often requires a higher activation energy than the hydrogen abstraction from carbon 
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atoms [22, 28]. Even the nitrogen of dihydropyridine can be oxidized by CYPs (Figure 

3, reaction 12). Furthermore, uncommon reactions have been described for CYPs, such 

as the formation or expansion of rings, desaturation, and reductions [28]. 

 

Figure 3. Examples of oxidation reactions catalyzed by Cytochrome P450 enzymes [22, 28]. (1) Hydroxylation of 
aliphatic carbon. (2) Oxidation of alcohol to aldehyde. (3) Oxidation of aldehyde to carbonic acid. (4) O-dealkylation 
of ether. (5) N-dealkylation of amine. (6) Hydroxylation of aromatic carbon. (7, 8, 9, and 10) Heteroatom oxidation: 
N-oxidation, P-oxidation, and S-oxidation. (11) Epoxidation of carbon-carbon double bond. (12) Oxidation of 
dihydropyridine to pyridine. The reactions lead to the insertion of a single oxygen atom and for (4) and (5) to 

subsequent reactions. 

Which substrate moiety will be biotransformed under CYP catalysis? This is mainly 

influenced by the electronic structure and shape of the substrate and the structure and 

flexibility of the CYP enzyme. As mentioned above, the rate-limiting step in CYP-

catalyzed reactions is either the hydrogen abstraction or the transfer of a single electron 

from the heteroatom. Substrate moieties that are highly solvent-exposed and have low 

activation energy for the rate-limiting reaction step will be most reactive [23, 30]. 

According to quantum mechanical (QM) calculations, different CYP reaction 

mechanisms require different optimal substrate orientations [30-33]. The CYP enzyme 

controls the orientation of the substrate towards the heme moiety in the catalytic 

pocket [23, 24]. Highly reactive substrate moieties, such as secondary or tertiary 

carbons might be out of reach for oxygenation due to the shape of the catalytic pocket 

of the CYP enzyme. As a result, a less reactive substrate moiety might react instead 

such as ω-hydroxylation where a primary carbon in alkanes or fatty acids is 
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hydroxylated [34]. Structural flexibility of the CYP enzyme might make different 

substrate orientations possible. As a result, the same substrate might be 

biotransformed into several different metabolites, depending on the different substrate 

orientations in the catalytic pocket.  

1.3 The Structure of Human Cytochrome P450 Enzymes 

Human CYP enzymes comprise a membrane anchoring domain and a globular 

catalytic domain connected by a flexible loop (Figure 4). The globular domain can be 

separated into two sides by the plane of the catalytic heme moiety (Figure 5). The 

proximal side of the globular domain contains the cysteine that coordinates the heme 

moiety and interacts with the redox partner, such as POR. The distal side exhibits 

higher structural flexibility and contains the catalytic pocket that binds substrates [35]. 

CYP enzymes and their redox partner are located at the membrane of the endoplasmic 

reticulum or the inner mitochondrial membrane. Both CYPs and POR are anchored to 

the membrane via a transmembrane helix domain [36-38]. A rapid turnover is assured 

by the formation of a loose complex of the CYP enzyme and its redox partner protein 

and their rapid dissociation. An X-ray structure of the complex of the heme and Flavin 

mononucleotide binding domain of CYP102A1 of Bacillus megaterium shows an 

interface close to the cysteine ligand of the heme in the core of the globular catalytic 

domain (PDB ID: 1BVY) [39].  

The CYP membrane anchoring domain is formed by 30 to 50 residues on the N-

terminal end that precedes the globular catalytic domain in the sequence. Within the 

anchoring domain, a transmembrane helix is formed by a stretch of 20 hydrophobic 

residues roughly 30 Å in length spanning the full width of the hydrophobic core of the 

bilayer. The transmembrane helix is connected to the catalytic domain via a linker of 

10 residues. The residues of the linker domain are often positively charged, which are 

likely to interact with the negative charge of the lipid headgroup of the bilayer. 

Variations in linker length likely induce alterations in the membrane placement of the 

catalytic domain [36]. In some CYPs, such as CYP51A1 (Figure 5), the membrane 

anchoring domain contains additional residues that precede the transmembrane helix 

[36, 40]. These additional residues form an amphiphilic helix that resides in the lipid 

head region on the distal side of the bilayer. CYP19A1 (aromatase) was expressed in 
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Escherichia coli without the anchoring domain retained its catalytic activity [41]. This is 

also the case for various other CYP isoforms, leading to the conclusion that the 

anchoring domain is not necessary for catalytic activity [36]. The majority of the 

crystallized CYPs were expressed without the anchoring domain as apparent from the 

CYP X-ray structure models deposited in the protein data bank (PDB, www.rcsb.org). 

 

Figure 4. CYPs and their redox partner, such as cytochrome P reductase reside in a membrane. Different channels 
that connect the catalytic pocket and the enzyme exterior are surmised. Their function is still poorly understood as 
there is little consensus between CYP isoforms [42]. 

The general CYP fold of the catalytical globular domain is conserved and comprises 

12 α-helices labeled A to L and four β-sheets named β1-4 (Figure 5) [36, 37]. In some 

CYP enzymes loops between helices also contain inserted shorter helices, that are 

labeled with the letter of the helix closest in the sequence and a prime. Most notable is 

the F/G loop between helix F and G in mammalian CYPs, where two short helices F’ 

and G’ are inserted [37]. The F/G loop and parts of the B/C domain are reported to 

act as a lid above the catalytic pocket and the F/G loop dips into the membrane (Figure 

5)  [36, 38, 43]. Antibodies targeting the hydrophobic surface patch in the lid in CYP2B4 

did not bind, which indicates that the surface patch of the F/G loop is buried in the 

membrane [44]. Variations in the F/G segment are likely to shift the orientation of the 

catalytic domain towards the bilayer and the extent of membrane insertion.  

http://www.rcsb.org/
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Figure 5. The general fold of Cytochrome P450 enzymes. (a) 3D structure of lanosterol 14-α demethylase (CYP51) 
the only CYP enzyme with an X-ray structure including the transmembrane helix in side view (PDB ID: 4LXJ) [40]. 
(b) CYP51 globular domain is shown from the bottom view where the plane of the heme is equal to the paper plane. 

3D structure of the backbone is shown in cartoon representation and secondary structures are labelled. 

The catalytic pocket of CYPs is buried in the center of their globular domain and 

accommodates the prosthetic heme moiety (Figure 5). The closer to the heme the more 

conserved are the structural elements, such as helices I and L, and the environment of 

the heme thiolate required for the catalytic CYP activity. Helix I is situated right below 
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the heme and adjacent to the heme (Figure 6).[37]. In CYP4B1, CYP4A11, CYP4A22, 

and CYP4V2 the heme is covalently bound to helix I via glutamate, which restricts the 

catalytic pocket laterally [34]. The heme iron is coordinated by a thiolate moiety of a 

cysteine residue that is situated in a highly conserved and rigid β-bulge [36]. The 

cysteine residue forms hydrogen bonds to two other residues assured by local rigidity. 

The first hydrogen bond is formed between the cysteine’s thiolate chain and the 

backbone amide NH moiety of a second residue. The second hydrogen bond is formed 

between the cysteine’s backbone amide NH moiety and the backbone oxygen amide 

moiety of a nearby phenylalanine residue. The redox potential is regulated with the 

help of these two hydrogen bonds [45]. The carboxylate moieties of the heme are 

anchored by a network of basic residues [37]. Helix I is distorted due to a threonine 

residue that uses its side chain hydroxy moiety for intrahelical hydrogen bonding 

instead of its backbone amide NH moiety (Figure 6). Although the threonine residue 

is not conserved throughout the whole CYP superfamily, it is not yet clearly 

understood how the distorted fold of the I helix is conserved, nevertheless. The 

distortion opens a small pocket in the active site between the heme and the I helix. The 

pocket might be already present in the holo form or open upon substrate binding and 

can accommodate a network of water molecules. The water network is believed to 

provide the protonation necessary for the heterolytic cleavage of the O–O bond in the 

dioxygen molecule, which is a crucial step in the catalyzed oxidation reaction (see 1.2 

The Chemistry of Human Cytochrome P450 Enzymes) [3]. Binding of the redox 

partner putidaredoxin to CYP101A1 leads to the opening of the I helix cleft and a short 

channel connects the I helix cleft to bulk water that handles the dioxygen protonation 

[46]. 

In most X-ray structures of CYPs, the catalytic pocket near the heme thiolate moiety is 

closed off from the enzyme’s environment. For substrates to enter and metabolites to 

exit the catalytic pocket, large-scale and concerted movements in the distal part of the 

globular CYP domain are required. X-ray structures of the open and closed state of the 

active site of several CYP isoforms, such as rabbit CYP2B4, indicate that several helices 

are involved in the opening of a channel towards the membrane including the F/G 

segment [47, 48]. Additionally, the F/G segment controls the opening and collapse of 
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various channels that connect the buried catalytic site with the distal enzyme surface. 

While some channels are quite narrow that only water can pass, others allow for 

substrate entrance and metabolite egress. The growing effort to characterize entry and 

egress channels shows that there is little consensus between CYP isoforms and that 

they might also contribute to substrate selectivity [42]. Most CYP substrates are rather 

hydrophobic and likely accumulate in the membrane below the CYP. Substrate access 

channels hence lead from the membrane to the catalytic pocket. After substrate 

oxygenation, the resulting metabolite can exit the catalytic pocket towards the solvent 

through an egress channel (Figure 4) [49]. 

 

Figure 6. The catalytic pocket of Cytochrome P450 enzymes. The substrate (lanosterol) is situated above the 
prosthetic heme moiety ready for oxygenation in CYP51 (PDB ID: 4LXJ) [40] . The heme iron is coordinated by a 
cysteine residue that is situated in the Cys loop. Helix I is distorted by a hydrogen bond between the side chain of 
Thr and the backbone of the residue four positions away in the helix, here Gly. In some CYP enzymes Gly is mutated 
to Glu, which then forms a covalent bond to the heme. The heme moiety is held in place by salt bridges to basic 
residues (Arg and Lys). For sake of clarity helix B’ is not shown. The protein backbone is displayed in the cartoon 
representation, Heme and Cys residue are shown in ball and stick. All other residues and the substrate are shown 
in stick representation. Heme carbon atoms are colored black, oxygens are red and nitrogens blue. 

Despite the conserved general fold, CYP enzymes significantly vary in structural 

flexibility. Higher structural flexibility in the distal part of the globular domain allows 

CYP enzymes to adopt different shapes and sizes of the catalytic pocket. Diverse 

substrates can thereby be bound by some CYP isoforms, which are also referred to as 
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CYPs with high substrate promiscuity [35]. This is especially true for the famous 

example of the major drug-metabolizing CYP3A4 [50]. 

1.4 The Relevance of Understudied Human Cytochrome P450 

Enzymes 

The general mechanism for the formation of the reactive CYP structure, Compound I, 

is similar for all CYP isoforms [17, 22]. Hence, it is the CYP structure that determines 

active site shape and flexibility. The substrate spectrum and function of the individual 

CYP enzyme are determined by its structure [22]. The structure and function of CYPs 

in xenobiotic metabolism and biosynthesis of steroids and other endogenous 

compounds have been intensively studied in the recent past. Neglected CYP enzymes 

have been hardly investigated and in the case of orphaned CYPs not at all studied [14, 

15]. Orphaned CYP4 family enzymes CYP4A22 and CYP4Z1 are overexpressed in 

several malignancies [51-55] and likely play a role in important metabolic pathways. 

The only activity described so far for CYP4A22 is the ω-hydroxylation of arachidonic 

acid to 20-hydroxyeicosatetraenoic acid (20-HETE), which induces angiogenesis [55]. 

CYP4A22 likely has other functions as this activity is not unique to this CYP enzyme 

[55, 56]. CYP4A22 is overexpressed in colon and ovary cancer [55]. CYP4Z1 is 

expressed in mammary tissue and overexpressed in breast cancer cells and other 

malignancies [51-54]. Neither the physiological nor the pathophysiological role of 

CYP4Z1 in the above-mentioned malignancies has been understood, although there is 

a clear correlation between CYP4Z1 expression and tumor progression [57]. However, 

the discovery of autoantibodies against CYP4Z1 suggests a pathophysiological role of 

CYP4Z1 in breast cancer [58, 59]. Hence, CYP4Z1 might be a promising drug target in 

breast cancer [15, 51, 60], which has not yet been targeted by small molecules. 
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In this review, we show the disbalance in the research of human CYP enzymes and 

focuses on recent insights into understudied human CYP isoforms. This review 

stresses the importance of investigating previously neglected or understudied CYP 

isoforms. Studies on these CYP isoforms are not only of interest to understand their 

physiological function, but some of those CYPs are also potential drug targets. We 

show how homology models allow to structurally access 13 understudied CYPs, 

including insights on CYP4 enzymes from the collaboration between the Wolber and 

Bureik lab. 
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2 Research Aim 

To date, research has mainly focused on CYP enzymes that are involved in drug 

metabolism or steroid biosynthesis. However, there are several highly interesting 

CYPs that have been neglected so far [14, 15]. The understudied CYP4 family enzymes 

CYP4A22 and CYP4Z1 likely play are role in important metabolic pathways. 

Especially CYP4Z1 might be a promising drug target in breast cancer, but no potent 

inhibitor has been reported before this thesis was started [15, 51, 60]. Experimental 

information on substrates is sparse for CYP4Z1 and CYP4A22 and their 3D structure 

is not known. Therefore, this doctoral thesis aimed to shed light on structure and 

function of CYP4 family enzymes focusing on CYP4A22 and CYP4Z1 using the 

following steps: 

• Investigate active site of both CYP enzymes by probe substrates in vitro, 

• Predict the 3D structure of both CYP enzymes guided by probe substrate 

structure-activity relationships (SAR), 

• Investigate CYP enzyme-substrate dynamics to predict binding mode and key 

binding residues in both CYPs, 

• Validate key residues roles by in vitro mutagenesis studies for CYP4Z1, 

• Develop predictive CYP4Z1 binding model for a virtual screening approach for 

new small molecule inhibitors, and 

• Validate activity and selectivity for screening hits in vitro. 

The computational methods that have been applied to achieve the research aim are 

described in detail in the following chapter. All in vitro experiments have been realized 

in the lab of Prof. Bureik at Tianjin University, China.
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3 Computational Methods 

Computational methods are frequently used in early-stage drug design and discovery 

in the pharmaceutical industry [61, 62]. Hillisch and colleagues stated that 

computational chemistry methods were involved in the design of 50% of phase I drug 

candidates [62]. In recent years, this percentage has most likely increased dramatically 

due to ever more powerful hardware and the rise of machine learning in drug 

discovery [63, 64]. Computer-aided drug design (CADD) is commonly divided into 

structure-based and ligand-based methods [65, 66]. Structure-based approaches 

explicitly consider the macromolecular target structure, typically proteins, 

deoxyribonucleic or ribonucleic acid (DNA, RNA), or a complex of these. Ligand-

based approaches solely focus on ligands binding to the target of interest. Ligands can 

be either small molecules, peptides, or oligonucleotides. In the following paragraphs, 

structure-based drug design methods applied in this thesis are explained further. 

3.1 Homology Modeling 

An atomistic 3D model of the macromolecule is essential for the structure-based design 

of small-molecule ligands. Experimental methods used to elucidate the structure of a 

macromolecular target are X-ray crystallography, nuclear magnetic resonance (NMR) 

spectroscopy, or cryogenic electron microscopy (Cryo-EM). Despite the growing 

number of experimental atomistic models in the PDB (www.rcsb.org) [67], the 

structure of a large portion of pharmacologically relevant targets has not yet been 

elucidated. In lack of this information, homology modeling can be used to construct a 

3D model for a protein target without a known 3D structure. Available methods can 

be divided into comparative homology modeling and de novo homology modeling 

(also referred to as ‘protein folding prediction’). The basis for comparative homology 

modeling is the observation that proteins with highly similar primary sequences have 

highly similar 3D structures [68, 69]. Comparative homology modeling predicts the 

target protein structure considering one or more experimental structures of related 

proteins as templates [70]. No structural template is required for de novo or ab initio 

homology modeling and is often used for targets without solved structures of close 

relatives [71]. Several reviews cover the methodology of homology modeling in depth 

and point out the pitfalls in comparative protein structure modeling [70-72].  
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Figure 7. The four steps of comparative homology modeling. 

In general, homology modeling for a protein of unknown structure, termed the 

“target”, consists of four steps (Figure 7). First, at least one similar protein with a 

known structure, termed the “template”, needs to be identified (step I). The primary 

sequences of both target and template need to be aligned accurately (step II). A 3D 

model of the target can then be built (step III) and evaluated for the fitness to the 

research question at hand and general model quality (step IV) [70]. 

In order to identify template structures that are similar to the target sequence, the basic 

local alignment search tool (BLAST) is commonly used. BLAST was designed to 

compare sequences in a rapid fashion, which makes it an optimal tool to quickly search 

large databases for similar sequences [73]. BLAST does a ‘quick and dirty’ sequence 

alignment that is not perfectly accurate, but good enough to estimate the sequence 

similarity. The target sequence can also be compared to several protein structures at 

once to increase sensitivity, which is also referred to as multiple sequence alignment 
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(MSA) and is frequently done with position-specific iterated BLAST (PSI-BLAST) [74]. 

Another approach to identifying suitable template structures is 3D template matching 

or threading. Template sequence and structure are used to recognize its fold. After the 

alignment of template and target, a scoring function predicts the probability that the 

target adopts the fold. For example, the local meta-threading-server (LOMETS) [75, 76] 

uses 11 different threading programs for fold recognition. The second-generation 

LOMETS2 tackles the problem that general MSA methods sometimes fail to provide 

an acceptable number of homolog structures, which results in poor alignment quality. 

LOMETS2 increases the number of non-redundant template sequences, also referred 

to as depth of the MSA. A deep MSA is generated in up to three search stages of 

increasing complexity using hidden Markov models [75]. LOMETS2 is an integral part 

of I-TASSER, a fully automated online homology modeling webserver [77, 78]. The 

LOMETS2 output comprises the best template prediction and sequence alignment for 

each of the programs based on the standard score (Z-score). The Z-score describes the 

deviation from the mean in a normalized distribution using the standard deviation (σ). 

For example, a Z-score of -2 means that the observed value is -2σ smaller than the 

mean. However, if possible, the selected template should be checked for an 

evolutionary relationship to the target and experimental quality. The close 

environment of target and template protein should be similar. Both proteins should be 

globular or transmembrane proteins, and have the same quaternary structure, such as 

consistently monomers or oligomers only. Subsequently, the template and target 

sequence must be aligned as accurately as possible, which is crucial for the homology 

modeling workflow. For pairwise alignment, the EMBOSS Needle-Stretcher algorithm 

[79] might be used, which makes use of the Needleman-Wunsch algorithm [80] best 

suited for this task. For multiple sequence alignment CLUSTAL Ω (or CLUSTAL O or 

CLUSTAL omega) [81] and SALIGN [82] are often used. Low sequence similarity is a 

severe problem in homology modeling. Cases with sequence identity below 25% are 

referred to as “the twilight area” [83].  

After the identification and alignment of the template structure, the 3D model for the 

target protein can be built. High structural coverage is important for good model 

quality, which is the case when a large share of target protein residues have 
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corresponding residues in the template structure [72]. The workflow starts with the 

construction of the backbone of the target protein. The backbone model can be 

constructed by three different approaches: the assembly of rigid bodies, segment 

matching/coordinate reconstruction, or satisfaction of spatial restraints [70]. In the 

assembly of rigid bodies backbone atom positions of conserved core, regions are taken 

from the most similar template. Backbone loop atoms are modeled using a database of 

all reported loop structures. The segment matching approach assumes that all 

hexapeptides can be classified into 100 structural classes. Templates are hence broken 

down into hexapeptide segments and reassembled based on conformations obtained 

from a stochastic search or an energy function-guided approach. Modeling by 

satisfaction of spatial restraints assumes that geometrical restraints are similar between 

template and target. General geometrical restraints from a force field (see 3.3 Molecular 

Dynamics Simulations) are also applied. The model is obtained after the minimization 

of restraint violations. Constraints or restraints derived from other methods such as 

NMR can also be included in this approach [70]. Less ordered domains of the target 

protein are built by loop modeling. Often, little information on the fold of the domain 

can be derived from the short sequence. Usually, the anchor regions, through which 

the loop is connected to the core regions, are used to guide the loop modeling. Loop 

modeling approaches can be divided into ab initio, database search, or a combination 

of these two methods. The ab initio methods search for conformations that are then 

evaluated by a scoring function, which is usually based on a force field. The database 

search scans databases for experimental loop structures with high sequence and 

anchor region similarity [70]. Once the backbone model is complete the side chains can 

be modeled. Backbone and side conformation are coupled and might make it necessary 

to address backbone flexibility while modeling sidechains. Between proteins with less 

than 30% sequence identity, the backbone fold might be conserved, but the sidechain 

interaction pattern is likely lost completely [83]. Side chain packing and solvent 

exposure drive correct modeling of side chain conformations [83, 84]. 

Finally, the constructed 3D model needs to be evaluated for general model quality and 

whether it is fit to model the research question at hand [70, 72]. Commonly checked 

general quality criteria are satisfactory geometry and the intra-protein hydrogen 
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bonding potential. Geometrical parameters usually include dihedral angles, atom 

distance clashes, bond angles, and lengths. 

Several web services, such as VERIFY3D [85, 86], PROCHECK [87], and 

WHATCHECK [88], are available to check the quality parameters. The SAVES web 

server (saves.mbi.ucla.edu) comprises all the aforementioned web services. 

Furthermore, the final model should be examined by an expert with knowledge of the 

structure and function of the protein class. This is especially true for modeling in the 

twilight area where the built model likely needs further information from orthogonal 

experiments, such as mutagenesis studies or extended ligand structure-activity 

relationship (SAR) studies. The latter approach might also be called ligand-guided or 

ligand-steered homology modeling [72]. Generally, the model needs to be fit for 

purpose, which means that observed experimental trends must be explainable within 

the scope of the model. In the case of disagreement between experiment and model, 

the model is iteratively optimized. The approach and level of required optimization 

strongly depend on the complexity of the model and research question at hand [72]. 

The optimization strategy can range from a simple side chain rotation to elaborate 

techniques that consider the dynamic nature of macromolecules, such as molecular 

dynamics. In this doctoral thesis, homology models were used to explain and predict 

ligand binding and key binding residues. 

There are various automated homology modeling web services, such as SWISS-

MODEL [89], ROBETTA [90] RaptorX [91], and I-TASSER [75, 77, 78]. I-TASSER has 

been used excessively in the presented doctoral project, hence its methodology is 

discussed further below. The templates are fragmented and reassembled into initial 

models of the target. The models undergo stochastic conformational sampling. In 

detail, the models are subjected to multiple Monte Carlo simulations in parallel and 

the simulations can exchange atom positions, which is also referred to as replica 

exchange. The processed models are then clustered to find representative (centroid) 

model structures, which are then refined by two-step energy minimization to remove 

potential atom clashes. The top five models are chosen based on the confidence score 

and presented to the user. In the last step, COACH provides several predictions for 
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the top model, such as closest related template structure (by TM-align), function 

annotation, and binding site prediction.  

3.2 Molecular Docking 

How does a small molecular ligand bind to a macromolecular target, such as a protein, 

to exert its biological effect? This is one of the fundamental questions in drug discovery 

and is putatively addressed by molecular docking. Molecular docking suggests 

hypotheses for the binding of a ligand to a target (Figure 8) [92, 93]. The binding 

hypotheses of the ligand are also referred to as docking poses. The structure of the 

macromolecule can originate from homology modeling or experiments, such as X-ray 

crystallography, NMR, or Cryo-EM. Experimental atomistic 3D structures are 

deposited in the PDB [67]. The docking program faces two challenges to obtaining 

meaningful ligand binding hypotheses. First, the program needs to find plausible 

poses for the ligand at a predefined part of the target, such as the catalytic pocket of 

an enzyme. Subsequently, the found docking poses and the involved modeled 

macromolecule-ligand interactions must be evaluated and ranked by a scoring 

function. In general, the rotational and translational degrees of freedom of the rigid 

ligand and rotations around its rotatable bonds (conformations) define the ligand’s 

flexibility space. The conformation of the macromolecular target is often kept rigid to 

reduce the complexity of the problem. Flexible docking approaches somewhat address 

target flexibility and allow for small changes in the target structure, such as side-chain 

rotation. Target flexibility can also be addressed by other, more qualified methods to 

sample the biologically relevant conformational target space, such as molecular 

dynamics (MD) or Monte Carlo simulations (see below) [92]. In ensemble docking, the 

ligand is docked to not only one, but multiple target conformations, which is widely 

used with highly flexible targets [94].  

The ligand’s flexibility is addressed by the search, or sampling, of ligand poses, which 

is handled differently by the various docking programs. The search techniques can be 

categorized into five sections: incremental construction approach (FlexX [95]), 

conformational search (MOE docker[96]), Monte Carlo search (Autodock [97]), 

systematic search techniques (Glide [98, 99]), and genetic algorithm (GOLD [100]). For 

the incremental construction approach, the ligand is broken down into fragments that 
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are docked individually. The program then attempts to reconstruct the ligand by 

ligating suitable fragment docking poses [95]. MOE docker samples ligand 

conformations first and then attempts to place ligand conformations via rigid-body 

docking into the designated target binding site[96]. In the early versions of AutoDock, 

the conformation of the ligand is changed randomly by a Monte Carlo search 

algorithm. The change in energy caused by the conformational change is evaluated by 

a scoring function.  

 

Figure 8. Molecular docking of a small molecule ligand to a macromolecular target. Docking poses of BO-I in the 
vicinity to the substrate funnel of choline trimethylamine-lyase (CutC, PDB ID: 5FAU [101] ) obtained with GOLD 
are shown [102]. The protein’s surface is shown in grey and ligand poses are colored individually and shown in 

ball and stick. 

The Monte Carlo algorithm accepts conformational changes that are energetically 

more favorable. Changes that increase energy are not rejected right away, but the 

probability of rejection increases with the extent of the energy increase [97]. Glide 

searches for all possible combinations of ligand conformation and position. After a 

preselection of poses, further refinement is achieved by Monte Carlo sampling [98, 99]. 

The primarily used docking program in the presented doctoral studies is GOLD 

(Genetic algorithm for ligand docking) and will therefore be described more in depth 

further below. GOLD applies a genetic algorithm to identify plausible ligand poses 
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[100]. Genetic algorithms attempt to solve a given problem by simulating competition, 

or natural selection, between different suggested problem solutions as chromosomes, 

here docking poses. An initial set of chromosomes (docking poses) is generated. One 

chromosome holds the parameter details of one initial docking pose and its fitness is 

evaluated by the scoring function. The fittest chromosome (docking pose with the 

highest score) is selected and undergoes crossover (partial exchange in docking pose 

parameters) and/or mutation (random changes in individual parameters). The fitness 

of the new offspring chromosomes (new docking poses) is again evaluated by the 

scoring function. The least fit parent chromosomes (lowest scoring old docking poses) 

are replaced by the fittest offspring chromosomes. The genetic algorithm might now 

start again with chromosome manipulation until it either converges (parents = 

offspring) or reaches the predefined maximum number of runs. The final set of 

docking poses might now be re-scored by a different scoring function. 

The scoring functions used to evaluate docking poses can be empirical (ChemScore 

[103]), derived from force fields (GOLD scoring function [104]), or knowledge-based 

(DrugScore [105]). The scoring function attempts to predict the free energy of binding 

ΔG for each docking pose and often fails with its prediction [106, 107]. Due to the 

limitations of scoring functions to identify pharmacologically relevant ligand 

conformations, the usage of more suitable metrics for the selection of a plausible 

binding hypothesis is encouraged [106]. Docking programs will always generate 

ligand poses in the defined pocket, also for inactive compounds – they produce false 

positives at high rates [106, 107]. For CYPs the distance of the heme iron to the small 

molecular moiety associated with inhibition or undergoing CYP-catalyzed 

biotransformation represents a simple but meaningful descriptor for binding mode 

plausibility. Additionally, 3D pharmacophore modeling (see section 3.4) can be 

applied to the docking poses and a reference ligand orientation to point to the presence 

or absence of protein-ligand interactions. 

3.3 Molecular Dynamics Simulations 

Every biomolecular system, such as a macromolecule-ligand complex, is in constant 

motion. Molecular dynamics (MD) simulations can model motions of biomolecular 

systems on time scales from nanoseconds to microseconds (Figure 9). MD simulations 
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can act as a “computational microscope” and potentially explain biological 

phenomena that are outside the scope of experimental methods [108]. The 

fundamentals and the ever-increasing role of MD simulations in drug design and 

protein structure modeling have been reviewed extensively [108-112]. AMBER [113], 

GROMACS [114], NAMD [115], OpenMM [116], and DESMOND [117] are frequently-

used programs to carry out the MD simulations. 

The biomolecular system of interest is usually modeled in water with physiological 

salt concentrations and if applicable within a bilayer membrane. This can easily result 

in a model with 100,000 or more atoms, which demands a good trade-off between an 

accurate enough model of the system and reasonable computational expense. 

Molecular mechanics (MM) are a good middle ground that apply classical Newtonian 

mechanics and represent atoms as spheres and bonds as springs [111, 118, 119]. In MM, 

each atom is described by its position, mass, and point charge. MD simulations start 

from the coordinates of an experimental (X-ray, Cryo-EM) or theoretical (homology 

model) 3D model. Atomic motion is calculated under the assumption that the forces 

acting on each atom are constant for the duration of a time step. Hence, the time step 

needs to be sufficiently small, approximately 1-4 fs, to account for the fast, vibrational 

movements of hydrogens. Initially, every atom is assigned a random motion – more 

precisely, a velocity taken from the Maxwell-Boltzmann distribution at the defined 

temperature. The potential energy of an atom dictates its next move and is obtained 

by calculating the atom’s bonded and non-bonded interactions (Figure 9). A set of 

formulas and corresponding parameters that define the shape of the functions are used 

here and are commonly referred to as a force field (FF). The most commonly used FFs 

for biomolecular systems are AMBER [120], CHARMM [121], GROMOS [122], and 

OPLS[123]. The bonded interactions are described by four formulas for bond-

stretching, bond angle bending, torsion angle, and out-of-plane bending. The non-

bonding forces between atoms are implemented by two formulas for van der Waals 

forces and electrostatic forces (Coulomb’s law) [111, 118, 119]. Some FFs have an 

additional cross term in the energy function that describes the dependency of bond 

length and angles [119].  Function parameters are tuned during FF parametrization to 

reproduce known properties from experiment or QM calculations. For example, bond 
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length can be obtained from an X-ray structure or other experiment, while non-

equilibrium properties, such as a torsion angle profile, can be derived from QM 

calculations. Atom and bond types might be defined for molecular moieties and 

parameter assignment, which assumes that parameters are transferable [119]. 

 

Figure 9. Molecular dynamics (MD) simulation of a biomolecular system. (A) MD simulations cover only a small 
part of the biological relevant conformational landscape of the biomolecular system. The conformational landscape 
is oversimplified as a 2D space, and the biologically relevant part of the conformational landscape is shown as 
darker patches. Conformations of the system during the MD simulation result in a trajectory and correspond to a 
path through the conformational landscape. (B) The biomolecular system undergoes conformational changes as 
indicated by curved arrows, which results in a simulation trajectory of conformations. (C) For each simulation step, 
the force field components are calculated that dictate the next conformational change. Bonded interactions include 
bond length, angle, torsion, and out of plane bending. Non-bonded interactions include electrostatic and van der 
Waals interactions. 

Throughout the MD simulation, successive system conformations are obtained, which 

is also often referred to as a trajectory. The movement of parts of the system, such as 

the macromolecule, can be described by the root mean square deviation of heavy atom 

positions (RMSD) or the root mean square fluctuation (RMSF). With RMSD, the atom 

positions of two conformations of a molecule are compared. For MD simulation 
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analysis each conformation is compared to one reference, which is usually the starting 

geometry. In RMSF calculations the average movement for each atom subgroup (e.g., 

protein residue) over time compared to a reference (usually starting geometry) is 

obtained. Monitoring of simple geometrical properties, such as distances, angles, 

dihedrals, or perimeters might be sufficient to link the simulation data to macroscopic 

experimental biological trends. The binding affinity of ligands to a macromolecule 

might be calculated by more advanced simulation protocols, such as free energy 

perturbation [124]. Specific interactions within the macromolecule or between ligand 

and macromolecule, such as hydrogen bonds, might be monitored over the MD 

trajectory by tools such as VMD [125] or MDAnalysis [126]. Interaction motifs might 

be analyzed by applying the concept of 3D pharmacophores to MD simulations as in 

the dynamic pharmacophores approach described in the following paragraph. 

3.4 Static and Dynamic 3D Pharmacophores and Virtual Screening 

A similar biological effect might be caused by a set of chemically diverse ligands 

binding to the same macromolecular target. Target-ligand interaction motifs might be 

derived from experimental or theoretical target-ligand complexes. The individual 

interaction motifs can be synthesized into a universal and simplistic 3D 

pharmacophore model. A 3D pharmacophore model comprises all macromolecule-

ligand interactions in an easily visualized format ideal for communication with 

experimentalists. According to the IUPAC definition: “[a] pharmacophore is the 

ensemble of steric and electronic features that is necessary to ensure the optimal supra-

molecular interactions with a specific biological target structure and to trigger (or to 

block) its biological response.” [127]. The individual target-ligand interactions, such as 

hydrogen bonds, charge-charge interactions, halogen bonds, aromatic interactions, 

metal coordination, and hydrophobic contacts are encoded as pharmacophore features 

(Table 2) [128]. Each pharmacophore feature contains not only the chemical 

description but also its relative position and its weight in the model. For each feature, 

the allowed deviation from the position or interaction angle can be changed to get less 

strict or stricter geometrical tolerance. The weight of each feature in the 3D 

pharmacophore model can be adapted as well. In this fashion, the 3D pharmacophore 
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model can be fine-tuned to get the best description of the modeled system. The fine-

tuned 3D pharmacophore model might then be used in virtual screening (see below).  

Table 2. Overview of 3D pharmacophore features as defined in LigandScout [129-131]. Exemplary ligand moieties 
(black) and their corresponding interacting moiety (grey) are shown. 

Feature 2D Depiction Example 

Hydrogen bond acceptor 

  

Hydrogen bond donor 

  

Negative ionizable 

  

Positive ionizable 

  

Aromatic interaction 

 
 

Hydrophobic contact 

  

Halogen bond 

 
 

Metal coordination 

  

Exclusion Volume 

 

Any atoms of the target 

 

3D pharmacophore models can either be derived via a ligand-based or a structure-

based approach. For the ligand-based approach, a conformation of one or multiple 

aligned ligands is used to create a model of consensus 3D pharmacophore features. 

Forge [132] and Pharao [133] offer ligand-based 3D pharmacophore modeling. 

Structure-based 3D pharmacophores are created from a target-ligand complex, which 

has the advantage that interaction directionality and exclusion volumes are included. 

MOE (Molecular Operating Environment 2020.09; Chemical Computing Group ULC, 

Montreal, Canada), Catalyst [134], and LigandScout [129] are exemplary programs that 
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offer both structure- and ligand-based 3D pharmacophore modeling methods. 

Exclusion volumes are defined as a spherical space that cannot be occupied by the 

ligand since it would clash with target atoms at a similar position. 

 

Figure 10. Dynamic 3D pharmacophore (dynophore) model from MD simulations. Besides the pharmacophore 
features only ligand and heme cofactor are depicted. The target is only depicted schematically as binding pocket 
shape. 

3D pharmacophore-based virtual screening aims to identify active molecules that 

show the interactions encoded in the pharmacophore model [130, 135]. The 3D 

pharmacophore features abstract the chemical nature of ligand moieties, which allows 

scaffold hopping and matching of different bioisosteric moieties. A negative ionizable 

pharmacophore feature will not only match a carboxylate moiety, but also the 

bioisosteric tetrazole moiety. Virtual libraries of millions of compounds can be 

screened in an extremely rapid fashion using the simplistic 3D pharmacophore 

model(s) in software such as LigandScout [129-131], MOE, or Phase[136]. The 3D 

pharmacophore model is usually validated using reported active and inactive 

molecules against the target. If there are no known inactive molecules, molecules 
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(decoys) that are randomly selected and are likely to be inactive against the target can 

be used instead [137, 138]. Decoys are obtained by minimal structural changes to 

known active molecules while maintaining the physicochemical properties. After 

validation, precalculated conformations of the search library compounds are 

superposed on the 3D pharmacophore model. Compounds that satisfy the 3D 

pharmacophore model constraints are included in a virtual hit list. Virtual screening 

performance can be evaluated by several parameters including sensitivity, specificity, 

enrichment factor, and the receiver operating characteristic (ROC) curve [130]. The 

ROC curve visualizes the true positive rate, also referred to as sensitivity, and the false 

positive rate of the 3D pharmacophore model. The ROC curve shows the proportion 

of compounds selected by the 3D pharmacophore model with confirmed activity and 

those that are falsely predicted to be active. Recently, our lab has reviewed the latest 

advances in 3D pharmacophore modeling including virtual screening and other 

applications [139].  

Target and ligand are in constant motion as described in the previous section (3.3 

Molecular Dynamics Simulations). Hence it is only logical to include this motion into 

3D pharmacophore modeling. Sydow and colleagues have therefore applied 3D 

pharmacophore modeling to MD simulations, which results in a dynamic 

pharmacophore model or ‘dynophore’ [140, 141]. For every time step of the MD 

simulation, each target-ligand interaction is captured as an individual interaction 

point. Related interaction points are grouped into superfeatures, such as all 

hydrophobic contacts the phenyl ring of a ligand forms with the target (Figure 10). The 

final dynamic 3D pharmacophore model is composed of multiple superfeatures. 

Superfeatures allow for spatial, temporal, and general statistical analysis. The spatial 

distribution of the interaction points gives insight into the stability of the modeled 

interactions and might identify substrates of binding. The temporal analysis with 

barcode plots, the occurrence of interactions over time, shows which interactions occur 

together and which are mutually exclusive. Statistical analysis, such as the frequency 

of occurrence of superfeatures can identify key interactions and discard minor 

interactions.   
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4 Results 

4.1 Efficient Substrate Screening and Inhibitor Testing of Human 

CYP4Z1 Using Permeabilized Recombinant Fission Yeast 

Qi Yan, David Machalz, Andy Zöllner, Erik J. Sorensen, Gerhard Wolber, Matthias 

Bureik 

This article was published in Biochemical Pharmacology (IF: 5.29) 146 (2017) 174-187, 

Copyright Elsevier 

https://doi.org/10.1016/j.bcp.2017.09.011 

 

Cytochrome P450 4Z1 is overexpressed in breast cancer and might hence be a 

promising therapeutical target. In the following study, the lab of Prof. Bureik at Tianjin 

University established an expression method for CYP enzymes and probed the 

promising breast cancer target CYP4Z1 with luminogenic substrates and inhibitors. In 

order to rationalize the substrate structure-activity relationships (SAR) trends 

information on the enzyme structure is required. However, no experimentally 

resolved atomistic model of CYP4Z1 has been reported so far. Hence, our lab 

constructed a homology model of CYP4Z1 using the substrate SAR data. We docked 

the substrates into the active site of CYP4Z1 and predicted four binding residues with 

the help of 3D pharmacophore modeling. 
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4.2 Functional Characterization and Mechanistic Modeling of the 

Human Cytochrome P450 Enzyme CYP4A22 

Pradeepraj Durairaj, Linbing Fan, David Machalz, Gerhard Wolber, Matthias Bureik 

This article was published in FEBS Letters (IF: 4.12) 593, Issue 16, (2019), 2214-2225, 

Copyright Federation of European Biochemical Society 

https://doi.org/10.1002/1873-3468.13489 

 

The Bureik lab at Tianjin University expressed the orphaned CYP4A22 in a functional 

form and reported activity on fatty acids and probe substrates. As no atomistic model 

of CYP4A22 is known, our lab followed the same protocol as previously reported for 

CYP4Z1 (see Section 4.1). We constructed a homology model for CYP4A22 

incorporating the substrate SAR data. With the CYP4A22 model we could rationalize 

the effect of a mutation on the probable interface to the redox partner protein. Substrate 

docking and 3D pharmacophore modeling allowed us to rationalize activity trends. 

We used molecular dynamics simulations in combination with dynamic 3D 

pharmacophore (dynophore) modeling to study substrate recognition in CYP4A22 

and predict binding residues. 
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4.3 Importance of Asparagine-381 and Arginine-487 for Substrate 

Recognition in CYP4Z1 

Wei Du, David Machalz, Qi Yan, Erik J. Sorensen, Gerhard Wolber, Matthias Bureik 

This article was published in Biochemical Pharmacology (IF: 5.29) 174 (2020) 113850, 

Copyright Elsevier 

https://doi.org/10.1016/j.bcp.2020.113850 

 

In a previous study of the promising anti-cancer target CYP4Z1 we predicted four 

residues for substrate recognition (see section 4.1). In this study, the Bureik lab at 

Tianjin University tested our prediction by in vitro mutagenesis studies. Surprisingly, 

the mutation led to enhanced substrate binding. Hence, our lab employed molecular 

dynamics simulations and dynamic pharmacophore modeling to study the interaction 

dynamics in CYP4Z1 substrate recognition. The analysis of the interaction dynamics 

suggested two new binding residues and provided a mechanistic explanation for 

enhanced activity CYP4Z1 mutants. New in vitro mutants expressed by the Bureik lab 

confirmed the key role of the new residues in substrate binding and recognition.  
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4.4 Discovery of a novel potent cytochrome P450 CYP4Z1 inhibitor 

David Machalz, Hongjie Li, Wei Du, Shishir Sharma, Sijie Liu, Matthias Bureik, 

Gerhard Wolber 

This article was published in European Journal of Medicinal Chemistry (IF: 6.18) 215 

(2021) 113255, Copyright Elsevier 

https://doi.org/10.1016/j.ejmech.2021.113255 

 

Previously, we elucidated the CYP4Z1 substrate binding mode and validated our 

CYP4Z1 model (see section 4.3). In this study, our lab moved forward in targeting the 

promising anti-cancer target CYP4Z1. As a starting point, we suggested a binding 

mode for a low micromolecular inhibitor. We encompassed the enzyme-inhibitor 

interactions into a 3D pharmacophore model which we enhanced with insights from 

previous CYP4Z1 mutagenesis studies. We used this 3D pharmacophore model to 

screen for new inhibitors of CYP4Z1. Structure activity relationships of the active 

screening hits were studied by MD simulations, dynamic pharmacophores, and 

quantum mechanics. Screening hits were evaluated in vitro for purity, activity, and 

selectivity by the Bureik lab at Tianjin University. We identified a low nanomolecular 

inhibitor that binds selectively to CYP4Z1 over the major drug metabolizing CYP 

enzymes. 
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5 Discussion 

The reaction mechanism is highly similar for all CYPs, and their common fold is 

largely preserved. However, structural differences between CYP enzymes might lead 

to distinct functions and substrate spectra. Hence, atomistic models of CYP4A22 and 

CYP4Z1 were necessary to follow the aim of this doctoral project: the elucidation of 

the structure and function of the two orphaned CYP enzymes. The first two studies 

focused on the development of ligand-guided homology models for CYP4Z1 (see 

section 4.1) and CYP4A22 (see section 4.2) by using probe substrate activities. CYP4Z1 

was further investigated by elaborated in silico binding residue predictions and 

extensive mutagenesis investigations in a third study (see section 4.3). In the fourth 

study, CYP4Z1 was targeted in a virtual screening campaign and a new inhibitor was 

discovered with an IC50 value of 63 ± 19 nM (see section 4.4). 

5.1 Characterization of CYP4Z1 in vitro and in silico 

In the first study, we kickstarted the deorphanization of the promising anti-cancer 

target CYP4Z1 by further investigating its poorly understood activity (see section 4.1). 

The clear correlation between CYP4Z1 expression and tumor progression [57] makes 

the enzyme a promising anti-cancer target. Before this study, the only reported activity 

was the in-chain hydroxylation of lauric and myristic acid [142]. To escape the sparse 

ligand data situation the Bureik lab used the newly developed “enzyme bags” assay 

to probe CYP4Z1 with 15 different proluciferin substrates and six inhibitors.  

In the absence of an experimentally determined structural model, a ligand-based 

model of the target’s active site can be developed based on the structure of reported 

ligands. However, the number of reported substrates of CYP4Z1 was too small for any 

ligand-based approach. Hence, the development of a homology model for CYP4Z1 

was the most feasible way forward to investigate the structure-function relationship. 

Homology modeling suffers from increasing uncertainty with decreasing sequence 

identity between target and the used template protein structure (see section 3.1). At 

under 25% sequence identity, correct alignment of the target and template sequences 

becomes exceedingly difficult. This is also referred to as the “the twilight area” of 

homology modeling and can result in incorrect models [83]. CYP domains of high 
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sequence similarity can adapt different conformations for different ligands, which 

adds another challenge to the model development. This is especially true for CYP3A4 

where bulky ligands ketoconazole and erythromycin require large-scale changes to the 

enzyme’s holo-structure resulting in an increase of active site volume by more than 

80% [50]. Hence, Guengerich et al. stated that “[…] a structure of a P450 in the absence 

of a ligand is probably not particularly useful in predicting what a P450 substrate 

complex will look like”[143]. Furthermore, it is critical to understand the chemistry of 

CYPs and their substrates in order to include the steric requirements of the heme 

moiety and arrive at plausible models of CYP enzymes, which can yield mechanistic 

insights. However, a first homology model of CYP4Z1 was reported in a review on the 

enzyme in early 2017 [60], which was based on the human X-ray structure CYP3A4 

(PDB ID: 1TQN). Human CYP4Z1 and CYP3A4 are in the twilight area with a sequence 

identity of 25.4%. Fortunately, the first X-ray structure of a CYP4 family enzyme was 

published later in 2017, the X-ray structure of rabbit CYP4Z1 (PDB ID: 5T6Q) [34]. 

Human CYP4Z1 and rabbit CYP4B1 have a sequence identity of 44.0% and are more 

closely related than CYP4Z1 and CYP3A4. Hence, we could derive a first homology 

model of human CYP4Z1 based on the more suitable template of rabbit CYP4B1. The 

sequence identity below 50% nevertheless demanded additional orthogonal data for a 

reliable model. Here, ligand-based homology modeling can be applied, which includes 

indirect information on the binding site from ligand activity data [72]. Structure-

activity relationships (SAR) from the proluciferin substrates were used to enhance the 

homology model. The smaller active site of CYP4B1 compared to CYP4Z1 posed an 

additional challenge. The co-crystalized ligand n-octane in CYP4B1 is somewhat 

smaller than the substrates tested in CYP4Z1. Hence, it is safe to assume that CYP4B1 

is a suitable template in terms of backbone geometry and binding site differences are 

mainly caused by side chains. In CYP4B1 the binding site is restricted by a covalently 

bound heme, which is not the case in CYP4Z1. In the CYP4Z1 model, side chains had 

to be manually adapted in a ligand-guided fashion to allow for a slightly larger 

binding site than in CYP4B1.  

Taken together, we augmented the homology modeling for CYP4Z1 with probe 

substrate data to shed first light on the active site of CYP4Z1. We predicted Ser113, 
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Ser222, Asn381, and Ser383 to be important for substrate binding in CYP4Z1. The 

CYP4Z1 model could now be validated in vitro in the next step and subsequently, be 

used for a structure-based drug design campaign targeting the enzyme. The 

incorporated probe substrate data was key to overcome the sparse data situation that 

hampers the homology modeling of orphaned CYPs and resulted in the first reported 

structural model yielding mechanistic insights into CYP4Z1 functionality. 

5.2 Characterization of CYP4A22 in vitro and in silico 

In this second study, we employed an in vitro and in silico protocol similar to the first 

study to investigate the activity of CYP4A22 (see section 4.2). CYP4A22 activity was 

poorly characterized before and only ω-hydroxylation of AA to 20-HETE was known. 

The Bureik lab expressed two variants of CYP4A22-WT and CYP4A22.1 that differ by 

the Tyr152Asn mutation. CYP4A22.1 was previously reported as the reference 

standard sequence [144]. However, bioinformatic analyses done for this study 

revealed that CYP4A22-WT is the most frequent variant. Due to an even sparser ligand 

data situation than for CYP4Z1, CYP4A22 was probed by 11 probe substrates, three 

fatty acids, and four inhibitors. CYP4A22 showed activity for 8 probe substrates and 

ω-hydroxylated lauric and myristic acid, which is the first report of enzymatic activity 

of CYP4A22. 

Our lab built the first homology model of CYPA22 informed by substrate SAR to 

understand the structural prerequisites that allow for the rather different reaction 

mechanisms. To the best of our knowledge, this was the first-ever reported homology 

model of CYP4A22. The CYP4A22 model most closely resembled the rabbit CYP4B1 

structure [34]. With a sequence identity of 51.3%, CYP4A22 and CYP4B1 are more 

closely related than CYP4Z1 and CYP4B1 with 44.0%. Furthermore, the covalently 

bound heme moiety in CYP4A22 and CYP4B1 makes their active sites more similar 

and tunes them towards ω-hydroxylation activity. We surmised from the CYP4A22 

model that the Tyr152Asn mutation enhances the interaction with the redox partner 

cytochrome P reductase and hence CYP4A22.1 activity. 

Once again, a direct implementation of ligand data helped to fine-tune the atomistic 

model of the active site of CYP4A22. In particular, the position of the side chain of 
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Phe320 is worth noting here. The initial model featured the inwards rotamer of Phe320 

similar to the position of Phe309 in CYP4B1. This CYP4A22 binding site shape was, 

however, not fully in line with the determined activity profile. Addressing this issue, 

we found that the outwards rotamer allows for the biotransformation of bulkier 

substrates as found in vitro. We surmised that the Phe320 rotation is only possible in 

CYP4A22, as CYP4B1 is more densely packed in the second layer behind the Phe309 

(see section 4.2, Fig. 3A). The suggested increased residual mobility of Phe320 in 

CYP4A22 is likely the cause for the decreased ω-hydroxylation efficiency. The 

importance of Phe rotamers in CYP active sites has been reported before, for example 

for the drug-metabolizing CYP2D6. An in silico study found that CYP2D6 can adapt to 

its substrates with two different rotamers of a Phe residue in the active site [145]. This 

investigation started from a validated 3D model of a CYP2D6 X-ray structure, which 

is in clear contrast to our study of an unvalidated CYP4A22 model. Although we 

couldn’t investigate the transition between the two Phe rotamers for CYP4A22 by MD 

simulations as done in the CYP2D6 study within the framework of this thesis due to 

the lack of a validated CYP4A22 model, this would certainly be an interesting question 

for future investigations. 

We used MD simulations to describe the dynamics of interactions between CYP4A22.1 

and the most active probe substrate Luciferin-BE. Here, the hypothesized salt bridge 

between the substrate’s carboxylate moiety and Arg96 and Arg233 was of particular 

interest. The suggested role of these two Arg residues was further supported by MD 

simulations analyzed by dynamic pharmacophores. Dynamic pharmacophores 

describe how macromolecule-ligand interactions evolve over time during an MD 

simulation creating a 3D pharmacophore model for each simulation time step. 

Dynamic pharmacophores allow us not only to view the occurrence of individual 

intermolecular interactions, but also which interactions occur together and those that 

are mutually exclusive. This way we can dissect complex interaction profiles to suggest 

which interactions are important and how subtle changes influence binding affinity. 

The simulation results of CYP4A22 and Luciferin-BE suggested stable interaction with 

Arg96 and less frequent interaction with Arg233. Hence, sole interaction with Arg96 

might suffice for substrate recognition. 
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MD simulations allow us to follow the movements of a biomolecular system over time, 

such as a CYP enzyme-substrate complex. In this way, MD simulations can sample an 

ensemble of conformational states of the enzyme-substrate complex. MD simulations 

work under the assumption of the ergodic hypothesis, which implies that a system can 

reach every possible state no matter the initial state the system was in and that the time 

average equals the ensemble average [119]. Given infinite simulation time and 

assuming the ergodic hypothesis, an MD simulation will visit all formational states of 

the complex. In reality, MD simulation time is finite and limited by the available 

hardware. The complexity of the simulated system and time scale of the investigated 

event, therefore, determine how long the MD simulation needs to be to sample the 

relevant conformational space. Movements of protein domains can be well in the 

microsecond time scale. Since we were particularly interested in small changes to the 

enzyme-substrate complex related to biological activity, simulations in the hundreds 

of nanoseconds are sufficient and feasible. Nevertheless, MD simulations can get 

trapped in low-energy conformational states, which leads to local oversampling and 

hampers sufficient conformational sampling. To identify or even circumvent artifacts, 

such as local oversampling, it is common practice to run multiple MD simulation 

replicas of the system. Conclusions drawn from a single long MD simulation as 

opposed to multiple shorter simulation replicas might be false positive [146]. Hence, 

we ran the MD simulation of CYP4A22 and Luciferin-BE in three replicas.  

MD simulations apply Molecular Mechanics (MM), a reductionistic representation of 

the system. In MM-based force fields, charge-charge interactions decay more quickly 

with increasing distance than in vivo. Beyond 9 Å charge-charge interactions are 

described implicitly in the default settings of the DESMOND simulation engine. 

Hence, the cancellation of the salt bridge between CYP4A22 and Luciferin-BE might 

be an artifact; once the guanidine moiety of the Arg233 residue moved further away 

than 9 Å from the substrate carboxylate the interaction was canceled out, which is 

unlikely in reality. A way to investigate this potential artifact would be to increase the 

calculated interaction range, which might however slow the MD simulation down 

severely and was outside of the scope of this study. Ideally, the effects of these 
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hypothesized salt bridges would be investigated by in vitro mutagenesis studies first 

before investigating CYP4A22 more in depth in silico. 

Taken together, we reported the first functional expression and homology model of 

CYP4A22, which was investigated in atomistic detail in this study. We predicted two 

key Arg residues, described the binding site including covalent heme binding, and 

rationalized the ω-hydroxylation activity of CYP4A22. With the help of this CYP4A22 

model, we rationalized the activity shift between the two most common CYP4A22 

variants. These findings will benefit further studies on the function of the still 

orphaned CYP4A22.  

5.3 Dissecting and Validating the CYP4Z1 Binding Site Model 

In the third study, we continued to characterize CYP4Z1 in terms of the binding site 

and substrate recognition (see section 4.3) based on the findings of the first study (see 

section 4.1). Previously, we predicted Ser113, Ser222, Asn381, and Ser383 to be major 

drivers of ligand binding in CYP4Z1. Mutagenesis experiments done by the Bureik lab 

in this study could not confirm the importance of these residues. In fact, the Ser113Ala 

and Ser383Ala mutants increased CYP4Z1 activity. We predicted that the CYP4Z1 

mutants Ser113Ala and Ser383Ala will hamper substrate recognition and thereby 

reduce biotransformation activity. However, the two mutants led to increased CYP4Z1 

activity in vitro, which clearly shows that a mutation can have unforeseen effects in 

complex interaction networks and can benefit from rationalization through MD 

simulations. This is especially true for poorly understood enzymes such as CYP4Z1.  

Previously, MD simulations could provide the necessary explanation for complex 

mutagenesis data of CYP enzymes [147-149]. Our MD simulation analysis protocol 

was inspired by a study on the regioselectivity of macrocycle oxidation by CYPBM3 

by MD simulations by Petrovic et al [147]. Petrovic and colleagues monitored atom 

distances in MD simulations and used them to describe the conformational space of 

the substrate in the active site of CYPBM3. This methodology heavily inspired our 

analysis of MD simulations of CYP4Z1 and Luciferin-4F12. But how do MD 

simulations relate to in vitro trends? A common approach is to focus on the second step 

in the catalytic cycle where the substrate has already entered the active site of the CYP 
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enzyme, but the reaction has not yet taken place. Here, the distance between the heme 

iron that will bind the oxygen for reaction and the substrate atom undergoing 

oxidation, the site of oxidation (SoO), is measured. Catalytically competent binding is 

assumed at an Fe-SoO distance smaller than 6 Å [145]. In the complex of CYP4B1 and 

n-octane (PDB ID: 5T6Q), the Fe-SoO distance is 3.4 Å. In CYP21A2, the endogenic 

substrate progesterone is 4.0 Å away from the heme (PDB ID: 4Y8W). However, as 

mentioned above, X-ray structures can also provide a false picture of catalytically non-

competent binding. In the X-ray structure of the well-established CYP model system 

CYP102A1 of Bacillus megaterium (CYPBM3) the substrate N-palmitoylglycine is bound 

in a catalytically non-competent pose (PDB ID: 1JPZ). We measured an Fe-SoO 

distance of 7.5 Å in this structure. Here MD simulations with advanced sampling were 

able to produce a catalytically competent pose of N-palmitoylglycine with an Fe-SoO 

distance of 3.6 Å [150]. These examples establish the Fe-SoO-distance as a good 

surrogate parameter for catalytic competence of a CYP enzyme-substrate 

conformation from X-ray structures or MD simulations. 

Hence, we went back to the CYP4Z1 model and employed MD simulations to study 

substrate binding dynamics as previously done for CYP4A22 (see section 4.2). We 

found the previously unreported binding residue Arg487 that forms a salt bridge to 

the carboxylate group from MD simulations of CYP4Z1 and probe substrate Luciferin-

4F12. The importance of this salt bridge was validated in vitro. Substrate recognition 

via long-range charge-charge interactions is a common mechanism in enzymes [151]. 

CYP4 enzymes are mostly fatty acid hydroxylases, and it seems plausible that 

positively charged amino acids recognize the carboxylate moiety of fatty acids. This 

notion is further supported by the previous finding that probe substrates without a 

free carboxylate moiety showed drastically lowered activity in the first study of 

CYP4Z1 (see section 4.1). However, it is worth noting that, due to the convenience of 

the luminescence assay, CYP4Z1 was investigated with Luciferin-4F12, which is not its 

physiological substrate. Apart from the carboxylic acid moiety that Luciferin-4F12 and 

fatty acids share, fatty acids have far more rotatable bonds and therefore can adapt 

more conformations. For CYP4A22 we surmised that fatty acids could adapt different 

catalytically competent conformations (see section  4.2). 
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In the second stage of MD simulations, we could successfully explain the activity shifts 

for three mutants: Ser113Ala, Ser383Ala, and Arg487Met. Catalytically competent 

substrate binding was less frequent for Arg487Met due to the loss of the salt bridge to 

the substrate carboxylate. In the gain of function mutants Ser113Ala and Ser383Ala, a 

subpocket in the binding site closed, which led to more frequent catalytically 

competent substrate binding. It is not clear whether the gain of function mutations 

might have also positively affected active site solvation or access channel dynamics. 

Furthermore, we dissected the interaction dynamics for CYP4Z1.1 into substate’s and 

residue’s contributions. We found that besides the key residue Arg487, Asn381 plays 

a supporting role in substrate binding, which was confirmed by a double mutant in 

vitro (see section 4.3).  

Taken together, we were able to validate our CYP4Z1 model in vitro and study 

substrate binding thoroughly in silico. We reported two key residues, predicted in silico 

and validated in vitro. These detailed insights into CYP4Z1 substrate binding are 

crucial to investigate the still poorly understood physiological role of CYP4Z1 further. 

Furthermore, the validated CYP4Z1 model is perfectly apt to be used in a structure-

based drug design campaign to find new small molecules targeting CYP4Z1. 

5.4 Targeting CYP4Z1 by Rational Computational Drug Design 

In this fourth study, we used our validated CYP4Z1 model to discover a new potent 

inhibitor of CYP4Z1, which was validated in two different assays in vitro (see section 

4.4). We used the previously determined substrate SAR (see sections 4.1 and 4.3) to 

augment a 3D pharmacophore model of the most potent reported non-covalent 

CYP4Z1 inhibitor 1-benzylimidazole. This augmented 3D pharmacophore model was 

used in a virtual screening campaign and yielded 8 hits after a careful post-screening 

pipeline.  

A 3D pharmacophore model that is used for virtual screening should be validated with 

active and inactive molecules. As CYP4Z1 is an orphaned enzyme very few active 

inhibitors are known. The reported inhibitors of CYP4Z1 are structurally diverse, 

which hampers the development of a consensus 3D pharmacophore model. Hence, we 

decided to augment the pharmacophore model with validated substrate SAR data 
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instead. Another potential pitfall in 3D pharmacophore modeling is the consideration 

of the binding site shape, which can be described by exclusion volumes that don’t 

allow inhibitor placement. It can be very cumbersome to completely describe the 

binding site with exclusion spheres. Hence, we used docking to account for steric 

limitations of the binding site and to identify implausible inhibitor poses. 

Five of the virtual screening hits were tested by the Bureik lab in primary screening. 

Surprisingly, the marketed drug ozagrel was amongst the validated hits, and the in 

vivo implication of this activity needs to be studied further. For this study, the Bureik 

lab developed a new CYP4Z1 inhibition assay by transfecting MCF-7 breast cancer 

cells to overexpress CYP4Z1. Under these more in vivo like conditions, the most potent 

hit (inhibitor 9) showed an IC50 value of 63 ± 19 nM, which corresponds to 100-fold 

increased potency compared to the starting point of 1-benzylimidazole. For the 

approval of new drugs, authorities, such as the Food and Drug Administration (FDA) 

or the European Medical Agency (EMA), routinely request data on the inhibition of 

the six major drug-metabolizing CYPs (1A2, 2C9, 2C19, 2D6, 2E1, and 3A4). The 

nanomolar activity of inhibitor 9 is especially astonishing as hits from virtual screening 

do not often show high affinity in contrast to lead compounds that already underwent 

multiple optimization cycles. Furthermore, Inhibitor 9 showed no activity except in 

CYP2D6, where it showed only minor inhibition. This selectivity profile makes 

inhibitor 9 a hit worthy of being optimized towards a lead structure. 

To understand the SAR of inhibitor 9, we employed MD simulations including 

dynophore analysis. However, the MM force fields showed a severe limitation here; 

the interaction between inhibitor and iron was sufficiently represented only after the 

introduction of a virtual covalent bond. Hence it was necessary to explicitly model 

valence electrons with the quantum mechanical (QM) method density functional 

theory to correctly model the key interaction. QM methods have been frequently used 

to describe CYP enzyme functionality and inhibition [23, 152-156]. SMARTCyp used 

previously performed QM calculations to predict CYP-related metabolism solely 

based on the substrate structure [152]. The ω-hydroxylation of vitamin K1 by CYP4F2 

has been described by QM methods [153]. More importantly, the inhibition of the heme 

by nitrogen-containing heterocycles has been thoroughly studied by QM methods 
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[154, 155] and has even been used to discover inhibitors of prostate cancer target 

CYP17A1 [156]. Since QM methods are computationally more expensive, it is only 

feasible to perform calculations on small systems. Hence, CYPs are often reduced to 

an iron atom, the heme moiety or a porphyrin ring, the cysteine ligand or a 

methylmercaptide and some truncated model of the ligand. Possible electronic and 

steric effects on imidazole moiety of the inhibitor by the rest of the molecule or the 

CYP enzyme are neglected this way. Due to the explicit modeling of electrons, 

molecular interactions become very sensitive to directionality. Hence, we used the 

most frequent conformation coordinates from our MD simulation to account for steric 

effects instead of an optimized structure as done in other QM studies on CYPs 

mentioned above.  

Shortly before the publication of our CYP4Z1 study, a new inhibitor, 8-[(1H-

benzotriazol-1-yl)amino]octanoic acid, was reported, which covalently binds to the 

heme of CYP41 [157]. Kowalski and colleagues started from the fragment 1-

aminobenzotriazole, which can covalently bind to the heme, and extended it with fatty 

acids of different lengths. The two most potent inhibitors showed selective binding to 

CYP4Z1 over seven other CYP4 enzymes. The Kowalski inhibitor did not inhibit seven 

major drug-metabolizing CYPs in vitro, similar to our inhibitor 9. However, their study 

did not propose a binding mode, which could hamper future rational structure-based 

optimization. The IC50 value of the Kowalski inhibitor was reported as 5900 ± 900 nM 

in contrast to our inhibitor with an IC50 value of 63 ± 19 nM. However, it must be noted 

that IC50 values originating from different assays can hardly be compared directly, 

especially when the mode of action is different. As mentioned above, the Kowalski 

inhibitor is a mechanism-based inhibitor similar to the marketed aromatase inhibitor 

exemestane. Our inhibitor 9 is a non-covalent inhibitor, which is more similar to the 

antifungal drug ketoconazole inhibiting CYP51A1 or the prostate cancer drug 

abiraterone inhibiting CYP17A1. Both compounds are drug-like in terms of predicted 

standard physicochemical parameters, such as total polar surface area, molecular 

weight, and clog.  

Hence, the Kowalski inhibitor and our inhibitor 9 could be merged into a new inhibitor 

in a future study. The new inhibitor would carry our more drug-like including the 
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carboxylate crucial for high affinity. The imidazole would be replaced the 1-

aminobenzotriazole of the Kowalski inhibitor for covalent and selective CYP4Z1 

binding. Furthermore, the scaffold’s amide moiety could be reversed to validated, if it 

forms hydrogen bonds contributing to the high binding affinity. 

Taken together, we identified three new inhibitors by our carefully developed virtual 

screening workflow and validated inhibitor potency in vitro. The most potent hit, 

inhibitor 9, was active in yeast-based and breast cancer cell-based CYP4Z1 inhibition 

assays and inactive on six drug-metabolizing CYPs. This new potent inhibitor of 

CYP4Z1 is a valuable pharmacological tool and could be used for lead structure 

discovery for a novel therapeutic approach targeting CYP4Z1. 
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6 Conclusion 

Human CYP enzymes are involved in many essential biotransformation pathways 

ranging from xenobiotic metabolism to the biosynthesis of steroids, vitamins, and fatty 

acids. The majority of CYPs involved in these processes have been studied extensively 

in the past, while other CYPs have been neglected or are completely orphaned. 

CYP4A22 and CYP4Z1 are two of the orphaned CYPs whose physiological function 

and structure are not known. The ω-hydroxylation activity of CYP4A22 produces 20-

HETE, which triggers angiogenesis. Furthermore, CYP4Z1 is a promising breast cancer 

target that was not previously targeted by small molecules.  

This doctoral study aimed to contribute to the deorphanization of CYP enzymes 

CYP4A22 and CYP4Z1. We have established a protocol to escape the sparse ligand 

data situation for orphaned enzymes where increasingly popular ligand data-driven 

methods, such as machine learning cannot be applied. Our experimental partner Prof. 

Bureik has established rapid testing with the described “enzyme bags” in combination 

with an efficient luminescence assay, which is also suitable for inhibitor screening. The 

experimental work of the Bureik lab enabled our ligand-driven homology modeling of 

CYP4Z1 and CYP4A22. We reported the first CYP4A22 model and a validated model 

of CYP4Z1. This highlights the importance of supporting homology modeling with 

activity data and modeling that emulates the mechanistics of the investigated 

biological system. However, besides the active site, the overall CYP4Z1 structure 

remains elusive. One open question is the role of access channels in substrate 

selectivity, which remains sparsely understood in all CYPs but has been recently 

tackled for CYP2D6 [158]. Nevertheless, with the help of these 3D models, we could 

show how structure determines CYP functionality. Small changes, such as the flip of a 

phenylalanine residue in CYP4A22 or the absence of a covalently bound heme in 

CYP4Z1, influence functionality. Recently, the deorphanization protocol has been used 

for other understudied CYPs [159-161] and has even been extended to understudied 

phase II metabolism enzymes, such as Sulfotransferases [162] and 

Glucuronosyltransferases [163]. In the advent of deep learning-enabled structure 

prediction, such as AlphaFold2 [164], large-scale structure-based enzyme 

deorphanization and selectivity modeling might come within reach.  
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Throughout this doctoral project, we have made use of different scales of molecular 

modeling appropriate for the research question at hand. We used 3D pharmacophore 

modeling as abstract molecular representation to rapidly screen millions of molecules 

to find new inhibitors of CYP4Z1. We used molecular mechanics, which model atoms 

and bonds explicitly, in molecular dynamics simulations and homology model 

refinement. We could show that taking the plastic structure of CYPs into account with 

MD simulations could lead to valuable insights. This involved the discovery of a new 

and important binding residue Arg487 and the dissection of the substrate recognition 

network in CYP4Z1. Here, dynamic pharmacophores have proven to be an invaluable 

tool to explain trends in MD simulations of protein-ligand complexes and detect even 

very subtle trends. We also demonstrated that complex descriptors are not always 

needed and a simple distance between two atoms (Fe-SoO) can link a simulation to 

reality. We explicitly modeled electrons for the description of the non-trivial 

coordination of the heme iron by our newly discovered CYP4Z1 inhibitor. However, 

absolute proof for the binding mode in CYP4Z1 can only be achieved through in vitro 

experiments. Especially for X-ray diffraction inhibitor 9 is a useful tool as only a potent 

inhibitor can establish the stable complex that is required for this technique.  

The novel CYP4Z1 inhibitor we discovered is a new valuable pharmacological tool to 

further study the physiological and pathophysiological role of CYP4Z1 and is an ideal 

starting point for new therapeutics targeting CYP4Z1. Nevertheless, it is important to 

reiterate that CYP4Z1 is not a validated therapeutical target. In vivo experiments, such 

as CYP4Z1 knockout mice are still required. Inhibitor 9 or derivatives thereof could be 

applied in CYP4Z1 overexpressing mice to study the effect on survival. 

Altogether, we have demonstrated how molecular modeling methods can drive the 

understanding of enzyme functionality and the discovery of new potent small 

molecules - never alone, always together with experimentalists.  
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8 Appendix  

8.1 List of Abbreviations 

20-HETE 20-hydroxyeicosatetraenoic acid 

BLAST basic local alignment search tool 

CADD computer-aided drug design 

CASP critical assessment of techniques for protein structure prediction 

Cryo-EM cryogenic electron microscopy. 

CYP cytochrome P450 

DNA deoxyribonucleic acid 

IC50 half maximal inhibitory concentration 

FF force field 

GOLD genetic optimisation for ligand docking 

IUPAC international union of pure and applied chemistry 

LOMETS local meta-threading-server 

MD molecular dynamics 

MM molecular mechanics 

MOE molecular operating environment 

MSA multiple sequence alignment 

NMR nuclear magnetic resonance 

OPLS optimized potentials for liquid simulations 

P450 cytochrome P450 

PDB protein data bank 

POR cytochrome P reductase 

PSI-BLAST position-specific iterated basic local alignment search tool 

ROC receiver operator curve 

RMSD root mean square deviation 

RMSF root mean square fluctuation 

RNA ribonucleic acid 

SAR structure activity relationship 

VS virtual screening 

QM quantum mechanics 
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8.2 List of Figures 

Figure 1. Heme B is the prosthetic group of cytochrome P450 enzymes. In 3D the heme 

is shown as ball and stick. Iron is shown as a large orange sphere, oxygen atoms are 

colored red, and nitrogens are colored, and carbons are light grey. Hydrogens have 

been omitted in both representations. ............................................................................. 1 

Figure 2. The catalytic reaction cycle of cytochrome P450 enzymes. Adapted from [27].

 ............................................................................................................................................... 5 

Figure 3. Examples of oxidation reactions catalyzed by Cytochrome P450 enzymes [22, 

28]. (1) Hydroxylation of aliphatic carbon. (2) Oxidation of alcohol to aldehyde. (3) 

Oxidation of aldehyde to carbonic acid. (4) O-dealkylation of ether. (5) N-

dealkylation of amine. (6) Hydroxylation of aromatic carbon. (7, 8, 9, and 10) 

Heteroatom oxidation: N-oxidation, P-oxidation, and S-oxidation. (11) Epoxidation 

of carbon-carbon double bond. (12) Oxidation of dihydropyridine to pyridine. The 

reactions lead to the insertion of a single oxygen atom and for (4) and (5) to 

subsequent reactions. ......................................................................................................... 7 

Figure 4. CYPs and their redox partner, such as cytochrome P reductase reside in a 

membrane. Different channels that connect the catalytic pocket and the enzyme 

exterior are surmised. Their function is still poorly understood as there is little 

consensus between CYP isoforms [42]. ........................................................................... 9 

Figure 5. The general fold of Cytochrome P450 enzymes. (a) 3D structure of lanosterol 

14-α demethylase (CYP51) the only CYP enzyme with an X-ray structure including 

the transmembrane helix in side view (PDB ID: 4LXJ) [40]. (b) CYP51 globular 

domain is shown from the bottom view where the plane of the heme is equal to the 

paper plane. 3D structure of the backbone is shown in cartoon representation and 

secondary structures are labelled. .................................................................................. 10 

Figure 6. The catalytic pocket of Cytochrome P450 enzymes. The substrate (lanosterol) 

is situated above the prosthetic heme moiety ready for oxygenation in CYP51 (PDB 

ID: 4LXJ) [40] . The heme iron is coordinated by a cysteine residue that is situated 

in the Cys loop. Helix I is distorted by a hydrogen bond between the side chain of 

Thr and the backbone of the residue four positions away in the helix, here Gly. In 

some CYP enzymes Gly is mutated to Glu, which then forms a covalent bond to the 
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heme. The heme moiety is held in place by salt bridges to basic residues (Arg and 

Lys). For sake of clarity helix B’ is not shown. The protein backbone is displayed in 

the cartoon representation, Heme and Cys residue are shown in ball and stick. All 

other residues and the substrate are shown in stick representation. Heme carbon 

atoms are colored black, oxygens are red and nitrogens blue. .................................. 12 

Figure 7. The four steps of comparative homology modeling. ....................................... 28 

Figure 8. Molecular docking of a small molecule ligand to a macromolecular target. 

Docking poses of BO-I in the vicinity to the substrate funnel of choline 

trimethylamine-lyase (CutC, PDB ID: 5FAU [101] ) obtained with GOLD are shown 

[102]. The protein’s surface is shown in grey and ligand poses are colored 

individually and shown in ball and stick. ..................................................................... 33 

Figure 9. Molecular dynamics (MD) simulation of a biomolecular system. (A) MD 

simulations cover only a small part of the biological relevant conformational 

landscape of the biomolecular system. The conformational landscape is 

oversimplified as a 2D space, and the biologically relevant part of the 

conformational landscape is shown as darker patches. Conformations of the system 

during the MD simulation result in a trajectory and correspond to a path through 

the conformational landscape. (B) The biomolecular system undergoes 

conformational changes as indicated by curved arrows, which results in a 

simulation trajectory of conformations. (C) For each simulation step, the force field 

components are calculated that dictate the next conformational change. Bonded 

interactions include bond length, angle, torsion, and out of plane bending. Non-

bonded interactions include electrostatic and van der Waals interactions. ............. 36 

Figure 10. Dynamic 3D pharmacophore (dynophore) model from MD simulations. 

Besides the pharmacophore features only ligand and heme cofactor are depicted. 

The target is only depicted schematically as binding pocket shape. ........................ 39 
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8.3 List of Tables 

Table 1. Overview of the 57 human CYP enzymes. CYP families are indicated by 
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