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THE BIGGER PICTURE Single-cell RNA sequencing (scRNA-seq) has become ubiquitous in biology.
Recently, there has been a push for using scRNA-seq snapshot data to infer the underlying gene regulatory
networks (GRNs) steering cellular function. A recent benchmark of 12 GRNmethods demonstrated that the
algorithms struggled to predict the ground-truth GRNs and speculated that the low performancewas due to
the insufficient resolution in the scRNA-seq data. Rather than proposing another method, this paper fo-
cuses on how to decompose a GRN problem into three subproblems (pre-processing, feature extraction,
and inference), so that the gene regulatory information is preserved in each step. Subsequently, we discuss
how to best approach each of the three subproblems.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY
Single-cell RNA sequencing (scRNA-seq) has become ubiquitous in biology. Recently, there has been a push
for using scRNA-seq snapshot data to infer the underlying gene regulatory networks (GRNs) steering cellular
function. To date, this aspiration remains unrealized due to technical and computational challenges. In this
work we focus on the latter, which is under-represented in the literature. We took a systemic approach by
subdividing the GRN inference into three fundamental components: data pre-processing, feature extraction,
and inference.We observed that the regulatory signature is captured in the statistical moments of scRNA-seq
data and requires computationally intensive minimization solvers to extract it. Furthermore, current data pre-
processing might not conserve these statistical moments. Although our moment-based approach is a
didactic tool for understanding the different compartments of GRN inference, this line of thinking—finding
computationally feasible multi-dimensional statistics of data—is imperative for designing GRN inference
methods.
INTRODUCTION

The emergence of single-cell RNA sequencing (scRNA-seq)

technology, the extraction of the transcriptome of individual

cells, has helped immensely in detecting and delineating het-

erogeneities in cells.1–7 Furthermore, with advances in ma-

chine learning and mRNA metabolic tagging, scRNA-seq has

provided new insights into cellular development and disease

pathogenesis.1,4–6,8–10 In light of these advances, the develop-
This is an open access article under the CC BY-N
ment of methods which infer the underlying gene regulatory

network (GRN)–which drives cellular decisions—is lagging

behind.11

Cellular function is dependent on the cell’s transcriptomic

signature, where the proteins translated from the mRNA form

signaling pathways, which perform the cellular function and

then, in a feedback loop, regulate the mRNA transcription to

translate proteins.12–14 The process of a gene affecting the

expression of another gene is referred to as gene regulation,
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and the collection of all gene regulatory interactions (e.g., in a

cell) forms a GRN.1,2,12,15–18 Unlike protein-protein interactions,

where educts are converted into products, gene regulatory inter-

actions are more illusive. A gene regulates another gene through

its downstream protein complexes, which affect the rate of tran-

scription of the gene being regulated. That is, gene regulation

physically occurs on the DNA level and its effect is observed

on the mRNA level. In particular, ‘‘gene A regulates gene B’’

means that gene A either upregulates (promotes) or downregu-

lates (inhibits) the rate of transcription of gene B. The fact that

scRNA-seq only captures mRNA, while gene regulation interac-

tions take place up- or downstream of the mRNA, constitutes a

major hurdle for inferring GRNs from scRNA-seq data.19,20

Recently, a trend has emerged to use multiple temporal

scRNA-seq snapshots to capture the underlying GRNs of cells.

Current single-cell GRN inference methods using temporal

snapshot data can be grouped into two families, the distribution-

based methods and the moment-based methods, distinguished

by the typeof summary statistics that theyuse.Distribution-based

methods construct their summary statistic based on the empirical

distribution of the gene expression in the snapshots,21–25whereas

moment-based methods utilize only the moments (mean and

covariance) of the snapshot data.26–28

The rapid increase in the number of GRN inference methods

has motivated the development of comprehensive comparative

frameworks. A recent benchmark of 12 GRN methods demon-

strated that the algorithms struggled to predict the ground-truth

GRNs and speculated that the low performance was due to the

insufficient resolution in the scRNA-seq data.11 Rather than pro-

posing another method, the focus of this paper is to dissect and

identify key computational stumbling blocks for inferring GRNs

from scRNA-seq data.

In general, there are three key components to a GRN inference

method: the data pre-processing, the feature extraction, and the

inference of the underlying gene regulation pattern. Data pre-

processing transforms the data to make it more tractable for

analysis, for example, pseudo-time reordering29 and variational

autoencoders.30 Feature extraction compiles summary statistics

of the data, which is intended to contain the information of the

regulation, for example the mean or mutual information. Lastly,

the inference of the underlying gene regulation pattern is what

finds the GRN among the space of all possible GRNs that best

matches the statistics of the data, for example, linear least

squares or random forest. We take a bottom-up approach and

shed light on key challenges in these three core components

through intuitive tailored GRN models.

In this work, we construct three different in silicoGRNs (known

ground truth), containing different gene regulation patterns and

modeled by Markov-jump processes according to the standard

dogma, with the regulation placed upstream from the

mRNA.13,31 Our GRN models consider the intrinsic noise arising

from the stochastic nature of gene regulation.32–35 We designed

the models to be nested with ascending order in the number

of regulatory reactions, from no regulatory interactions (only

correlated through time) to many regulatory interactions (double

feedback loop). We then use simulations to produce artificial/

synthetic scRNA-seq data on different levels of resolution (e.g.,

time lags). We omit extrinsic noise in order to investigate, in the

best-case scenario, the possibility of reconstructing the three
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GRN models by four inference methods. Our strategy is based

on the reasoning that if aGRN inferencemethod is not able to infer

the ground truth for clean artificial data, then it will not be suc-

cessful for real-world data that contain a multitude of caveats.

For comparison, we chose two distribution-based inference

methods, mutual information (MI)22 and SINCERITIES (SINgle

CEll Regularized Inference using TIme-stamped Expression pro-

fileS),24 and two moment-based methods, moments derivative-

based (linear moment-based inference27) and higher-order

moment-based (non-linear moment-based inference [this paper

and Cao and Grima36]).We chose the MI and SINCERITIES

methods because they have been proven to be two of the most

robust methods in the recent benchmarking by Pratapa et al.;11

furthermore, our data satisfied the assumptions of these

methods. We implemented the linear moment-based inference

(linearMBI)methodaccording to the foundationpaper byKlimov-

skaia et al.,27 which is the best-performing moment-based infer-

encemethod forGRNs to date. The construction of the non-linear

MBI method in this work is an adaptation of the linear MBI

method, whereby the derivatives are integrated rather than esti-

mated. The terms ‘‘linear’’ and ‘‘non-linear’’ refer to the fact that

the residual function is linear or non-linear with respect to the pa-

rameters being inferred, respectively.

We finish this work by discussing the need for higher-order

moments for GRN inference and their computational challenges.

We also discuss the caveats of existing datasets and the need

for multi-omics data for truly validating GRNs inferred from

scRNA-seq temporal snapshot data.

RESULTS

The variance time course is only moderately explained
by the mean time course in single-cell datasets
Most GRN inference methods use the mean time course to infer

their GRNs. This is historically motivated by bulk RNA-seq,

where only themean transcription levels are observed. However,

with single-cell transcriptomics, more complex statistical time

courses can be constructed. To illustrate the information

captured by more complex statistics, we studied the trends in

the mean and variance of gene expression of individual genes

from single-cell datasets. We used the variance as a simple

surrogate of a non-linear statistics and quantified the correspon-

dence between trends in the mean and the trends in the variance

across five different single-cell datasets (see ‘‘trends in themean

and variance of gene expression datasets’’ in experimental

procedures).

Looking at the human embryonic stem cell (hESC) scRNA-seq

dataset, we noticed that the trends of the mean time course and

the trends of the variance time course followed similar behavior

(Figure 1A). However, when we looked at the correspondence of

individual genes, we found that genes that had a similar mean

trend exhibited different variance trends; for example, genes

following mean trend number 4 (a trend of: up, flat, then down)

were distributed mostly across trends a, b, and d in the variance

(Figure 1B). Similar patterns were observed for the other data-

sets. We further quantified this correspondence using the

measure of proficiency (also known as normalized mutual infor-

mation) to compare between the datasets (Figure 1C). We found

that real datasets had proficiency in the range of 6%–37%, i.e.,
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Figure 1. Mean trends and variance trends in single-cell datasets

(A) Trends in the mean and variance of gene expression for hESC scRNA-seq dataset.

(B) Number of genes in the hESC scRNA-seq dataset associated with the mean and variance trends. The rows and columns have been rearranged using hi-

erarchical clustering to show the overlap between the groups.

(C) Percentage of variance trends explained by mean trends across five different single-cell datasets, using boxplots.
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6%–37% of the trends in the variance time courses corre-

sponded with the trends of the mean time courses. Furthermore,

we found that the synthetic dataset made throughGeneNetWea-

ver (GNW) had very low proficiency (<5%), which could be

attributed to the use of white noise in its model. In contrast, the

synthetic dataset from the BoolODE method had high profi-

ciency (>50%), which could be attributed to the use of mean-

based colored noise in its model.

In summary, the mean and variance time courses of real gene

expression data contained mutually exclusive information. This

gives motivation to enrich GRN inference through the use of

more complex statistics, for example the higher-order moments.

Stochastic two-gene interaction models
To investigate the role of moments in unraveling regulatory

reactions from scRNA-seq data, we constructed three simple

two-gene GRN models (see ‘‘two-gene interaction model’’ in

experimental procedures). Our first GRN model was a simple

no-interaction (No-I) two-gene model, where each gene, Gene

A and Gene B, can be in one of two discrete states, on or basal

(off state), and can switch between these states via a constant

propensity. The gene is then transcribed into mRNA at a con-

stant rate depending on the state of the gene. The transcribed

mRNA then undergoes translation and the respective protein is

synthesized (Figure 2, top). The mRNA and proteins undergo

degradation proportional to their respective populations. In the

No-I model, the downstream products associated with their

respective gene are not correlated across genes (Table 1). Our

second GRN model was a mono-directional interaction (Mono-

I) model, i.e., it had the same reactions as the No-I model with

the exception of an interaction whereby Protein B actively upre-

gulates the switching off of Gene A (Figure 2, middle). In this sce-

nario, Gene A and its downstream products are affected by the

regulation of Gene B; however, Gene B is not affected by any

downstream products of Gene A (Table 2). Our third GRN model

was the bidirectional interaction (Bi-I) model, where Protein A up-

regulates the switching off of Gene B and vice versa: Protein B
upregulates the switching off of Gene A (Figure 2, bottom). In

the Bi-I model, all products in the system are correlated (Table 3).

Covariance and skewness can aid in detecting

regulatory pathways

The threemodels were simulated using the stochastic simulation

algorithm (SSA) (see ‘‘synthetic scRNA-seq data’’ in experi-

mental procedures). Only the mRNA expression counts from

the simulations were extracted for regulatory inference to mimic

scRNA-seq data.

In the No-I model, we observed that both the time course of

the mean expression of both mRNAs (A and B) increased identi-

cally until the time horizon (Figures 3A and S1A). Due to there be-

ing no interactions across genes, as expected, the samples at

any fixed time point exhibited near zero covariance between

the mRNA expression counts (Figures 3A and 3E). In the

Mono-I model, we observed that at early time points themRNAs’

mean expression increased similarly, then the mean expression

of mRNA A started to plateau while the mean expression of

mRNA B continued to rise, and had a time course similar to

that of mRNA B in the No-I model (Figures 3B and S1B). We

observed in the time course that the mRNAs had a negative

covariance between them (Figures 3B and 3E). Lastly, in the

Bi-I model, we observed that the mean expression time course

of the mRNAs increased identically, as in the No-I model. The

expression distribution was found to also have a negative covari-

ance structure; however, upon inspecting the distribution of a

snapshot at T = 60 min, we saw that the distribution was very

symmetric and was shaped like a waning crescent (Figures 3C

and 3E).

To understand the origin of the crescent shape, we compared

the time course of the skewness of mRNA A and mRNA B in the

three GRN models. We found that in both the Bi-I and No-I

models, the mRNA A was positively skewed and followed a

similar time course. Furthermore, in the Bi-I model, mRNA B

was also skewed similarly to mRNA A. Specifically, all downre-

gulated mRNAs in the models exhibited similar skewness (Fig-

ures 3F, S1C, and S1D).
Patterns 2, 100332, September 10, 2021 3



Figure 2. Two-gene interaction models
The three GRNmodels of interest comprising two genes, A and B, and their correspondingmRNA and proteins. From top to bottom,model schematics are shown

for No-I (no interaction), Mono-I (mono-directional interaction), and Bi-I (bidirectional interaction). Only themRNA counts, shown in the gray shaded area, are used

in the GRN inference methods.
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In summary, comparing only themean time course of the three

GRN models, we could not distinguish the underlying regulatory

reactions between the No-I and Bi-I models. Similarly, the

covariance could distinguish that Mono-I and Bi-I had some

‘‘negative’’ interaction occurring relative to the No-I model. How-

ever, the direction of the interactions was unclear. When we

compared the skewness of the mRNAs, we could see that in

the Mono-I interaction mRNA Awas being affected, and a similar

effect was also acting on both mRNA A and mRNA B in the Bi-I

model. Hence, the regulatory informationwas not in one statistic,

but rather distributed over at least three statistics: the mean, the

covariance, and the skewness.

Pseudo-time augmented snapshots do not recapitulate

the skewness in the original data

When multiple snapshots are unavailable, the temporal infor-

mation required for GRN inference is typically approximated

by pseudo-time augmentation of the expression data.

Pseudo-time represents the normalized distance (e.g., diffu-

sion distance—see ‘‘pseudo-time ordering of the data’’ in

experimental procedures) from some initial state, or respec-
4 Patterns 2, 100332, September 10, 2021
tively the ordering of the cells along differentiation trajectories.

To study whether the pseudo-time augmentation preserves

the moments, we removed all true time labels within each of

the three GRN models’ data and augmented the expression

counts with pseudo-time values. In the time course of the cen-

tral moments of the pseudo-time augmented data, we

observed that both the No-I and Bi-I models’ mean expression

of the mRNAs had a similar trend, as in the true time course

(Figures 3G–3I and S1E). With respect to the covariance, we

found that pseudo-time augmented data had negative covari-

ance in the Mono-I and Bi-I models. Surprisingly, we found a

positive covariance in the No-I model time augmented data

(Figures S1F and S1G). The most drastic differences were

seen in the skewness, where for all three models the

pseudo-time augmented data showed predominantly negative

skewness, sharply contrasting with positive skewness seen in

the original data. In summary, although pseudo-time

augmented data can capture trends in the first two central mo-

ments, it could underestimate the skewness, hindering accu-

rate GRN inference.



Table 1. Components of the two-gene no-interaction model

# Reaction

Coeff.

(min�1) PropensityStoichiometry Description

1 Gene A on/

Gene A off

s1 =

0:125

s1 [Gene

A on]

ð� 1;0; 0;0; 0;0Þ inactivation

2 Gene B on/

Gene B off

s2 = 0:125s2 [Gene

B on]

ð0; � 1; 0;0; 0;0Þ inactivation

3 Gene A off/

Gene A on

s3 = 0:5 s3 [Gene

A off]

ð1; 0;0; 0;0; 0Þ activation

4 Gene B off/

Gene B on

s4 = 0:5 s4 [Gene

B off]

ð0; 1;0; 0;0; 0Þ activation

5 Gene A on/

Gene A on +

mRNA A

r1 = 4:75 r1 [Gene

A on]

ð0; 0;0; 0;1; 0Þ transcription

6 Gene B on/

Gene B on +

mRNA B

r2 = 4:75 r2 [Gene

B on]

ð0; 0;0; 0;0; 1Þ transcription

7 Gene A off/

Gene A off +

mRNA A

r3 = 1:0 r3 [Gene

A off]

ð0; 0;0; 0;1; 0Þ transcription

8 Gene B off/

Gene B off +

mRNA B

r4 = 1:0 r4 [Gene

B off]

ð0; 0;0; 0;0; 1Þ transcription

9 mRNA A /

mRNA A +

Protein A

g1 = 5:0 g1

[mRNA A]

ð0; 0;1; 0;0; 0Þ translation

10mRNA B /

mRNA B +

Protein B

g2 = 5:0 g2

[mRNA B]

ð0; 0;0; 1;0; 0Þ translation

11Protein

A / B

k1 = 0:1 k1

[Protein A]

ð0; 0; � 1;0; 0;0Þdegradation

12Protein

B / B

k2 = 0:1 k2

[Protein B]

ð0; 0;0; � 1; 0;0Þdegradation

13mRNA

A / B

d1 = 0:1 d1

[mRNA A]

ð0; 0;0; 0; � 1;0Þdegradation

14mRNA

B / B

d2 = 0:1 d2

[mRNA B]

ð0; 0;0; 0;0; � 1Þdegradation

The positions in the stoichiometry vector correspond to (Gene A, Gene B,

Protein A, Protein B, mRNA A, mRNA B).

Table 2. Modified reactions for mono-directional

interaction model

# Reaction

Coeff.

(min�1) Propensity Stoichiometry Description

1a Gene A

on + Prot.

B /

Gene A off

s1 =

0:01875

s1 [Prot. B]

[Gene A on]

ð� 1; 0; 0;

� 1; 0; 0Þ
inactivation

5a Gene A

on / Gene

A on + mRNA A

r1 = 6:0 r1 [Gene

A on]

ð0; 0; 0;
0;1; 0Þ

transcription

Reactions to be replaced in Table 1 to obtain the mono-directional inter-

action model. The positions in the stoichiometry vector corresponds to

(Gene A, Gene B, Prot. A = Protein A, Prot. B = Protein B, mRNA A,

mRNA B).

Table 3. Modified reactions for bidirectional interaction model

# Reaction

Coeff.

(min�1) Propensity Stoichiometry Description

1a Gene

A on +

Prot. B /

Gene A off

s1 =

0:01875

s1 [Prot. B]

[Gene A on]

ð� 1; 0; 0;

� 1;0; 0Þ
inactivation

2a Gene B

on + Prot.

A / Gene B off

s2 =

0:01875

s2 [Prot. B]

[Gene B on]

ð0; � 1; �
1; 0; 0;0Þ

inactivation

5a Gene A

on / Gene

A on + mRNA A

r1 =

6:0

r1 [Gene

A on]

ð0; 0; 0; 0; 1; 0Þ transcription

6a Gene B

on / Gene B

on + mRNA B

r2 =

6:0

r2 [Gene

B on]

ð0; 0; 0; 0; 0; 1Þ transcription

Reactions to be replaced in Table 1 to obtain the bidirectional interaction

model. The positions in the stoichiometry vector correspond to (Gene A,

Gene B, Prot. A = Protein A, Prot. B = Protein B, mRNA A, mRNA B).
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No- andmono-directional interactions are more difficult

to infer than bidirectional interactions

Four inference methods were applied to infer GRNs from the

synthetic scRNA-seq data of the three interaction models: the

MI method, the SINCERITIES method, the linear MBI method,

and the non-linear MBI method (see ‘‘GRN inference methods’’

in experimental procedures). The numerical experiments were

repeated 400 times for robustness and statistical analysis.

The MI method inferred non-zero MI scores for all three

models (see ‘‘MI method’’ in experimental procedures). We

observed a more than 5-fold increase in the mean edge score

for the Bi-I model with respect to the No-I model and, further-

more, the mean edge score for the Mono-I model was found in

between (Figure S3A). A one-way ANOVA analysis showed that

the differences in the means of the edge scores of the three

models were statistically significant (an F value of 49,418 and a

p value of strictly less than 0.001). Furthermore, a pairwise com-
parison with Tukey’s HSD (with a p value of 0.001) also showed a

significant difference between each pair of models. Using the

mean MI score of the No-I model as the minimum score edge

cutoff, we concluded that the MI-based approach was effective

in detecting that the three models had a different magnitude of

interactions between the genes (Figure 4A).

In SINCERITIES, the interaction strength score is estimated by

regularized regression of a system of distributional distances,

while the sign of interaction (activation versus repression) is

determined by the sign of the partial correlation coefficient (see

‘‘SINCERITIES method’’ in experimental procedures). In the

No-I data, the SINCERITIES method inferred all possible activa-

tions between and within genes with a weak consistency in inter-

action scores (Figures 4B [left] and S3B). The interaction scores

for the Mono-I model gave a clearer result, where a true positive

self-activation of mRNA A and mRNA B were observed; howev-

er, the repression of mRNA A by mRNA B was missing. Instead,

SINCERITIES inferred a false-positive interaction of mRNA A
Patterns 2, 100332, September 10, 2021 5



A

D

G H I

E F

B C Figure 3. Snapshots of the three interaction

models

Snapshot gene expression data at time T = 60

showing 1,000 sample mRNA population counts.

(A–C) No-I model (A), Mono-I model (B), and Bi-I

model (C). Arrows represent the vector field of the

derivative of the first-order moment, and the orange

line is the mean expression time course from an

initial expression value (mRNAA,mRNAB) = (0, 0) to

the time horizon T = 60.

(D–F)Mean (D), covariance (E), and the skewness (F)

time courses of the three interaction models.

(G–I) Pseudo-time reordering of the data corre-

sponding to (A), (B), and (C), with the red line rep-

resenting the pseudo-time mean.

See also Figure S1.
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activated by mRNA B (Figure 4B, middle). The inference of the

Bi-I model was done correctly by SINCERITIESwith high interac-

tion scores (Figures 4B [right] and S3C).

The MBI methods used the time course of up to degree three

moments to infer their GRNs (see ‘‘linearMBImethod’’ and ‘‘non-

linear MBI method’’ in experimental procedures). Given we knew

a priori that the information was in the first three moments, to

avoid overfitting we used 15 times fewer snapshots in MBI

than in MI and SINCERITIES.

We observed that linear MBI performed slightly worse than

SINCERITIES in inferring the underlying GRNs of the three

models (Figure 4C). In particular, the linear MBI method pre-

dicted a false-positive activation between mRNA B and mRNA

A in the Bi-I model. Looking at individual GRNs inferred in the

400 replicates, we found that the linear MBI method at best in-

ferred the correct GRN 2:5 % of the time (Figure S2B).

Lastly, the non-linear MBI method performed the best out of

the four methods. It predicted all true-positive interactions and

no false-positive interactions (Figure 4D). Furthermore, looking

to the individual GRNs in the replicates, we found that it correctly
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predicted the No-I model 54 % of the time,

the Mono-I model 78 % of the time, and

the Bi-I model 95 % of the time

(Figure S2C).

To discount that the results were only

due to influence of the model parameters,

we also performed experiments in which

we considered different scenarios with

varying regulatory reaction kinetic rates

as well as different starting mRNA popula-

tions. We found that there were some spe-

cific scenarios whereby the inference

methods performed better than in the orig-

inal setting, although overall most methods

performed relatively similarly or more

poorly than in the original setting (Figures

S4 and S5; Notes S1 and S2).

In summary, of the four inference

methods that we compared, the Bi-I model

was the easiest to capture (Figure 3C). We

suspect that this results from the strong

double correlation signal present in the
data, which results from the non-linear interaction between

Gene A and Gene B. The fact that the Mono-I model only had

one interaction was detected by all methods; however, the direc-

tionality and regulatory mechanism could not be correctly de-

tected. Lastly, the No-I model showed that not all methods are

specific enough to correctly detect no interaction.

Linear MBI methods are sensitive to interval lengths
between snapshots
The linear least-squares method is well established and can be

used to solve high-dimensional inference problems. To harness

its scalability for inferring GRNs using moments (linear MBI),

good approximations of the derivatives of the moments’ time

courses are essential (Figure 5A). However, due to snapshot in-

tervals generally being large in sequencing experiments, good

derivative approximations are seldom possible. We investigated

the effect of interval lengths between snapshots on the accuracy

of the inference by constructing a simple stochastic damped

oscillator model (see ‘‘evaluation of MBI method accuracy’’ in

experimental procedures) (Figures 5B and 5C). Snapshots of
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Figure 4. GRNs obtained from four inference methods

The inferred networks corresponding to the data from the three models No-I, Mono-I, and Bi-I are shown in columns from left to right, respectively. The rows

correspond to the inference method used: (A) MI method, (B) SINCERTIES, (C) linear MBI, and (D) non-linear MBI. See also Figures S2–S5.
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different time-interval lengths were taken and their underlying

network was inferred using the linear and non-linear MBI

methods.

We observed that the residual sum of squares of the linear MBI

method increased with order Oðh0:4Þ with respect to interval

length h between snapshots (Figures 5D and 5E). Upon inspect-

ing the inferred reactions, we found that for time interval of h=

0:05 min, the linear MBI method inferred the five true reactions

and a further five false-positive reactions (Figure 5H). For the

subsequent interval lengths, we found that the linear MBI

method continued inferring five to six false-positive reactions

and that the number of true-positive reactions was decreasing.

The mean time course of the SSA simulations with the inferred

parameters showed that the linear MBI method performed

poorly in fitting data, even for the smallest interval length of h=

0:05 min (Figure S6). In this case, 128 snapshots (1,152 mo-

ments) were used to infer 13 reactions and, surprisingly, we

did not observe a close reconstruction of the real data. This sug-

gests that the errors made in estimating the derivative could not

be remedied by the large amount of snapshot data.

The non-linear MBI method circumvents the derivative
estimation step at the cost of a significant increase in
computational time
The non-linear MBI method circumvents the derivative estima-

tion by minimizing the distance of the inferred model to the

data. This results in a non-linear least-squares problem, which

does not need the time-course derivative of the moments. In

comparison with the linear MBI method, for time intervals less

than h= 0:6 min we found that the non-linear MBI method had

at least one order of magnitude lower residual sum of squares

in all moments (Figures 5D and 5E). Furthermore, we found

that the residual sumof squares did not increase linearly for small
time-interval lengths, showing a near flat trend between residual

and interval length. Looking at the inferred reaction network, we

observed that the non-linear MBI method captured all of the true

reactions and only inferred one false-positive reaction for time in-

tervals less than h= 0:6 min (Figure 5H). Interestingly, we

observed that for intervals larger than h= 0:8 min, the non-linear

MBI method starts to perform as poorly as the linear MBI

method. Upon closer inspection, we found that h= 0:8 min is

roughly where the first peak in the time course of population A

occurs (Figures 5B and 5C). Comparing the Akaike information

criterion (AIC) scores of the two approaches, we observed that

the non-linear MBI’s minimum AIC score was at least two orders

of magnitude smaller than that of the linear MBI (Figure 5F). Even

though the non-linear MBI method performed better, it must be

noted that it took on average nearly 2,000 times longer to

compute than the linear MBI method (Figure 5G).

In summary, the simple stochastic damped oscillator model

highlighted the major challenges of using moments-based

methods for inference. In particular, we observed that the log

of the residual scaled sublinearly with the interval length for the

linear MBI method. To achieve a similar accuracy as the non-

linear MBI method at interval length h= 0:05 min, the interval

length of the data for the linear MBI would have to be smaller

than 10�3 min. Furthermore, we found that the snapshot interval

has to be small enough to observe the turning points of the sys-

tem for accurate inference.

DISCUSSION

We considered three GRN models that contained a varying

mixture of correlation and regulation between themRNA popula-

tions in time. The highest degree of correlation was contained in

the No-I model, a medium mixture of correlation and regulation
Patterns 2, 100332, September 10, 2021 7
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Figure 5. Performance of MBI methods

Performance of linear MBI and non-linear MBI methods on the stochastic damped oscillator model.

(A) Cartoon showing the interpolation and derivative estimation of snapshot time courses.

(B and C) Time course of the first-order (B) and second-order (C) moments. The first peak in the mean time course of population A is denoted by the pink dashed

vertical line.

(D and E) Residual sum of squares of the first-order (D) and second-order (E) moments for varying snapshot interval lengths. The linear fit of the residual least

squares of the linear MBI method is denoted by the thin red line. The first peak in the mean time course of population A is denoted by the pink dashed vertical line.

(F) AIC score for varying snapshot interval lengths. Linear MBI (red dashed line) and non-linear MBI (green solid line) are shown. The first peak in the mean time

course of population A is denoted by the pink dashed vertical line.

(G) Boxplot of the Log2 fold change in computation time: non-linear MBI versus linear MBI.

(H) True positive (solid dots), false positive (hollow dots), and the false negative (hollow cross) reactions inferred by the linear and the non-linear MBI methods for

varying snapshot interval lengths of the stochastic oscillator model.

See also Figure S6.
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was contained in the Mono-I model, and the highest degree of

regulation was contained in the Bi-I model. We can draw three

key conclusions from the experiments conducted in this paper:

first, at least up to third-order moments are required for GRN

inference; second, only the non-linear MBI method is able to

consistently infer the ground-truth GRN of our artificial scRNA-

seq data, thereby having high potential to infer GRN of real-world

data; third, certain data pre-processing steps such as pseudo-

time are not recommended. These three key conclusions are

now discussed in more detail.

We observed that regulatory reactions in our models gener-

ated distinctive signatures in the higher-order (second- and

third-order) moments of the dataset. These signatures, however,

could not fully be detected by the distribution-based inference

methods (MI and SINCERITIES), because the summary statistics

that they utilized were not related to the higher-order moments,

which led to underperformance of these inference methods. The

MI method is based on threshold strategies which could detect

interacting genes; however, it could not infer the direction of

the interaction, and smaller interactions are likely to be false neg-

atives due to the threshold cutoff. Similarly, the SINCERITIES

method is also based on threshold strategies with the difference

that it infers the direction of the regulation. However, the sum-

mary statistics used by SINCERITIES falsely detected the corre-

lation as regulation in the No-I and Mono-I models, suggesting

that it was not able to distinguish the nuances between correla-

tion and regulation. The linear MBI method performed poorly

despite using the moments’ derivatives as a summary statistic.

We speculate that its underperformance is a consequence of

the time interval between the data snapshots not being ideal

for the derivative estimation. In contrast to the other methods,

the non-linear MBI method was able to consistently reconstruct

our three GRN models.

Using higher-order moments has three key impacts on the

inference of GRNs from scRNA-seq data. First, higher-order mo-

ments can clearly distinguish between correlation and regula-

tion, which is due to regulatory information being present across

the higher-order joint moments, unlike correlation. As a conse-

quence, fewer false-positive and false-negative interactions

are inferred, leading to more true-positive regulatory reactions.

Second, a summary statistic that captures regulation should

be based on the moments—for example, if it satisfies Taylor’s

theorem, it can be arbitrarily well approximated by a polynomial

of the moments. Third, to use higher-order moments, the syn-

thetic data model has to be redesigned to be a Markov-jump

process, incorporating Poisson intrinsic noise and moving

away from mean-driven Gaussian noise.

The higher-order moments proved to be robust summary sta-

tistics for regulatory interactions, although they might not be

conserved during data pre-processing. Additionally, the fact

that they evolve through time non-linearly causes a major

computational challenge for the inference. Thus, new numerical

schemes to solve high-dimensional non-linear least-squares

problems are essential in furthering the field of inferring GRNs.

In regard to limitations, our synthetic models were designed to

be ideal with respect to extrinsic noise, to strongly focus on de-

tecting the regulatory signatures, and to study how to extract this

signature. However, in practice, real biological data have far

more caveats that need to be captured by the synthetic data.
Similarly to the synthetic data generator SERGIO,37 we envisage

adapting our Markov-jump model to simulate more realistic syn-

thetic data, including technical issues such as dropouts, Hill’s

function propensities, multi-gene interactions, and cell cycles.

Another limitation of this work is that there was very little focus

given to computation. Recently there has been significant

methods development in the subfield of parameter inference of

GRNs, inferring parameters of fixed GRN models. Given the

GRN inference problem is a generalization of the GRNparameter

inference problem, there is much scope for translating some of

the techniques from the parameter inference of fixed GRN

domain across to the GRN inference problem to help mediate

computational complexity, for example the introduction of

moment closures,36,38,39 more robust distribution-based sum-

mary statistics,40,41 and Monte Carlo solvers instead of least

squares.42

A major obstacle for finding good summary statistics (feature

extraction) has been the lack of ground-truth GRNs for scRNA-

seq datasets.11,43 True GRNs that were generated from bulk

RNA-seq experiments have not been reproduced with single-

cell experiments.44 It is current practice to use protein interac-

tion networks to check for false-positive interaction in the

GRNs inferred from scRNA-seq data.45 Since protein interac-

tion networks only indicate whether a gene is being expressed

or several genes are being co-expressed, they are good at

filtering genes that are correlated; however, the underlying

regulation and directionality is not captured. Additionally, chro-

matin immunoprecipitation sequencing datasets provide poten-

tial binding sites of transcription factors; however, given that a

transcription factor has multiple binding sites and can also form

complexes, we can establish the directionality of regulation but

lose specificity. In conclusion, we advocate that ground-truth

datasets require multi-omics single-cell datasets.43 Such data-

sets are imperative for calibrating current approaches and

designing new GRN inference methods based on single-cell

technology.
Limitations of the study
The main aim of the paper is to highlight how to decompose a

GRN problem into three subproblems (pre-processing, feature

extraction, and inference) so that information is preserved in

each step, which encapsulates regulation. The methods we pre-

sented have been shown to work on real data by the respective

authors, with the exception of non-linear MBI, which is currently

computationally infeasible to solve for dimensions greater than a

few. In this work, we have generated synthetic data from a very

simplified regulatory model; hence, our observed performances

are solely descriptive of our simple regulatory model.
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Trends in the mean and variance of gene expression datasets

Weconsidered three different single-cell snapshot datasets generated from lab-

oratory experiments. Thesedatasetswere: (1) a scRNA-seqdataset fromhESCs

fromwhichwe removed geneswithmore than 50%dropout cells to obtain a da-

taset of 8,917 genes and 6 snapshot measurements;46 (2) a qRT-PCR dataset

fromTHP-1cells containing 48genes and8 snapshots;47 and (3) a qRT-PCRda-

taset frommouseembryonicstemcellscontaining500genesand7snapshots.48

We also considered two synthetic datasets used for benchmarking GRN

inference methods. One dataset was generated by GeneNetWeaver

(GNW).49,50 It contained 1,000 time series with 21 snapshots of Escherichia

coli gene expression of 500 genes. The other dataset was obtained using

the BoolODE model.11 We selected the simulation of ‘‘linear long’’ GRN topol-

ogy, which consisted of 18 genes. This dataset included ten replicate simula-

tions, each containing gene expression measurements for 5,000 cells and the

time at which they were sampled. We pooled the replicate simulations to

obtain 1,499 snapshots of the gene expression of 50,000 cells.

For each dataset, the time course of the mean and variance of gene expres-

sion was computed. We then normalized the time courses of the mean and

variance of gene expression to values in the interval (�1, 1) by shifting each

time-point value by the first value in the time course, then dividing the shifted

values by the maximum magnitude of gene expression of each gene. We

further performed principal component analysis on the normalized time

courses and projected the datasets onto the lowest number of principal com-

ponents, explaining around 95% of the total variation.

The projected datasets were then clustered into trends using the k-means

clustering algorithm in which the number of clusters was chosen according

to a discrete uniform distribution between 4 and 8. Finally, we estimated the

marginal and joint probability distribution of a gene being associated to a trend

in themean and being associated to a trend in the variance. These probabilities

were used to compute the proficiency measure representing the proportion of

trends in the variance that can be explained by the trends in the mean. We

repeated this procedure 1,000 times to obtain a proficiency distribution for

each of the datasets.

Two-gene interaction model

The interaction networks in the three models No-I, Mono-I, and Bi-I were de-

signed to have a nested property, i.e., the No-I model was a subnetwork of

the Mono-I model and the Mono-I model was a subnetwork of the Bi-I model.

At any time, a gene has a binary state space {on, off}. The mRNA and proteins

are described by their counts; therefore, they have a positive integer state

space. The interaction model considered two genes, Gene A and Gene B,

and the species that were involved in the reactions areGene A,Gene B, Protein

A, Protein B, mRNA A, and mRNA B.

Table 1 describes each component of the No-I model. The Mono-I interac-

tion model contains all reactions in Table 1 with the changed reaction given in

Table 2. In particular, Reaction 1 is replaced with Reaction 1a to involve one of

the protein products (here Protein B) which actively upregulates the switching

off of Gene A, and Reaction 5 is modified to Reaction 5a. The Bi-I interaction

model also contains all reactions in Table 1, with the changes shown in Table

3, i.e., Reaction 1 is replaced with Reaction 1a as in the Mono-I interaction

model, and Reaction 2 is replaced with Reaction 2a to include the upregulation

of the switching off of Gene B by Gene A, and the propensity coefficients of

Reactions 5 and 6 are modified to those of Reaction 5a and 6a.

Fold change in regulation rates

For the scenarios whereby we experimented with the effect of scaled reaction

kinetic rates on the inference methods, we used the same non-regulatory re-

actions as in the base Mono-I and Bi-I models as given in Tables 2 and 3,

respectively. However, for the regulatory reactions, we scaled the kinetic

rate by 2c; where c˛f�1; 1; 2; 3g: Hence, for the Mono-I model, we replaced

Reaction 1a to Reaction 1b as shown in Table 4. Similarly, for the Bi-I model,

we replaced Reaction 1a and Reaction 2a with Reaction 1b and Reaction 2b,

respectively, as shown in Table 5. Lastly, for the uneven bidirectional interac-

tion (Un-Bi-I) model, we modified only Reaction 1a of the Bi-I model to Reac-

tion 1c, where we scaled the kinetic rate by 2c; as shown in Table 6.

Synthetic scRNA-seq data

For each of the two-gene interaction models No-I, Mono-I, and Bi-I, species

counts of (Gene A, Gene B, Protein A, Protein B, mRNA A, mRNA B) were
10 Patterns 2, 100332, September 10, 2021
generated using the SSA.51 The initial population configuration was set to

(Gene A on, Gene B on, 0, 0, 0, 0, 0) to mimic the accessibility of the gene

on the chromatin, and the initial simulation time was set to 0 min. Gene states

and populations counts in the simulations were sampled in time intervals of

0.5 min and up to a time horizon of 60 min. A sample snapshot of SSA

mRNA population counts can be interpreted as scRNA-seq data of an individ-

ual cell belonging to a fixed cell population. For each model, we generated a

total of 100,000 time trajectories of mRNA species counts, thus simulating

temporal snapshots of scRNA-seq data of each individual cell for a population

of 100,000 cells. We then constructed 400 replicates of this mRNA count data-

set. In each replicate, only for the moment-based methods, we subsampled

without replacement 10,000 time trajectories from the 100,000 cells. By sub-

sampling trajectories we construct a smoother time course, which is required

for a better estimate of the temporal derivative of the moments, which are in

turn required for one of the moment-based methods in this work. The under-

lying GRNs schematics were inferred according to specific rules suited to

each of the GRN inference methods that we applied (see ‘‘GRN schematics’’).

Computing the moments

The moments of the snapshot mRNA population were required for moment-

based GRN inference methods (see ‘‘GRN inference methods’’). Let the pop-

ulation of mRNA A in the dth snapshot of the nth cell be denoted by ad;n, simi-

larly for mRNA B, bd;n. Then for any pair of non-negative integers ðl1; l2Þ such
that l = l1 + l2, the lth order moment of the dth snapshot is given by

E
�
mRNA AðtdÞl1 mRNA BðtdÞl2

�
z

1

Nc

XNc

n=1

al1d;n b
l2
d;n; (Equation 1)

where Nc is the total number of cells in the snapshot sample.

Pseudo-time ordering of the data

We performed pseudo-time ordering using diffusion maps as described in

Haghverdi et al.29 and implemented in SCANPY.52 This technique is used to

achieve a temporal ordering of non-ordered snapshot observations of RNA-

seq gene expression.9,10,28,53 The diffusion map yielded a non-linear dimen-

sion reduction and a denoised representation of the high-dimensional gene

expression data. The pseudo-time of a cell was defined as the measured diffu-

sion distance from a given root cell, which was assigned a pseudo-time of zero

a priori. The pseudo-time ordered data was suitable for lineage branching

inference due to the ability of diffusion maps to recover the mean dynamics

of gene expression.29 Furthermore, the application of the pseudo-timemethod

has been extended to infer GRNs.26,28

We removed all true time labels in the synthetic mRNA count data (see ‘‘syn-

thetic scRNA-seq data’’) and created a typical pseudo-time ordering on sub-

sampled snapshots as follows: We subsampled from the 100,000 simulated

trajectories representing temporal snapshots of mRNA counts for 100,000

cells. We slightly oversampled cells from earlier time points, as our simulation

of gene expression converges to equilibrium in later time points, which would

bias the pseudo-time approach. Furthermore, we excluded the first snapshot

at time 0 min. We generated three datasets comprising the expression of two

genes for 50,000 cells. An arbitrary cell from the first time point was chosen to

be the root cell of the diffusion pseudo-time ordering. The pipeline was imple-

mented in SCANPY by computing a sparse nearest-neighbor graph (50 neigh-

bors), the observations were embedded in diffusion map space of three di-

mensions, and the diffusion pseudo-time for each cell was computed using

the first two dimensions.

GRN inference methods

We inferred GRNs from the synthetic scRNA-seq data representing temporal

snapshots of mRNA counts of each of the two-gene interaction models

described in the two-gene interaction model. Since the mRNA counts are

the only information available, we are not aiming to reconstruct the two-

gene interaction models. Instead, we aim to capture the regulatory relation-

ships between the genes reflected through the interaction of the mRNAs.

MI method

The MI measure quantifies the amount of information shared between two

discrete random variables X and Y and is formulated as



Table 4. Modified reactions for varying mono-directional interaction model scenarios

# Reaction Coeff. (min�1) Propensity Stoichiometry Description

1b Gene A on + Prot. B / Gene A off s1 = 0:018753 2c s1 [Prot. B][Gene A on] ð� 1; 0; 0; � 1; 0;0Þ inactivation

Reaction to be replaced in Table 2 to obtain the mono-directional interaction model. The positions in the stoichiometry vector correspond to (Gene A,

Gene B, Prot. A = Protein A, Prot. B = Protein B, mRNA A, mRNA B). The parameter c˛f�1; 1; 2; 3g is the scaling used for the experimental scenario.
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IðX;YÞ : =
X
x˛X

X
y˛Y

pðx; yÞlog2

�
pðx; yÞ

pðxÞ pðyÞ
�
½bit�; (Equation 2)

where pðxÞ and pðyÞ are the probability distributions of X and Y, respectively;

and pðx; yÞ is the joint probability distribution of X and Y.

The MI is a symmetric measure; therefore, it has been used to infer non-

directed GRN by using it as a score for the confidence of an edge between

the genes.22 Since MI can take any positive value, there is no general way of

interpreting its magnitude. A threshold of top scoring network is usually

used to infer the underlying networks.

The mRNA count datasets, generated from our two-gene interaction model,

were used in the MI GRN inference method. The MI scores were then

computed using the implementation provided by Chan et al.22 Additionally, it

was not possible to choose a number of top scoring networks because there

was only one possible edge given by the MI method. Therefore, we developed

a different way of interpreting inferring the underlying GRNs (see ‘‘score-based

schematics: MI and SINCERITIES methods’’).

SINCERITIES method

SINCERITIES has recently been proposed to infer directed GRNs by using

temporal snapshots of gene expression data.24 The SINCERITIES algorithm

implements a regularized regression of a system of Kolmogorov-Smirnov

distributional distances and assigns a ranked list of scores ðaðjÞ
i Þ representing

the influence of gene j on any other gene i in the dataset. A large score indicates

a higher confidence that the corresponding edges exists. Furthermore, SIN-

CERITIES infers the direction of the edges, i.e., the nature of the interaction,

from the sign of the partial correlation coefficients between each two genes.

Similarly to the MI method described above, there exists no general way of in-

terpreting the magnitude of the ðaðjÞ
i Þ scores. As the authors of SINCERITIES

leave it to the user to choose a score threshold for drawing an edge between

the genes, we chose a generous score cutoff and inferred the underlying GRNs

according to specific rules (see ‘‘score-based schematics: MI and SINCER-

ITIES methods’’).

Linear MBI method

In the linear MBImethod, we used an adaptation of the SINDymethod (supple-

mental experimental procedures S3) to infer GRNs from the data.27 We

modeled GRNs as Markov-jump processes (supplemental experimental pro-

cedures S1), representing the time evolution of Ns species undergoing Nr

chemical reactions. Therefore, we aimed to discover the linear dynamical sys-

tem that defines the moments of the mRNA species counts involved in the re-

action network (Equation 4 in supplemental experimental procedures S1).

We thus considered the state vectormðtdÞ˛Ra0 containing the rawmoments

of the Ns species at time td for d˛f1;.;Dg, and a0 denotes the cardinality of

the countably infinite set N. We then constructed a library of candidate non-

linear functions JðMÞ as follows:

JðMÞ = ðF1ðMÞ;.;FNr ðMÞÞ˛RD3 a0 3Nr ; (Equation 3)

where M = ðmðt1Þ . mðtDÞÞT˛RD3a0 , and
Table 5. Modified reactions for varying directional interaction mod

# Reaction Coeff. (min�1)

1b Gene A on + Prot. B / Gene A off s1 = 0:018753 2c

2b Gene B on + Prot. A / Gene B off s2 = 0:018753 2c

Reactions to be replaced in Table 3 to obtain the bidirectional interactionmod

B, Prot. A = Protein A, Prot. B = Protein B, mRNA A, mRNA B). The parame
FjðMÞ = ðjjðmðt1ÞÞ;.;jjðmðtDÞÞÞT˛RD3 a0 (Equation 4)

is the vector of stoichiometric moment functions of reaction j,27 given as

jjðmðtdÞÞ : = aj mðtdÞ˛Ra0 ; (Equation 5)

where aj is the design block corresponding to reaction j in the design matrix A

of the moments equations (Equation 4 in supplemental experimental proced-

ures S1). This allowed us to formulate the following linear system:

_M : = JðMÞq=
XNr

j = 1

FjðMÞqj; (Equation 6)

where _M= ð _mðt1Þ ;.; _mðtDÞÞT˛RD3a0 are the moments derivatives evaluated

at each fixed time point td for d˛f1;.;Dg, and q= ðq1;.; qNr
ÞT is the vector of

propensity coefficients of the Nr reactions that we considered.

A finite dimensional approximation of Equation 6 was obtained by truncation

of the moments vector. According to Equation 3 in supplemental experimental

procedures S1, up to order l + 1 moments are required to model the time de-

rivatives of up to order l moments. Thus, we can formulate the truncated

system,

_Ml zJðMl + 1Þq : =
XNr

j =1

FjðMl + 1Þqj ; (Equation 7)

whereMl = ðmlðt1Þ ;. ;mlðtDÞÞT˛RD3EðlÞ, withml being the vector of up to or-

der l moments and the number of elements in the vector given by

EðlÞ : =
Xl

k =0

ðNs + k � 1Þ!
k! ðNs � 1Þ! :

In the linear MBI method, the propensity parameters are considered as the

unknown parameters of the linear system of Equation 7 by directly using the

moments data Mdata
l + 1 instead of Ml +1 and the numerically estimated moments

data derivatives _M
data

l instead of _Ml.
27 The method is termed linear MBI due to

the fact that it infers the propensity parameters q from the linear system

_M
data

l zJ
�
Mdata

l + 1

�
q : =

XNr

j = 1

Fj

�
Mdata

l + 1

�
qj: (Equation 8)

For the GRN inference, we aimed to discover a sparsely connected network

that reflects the minimal set of reactions involved in the network,27,54 because

it has been demonstrated that robust GRNs are parsimonious.55 Therefore,

sparse regression minimization techniques are applied to find the sparse

parameter vector bq satisfying

bq = argmin
q_0

1

2 D

����
���� _Mdata

l �J
�
Mdata

l +1

�
q

����
����2
2

+aq1: (Equation 9)
el scenarios

Propensity Stoichiometry Description

s1 [Prot. B][Gene A on] ð� 1; 0;0; � 1; 0;0Þ inactivation

s2 [Prot. A][Gene B on] ð0; � 1; � 1;0; 0;0Þ inactivation

el. The positions in the stoichiometry vector correspond to (Gene A, Gene

ter c˛f�1; 1; 2; 3g is the scaling used for the experimental scenario.
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Table 6. Modified reactions for varying uneven bidirectional interaction model scenarios

# Reaction Coeff. (min�1) Propensity Stoichiometry Description

1c Gene A on + Prot. B / Gene A off s1 = 0:018753 2c s1 [Prot. B][Gene A on] ð� 1; 0; 0; � 1; 0; 0Þ inactivation

Reaction to be replaced in Table 3 to obtain the Un-Bi-Interaction model. The positions in the stoichiometry vector correspond to (Gene A, Gene B,

Prot. A = Protein A, Prot. B = Protein B, mRNA A, mRNA B). The parameter c˛f� 1;1; 2;3g, is the scaling used for the experimental scenario.
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This problem was approximated by

bq = argmin
q_0

1

2 D
k _M

data

l �J
�
Mdata

l + 1

�
qk22; such that jjqjj1%b; (Equation 10)

where b is the upper bound on the sum of the parameters and was set to 1,000

in our calculations. In our simulations, we used up to order four moments of the

synthetic mRNA counts, i.e., solving Equation 9 for l = 3. In addition, we

removed the first 30 data points for a more accurate representation of the mo-

ments and further reduced the dataset by 15 times to avoid overfitting. The

problem in Equation 10 was solved as a quadratic program.56 Solutions

were obtained using Python, the vector operations were handled with the li-

brary numpy, the numerical derivatives _M
data

l were estimated via the spline dif-

ference method using the library scipy.interpolate, and the quadratic program

was solved using the built-in solver of the library cvxopt. More details can be

found at https://github.com/vikramsunkara/ScRNAseqMoments. The under-

lying GRNs were then generated according to specific rules (see ‘‘flux-based

schematics: MBI methods’’).

Non-linear MBI method

Similarly to the linear MBI method, the non-linear MBI method also inferred the

parameters of the reaction kinetics of a Markov-jump process from the mo-

ments equation (Equation 1 in supplemental experimental procedures S1).

Since the moments equation is an infinite-dimensional system, we handled

the truncation problem by introducing the interpolations of the higher-order

moments from the data source into a truncated system.

We considered ml as the vector containing moments up to order l. We then

approximated the moments equation with

dmlðtÞ
dt

z
d bmðtjqÞ

dt
=AðqÞ bmðtjqÞ+BðqÞuðt; qÞ; (Equation 11)

where AðqÞ˛REðlÞ3EðlÞ is linear in the parameter q, and is the block of the design

matrix A that comprises the dependency of the derivatives of order lmoments

on themselves (see Equation 4 in supplemental experimental procedures S1).

B is a rectangular matrix of dimensions EðlÞ3 ðEðl + 1Þ � EðlÞÞ, and is the block

of the designmatrixA that includes the dependency of the derivatives of order l

moments on the order l + 1 moments, and uðt; qÞ is the vector interpolation of

the moments of order l + 1 from the data. The vector uðt; qÞ is in essence the

moment closure for the higher-order moments (see supplemental experi-

mental procedures S4 for formalism and commentary on this closure scheme).

GivenD temporal snapshots ofmoments data f bmdataðtdÞgwith d˛ f1;.; Dg,
the parameter bq that best represents the data in the model Equation 11 can be

obtained viamaximum likelihood estimation. If we assume that the errors in the

moments model are normally distributed, bq can be obtained by minimizing the

negative log likelihood function, which is proportional to

XD
d =1

����
���� bmðtd jqÞ � bmdataðtdÞ

����
����2
2

: (Equation 12)

The problem is then reduced to the non-linear least-squares minimization

problem,

bq : = argmin
q_0

XD
d = 1

k bmðtd jqÞ � bmdataðtdÞk22; (Equation 13)

where bmdata is the vector containing moments up to order l of the data. Unlike

in the linear MBI method, in which the objective function of the minimization

problem is linear in the parameters q (Equation 8), the moments bm are non-

linear functions of the parameters q and are obtained from solving Equation 11.

For this reason, this method is termed non-linear MBI.
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We implemented the non-linear MBI method in Python using SciPy.57 We

used the same moments datasets as in the linear MBI method (see previous

section), which included up to the fourth order moments of the synthetic

mRNA counts data (see ‘‘synthetic scRNA-seq data’’). The vector bm contained

up to order l =2moments. We computed the splines u of the order l + 1= 3mo-

ments by specifying the moments’ derivative (Equation 11) at the endpoints of

the temporal snapshot data, i.e., at t0 and tD (this required the moments of or-

der l + 2 = 4).

A numerical approximation of bm was generated by solving Equation 11 for

each two adjacent time-point snapshots and fixed q, i.e., by solving the initial

value problem,

d4ðtÞ
dt

= AðqÞ4ðtÞ+BðqÞuðt; qÞ; t˛½td�1; td �; (Equation 14)

with the initial condition 4ðt0Þ= bmdataðtd�1Þ for each d˛f2;.; Dg.
The solution of Equation 14 yielded the approximation bmðtd jqÞz4ðt = tdÞ.

This approximated solution was then used to compute the error function in

Equation 12. Due to a large difference between the magnitude of order one

(the means) and order two moments in the gene interaction model dataset,

we found that the minimization problem was ill-conditioned. To combat this

numerically, we multiplied the residuals of the order one moments by a con-

stant weight of 40 to avoid its underestimation. The value of 40 is an upper

bound to the order one moments in all GRN scenarios; hence, by multiplying

with this number, we computed the numerical error function using similar order

of magnitudes in the contributions of both order one and order two moments.

In this way, the solver is numerically better conditioned. All remaining terms

were given a weight constant of 1. A standard least-squares minimization

routine was used to find bq solving Equation 13, particularly using the built-in

minimization solver least square from scipy.optimize (see https://github.

com/vikramsunkara/ScRNAseqMoments). The underlying GRN was then in-

ferred using a set of rules that we define below in ‘‘flux-based schematics:

MBI methods.’’

GRN schematics

Score-based schematics: MI and SINCERITIES methods

Weconducted an ANOVA analysis of theMI score distribution of the three two-

gene interaction models No-I, Mono-I, and Bi-I. We then used the mean MI

score of the No-I model as a minimum score edge cutoff for the inferred GRNs.

For the SINCERITIES method, the algorithm generated scores that repre-

sent the confidence of an edge between two genes. We then chose a gener-

ously low threshold of 0.05 to draw an edge. Additionally, the SINCERITIES

method provided the direction of the edge. Therefore, we were able to infer

GRNs directly from the output of SINCERITIES. We used the algorithm to infer

a GRN for each of the 400 replicates of the mRNA count dataset (see ‘‘syn-

thetic scRNA-seq data’’). The frequencies of the different resulting interaction

networks across the 400 runs are depicted in Figure S2A, and we chose the

most frequently inferred network as the underlying GRN (Figure 3).

Flux-based schematics: MBI methods

We set up the linear and non-linear MBI methods to infer the reaction network

depicted in Table 7. Reactions 6 and 8 represent the upregulation of mRNA A

by mRNA B and mRNA B by mRNA A, respectively, while Reactions 9 and 10

represent the downregulation of mRNA A by mRNA B and vice versa. We then

generated the adjacency matrix�
Self� Reg of mRNA A B Reg A
A Reg B Self� Reg of mRNA B

�
=

�
Av5=Av3 Av6 � Av9
Av8 � Av10 Av7=Av4

�
; (Equation 15)

https://github.com/vikramsunkara/ScRNAseqMoments
https://github.com/vikramsunkara/ScRNAseqMoments
https://github.com/vikramsunkara/ScRNAseqMoments


Table 7. Reaction library for interaction of two mRNA species

# Reaction Propensity Stoichiometry Description

1 B / A q1 ð1;0Þ synthesis of A

2 B / B q2 ð0;1Þ synthesis of B

3 A/ B q3 A ð� 1; 0Þ degradation of A

4 B/ B q4 B ð0; � 1Þ degradation of B

5 A/

A+ A

q5 A ð1;0Þ self-catalysis of A

6 B/

A+ B

q6 B ð1;0Þ synthesis of A by B

7 B/

B+ B

q7 B ð0;1Þ self-catalysis of B

8 A/

A+ B

q8 A ð0;1Þ synthesis of B by A

9 A+

B/ B

q9 A B ð� 1; 0Þ annihilation of A from

encounter with B

10 A+

B/ A

q10 A B ð0; � 1Þ annihilation of B from

encounter with A

For simplicity we refer to mRNA A as A and mRNA B as B.

Table 8. Stochastic damped oscillator reaction library

# Reaction Coefficient Stoichiometry Description

1 B/A q1 = 4:0 ð1; 0Þ birth of A

2 B/B q2 = 3:0 ð0; 1Þ birth of B

3 A/B q3 = 0:0 ð� 1; 0Þ death of A

4 B/B q4 = 0:7 ð0; � 1Þ death of B

5 A/B q5 = 0:0 ð� 1; 1Þ transition of A to B

6 B/A q6 = 0:0 ð1; � 1Þ transition of B to A

7 A/A+A q7 = 1:25 ð1; 0Þ self-production of A

8 B/B+B q8 = 0:0 ð0; 1Þ self-production of B

9 A+B/A q9 = 0:0 ð0; � 1Þ annihilation of B from

encounter with A

10 A+B/B q10 = 0:0 ð� 1; 0Þ annihilation of A from

encounter with B

11 A+B/B q11 = 0:0 ð� 1; � 1Þ annihilation of A and

B from encounter

12 A+B/A+A q12 = 0:04 ð1; � 1Þ birth of A from

encounter with B

13 A+B/B+B q13 = 0:04 ð� 1; 1Þ birth of B from

encounter with A

For simplicity we refer to mRNA A as A and mRNA B as B.
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where Avj are the average number of times reaction j fired within the time win-

dow. The diagonal of the adjacency matrix (Equation 15) represents the

average number of self-catalysis versus degradation for mRNA A and mRNA

B. We only considered a non-zero Self-Reg value if the average self-catalysis

exceeded 10within the timewindow. Sincewe only aimed to identify self-regu-

lation, the ratio between the self-catalysis and the degradation reaction is used

to obtain a positive number, but subtraction could be used instead of a ratio if

we wanted to distinguish between self-upregulation (positive values) or self-

downregulation (negative values).

In Equation 15, A Reg B represents upregulation versus downregulation for

mRNABbymRNAA, and vice versa for B Reg A. Thus, the sign of these entries

determines the direction of the regulation, i.e., whether it is a net up- or down-

regulation. We only considered a non-zero regulation value if the net regulation

was higher than ten times within the time window.

Evaluation of MBI method accuracy

We investigated the accuracy of the MBI methods by using the stochastic

damped oscillator (SDO) model. The interactions involved in the SDO are pre-

sented in Table 8. Using the SSA, we generated synthetic population counts

starting from an initial population count of (0, 0). The simulations were per-

formed from an initial time of 0 min to a final time of 6.45 min by taking sample

population counts at every time intervals of 0.05 min. The moments data, up to

order four, were computed from 10,000 SSA trajectories, which yielded D=

130 snapshot data points.

Sensitivity of theMBI methods to interval lengths between snapshot

We investigated the effect of the time-interval separation

Dt˛f0:05; 0:1; 0:2; 0:4; 0:5; 0:6; 0:8; 0:9; 1:6g between snapshots by infer-

ring the reaction network parameters bqDt from datasets which were sub-

sampled using different Dt. The parameters were inferred by fitting up to order

three moments of the data. The parameters found by the linear MBI method

were used as initial condition for the non-linear MBI for time intervals below

0.8 min. This method was not computationally feasible for time intervals above

0.8 min, so we used the parameters inferred by the non-linear MBI at time in-

terval 0.4 min as an initial condition for those cases. The error function was

then computed for every time interval Dt and order l moment as follows:

Err
	bqDt ; l
 : =

XD
d = 1

����
����SDOðlÞbqDt ðtdÞ � SDO

ðlÞ
dataðtdÞ

����
����2
2

; (Equation 16)

where SDO
ðlÞ
data is the vector containing order l˛f1; 2; 3gmoments of the data

and SDO
ðlÞbqDt is the order l˛f1; 2; 3g moments vector, computed from 1000

SSA trajectories, which were generated with the parameters bqDt along the

full dataset. We computed the error at all 130 snapshots rather than just on
the subsampled snapshots in order to observe how well the approaches esti-

mated the unseen data in between the fitted data.

Comparison of the MBI methods

We compared the network inferred from the linear MBI and the non-linear MBI

by using the AIC. The AIC was used to rank inference models by considering a

trade-off between goodness of fit and overfitting.58 To account for the small

number of snapshot data points fitted in the MBI methods, which decreased

from 130 to only 5 as we increased the time-interval separations between

snapshots, we used AICc, which corrected the original AIC for small sample

sizes.59 It is defined as

AICc

	bqDt



: = 2k � log

	
L
	bqDt

+

2k2 + 2k

DDt � k � 1
; (Equation 17)

where k is the number of inferred parameters, L is the likelihood function, and

DDt˛f130; 65; 33; 17; 13; 11; 9; 5g is the number of snapshot data points

subsampled respectively corresponding to each Dt.

For the MBI methods, the negative log likelihood function was proportional

to the sum of errors in the mean and variance. The AICc then reduces to

AICc

	bqDt
 = 2k +
1

2

XDDt

d = 1

SDObqDt ðtd jDtÞ
� SDOdataðtd jDtÞ22 +DDt

ffiffiffiffiffiffiffi
2 p

p
+

2k2 +2k

DDt � k � 1
; (Equation 18)

where SDOdata is the moment vector containing up to order two moments of

the data and SDObqDt is themoment vector containing up to order twomoments

computed from 1,000 SSA trajectories, which were generated with the param-

eters bqDt along the full dataset. The argument ðtd jDtÞ is used to indicate that

the SDO vectors only contain the snapshot data points subsampled with Dt.
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