
Dissecting Multiple Sequence Alignment

Methods

The Analysis, Design and Development of Generic Multiple Sequence

Alignment Components in SeqAn.

Dem Fachbereich Mathematik und Informatik der

Freien Universität Berlin

zur Erlangung des akademischen Grades eines

Dr. rer. nat.

eingereichte Dissertation

von

Herr Tobias Rausch

Freie Universität Berlin

Mai 2010

Erstgutachter: Prof. Dr. Knut Reinert

Zweitgutachter: Prof. Dr. Alun Thomas

Tag der Disputation: 11. Mai 2010

Abstract

Multiple sequence alignments are an indispensable tool in bioinformatics. Many

applications rely on accurate multiple alignments, including protein structure pre-

diction, phylogeny and the modeling of binding sites. In this thesis we dissected

and analyzed the crucial algorithms and data structures required to construct such

a multiple alignment. Based upon that dissection, we present a novel graph-based

multiple sequence alignment program and a new method for multi-read alignments

occurring in assembly projects. The advantage of the graph-based alignment is that

a single vertex can represent a single character, a large segment or even an abstract

entity such as a gene. This gives rise to the opportunity to apply the consistency-

based progressive alignment paradigm to alignments of genomic sequences. The

proposed multi-read alignment method outperforms similar methods in terms of

alignment quality and it is apparently one of the �rst methods that can readily

be used for insert sequencing. An important aspect of this thesis was the design,

the development and the integration of the essential multiple sequence alignment

components in the SeqAn library. SeqAn is a software library for sequence analysis

that provides the core algorithmic components required to analyze large-scale se-

quence data. SeqAn aims at bridging the current gap between algorithm theory and

available practical implementations in bioinformatics. Hence, we always describe in

conjunction to the theoretical development of the methods, the actual implementa-

tion of the data structures and algorithms in order to strengthen the use of SeqAn as

an experimental platform for rapidly developing and testing applications. All pre-

sented methods are part of the open source SeqAn library that can be downloaded

from our website, www.seqan.de.

Zusammenfassung

Multiple Sequenzvergleiche sind ein entscheidendes Hilfsmittel in der Bioinformatik.

Zahlreiche Anwendungen, wie zum Beispiel Proteinstrukturvorhersagen, Phylogenie

oder die Modellierung von Bindungsstellen beruhen auf der e�zienten und biologisch

korrekten Berechnung von multiplen Sequenzvergleichen. Aufgrund dieser enormen

Bedeutung wurden in der vorliegenden Doktorarbeit Methoden zum multiplen Se-

quenzvergleich detailiert untersucht, analysiert und in elementare Algorithmen und

Datenstrukturen zergliedert. Diese strukturelle Zerlegung bildet die Grundlage für

unsere eigenen Weiterentwicklungen. Insbesondere diskutieren und beschreiben wir

hier zwei erweiterte Ansätze zum graphbasierten, multiplen Sequenzvergleich und

zum Konsensusalignment. Für beide Methoden zeigen wir die Vorteile unserer Al-

gorithmen gegenüber bisherigen Ansätzen. Ein weiterer zentraler Bestandteil der

Arbeit ist der Entwurf, die Implementierung und die Integration dieser grundle-

genden Algorithmen und Datenstrukturen zum multiplen Sequenzvergleich in der

SeqAn Bibliothek. SeqAn ist eine Softwarebibliothek zur Sequenzanalyse. SeqAn

hat das Ziel die neuesten Erkenntnisse aus der Algorithmentheorie für praktische

Anwendungen verfügbar zu machen und im Rahmen einer experimentellen Platt-

form anzubieten, in der Algorithmen einfach entworfen, entwickelt und verglichen

werden können. Daher beschreiben wir in der gesamten Arbeit neben der theoreti-

schen Entwicklung der Algorithmen ebenso deren softwaretechnische Umsetzung in

SeqAn und zeigen zum Beispiel anhand von paarweisen Alignmentalgorithmen deren

Überlegenheit in Zeit- und Platzbedarf verglichen mit bisherigen Implementierun-

gen. Am Ende der Arbeit werden Einschränkungen und mögliche Erweiterungen der

vorgestellten Methoden diskutiert. Alle Algorithmen und Datenstrukturen sind im

Rahmen der SeqAn Bibliothek frei verfügbar: www.seqan.de

Acknowledgement

A big �Thank you!� to all my advisors, supporters, co-workers, friends and family

members. Doing a PhD and writing a thesis was enriching, exciting, ful�lling and

fun and from time to time frustrating, troublesome, stagnant and annoying. The

positive part is no big deal but to be carried and pampered through the tough part

makes the di�erence. The support of Knut Reinert, my primary advisor, was truly

remarkable. Knut, I felt that your guidance, your ideas and your encouragements

were extraordinarily valuable. I greatly enjoyed working in your group and I hope,

we are able to stay in touch for future projects. Thanks a lot! I am also very happy

to got to know Cedric Notredame. I have rarely seen anybody, who is as enthusiastic

as you are, Cedric. Your famous aircraft survivability story probably unites all of

your students and I am actually very proud to be one of the guys, who heard about

it, thanks! Alun Thomas, you truly enjoy research. Without having seen someone

like you before, I probably would have never started this PhD project. I am very

grateful for the time I could spend with you, many thanks! Another big �Thank

you!� to Andreas, Anne-Katrin, David and Marcel for joint projects or helping me

out with SeqAn. Many thanks to the other group and ��oor� members for fun and

thoughts at work and in the free time: thanks Alexandra, Anja, Chris, Christopher,

Clemens, Eva, Gesine, Laura, Markus, Martin, Ole, Sandro, Stephan and all the

others. Many thanks to my best friends Christian (Hyvää päivää), Andi, Berni,

Johannes and Holli (Servus, Tirol isch scho was) and Divya, Richard and Sebastian.

I feel very privileged to have friends like you I can rely on. Last but not least I

would like to thank my family and Shan. I know, the past three years were quite

di�cult but having people like you by my side is indeed impressive. Vielen Dank!

Contents

I Introduction 1

1 Motivation 3

1.1 Biological Background . 3

1.2 Multiple Sequence Alignment in Computational Biology 6

1.2.1 Structure prediction . 7

1.2.2 Function prediction . 8

1.2.3 Domain identi�cation . 9

1.2.4 Modeling binding sites . 10

1.2.5 Phylogeny . 11

1.2.6 Sequence consensus . 11

1.3 History of the Problem . 13

1.4 Guide to the Thesis . 14

1.4.1 Notation . 16

1.4.2 Graph theory . 17

1.4.3 The SeqAn library . 19

2 Multiple Sequence Alignments 23

2.1 Alignment De�nition . 24

2.2 Alignment Scoring . 25

2.2.1 Sum of pairs score . 26

2.3 Alignment Representation . 27

2.3.1 Alignment matrices and pro�les 27

2.3.2 Alignment graphs . 27

2.3.3 De Bruijn graphs . 29

i

2.3.4 Partial order graphs . 30

2.4 Exact Alignment Algorithms . 30

2.4.1 Dynamic programming . 31

2.4.2 Combinatorial algorithms . 32

2.5 Heuristic Alignment Algorithms . 34

2.5.1 Progressive alignment . 34

2.5.2 Methods using structure and sequence homologs 40

2.5.3 Anchor-based alignment . 41

2.5.4 Others . 42

2.6 RNA Alignment Algorithms . 44

2.7 Alignment Benchmarks . 44

2.8 Available Implementations . 45

3 Contribution 49

3.1 Dissecting Multiple Sequence Alignment Tools 49

3.2 Segment-Based Multiple Sequence Alignment 51

3.3 Multi-Read Alignment . 52

II Algorithms and Data Structures 53

4 Alignment Data Structures 55

4.1 Alignment Containers . 55

4.1.1 Alignment matrix . 55

4.1.2 Alignment graphs . 56

4.1.3 Fragment store . 58

4.2 Implementation . 59

4.2.1 Alignment matrix . 59

4.2.2 Alignment graphs . 59

4.2.3 Fragment store . 66

5 Pairwise alignment 69

5.1 Algorithms . 69

5.1.1 Needleman-Wunsch . 69

5.1.2 Gotoh . 70

5.1.3 Smith-Waterman . 71

ii

5.1.4 Waterman-Eggert . 71

5.2 Implementation . 72

6 Multiple Sequence Alignment 77

6.1 Overview . 77

6.2 Algorithmic Components . 79

6.2.1 Segment-match generation . 79

6.2.2 Segment-match re�nement . 79

6.2.3 Alignment graph construction 82

6.2.4 Distance matrix computation 83

6.2.5 Guide tree construction . 83

6.2.6 Triplet extension . 84

6.2.7 Progressive alignment . 85

6.3 Implementation . 86

7 Multi-Read Alignment 89

7.1 Overview . 89

7.2 ReAligner . 93

7.2.1 Algorithmic components . 93

7.2.2 Implementation . 97

7.3 Graph-based Multi-Read Alignment 98

7.3.1 Algorithmic components . 98

7.3.2 Implementation . 101

III Tools and Applications 103

8 SeqAn::T-Co�ee 105

8.1 SP and TC Score . 105

8.2 Parameter Evaluation . 106

8.2.1 Gap penalties . 106

8.2.2 Scoring matrix . 110

8.2.3 Pairwise alignment algorithms 110

8.2.4 Tree reconstruction . 112

8.3 Results . 115

8.3.1 BAliBASE . 115

iii

8.3.2 PREFAB . 119

8.3.3 DNA sequence alignment . 119

8.4 Command Line . 122

9 Sequence Consensus 125

9.1 Multi-Read Alignment in De Novo Assembly 125

9.2 Multi-Read Alignment in Reference-Guided Sequence Assembly . . . 129

9.3 Command Line . 134

10 PairAlign 137

10.1 Command Line . 138

11 TreeRecon 141

11.1 Command Line . 141

IV Outlook 143

12 Discussion 145

12.1 Limitations . 145

12.2 Possible Extensions . 147

12.3 SeqAn . 148

13 Future Challenges 151

13.1 Non-Collinear Protein Alignments . 152

13.2 Genome Comparison . 153

13.3 Deep Alignments . 156

13.4 Concluding Remarks . 157

iv

List of Figures

1.1 Transcription and translation . 5

1.2 Alternative splicing . 6

1.3 Global and local multiple sequence alignments 7

1.4 3D model of myoglobin . 8

1.5 Sequence logo for a putative binding site 11

1.6 Phylogenetic tree . 12

1.7 Multi-read alignment . 13

2.1 Path of a multiple sequence alignment in a 3D lattice 25

2.2 Projection of an alignment . 25

2.3 Alignment graph of three sequences 28

2.4 Alignment graph with contradicting edges 28

2.5 De Bruijn graph . 29

2.6 Conserved patterns in a De Bruijn graph 30

2.7 Partial order graph . 30

2.8 Predecessors of a cell in the dynamic programming matrix 31

2.9 An alignment graph with two critical mixed cycles 33

2.10 Compatible and incompatible pairwise alignments 34

2.11 Progressive alignment . 35

2.12 String to pro�le alignment . 38

2.13 Consistency extension . 39

2.14 Anchor-based alignment . 41

2.15 Alignment of shu�ed and repeated domains 43

4.1 Alignment graph example . 57

v

4.2 Alignment graphs and multi-read alignments 57

4.3 Alignment graphs as match containers 58

4.4 A directed graph using an adjacency list 60

4.5 An undirected graph using an adjacency list 60

4.6 An automaton using an edge-table 61

4.7 Alignment graph to alignment matrix conversion 64

4.8 Multi-read alignment with gap anchors 67

5.1 Banded dynamic programming . 73

5.2 Comparison of banded and non-banded alignment algorithms in SeqAn 74

5.3 Comparison of alignment algorithms 75

6.1 Subdivision of pairwise alignments 79

6.2 Overlapping segment matches . 80

6.3 Re�nement of overlapping segment matches 80

6.4 Group-based triplet extension . 85

6.5 Graph-based progressive alignment 86

6.6 Binary guide tree . 88

7.1 Sequencing of a target genome . 90

7.2 Insert sequencing . 91

7.3 Multi-read alignment . 92

7.4 ReAlignment . 94

7.5 Multi-read alignment graph . 100

8.1 Gap penalties for global alignment, TC score 108

8.2 Gap penalties for global alignment, SP score 108

8.3 Gap penalties for local alignment, TC score 109

8.4 Gap penalties for local alignment, SP score 109

8.5 Scoring matrix comparison . 111

8.6 Comparison of segment-match generation methods 112

8.7 Tree reconstruction algorithms, SP score 113

8.8 Tree reconstruction algorithms, TC score 114

9.1 Consensus to source alignment . 130

12.1 Fragmentation of segment matches on BAliBASE 147

vi

13.1 De Bruijn graph of shu�ed and repeated domains (1) 153

13.2 Alignment graph of shu�ed and repeated domains (2) 153

13.3 Structural variant detection, unknown variant 155

13.4 Structural variant detection, known variant 155

vii

viii

List of Tables

1.1 Amino acids and nucleotides . 4

1.2 The standard genetic code . 5

1.3 Multiple sequence alignment of 6 globin sequences 9

1.4 Domain identi�cation via a pro�le . 10

2.1 Alignment pro�le . 27

2.2 Listing of available multiple sequence alignment programs (Part 1) . . 46

2.3 Listing of available multiple sequence alignment programs (Part 2) . . 47

2.4 Listing of available multiple sequence alignment programs (Part 3) . . 48

4.1 Listing of available graph types . 59

4.2 Listing of available standard graph functions 62

4.3 Listing of available property map functions 63

4.4 Listing of available graph algorithms 65

8.1 BAliBASE 3.0 results . 116

8.2 PREFAB 4.0 results . 118

8.3 Alignment of adenoviruses . 120

8.4 Alignment of virus serotypes . 121

9.1 Simulation study for consensus computation 126

9.2 Simulation study for insert sequencing 128

9.3 Multi-read alignment given four haplotypes (1) 132

9.4 Multi-read alignment given four haplotypes (2) 133

10.1 Global and local alignment algorithms 137

ix

Part I

Introduction

1

Motivation

1.1 Biological Background

The genetic information of all living organisms is encoded in deoxyribonucleic acid

(DNA). The DNA is a double-stranded polymer, wounded as a helix that has a back-

bone and only four simple building blocks called nucleotides shown in Table 1.1(a).

The nucleotides are adenine (A), cytosine (C), guanine (G) and thymine (T). A and

G are purines whereas T and C are pyrimidines. The nucleotides pair up and give

rise to the characteristic double-stranded, helical shape of DNA molecules. Since

adenine only pairs up with thymine and cytosine only pairs up with guanine, each

strand is a reverse complemented copy of the other strand. Hence, reversing one

strand and replacing each A with T, T with A, C with G and G with C gives rise

to the other strand as shown below. By convention, both DNA strands are read in

�ve prime (5′) to three prime (3′) direction.

−→
5′ 3′

· · · T C A G · · ·
‖ ‖ ‖ ‖

· · · A G T C · · ·
3′

←−
5′

Each strand can serve as a template for building the other strand, which is an

essential precondition for DNA replication. In human beings the DNA resides in

organized structures called chromosomes. The human genome consists of 46 such

chromosomes. The chromosomes appear in 23 pairs. There is one pair of sex chro-

mosomes and 22 remaining pairs of chromosomes called autosomes. In every pair

one chromosome was inherited from the mother and the other chromosome was in-

3

1. Motivation

Nucleotide 1-Letter Class

Adenine A Purine

Cytosine C Pyrimidine

Guanine G Purine

Thymine T Pyrimidine

Uracil (Rna) U Pyrimidine

(a) The 4 DNA nucleotides and their 1-letter

abbreviation. In RNA thymine is replaced by

uracil.

Amino acid 3-Letter 1-Letter Amino acid 3-Letter 1-Letter

Alanine Ala A Leucine Leu L

Arginine Arg R Lysine Lys K

Asparagine Asn N Methionine Met M

Aspartic acid Asp D Phenylalanine Phe F

Cysteine Cys C Proline Pro P

Glutamic acid Glu E Serine Ser S

Glutamine Gln Q Threonine Thr T

Glycine Gly G Tryptophan Trp W

Histidine His H Tyrosine Tyr Y

Isoleucine Ile I Valine Val V

(b) The 20 amino acids with their 3-letter and 1-letter abbreviations.

Table 1.1: The 20 amino acids and 4 DNA nucleotides.

herited from the father. These inherited chromosomes are, however, not a mere copy

of the chromosomes of our parents. Genetic recombination events such as crossing

over or mutations can induce changes ranging from single nucleotide di�erences to

shu�ed pieces of DNA.

However, not DNA but proteins are required in nearly every cellular process.

Proteins have a plethora of functions such as structural, catalytic, signaling or me-

chanical responsibilities. Proteins or polypeptides are made of twenty standard

amino acids shown in Table 1.1(b). The crucial link between the genetic informa-

tion carrier DNA and the proteins is the transcription of coding DNA, called genes,

into ribonucleic acid (RNA) and the translation of RNA into the primary sequence

4

1.1. Biological Background

Figure 1.1: Genes are transcribed into RNA and by means of the genetic code translated

into proteins. The �gure was adapted from a public domain illustration of the National

Human Genome Research Institute (www.genome.gov).

Amino acid Codons Amino acid Codons

A GCU, GCC, GCA, GCG L UUA, UUG, CUU, CUC, CUA, CUG

R CGU, CGC, CGA, CGG, AGA, AGG K AAA, AAG

N AAU, AAC M AUG

D GAU, GAC F UUU, UUC

C UGU, UGC P CCU, CCC, CCA, CCG

E GAA, GAG S UCU, UCC, UCA, UCG, AGU, AGC

Q CAA, CAG T ACU, ACC, ACA, ACG

G GGU, GGC, GGA, GGG W UGG

H CAU, CAC Y UAU, UAC

I AUU, AUC, AUA V GUU, GUC, GUA, GUG

START AUG STOP UAA, UGA, UAG

Table 1.2: The standard genetic code showing for each amino acid the involved codons.

The start codon initiates translation and the stop codons terminate translation.

of amino acids in a protein. This two-step process of transcription and translation

is well-known as the central dogma of molecular biology, summarized in Figure 1.1

and explained hereafter.

The transcribed RNA is a single-stranded molecule. It has the same four building

blocks as DNA, except that thymine is replaced by uracil (U). The translation from

the four letter RNA alphabet to the twenty letter amino acid alphabet occurs by

means of the genetic code shown in Table 1.2. Each non-overlapping, contiguous

5

1. Motivation

Figure 1.2: Alternative splicing: The exons of a single pre-mRNA can be spliced together

in di�erent combinations. This leads to distinct mRNAs that may be translated to di�erent

proteins. Hence, a single gene can code for multiple proteins.

tri-nucleotide sequence, called codon, is mapped to an amino acid. Since there are 43

di�erent tri-nucleotides but only 20 amino acids, the genetic code is a degenerated

or redundant code, multiple codons can encode the same amino acid. This implies a

limited robustness of the genetic code against single nucleotide mutations. In many

eukaryotes a gene is composed of coding and non-coding segments called exons and

introns, respectively. The introns are spliced out after the initial transcription. This

splicing process is quite sophisticated because di�erent splicing patterns can occur

in a single gene, a mechanism called alternative splicing shown in Figure 1.2. Hence,

even a single gene can code for di�erent proteins. Besides the problem of �nding the

genes and elucidating the regulatory mechanisms controlling transcription, alterna-

tive splicing or post-translational modi�cations, one of the most important research

questions is what functions do the encoded proteins perform. An indispensable tool

to answer this speci�c question are multiple sequence alignments (MSAs).

1.2 Multiple Sequence Alignment in Computational

Biology

A DNA sequence and thus, each and every protein sequence has an evolutionary

history. Due to that history, sequence similarity might imply functional or structural

conservation. Biologically important residues or nucleotides are assumed to be less-

likely to mutate than unimportant ones and thus, observed sequence conservation

might be a hint to a functionally important region. Using sequence similarity, a

sequence with a known function can be used to annotate, classify or �nd similar

sequences by means of pairwise or multiple alignments. Hence, the main goal of a

6

1.2. Multiple Sequence Alignment in Computational Biology

Figure 1.3: A local (left) and a global (right) multiple sequence alignment of three

sequences. The full sequences are depicted by gray lines and only the aligned parts are

shown in black.

MSA is to group conserved residues or nucleotides that have the highest sequence

similarity. This is achieved by rewriting the sequences in such a way that conserved

residues or nucleotides appear in the same column. A gap character '−' is used to

introduce spaces into the sequences. An example MSA is shown below for three

sequences GAAT,AAC, and GAACT .

G A A − T

− A A C −
G A A C T

The advantage of multiple alignments compared to pairwise alignments is that mul-

tiple alignments are more powerful to detect weakly conserved sequence similarities.

In a pairwise alignment these weak and faint but biologically important sequence

similarities might vanish. They still stand out in a multiple sequence alignment if a

number of sequences highlight and delineate the extent of conservation.

MSA problems are characterized by (1) the number of sequences, (2) the length

of the sequences, (3) the alphabet of the sequences (usually DNA, RNA, or amino

acids), and (4) the relatedness of the sequences. Here, relatedness refers to both, the

divergence of the sequences and whether the sequences are globally or locally related

(see Figure 1.3). Many applications rely on accurate MSAs and the most promi-

nent ones are explained hereafter, namely structure prediction, function prediction,

domain identi�cation, modeling binding sites, phylogeny and deriving a consensus

sequence.

1.2.1 Structure prediction

Translating an RNA sequence into a linear chain of amino acids by means of the

genetic code allows us to retrieve the primary structure of a protein, its sequential

composition of amino acids. The secondary structure of a protein describes the

7

1. Motivation

Figure 1.4: A 3D model showing the coiled, helical domains of myoglobin. Public domain

illustration from Wikipedia: http://en.wikipedia.org/wiki/Myoglobin.

three-dimensional layout of common structural elements occurring in proteins such

as alpha helices and beta sheets. An alpha helix has a characteristic coiled shape

whereas a beta sheet is rather �at and bended as shown in Figure 1.4. The secondary

structure does not describe the exact position of each and every atom, which is the

so-called tertiary structure of a protein.

Inferring the three-dimensional protein fold from the primary structure is non-

trivial. For the secondary structure, however, multiple alignments can give a very

good hint as exemplarily shown in Table 1.3 and Figure 1.4 for a set of globin

sequences.

1.2.2 Function prediction

In the recent past, a number of protein sequences have been characterized and

annotated. This information is collected in public databases such as UniProt (The

UniProt Consortium, 2007). Given an unannotated query sequence, tools such as

BLAST (Altschul et al., 1990) can be used to search such databases. These tools

return the database sequences that gave rise to high-scoring local alignments with the

initial query sequence. Using a local or global alignment of the retrieved sequences

with the query sequence, one can identify shared and distinct sequence patterns,

facilitating an annotation of the uncharacterized sequence. Similarly, we can align

the unannotated sequence to a protein family present in a protein family database

such as Pfam (Finn et al., 2008) to verify that the new protein sequence belongs to

that family.

8

1.2. Multiple Sequence Alignment in Computational Biology

HBA_HUMAN .MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF.DLSH

HBB_HUMAN MVHLTPEEKSAVTALWGKV..NVDEVGGEALGRLLVVYPWTQRFFESFGDLST

HBA_HORSE .MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF.DLSH

HBB_HORSE .VQLSGEEKAAVLALWDKV..NEEEVGGEALGRLLVVYPWTQRFFDSFGDLSN

MYG_PHYCA .MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKT

LGB2_LUPLU MGALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE

HBA_HUMANGSAQVKGHGKKVADALTNAVAHVDD...M..PNALSALSDLHAHKLRVD

HBB_HUMAN PDAVMGNPKVKAHGKKVLGAFSDGLAHLDN...L..KGTFATLSELHCDKLHVD

HBA_HORSEGSAQVKAHGKKVGDALTLAVGHLDD...L..PGALSNLSDLHAHKLRVD

HBB_HORSE PGAVMGNPKVKAHGKKVLHSFGEGVHHLDN...L..KGTFAALSELHCDKLHVD

MYG_PHYCA EAEMKASEDLKKHGVTVLTALGAILKKKGH...H..EAELKPLAQSHATKHKIP

LGB2_LUPLU VPQ..NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSK.GVA

HBA_HUMAN PVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR......

HBB_HUMAN PENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH......

HBA_HORSE PVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR......

HBB_HORSE PENFRLLGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH......

MYG_PHYCA IKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG

LGB2_LUPLU DAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA...

Table 1.3: MSA of 6 globin sequences: Human hemoglobin subunit alpha (UniProt acces-

sion: P69905), human hemoglobin subunit beta (P68871), horse hemoglobin subunit alpha

(P01958), horse hemoglobin subunit beta (P02062), sperm whale myoglobin (P02185) and

european yellow lupin leghemoglobin-2 (P02240). The common helix secondary structure

elements are shown in bold font. UniProt (The UniProt Consortium, 2007) is a compre-

hensive public protein sequence database providing functional annotations.

1.2.3 Domain identi�cation

Proteins consist of several functionally active regions called domains. The domains

of a given protein can occur shu�ed or repeated in a di�erent protein. Hence,

to identify these domains one needs a more sensitive method than a mere global

alignment of protein sequences. One approach is to build a pro�le P or position

speci�c probability matrix of a given domain. A very small example of such a

pro�le is shown in Table 1.4. For each column, a pro�le stores the relative frequency

9

1. Motivation

of each letter. That is, the number of occurrences of a given letter normalized by the

total amount of letters in the given column. The strength of pro�les is their ability

to distinguish evolutionary conserved sites from variable sites. A preliminary step

to construct such a pro�le is the multiple alignment of a set of sequences describing

the domain. Once we have such a pro�le at hand, we can scan other sequences for

high-scoring local alignments to the pro�le.

1.2.4 Modeling binding sites

Another application of MSAs is the modeling of binding sites. A speci�c class of

binding sites are, for instance, promoter binding sites. Promoters regulate the ex-

pression of a gene and they are located upstream of the 5' end of a gene. A compact

graphical representation of such a binding site are so-called sequence logos (Schnei-

der and Stephens, 1990; Crooks et al., 2004) that can be generated from an input

MSA. Characteristic features of an alignment are readily apparent in such a logo as

exemplarily shown in Figure 1.5.

For each column in the alignment, the logo has a stack of characters usually

DNA or RNA letters. In each of these stacks, the height of a symbol represents

the relative frequency of that character in the given column. The total height of

the stack represents the conservation or information content (in bits) of the given

column. Hence, sequence logos highlight the conserved positions in the alignment.

In addition, they provide more information than a mere consensus sequence, where

a multiple alignment is simply condensed to the most frequent letter in each column.

P 1 2 3 4

A G C T A 0.75 0 0 0.5

A G C C C 0.25 0 1.0 0.25

A − C A G 0 0.75 0 0

C G C A T 0 0 0 0.25

− 0 0.25 0 0

Table 1.4: A pro�le of an alignment of four DNA sequences. Ps,u is the frequency of

character s ∈ Σ̃ in column u. Σ̃ is the DNA alphabet augmented by the gap character '−'.

10

1.2. Multiple Sequence Alignment in Computational Biology

Figure 1.5: A putative binding site sequence logo (right) derived from a multiple sequence

alignment (left). The sequence logo has been created with WebLogo 3 (Crooks et al., 2004).

1.2.5 Phylogeny

A phylogenetic tree indicates the evolutionary history of a set of sequences. The

sequences are represented by the leaves of the tree and internal nodes are puta-

tive ancestor sequences. Almost all phylogenetic inference algorithms start with a

MSA of a set of sequences. One speci�c class of phylogenetic tree reconstruction

algorithms are distance-based tree reconstruction algorithms. These methods �rst

estimate a distance matrix from pairwise or multiple alignments. This distance ma-

trix is then used to reconstruct the tree as explained later in Chapter 2. An example

of such a phylogenetic tree derived from a distance matrix is shown in Figure 1.6.

Alternative methods to reconstruct a phylogenetic tree from a given MSA are maxi-

mum parsimony (Fitch, 1971) and maximum likelihood (Felsenstein, 1981) methods.

1.2.6 Sequence consensus

Using current DNA sequencers, whole genomes cannot be sequenced front to back

in a single run. Depending on the sequencing technology, machines are limited to

sequence only 35 to at most 1000 nucleotides. These small, sequenced DNA chunks

are called reads. Fortunately, these tiny reads can still be used to sequence eukaryotic

genomes hundreds or even thousands of mega bases long. The idea is to copy the

initial DNA several times and to shear these copies randomly into thousands of

overlapping fragments. The �nal reads are then sequenced from the ends of these

fragments. Due to the copying and random shearing we hope to sequence every

single base of the genome multiple times by means of overlapping reads. Such

overlaps can then be used to position every read and reconstruct the sequenced

genome. A very small example is shown in Figure 1.7. In this clipped example,

11

1. Motivation

Figure 1.6: A phylogenetic tree of 7 sequences reconstructed from a distance matrix

in Phylip format. The pairwise distances may, for instance, be derived from normalized

alignment scores.

seven reads have been ordered and positioned according to their overlaps. Each read

has an orientation because unfortunately, we do not know whether the sequencer

has read the sequence in forward or reverse direction. In addition, sequencers might

produce sequencing errors as in column 25 where a G is missing in Read2 or in

column 13 where we observe an A instead of a G in Read1. Similarly, we might

encounter true polymorphisms. For instance, as noted in the introduction humans

have pairs of chromosomes, one is inherited from the mother and the other from

the father. These so-called polyploid organisms with multiple haplotypes result

in sequenced reads stemming from either haplotype. Since the haplotypes are not

identical we might observe these deviations, called polymorphisms, in the multi-

read alignment. In the above example, column 16 and column 20 might be true

polymorphisms instead of sequencing errors. The distinction of sequencing errors

and polymorphisms is non-trivial. If a certain letter is supported by many other

reads it might be a true variation otherwise it is assumed to be a sequencing error.

In sequencing projects, one is usually interested in the originally sequenced genome.

Because of that, the multi-read alignment is usually augmented by a consensus

sequence. This consensus sequence can be derived from the alignment by taking, for

instance, the most frequent letter in each column as shown in the example.

12

1.3. History of the Problem

... 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...

Consensus G A T T G A G A C T G T A − C T G A T C

← Read1 G A T T A A G A C

→ Read2 A T T G A G A C T G T A − C T − A

← Read3 T G A G − C T G C A T C T G A T

← Read4 G A G A C T G T A − C T

→ Read5 A G − C T G C A − C T G A A C

→ Read6 G A C T G T A − C T G A

→ Read7 G − C T G C A − C T G A T C

Figure 1.7: A clipped multi-read alignment of seven reads. The most frequent letter in

each column is part of the consensus shown at the top with ties broken arbitrarily.

1.3 History of the Problem

Throughout the history of MSAs one can distinguish two types of algorithms, op-

timal ones and heuristics. The former algorithms compute an optimal alignment

with respect to some scoring function such as the sum of pairs score. The latter

algorithms compute an alignment based on some kind of biological sound procedure

such as progressive alignment. Both classes of algorithms are reviewed in Chapter 2.

The �rst optimal methods could align three sequences simultaneously using stan-

dard dynamic programming (Gotoh, 1986; Murata et al., 1985). A few years later,

the program MSA (Gupta et al., 1995; Lipman et al., 1989) could align up to eight

sequences of average protein length by using a clever bounding technique for the

dynamic programming lattice. Time and space was further reduced using the A∗

algorithm (Lermen and Reinert, 2000; Reinert et al., 1997) and (partly heuristic) di-

vide and conquer techniques (Reinert et al., 2000). Besides bounding techniques for

the dynamic programming formulation, other algorithms used a so-called alignment

graph or trace graph (Kececioglu, 1993; Sanko� and Kruskal, 1983). This alignment

graph was used in an integer linear programming (ILP) formulation (Reinert, 1999)

extended by various methods from combinatorial optimization (Althaus and Canzar,

2008; Althaus et al., 2002, 2006).

Computing an optimal alignment is, however, NP-hard using the sum of pairs

score (Wang and Jiang, 1994). Because of that a vast number of heuristics has been

13

1. Motivation

developed enabling the alignment of more sequences of greater length. Heuristic

methods were di�cult to compare in the beginning but gained enormous lever-

age with the advent of protein benchmark data sets of sometimes manually re-

�ned MSAs such as BAliBASE (Thompson et al., 1999a, 2005), PREFAB (Edgar,

2004b), OXBENCH (Raghava et al., 2003), SABmark (Walle et al., 2005) and IRM-

BASE (Subramanian et al., 2005). For protein alignments, these benchmarks are

the de facto standard for judging the performance of individual methods. The

�rst heuristic progressive aligner was published in 1987 (Feng and Doolittle, 1987)

followed by a great variety of other heuristics, most prominently the Clustal se-

ries of programs (Higgins and Sharp, 1988; Larkin et al., 2007; Thompson et al.,

1994). Throughout the past years, the progressive alignment paradigm has been

extended using approaches outlined in the next chapter such as consistency (Go-

toh, 1990; Vingron and Argos, 1991; Notredame et al., 2000; Do et al., 2005) and

re�nement (Edgar, 2004b; Katoh et al., 2002).

The advent of genome sequencing spurred the development of software packages to

assemble entire genomes. An integral part of these so-called assemblers is a multi-

read alignment module to compute a consensus sequence. The most prominent

assembler is the Celera Assembler (Myers et al., 2000) developed to sequence the

human genome in 2001 (Venter et al., 2001). However, a number of other assemblers

are frequently used today, such as Velvet (Zerbino and Birney, 2008), the Newbler

assembler from Roche or Arachne (Batzoglou et al., 2002).

The increasing number of available genomic sequences also stimulated the de-

velopment of so-called genome aligners or genome comparison tools in the past 10

years. The MUMmer series of programs (Delcher et al., 1999, 2002; Kurtz et al.,

2004) remarkably pioneered this research area but lately, a number of other inter-

esting anchor-based alignment tools appeared (Brudno et al., 2003; Darling et al.,

2004).

1.4 Guide to the Thesis

Having read the motivation you are hopefully convinced that multiple sequence

alignments are useful and one of the main workhorses ubiquitously used in compu-

tational biology. The rest of the introduction covers all facets of a MSA in-depth by

giving a succinct MSA de�nition, a detailed account of available MSA representa-

14

1.4. Guide to the Thesis

tions and an overview of current alignment methods. At the end of the introduction

a brief overview of the main contributions of this thesis is given.

Part II and Part III of this thesis cover then in detail our own contribution

whereas the last, fourth part contains a discussion of the strength and weaknesses

of our method and an outlook on upcoming trends and challenges in the �eld of

multiple sequence alignments. To facilitate an easy reading of the next chapters we

summarized here some notation and some graph theoretical concepts used in the rest

of the thesis. We also introduce the SeqAn library that was used and augmented

extensively throughout the entire thesis.

15

1. Motivation

1.4.1 Notation

Sequences:
S A single sequence.

S An ordered set of sequences.

Si ∈ S Si is the i-th sequence in the ordered sequence set S.
S ′ ⊆ S S ′ is a subset of S.
|S| The cardinality of a set.

|Si| The length of sequence Si.

Si = si0, s
i
1, · · · , sin−1 A sequence of length n. The �rst character is si0 and

the last character is sin−1. The �rst character is always

indexed with 0. The comma in-between characters is

sometimes omitted.

[u, x(An integer interval ranging from u (including) to x

(excluding), that is, [u, u+ 1, · · · , x− 1].

Si
ux = siu, s

i
u+1, · · · , six−1 A [u, x(segment of string Si starting at u and ending

at x−1. Hence, Si
0n denotes the full string S

i of length

n.

Σ The set of alphabet symbols.

S ∈ Σ∗ S is a �nite sequence over the alphabet Σ.

Further notations, used font styles and pronoun usage:
O The big O notation is used to describe the worst case

running time and memory usage of an algorithm.

./pair_align Typewriter font is used for pseudocode or shell com-

mands.

connected_components Functions or data types that are one-to-one available

in SeqAn are boxed and written in typewriter font.

we/I I enjoyed working on this thesis project quite a lot

and in particular, I enjoyed working with other peo-

ple from my own and other research groups. Unfor-

tunately, I had personally some di�cult past months

but thanks to my co-workers, my advisors, friends and

family I carried on. To honor their help and contri-

bution I prefer to use �we� instead of �I� throughout

this thesis.

16

1.4. Guide to the Thesis

1.4.2 Graph theory

Graphs have been central to this thesis. In particular, a large part of this thesis is

concerned about a data structure called alignment graph. This alignment graph has

been built on top of some basic graph types and standard graph algorithms can be

applied to it. Hence, a brief overview of graph theory is given hereafter.

A graph G = (V,E) consists of a set of vertices V and a set of edges E, which is

de�ned as a binary relation on V . An edge e is an element of E and e can be either

directed e = (u, v) ∈ E or undirected e = {u, v} ∈ E where u, v ∈ V . Directed

graphs have directed edges, a set of ordered pairs of vertices, whereas undirected

graphs have undirected edges, a set of unordered pairs of vertices. Directed edges

are also called arcs. Each undirected and directed edge has two endpoints u, v ∈ V .
We call an edge a self-loop if u = v. For a directed edge e = (u, v) ∈ E, we call u
the source vertex and v the target vertex of edge e. Tail and head are alternative

names for the source and target vertex, respectively. For a graph G = (V,E), |V |
denotes the number of vertices and |E| denotes the number of edges. Weighted

graphs associate a weight to each edge, denoted as we.

In an undirected graph, two vertices u and v are adjacent if and only if there

exists an edge e = {u, v} ∈ E. In a directed graph, an edge e = (u, v) ∈ E means

that v is adjacent to u but not vice versa. If a vertex v ∈ V is an endpoint of an

undirected edge e ∈ E, e is called incident on v. For a directed edge e = (u, v) ∈ E,
e is incident from u and incident to v.

The degree of a vertex v in an undirected graph is the number of adjacent vertices.

In a directed graph the in-degree of vertex v is the number of edges directed to v,

that is, the number of edges where v is the target vertex. The out-degree of vertex

v is the number of edges directed from v, that is, the number of edges where v is the

source vertex. We also say the out-degree speci�es the number of outgoing edges

whereas the in-degree speci�es the number of incoming edges.

A path of length k in G from vertex u to vertex w is a sequence of vertices

(v0, v1, · · · , vk) such that (vi, vi+1) ∈ E, 0 ≤ i < k, v0 = u and vk = w. Hence,

the length of a path is equal to the number of edges on the path. A vertex vt is

reachable from vs if and only if there is a path from vs to vt. A path is a cycle if

v0 = vk and it is called simple if all vertices are distinct. A clique in an undirected

graph G = (V,E) is a vertex subset VC ⊆ V where all pairs of vertices are adjacent

in G. G∗ = (V ∗, E∗) is a subgraph of G = (V,E) if and only if V ∗ ⊆ V and E∗ ⊆ E.

17

1. Motivation

In a complete undirected graph of n vertices, denoted as Kn, every pair of vertices

is connected by an edge.

A tree is a rooted directed graph. A tree of n vertices has n − 1 edges and no

cycles. Except for the root, every tree vertex vc has one incoming edge going from

the parent vertex vp to the child vertex vc. The out-degree of a tree vertex is equal

to the number of children. The tree vertices with out-degree equal to zero are the

leaves of the tree, all other vertices are called internal vertices. The root vertex is

the only vertex with an in-degree equal to zero, all other vertices have an in-degree

equal to one. A binary tree is a tree where all internal vertices have an out-degree

equal to two.

A k-partite graph G = (V = {V 0 ∪ V 1 ∪ ... ∪ V k−1}, E) is a graph where the

node set V is divided into k distinct partitions. The de�ning property of a k-partite

graph is that i 6= j, ∀e = {vi, vj} ∈ E with vi ∈ V i and vj ∈ V j. In other words,

vertices from the same partition are never adjacent. The 2-partite graph is also

called bipartite graph. The complete k-partite graph is denoted as K|V 0|,|V 1|,···,|V k−1|.

The complete De Bruijn graph is a directed graph consisting of all possible con-

tiguous sequences of length k over a given alphabet Σ. It has |Σ|k vertices, one for
each possible k-mer. The directed edges represent (k + 1)-mers, that is, the source

vertex represents the pre�x of length k of the (k+ 1)-mer and the target vertex rep-

resents the su�x of length k of the (k + 1)-mer. Hence, in the complete De Bruijn

graph each vertex has an in-degree equal to |Σ| and an out-degree equal to |Σ|. In
this thesis, we will consider De Bruijn graphs, where the set of edges is limited to

(k + 1)-mers occurring in one of the input sequences.

A breadth-�rst search on a graph starts from a source vertex vs and enumerates

all other reachable vertices of the graph in ascending order of their distance from

vs. The distance is de�ned as the smallest number of edges on a path from vs to a

reachable vertex vi. That is, the algorithm �rst enumerates all vertices at distance

0, which is simply vs, followed by all vertices at distance 1, followed by the vertices

at distance 2 and so on. Note that this procedure creates a so-called breadth-�rst

search tree where vs is the root. One level underneath the root are the vertices at

distance 1 and each subsequent tree level corresponds to the vertices at this speci�c

distance.

A depth-�rst search enumerates the vertices from a source vertex vs by always

going as deep as possible into the graph until no more undiscovered vertices exist

18

1.4. Guide to the Thesis

and a backtracking is required. Hence, we start at vs, go to one adjacent vertex

v1 and mark it as discovered. From v1 we go to another unmarked adjacent vertex

v2 and mark it as discovered. We continue this process until we reach a vertex vk

with no more adjacent unmarked vertices available. Then we backtrack to the last

vertex with unmarked adjacent vertices and start to go deeper in the graph from

that vertex. We repeat the whole process until all reachable vertices have been

discovered.

A topological sort enumeration of the vertices of a graph can only be applied to

a directed acyclic graph whereas breadth-�rst search and depth-�rst search can be

applied to directed and undirected graphs that may contain cycles. A topological

sort of a directed acyclic graph G = (V,E) is an ordered enumeration of the vertices

(v0, v1, · · · , vk) such that for any edge e = (vi, vj) ∈ E the vertex vi appears before

the vertex vj in the ordered enumeration, that is, i < j.

A connected component of an undirected graph G = (V,E) is a maximal set of

vertices VC ⊆ V such that for each pair of vertices vu and vw there is a path from

vu to vw. In a directed graph we require that there is a path from vu to vw and from

vw to vu and call such a component strongly connected component. An undirected

or directed graph G can be decomposed into its connected or strongly connected

components, respectively. An undirected graph itself is called connected if it has

only one connected component. Similarly, a directed graph is strongly connected if

it has only one strongly connected component.

1.4.3 The SeqAn library

The LEDA library (Mehlhorn et al., 1999) for algorithms on graphs and e�cient

data types or the CGAL library (Overmars, 1996) for computational geometry have

shown to be very successful in bringing down the required time for prototyping

algorithms and applications. Because of these successes, Knut Reinert started de-

veloping a library called SeqAn (Döring et al., 2008) that aims at providing generic

and integrated implementations of core algorithms and key data structures required

in the sequence analysis domain of bioinformatics (see www.seqan.de). Throughout

the past years, a number of algorithmic components are reoccurring in many se-

quence analysis applications, including methods such as string matching, alignment

or �lter algorithms and data structures such as su�x arrays, q-gram indices, align-

ment holders or graphs. A library-based provision of these indispensable algorithms

19

1. Motivation

and data structures is the main goal of SeqAn and a large part of this thesis was

devoted to augment SeqAn with new functionality.

SeqAn is a C++ library that makes heavily use of templates because we favored

performance over the ease of use of an object-oriented library. We believe that the

use of templates has a number of advantages compared to object-oriented program-

ming in terms of performance, generality, integration and extensibility. In addition,

a mechanism called template argument subclassing is able to mirror the neat object-

oriented class derivation concept. This mechanism avoids, however, the additional

runtime necessary for dynamic binding required in class derivation. The main SeqAn

design principles (Döring et al., 2008) are brie�y reviewed below.

1. Generic programming

Generic programming code using templates can be easily optimized by the

compiler since it favors static binding over dynamic binding and therefore

avoids the overhead of calling virtual functions. This is a prerequisite for high

performance algorithms to handle large input data sets.

2. Metafunctions or traits classes

Generic algorithms usually have to know certain types associated with their

input arguments. A classical example is a function reverse complementing

a string that needs to know the alphabet type of the input string (DNA or

RNA). A metafunction is a construct that maps types or constants to other

C++ entities like types, constants, functions, or objects. Metafunctions are

evaluated at compile time.

3. Template argument subclassing

Di�erent specializations of a given class template are speci�ed by template

arguments. For instance, Graph<Directed<> > is the directed specialization

of a graph whereas Graph<Undirected<> > is used for an undirected graph.

Hence, a single function can be overloaded using both specializations to adapt

algorithms to the speci�c input graph.

This basic design proved to be very successful and a number of applications already

made use of the core data structures and algorithms provided by the library (Schulz

et al., 2008; Weese and Schulz, 2008; Weese et al., 2009; Rausch et al., 2008a,b, 2009;

Langmead et al., 2009). A brief summary of the main components of the library is

given below.

20

1.4. Guide to the Thesis

• Sequences
Various string types, including an external string using secondary memory, a

bit-packed string, a stack-allocated string and a data structure to store gapped

strings; Sequence modi�ers that provide distinct views of a given sequence,

including an in�x view or a reverse complement view.

• Alignments
Pairwise alignment algorithms with con�gurable gap penalties (Needleman and

Wunsch, 1970; Smith and Waterman, 1981); Local and global alignments; Pro-

gressive multiple sequence alignment (Feng and Doolittle, 1987); Algorithms

for chaining alignment fragments and computing the longest and heaviest com-

mon subsequence (Jacobson and Vo, 1992); Various alignment data structures.

• Indices
Enhanced su�x array (Kurtz et al., 2004); Gapped and ungapped q-gram

indices; Lazy su�x trees (Giegerich et al., 2003); An index for frequency based

string mining (Weese and Schulz, 2008); Algorithms on these indices to iterate

through the su�x tree, �nding maximal repeats, super maximal repeats or

maximal unique matches (Kurtz et al., 2004).

• Searching
Various algorithms for exact or approximate string matching, including the

Horspool, Shift-AND, Shift-OR, Pex, BOM, BNDM, Aho-Corasick, Myer's

bit vector algorithm and DP based algorithms (Navarro and Ra�not, 2002);

SWIFT (Rasmussen et al., 2005) �lter algorithm; Indexed based algorithms

for exact string matching.

• Biologicals
DNA, RNA and amino acid alphabets; Scoring matrices, including BLO-

SUM (Heniko� and Heniko�, 1992) and PAM (Dayho� et al., 1979); Various

�le formats; Modi�ed alphabets to store gaps.

• Graphs
Various graph types, including directed and undirected graphs as well as trees

and automata; Basic graph algorithms, including minimum spanning tree,

connected components, shortest path and network �ow algorithms (Cormen

et al., 2001).

21

1. Motivation

• Miscellaneous

Pipelining architecture for e�cient external algorithms; Allocator classes; Fun-

damental data structures such as Heap, Map or a Priority queue; External

memory strings and memory mapped strings.

22

Multiple Sequence Alignments

Over the past years, numerous research projects have contributed to a steady pro-

gress in the area of MSA. Albeit such a long history, methods are still far from

being optimal in a biological sense. The main obstacles are (1) that we still lack a

precise mathematical formulation of such a biologically optimal alignment and (2)

that the problem is already NP-hard if we use a very simpli�ed formulation such

as the alignment score maximization. This very question of �nding an alignment

of maximum score has driven the �eld signi�cantly in the past years and many se-

quence based methods, both heuristics and optimal ones, have been developed to

solve this problem. The nuts and bolts of these methods are described in-depth

in Section 2.4 and Section 2.5. Recently, the sequence based methods have been

complemented by methods that go beyond the raw sequence data. These structure

based methods use a great variety of structure prediction methods and databases

with structural information. The goal is either to substantiate a possibly weak signal

of sequence similarity or to identify novel domains where conservation only manifests

itself on a structural level. The progress in alignment methods was accompanied

by the development of di�erent computational models to represent a MSA. Align-

ment representations range from the classical alignment matrix, over pro�les to the

increasingly popular De Bruijn graphs (see Section 2.3).

The genomic sequencing e�orts demanded new methods to align and compare

very large sequences and methods that are able to build overlap alignments out

of thousands of reads. Some properties of these novel algorithms are introduced

at the end of this chapter. We conclude this review of available MSA approaches

with a listing of available programs categorized by the nature of the used alignment

algorithm.

23

2. Multiple Sequence Alignments

2.1 Alignment De�nition

The predominant representation of an alignment is the well-known alignment ma-

trix. An example is shown on the right in Figure 2.1. Based upon that ma-

trix, we can formally de�ne the properties of a multiple alignment of n sequences

S = {S0, S1, . . . , Sn−1}.

• Si ∈ S is a string over the �nite ordered alphabet Σ, that is Si ∈ Σ∗. Σ is,

for instance, the DNA or amino acid alphabet. Each string Si is a sequence

of letters si0s
i
1 . . . s

i
|Si|−1 of length |Si| where siu ∈ Σ.

• The alphabet Σ̃ = Σ ∪ {−} is the extended alphabet including a gap '−'
symbol.

A multiple alignment A of the strings in S is a n× l matrix consisting of n strings

S̃0, S̃1, . . . , S̃n−1 ∈ Σ̃∗ such that

• The strings S̃0, S̃1, . . . , S̃n−1 are of length l.

• The string S̃i with gaps removed is equal to Si.

• The matrix entry aiu in row i and column u is either from the alphabet Σ or

equal to the gap character '−': aiu ∈ Σ̃ ∀ 0 ≤ i < n, 0 ≤ u < l

• No column consists entirely of gap characters. This implies:

max
i=0,...,n−1

|Si| ≤ l ≤
∑

i=0,...,n−1

|Si|

Alternatively, one can think of an alignment as a path through an n-dimensional

lattice as shown in Figure 2.1.

A given alignmentA can be projected onto a sequence subset I ⊆ {0, 1, · · · , n−1}.
In the matrix representation, the projected alignment AI can be obtained by

1. Selecting row i in A if and only if i ∈ I.

2. Deleting column u in AI if and only if column u contains only gap characters.

Hence, a pairwise alignment projection is a mere selection of 2 distinct rows in a

given alignment and a subsequent removal of all columns containing only gaps. For

24

2.2. Alignment Scoring

GAA−T
−AAC−
−−ACT

C

A

A

G A A T
A

C
T

Figure 2.1: The MSA path in a 3-dimensional lattice corresponding to the alignment

shown on the right.

C

A

A

G A A T

GAA−T
−AAC−

Figure 2.2: A projection of a 3-dimensional lattice to a 2-dimensional matrix correspond-

ing to the projection of an alignment of 3 sequences onto a subset of 2 sequences.

example, the projection A{0,1} of the alignment in Figure 2.1 results in the pairwise

alignment:

G A A − T

− A A C −

This de�nition of an alignment projection respects the requirement that A{i} = Si.

Similarly, one can project the path through the n-dimensional lattice onto a subspace

as shown in Figure 2.2.

2.2 Alignment Scoring

Given a number of di�erent multiple alignments for a set of sequences, we need

a quantitative measure to decide which one is the best. For exact methods the

ubiquitously used measure is the sum of pairs multiple alignment score, which is an

25

2. Multiple Sequence Alignments

extension of the pairwise alignment score to more than two sequences.

2.2.1 Sum of pairs score

The most common pairwise scoring function uses linear gap costs. Linear gap costs

penalize a gap of length γ with a cost of g + e · (γ − 1) where g is the constant gap

opening penalty for the �rst gap and e is the constant gap extension penalty for

each subsequent gap, with g ≤ e and g, e ≤ 0. If g = e the number of gap openings

is irrelevant and such gap costs are called constant hereafter. Using linear gap costs,

the score of a pairwise alignment is

Score(A{i,j}) =
(∑

u=0,...,l̃−1

aiu 6=−; aju 6=−

δ(aiu, a
j
u)
)

+ g · #GapOpen + e · #GapExtension

where l̃ is the length of the projected alignment and δ a scoring function or sub-

stitution matrix for all pairs of characters aiu, a
j
u ∈ Σ. The BLOSUM (Heniko�

and Heniko�, 1992) and PAM matrices (Dayho� et al., 1979) are commonly used

substitution matrices for protein alignments. For DNA alignments most tools use a

simple match / mismatch scoring function. The alignment

G A T A T A − − T

− A T G T A C C −

evaluated with linear gap costs (gap opening penalty g = −4, gap extension penalty

e = −1) and a scoring function de�ned by a match score of δ(x, x) = 4 and a

mismatch score of δ(x, y) = −2 results in a total score of 14 + (−4) ·3 + (−1) ·1 = 1.

The sum of pairs multiple alignment score SPScore can be simply de�ned as

SPScore(A) =
∑

0≤i<j<n

Score(A{i,j})

Besides the sum of pairs score other quantitative alignment quality measures are

available, most notably the weighted sum of pairs score, the tree alignment score

and the consensus score (Gotoh, 1999). These alignment scores are, however, less

common in practice.

26

2.3. Alignment Representation

P 1 2 3 4

A G A C A 0.25 0 0.75 0

T − A C C 0 0 0 1.0

T − − C G 0 0.5 0 0

T G A C T 0.75 0 0 0

− 0 0.5 0.25 0

Table 2.1: A Pro�le P of an alignment matrix A. Pa,u is the frequency of character a ∈ Σ̃

in column u of A.

2.3 Alignment Representation

Besides the classical alignment matrix representation, a number of other compu-

tational models has been used to represent MSAs. The most important ones are

brie�y reviewed in this section, namely pro�les, alignment graphs, De Bruijn graphs

and partial order graphs.

2.3.1 Alignment matrices and pro�les

The classical alignment matrix has one row for each sequence. A condensed view of

such an alignment matrix is a pro�le. An alignment pro�le of a multiple alignment

A of length l is a |Σ̃|× l matrix P , where Pa,u is the frequency of character a ∈ Σ̃ in

column u of A. An example is shown in Table 2.1. Pro�les are frequently used as a

fast method to align two subalignments and we will review this application later in

this chapter.

2.3.2 Alignment graphs

An alignment can be represented as an alignment graph of sequence segments as

shown in Figure 2.3. The alignment edges of this graph represent possible matching

sequence segments. Gaps are implicitly represented by the topology of the graph.

For instance, a vertex without any outgoing edge is aligned to gaps in all other

sequences. An alignment graph can be easily converted into a classical alignment

matrix using standard graph algorithms, namely connected components and topo-

logical sort (Cormen et al., 2001). In contrast to the alignment matrix, the graph

makes no assumption about the order of adjacent insertions and deletions. The

27

2. Multiple Sequence Alignments

Figure 2.3: An alignment graph of three sequences (top) and its corresponding alignment

matrix (bottom). The aligned ungapped sequence segments do not have to be identical.

They may contain mismatches.

NGSQYLQF−−
−−SQYLQF−−
−−SQY−−−NG

−−SQYNG−−−
−−SQY−−LQF
NGSQY−−LQF

1:N
SQY

SQY

SQY

LQF

LQF

NG

NG

16
16

6 1512

16

0

S 1

S 2

S

Trace
SQY

SQY

SQY

LQF

LQF

NG

NG

16
16

15

16

Figure 2.4: An alignment graph of three amino acid sequences with arbitrary alignment

edges (left), its best subset of edges called trace (middle) and its conversion to an alignment

matrix (right). The alignment graph does not de�ne the order of adjacent indels.

strength of the alignment graph representation is, however, that the graph can con-

tain arbitrary match information. Because of that, the graph can be used as a store

for all putative aligned segments. In the remainder of this thesis, we will encounter

di�erent methods that use such an initial alignment graph with possibly contradict-

ing edges as input. All of these methods then select a subset of edges, called a trace,

that constitute an alignment as shown in Figure 2.4. The simplest solution is to

select the subset of edges of maximum cardinality. A more practical approach is

to augment the alignment graph by edge weights that capture some kind of quan-

titative measure of alignment quality. The objective is then to �nd the maximum

weight trace (Kececioglu, 1993), that is, the subset of edges with maximum weight.

28

2.3. Alignment Representation

Figure 2.5: A De Bruijn graph of a single sequence using a k-mer of length 3. Each k-

mer is mapped to a vertex and two vertices are connected if and only if the corresponding

(k+1)-mer is present in the sequence. Note how the two edges with multiplicity 2 (GTCA

and TCAC) cover the repeat shown in upper case letters.

2.3.3 De Bruijn graphs

Given long matching sequence segments, the alignment graph packs a large-scale

alignment of long sequences into a few matching vertices. The De Bruijn graph is

somehow orthogonal to that approach since it is able to pool an alignment of thou-

sands of sequences (Zhang and Waterman, 2003). In other words, alignment graphs

enable a compact representation of long alignments whereas De Bruijn graphs enable

the compact representation of deep alignments. De Bruijn graphs are constructed

by subdividing each sequence into overlapping k-mers, where a k-mer is a contigu-

ous substring of length k. Two adjacent k-mers overlap by k − 1 letters. For each

distinct k-mer, we de�ne a vertex vk. Vertices are connected by an edge if there

is at least one pair of adjacent k-mers present in one of the sequences. In other

words, the (k + 1)-mer de�ned by two adjacent vertices must be present in one of

the sequences. The edge weight usually indicates how often this (k + 1)-mer was

observed. An example of such a De Bruijn graph for a single sequence is shown in

Figure 2.5. Note how a De Bruijn graph of a single sequence is able to highlight

repeats. In a De Bruijn graph of multiple sequences, each original input sequence

is mapped to a path traversing the graph. Conserved subsequences are highlighted

by heavy weight edges, that is, edges that are part of almost all sequence paths.

Hence, the De Bruijn graph can be used to extract these conserved patterns (Zhang

and Waterman, 2003) as shown in Figure 2.6. Similarly, the De Bruijn graph can be

used to �nd the consensus sequence of thousands of reads and thus, it can be used

as a computational model for an assembler (Zerbino and Birney, 2008). A practical

k-mer size is usually larger than 20 to avoid spurious read overlaps.

29

2. Multiple Sequence Alignments

Figure 2.6: A De Bruijn graph of three sequences using a k-mer of length 2. The conserved

pattern GCT is represented by the edge of weight 3.

Figure 2.7: A partial order graph (right) for a multiple sequence alignment (left).

2.3.4 Partial order graphs

An individual sequence can be represented by a trivial partial order graph. Each

character is converted to a vertex and all vertices have exactly one outgoing edge to

the vertex for the subsequent character, except for the vertex of the last sequence

character. In a MSA these single-sequence graphs are merged. Similar to the De

Bruijn graph, each sequence is mapped to a path traversing the graph but since

it is a partial order graph no cycles are allowed. That is, the partial order graph

is a directed acyclic graph. Consequently, the partial order graph enforces the

collinearity condition and does not allow two crossing aligned regions where the

order of characters in the sequences is not preserved. The key characteristic of the

partial order graph is that matching sequence characters are merged to a single node

whereas mismatches cause the graph to bifurcate. This is shown in Figure 2.7.

2.4 Exact Alignment Algorithms

Alignment algorithms can be broadly classi�ed into exact algorithms and heuristic

algorithms. In this section, we �rst review the exact algorithms that solve the multi-

ple alignment score maximization problem optimally using either natural extensions

of the dynamic programming algorithm (Gupta et al., 1995; Lermen and Reinert,

2000; Lipman et al., 1989; Reinert et al., 1997, 2000) or a graph theoretic formula-

30

2.4. Exact Alignment Algorithms

(u, v)

(u−1, v−1, w−1) (u, v−1, w−1)

(u, v, w)

(u−1, v−1, w) (u, v−1, w)

(u, v, w−1)(u−1, v, w−1)

(u−1, v, w)

(u, v−1)(u−1, v−1)

(u−1, v)

A

G

A

A

G

Figure 2.8: In each cell of the dynamic programming matrix / cube (2n− 1) predecessor

have to be evaluated where n is the number of sequences.

tion that facilitates the use of combinatorial algorithms (Althaus and Canzar, 2008;

Althaus et al., 2002, 2006; Reinert, 1999).

In practice, however, optimal methods are only feasible for a few, relatively short

sequences. Hence, many fast and accurate heuristics to solve the multiple align-

ment problem have been proposed. We review the most important heuristic, the

progressive alignment strategy (Feng and Doolittle, 1987), extensively in the next

Section 2.5, including recent additions such as consistency and re�nement.

2.4.1 Dynamic programming

The dynamic programming recursion to compute the optimal pairwise alignment

between sequence S0 = s0
0s

0
1 . . . s

0
|S0|−1 and sequence S1 = s1

0s
1
1 . . . s

1
|S1|−1 is

Mu,v = max


Mu−1,v−1 + δ(s0

u, s
1
v)

Mu−1,v + δ(s0
u,−)

Mu,v−1 + δ(−, s1
v)

where Mu,v is the 2-dimensional dynamic programming matrix and δ is the scoring

function. For a constant gap penalty e and the Blosum62 substitution matrix one

could de�ne δ as δ(s0
u, s

1
v) = Blosum62(s0

u, s
1
v) and δ(s0

u,−) = δ(−, s1
v) = e. The

extension to 3 sequences involves two changes. First, a 3-dimensional dynamic

programming lattice has to be computed and second, for each entry we have to

evaluate (2n− 1) = (23− 1) = 7 predecessors as shown in Figure 2.8. The recursion

31

2. Multiple Sequence Alignments

is

Mu,v,w = max



Mu−1,v−1,w−1 + δ̃(s0
u, s

1
v, s

2
w)

Mu,v−1,w−1 + δ̃(−, s1
v, s

2
w)

Mu−1,v,w−1 + δ̃(s0
u,−, s2

w)

Mu−1,v−1,w + δ̃(s0
u, s

1
v,−)

Mu,v,w−1 + δ̃(−,−, s2
w)

Mu−1,v,w + δ̃(s0
u,−,−)

Mu,v−1,w + δ̃(−, s1
v,−)

For the sum of pairs score with constant gap costs, δ̃ can be de�ned in terms of δ

as δ̃(a, b, c) = δ(a, b) + δ(b, c) + δ(a, c) with a, b, c ∈ Σ̃ and δ(−,−) = 0. This can be

extended to higher dimensions n. As in the pairwise case, the key idea is that larger

alignments are constructed from already computed subsolutions. Any Mu,v,...,z is

the best score of aligning the pre�xes s0
0s

0
1 . . . s

0
u, s

1
0s

1
1 . . . s

1
v, . . ., s

n−1
0 sn−1

1 . . . sn−1
z . In

addition, the optimal alignment can be retrieved through the standard traceback op-

erations extended to the n-dimensional lattice. Note that it is also possible to apply

Gotoh's algorithm (Gotoh, 1982) for linear gap costs to more than two sequences.

Similar to the pairwise case, we then require additional lattices for the best gapped

alignment in each dimension. The size of the lattice is exponential in the number of

sequences O(
∏n−1

i=0 |Si|). For each cell of this lattice, (2n − 1) predecessor cells have

to be evaluated. Thus, the time complexity is O((2n − 1) ·∏n−1
i=0 |Si|) if and only if

the computation of the δ function is constant O(1). This is roughly O((2ñ)n) where

ñ is the average sequence length. Bounding techniques try to minimize the actually

computed lattice alignment space by using lower and upper bounds (Gupta et al.,

1995; Lermen and Reinert, 2000; Lipman et al., 1989; Reinert et al., 1997) or a com-

bination of an exact algorithm with a heuristic divide and conquer approach (Reinert

et al., 2000).

2.4.2 Combinatorial algorithms

In Section 2.3.2 we introduced the alignment graph. We showed a graph with arbi-

trary alignment edges in Figure 2.4, where only a subset of the edges can be realized

in an actual alignment. This subset is called a trace (Sanko� and Kruskal, 1983).

Augmenting the graph with edge weights that capture the alignment quality of a

given match leads to the maximum weight trace problem (Kececioglu, 1992, 1993).

32

2.4. Exact Alignment Algorithms

Figure 2.9: An alignment graph augmented by directed edges connecting adjacent vertices

in each of the sequences. The graph contains two critical mixed cycles shown in black.

Given an alignment graph G = (V,E) and edge weights we∈E the maximum weight

trace problem is

max
∑
e∈T

we where T ⊆ E is a trace.

Since the graph theoretic formulation has a favorable combinatorial structure - an

edge is either part of the solution or not - it can be solved by methods from combi-

natorial optimization (Reinert, 1999; Kececioglu et al., 2000) such as integer linear

programming (ILP). An ILP formulation of the maximum weight trace problem in-

troduces a binary variable xe∈E for each edge. It indicates whether edge e is part

of the trace or not and hence, the objective is max
∑

e∈E wexe. Additional linear

inequalities have to ensure that the selected edges constitute a valid alignment. Let

T be the set of selected edges then T is a valid trace if and only if there is no critical

mixed cycle in G∗ = (V, T ∪ H) (Reinert, 1999). G∗ is the original graph G with

all edges e /∈ T removed. G∗ is further augmented by a set of directed edges H

connecting two adjacent vertices in a single sequence as shown in Figure 2.9. A

mixed cycle in G∗ is an alternating sequence C = (v0, e0, v1, e1, · · · , vk) of distinct

vertices and edges where ei ∈ T or ei ∈ H, vi ∈ V , v0 = vk and at least two edges

from T and one edge from H. Such a cycle C is called critical if all vertices vi ∈ C
that are on the same sequence Si appear consecutively in C. Hence, a valid solution

to the maximum weight trace problem can be found by the following ILP.

max
∑

e∈E wexe

subject to:
∑

e∈C∩E xe ≤ |C ∩ E| − 1,∀C (critical mixed cycles)

xe ∈ {0, 1}

The alignment graph can be further extended with so-called gap arcs to incorporate

positional gap penalties (Reinert, 1999).

33

2. Multiple Sequence Alignments

TGG−−
−GGAT
−−−AT

TAGT
T−GT
TA−T

TAGT
TA−T

−GGAT

−TGG
AT−−

GGAT
−−AT

T−GT
TA−T

TAGT
T−GT

TGG−−

Figure 2.10: A set of pairwise alignments that are compatible (left) or incompatible

(right).

There is a great variety of combinatorial optimization methods that can be ap-

plied to solve ILPs. One such approach that can be applied to the above graph

theoretic model is branch-and-cut (Althaus et al., 2002, 2006). Recently, also a La-

grangian relaxation approach was proposed to solve the ILP formulation even more

e�ciently (Althaus and Canzar, 2008).

2.5 Heuristic Alignment Algorithms

The rapid accumulation of sequence data demanded the development of heuristic

methods that are able to align more sequences of greater length than the optimal

methods with exponential runtime. For an ordinary protein alignment, the predom-

inant heuristic strategy is called progressive alignment.

For genomic DNA sequences, most tools use a heuristic called anchor-based align-

ment. Besides the progressive and the anchor-based alignment strategy, we also

brie�y review in this section the novel structural aligners. Structural aligners go

beyond the raw sequence data and take into account protein structure information.

2.5.1 Progressive alignment

A sound multiple alignment of n sequences should induce (n·(n−1)
2

) projected pair-

wise alignments that are as close as possible to the optimal pairwise alignments.

Unfortunately, pairwise alignments may be incompatible as shown in Figure 2.10.

Progressive alignment resolves these inconsistencies in a greedy manner. The mul-

tiple alignment is started from the most similar pair and then gradually, the other

less similar sequences are added to the growing alignment. The intuitive assumption

is that a pairwise alignment of closely related sequences is more trustable than an

34

2.5. Heuristic Alignment Algorithms

ACGA

CC−A

AC−A

CCA

ACA

AGTA

AG−A

AC−−A

ACG−A

A−GTA

A−G−A

AGAAGTA

ACGA

CCAACA

CC−−A

Merging of

Sequence to

Sequence to
Subalignment

Subalignments

Sequence Alignment

Sequence Alignment
Sequence to

Figure 2.11: The progressive alignment greedily builds a �nal alignment along the guide

tree using a given method to merge subalignments.

alignment of distantly related sequences (Feng and Doolittle, 1987). The method

thus requires 2 things. First, a binary tree, called guide tree, that indicates when

every sequence (a leaf of the tree) is merged into a growing multiple alignment and

second, a means of aligning already �nished subalignments with another sequence

or another subalignment. The latter situation arises if the progressive alignment is

started from multiple seeding alignments as shown in Figure 2.11.

The guide tree can be obtained in 2 steps. First, a distance score between all

pairs of sequences is computed and second, the phylogenetic tree is reconstructed

using clustering methods such as UPGMA (Sokal and Michener, 1958) or neighbor-

joining (Saitou and Nei, 1987). Several pairwise distance measures are in common

use. Examples are the percent identity between two sequences or the fractional

number of common k-mers where a k-mer is a contiguous substring of length k.

For large alphabets the percent identity and the number of common k-mers are less

applicable, unless the sequences are closely related or both measures are applied

over a compressed alphabet (Edgar, 2004c). More precise measures are based upon

pairwise global or local alignment scores (Needleman and Wunsch, 1970; Smith and

Waterman, 1981), which are usually normalized by alignment length.

UPGMA is, besides neighbor-joining, a widely used distance based tree recon-

struction method. The algorithm requires a set of n elements (e.g. sequences) and

35

2. Multiple Sequence Alignments

all pairwise distances di,j. Initially, each element is in its own group and thus, the

sequences are the leaves of the tree. The algorithm proceeds in 4 steps:

1. Select the minimum distance di,j.

2. Create a new group u that joins i and j.

3. Compute the distances dk,u of any group k to the new group u.

4. Remove i, j from the set of elements. Go to step 1 if more than a single group

is left, otherwise terminate.

The UPGMA algorithm reconstructs the correct tree only for ultrametric distances.

Such distances imply that all sequences have evolved from a common ancestor at

constant rate. This assumption is, in general, not true and thus, UPGMA is not

used very often in phylogenetic studies. It is, however, widely used in progressive

alignment tools because some authors argue (Edgar, 2004b) that a reliable evolu-

tionary tree is not as important as a tree that guarantees that the subalignments

with the fewest di�erences are merged �rst. In step (3) the new distance dk,u, from

any group k to the new group u that joined i and j, can be computed using di�erent

methods:

1. Single linkage clustering: dk,u = min (dk,i, dk,j)

2. Complete linkage clustering: dk,u = max (dk,i, dk,j)

3. Average linkage clustering: dk,u =
dk,i+dk,j

2

4. Weighted average linkage clustering: dk,u =
ni·dk,i+nj ·dk,j

ni+nj

In the last method ni and nj are the number of elements in group i and j, respectively.

The neighbor joining method has a time complexity of O(n3) compared to O(n2)

for the UPGMA algorithm, where n is the number of sequences. The guide tree

obtained with that method is, however, regarded as a better evolutionary tree be-

cause the neighbor joining method does not assume a molecular clock. The idea of

the method is to start with a star tree that has a single root with n children for

n sequences. The algorithm then gradually groups pairs of sequences so that the

overall tree length is minimized.

The �nal guide tree obtained with the UPGMA or neighbor joining algorithm

is then used to progressively align all input sequences. Aligning the children of an

36

2.5. Heuristic Alignment Algorithms

internal node in the guide tree either involves an ordinary sequence alignment or an

alignment of subalignments. In the latter case, one possible objective is to optimize

the already mentioned sum of pairs multiple alignment score.

SPScore(A) =
∑

0≤i<j<n

Score(A{i,j})

Using linear gap costs, an optimal merging of subalignments is NP-complete (Kece-

cioglu and Starrett, 2004; Ma et al., 2003). Sophisticated exact algorithms can,

however, be reasonable fast in practice (Kececioglu and Starrett, 2004). Other

methods favor speed over optimality and use approximations of gap opening counts

(Kececioglu and Zhang, 1998). More often, however, practical tools use their own

way of merging subalignments with quite di�erent objective functions (Edgar and

Sjolander, 2004). These methods are usually subsumed under the generic term

pro�le-pro�le alignments.

Assuming constant gap costs, a string S = s0s1 · · · s|S|−1 can be quickly aligned

to a pro�le with a standard pairwise dynamic programming algorithm. Only the

scoring function δ has to be adapted.

δNew(sw, u) =
∑
a∈Σ̃

Pa,u · δ(sw, a)

In this case, δNew scores a column u against a character sw ∈ Σ. The δ function has

to be extended to handle the special case of scoring a gap character against another

gap character.

δ(a, b) =


Blosum62(a, b) if and only if a, b ∈ Σ

e if and only if a = ”− ” or b = ”− ”

0 if and only if a = b = ”− ”

Note that in a projected alignment gap columns are removed and hence, the score

for two aligned gaps is set to 0. An example of a string to pro�le alignment is shown

in Figure 2.12. Constant gap penalties simplify the sum of pairs score of a multiple

alignment A of length l to

SPScore(A) =
∑

0≤i<j<n

Score(A{i,j}) =
∑
i,j

l−1∑
u=0

δ(s̃ i
u , s̃

j
u) =

l−1∑
u=0

∑
i,j

δ(s̃ i
u , s̃

j
u)

The last equality stems from the independence of the alignment columns using the

δ scoring function with constant gap penalties. Using dynamic programming, the

37

2. Multiple Sequence Alignments

P 1 2 − 3 4

A G − C T A 0.75 0 0 0.5

A G − C C C 0.25 0 1.0 0.25

A − − C A G 0 0.75 0 0

C G − C A T 0 0 0 0.25

A − C C A − 0 0.25 1.0 0 0

S A − C C A

δNew 2.25 −1.5 −2 4 0.5

Figure 2.12: A string to pro�le alignment of the string S = ACCA and the pro�le shown

above. Assuming δ(x, x) = 4, δ(x, y) = −3, δ(x,−) = δ(−, x) = −2 and δ(−,−) = 0 the

score of the full string to pro�le alignment is 3.25.

optimal string to pro�le alignment can be found in quadratic time O(|Σ̃| · l · |S|)
where l is the length of the pro�le, |S| the length of the sequence and |Σ̃| a small

constant, e.g., 5 for the DNA alphabet or 21 for the amino acid alphabet including

a gap character. Similarly, a pro�le-pro�le alignment can be carried out. The only

di�erence is an extra sum over the alphabet Σ̃.

δNew(u,w) =
∑
a∈Σ̃

∑
b∈Σ̃

Pa,u · Pb,w · δ(a, b)

Numerous other pro�le-pro�le column scoring functions have been published (Vin-

gron and Argos, 1989; Edgar, 2004b; Edgar and Sjolander, 2004; Katoh et al., 2002).

In summary, an optimal merging of subalignments with linear gap costs g+e·(γ−
1) is NP-complete. A merging with g = e remains polynomial because gap opening

counts are irrelevant. In this case, each column can be treated as a meta-character

in an extended alphabet. Given a scoring function for such meta-characters, the

problem is to �nd an alignment of two strings of meta-characters, which is clearly

solvable with a pairwise dynamic programming algorithm.

Consistency and re�nement

The choice of the binary guide tree and the method to merge subalignments has

great in�uence on the �nal alignment. Once a new sequence is added to the growing

alignment all the aligned characters and inserted gaps are �xed ("Once a gap, always

38

2.5. Heuristic Alignment Algorithms

AGT

AGT

177

AGT

AGT

AGT100

77

88

S i

AGT

AGT

100

S 0

S 1

Figure 2.13: A possible means of consistency extension: Every supported alignment is

increased by the minimum of the two connecting edges.

a gap." (Feng and Doolittle, 1987)). But this is also true for alignment errors: once

made they are preserved and they may even cause new alignment errors in the subse-

quent progressive steps. There are two strategies, called consistency and re�nement,

to handle alignment errors, one aims at preventing errors and the other one aims

at correcting errors (Wheeler and Kececioglu, 2007). The prevention approach tries

to substantiate pairwise alignments by multiple sequence information. That is, it

tries to make pairwise alignments consistent with all the other sequences and hence,

the name consistency (Gotoh, 1990; Vingron and Argos, 1991; Notredame et al.,

2000). The re�nement approach takes a possibly erroneous alignment, iteratively

splits this alignment into two subalignments and merges these alignments together

again. These methods, thus, iteratively re�ne or realign a given alignment. In other

publications authors sometimes use the term iterative alignment to describe such

techniques (Pirovano and Heringa, 2008).

Although current algorithms use slightly di�erent means of consistency the basic

idea is always the same: the con�dence of aligning substrings of a pair of sequences

S0 and S1 is the greater, the more intermediate sequences Si support this alignment.

In other words, the alignments S0 ↔ Si and Si ↔ S1 induce a putative transitive

alignment S0 ↔ S1 that is either consistent or inconsistent with a precomputed

alignment of S0 and S1. If it is consistent, greater con�dence in the alignment of

these substrings of S0 and S1 is established and the scores are somehow increased.

In an alignment graph, this consistency extension or triplet extension (Notredame

et al., 2000) corresponds to a search for three-way cliques (see Figure 2.13).

The re�nement approach (Edgar, 2004b; Katoh et al., 2002) splits a full alignment

randomly or following a deterministic order into subalignments and then merges

these subalignments using, for example, pro�le-pro�le alignment methods. Random

cutting is usually stopped if no improvement in alignment score was observed during

a �xed number of past iterations.

39

2. Multiple Sequence Alignments

2.5.2 Methods using structure and sequence homologs

The improvements in de-novo structure prediction methods and the growth of se-

quence and structural databases opened up new possibilities to extend the sequence

based alignment methods. These extended methods tend to deliver more accurate

alignments on standard benchmarks (see Section 2.7), especially in the so-called

twilight zone of highly diverged sequences with less than 20% identity. Three com-

binable techniques are in common use: homology extension (Katoh et al., 2005; Pei

and Grishin, 2007; Simossis et al., 2005; Zhou and Zhou, 2005), secondary struc-

ture prediction (Pei and Grishin, 2006, 2007; Simossis and Heringa, 2005; Zhou and

Zhou, 2005) and the use of a known 3D structure (O'Sullivan et al., 2004; Pei et al.,

2008).

Homology extension augments the raw sequence information using, for example,

database searches with PSI-BLAST (Altschul et al., 1997). Given a set of retrieved

database homologs, a pro�le can be built for each input sequence. The pro�les

can then be readily used in the progressive alignment as outlined in Section 2.5.1.

The use of pro�les turned out to be bene�cial because pro�les di�erentiate between

conserved and variable sites.

Predicted or known secondary structures can further improve the alignment qual-

ity because, in most cases, structure is more conserved than sequence information.

Structural elements can be predicted, for instance, with PSIPRED (McGu�n et al.,

2000) or similar tools (Rost, 2001). The pairwise sequence alignment is then carried

out under structural constraints. For instance, one could add a simple secondary

structure weight function to the pro�le-pro�le alignment that indicates if the two

corresponding structural elements at a given position match or mismatch.

Similarly, a known 3D structure eases the alignment of highly diverged sequences.

Methods such as SAP (Taylor, 1999) employ a double dynamic programming algo-

rithm to compute a structural alignment. The time complexity is, however, O(ñ4)

where ñ is the average sequence length. Hence, structure based methods are usually

signi�cantly slower than sequence based heuristics. Results are, however, highly

accurate because the structural constraints are of great value to build the �nal se-

quence alignment. The consistency-based methods usually employ these constraints

during the consistency extension. That is, the weights of aligned substrings are

adapted depending on intermediated sequences and structural information.

40

2.5. Heuristic Alignment Algorithms

1)

2)

3)

Figure 2.14: Anchor-based alignment: (1) computation of initial segment matches, (2)

collinear chaining of non-overlapping segment matches and (3) dynamic programming to

close the alignment gaps.

2.5.3 Anchor-based alignment

Even the heuristic progressive alignment becomes prohibitively expensive when

aligning genomic DNA sequences. In these cases any approach involving a full

pairwise dynamic programming is impossible. Nevertheless, so-called genome align-

ments or genome comparisons are more important than ever before because of several

vertebrate genomes at hand and thousands of on-going sequencing projects. The

applications are numerous, ranging from the comparison of di�erent assemblies, an-

notation tasks, regular elements identi�cation and phylogenetic studies to analyzing

principal questions addressing mechanisms of genome evolution. Almost all genome

aligners make use of the same strategy: anchor-based alignment or synonymously

seeded alignment. Anchor-based alignment has three steps: (1) the computation

of small segment matches of high similarity shared by multiple sequences, (2) the

ordering of these segment matches into a collinear chain of non-overlapping segment

matches (the �xed alignment anchors) and (3) closure of gaps in-between the an-

chors. The sole purpose of step 1 and step 2 is to abandon a large chunk of the

possible alignment space as shown in Figure 2.14. Only small indels are allowed

within the anchors. Hence, the time-consuming dynamic programming is only re-

quired in-between the �xed anchors. Some programs also try to extend anchors �rst

to the left and right to further reduce the search space. Note that step 1 does not

yet imply collinearity as shown in Figure 2.14.

The initial segment matches can be, for example, maximal unique or exact

matches (Kurtz et al., 2004), maximal multiple exact matches (Hohl et al., 2002) and

41

2. Multiple Sequence Alignments

exact or hashed k-mers (Buhler, 2001; Subramanian et al., 2005). Segment matches

are optionally extended and �nally, the quality of a segment match is assessed using

some weight function. Chaining algorithms (Abouelhoda and Ohlebusch, 2003; My-

ers and Miller, 1995) can be applied to compute the heaviest (best) collinear chain

of these segment matches. The resulting list of anchors is re�ned by applying the

above procedure iteratively (e.g. by using a smaller k-mer) or by �lling the gaps

in-between the anchors using more sensitive approaches such as pairwise dynamic

programming. Since genomic rearrangements such as transposition, duplication or

inversion are rather likely, novel methods try to cover at least some of these opera-

tions, for example, by computing only local chains (Darling et al., 2004; Ovcharenko

et al., 2005).

2.5.4 Others

The POA (Lee et al., 2002) tool uses partial order graphs to represent multiple

sequence alignments. As noted previously, each individual sequence is a trivial

partial order graph such that each character is a node connected to the subsequent

node for the following character. POA progressively aligns these trivial graphs by

(1) merging the nodes of aligned characters and (2) by introducing bifurcations if

the subsequent nodes cannot be aligned.

The ABA (Raphael et al., 2004) MSA program uses a De Bruijn graph. In

contrast to partial order graphs, a De Bruijn graph allows cycles and hence, it can

be used to detect repeated or shu�ed domains. In other words, the De Bruijn graph

does not enforce a collinear alignment where one alignment column precedes the

next one. Exact k-mer matches are, however, inappropriate for diverged protein

sequences and thus, a classical De Bruijn graph cannot readily be applied. Because

of that, ABA replaces the exact k-mer matches with local alignment information.

Such local alignment information is quite often inconsistent, that is, matches might

contradict each other. In order to delineate larger blocks that potentially represent

domains, ABA applies a set of heuristics (Pevzner et al., 2004) on the initial graph

to �nd a consistent set of similarities. These heuristics include the removal of so-

called bulges and whirls in the De Bruijn graph. These operations appear to be

similar to the ones employed by the De Bruijn graph-based, short-read assembler

Velvet (Zerbino and Birney, 2008). The desired outcome of these heuristics for

an alignment of n sequences is a graph with n source and n sink nodes. In this

42

2.5. Heuristic Alignment Algorithms

Figure 2.15: An alignment of shu�ed and repeated domains of four sequences shown on

the right using a De Bruijn graph created from local alignments. This �gure was adapted

from Figure 2 of the ABA paper (Raphael et al., 2004)

graph each original sequence is mapped to a path from the sequence's source to the

sequence's sink node, which traverses a number of well-de�ned blocks as shown in

Figure 2.15.

Current multi-read aligners usually use some-kind of greedy progressive alignment

scheme without consistency and re�nement. So far, there is no clear methodology

used for multi-read alignments and most of the aligners are an integral part of some

fragment assembler such as the Celera (Myers et al., 2000), Arachne (Batzoglou

et al., 2002) or Atlas (Havlak et al., 2004) assembler. Unfortunately, the most

interesting assembly regions harboring genetic variations such as SNPs or small

indels are the most di�cult regions to align and thus, the most error-prone regions

for greedy progressive aligners. Hence, current multi-read alignments are not yet

optimal and this implies that downstream analyses such as SNP calling or haplotype

separation are hampered.

43

2. Multiple Sequence Alignments

2.6 RNA Alignment Algorithms

RNA is a single stranded molecule that in contrast to DNA can fold onto itself by

forming base pairs between C and G and A and U. Sometimes one can also observe

the weaker bond between G and U, a so-called wobble base pair. The characteristic

folding of a single RNA sequence is called the RNA's secondary structure. A num-

ber of algorithms has been developed to predict the secondary structure of an RNA

sequence. The most prominent ones are the Nussinov (Nussinov et al., 1978) and

Zuker algorithm (Zuker and Stiegler, 1981). Comparing RNA sequences is funda-

mentally di�erent from a classical DNA sequence alignment since the RNA structure

conservation outweighs the sequence conservation. Hence, an RNA alignment pri-

marily aims at aligning common structural elements whereas the preservation of

sequence similarity is only a subordinate goal. The algorithm of Sanko� is, for in-

stance, a dynamic programming based RNA sequence-structure alignment algorithm

that solves the alignment problem and the problem of �nding an RNA secondary

structure mapping simultaneously (Sanko�, 1985).

RNA sequence-structure alignment algorithms have not been considered in this

thesis. Nevertheless, the approach described in Part II of this thesis can be applied

to extrapolate pairwise sequence-structure alignments to a multiple RNA alignment.

2.7 Alignment Benchmarks

For the heuristic methods described in Section 2.5, protein benchmark data sets

such as BAliBASE (Thompson et al., 1999a, 2005), PREFAB (Edgar, 2004b) or

SABmark (Walle et al., 2005) are used to measure the performance of individual

tools.

BAliBASE (Thompson et al., 1999a, 2005) is the most widely used reference

benchmark for heuristic MSA tools. It was speci�cally designed for the evaluation

and comparison of protein aligners and contains a comprehensive set of manually

re�ned alignment instances. The reference alignments are annotated and the evalu-

ation is limited to core blocks where the sequences can be reliably aligned without

any ambiguities. The initial BAliBASE benchmark contained 142 reference align-

ments of more than a 1000 sequences. The benchmark also provides a scoring

program that evaluates a third-party alignment against the reference benchmark.

44

2.8. Available Implementations

The benchmark is further subdivided into 6 standard reference sets RV11, RV12,

RV20, RV30, RV40 and RV50. The reference sets RV11 and RV12 contain alignment

instances of equidistant sequences of similar length. RV20 contains alignment in-

stances of protein families plus up to three orphan sequences per instance. Orphan

sequences are distant members of the family with less than 20% identity. RV30

contains up to four protein sub-families per alignment instance that shall be aligned

in a single alignment. RV40 contains long extensions to the left and right of individ-

ual sequences and RV50 contains alignment instances with sequences having large

internal insertions.

In contrast to BAliBASE, the PREFAB (Edgar, 2004b) benchmark has been cre-

ated using an automated protocol, resulting in more than 1500 alignment instances.

The protocol �rst structurally aligns two proteins with disregard of sequence simi-

larity. Then each of the two sequences is used to query a database. The high-scoring

database sequences are included in the alignment instance that is subsequently cut

to a maximum number of 50 sequences. The evaluation program assesses a MSA by

means of projecting the alignment to the original pair and comparing this projected

alignment to the precomputed structural alignment.

The SABmark benchmark contains alignment instances for pairwise and multiple

aligners. In contrast to the other two benchmarks, SABmark also provides alignment

instances with false positives, that is, sequences not related to the other sequences in

the given instance. Each alignment instance has at most 25 sequences. All instances

contain sequences with less than 50% identity since most MSA tools perform well

above that threshold.

2.8 Available Implementations

In Table 2.2, 2.3 and 2.4 we compiled a list of current multiple sequence alignment

tools. Given the plethora of available tools, this list is necessarily incomplete but

should include most of the frequently used programs. Online web servers hosting

the di�erent alignment algorithms are frequently available, except for the genome

aligners. Nevertheless, we restrained ourselves from providing web addresses of these

servers because they tend to change frequently and can be easily found online by

searching the name of the tool.

45

2. Multiple Sequence Alignments

Category Method Protein / DNA

Sequence-based LASA (Althaus and Canzar, 2008) Both

exact • Lagrangian ILP approach

MSA (Lipman et al., 1989) Both

• Bounded dynamic programming

Sequence-based ABA (Raphael et al., 2004) Both

heuristic • A-Bruijn alignment

AMAP (Schwartz and Pachter, 2007) Both

• Sequence annealing
CLUSTAL W (Thompson et al., 1994) Both

• Progressive alignment
DIALIGN-TX (Subramanian et al., 2008) Both

• Progressive, segment-based alignment

Kalign (Lassmann and Sonnhammer, 2005) Both

• Progressive alignment
POA (Lee et al., 2002) Protein

• Partial order graph alignment

MAFFT (Katoh et al., 2002) Both

• Progressive with re�nement

MUSCLE (Edgar, 2004b) Both

• Progressive with re�nement

Opal (Wheeler and Kececioglu, 2007) Both

• Prog. with consistency and re�nement

ProbCons (Do et al., 2005) Protein

• Progressive with consistency

SeqAn::T-Co�ee (Rausch et al., 2008b) Both

• Progressive, segment-based alignment

T-Co�ee (Notredame et al., 2000) Both

• Progressive with consistency

Table 2.2: Available MSA programs, categorized according to the used information

sources (sequence / structure), the nature of the algorithm (exact / heuristic) and the

ability to align genomic sequences. The method column highlights only the predominant

technique. Thus, a progressive aligner using re�nement might also use some kind of con-

sistency extension. Continued on the next two pages.

46

2.8. Available Implementations

Category Method Protein / DNA

Sequence-based M-Co�ee (Wallace et al., 2006) Both

meta-alignment • Progressive with consistency

SeqAn::T-Co�ee (Rausch et al., 2008b) Both

• Progressive, segment-based
Using secondary MUMMALS (Pei and Grishin, 2006) Protein

structure and • Progressive with consistency

database homologs PRALINE (Simossis and Heringa, 2005) Protein

• Progressive alignment
PROMALS (Pei and Grishin, 2007) Protein

• Progressive with consistency

SPEM (Zhou and Zhou, 2005) Protein

• Progressive with consistency

Using 3D structure 3D-Co�ee (Wallace et al., 2006) Protein

• Progressive with consistency

Expresso (Armougom et al., 2006) Protein

• Progressive with consistency

PROMALS3D (Pei et al., 2008) Protein

• Progressive with consistency

Genome aligners M-GCAT (Treangen and Messeguer, 2006) DNA

• Anchor-based alignment

Mauve (Darling et al., 2004) DNA

• Anchors, local collinear blocks
MGA (Hohl et al., 2002) DNA

• Anchor-based, chaining
Mulan (Ovcharenko et al., 2005) DNA

• Anchor-based alignment

Multi-LAGAN (Brudno et al., 2003) DNA

• Anchor-based alignment

MUMmer (Kurtz et al., 2004) DNA

• Anchor-based, su�x-tree
TBA (Blanchette et al., 2004) DNA

• Anchor-based alignment

Table 2.3: Available MSA programs. Table continued from last page.

47

2. Multiple Sequence Alignments

Category Method Protein / DNA

Multi-read alignment AMOS Consensus (Sommer et al., 2007) DNA

• Part of the Minimus assembler

Celera Consensus (Myers et al., 2000) DNA

• Part of the Celera assembler
ReAligner (Anson and Myers, 1997) DNA

• Iterative read to consensus alignment

SeqCons (Rausch et al., 2009) DNA

• Progressive MSA as well as realignment

Table 2.4: Available MSA programs. Table continued from last page.

48

Contribution

The analysis, design and development of generic multiple sequence alignment com-

ponents for the SeqAn software library (Döring et al., 2008) guided the progress

of the entire thesis. The deliberate dissecting of state-of-the-art sequence analysis

methods resulted in a fair amount of highly e�cient and reusable algorithmic compo-

nents such as pairwise alignment algorithms or guide-tree reconstruction algorithms.

Given the wide range of applications for multiple sequence alignments such a novel

library-based provision of the required key algorithmic components is an important

addition to the �eld that enables a rapid prototyping of new algorithms and appli-

cations. It also strengthens the use of SeqAn as an experimental platform where

di�erent algorithms can easily be evaluated or where the collection of algorithms

and data structures is used to develop and build novel, functionally enhanced appli-

cations. The careful analysis of current methods also provided the opportunity to

implement improved algorithms for multiple sequence alignments. In particular, we

contributed a new method to compute heuristic protein and DNA alignments and

a new method to compute accurate consensus sequences in a reference-guided or de

novo genome assembly. The performance, accuracy and strength and weaknesses

of these tools are discussed in detail in Part II and Part III of this thesis. In this

chapter, we brie�y introduce and review the main contributions to guide the reader

through the next chapters.

3.1 Dissecting Multiple Sequence Alignment Tools

As part of our e�ort to create a comprehensive, generic sequence analysis library

called SeqAn (Döring et al., 2008) we dissected state-of-the-art methods that com-

49

3. Contribution

pare and align multiple DNA and protein sequences. Using such a top-down ap-

proach, we identi�ed the key components that are reoccurring in a number of these

tools and decided to reengineer these components in the context of SeqAn to facili-

tate the rapid development and testing of new applications and algorithms (Rausch

and Reinert, 2010).

First of all, we designed, developed and implemented a fairly comprehensive set of

graph types and graph algorithms, including directed and undirected graphs, trees

and automatons, methods to iterate such graphs and attach auxiliary information to

edges or vertices and graph algorithms such as breadth-�rst and depth-�rst search,

minimum spanning tree or shortest path algorithms. We used these core graph

data structures, for instance, to implement tree reconstruction algorithms and the

alignment graph model.

Second, we put special emphasis on an e�cient implementation of con�gurable

pairwise alignment algorithms that are heavily used as a preliminary step in MSA

programs. During the design and development of global and local alignment algo-

rithms we once again emphasized genericity. A generic AlignCon�g template class

allows, for example, an initialization of the dynamic programming matrix suitable

for overlap and semi-global alignments.

Third, tree reconstruction algorithms such as neighbor joining or UPGMA and

methods for pro�le alignment were added to the SeqAn library. Using algorithm

tags, di�erent specializations of a given algorithm can be seamlessly plugged in. For

instance, the tags UpgmaMin , UpgmaMax and UpgmaAvg can be used to specify

the desired UPGMA method to merge clusters, i.e., either single linkage, complete

linkage or average linkage clustering.

Finally, we assembled the core components to a couple of new command-line

tools, including a comprehensive pairwise alignment tool called pair_align , a tree

reconstruction tool called tree_recon , a multiple sequence alignment tool called

seqan_tco�ee and a multi-read alignment tool called seqcons . The pairwise align-

ment program is faster and equally good in memory usage than state-of-the-art

methods from the EMBOSS library and the NCBI C++ toolkit (Rice et al., 2000).

The tree reconstruction program encapsulates all the guide tree algorithms described

in this thesis. The remaining two projects are described hereafter because they in-

clude in addition to the reengineered components novel techniques to e�ciently build

and construct multiple sequence alignments in various settings.

50

3.2. Segment-Based Multiple Sequence Alignment

3.2 Segment-Based Multiple Sequence Alignment

In this project we focused on the problem of aligning up to two hundred, globally

related, DNA or amino acid sequences with high accuracy measured on standard

benchmarks. Based-upon previous work on small-scale multiple sequence alignments

using an alignment graph (Althaus et al., 2002, 2006), we designed and developed

a new model to compute and represent large-scale alignments. The basic idea was

to represent arbitrary match information of k sequences within a k-partite graph

and to compute a generic graph based progressive alignment independent of the

sequence characters using solely the alignment graph edges, a so-called trace com-

putation (Sanko� and Kruskal, 1983). For the graph based progressive alignment

we adopted the consistency means invented by T-Co�ee (Notredame et al., 2000)

and hence, the name of our tool SeqAn::T-Co�ee (Rausch et al., 2008b). The most

advantageous property of the alignment graph compared to previous computation

models is that a single vertex can represent a single character, a large segment or

even an abstract entity such as a gene. Thus, given long matching segments our own

method is able to extend the consistency-based progressive alignment paradigm to

genomic sequences.

Our own pairwise global and local alignment algorithms turned out to be among

the fastest and most memory-e�cient algorithms currently available. We also re-

designed consistency (Notredame et al., 2000) and progressive alignment meth-

ods (Feng and Doolittle, 1987) to facilitate the graph-based MSA construction. On

standard MSA benchmark sets such as BAliBASE 3.0 (Thompson et al., 2005) and

PREFAB 4.0 (Edgar, 2004b), we perform similar to the best MSA methods. The tool

also supports a meta-alignment of subalignments, which delivered the best results

on standard benchmarks among all sequence-based methods.

51

3. Contribution

3.3 Multi-Read Alignment

In this project we designed, developed and experimentally veri�ed a �exible multi-

read alignment tool (Rausch et al., 2008a, 2009) that is robust in case of high se-

quencing error rates. The two main application scenarios of multi-read alignments,

synonymously consensus methods, are reference-guided and de novo sequence as-

sembly projects. Both scenarios create use cases that are quite distinct and require

a �exible multi-read alignment method. We adapted the original ReAligner (An-

son and Myers, 1997) algorithm to handle accurate layout positions of reads. The

method scales well to large resequencing projects. For this algorithm and the read

mapper RazerS developed by David Weese (Weese et al., 2009), we also designed

a data structure that e�ciently stores deep-coverage, large scale multi-read align-

ments.

For less accurate layout positions occurring in insert sequencing scenarios or for

high-error reads we developed a graph-based multi-read alignment strategy. This

strategy is due to all-against-all pairwise overlap computations slower than the Re-

Aligner method. It does, however, consistently outperform competing methods in

terms of quality, especially for insert sequencing. For this method, we extended our

alignment algorithms to handle semi-global and overlap alignments. As a result, the

Needleman-Wunsch and Gotoh algorithms have been augmented by complemen-

tary banded alignment algorithms. We experimentally veri�ed the ReAligner and

the graph based multi-read alignment method on a comprehensive set of simulated

multi-read alignment instances using varying read lengths, error rates and coverage

assumptions. We had to use simulated data since so far, there are no generally

accepted benchmarks for multi-read alignment methods available. Both methods

compared in almost all simulated cases favorably to existing consensus methods.

52

Part II

Algorithms and Data Structures

53

Alignment Data Structures

For diverse alignment tasks, ranging from ordinary protein sequence alignments to

multi-read alignments of thousands of reads, specialized data structures are required.

The two main reasons are that (1) no single alignment representation �ts the needs of

all alignment tasks and that (2) di�erent representations allow either a more e�cient

access to di�erent parts of the alignment or a more e�cient storage of large-scale

alignments.

4.1 Alignment Containers

The three main alignment containers in SeqAn are alignment matrices (see Sec-

tion 4.1.1), alignment graphs (see Section 4.1.2) and a fragment store for multi-read

alignments (see Section 4.1.3).

4.1.1 Alignment matrix

The Align data structure in SeqAn, developed by Andreas Gogol-Döring, is a direct

representation of a classical alignment matrix (Gogol-Döring and Reinert, 2009). For

an n× l alignment matrix A of n sequences, the Align data structure uses a set of n

gapped sequences {S̃0, S̃1, . . . , S̃n−1} to store the alignment. Hence, the Align data

structure stores an alignment line by line. There are three distinct gapped sequence

implementations available.

1. The SequenceGaps specialization is the straight forward implementation of a

gapped sequence. It simply inserts the '−' characters into the actual sequence.

2. The ArrayGaps specialization stores the sizes of gaps and gap free parts. The

55

4. Alignment Data Structures

strength of this specialization is the e�cient storage of long gaps.

3. The SumlistGaps specialization stores pairs of integers representing the length

of a contiguous sequence of non-gaps and the size of that non-gap plus the

preceding gap characters.

The details of the Align data structure can be found in the SeqAn book (Gogol-

Döring and Reinert, 2009).

4.1.2 Alignment graphs

The alignment graph introduces an additional abstraction layer for the represen-

tation of an alignment. Instead of storing actual aligned sequence characters such

as the Align data structure or the FragmentStore , it represents an alignment as

an n-partite graph for n sequences as shown in Figure 4.1. Vertices represent non-

overlapping sequence segments, edges represent ungapped aligned sequence segments

and gaps are implicitly represented by the topology of the graph. For example, the

GCTG vertex in Figure 4.1 has no outgoing edges (degree zero) and thus, it is

aligned to gaps in all other sequences. The alignment graph is a very compact

and versatile description of an alignment. Large-scale alignments can be e�ciently

stored since long segments are represented by only a single vertex. Furthermore,

the extension and direction of an alignment is completely de�ned by the alignment

edges. That is, the graph formulation is equally suitable to align globally related

sequences or thousands of reads where only subsets are related by mutual overlaps

(see Figure 4.2). The properties of an alignment graph G are:

• For a set S = {S0, S1, ..., Sn−1} of n sequences the alignment graph G = (V =

{V 0 ∪ V 1 ∪ ... ∪ V n−1}, E) is an n-partite graph.

• Each vertex vip ∈ V i represents a sequence segment in Si of arbitrary length.

We also say that vip covers all positions of the segment. For instance, v
i
p might

cover the sequence segment Si
u1,u2 = siu1s

i
u1+1...s

i
u2−1.

• Every position in Si = si0s
i
1..s

i
|Si|−1 is covered by one and only one vertex

vip ∈ V i.

• Three integers are associated with each vertex: (1) the sequence identi�er it

belongs to, (2) the beginning of the segment and (3) the length of the segment.

56

4.1. Alignment Containers

Figure 4.1: An alignment graph and the corresponding alignment matrix for three reads.

Vertices represent non-overlapping sequence segments, edges represent ungapped aligned

sequence segments, and gaps are implicitly represented by the topology of the graph.

Figure 4.2: The alignment on the left shows globally related sequences whereas the one

on the right shows a simpli�ed multi-read alignment. The direction of the alignment solely

depends on the alignment edges.

• An edge e = {vip, vjq} ∈ E with i 6= j indicates that vertex vip can be aligned

with vertex vjq . In other words, the sequence substring in Si covered by vip can

be aligned without gaps to the substring in Sj covered by vjq .

• The bene�t of aligning vip with v
j
q is given by an edge-weight we.

Besides representing actual alignments, the graph can also be used to store arbitrary

match information as illustrated in Figure 4.3. This is, for instance, convenient

to store multiple overlapping local alignments as computed by the Waterman and

Eggert algorithm (Waterman and Eggert, 1987).

57

4. Alignment Data Structures

Figure 4.3: A general alignment graph of two sequences with weighted match information.

Only a subset of the edges can be realized in an alignment.

4.1.3 Fragment store

The FragmentStore alignment data structure targets the large-scale storage of multi-

read alignments occurring in de novo sequence assembly and resequencing projects.

It was developed together with David Weese. Its main strength is the e�cient

storage of the alignment of a short read to a large contig or reference sequence. The

FragmentStore uses a number of subclasses to store all the additional alignment

information required in such projects, such as mate pair information and fragment

library characteristics. It also supports the storage of alignments using clipped

sequences. Before explaining the data structure in-depth, we want to illustrate the

main features by means of a very small example.

Contig − C T − A C − − A C G G − − −
→ Read1 C T C A C G − A C G

← Read2 A − T − A C − − A C a a

→ Read3 A C T G A

→ Read4 g g C T − A C − − A C G G C C T g g

The �rst row in the multi-read alignment is the putative consensus sequence. Un-

derneath the consensus are four aligned reads. Each aligned read has an orientation,

shown as an arrow preceding the read name. Clipped sequence characters are shown

in lower-case letters. Not shown in this example are mate-pairs, mapping quality

information or multiple contigs. The design of the FragmentStore is database ori-

ented. Basically, there is one table, called store, for each of the required elements,

namely a read store, a mate-pair store, a library store, a contig store, an aligned

read store and an annotation store. To link the information in the di�erent tables,

each read, mate-pair, library and contig has an associated id. This id is used to

index the corresponding table, except for the aligned read store that has no such

index id. Hence, the aligned read store is the only store that can be arbitrarily

sorted. This is very convenient, for instance, to e�ciently �nd all reads belonging

58

4.2. Implementation

Category Characteristics Storage

Directed graph Edges are directed, e1 = (u, v) 6= (v, u) = e2 Adjacency list

Undirected graph Edges are undirected, e = {u, v} Adjacency list

Automaton Directed edges labeled with characters Edge table

WordGraph Directed edges labeled with sequences Edge table

Tree Directed edges with parent links, rooted graph Adjacency list

HMM Hidden Markov model using a directed graph Adjacency list

Table 4.1: Listing of available graph types.

to a contig or to enumerate all reads in increasing order of their alignment position.

Nevertheless, each element of the aligned read store has a unique id. Although this

unique id cannot be used as an index into the aligned read store, it can be used to

associate additional information with the aligned read such as a mapping quality or

annotation data.

4.2 Implementation

4.2.1 Alignment matrix

The Align data structure uses a set of n gapped sequences stored in a String . The

type of the gapped sequence can be one of the previously introduced specializations,

namely SequenceGaps , ArrayGaps or SumlistGaps . The data structure supports

several gap modifying functions such as procedures to insert gaps, to remove gaps, to

count gaps or to clear all gaps. The details of how to use these functions and iterate

over an alignment are described in the SeqAn book (Gogol-Döring and Reinert,

2009).

4.2.2 Alignment graphs

The alignment graph data structure is built on top of some basic graph types avail-

able in SeqAn. The main graph types available are shown in Table 4.1. Except

for the automatons and word graphs, all graphs are stored as adjacency lists. An

exemplary adjacency list for a directed graph is shown in Figure 4.4. As can be

seen in the Figure, the graphs allow self-edges, multiple edges between two vertices

(multigraphs) and multiple, disjoint components. The rounded rectangles in the

59

4. Alignment Data Structures

Figure 4.4: A directed graph using an adjacency list. The rounded rectangles on the

right are so-called edge-stumps storing only the target vertex, where NIL denotes the end

of the list.

Figure 4.5: An undirected graph using an adjacency list. The rounded rectangles on the

right are so-called edge-stumps storing the source and target vertex. Each undirected edge

is stored only once.

adjacency list are the so-called edge-stumps. A minimal edge-stump stores only the

target vertex and a pointer to the next edge-stump. They can, however, also be con-

�gured to store a unique id, the source vertex or an arbitrary cargo. The cargo can

be used to store any edge information, such as integers to store distances or structs

to store arbitrary complex information. The unique ids can be used to attach edge

information by means of an external property map, explained in-depth later in this

chapter. The undirected graphs store each edge e = {u, v} only once by using the

optional source vertex in each edge-stump and two pointers to the next source and

target edge-stump. An example is shown in Figure 4.5. The adjacent vertices of a

given vertex v can simply be traversed by following the link that originates from v

in each edge-stump until NIL is reached. Since each edge is stored only once, edge

cargos can be used as in directed graphs.

Trees are directed graphs with edges going from parent to child vertices. To

60

4.2. Implementation

Figure 4.6: An automaton using an edge-table. The rounded rectangles on the right are

the so-called edge-stumps storing the target vertex.

e�ciently retrieve the parent of a given child vertex, trees store an additional parent

link. Furthermore, trees have a distinct root, which is the only vertex without

a parent. Besides the standard graph functions (see Table 4.2), trees support a

number of specialized tree functions such as functions to add or remove child vertices

(addChild and removeChild), functions to set, get and test for the root vertex

(assignRoot , getRoot and isRoot) or a function to test if a given vertex is a leaf

(isLeaf).

Automatons are usually de�ned as a 5-tuple 〈Q,Σ, δ, q0, T 〉 where Q is the set of

states, Σ a �nite alphabet, δ the transition function, q0 the start state and T a set of

terminal states. In SeqAn, the automatons have been implemented as graphs where

the vertices are the states, the root vertex is the start state and the edge labels are

drawn from Σ. The transition function δ is encoded by means of the directed edges.

The source vertex is the source state, the edge label is the input symbol and the

target vertex is the target state of the δ function. If a set of terminal states T is

required, this has to be done by means of an external property map. Automatons

are usually used to parse strings in pattern matching applications. Hence, given a

symbol and a source state, one readily wants to determine the target state. Because

of that, automatons use an edge table instead of an adjacency list to facilitate this

frequent operation in O(1) as shown in Figure 4.6. Similar to the trees, automatons

have specialized functions to set, for instance, the initial start state or to parse input

strings.

Hidden Markov models (HMMs) are also characterized by a 5-tuple 〈Q,Σ,A, E , π〉
where Q is the set of states, Σ a �nite alphabet, A the transition probability matrix,

E the emission probability matrix and π a vector of length |Q| giving the initial

starting distribution. For sparse HMMs, SeqAn o�ers a graph-based HMM model,

where the vertices as states are labeled with emission probabilities and the edges

61

4. Alignment Data Structures

Function Characteristics

addVertex Creates a new vertex

addEdge Creates a new directed or undirected edge

removeVertex Removes a vertex and all adjacent edges

removeEdge Removes an edge

numEdges Number of edges in the graph

numVertices Number of vertices in the graph

empty Checks whether a graph is empty or not

clearEdges Removes all edges

clearVertices Removes all vertices

clear Removes all edges and vertices

outDegree Number of outgoing edges of a given vertex

inDegree Number of incoming edges of a given vertex

degree Number of outgoing and incoming edges

transpose Transposes the graph

Table 4.2: Listing of available graph functions supported by all graph types.

as possible transitions are labeled with transition probabilities. Non-emitting silent

states are also supported. The initial vector π has to be modeled by a separate,

silent begin state and outgoing edges labeled with the probabilities given by π.

Alignment graphs are implemented by means of an undirected graph as shown

previously in Figure 4.1. Since the graph is built over a set of n sequences, the graph

additionally stores a StringSet that holds all the sequences. Each vertex stores by

means of a property map the sequence id it belongs to and the beginning and

length of the sequence segment it covers. One of the most frequent operations on an

alignment graph is the retrieval of a vertex given a sequence identi�er and a position

on that sequence. To facilitate this operation the graph uses internally a map. This

data structure maps a given key consisting of a sequence identi�er and a position

to the corresponding vertex. Naturally, each graph modifying operation such as the

addition or removal of a vertex needs to be mirrored in the map so that both data

structures are consistent with each other. Operations such as label , sequenceId ,

fragmentBegin and fragmentLength can be used to retrieve the covered sequence

segment of a given vertex, the sequence id, the begin position and the length of

the segment, respectively. The alignment graph also o�ers some input and output

62

4.2. Implementation

Function Characteristics

resizeEdgeMap Initializes an edge property map

resizeVertexMap Initializes a vertex property map

assignProperty Assigns a property value to a given edge or vertex

property Accesses a property value from a given edge or vertex

getProperty Retrieves the property value from a given edge or vertex

Table 4.3: Listing of available property map functions.

routines to write, for instance, a FASTA or MSF �le or read another alignment from

a �le.

Property maps

As previously mentioned, all graph types support an attachment of arbitrary in-

formation to vertices and edges by means of so-called property maps. A classical

example are graphs representing �ight networks with city names and �ight distances.

In SeqAn, one could store the city names in a property map for the vertices and

the �ight distances in a property map for the edges. Similarly, an alignment graph

stores in a vertex property map the sequence id, the beginning and the length of

the segment the vertex covers. The interface of a property map is rather simple

and easy to use (see Table 4.3). All of the graph functions use so-called vertex and

edge descriptors. These descriptors are handles to the vertices and edges present in

the graph and are also used to access the property values in the property map. In

particular, these descriptors carry a unique vertex and edge id that can be used to

index the property map. As a result, the property map can be any indexable con-

tainer. As mentioned before, edges can also carry an arbitrary cargo object. These

cargo objects are useful for persistent edge information whereas the aforementioned

external property maps are useful if we have only temporary edge labels. Due to the

generic SeqAn design, the internal cargos have been subsumed under the property

map interface as so-called internal property maps. As a result, algorithms should

always rely on the property map interface to access additional vertex or edge infor-

mation because this e�ciently shields them from the actual underlying storage that

is either a cargo object or an entry in an external property map.

63

4. Alignment Data Structures

Figure 4.7: Conversion of an alignment graph to an alignment matrix. Due to the

topological sort operation the order of adjacent indels is not �xed in the alignment graph

representation.

Graph iterators

Graph iterators can be used to traverse the vertices and edges of a graph. The

default vertex iterators are an adjacency iterator, an depth-�rst iterator, an breath-

�rst iterator and a simple vertex iterator. The simple vertex iterator traverses all

vertices in increasing order of their ids. The adjacency iterator traverses all adjacent

vertices of a given vertex. The depth-�rst iterator traverses all vertices in depth-�rst

search order and similarly, the breath-�rst iterator traverses all vertices in breath-

�rst search order. The provided edge iterators are an out-edge iterator traversing

all outgoing edges of a given vertex and a simple edge iterator traversing all edges

of a graph.

Graph algorithms

SeqAn provides some standard graph algorithms shown in Table 4.4. Such basic

graph algorithms are required in many bioinformatics applications and as an ex-

ample, we show in Algorithm 1 a method to convert an alignment graph G into

64

4.2. Implementation

Category Algorithms

Vertex enumeration Breadth-�rst search

Depth-�rst search

Topological sort

Minimum spanning tree Prim's algorithm

Kruskal's algorithm

Single-source shortest path Directed acyclic graph (DAG) shortest path

Bellman Ford algorithm

Dijkstra

All-pairs shortest path Floyd-Warshall

Connected components Strongly connected components for directed graphs

Connected components for undirected graphs

Network �ow Ford-Fulkerson algorithm

Table 4.4: Listing of available graph algorithms.

an ordinary alignment matrix A using two of the implemented graph algorithms,

namely connected_components and topological_sort . A graphical illustration of

this algorithm is shown in Figure 4.7. Both algorithms require a depth-�rst search

as a preliminary step.

Algorithm 1 Alignment graph to alignment matrix conversion

Input: Alignment graph G

Output: Alignment matrix A
1: C = {C0, C1, ..., Ck−1} ⇐ connected_components(G)

2: Build a component graph GC = (VC = {vC0 , vC1 , ..., vCk−1
}, EC).

3: Insert directed edge e = (vCu , vCv) ∈ EC if and only if a vertex in component Cu

precedes a vertex in component Cv in one of the sequences.

4: (Ci0 , Ci1 , ..., Cik−1
)⇐ topological_sort(GC)

5: Write the vertices belonging to Cij underneath each other.

6: Replace vertices with sequence information.

65

4. Alignment Data Structures

4.2.3 Fragment store

The �ve most important stores belonging to the FragmentStore are the read store,

the mate-pair store, the library store, the contig store and the aligned read store.

The main elements of each store are shown below.

Read Store Mate-pair Store
•Index: read id •Index: mate-pair id
•Members: mate-pair id •Members: library id

read1 id
read2 id

Library Store Contig Store
•Index: library id •Index: contig id
•Members: mean •Members: seq

std gaps
Aligned Read Store
•Index: none
•Members: read id

contig id
pair match id
begin pos
end pos
gaps
unique id

For each read, the mate-pair id indicates the fragment the read stems from. Simi-

larly, a mate-pair element stores the two read ids that were sequenced from the given

fragment. The fragments themselves are derived from mate-pair libraries. This li-

brary information is linked via the library id in the mate-pair element. The library

element itself simply stores the mean and the standard deviation of the library.

Each contig element stores the contig sequence and a gap anchor data structure

that stores the occurrences of gaps in the contig sequence. The aligned read store

is the only non-indexable store. That is, it is never accessed via an id but rather

sorted and traversed according to some desired property. One can traverse, for

instance, all aligned reads having the same contig id. For each aligned read, the

read id links the original read data. The contig id, the begin pos, the end pos

and the gap anchor data structure characterize the alignment of the given aligned

read element. For reverse aligned reads the end pos is smaller than the begin pos.

The pair match id is a unique id for multiple, distinct mate-pair matches and the

unique id for each aligned read allows the storage of additional aligned read infor-

mation such as mapping qualities in a separate store. The sequences of all reads are

stored separately in a concatenated StringSet . This reduces the memory overhead

66

4.2. Implementation

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Contig − C T − A C − − A C G G − − −
→ Read1 C T C A C G − A C G

← Read2 A − T − A C − − A C a a

→ Read3 A C T G A

→ Read4 g g C T − A C − − A C G G C C T g g

→ Read1 : begin pos = 1, end pos = 11

gap anchors = 〈
(

6
7

)
〉 where

(
x
y

)
=
(
Sequence position
Alignment position

)
← Read2 : begin pos = 10, end pos = 0,

gap anchors = 〈
(

1
2

)
,
(

2
4

)
,
(

4
8

)
,
(

8
10

)
〉

→ Read3 : begin pos = 4, end pos = 9,

gap anchors = 〈〉
→ Read4 : begin pos = 1, end pos = 15,

gap anchors = 〈
(

2
0

)
,
(

4
3

)
,
(

6
7

)
,
(

15
14

)
〉

Contig : gap anchors = 〈
(

0
1

)
,
(

2
4

)
,
(

4
8

)
,
(

8
15

)
〉

Figure 4.8: A multi-read alignment with gap anchors for each read and the contig. Read

orientations are indicated by the arrow preceding the read's name. Clipped sequence

characters are in lower case.

and additionally leaves the possibility to store the reads in an external string using

secondary memory. To explain the gap anchor data structure we resume our intro-

ductory multi-read alignment example that is reproduced in Figure 4.8. The gap

anchor data structure is a String of so-called gap anchors where each gap anchor

describes a mapping from a sequence character position in the ungapped sequence

to a sequence character position in the gapped sequence. In short, gap anchors are

a means of translating from alignment space to sequence space and vice versa. In

principle, one could store these gap anchors for each and every alignment position. A

relative shift of alignment and sequence positions does, however, only occur if a gap

or a clipped sequence character is reached. Read sequences get clipped or trimmed

due to possible cloning vector content at the beginning or end of a read. Alignment

gaps are usually caused by sequencing errors that delete true or introduce spurious

67

4. Alignment Data Structures

bases in the read's sequence.

In summary, it is su�cient to store a gap anchor only for those sequence characters

that follow a gap or a clipped position (see Figure 4.8). By de�nition, this implies

that a gapless alignment of a sequence that has not been clipped results in no gap

anchors at all, as can be seen for Read3. Gaps in an alignment cause an increment

of the alignment position of a gap anchor, clipped sequence characters cause an

increment in the sequence position and aligned characters cause an increment in

both positions.

68

Pairwise alignment

5.1 Algorithms

In this chapter we brie�y explain the algorithms of Needleman-Wunsch (Needleman

and Wunsch, 1970), Gotoh (Gotoh, 1982), Smith-Waterman (Smith and Waterman,

1981) and Waterman-Eggert (Waterman and Eggert, 1987). In Section 5.2 we high-

light some key features of our implementation in SeqAn and compare its space and

time consumption to other state-of-the-art implementations.

5.1.1 Needleman-Wunsch

The Needleman-Wunsch algorithm computes a maximum score global alignment

of two sequences S0 = s0
0s

0
1 . . . s

0
|S0|−1 and S1 = s1

0s
1
1 . . . s

1
|S1|−1 using a constant

gap penalty e. The algorithm �lls a matrix Mi,j storing the maximum score of an

optimal alignment A{0,1}(S0
i , S

1
j). The recursion of the algorithm is based upon the

observation that the last aligned pair of an optimal alignment A{0,1}(S0
i , S

1
j) is either

a pair of characters (s0
i , s

1
j) or a character aligned to a gap, (s0

i ,−) or (−, s1
j). Given

that the last aligned pair is a pair of characters,Mi−1,j−1 is the maximum score of an

alignment A{0,1}(S0
i−1, S

1
j−1) and thus, Mi,j = Mi−1,j−1 + δ(s0

i , s
1
j) where δ is a user-

de�ned scoring function. Similarly, we can conclude that Mi,j = Mi−1,j + δ(s0
i ,−) if

and only if the last aligned pair is (s0
i ,−) and Mi,j = Mi,j−1 + δ(−, s1

j) if and only

if the last aligned pair is (−, s1
j). Hence, we can compute the �nal alignment score

M|S0|−1,|S1|−1 using the recursion

Mu,v = max


Mu−1,v−1 + δ(s0

u, s
1
v)

Mu−1,v + e

Mu,v−1 + e

69

5. Pairwise alignment

To facilitate a traceback that retrieves the actual alignment, it is su�cient to store

for each cell Mi,j a link to the predecessor cell that maximized the equation above.

Hence, the algorithm uses O(ñ2) time and space where ñ is the average sequence

length.

5.1.2 Gotoh

Gotoh extended the Needleman-Wunsch algorithm by linear gap costs that penalize

a gap of length γ with a cost of g + e · (γ − 1) where g is the constant gap opening

penalty, e is the constant gap extension penalty and g ≤ e with g, e ≤ 0. Linear

gap costs take into account the fact that in biological alignments gaps are often

longer than a single character. Hence, opening a new gap should be more expensive

than extending an existing one. Linear gap costs can be implemented using the

Needleman-Wunsch recursion. Unfortunately, for each horizontal (s0
i ,−) or vertical

(−, s1
j) gap each predecessor cell to the left Mk,j (k < i) or top Mi,k (k < j)

respectively has to be checked. This, however, requires O(ñ3) time. To avoid this

expensive horizontal or vertical look-up using k, Gotoh introduced two new matrices

Vi,j and Hi,j that store the maximum score of an alignment A{0,1}(S0
i , S

1
j) ending in

a vertical or horizontal gap, respectively. Mi,j itself still stores the maximum score

of an optimal alignment A{0,1}(S0
i , S

1
j). The new recursion is

Hu,v = max

Mu−1,v + g

Hu−1,v + e

Vu,v = max

Mu,v−1 + g

Vu,v−1 + e

Mu,v = max


Mu−1,v−1 + δ(s0

u, s
1
v)

Hu,v

Vu,v

The traceback requires for all three matrices the information from what cell the max-

imum was derived from, otherwise the backtrace will not be able to jump through

each of the matrices. The algorithm still uses only O(ñ2) time and space.

70

5.1. Algorithms

5.1.3 Smith-Waterman

The Smith-Waterman algorithm computes a maximum score local alignment of two

sequences S0 = s0
0s

0
1 . . . s

0
|S0|−1 and S1 = s1

0s
1
1 . . . s

1
|S1|−1 using constant or linear gap

costs. The algorithm augments the recursion with an additional 0 case, so that a

new local alignment can be started whenever the score drops below 0. For linear

gap costs the recursion is

Hu,v = max

Mu−1,v + g

Hu−1,v + e

Vu,v = max

Mu,v−1 + g

Vu,v−1 + e

Mu,v = max



Mu−1,v−1 + δ(s0
u, s

1
v)

Hu,v

Vu,v

0

The Smith-Waterman traceback starts at the highest scoring cell and ends at the

�rst encountered 0. The algorithm uses O(ñ2) time and space.

5.1.4 Waterman-Eggert

For multiple sequence alignment tools it is important to include the best local align-

ment and suboptimal local alignments, especially for highly divergent sequences.

The suboptimal alignments should be mutually distinct. Hence, one cannot simply

traceback from the second best score value since this is most likely an alignment that

only di�ers marginally from the best one. To avoid this problem, the Waterman-

Eggert algorithm resets all cells on the last traceback path to 0. This implies that all

cells dependent on the reseted cells now contain incorrect values. Hence, the dynamic

programming matrix needs to be recomputed from the �rst cell contained in the pre-

vious local alignment. Given such a recomputation, we can start another traceback

from the new highest score and continue iteratively. The space consumption is still

O(ñ2). The required time depends on the number of suboptimal alignments and the

�rst alignment position of every previous local alignment.

71

5. Pairwise alignment

5.2 Implementation

All pairwise alignment algorithms have been subsumed under a common interface.

globalAl ignment (TAlignDataStructure&, TScore&, TAlgorithmTag)

loca lAl ignment (TAlignDataStructure&, TScore&, TAlgorithmTag)

Listing 5.1: Alignment interface

TAlignDataStructure is a placeholder for one of the alignment data structures such

as the alignment graph or the alignment matrix. It can also be a simple StringSet

if there is solely an alignment score required. TScore is a scoring object that is used

by the alignment algorithm to score gaps and pairs of characters. All scoring objects

implement the interface shown below.

s co r e (TScore&, TPos1 , TPos2 , TSeq1&, TSeq2&)

scoreGapOpenHorizontal (TScore&, TPos1 , TPos2 , TSeq1&, TSeq2&)

scoreGapExtendHorizontal (TScore&, TPos1 , TPos2 , TSeq1&, TSeq2&)

scoreGapOpenVertical (TScore&, TPos1 , TPos2 , TSeq1&, TSeq2&)

scoreGapExtendVert ica l (TScore&, TPos1 , TPos2 , TSeq1&, TSeq2&)

Listing 5.2: Scoring interface

This interface allows a position-dependent scoring which is, for instance, required

in pro�le alignments. The algorithm tag can be one of the implemented align-

ment algorithms, namely NeedlemanWunsch , Gotoh , BandedNeedlemanWunsch ,

BandedGotoh , SmithWaterman and SmithWatermanClump . The banded versions

require the speci�cation of a lower and upper diagonal. Only the part of the dy-

namic programming matrix enclosed by these diagonals is computed as shown in

Figure 5.1. For the BandedGotoh algorithm the band is applied to all three dy-

namic programming matrices.

All of the above global alignment algorithms can be con�gured for overlap or

semi-global alignments by using an AlignCon�g<TTop, TLeft, TRight, TBottom>&

object. This object has four template parameters one for each side of the dynamic

programming matrix. TTop and TLeft indicate whether the �rst row and column

of the matrix is initialized with appropriate gap costs or with 0's. TRight and

TBottom indicate whether the alignment traceback can start anywhere in the last

column or row or only in the cell in the bottom right corner. Hence, there are in

total 24 di�erent means of initializing the dynamic programming matrix available.

72

5.2. Implementation

������
������
������
������
������
������

������
������
������
������
������
������������

������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

A

A

G

G

A G

T Lower Diagonal

Upper Diagonal

Banded DP matrix

1

3

4 5

6

1

2 3

4 5

6

2

Figure 5.1: Shown on the left is how an upper and lower diagonal are used to delimit the

desired band within the dynamic programming matrix. The space consumption of banded

alignment algorithms solely depends on the length and the width of the band due to a

transformation of the coordinate space shown on the right.

All options can also be applied to the banded alignment algorithms even if the band

does not include the main diagonal.

All of the above alignment algorithms compute the dynamic programming matrix

using only a single column (NeedlemanWunsch , Gotoh , SmithWaterman) or row

(BandedNeedlemanWunsch , BandedGotoh) in memory. In Figure 5.2 we compared

the banded alignment algorithms with the algorithms computing the full dynamic

programming matrix. For the sake of illustration, we picked a huge bandwidth of

20.000 to get signi�cant runtimes. This bandwidth implies that for sequences < 10kb

the banded versions actually computed the whole dynamic programming matrix. As

can be seen in the plot for sequence lengths < 10kb, the banded algorithms induce

only a very small overhead compared to the non-banded counterparts. In addition,

it is clearly visible how the running time increases quadratically for the non-banded

algorithms but linear for the banded versions. The Gotoh algorithm is more time-

consuming than Needleman-Wunsch due to the three required matrices instead of

only one. We then compared our own algorithms to state-of-the-art implementa-

tions. To our knowledge the two most e�cient and widely used implementations are

part of the EMBOSS library (Rice et al., 2000) and the NCBI C++ toolkit. The

EMBOSS library provides both, an implementation of Gotoh's algorithm for global

73

5. Pairwise alignment

Sequence length

0kb 10kb 20kb 30kb 40kb 50kb

0

10

20

30

40

50

Time
(in s)

Gotoh

Needleman−Wunsch

Gotoh Banded

NW Banded

Figure 5.2: We simulated 50 pairs of random sequences of average length 1kb, 2kb, ...,

50kb. Shown are the runtimes for each alignment algorithm on each alignment instance.

alignments and an implementation for local alignments. The NCBI C++ toolkit

only o�ers the global version. We encapsulated all our own alignment algorithms in

a tool called PairAlign. All tested alignment algorithms computed the same align-

ment score for each of the computed instances. Our global alignment algorithm is

about twice as fast as the second best tool from the NCBI toolkit using a similar

amount of memory (see Figure 5.3). EMBOSS is several magnitudes slower and

failed on instances larger than 35kb due to insu�cient memory. Note that our own

tool and NCBI use less than the expected 50.0002 = 2.5GB of memory for the trace-

back matrix in the 50kb case. The reason for PairAlign is that the traceback of two

adjacent cells is stored in a single Byte. This is possible because in the horizontal

and vertical matrix of Gotoh we can only traceback in the diagonal or horizontal /

vertical direction. We encode this in two bits. We use two more bits for the diagonal

matrix, where 0, 1 and 2 correspond to a diagonal, horizontal and vertical move.

Hence, we need only four bits per cell and can store two traceback values in one

Byte. For the Smith-Waterman local alignment this is still possible since we only

need one additional stop value to indicate the end of a local alignment.

74

5.2. Implementation

Sequence length

0kb 10kb 20kb 30kb 40kb 50kb

0

100

200

300

Time
(in s)

Emboss

NCBI

PairAlign

Sequence length

0kb 10kb 20kb 30kb 40kb 50kb

0

1

2

3

4

5

6

7

Memory
(in GB)

Emboss

NCBI & PairAlign

(a) Global alignment

Sequence length

0kb 10kb 20kb 30kb 40kb 50kb

0

100

200

300

Time
(in s)

Emboss

PairAlign

Sequence length

0kb 10kb 20kb 30kb 40kb 50kb

0

1

2

3

4

5

6

7

Memory
(in GB)

Emboss

PairAlign

(b) Local alignment

Figure 5.3: Our own alignment algorithm PairAlign in comparison to other alignment

algorithms on a set of 50 simulated pairs of random sequences of average length 1kb, 2kb,

..., 50kb. Global alignments are shown in (a), local alignments in (b).

75

5. Pairwise alignment

76

Multiple Sequence Alignment

6.1 Overview

In Chapter 2, the main components of current MSA tools have been reviewed. All

tools usually start with all-against-all pairwise alignments. Afterwards, core regions

that reoccur in most of the pairwise alignments are ampli�ed by using some kind

of consistency scheme. Based upon these ampli�ed regions and the background

information from the pairwise alignments a progressive alignment along a guide tree

is carried out. Some tools now further re�ne the MSA derived from the progressive

alignment by splitting the alignment in two parts and realigning both parts together.

Although most of the above steps have well-de�ned interfaces a majority of the

present-day tools has been written from scratch. Therefore, we decided to dissect

the main data structures and algorithms required in multiple sequence alignments

and implement them in the SeqAn library. In the last Chapter 5, we already saw

how such a careful refactoring of pairwise alignment algorithms can lead to highly

e�cient algorithms. Similarly, we reengineered algorithms to compute guide trees

or to progressively align sequences along a guide tree. In addition to the dissecting,

we also extended previous work on alignment graphs (Reinert, 1999; Althaus et al.,

2006; Althaus and Canzar, 2008). Speci�cally, we present in this chapter a new

graph-based method to progressively align sequences. The method can broadly be

divided into seven distinct steps that are explained in the upcoming sections.

1. Segment-match generation

One strength of our method is that the input can be any set of segment

matches. That is, we can use fairly standard pairwise alignments, index-based

comparisons such as maximal unique matches or even external matches derived

77

6. Multiple Sequence Alignment

from tools such as BLAST (Altschul et al., 1990).

2. Segment-match re�nement

Initial segment matches might be contradictory, in the sense that matches

overlap and intersect each other. Our own method therefore re�nes the initial

set of segment matches so that all parts of all segment matches can be used.

3. Alignment graph construction

Based upon the re�ned segment matches we de�ne an alignment graph where

vertices are gapless sequence segments and edges connect the matching se-

quence segments.

4. Distance matrix computation

Several pairwise distance measures can be used to derive a distance matrix

and construct a guide tree. Examples are pairwise alignment scores or the

counting of common k-mers among the input sequences, where a k-mer is a

contiguous subsequence of length k.

5. Guide tree construction

Guide tree reconstruction algorithms such as UPGMA (Sokal and Michener,

1958) and neighbor-joining (Saitou and Nei, 1987) are used to build the re-

quired tree for the subsequent progressive alignment.

6. Triplet extension

As a means of consistency, we adapted the triplet extension proposed in the

T-Co�ee (Notredame et al., 2000) package to our alignment graph.

7. Progressive alignment

Finally, a graph-based progressive alignment is computed along the guide tree.

At each internal node of the guide tree we compute the best pairwise trace

by means of the heaviest common subsequence algorithm (Jacobson and Vo,

1992).

78

6.2. Algorithmic Components

Figure 6.1: Subdivision of local or global alignments into gapless segment matches shown

in black.

6.2 Algorithmic Components

6.2.1 Segment-match generation

Global or local alignments computed by our own alignment algorithms (see Chap-

ter 5) or by external tools such as BLAST (Altschul et al., 1990) or MUMmer (Kurtz

et al., 2004) are subdivided into gapless segment matches, as shown in Figure 6.1.

Each segment match is labeled by its length, its beginning position in both sequences

and the two identi�ers of the two sequences belonging to this match. We perform

this operation on all input alignments and store all the occurring segment matches

in a segment match storeM.

6.2.2 Segment-match re�nement

Segment matches might overlap and intersect each other as shown in Figure 6.2. In

this example, the two segment matches containing the 'CC' segment are contradic-

tory and only one of them can be realized in an alignment. In order to keep all of the

available match information, we re�ne the set of segment matches so that all parts

of all segment matches can be used. In contrast to this re�nement approach, the

DIALIGN series of programs (Morgenstern et al., 1998; Subramanian et al., 2008,

2005) leaves the set of segment matches unchanged. This implies that overlapping

segment matches involving the same pair of sequences must be greedily resolved.

The objective function of DIALIGN is to �nd a consistent, maximum score subset

of segment matches whereas our method computes a heuristic maximum trace of all

re�ned matches as explained later in this chapter.

The implemented multiple re�nement algorithm is an extension of a pairwise re-

�nement algorithm proposed by Halpern et al. (Halpern et al., 2002). The objective

of the re�nement method is to �nd a minimal subdivision of the segments so that

all parts of all segment matches can be used. An example re�nement for the three

matches shown in Figure 6.2 is shown in Figure 6.3. Let S = {S0, S1, ..., Sn−1}

79

6. Multiple Sequence Alignment

Figure 6.2: Three sequence S0, S1, and S2 with three overlapping segment matches. Two

matches are contradictory for the black 'CC' sequence segment.

Figure 6.3: The re�nement of overlapping segment matches is shown on the left. The

dotted lines are the necessary cuts. On the right is the corresponding alignment graph for

the re�ned segment matches.

be a set of n sequences with Si = si0s
i
1...s

i
|Si|−1 and i ∈ {0, 1, ..., n − 1}. Let

M = {M0,M1, ...,Mm−1} be a set of m segment matches with Mk = (Si
uv, S

j
xy) and

k ∈ {0, 1, ...,m− 1}. Mk is an alignment between two segments Si
uv = sius

i
u+1...s

i
v−1

and Sj
xy = sjxs

j
x+1...s

j
y−1 with i, j ∈ {0, 1, ..., n − 1}, i 6= j, 0 ≤ u < v ≤ |Si|,

0 ≤ x < y ≤ |Sj| and v − u = y − x. For the segment Si
uv the positions u and v are

the boundary positions. We de�ne the Si-support ofM, in short supportSi(M), to

be the set of all boundary positions of segments on sequence Si.

The goal of the algorithm is to re�ne a set of input segment matches M into

a set of segment submatches M∗ = {M0
∗ ,M

1
∗ , ...,M

m′−1
∗ } where all submatches

cover the original matches. A submatch of Mk = (Si
uv, S

j
xy) ∈ M is a match

Mk′ = (Si
u′v′ , S

j
x′y′) ∈ M∗ with u ≤ u′ < v′ ≤ v, x ≤ x′ < y′ ≤ y, v′ − u′ = y′ − x′

and u′ − u = x′ − x. A setM∗ is called a re�nement ofM if each Mk′ ∈ M∗ is a

submatch of a Mk ∈ M and the setM∗ tilesM. That is, for each segment match

Mk = (Si
uv, S

j
xy) ∈ M we have a subset M′

∗ ⊂ M∗ where each Mk′ ∈ M′
∗ is a

submatch of Mk and the following two conditions are true:

[u, v − 1] =
·⋃

Mk′∈M′∗

[u′, v′ − 1]

80

6.2. Algorithmic Components

[x, y − 1] =
·⋃

Mk′∈M′∗

[x′, y′ − 1]

In short, each original match must be tiled by submatches inM∗.

We are, however, interested in a re�nementR out of the set of possible re�nements

where all segments are either disjoint or identical, i.e., a re�nement without partially

overlapping segments. We call such a set of segment matches R resolved. In a

resolved set any (Si
uv, S

j
xy) ∈ R satis�es the requirement that

[u, v] ∩ supportSi(R) = {u, v}

[x, y] ∩ supportSj(R) = {x, y}

If we re�ne every segment match Mk ∈ M into single position matches we obtain

a trivial resolved re�nement. Hence, the objective is to �nd a re�nement R of

minimum cardinality. Such a re�nement can be constructed by Algorithm 2 that

successively applies only the necessary cuts to resolve partial overlaps and terminates

when all segments are disjoint or identical. The algorithm re�nes a set of input

segment matchesM and returns an alignment graph constructed from the re�ned

segment match set R. At the end of the algorithm the node sets V i contain the

original boundary positions plus necessary cuts made from the projections of the

initial boundaries. Hence, no super�uous cuts are made and the re�nement is of

minimum cardinality.

81

6. Multiple Sequence Alignment

Algorithm 2 Segment-match re�nement

Input: Set of segment matchesM
Output: Alignment graph G of re�ned segment matches

1: Build node sets V i = supportSi(M)

2: for all Mk = (Si
uv, S

j
xy) ∈M do

3: Build the set of boundary positions B = {u, v, x, y}
4: while B 6= ∅ do
5: Pick w ∈ B
6: Remove w from B
7: Retrieve all segment matches L = {L0, L1, ..., Lp−1} that contain w
8: for all Lq = (Sk

ab, S
l
cd) ∈ L do

9: Let a < w < b and h = c+ (w − a) be the projected position of w.

10: if h /∈ V l then

11: h is a cut, insert h into V l

12: Insert h into B
13: end if

14: end for

15: end while

16: end for

17: Create alignment graph G
18: Derive from the node sets V i the vertices of G
19: Derive from the original segment match storeM the edges of G

6.2.3 Alignment graph construction

Given the re�ned set of segment matches R the construction of the alignment graph

is rather trivial. As shown in Figure 6.3, we de�ne for each gapless sequence segment

a vertex according to the boundary positions present in V i at the end of Algorithm 2.

We de�ne edges between two vertices v1 and v2 if and only if both covered sequence

segments took part in an initial segment match. There are three di�erent schemes to

weight the matches during the alignment graph construction. The FractionalScore

specialization uses the length of the re�ned segment match with respect to the origi-

nal segment match to rescale the score of the re�ned match. The FrequencyCounting

specialization simply counts how often a given re�ned match occurred in the initial

82

6.2. Algorithmic Components

set of segment matches and the ReScore specialization scores all re�ned segment

matches anew according to a user-de�ned scoring matrix such as BLOSUM.

6.2.4 Distance matrix computation

Progressive alignment requires a guide tree that indicates when each sequence is

added to the growing MSA. There are di�erent methods to construct such a guide

tree or phylogenetic tree for a set of sequences. The most prominent tree recon-

struction methods either use a distance matrix, the maximum likelihood principle

or the maximum parsimony principle. In practice, the distance-based methods tend

to be the fastest and therefore most MSA methods use such distance-based tree re-

construction methods. The input of these algorithms is a distance matrix D where

di,j is the distance of sequence Si to sequence Sj. One possibility to derive such

distances di,j is to convert the pairwise alignment scores into distances, e.g., by

normalizing with the highest observed pairwise alignment score.

d0,1 = 1− Score(A{0,1})
maxi,j(Score(A{i,j}))

An alternative is the so-called common k-mer counting method. A k-mer is a con-

tiguous subsequence of length k. Two sequences S0 and S1 can share at most

min(|S0|, |S1|)− k + 1 common k-mers and thus,

d0,1 = 1− #Common k-mers between S0, S1

min(|S0|, |S1|)− k + 1

can be used as a distance between sequence S0 and S1. Another option is to use

the alignment graph from the last step to derive the distances di,j. In Section 6.2.7

we will see how a pairwise alignment can be carried out using the alignment graph.

Hence, we can compute all pairwise alignments using the alignment graph edges as

constraints. This method, however, requires O(n2) additional pairwise alignments.

6.2.5 Guide tree construction

The neighbor-joining method (Saitou and Nei, 1987) as well as the UPGMA algo-

rithm (Sokal and Michener, 1958) have been implemented in SeqAn. As mentioned

in Chapter 2, the UPGMA algorithm has di�erent options to compute the dis-

tances dk,u from any group k to a newly formed cluster u that joined group i and j.

83

6. Multiple Sequence Alignment

We implemented each of the possible options using specialization tags of the form

Upgma∗ .

• Single linkage clustering: dk,u = min (dk,i, dk,j), Tag: UpgmaMin

• Complete linkage clustering: dk,u = max (dk,i, dk,j), Tag: UpgmaMax

• Average linkage clustering: dk,u =
dk,i+dk,j

2
, Tag: UpgmaAvg

• Weighted avg. linkage clustering: dk,u =
ni·dk,i+nj ·dk,j

ni+nj
, Tag: UpgmaWeightAvg

The neighbor-joining method and the UPGMA algorithm transform a distance ma-

trix into a tree where the leaves correspond to the sequences. The vertex id of a leaf

equals the position of the sequence in the original StringSet of all sequences.

6.2.6 Triplet extension

Given the initial pairwise alignments, the triplet extension (Notredame et al., 2000)

aims at substantiating true matches and degrading false matches by means of look-

ing at all matches simultaneously. The principle was introduced in Chapter 2: Two

pairwise matches M0i = (S0
uv, S

i
xy) and M i1 = (Si

xy, S
1
qr) induce a putative transi-

tive match M01 = (S0
uv, S

1
qr) that is either consistent or inconsistent with a match

occurring in the precomputed alignment A(S0, S1). If it is consistent, that is the

match M01 = (S0
uv, S

1
qr) is part of the precomputed alignment A(S0, S1), then we

increase the weight w of M01 by min(w(M0i), w(M i1)). If it is not consistent, the

missing match will be created with w(M01) = min(w(M0i), w(M i1)). In terms of the

alignment graph, we traverse all pairs of adjacent edges (e1 = {vk, vi}, e2 = {vi, vj})
and either insert a new edge e3 = {vk, vj} or adapt the weight of e3 = {vk, vj}. Note
that vi, vj and vk have to cover segments on three di�erent sequences. Since we

have to enumerate all possible pairs of adjacent vertices (vk, vj) for a given vertex

vi, the runtime of the triplet extension greatly depends on the average out-degree

of all vertices. This in turn depends on the number of input segment matches but

in practice, the average out-degree is usually a small constant times (n− 1), where

n is the number of input sequences.

Nevertheless, for a large number of sequences the triplet extension becomes quite

expensive and because of that, we implemented a novel group-based triplet extension

that takes into account the guide tree. As mentioned in the introduction, the triplet

84

6.2. Algorithmic Components

Figure 6.4: Binary guide tree for eight sequences S0, S1, · · · , S7. Internal nodes are la-

beled with the number of leaves underneath them. Subtrees with more than three members

are shaded and their root is double-circled. Non-grouped sequences such as S1 are added

to the closest subtree. In the above case, S1 is added to the left subtree.

extension aims at preventing greedy progressive alignment mistakes. These mistakes

are especially likely as long as we are aligning the �rst two sequences or quite small

pro�les. If we go up in the guide tree and align pro�les consisting of more than 10

sequences we have quite a lot of pairwise alignment information available and thus,

we are less likely to make a mistake. Hence, the triplet extension is indispensable in

the di�erent subtrees of the guide tree but could be omitted among the subtrees to

save time and space. To facilitate such a group-based triplet extension we cluster

the guide tree into subtrees of a user-de�ned minimum size. The subtree clustering

algorithm enumerates all guide tree vertices in reversed breadth-�rst search order

and then labels each internal vertex with the number of leaves underneath it. If

the number of leaves reaches the user-de�ned minimum size, we de�ne that internal

vertex as the root of a subtree. In the end, we have a number of clustered sequences

and a few sequences belonging to subtrees with less than the required number of

sequences as shown in Figure 6.4. These unclustered sequences are now added

to the closest subtree. Therefore the worst-case behavior occurs in a completely

unbalanced guide tree because all sequences would end up in the same group. In

practice, however, we usually encounter quite balanced guide trees where a number

of subtrees can be identi�ed and hence, the triplet extension can be limited to these

subtrees.

6.2.7 Progressive alignment

The progressive alignment builds a MSA along a guide tree using the previously cre-

ated alignment graph that contains all the weighted, re�ned matches. In contrast to

85

6. Multiple Sequence Alignment

Figure 6.5: The progressive alignment uses a guide tree shown on the right and an

alignment graph with edge-weights shown on the left. Next to each internal guide tree node

a vertex pro�le of the already aligned subtree is shown. At each pro�le position (separated

by vertical bars) we store only vertex descriptors but show the sequence information here

for a better understanding.

other tools, our algorithm progressively aligns strings of vertices instead of the usual

strings of sequence characters. This additional level of indirection has the bene�t

that vertices can represent diverse information such as sequence characters, sequence

segments or even abstract entities such as genes. The bene�t of aligning a vertex v1

with v2 is given by the edge-weight wev1,v2
. In the pairwise case, we are interested

in �nding the heaviest set of edges that constitutes a valid alignment. This problem

can be solved by means of the heaviest common subsequence algorithm (Jacobson

and Vo, 1992). Although the original algorithm assumed common subsequence char-

acters, it can be applied to a bipartite alignment graph. Each weighted edge present

in the graph simply connects two 'common' entities in the sequence of vertices. The

outcome of the heaviest common subsequence algorithm is a set of trace edges. This

trace is then condensed to a vertex pro�le. That is, we create a new string where at

each position we encounter either a single vertex (aligned to gaps) or two vertices

connected by one of the trace edges. This new string or vertex pro�le can now be

used to align another string of vertices, again by means of the heaviest common

subsequence algorithm. If multiple vertices are present at one pro�le position we

set the edge weight to the average of the original edge weights. This bottom-up

progressive alignment procedure is summarized in Figure 6.5.

6.3 Implementation

The initial segment matches are collected in a String . Each segment match is

characterized by the two sequence ids taking part in the match, the two begin

86

6.3. Implementation

positions and the length of the segment match. We also support reversible seg-

ment matches by means of the template specialization ExactReversibleFragment in-

stead of the default ExactFragment specialization. Reversible segment matches

have an additional boolean value indicating the orientation of the match. All built-

in methods to generate segment matches have been subsumed under the function

appendSegmentMatches , which can be specialized for di�erent methods to gener-

ate segment matches. Examples are all-against-all pairwise global and local align-

ments (Algorithm tags: GlobalPairwise_Library and LocalPairwise_Library) or all-

against-all comparisons using the longest common subsequence algorithm (Tag:

Lcs_Library). The String of segment matches can also be augmented by external

segment matches such as matches derived from BLAST, MUMmer or a T-Co�ee

library.

Subsequently, all collected segment matches are re�ned using a recursive im-

plementation of the pseudo-code shown in Algorithm 2 developed by Anne-Katrin

Emde (Emde, 2007). The key data structure used in the re�nement algorithm is

an interval tree (Edelsbrunner, 1980). Given a boundary position w, an interval

tree T i for each sequence Si is used to e�ciently retrieve all segments that contain

w. The algorithm performs recursively all necessary cuts until all segment matches

are disjoint or identical. At the end of the re�nement algorithm all re�ned segment

matches are inserted into the alignment graph and possibly rescored.

The binary guide tree TG required for the progressive alignment is constructed

from a distance matrix D using the functions njTree or upgmaTree . Both tree

reconstruction methods are also available as a stand-alone application requiring

a distance matrix in Phylip (Felsenstein, 1989) format as input. The output is

a tree in Newick or DOT graph format that can be easily rendered as shown in

Figure 6.6. The neighbor-joining method does, however, create unrooted trees.

Since our subsequent progressive alignment requires a binary guide tree, we root the

unrooted tree arti�cially at the edge created last. Hence, the original unrooted tree

can be retrieved by collapsing the root, i.e., by means of merging its two outgoing

edges into a single edge with a weight equal to the sum of the former outgoing edges.

The �nal progressive alignment algorithm originally worked recursively but has

now been turned into an iterative algorithm. It enumerates all vertices of the guide

tree TG in reversed breadth-�rst search order. Thus, we traverse the guide tree

bottom up and �nish at the root node. For each leaf, we create a trivial String of

87

6. Multiple Sequence Alignment

Figure 6.6: A binary guide tree reconstructed from a Phylip distance matrix (upper right

corner). The edge labels are the distances.

vertex descriptors. For each internal node, we retrieve the two strings or pro�les of

vertices from the child nodes, apply the heaviestCommonSubsequence algorithm and

associate the new vertex pro�le with the internal node. In the end, the vertex pro�le

at the root node is the desired alignment. We return the vertex pro�le at the root

node as a new alignment graph that constitutes a valid trace. This alignment graph

is then converted to an alignment matrix using the algorithm previously shown in

Figure 4.7 and Algorithm 1 on page 64.

Meta-alignments as a means of combining several subalignments are also sup-

ported. We simply subdivide the input alignments into pairwise segment matches

and then apply the algorithm pipeline described before. Since our algorithm is

segment-based, we bene�t from long conserved regions present in all subalignments.

Such a situation allows a rapid computation of a new meta-alignment.

88

Multi-Read Alignment

7.1 Overview

With hundreds of ongoing de novo assembly and resequencing projects a new kind

of alignment problem, called multi-read alignment, is of increasing importance. Fre-

quently used synonyms are consensus alignment or consensus computation. In order

to sequence the genome of an organism, the so-called target genome, scientists use

sequencing platforms. The outcome of such a sequencer run is a set of reads and

possibly paired-end or mate-pair information as shown in Figure 7.1 and explained

hereafter. The initial target genome is copied and randomly broken into small frag-

ments. In paired-end sequencing, two reads are sequenced per fragment, one from

each end. The two reads stemming from the same fragment are called a mate-pair.

The reads have varying length ranging from as short as 30 nucleotides to more

than a 1000 nucleotides depending on the used sequencing technology. The new se-

quencing platforms such as 454 Life Sciences (www.454.com), Illumina's Solexa se-

quencing technology (www.illumina.com) and Applied Biosystems SOLiD Sequenc-

ing (www.appliedbiosystems.com) produce shorter reads (< 500 nucleotides) than

the old Sanger technology (≈ 1000 nucleotides), which was used in the �rst human

genome sequencing project. The massive throughput of the new sequencing plat-

forms, however, outweighs the disadvantage of producing shorter reads. In addition,

the read lengths are expected to further increase. For instance, the very short Solexa

reads already have increased in length from about 35 nucleotides to more than 75

nucleotides.

Before the reads are sequenced, the fragments are usually grouped by mean

length. Each of these groups, called fragment or mate-pair library, has a mean

length and a standard deviation describing the variation of fragment lengths within

89

7. Multi-Read Alignment

Figure 7.1: A target genome is copied and randomly broken into small fragments. In

paired-end sequencing, each fragment is sequenced from both ends. The sequenced regions

are called reads and the two reads belonging to the same fragment are called a mate-pair.

the library.

Once a genome has been sequenced, an assembler program is used to reconstruct

the target genome from the set of reads. This set can contain thousands or even

several millions of sequenced reads. There are two main assembly strategies: (1) de

novo assembly and (2) reference-guided assembly.

The term de novo sequence assembly refers to the assembly of a genome from the

raw read data without the help of an already sequenced reference genome. Classical

de novo genome assemblers follow a three phase protocol: overlap phase, layout

phase and consensus phase. In the overlap phase every read is compared to every

other read and based upon the putative overlaps an overlap graph of the reads is

computed. The overlap graph contains true overlaps as well as spurious overlaps

introduced by sequencing errors, repeats or random alignments. The layout phase

identi�es a subgraph in the overlap graph that de�nes a consistent layout of the

reads. That is, con�icting overlaps are heuristically resolved. The resulting resolved

overlap graph determines an approximate placement of each read. Given such an

approximate layout, a multi-read aligner computes the consensus sequence as well

as a multi-read alignment. Consequently, the multi-read alignment problem is quite

distinct from the alignments discussed so far, since it has to deal with a huge number

of short reads that overlap only by a few bases.

In reference-guided assembly projects, we encounter a very similar multi-read

alignment problem. In this scenario, the raw read data is mapped to a close relative

whose genomic sequence is already available. For this reason, this kind of an assem-

bly is also called template assembly, comparative assembly or resequencing in case

of the same organism. The strength of this approach is that the overlap and layout

90

7.1. Overview

Figure 7.2: A newly sequenced genome with an unknown insertion with respect to a

reference genome. The mapped reads (black lines) can be used to infer the layout of the

mate pairs (gray lines). Mate pairs are indicated by arrows pointing to each other and the

connecting, dotted line in-between them. From this inferred layout a multi-read alignment

can be computed.

phase are unnecessary. The weakness, however, is that we have no placement infor-

mation for unmapped reads, except possible mate-pair information. Consequently,

one needs to keep the number of unmapped reads small by choosing an appropriate

reference genome.

A great variety of tools has been designed and developed speci�cally for the

purpose of mapping short reads. Examples are MAQ (Li et al., 2008a), SOAP (Li

et al., 2008b), Bowtie (Langmead et al., 2009) or RazerS (Weese et al., 2009) from

the SeqAn library. Almost all programs use a two step protocol: (1) A �ltration

algorithm is applied in order to identify candidate regions that possibly contain

a match and (2) these candidate regions are veri�ed for true matches. Filtration

methods are based on single (Kent, 2002; Ma et al., 2002) or multiple seeds (Li et al.,

2003), the pigeonhole principle (Navarro and Ra�not, 2002; Li et al., 2008a,b), or

counting lemmas using (gapped) q-grams (Burkhardt et al., 1999; Rasmussen et al.,

2005). Veri�cation methods encompass semi-global alignment algorithms (Myers,

1999) or local-alignment algorithms (Smith and Waterman, 1981).

Given the �nal set of mapped reads, we can, however, only infer the mutual

alignment of reads to themselves from this reference-based mapping. This implies

that we cannot infer a correct multi-read alignment in novel insertions that are not

present in the reference sequence. For small insertions, we might encounter reads

bridging the insertion but for large-scale insertions we can only use anchored mate-

pairs where exactly one read of the pair mapped to the reference (see Figure 7.2).

91

7. Multi-Read Alignment

... 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...

Consensus G A T T G A G A C T G T A − C T G A T C

← Read1 G A T T A A G A C

→ Read2 A T T G A G A C T G T A − C T − A

← Read3 T G A G − C T G C A T C T G A T

← Read4 G A G A C T G T A − C T

→ Read5 A G − C T G C A − C T G A A C

→ Read6 G A C T G T A − C T G A

→ Read7 G − C T G C A − C T G A T C

Figure 7.3: Amulti-read alignment showing seven reads. The read orientation is indicated

by the arrow in front of the read name. The top row shows the consensus sequence. The

consensus letter in each column is the most frequent letter with ties broken arbitrarily. By

iterating through the alignment column by column, one can identify sequencing errors in

column 13, 22 and 25, and putative polymorphisms in column 16 and 20.

Current mate-pair libraries produce, however, mate-pairs of quite varying insert

sizes. Libraries with about 10% size deviation are rather the rule than the exception.

In summary, we encounter two multi-read alignment scenarios in de novo and ref-

erence guided sequence assembly projects. In the �rst scenario the reads have quite

accurate layout positions. This case corresponds to a situation where, for instance,

all the reads could be mapped and we are only unsure about small insertions. In

the second scenario, however, we have a number of unmapped reads and only with

the help of mate-pair information we can infer the positioning of the reads. In de

novo assembly projects the accuracy of the read layout largely depends on the as-

sembler's layout module, so we might encounter both situations here. To address

both scenarios, we designed, developed and experimentally veri�ed two algorithms

for multi-read alignments, a ReAligner algorithm (Anson and Myers, 1997) for ac-

curate layout positions and a robust graph-based multi-read alignment algorithm

for inaccurate layout positions. Both algorithms are described in detail in the next

two sections.

To conclude this overview we also want to explain the desired properties of a �nal

multi-read alignment. In contrast to protein alignments, multi-read alignments are

92

7.2. ReAligner

only seldomly inspected manually. Quite often researchers automatically process

such large-scale alignments by tools that call SNPs, detect genomic variations or

separate haplotypes. Because of that, it is highly bene�cial if the alignments are

so accurate that a simple column-based consensus calling is possible. A very small

example highlighting this important property is shown in Figure 7.3. The illustrated

multi-read alignment allows the distinction of sequencing errors from true variations.

For instance, the 'A' in column 13, the 'T' in column 22 or the '−' in column 25

are most likely sequencing errors because they are not supported by any other read

overlapping this position. Column 16 and column 20, however, are more likely to be

true polymorphisms since both variants 'A/−' and 'C/T' are supported by a number
of reads. Note that sequencing errors as well as true polymorphisms can introduce

spurious overlaps, which is one of the main obstacles that needs to be overcome by

a consensus method.

7.2 ReAligner

In this section we describe the initial ReAligner algorithm (Anson and Myers, 1997)

and the extensions made by us. As before, we �rst describe the algorithmic compo-

nents and then explain our implementation.

7.2.1 Algorithmic components

The ReAligner algorithm is a so-called round-robin algorithm. It starts with an ini-

tial, possibly erroneous multi-read alignment, removes every read one by one and re-

aligns each removed read to the multi-read alignment de�ned by the remaining reads.

The assumption of the algorithm is that the initial errors are only local whereas the

multi-read alignment itself is globally correct. Hence, we want to optimize the align-

ment with respect to the approximate layout. As for protein alignments, it is not

immediately obvious what mathematical function describes an optimal alignment.

A possible objective is to minimize the number of errors with respect to a consensus

sequence. The simplest consensus sequence can be derived by choosing the most

frequent letter in each column. Hence, for a single alignment column u, we pick the

most frequent letter c that minimizes the number of errors of all other aligned reads

93

7. Multi-Read Alignment

Figure 7.4: During each realignment iteration a read is removed from the multi-read

alignment and realigned to a banded portion of the consensus derived from the remaining

reads.

spanning the given column.

min
c∈Σ̃
|{aiu : aiu 6= c}|

Remember that aiu is the alignment character in row i and column u. i iterates

over all reads spanning column u. The constraint that reads have to span the given

column ensures that gaps preceding and following a read are not considered. In a

multi-read alignment these leading and trailing gaps are of no interest. In summary,

the objective function is to �nd a multi-read alignment A of length l̃ that minimizes

Score(A) =
∑

0≤u<l̃

min
c∈Σ̃
|{aiu : aiu 6= c}|

and respects the initial global layout. The last condition is ensured by realigning

each read only within a band of size b surrounding the read's original position

as shown in Figure 7.4. The actual removal of a read, its realignment and its

reintegration into the alignment is described next.

Pro�le generation and read removal

In a preliminary step, we condense the initial multi-read alignment to a pro�le P .
P is a string of pro�le characters pu and P is of length l̃ where l̃ is the length of

the initial multi-read alignment. pu stores the number of gaps and the number of

occurrences of each letter σ ∈ Σ̃ appearing in column u of the alignment. Such a

pro�le can be immediately used to score the full multi-read alignment according to

the above objective function. We retrieve the most frequent letter in every column

and subtract its occurrence count from the total number of letters and gaps in the

given column. The subsequent removal of readi involves a decrement of the character

94

7.2. ReAligner

counts in all spanned columns and the possible removal of those alignment columns

that contain only gaps.

ReAlignment and Scoring

The realignment of readi has to be bounded to an ε-environment in order to keep

the global structure. Hence, readi is only realigned to a subsequence of the pro�le.

Let begini and endi be the original begin and end position of readi in pro�le P . The
desired subsequence is Pxy such that x = begini − b and y = endi + b where b is a

user-de�ned bandwidth. Given the pro�le subsequence and the read, we can realign

both sequences using dynamic programming and a user-de�ned scoring function.

Two default scoring functions have been implemented and are described hereafter.

The �rst scoring function uses the set of consensus letters Cu for each pu ∈ Pxy.

Cu contains the most frequent letters appearing in column u. We then score a read

character s ∈ Σ using

δc(s, Cu) =

 0 : s ∈ Cu
−1 : s /∈ Cu

Such a scoring is in general very useful but has the drawback of losing all the

information about the letters that are not in Cu. In other words, an alignment

column with 9 A's and 10 '−'s would score a gap with 0 but all other characters

with −1 even the quite plausible A. To circumvent such cases one could use a

fractional score δf . Let aiu be again the alignment character in row i and column u

and n be the number of reads spanning column u. Then δf is de�ned as

δf (s,Au) =

 −|{a
i
u : aiu 6= s}|/n : n > 0

−1 : n = 0

δf is 0 if all characters in column u are equal to s and the more negative the more

characters disagree with s. Hence, the score mirrors the fractional content of the

column equal to s. In our implementation both scoring functions δf and δc can be

used independently or as a weighted average. The default implementation uses the

weighted combination proposed in the original ReAligner paper (Anson and Myers,

1997).

δcf (s,Au, Cu) =
1

2
· δc(s, Cu) +

1

2
· δf (s,Au)

Unfortunately, both scoring functions are only heuristics to approximate the objec-

tive function. An optimal layout cannot be guaranteed but in practice the algorithm

95

7. Multi-Read Alignment

works very well. Using the above scoring function and a banded alignment algorithm,

the removed read is realigned to the pro�le subsequence Pxy.

Inserting the read back into the global multi-read alignment

Based upon the pro�le to read alignment we can reinsert the read. Any gap in the

pro�le results in a new gap column in the multi-read alignment containing only the

read's character and gaps. Gaps in the read as well as matches and mismatches can

be simply inserted into the existing alignment and pro�le sequence without adding

any new alignment column.

This process is then iterated for all other reads. At the end, the new pro�le is

rescored. Let Score(A′) denote the multi-read alignment after one full realignment

iteration of all reads. Then the process is terminated if Score(A′) ≥ Score(A) since

we are minimizing the objective function

Score(A) =
∑

0≤u<l̃

min
c∈Σ̃
|{aiu : aiu 6= c}|

Extensions

We extended the above basic ReAligner algorithm to handle the increasingly popular

reference guided sequence assemblies as well as RNA-Seq or ChIP-Seq approaches.

RNA-Seq refers to the use of the new sequencing platforms to study the RNA content

of a sample whereas ChIP-Seq highlights binding sites of proteins. For all of these

methods, we will observe reference genome parts that are covered with reads and

other parts that are not covered with reads. For instance, most non-coding regions

in RNA-Seq will be uncovered unless there are random matches. In the above cases,

we cannot readily apply the realignment algorithm because it would shrink the whole

alignment to the covered parts and eliminate all uncovered regions. In particular, for

RNA-Seq and ChIP-Seq the relationship to the original reference genome is crucial.

Because of that, we added an option to the algorithm that allows the inclusion of a

reference sequence. That sequence is used during the consensus generation and the

realignment of reads but it is excluded from being realigned itself to all other reads.

We also included the reference sequence in the output to highlight di�erences of the

newly computed consensus to the old reference.

The second extension we made is an option to substitute the basic dynamic

programming scoring using position-dependent gap costs with an algorithm that

96

7.2. ReAligner

supports position-dependent gap costs and an additional gap-opening penalty. This

option is useful for low coverage regions. In these regions the consensus tends to be

unreliable and sequences might get disrupted by many interspersed gaps. To avoid

such a behavior, we introduced this new scoring method.

7.2.2 Implementation

In Chapter 4 we introduced the FragmentStore data structure that is used through-

out the realignment algorithm. Speci�cally, the algorithm makes use of the read

store, the contig store and the aligned read store. The read store and the contig

store are merely queried to retrieve the actual sequence data of the reads and the

contig chosen for realignment. The aligned read store, however, is used multiple

times and because of that, we present it once again here.

Aligned Read Store
•Index: none
•Members: read id

contig id
pair match id
begin pos
end pos
gaps
unique id

The aligned read store is the only store within the fragment store that has no

indexable �eld. This implies that the store can be arbitrarily sorted.

The input to the realignment algorithm is the fragment store, a scoring object

and a contig id. The consensus score δc, the fractional score δf and the combined

consensus and fractional score δcf have been subsumed under the common scoring

interface introduced in Section 5.2. The corresponding tags are ConsensusScore ,

FractionalScore and WeightedConsensusScore . Hence, a consensus score using inte-

gers can be declared as Score<int, ConsensusScore> . The �rst step in the algorithm

is to sort the aligned read store according to the contig id. We then select all the

reads within the contig and sort that range according to the begin pos. Afterwards,

we iterate over all the reads, create the pro�le P for the multi-read alignment and

calculate the initial Score(A). Finally, a simple loop shown in Algorithm 3 is en-

tered and executed as long as the score of the newly calculated multi-read alignment

is decreasing. The inner loop removes each read from the pro�le P , realigns it to the
banded pro�le Pxy using linear or constant gap costs (e.g. BandedNeedlemanWunsch

97

7. Multi-Read Alignment

Algorithm 3 ReAlignment loop

1: score = Score(A)

2: repeat

3: score_old = score

4: ReAlign all reads and create A′

5: score = Score(A′)
6: until score ≥ score_old

or BandedGotoh) and reintegrates the read in the multi-read alignment. The ac-

tual bandwidth b and the used dynamic programming algorithm are con�gurable

parameters. Optionally, the user can specify to include a reference sequence. This

sequence is not realigned but used to create the pro�le string P .

7.3 Graph-based Multi-Read Alignment

The key di�erence between the realignment algorithm and the graph-based multi-

read alignment algorithm is that the former trusts and relies on the global layout

of the reads whereas the latter builds such a reliable global layout from a possibly

inaccurate initial alignment using pairwise overlap alignments. Hence, the realign-

ment algorithm is only able to correct small local inconsistencies whereas our second

method, the graph-based multi-read alignment algorithm, is more robust in that re-

spect since it only requires a �rough� layout of the reads. How �rough� the layout can

be depends on several factors, including the quality of the reads, the length of the

reads and the coverage. The quality and the length of a read have great in�uence

on the accuracy of the computed pairwise overlaps. The more false positive over-

laps there are, the more di�cult is the correct positioning of each and every read.

Similarly, a higher coverage usually helps to di�erentiate random overlaps from true

alignments. In Part III of this thesis we will see the strength and weaknesses of both

methods on real and simulated data.

7.3.1 Algorithmic components

The multi-read alignment algorithm can be broadly subdivided into four processing

steps: (1) computation of pairwise overlap alignments, (2) alignment graph con-

struction, (3) consistency extension and (4) a graph-based progressive alignment.

98

7.3. Graph-based Multi-Read Alignment

Pairwise overlap alignments

The assumed input of the algorithm is a set of reads with their estimated begin

and end positions. These estimated layout positions can, for example, stem from an

assembler's layout module or they are inferred from mate pair information as shown

previously in Figure 7.2 on page 91. Especially for the second case, the positions tend

to deviate strongly from the true positions depending on the standard deviation of

the used paired-end library. If the deviation is small the algorithm can be con�gured

to use the positions of two given reads directly for estimating the alignment diagonal

of a banded overlap alignment with a�ne gap costs (Gotoh, 1982). As mentioned

previously, a banded overlap alignment initializes the dynamic programming matrix

with zeros and computes only a band of size b around the estimated alignment

diagonal where b is the bandwidth. Besides the accuracy of the layout positions, the

choice of b depends on two parameters: the sequencing error rate and the length of

the overlap. Hence, the baseline for b is a con�gurable parameter that is adjusted

linearly based on the length of the overlap. Usually, it is unnecessary to compute

all possible pairwise overlaps, especially for deep coverage sequencing projects. For

that reason we provide a parameter that adjusts how many overlaps are computed

per given read. The more error-prone the reads are, the more overlaps one should

compute per read. If the deviation is large or in other words, the initial positions are

unreliable then we also support a window based computation of pairwise overlaps.

That is, all pairwise overlap alignments of reads lying in a user-de�ned window are

computed with a standard dynamic programming algorithm.

Subsequent to the computation of overlap alignments, we select all overlaps of

signi�cant quality and length. Similar to the bandwidth, both parameters are adapt-

able from the command line. The selected overlaps are then subdivided into un-

gapped alignments (segment matches) as explained previously in Chapter 6.

Alignment graph construction

We reuse the multiple segment match re�nement algorithm (Rausch et al., 2008a)

introduced in Chapter 6 to subdivide overlapping segment matches into distinct sub-

matches so that no segment match begins or ends within another segment match.

We then construct the alignment graph by de�ning a vertex for each sequence seg-

ment and an edge for each segment match. The weight of this edge depends on the

99

7. Multi-Read Alignment

Figure 7.5: The alignment on the left shows globally related sequences whereas the one on

the right shows a simpli�ed multi-read alignment. Note that the direction of the alignment

is solely dependent on the edges.

quality of the segment match. Note that the alignment graph is also suitable to

represent partially overlapping sequences as shown in Figure 7.5.

Consistency extension

We once again apply the triplet extension (Notredame et al., 2000) to incorporate

multiple alignment information in the pairwise edges. However, we do not compute

a full triplet extension because in case of hundreds or even thousands of reads this

would be too expensive. We limit the triplet extension to a reweighting of the

existing edges but we do not insert new edges as described before for the protein

multiple alignment.

Graph-based progressive alignment

In the last step, the consistency-enhanced alignment graph is used to progressively

align the reads according to a guide tree. This guide tree is constructed from the

overlap alignment scores using a sparse distance matrix and the fast UPGMA algo-

rithm (Sokal and Michener, 1958). A sparse distance matrix is used instead of an

ordinary matrix because for each read only c other reads are expected to overlap

where c is the assembly coverage. The guide tree ensures that the best quality over-

laps are aligned �rst whereas the di�cult and error-prone overlaps caused by reads

with many sequencing errors come in late, when partial alignments along subtrees

are already quite large and �xed. The progressive alignment itself is completely

independent of the nature of the sequences. Given an input alignment graph, it

builds a multiple alignment along the guide tree simply by aligning strings of ver-

100

7.3. Graph-based Multi-Read Alignment

tices as explained before. There is one notable exception: In case of a multi-read

alignment the pro�les will have only about c vertices at each position where c is

again the coverage. Thus, the amount of required memory depends on the coverage

and the source sequence length. It is, however, largely independent of the num-

ber of reads. This is a key distinction of our method to current multiple sequence

alignment tools where the pro�les grow linearly with the number of sequences. In a

�nal post-processing step we compute the consensus sequence and convert the �nal

pro�le into a multi-read alignment.

7.3.2 Implementation

The pairwise overlap computations make use of the BandedGotoh algorithm. Dur-

ing the traceback of each pairwise alignment we �ll a string of segment matches,

String<Fragment<> > . We append the newly found segment matches to the global

segment match store if and only if the overlap alignment is of signi�cant length and

quality. We also store the pairwise alignment score in a sparse distance matrix.

This sparse distance matrix is implemented as an undirected graph such that each

sequence is a vertex and an edge between two sequences represents the alignment

score. The sparse distance matrix is the input to the UPGMA tree reconstruction

algorithm. The output is a guide tree that indicates when every read is added to

the growing multi-read alignment. Because of possibly contradicting matches, the

global set of segment matches is re�ned using the function matchRe�nement and

subsequently, the initial alignment graph is built. That graph is extended using

the reduced triplet extension and �nally, a progressive alignment computes a valid

trace using the heaviest common subsequence algorithm (Jacobson and Vo, 1992)

in each progressive step. The �nal multi-read alignment can be printed to a simple

text �le or written in AMOS message �le format. The AMOS library provides a

number of �le conversion utilities that can be used to convert this message �le to

Arachne (Batzoglou et al., 2002) ace �les or Celera Assembler (Myers et al., 2000)

�les, for instance. In addition, the AMOS library provides a contig viewer called

Hawkeye (Schatz et al., 2007) that can be used to visualize the multi-read alignment.

101

7. Multi-Read Alignment

102

Part III

Tools and Applications

103

SeqAn::T-Co�ee

In Chapter 6 we described the MSA algorithm that is used in our tool SeqAn::T-

Co�ee. Part of the tool is also a meta-alignment method called SeqAn::M-Co�ee.

Both methods are in�uenced by a variety of parameters that can be set on the

command line. In Section 8.2, we �rst evaluate the impact of the di�erent parameter

choices on the �nal alignment. As our standard of truth, we took the BAliBASE

3.0 (Thompson et al., 1999a, 2005) benchmark. The benchmark is subdivided into

6 standard reference sets RV11, RV12, RV20, RV30, RV40 and RV50. Each of these

sets contains a number of alignment instances of full-length sequences. For each

alignment instance the benchmark provides a corresponding reference alignment

with an annotation of core block regions where the sequences can be unambiguously

aligned. These core blocks are used to compare a computed alignment with the

reference alignment. The benchmark also includes a scoring program that calculates

the sum of pairs score (SP) and the total column score (TC) on the core block regions

(see Section 8.1). In Section 8.3 we compare our algorithm to other state-of-the-art

methods using the BAliBASE 3.0 and PREFAB 4.0 benchmark data sets. Finally,

this chapter concludes with a brief overview of the command line of our tool.

8.1 SP and TC Score

The SP score (Thompson et al., 1999b) measures how many pairs of sequence char-

acter have been correctly aligned with respect to the BAliBASE reference alignment.

Let ci,ju ∈ {0, 1} be a boolean indicator variable with i 6= j. If ci,ju = 1 then the align-

ment character aiu of sequence S̃i in column u is correctly aligned (with respect to

the reference alignment) to the alignment character aju of sequence S̃j in column u.

105

8. SeqAn::T-Co�ee

If this is not the case ci,ju = 0. Hence, in an alignment A of n sequences, the score

for column u is equal to

Cu(A) =
∑

0≤i<j<n

ci,ju

The SP score ScoreSP is then the fractional number of correctly aligned pairs of

sequence characters.

ScoreSP (A) =

∑l̃−1
u=0Cu(A)∑r̃−1

u=0C
r
u

=

∑l̃−1
u=0

∑
0≤i<j<n c

i,j
u∑r̃−1

u=0C
r
u

where l̃ and r̃ are the number of columns in the computed alignment and in the

reference alignment, respectively. Cr
u is the score Cu of the u-th column in the

reference alignment.

The TC score (Thompson et al., 1999b) measures how many total alignment

columns have been correctly computed compared to the reference alignment. For

the TC score, C∗u(A) = 1 if all the sequence characters in column u are also aligned

in the reference alignment, otherwise C∗u(A) = 0. The TC score ScoreTC is thus the

fractional number of correctly aligned columns.

ScoreTC(A) =

∑l̃−1
u=0C

∗
u(A)

l̃

8.2 Parameter Evaluation

Using progressive alignment, the MSA computation can be con�gured by a range of

parameters. In this section, we explore the impact of these parameters on the �nal

alignment quality. In particular, we analyze the e�ect of choosing appropriate gap

penalties, scoring matrices, pairwise alignment algorithms and tree reconstruction

methods.

8.2.1 Gap penalties

The initial input segment matches of our method can be generated using external

tools such as BLAST or MUMmer or internal alignment algorithms. These align-

ment algorithms are either global or local algorithms. Both kinds of algorithms use a

scoring matrix and gap penalties to compute the optimal pairwise alignment. Using

the BAliBASE RV11 reference set, we computed a �nal multiple sequence alignment

for all reference set alignment instances using various gap opening and gap extension

106

8.2. Parameter Evaluation

penalties. In Figure 8.1 and Figure 8.2 we show the SP and TC score for all �nal mul-

tiple alignments using only global pairwise alignments to generate segment matches.

In Figure 8.3 and Figure 8.4 we show the SP and TC score for all �nal multiple

alignments using only local pairwise alignments to generate segment matches. The

contour lines in the bottom plane clearly show the range of reasonable gap penalty

values to compute global and local pairwise alignments. For global alignments, the

gap opening cost should be between −11 and −15 and the gap extension penalty

should be equal to −1. For local alignments, a less stringent gap opening penalty

should be applied, −8 or −9 seems to be a good choice. For local alignments, the

best TC and SP score was achieved with (gex, gop) = (−1,−8). For global align-

ments, the best TC score was achieved with (gex, gop) = (−1,−11) whereas the best

SP score was achieved with (gex, gop) = (−1,−13). For all subsequent analyses, we

�xed the gap penalties for local alignment algorithms to (gex, gop) = (−1,−8) and

for global alignment algorithms to (gex, gop) = (−1,−13).

107

8. SeqAn::T-Co�ee

 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32

-16-15-14-13-12-11-10-9-8-7-6-5-4

-4

-3

-2

-1

 0

 10

 15

 20

 25

 30

 35

 40

TC score

 30
 25
 20
 15

Gap opening penalty

Gap extension penalty

TC score

Figure 8.1: The average TC score on the �rst reference set of BAliBASE using di�erent

gap opening penalties (gop) and gap extension penalties (gex). Input segment matches

were derived from global alignments only, using a BLOSUM62 scoring matrix. The contour

lines at the bottom plane indicate that −11 ≥ gop ≥ −15 and gex = −1 are reasonable

choices for global pairwise alignments according to the TC score.

 30

 35

 40

 45

 50

 55

 60

-16-15-14-13-12-11-10-9-8-7-6-5-4

-4

-3

-2

-1

 0

 30

 35

 40

 45

 50

 55

 60

SP score

 55
 50
 45
 40
 35

Gap opening penalty

Gap extension penalty

SP score

Figure 8.2: The average SP score on the �rst reference set of BAliBASE using di�erent

gap opening penalties (gop) and gap extension penalties (gex). Input segment matches

were derived from global alignments only, using a BLOSUM62 scoring matrix. The contour

lines at the bottom plane indicate that −11 ≥ gop ≥ −16 and gex = −1 are reasonable

choices for global pairwise alignments according to the SP score.

108

8.2. Parameter Evaluation

 10

 15

 20

 25

 30

 35

-16-15-14-13-12-11-10-9-8-7-6-5-4

-4

-3

-2

-1

 0

 10

 15

 20

 25

 30

 35

 40

TC score

 30
 25
 20
 15

Gap opening penalty

Gap extension penalty

TC score

Figure 8.3: The average TC score on the �rst reference set of BAliBASE using di�erent

gap opening penalties (gop) and gap extension penalties (gex). Input segment matches

were derived from local alignments only, using a BLOSUM62 scoring matrix. The contour

lines at the bottom plane indicate that −8 ≥ gop ≥ −11 and gex = −1 are reasonable

choices for local pairwise alignments according to the TC score.

 30

 35

 40

 45

 50

 55

 60

-16-15-14-13-12-11-10-9-8-7-6-5-4

-4

-3

-2

-1

 0

 30

 35

 40

 45

 50

 55

 60

SP score

 55
 50
 45
 40
 35

Gap opening penalty

Gap extension penalty

SP score

Figure 8.4: The average SP score on the �rst reference set of BAliBASE using di�erent

gap opening penalties (gop) and gap extension penalties (gex). Input segment matches

were derived from local alignments only, using a BLOSUM62 scoring matrix. The contour

lines at the bottom plane indicate that −7 ≥ gop ≥ −9 and −1 ≥ gex ≥ −3 are reasonable

choices for local pairwise alignments according to the SP score.

109

8. SeqAn::T-Co�ee

8.2.2 Scoring matrix

The BLOSUM (Heniko� and Heniko�, 1992) and PAM (Dayho� et al., 1979) matri-

ces are frequently used amino acid substitution matrices. The BLOSUM matrices

are based upon multiple local alignments of conserved blocks occurring in amino

acid sequences. The BLOSUM62 matrix, for instance, has been constructed using

an alignment of sequences with 62% identity. The observed changes in these align-

ments are then counted and converted to the speci�c scoring matrix. In contrast to

the BLOSUM matrices that are all based upon observed amino acid changes, the

PAM X matrices are all extrapolated from PAM1 by means of taking the x-th power

of the initial PAM1 matrix. PAM stands for �percent accepted mutation� and the

PAM1 matrix has been calculated from an alignment of sequences with 99% iden-

tity. Hence, BLOSUM matrices with small numbers such as BLOSUM45 assume

distantly related sequences whereas BLOSUM80 is suitable for closely related pro-

teins. For PAM matrices it is the opposite, PAM250 is used for distantly related

proteins whereas PAM45 can be used for closely related sequences. In Figure 8.5 we

show the average SP and TC score for all BAliBASE reference sets using di�erent

substitution matrices. The choice of the speci�c substitution matrix has surpris-

ingly little in�uence on the �nal alignment quality, except for PAM45 that performs

poorly on some of the alignment instances. Overall the BLOSUM matrices seem

to be slightly better than the PAM matrices and BLOSUM62 seems to be the best

choice on average.

8.2.3 Pairwise alignment algorithms

Most progressive alignment tools start with pairwise global and / or local alignments

such as T-Co�ee (Notredame et al., 2000), MAFFT (Katoh et al., 2005) or our own

method. We analyzed the e�ect of the initial pairwise alignment method on the

�nal SP and TC score. The results are shown in Figure 8.6. For the reference

set RV40 with long terminal extensions, the overlap method performs signi�cantly

better than the global alignment method because it does not penalize leading and

terminal gaps. The local alignment method, however, is equally suitable to align

such sequences. For the reference set RV11 with sequences of similar length, the

global alignment method outperforms the overlap method. What stands out is

that adding additional pairwise alignment information in terms of combining global,

110

8.2. Parameter Evaluation

RV11 RV12 RV20 RV30 RV40 RV50

Reference Sets

S
co

re

0

20

40

60

80

100

RV11 RV12 RV20 RV30 RV40 RV50

Reference Sets

S
co

re

0

20

40

60

80

100

BLOSUM45
BLOSUM62
BLOSUM80
PAM45
PAM120
PAM250

Figure 8.5: A comparison of scoring matrices used to compute the initial set of segment-

matches. The SP scores (bars in gray) and the TC scores (shaded bars) on all BAliBASE

reference sets RV11, RV12, · · ·, RV50 are shown.

local and overlap alignments does on average improve the �nal MSA quality. This

argues in favor of the triplet extension that seems to be able to extract the true

multiple conserved patterns. The scores increase largely for combining local and

global alignments and to a lesser extent when adding overlap alignments. Because

of that, the default alignment method uses only global and local alignments.

111

8. SeqAn::T-Co�ee

RV11 RV12 RV20 RV30 RV40 RV50

Reference Sets

S
co

re

0

20

40

60

80

100

RV11 RV12 RV20 RV30 RV40 RV50

Reference Sets

S
co

re

0

20

40

60

80

100

Global
Local
Overlap
Global, Local
Global, Local, Overlap

Figure 8.6: Di�erent combinations of pairwise alignment algorithms can be used to

compute the initial segment-matches. The SP scores (bars in gray) and the TC scores

(shaded bars) on all BAliBASE reference sets RV11, RV12, · · ·, RV50 are shown.

8.2.4 Tree reconstruction

We implemented two di�erent tree reconstruction algorithms, namely neighbor-

joining and UPGMA. The UPGMA algorithm can either use single, complete, aver-

age or weighted average clustering. In Figure 8.7 and Figure 8.8 we show boxplots

of the TC and SP scores from all implemented tree reconstruction algorithms on

112

8.2. Parameter Evaluation

SP score

RV11

RV12

RV20

RV30

RV40

RV50

0 20 40 60 80 100

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

Figure 8.7: Boxplots showing for each reference set RV11, RV12, · · ·, RV50 the SP scores

of each tree reconstruction method.

the full BAliBASE reference benchmark, subdivided according to the reference sets

RV11, RV12, · · ·, RV50. The boxplot highlights the distribution of scores by means

of showing the median (the vertical bar in the middle of each box), the lower and

upper quartile (the left and right boundary of the box) and the extreme values (the

end of each �whisker� to the left and right). Based on the above experiments, the

di�erences among the tree reconstruction algorithms are minor. All methods have

a similar median and variance although the neighbor-joining method slightly out-

performs all other methods, in particular on the reference set RV11 and for the TC

113

8. SeqAn::T-Co�ee

TC score

RV11

RV12

RV20

RV30

RV40

RV50

0 20 40 60 80 100

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

NJ

UPGMA Min

UPGMA Max

UPGMA Avg

UPGMA Wavg

Figure 8.8: Boxplots showing for each reference set RV11, RV12, · · ·, RV50 the TC scores

of each tree reconstruction method.

score also on the reference set RV20 and RV30. What stands out is that the TC

score variation is huge compared to the SP score variation because a single mis-

aligned sequence can cause the TC score to drop to zero. The SP score is in that

sense more robust since it evaluates each pair of aligned characters independently

of all other pairs. For all subsequent analyses, we used the neighbor-joining method

as the default tree reconstruction algorithm.

114

8.3. Results

8.3 Results

SeqAn::T-Co�ee is our versatile multiple sequence alignment tool for amino acid

and nucleotide sequences. The meta-method of the tool is called SeqAn::M-Co�ee.

As the original M-Co�ee (Wallace et al., 2006), SeqAn::M-Co�ee can be con�gured

to use di�erent subaligners such as MAFFT (Katoh et al., 2002), ProbCons (Do

et al., 2004), MUSCLE (Edgar, 2004b) or any other method. We compared both

algorithms, SeqAn::M-Co�ee and SeqAn::T-Co�ee, to a number of other tools on

the BAliBASE 3.0 (Thompson et al., 1999a, 2005) and PREFAB 4.0 (Edgar, 2004b)

benchmark alignment datasets (see Section 8.3.1 and Section 8.3.2). For nucleotide

sequences, such benchmarks are still missing. Therefore we used the genomic se-

quences of six adenoviruses and four serotypes causing dengue fever to test all meth-

ods for aligning long DNA sequences (see Section 8.3.3). We downloaded for all tools

the newest, stable version available. Our own method and all other methods were run

with default parameters on all data sets. If input or output �les needed to be con-

verted to other formats we used the EMBOSS version 6.0.1 library (Rice et al., 2000).

We compared our method with AMAP version 2.2 (Schwartz and Pachter, 2007),

Clustal W version 2.0.11 (Larkin et al., 2007), DIALIGN-TX version 1.0.2 (Subra-

manian et al., 2005, 2008), Kalign version 2 (Lassmann and Sonnhammer, 2005),

MAFFT version 6.71 (Katoh et al., 2002), MUSCLE version 3.7 (Edgar, 2004b,a),

Opal version 1.0.3 (Wheeler and Kececioglu, 2007), POA version 2 (Grasso and Lee,

2004), ProbCons version 1.12 (Do et al., 2004), T-Co�ee version 8.06 (Notredame

et al., 2000) and M-Co�ee version 8.06 (Wallace et al., 2006). We could not use

ABA version 1.01 (Raphael et al., 2004) since the tool outputs a De Bruijn graph

in DOT format instead of a true multiple alignment. Although this is bene�cial to

identify repeats or shu�ed domains, it would also be highly interesting to see the

method's capabilities to compute collinear alignments.

8.3.1 BAliBASE

BAliBASE 3.0 is the most widely used protein benchmark. We applied all tools to

all available reference sets in BAliBASE and computed for all alignment instances

the SP and TC score for each aligner. The results on BAliBASE are summarized in

Table 8.1.

115

8. SeqAn::T-Co�ee
R
V
1
1
(3
8
)

R
V
1
2
(4
4
)

R
V
2
0
(4
1
)

R
V
3
0
(3
0
)

R
V
4
0
(4
9
)

R
V
5
0
(1
6
)

C
P
U

A
li
g
n
er

S
P

T
C

S
P

T
C

S
P

T
C

S
P

T
C

S
P

T
C

S
P

T
C

T
im
e
(s
)

A
M
A
P

5
0
.2
5
∗∗
2
6
.0
3
∗∗

9
0
.6
6
∗∗
7
8
.1
1
∗∗

8
6
.2
5
∗∗
2
7
.1
7
∗∗

7
0
.7
1
∗∗
2
6
.9
3
∗∗

7
7
.0
5
∗∗
3
7
.9
6
∗∗

7
9
.2
0
∗
4
2
.3
8
∗

1
9
8
3
9

C
lu
st
a
l
W

5
0
.0
6
∗∗
2
2
.7
4
∗∗

8
6
.4
3
∗∗
7
1
.1
6
∗∗

8
5
.1
6
∗∗
2
1
.9
8
∗∗

7
2
.5
0
∗∗
2
7
.2
3
∗∗

7
8
.9
3
∗∗
3
9
.5
5
∗∗

7
4
.2
5
∗∗
3
0
.7
5
∗∗

1
5
3
9

D
IA
L
IG

N
-T
X

5
1
.5
2
∗∗
2
6
.5
3
∗∗

8
9
.1
8
∗∗
7
5
.2
3
∗∗

8
7
.8
7
∗∗
3
0
.4
9
∗∗

7
6
.1
8
∗∗
3
8
.5
3
∗∗

8
3
.6
4
∗∗
4
4
.8
2
∗∗

8
2
.2
8
∗∗
4
6
.5
6
∗

5
9
5
3

K
a
li
g
n

6
0
.5
3
∗
3
6
.5
0
∗

9
1
.2
1
∗∗
7
8
.9
3
∗∗

9
0
.0
3
∗
3
5
.9
0
∗

8
1
.2
6

4
7
.6
0

8
8
.3
9
∗∗
5
0
.3
9
∗∗

8
2
.0
1
∗
4
3
.5
0
∗

3
1

M
A
F
F
T

6
6
.1
9

4
3
.7
9

9
3
.3
6

8
3
.3
6

9
2
.7
0

4
5
.1
2

8
7
.0
7

5
8
.5
0

9
2
.1
9

6
0
.2
4

9
0
.2
5

5
9
.0
6

2
1
1
3

M
U
S
C
L
E

5
7
.1
6
∗
3
1
.7
9
∗

9
1
.5
4
∗∗
8
0
.3
9
∗∗

8
8
.9
1

3
5
.0
0

8
1
.4
4
∗
4
0
.8
7

8
6
.4
9
∗∗
4
5
.0
2
∗

8
3
.5
2

4
5
.9
4

1
2
2
4

O
p
a
l

6
5
.7
8

4
0
.1
8

9
3
.6
8

8
4
.0
2

9
0
.7
7

3
4
.8
5

8
2
.6
2

4
4
.4
0

8
4
.2
0

5
5
.2
2

8
7
.3
3

4
9
.3
8

2
5
4
2
5

P
O
A

3
7
.9
6
∗∗
1
5
.2
6
∗∗

8
3
.1
9
∗∗
6
3
.8
4
∗∗

8
5
.2
8
∗∗
2
3
.3
4
∗∗

7
1
.9
3
∗∗
2
8
.2
3
∗∗

7
6
.6
9
∗∗
3
3
.6
7
∗

7
1
.4
9
∗∗
2
7
.0
0
∗∗

1
2
3
4

P
ro
b
C
o
n
s

6
6
.9
7

4
1
.6
6

9
4
.1
2

8
5
.5
5

9
1
.6
7

4
0
.6
3

8
4
.5
3

5
4
.3
7

9
0
.3
4

5
3
.2
2

8
9
.4
1

5
7
.3
1

1
9
7
3
9

S
eq
A
n
::
T
-C
o
�
ee

6
4
.4
3

3
8
.9
7

9
2
.7
4

8
1
.5
7

9
1
.9
1

4
2
.8
5

8
4
.1
5

5
3
.1
7

9
1
.6
0

5
8
.5
7

8
9
.0
1

5
9
.5
0

5
6
8
7

T
-C
o
�
ee

6
6
.6
3

4
2
.0
8

9
4
.1
7

8
5
.4
5

9
0
.7
9

3
7
.3
2

8
3
.6
1

4
7
.5
0

8
9
.7
0

5
3
.9
2

8
9
.4
4

5
8
.7
5

2
9
2
6
6

M
-C
o
�
ee

[m
p
]

6
8
.1
3

4
4
.0
0

9
3
.9
9

8
4
.8
6

9
2
.6
1

4
5
.5
9

8
6
.1
8

5
7
.5
7

9
1
.9
1

5
9
.1
4

9
0
.0
1

5
8
.1
2

2
4
9
3

M
-C
o
�
ee

[m
p
s]

6
7
.8
8

4
3
.5
0

9
3
.9
9

8
4
.4
1

9
2
.6
6

4
5
.5
1

8
6
.4
6

5
8
.5
7

9
1
.3
7

5
8
.1
8

9
0
.7
9

6
3
.0
6

2
8
7
3

M
-C
o
�
ee

[m
p
st
]

6
8
.3
8

4
2
.7
1

9
4
.0
4

8
4
.4
8

9
2
.3
6

4
3
.9
0

8
6
.1
2

5
7
.5
0

9
1
.5
9

5
9
.9
2

9
0
.5
7

6
3
.3
1

3
1
7
0

S
eq
A
n
::
M
-C
o
�
ee

[m
p
]

6
9
.0
0

4
4
.8
7

9
4
.3
2

8
5
.9
3

9
2
.9
9

4
7
.0
7

8
6
.6
6

6
0
.3
7

9
2
.4
9

5
7
.0
8

9
0
.3
4

6
0
.9
4

5
5
0

S
eq
A
n
::
M
-C
o
�
ee

[m
p
s]

6
9
.2
0

4
4
.9
7

9
4
.0
6

8
4
.7
5

9
2
.9
2

4
7
.2
9

8
6
.4
7

5
8
.7
0

9
2
.9
5

5
9
.9
2

9
0
.7
9

6
2
.3
8

9
2
1

S
eq
A
n
::
M
-C
o
�
ee

[m
p
st
]
6
9
.8
3

4
5
.9
7

9
4
.3
7

8
6
.0
0

9
2
.6
6

4
4
.7
8

8
6
.7
0

5
9
.6
3

9
3
.0
1

5
9
.9
2

9
1
.0
3

6
2
.8
1

1
1
8
0

T
a
b
le

8
.1
:
B
A
li
B
A
S
E
3.
0:

A
ve
ra
ge

su
m
-o
f-
p
ai
rs
sc
or
es

(S
P
)
an
d
av
er
ag
e
to
ta
l
co
lu
m
n
sc
or
es

(T
C
)
fo
r
al
l
re
fe
re
n
ce

se
ts
R
V
11
-R
V
50
.

T
h
e
to
ta
l
ru
n
n
in
g
ti
m
e
is
re
p
or
te
d
in
th
e
la
st
co
lu
m
n
.
T
h
e
n
u
m
b
er
of
m
u
lt
ip
le
al
ig
n
m
en
t
�
le
s
in
ea
ch

re
fe
re
n
ce
se
t
is
gi
ve
n
in
p
ar
en
th
es
es
.

A
ll
sc
or
es
h
av
e
b
ee
n
m
u
lt
ip
li
ed

b
y
10
0
an
d
th
e
b
es
t
p
ro
gr
am

is
sh
ow

n
in
b
ol
d
fa
ce

fo
r
ea
ch

co
lu
m
n
.
T
h
e
w
il
co
x
on

ra
n
k
te
st
w
as

u
se
d
to

as
se
ss
si
gn
i�
ca
n
t
d
i�
er
en
ce
s
fr
om

th
e
b
es
t
m
et
h
o
d
,
in
d
ic
at
ed

b
y
∗
(p
<

0
.0

5)
or
∗∗
(p
<

0
.0

1)
.
T
h
e
su
b
m
et
h
o
d
s
fo
r
al
l
m
et
a-
m
et
h
o
d
s
(M

-

C
o�
ee
,
S
eq
A
n
::
M
-C
o�
ee
)
ar
e
gi
ve
n
in

b
ra
ck
et
s
w
it
h
m
:M

A
F
F
T
,
p
:P
ro
b
C
on
s,
s:
S
eq
A
n
::
T
-C
o�
ee

an
d
t:
T
-C
o�
ee
.
F
or

th
e
m
et
a-
m
et
h
o
d
s,

w
e
ex
cl
u
d
ed

th
e
ru
n
n
in
g
ti
m
e
of
th
e
su
b
m
et
h
o
d
s
to

h
ig
h
li
gh
t
th
e
ov
er
h
ea
d
in
d
u
ce
d
b
y
th
e
m
et
a-
m
et
h
o
d
.

116

8.3. Results

The best single alignment methods are MAFFT, Opal, Probcons, SeqAn::T-

Co�ee and T-Co�ee. Opal failed on three of the BAliBASE alignment instances

due to insu�cient memory. MAFFT and SeqAn::T-Co�ee are more than three

times as fast as Opal, Probcons and T-Co�ee. All �ve methods improve largely over

the ubiquitously used Clustal W (Larkin et al., 2007). The most accurate methods

are the meta-alignment methods, M-Co�ee and SeqAn::M-Co�ee. SeqAn::M-Co�ee

using MAFFT, Probcons, SeqAn::T-Co�ee and T-Co�ee is the best method on the

BAliBASE benchmark. In addition, SeqAn::M-Co�ee tends to outperform the orig-

inal M-Co�ee on most instances. This suggests an improvement of SeqAn::M-Co�ee

resulting from the segment-based extension and the graph-based progressive align-

ment. This improvement in alignment quality compared to M-Co�ee comes along

with a signi�cant improvement in performance, with SeqAn::M-Co�ee only requir-

ing about one third of the CPU time of the original M-Co�ee. What stands out is

that both meta-methods outperform their constituting methods. Once again, the

inclusion of additional match information seems to be bene�cial. This was shown

before also for additional pairwise alignments in terms of combining global, local

and overlap alignments. This also underlines the fact that none of the tools seems

to be perfect for all scenarios covered by the BAliBASE reference sets. The other

segment-based method DIALIGN-TX performs not as good as our method. This

suggests that our segment-match re�nement approach coupled with a consistency-

based progressive alignment is more accurate than the selection of a consistent subset

out of all unre�ned segment matches. The only other graph-based aligner POA is

also signi�cantly worse than our own alignment method. The fastest method among

all tools is Kalign. Despite the method's impressive speed, Kalign still outperforms

frequently used methods such as Clustal W. It is, however, on some of the reference

sets signi�cantly worse than the best method.

117

8. SeqAn::T-Co�ee
≤

1
0
%

1
0
%
−

2
0
%

2
0
%
−

3
0
%

3
0
%
−

4
0
%

4
0
%
−

1
0
0
%

C
P
U

A
li
g
n
er

(2
4
0
)

(6
2
0
)

(4
9
9
)

(1
1
4
)

(2
0
9
)

T
im
e
(s
)

A
M
A
P

1
4
.7
4
∗∗

4
5
.7
1
∗∗

7
8
.6
9
∗∗

9
0
.4
1
∗∗

9
5
.2
2
∗∗

5
3
9
9
4

C
lu
st
a
l
W

2
0
.3
0
∗∗

4
9
.2
1
∗∗

7
6
.7
3
∗∗

8
9
.5
5
∗∗

9
5
.1
3

6
8
3
5

D
IA
L
IG

N
-T
X

2
0
.4
0
∗∗

4
9
.8
3
∗∗

7
7
.9
3
∗∗

8
9
.1
1
∗∗

9
6
.8
2

3
5
3
0
5

K
a
li
g
n

2
5
.0
4
∗∗

5
4
.0
2
∗∗

7
8
.8
1
∗∗

8
9
.1
6
∗∗

9
6
.5
8

1
0
6

M
A
F
F
T

3
3
.9
6

6
4
.0
0

8
5
.4
6
∗

9
3
.6
3

9
6
.7
5

5
8
8
1

M
U
S
C
L
E

2
6
.7
5
∗∗

5
7
.6
2
∗∗

8
2
.6
5
∗∗

9
2
.0
4

9
5
.9
1

3
0
4
7

O
p
a
l

3
0
.0
6
∗∗

6
0
.2
3
∗∗

8
3
.4
2
∗∗

9
1
.8
5

9
5
.4
5

3
7
4
9
0

P
O
A

1
1
.2
7
∗∗

3
5
.4
8
∗∗

6
3
.1
0
∗∗

8
0
.8
5
∗∗

9
5
.3
8
∗∗

4
4
2
2

P
ro
b
C
o
n
s

3
2
.7
8

6
3
.2
1
∗

8
5
.5
6

9
3
.3
0

9
6
.2
6
∗∗

1
1
5
0
3
5

S
eq
A
n
::
T
-C
o
�
ee

3
1
.0
2
∗

6
1
.4
2
∗∗

8
3
.4
0
∗∗

9
1
.6
4
∗

9
6
.7
2

5
1
0
0
7

T
-C
o
�
ee

3
3
.3
4

6
2
.2
1
∗∗

8
4
.0
5
∗∗

9
1
.9
1
∗

9
6
.2
8
∗∗

1
2
4
6
9
7

M
-C
o
�
ee

[m
p
]

3
4
.7
4

6
4
.6
2

8
5
.8
0

9
3
.5
2

9
6
.7
3

1
7
4
2
8

M
-C
o
�
ee

[m
p
s]

3
4
.2
9

6
4
.3
0

8
5
.3
5

9
2
.9
0

9
6
.4
2

2
0
0
1
4

M
-C
o
�
ee

[m
p
st
]

3
4
.1
5

6
4
.3
5

8
5
.0
1
∗

9
2
.6
4

9
6
.4
1
∗

2
1
3
6
6

S
eq
A
n
::
M
-C
o
�
ee

[m
p
]

3
4
.2
9

6
5
.5
3

8
6
.4
8

9
3
.6
7

9
6
.8
2

2
7
5
4

S
eq
A
n
::
M
-C
o
�
ee

[m
p
s]

3
4
.6
6

6
5
.3
8

8
6
.0
0

9
3
.7
1

9
6
.9
7

4
6
6
4

S
eq
A
n
::
M
-C
o
�
ee

[m
p
st
]

3
5
.6
7

6
5
.3
3

8
6
.3
2

9
3
.6
6

9
6
.6
8

5
5
4
0

T
a
b
le

8
.2
:
P
R
E
F
A
B
4.
0:

A
ve
ra
ge

Q
sc
or
es

fo
r
al
l
P
R
E
F
A
B
al
ig
n
m
en
ts
.
A
li
gn
m
en
ts

h
av
e
b
ee
n
su
b
d
iv
id
ed

ac
co
rd
in
g
to

se
q
u
en
ce

id
en
ti
ty

ra
n
ge
s.

T
h
e
n
u
m
b
er

of
m
u
lt
ip
le
al
ig
n
m
en
t
�
le
s
in

ea
ch

su
b
se
t
is
gi
ve
n
in

p
ar
en
th
es
es
.
A
ll
sc
or
es

h
av
e
b
ee
n
m
u
lt
ip
li
ed

b
y
10
0

an
d
th
e
b
es
t
p
ro
gr
am

is
sh
ow

n
in

b
ol
d
fa
ce

fo
r
ea
ch

co
lu
m
n
.
T
h
e
w
il
co
x
on

ra
n
k
te
st
w
as

u
se
d
to

as
se
ss
si
gn
i�
ca
n
t
d
i�
er
en
ce
s
fr
om

th
e

b
es
t
m
et
h
o
d
,
in
d
ic
at
ed

b
y
∗
(p
<

0.
05
)
or
∗∗

(p
<

0.
01
).

T
h
e
su
b
m
et
h
o
d
s
fo
r
al
l
m
et
a-
m
et
h
o
d
s
(M

-C
o�
ee
,
S
eq
A
n
::
M
-C
o�
ee
)
ar
e
gi
ve
n

in
b
ra
ck
et
s
w
it
h
m
:M

A
F
F
T
,
p
:P
ro
b
C
on
s,
s:
S
eq
A
n
::
T
-C
o�
ee

an
d
t:
T
-C
o�
ee
.
F
or

th
e
m
et
a-
m
et
h
o
d
s
w
e
ex
cl
u
d
ed

th
e
ru
n
n
in
g
ti
m
e
of
th
e

su
b
m
et
h
o
d
s
to

h
ig
h
li
gh
t
th
e
ov
er
h
ea
d
in
d
u
ce
d
b
y
th
e
m
et
a-
m
et
h
o
d
.

118

8.3. Results

8.3.2 PREFAB

For the PREFAB 4.0 (Edgar, 2004b) benchmark data set we clustered all reference

alignments according to their sequence identity. The PREFAB benchmark also

provides a scoring program that calculates a Q score for each alignment. The Q score

is according to the authors of the benchmark equivalent to the BAliBASE SP score.

As before, all methods were run with default parameters on all data sets and any

�le conversion was performed by means of the EMBOSS library (Rice et al., 2000).

The results on PREFAB are summarized in Table 8.2. The PREFAB results con�rm

the results obtained on BAliBASE. MAFFT, Opal, Probcons, SeqAn::T-Co�ee and

T-Co�ee seem to be on average the best stand-alone alignment tools. Kalign is once

again the fastest method. The PREFAB benchmark highlights that Kalign performs

the best on closely related sequences and is less suitable for divergent sequences.

The di�erence between the meta-alignment methods and the single aligners is more

pronounced on PREFAB than on BAliBASE. The best meta-alignment method is

usually signi�cantly better than most of the single alignment methods. SeqAn::M-

Co�ee once again outperforms the original M-Co�ee in terms of alignment quality.

At the same time, SeqAn::M-Co�ee is several orders of magnitudes faster than M-

Co�ee.

8.3.3 DNA sequence alignment

By means of using an alignment graph of sequence segments, SeqAn::T-Co�ee is

suitable to align genomic nucleotide sequences. To test that purpose, we evalu-

ated all available packages on a set of 6 adenoviruses of length 35KB obtained from

the NCBI server (Accession: NC_001460, NC_004001, NC_001405, NC_002067,

NC_003266, and NC_001454). Since no reference alignment is available for these

long DNA sequences, we merely evaluated the ability of the programs to maxi-

mize the level of identity within the �nal multiple sequence alignment. Our quality

measure is the level of sequence identity in each column. In Table 8.3 we report

the number of columns with at least 6, 5, 4, and 3 identical characters together

with the running times of the programs and the average identity. We �rst tried all

the programs using the same default command line options as for the amino acid

alignments, possibly turning on some kind of DNA switch. Using this setting all pro-

grams reported an allocation error, except Kalign, MAFFT and SeqAn::T-Co�ee.

119

8. SeqAn::T-Co�ee

Aligner = 6 ≥ 5 ≥ 4 ≥ 3 Avg. identity CPU Time (s)

Kalign 12133 17670 24540 32271 62% 190

SeqAn::T-Co�ee 13057 18936 25569 32419 64% 1098

MAFFT 12594 17990 24458 31832 62% 720

DIALIGN-TX* 11993 16897 22956 30573 59% 3153

MUSCLE* 50 817 5257 21849 25% 1176

SeqAn::T-Co�ee* 13419 20108 26515 33143 65% 336

Table 8.3: Running time and alignment quality of an alignment of 6 adenoviruses of

average length 35027 nucleotides. The number of columns with at least 6, 5, 4, and 3

identical characters are reported together with the average identity. Methods marked with

a * have been run with command line options that either improve the speed of the method

or reduce the memory consumption.

Among these tools Kalign is again by far the fastest method whereas our approach

delivers the best results. The results of Kalign, MAFFT and SeqAn::T-Co�ee are

summarized in Table 8.3. All other tools reporting an allocation error have been

omitted. We then tried to adapt the other programs to this kind of alignment task

using various command line options. In cases where we succeeded, we included

the results of the best settings in Table 8.3 and added a * to the methods. For

SeqAn::T-Co�ee, we also included a second method marked with a * that does not

use local and global alignments. This method's set of input matches consists of

BLAST matches and matches retrieved from pairwise comparisons using the longest

common subsequence algorithm. We included that method to highlight the abil-

ity of SeqAn::T-Co�ee to use external and / or internal segment-match generation

algorithms.

Since most programs reported an allocation error on the set of adenovirus genom-

es, we also analyzed a smaller set of closely related virus serotypes causing dengue

fever of length 10KB (Accession numbers: NC_001477, NC_001474, NC_001475,

and NC_002640). All programs managed to align this set of sequences, except

Opal and T-Co�ee. The latter method, T-Co�ee, managed to align this set using

the quick-align command line option. Using the same notation and analysis as in

Table 8.3 we report the results of all aligners on this smaller set in Table 8.4. Once

again, Kalign outperformed all other methods in terms of speed at an acceptable

level of quality. Probcons and AMAP have been designed to align protein sequences

120

8.3. Results

Aligner = 4 ≥ 3 Avg. identity CPU Time (s)

AMAP 517 768 6% 217

Clustal W 5454 7964 69% 101

DIALIGN-TX 5385 7947 68% 229

Kalign 5445 7956 69% 8

MAFFT 5454 7954 69% 80

MUSCLE 5470 7994 69% 350

POA 5584 8135 70% 41

Probcons 3009 5806 51% 1595

SeqAn::T-Co�ee 5566 8103 69% 50

DIALIGN-TX* 5391 7949 68% 204

MUSCLE* 5481 8000 69% 54

SeqAn::T-Co�ee* 5881 8495 72% 46

T-Co�ee* 5497 8013 69% 48

Table 8.4: Running time and alignment quality of an alignment of four virus serotypes

causing dengue fever of average length 10703 nucleotides. The number of columns with at

least 4 and 3 identical characters are reported together with the average identity. Methods

marked with a * have been run with command line options that either improve the speed

of the method or reduce the memory consumption.

and hence, they cannot be recommended for alignments of DNA sequences. All

other tools deliver almost equally good results with SeqAn::T-Co�ee having a minor

advantage in terms of quality over the remaining tools.

121

8. SeqAn::T-Co�ee

8.4 Command Line

The command line options of ./seqan_tco�ee are given below.

Usage: seqan_tcoffee -s <FASTA sequence file> [Options]

-h, --help displays this help message

-V, --version print version information

Main Options:

-s, --seq <FASTA Sequence File> file with sequences

-a, --alphabet [protein | dna | rna] sequence alphabet (default protein)

-o, --outfile <Filename> output filename (default out.fasta)

-f, --format [fasta | msf] output format (default fasta)

Segment Match Generation Options:

-m, --method list of match generation methods

global = Global alignments

local = Local alignments

overlap = Overlap alignments

lcs = Longest common subsequence

Default: global,local

/*No spaces in-between.*/

-bl, --blast <File1>,<File2>,... list of BLAST match files

-mu, --mummer <File1>,<File2>,... list of MUMmer match files

-al, --aln <File1>,<File2>,... list of FASTA align files

-li, --lib <File1>,<File2>,... list of T-Coffee libraries

Scoring Options:

-g, --gop <Int> gap open penalty (default -11)

-e, --gex <Int> gap extension penalty (default -1)

-ma, --matrix <Matrix file> score matrix (default Blosum62)

-ms, --msc <Int> match score (default 5)

-mm, --mmsc <Int> mismatch penalty (default -4)

Guide Tree Options:

-u, --usetree <Newick guide tree> tree filename

-b, --build [nj, min, max, avg, wavg] tree building method (default nj)

nj = Neighbor-joining

min = UPGMA single linkage

max = UPGMA complete linkage

avg = UPGMA average linkage

wavg = UPGMA weighted average linkage

/*Neighbor-joining creates an

unrooted tree. We root that tree

at the last joined pair.*/

Alignment Evaluation Options:

-i, --infile <FASTA alignment file> alignment file

The input of the algorithm is a multiple sequence �le in FASTA format. The se-

quence alphabet can be DNA, RNA or protein. The initial segment matches can be

122

8.4. Command Line

computed using pairwise global, local or overlap alignments. For DNA sequences the

longest common subsequence method is also a suitable method. Alternatively, one

can read segment matches from external sources such as BLAST or MUMmer match

�les, other alignment �les or a T-Co�ee library. If internal alignment algorithms are

selected one can optionally set scoring parameters such as the scoring matrix or gap

penalties on the command line. Similarly, the guide tree reconstruction method can

be set by means of a command line argument. The computed multiple sequence

alignment can be written to a �le in FASTA or MSF format.

123

8. SeqAn::T-Co�ee

124

Sequence Consensus

In Chapter 7 we described two algorithms for computing multi-read alignments,

SeqAn-ReAlign and SeqAn-Graph. Both methods are part of our sequence con-

sensus command line tool ./seqcons described and evaluated in this chapter. The

former algorithm, SeqAn-ReAlign, was described in Section 7.2. It is a reengineered

and adapted version of the original ReAligner algorithm proposed in 1997 (Anson

and Myers, 1997). The latter algorithm, SeqAn-Graph, uses a modi�ed pipeline

of the graph-based multiple sequence alignment algorithm. This algorithm was de-

scribed in Section 7.3. The two main applications for multi-read alignments are

reference-guided genome assembly and de novo sequence assembly. In Section 9.1

and Section 9.2, we grouped the evaluation and analysis of the ./seqcons program

according to these two applications.

9.1 Multi-Read Alignment in De Novo Assembly

Classical assemblers follow a three phase protocol: overlap, layout and consensus

phase. The output of the overlap and the subsequent layout module is a set of reads

with their approximate layout positions. Using this positioned read set a consensus

method computes a multi-read alignment and the �nal consensus sequence. The

overlap, layout and consensus module are usually part of a monolithic fragment

assembler. This lack of modularity (or a possible lack of documentation) made it

very di�cult for us to compare our method with other state-of-the-art algorithms.

125

9. Sequence Consensus
S
et
ti
n
g

0
.5
%

E
rr
o
r
R
a
te

1
%

E
rr
o
r
R
a
te

2
%

E
rr
o
r
R
a
te

4
%

E
rr
o
r
R
a
te

S
o
u
rc
e
L
en
g
th

R
ea
d
L
en
g
th

C
ov
er
a
g
e

T
o
o
l

E
rr
o
rs
T
im
e

E
rr
o
rs
T
im
e

E
rr
o
rs
T
im
e

E
rr
o
rs
T
im
e

5
0
,0
0
0

8
0
0

1
0
x

A
M
O
S
-C
o
n
s

0
0
.2
0
s

0
0
.2
8
s

2
0
.4
2
s

8
2
1
.3
4
s

C
A
-C
o
n
s

1
1
.7
6
s

0
1
.8
1
s

5
2
.1
9
s

>
2
0

5
.8
0
s

S
eq
A
n
-R
eA

li
g
n

0
5
.4
2
s

0
7
.7
8
s

1
2
1
.2
6
s

2
3
4
.7
3
s

S
eq
A
n
-G
ra
p
h

0
2
.8
3
s

1
3
.3
2
s

1
4
.8
6
s

3
8
.4
6
s

5
0
,0
0
0

2
0
0

2
0
x

A
M
O
S
-C
o
n
s

0
0
.3
4
s

0
0
.4
8
s

0
0
.9
8
s

0
1
7
.0
4
s

C
A
-C
o
n
s

0
3
.7
4
s

0
4
.4
4
s

3
6
.9
0
s

>
2
0

1
0
.1
0
s

S
eq
A
n
-R
eA

li
g
n

0
8
.2
8
s

0
1
0
.5
2
s

0
1
4
.8
2
s

0
2
9
.3
8
s

S
eq
A
n
-G
ra
p
h

0
1
8
.0
5
s

0
2
3
.8
0
s

0
3
4
.0
3
s

1
5
0
.7
9
s

5
0
,0
0
0

3
5

3
0
x

A
M
O
S
-C
o
n
s

0
1
.2
1
s

1
1
.4
1
s

0
3
.1
5
s

1
0

7
.1
8
s

C
A
-C
o
n
s

0
7
.9
1
s

4
1
5
.2
3
s

-
-

-
-

S
eq
A
n
-R
eA

li
g
n

0
1
2
.8
0
s

0
2
4
.9
4
s

0
4
1
.1
8
s

0
5
2
.6
0
s

S
eq
A
n
-G
ra
p
h

0
4
6
4
.2
5
s

0
4
9
9
.3
3
s

0
5
5
8
.2
6
s

0
6
4
9
.3
6
s

1
0
0
,0
0
0

8
0
0

1
0
x

A
M
O
S
-C
o
n
s

0
0
.4
4
s

1
0
.6
2
s

3
0
.8
2
s

>
2
0

3
8
.8
1
s

C
A
-C
o
n
s

1
3
.4
6
s

1
3
.6
6
s

7
4
.3
8
s

>
2
0

1
0
.7
8
s

S
eq
A
n
-R
eA

li
g
n

0
1
0
.7
3
s

1
1
5
.9
8
s

0
2
4
.3
3
s

1
1

5
5
.2
3
s

S
eq
A
n
-G
ra
p
h

0
5
.7
6
s

2
7
.3
9
s

0
1
0
.7
8
s

1
1

1
9
.3
7
s

1
0
0
,0
0
0

2
0
0

2
0
x

A
M
O
S
-C
o
n
s

0
0
.8
6
s

0
1
.1
6
s

0
2
.1
3
s

1
3
0
.4
4
s

C
A
-C
o
n
s

0
9
.1
0
s

0
1
2
.4
6
s

1
0

1
4
.3
3
s

>
2
0

2
4
.4
5
s

S
eq
A
n
-R
eA

li
g
n

0
1
7
.5
0
s

0
3
0
.3
1
s

0
3
3
.2
3
s

1
6
4
.1
8
s

S
eq
A
n
-G
ra
p
h

0
5
4
.1
8
s

0
6
8
.4
0
s

0
9
6
.8
0
s

2
1
5
3
.2
8
s

1
0
0
,0
0
0

3
5

3
0
x

A
M
O
S
-C
o
n
s

0
2
.4
2
s

0
3
.1
2
s

4
5
.9
9
s

8
1
6
.1
0
s

C
A
-C
o
n
s

0
2
2
.4
3
s

7
4
8
.0
6
s

-
-

-
-

S
eq
A
n
-R
eA

li
g
n

0
5
8
.3
2
s

0
8
5
.9
8
s

0
1
3
7
.0
2
s

0
2
0
0
.1
2
s

S
eq
A
n
-G
ra
p
h

0
1
9
6
2
.3
6
s

0
2
0
4
3
.0
5
s

0
2
2
8
4
.9
6
s

0
2
5
6
2
.4
5
s

T
a
b
le

9
.1
:
A
M
O
S
-C
on
s
is
th
e
co
n
se
n
su
s
m
o
d
u
le
of

th
e
A
M
O
S
li
b
ra
ry
,
C
A
-C
on
s
is
th
e
co
n
se
n
su
s
m
o
d
u
le
of

th
e
C
el
er
a
A
ss
em

b
le
r

an
d
S
eq
A
n
-R
eA

li
gn

an
d
S
eq
A
n
-G
ra
p
h
ar
e
th
e
tw
o
p
ro
p
os
ed

co
n
se
n
su
s
m
et
h
o
d
s.
T
h
e
n
u
m
b
er

of
co
n
se
n
su
s
er
ro
rs
fo
r
al
l
p
os
it
io
n
s
w
it
h

co
ve
ra
ge
>

2
an
d
th
e
co
m
p
u
ta
ti
on

ti
m
e
ar
e
re
p
or
te
d
fo
r
ea
ch

m
et
h
o
d
.
"-
"
va
lu
es

in
d
ic
at
e
th
at

th
e
co
n
se
n
su
s
m
et
h
o
d
d
id
n
ot

p
ro
d
u
ce

a

co
n
se
n
su
s.

126

9.1. Multi-Read Alignment in De Novo Assembly

With the help of the people from the Venter Institute and the AMOS consortium,

we succeeded to run the consensus module of the Minimus assembler (Sommer et al.,

2007) from the AMOS consortium (http://amos.sourceforge.net) and the consensus

module of the Celera Assembler (Myers et al., 2000) as a stand-alone application.

However, we did not succeed for the Atlas (Havlak et al., 2004), PCAP (Huang

et al., 2003) and Phusion assembler (Mullikin and Ning, 2003). Since no multi-read

alignment benchmarks are available yet, we used simulated data to compare all

algorithms. We simulated a source sequence and randomly sampled reads from that

source sequence using di�erent error rate, read length and coverage assumptions.

Since the true source sequence is known in advance the number of consensus errors

can be counted and compared among the di�erent tools. The di�erent settings and

all results are summarized in Table 9.1.

Since the simulated global structure of the multi-read alignment is correct there is

almost no di�erence in the results of both SeqAn methods. For error rates below or

equal to 2%, both methods make hardly any mistake. Additionally, the few discrep-

ancies that did occur where in low coverage regions where a number of nucleotides

appeared equally often. Then by chance, both methods either picked the true or the

false nucleotide.The ReAlign method, however, scales signi�cantly better than the

graph-based multiple sequence alignment method. The ReAlign method's runtime

approximately doubles if the source sequence length is doubled and it also scales well

to high coverage scenarios. Due to the pairwise overlap computations, the graph-

based multiple sequence alignment method is slowed down heavily by an increasing

coverage. Hence, for accurate layout positions the ReAlign method should be pre-

ferred. The AMOS consensus program performs excellent on reads of length 200.

For other read lengths and low error rates it also performs quite good. For high

error rates, however, both SeqAn methods outperform the AMOS program. The

quality of the consensus computed by the Celera Assembler heavily depends on the

read length. For long reads, it can keep up with the AMOS and SeqAn consensus

programs. For shorter reads, however, the quality of the Celera Assembler consensus

tool degrades rapidly, in particular for high error rates. In some very di�cult cases,

the consensus module fails altogether.

127

9. Sequence Consensus

S
et
ti
n
g

N
or
m
al
d
is
tr
ib
u
ti
on

N
(µ
,σ
)

In
se
rt

R
ea
d

C
ov
e-

E
rr
or

N
(2
00
0,
50
)

N
(2
00
0,
10
0)

N
(2
00
0,
20
0)

N
(2
00
0,
40
0)

L
en
gt
h

L
en
gt
h

ra
ge

R
at
e

T
o
ol

E
rr
or
s
T
im
e

E
rr
or
s
T
im
e

E
rr
or
s
T
im
e

E
rr
or
s
T
im
e

2,
00
0

80
0

10
x

2%
A
M
O
S
-C
on
s

0
1.
02
s

0
1.
10
s

>
20

3.
73
s

>
20

7.
68
s

C
A
-C
on
s

1
0.
31
s

0
0.
67
s

>
20

1.
12
s

-
-

S
eq
A
n
-R
eA

li
gn

0
16
.4
4s

0
16
.5
3s

4
33
.0
2s

>
20

22
.8
3s

S
eq
A
n
-G
ra
p
h

0
4.
68
s

0
4.
76
s

1
4.
69
s

1
4.
44
s

2,
00
0

20
0

20
x

2%
A
M
O
S
-C
on
s

>
20

1.
42
s

>
20

4.
46
s

>
20

12
.9
1s

>
20

18
.9
0s

C
A
-C
on
s

6
0.
98
s

-
-

-
-

-
-

S
eq
A
n
-R
eA

li
gn

>
20

11
.1
8s

>
20

12
.5
6s

>
20

10
.0
7s

>
20

9.
93
s

S
eq
A
n
-G
ra
p
h

0
7.
49
s

0
8.
12
s

0
7.
71
s

>
20

7.
47
s

2,
00
0

35
30
x

2%
A
M
O
S
-C
on
s

>
20

5.
46
s

>
20

9.
09
s

>
20

17
.8
2s

>
20

13
.5
4s

C
A
-C
on
s

-
-

-
-

-
-

-
-

S
eq
A
n
-R
eA

li
gn

>
20

3.
46
s

>
20

5.
67
s

>
20

5.
08
s

>
20

6.
54
s

S
eq
A
n
-G
ra
p
h

0
14
.8
9s

0
14
.4
2s

>
20

13
.4
6s

>
20

13
.0
4s

T
a
b
le

9
.2
:
In
se
rt

S
eq
u
en
ci
n
g:

G
iv
en

a
se
t
of

m
ap
p
ed

re
ad
s
an
d
a
se
t
of

u
n
m
ap
p
ed

m
at
e
p
ai
rs

w
e
ca
n
ap
p
ro
x
im
at
e
th
e
p
os
it
io
n
s
of

th
e
u
n
m
ap
p
ed

m
at
e
p
ai
rs

fr
om

th
e
fr
ag
m
en
t
li
b
ra
ry

si
ze
.
G
iv
en

a
N
or
m
al

d
is
tr
ib
u
ti
on

N
(µ
,σ
)
d
es
cr
ib
in
g
th
e
m
ea
n
li
b
ra
ry

si
ze

an
d

it
s
d
ev
ia
ti
on
,
w
e
si
m
u
la
te
d
re
ad
s
u
n
d
er

th
e
ab
ov
e
se
tt
in
gs
.
W
e
re
p
or
t
th
e
n
u
m
b
er

of
er
ro
rs
in

th
e
co
n
se
n
su
s
se
q
u
en
ce

w
it
h
re
sp
ec
t
to

th
e
tr
u
e
in
se
rt

se
q
u
en
ce

fo
r
al
l
p
os
it
io
n
s
w
it
h
co
ve
ra
ge

>
2.

A
M
O
S
-C
on
s
is
th
e
co
n
se
n
su
s
m
o
d
u
le
of

th
e
A
M
O
S
li
b
ra
ry
,
C
A
-C
on
s
is

th
e
co
n
se
n
su
s
m
o
d
u
le
of
th
e
C
el
er
a
A
ss
em

b
le
r
an
d
S
eq
A
n
-R
eA

li
gn

an
d
S
eq
A
n
-G
ra
p
h
ar
e
th
e
tw
o
p
ro
p
os
ed

co
n
se
n
su
s
al
go
ri
th
m
s
of
th
e

S
eq
A
n
li
b
ra
ry
.
"-
"
va
lu
es

in
d
ic
at
e
th
at

th
e
co
n
se
n
su
s
m
o
d
u
le
d
id

n
ot

p
ro
d
u
ce

a
co
n
se
n
su
s.

128

9.2. Multi-Read Alignment in Reference-Guided Sequence Assembly

9.2 Multi-Read Alignment in Reference-Guided Se-

quence Assembly

For a reference-guided sequence assembly, we were particularly interested in the

computation of a multi-read alignment given inaccurate layout positions derived

from mate-pair information, such as the insert sequencing scenario described before

(see Figure 7.2 on page 91). To simulate such insert sequencing data we assumed

that all mate-pairs were sequenced from a fragment whose length was sampled from

a Normal distribution N(µ,σ). Hence, the greater the σ of the Normal distribution

is, the more imprecise are the �nal layout positions of the reads. In Table 9.2 we

summarized the results for di�erent parameters of such a Normal distribution. We

report once again the number of errors in the consensus sequence with respect to the

simulated insert sequence. The results strongly support our initial assumption that

the graph-based multiple sequence alignment approach is more robust than classi-

cal consensus methods with respect to imprecise layout positions. This assumption

could be further con�rmed by aligning the consensus sequence of each tool with

the simulated insert sequence using MUMmer (Kurtz et al., 2004) and the NUCmer

program (Delcher et al., 2002). Two example alignments are shown in Figure 9.1.

Our results indicate that the graph-based consistency extension might be a valid

approach to resolve unmapped mate-pair data and retrieve the correct insert se-

quence. Remarkable is that the read length has great in�uence on the quality of

such a multi-read alignment. The shorter the reads are, the less the method is able

to �nd reliable overlaps and hence, the consensus quality degrades with decreasing

read lengths. All other consensus methods are according to this study not suitable

for insert sequencing, except if one uses very long reads and the library deviation is

small.

A mere high-quality consensus without an accurate multi-read alignment, where

all the sequencing errors and DNA polymorphisms can be readily identi�ed, is insuf-

�cient for a sound variation analysis. Several applications such as separating hap-

lotypes, calling SNPs, or repeat resolution rely on the multi-read alignment itself.

The di�culty for the algorithms is that besides sequencing errors, source sequence

variation might further complicate the problem. For the Taeniopygia guttata (zebra

�nch) mitochondrion the NCBI Genome database provides four submitted haplo-

types (Accessions: DQ453512 - DQ453515). Although there is a reference genome

129

9. Sequence Consensus

SeqAn-Graph

SeqAn-Realign

CA-Cons

AMOS-Cons
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Q
R

Y

Reference

(a) Consensus to reference alignment: Read length 200, N(2000, 50)

SeqAn-Graph

SeqAn-Realign

CA-Cons

AMOS-Cons
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Q
R

Y

Reference

(b) Consensus to reference alignment: Read length 800, N(2000, 200)

Figure 9.1: Alignment of each consensus with the source insert sequence where coverage

> 2. Straight lines indicate matching segments and line endpoints are circled. Errors and

gaps at the beginning and at the end of the source insert sequence are due to an insu�cient

sampling of reads at these positions (coverage ≤ 2).

130

9.2. Multi-Read Alignment in Reference-Guided Sequence Assembly

for this species (Accession: NC_007897) we took the four haplotypes to sample

reads in order to test our algorithm in case of sequence variation. To quantify the

amount of variation we �rst aligned all four haplotypes. Because of high sequence

similarity, this could be easily done with MAFFT (Katoh et al., 2002). The �nal

multiple sequence alignment of the four haplotypes revealed 104 SNP locations and

one insertion. We then simulated reads of length 200 with 2% error rate from each

single haplotype at three-fold coverage. All reads were combined in a �nal testing

set. On this set, all consensus tools computed a mixture of the four haplotypes as

the consensus sequence. We then inspected the multi-read alignments manually to

identify potential mis-alignments. In Table 9.3 we show a clipped view of a multi-

read alignment of one of these SNP locations where the AMOS consensus module

mis-aligned the reads. Note that both of our consensus methods allow a simple

column-based SNP identi�cation and consensus calling, since all alleles of the SNP

ended up in the same column. In Table 9.4 we show a second example where all con-

sensus methods computed a slightly di�erent multi-read alignment. Nevertheless,

the AMOS consensus method and our two methods computed the correct consensus

sequence whereas the Celera Assembler missed one consensus letter. This example

also highlights how di�cult the identi�cation of a polymorphism is when the minor

allele is supported by only one haplotype. Presumably no automated method is go-

ing to be able to identify this polymorphic position in any of the given alignments.

Besides a simple column-based SNP identi�cation some variation detection algo-

rithms use more sophisticated approaches. For instance, the Celera Assembler itself

calls the consensus sequence using a window approach where the putative haplotype

is the one that is con�rmed by the largest number of ungapped reads (Denisov et al.,

2008). This approach may have problems if the read error rate is very high or if some

alleles are only supported by very few reads as shown in the example in Table 9.4.

131

9. Sequence Consensus

Alignment of Haplotypes

DQ453512 · · ·gggtAattgtaact· · ·
DQ453513 · · ·gggtAattgtaact· · ·
DQ453514 · · ·gggtGattgtaact· · ·
DQ453515 · · ·gggtGattgtaact· · ·

AMOS-Cons CA-Cons Seq-ReAlign Seq-Graph

ggg ggg ggg ggg

gggt-a-ttgtaact gggt-attgtaact gggt-attgtaact gggt-attgtaact

ggg ggg ggg ggg

gggtga-ttgtaact gggtGattgtaact gggtGattgtaact gggtGattgtaact

ggta-a-ttgtaact -ggtAattgtaact g-gtAattgtaact g-gtAattgtaact

gggt-aattgtaact gggtAattgtaact gggtAattgtaact gggtAattgtaact

gagtga-ttgtaact gagtGattgtaact gagtGattgtaact gagtGattgtaact

gggtga-ttgtaa-t gggtGattgtaa-t gggtGattgtaa-t gggtGattgtaa-t

gggtga-ttgtaact gggtGattgtaact gggtGattgtaact gggtGattgtaact

gggt-aattgtaact gggtAattgtaact gggtAattgtaact gggtAattgtaact

gggt-aattgtaact gggtAattgtaact gggtAattgtaact gggtAattgtaact

gggtga-ttgtaact gggtGattgtaact gggtGattgtaact gggtGattgtaact

gggt-aattgtaact gggtAattgtaact gggtAattgtaact gggtAattgtaact

gggt-aattgtaact gggtAattgtaact gggtAattgtaact gggtAattgtaact

ggt-aattgtaact ggtAattgtaact ggtAattgtaact ggtAattgtaact

gggt-a-ttgtaact gggtAattgtaact gggtAattgtaact gggtAattgtaact

Table 9.3: Multi-read alignment: A clipped view of a multi-read alignment with one SNP,

highlighted in upper case letters. The alignment of the four haplotypes is shown at the

top. Below we show for each consensus method the 15 reads spanning this region. The last

row indicates the consensus sequence, which is incorrect for the AMOS consensus method.

132

9.2. Multi-Read Alignment in Reference-Guided Sequence Assembly

Alignment of Haplotypes

DQ453512 · · ·aacAaccccg· · ·
DQ453513 · · ·aacCaccccg· · ·
DQ453514 · · ·aacAaccccg· · ·
DQ453515 · · ·aacAaccccg· · ·

AMOS-Cons CA-Cons Seq-ReAlign Seq-Graph

aac-Aacc aacaa-cc aa-cAacc aa-cAa-cc

aac-Aaccc-ccg aacaa-cccccg aa-cAacccccg aa-cAacccc-cg

aac-Aaccc-c-g aacaa-cccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Caccc-c-g aacca-cccc-g aa-cCaccc-cg aa-cCa-ccc-cg

aac-Aaccc-c-g aacaa-cccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac--cccc-c-g aac---cccccg aa-cC-ccc-cg aa-c-c-ccc-cg

aac-Aaccc-c-g aacaa-cccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Aaccc-c-g aacaa-cccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Aaccc-c-g aacaa-cccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Aaccc-c-- aacaa-cccc-- aa-cAaccc-c- aa-cAa-ccc-c-

aac-Caccc-c-g aacca-cccc-g aa-cCaccc-cg aa-cCa-ccc-cg

aaccAaccc-c-g aaccaacccc-g aaccAaccc-cg aaccAa-ccc-cg

aac-Aacccgc-g aa-caacccgcg aa-cAacccgcg aa-cAa-cccgcg

aac-Aaccc-c-g aa-caacccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Aaccc-c-g aa-caacccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Aaccc-c-g aa-caacccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Aaccc-c-g aa-caacccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Aaccc-c-g aa-caacccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Aaccc-c-g aa-caacccc-g aa-cAaccc-cg aa-cAa-ccc-cg

aac-Aaccc-c-g aa-ca-cccc-g aa-cAaccc-cg aa-cAa-ccc-cg

Table 9.4: Multi-read alignment: A clipped view of a multi-read alignment with a poly-

morphic locus where one haplotype has a C instead of an A. This position is highlighted

in upper case letters in the alignment of the four haplotypes shown at the top. Below we

show for each consensus method the 19 reads spanning this region. The last row indicates

the consensus sequence, which is incorrect for the Celera Assembler consensus method.

133

9. Sequence Consensus

9.3 Command Line

The command line options of ./seqcons are given below.

Usage: seqcons -r <FASTA file with reads> [Options]

seqcons -a <AMOS message file> [Options]

-h, --help displays this help message

-V, --version print version information

Main Options:

-r, --reads <FASTA reads file> file with reads

-a, --afg <AMOS afg file> message file

-o, --outfile <Filename> output filename (default align.txt)

-f, --format [seqan | afg] output format (default afg)

-m, --method [realign | msa] alignment method (default realign)

-b, --bandwidth <Int> bandwidth (default 8)

-n, --noalign no align, only convert input

MSA Method Options:

-ma, --matchlength <Int> min. overlap length (default 15)

-qu, --quality <Int> min. overlap precent identity (default 80)

-ov, --overlaps <Int> min. number of overlaps per read (default 3)

-wi, --window <Int> window size (default 0)

/*If this parameter is > 0 then all

overlaps within a given window

are computed.*/

ReAlign Method Options:

-in, --include include contig sequence

-rm, --rmethod [nw | gotoh] realign method (default gotoh)

The input of the algorithm is a multiple sequence �le in FASTA format where the

sequence header contains the approximate begin and end position of each read. Al-

ternatively, one can provide an AMOS afg message �le with all the contig and aligned

read information. We then use this message �le to realign all the reads belonging to

a given contig. Besides the usual input / output options we support the two align-

ment algorithms discussed before. One can either use the realignment method or

the graph-based multiple sequence alignment method. For the realignment method,

the only important parameter is the bandwidth that indicates how far a single read

can move in a single step with respect to the initial global layout. In addition, it

is possible to include the initial reference sequence to highlight the di�erences be-

tween the newly computed consensus and the former reference. For the graph-based

method the most interesting parameter is probably the window option. Given such

a window size all pairwise overlaps induced by that window are computed. Hence,

this option allows reads to move largely and this option was, for instance, used in

134

9.3. Command Line

the insert sequencing example discussed in this chapter. The overlaps option adjusts

how many overlaps are on average computed per given read. Hence, this parameter

provides a kind of switch to control the quality of the alignment versus the speed

of computing such an alignment. The remaining parameters specify how good a

found pairwise overlap alignment has to be so that it is used in the subsequent mul-

tiple sequence alignment. For most applications, the default parameters should be

su�cient here.

135

9. Sequence Consensus

136

PairAlign

PairAlign is a command line tool for pairwise sequence alignments. Pairwise align-

ments can be either global or local alignments and they can be computed in a banded

or non-banded mode. In addition, the dynamic programming can use either linear or

constant gap penalties. These di�erent options are independent of one another and

specialized algorithms for the di�erent con�gurations do exist. So far, we have only

implemented the most important global and local alignment algorithms, as shown

in Table 10.1. For each available global and local alignment algorithm we show

the corresponding algorithm tag in SeqAn. For all global alignment algorithms we

support overlap and semi-global alignments by using a so-called AlignCon�g object

to initialize the dynamic programming matrix. The �rst row and column can either

Non-banded Banded

Global algorithms

Constant gap costs NeedlemanWunsch BandedNeedlemanWunsch

Linear gap costs Gotoh BandedGotoh

Local algorithms

Constant gap costs SmithWaterman −

Linear gap costs SmithWaterman −

Table 10.1: A listing of the available global and local alignment algorithms and their

corresponding algorithm tag in SeqAn. The Smith-Waterman algorithm can be used for

constant gap penalties. It uses, however, still three dynamic programming matrices instead

of only one required for constant gap penalties.

137

10. PairAlign

be initialized with 0's or with normal gap costs. Similarly, the last row and column

can be searched for the best value for a traceback or not. Hence, there are 2 op-

tions for each side of the dynamic programming matrix and each value can be set

independently as shown below in the command line summary.

10.1 Command Line

The command line options of ./pair_align are given below.

Usage: pair_align -s <FASTA sequence file> [Options]

-h, --help displays this help message

-V, --version print version information

Main Options:

-s, --seq <FASTA Sequence File> file with 2 sequences

-a, --alphabet [protein | dna | rna] sequence alphabet (default protein)

-m, --method [nw, gotoh, sw, lcs] alignment method (default gotoh)

nw = Needleman-Wunsch

gotoh = Gotoh

sw = Smith-Waterman

lcs = Longest common subsequence

-o, --outfile <Filename> output filename (default out.fasta)

-f, --format [fasta | msf] output format (default fasta)

Scoring Options:

-g, --gop <Int> gap open penalty (default -11)

-e, --gex <Int> gap extension penalty (default -1)

-ma, --matrix <Matrix file> score matrix (default Blosum62)

-ms, --msc <Int> match score (default 5)

-mm, --mmsc <Int> mismatch penalty (default -4)

Banded Alignment Options:

-lo, --low <Int> lower diagonal

-hi, --high <Int> upper diagonal

DP Matrix Configuration Options:

-c, --config [ffff | ... | tttt] alignment configuration (default ffff)

tfff = First row with 0's

ftff = First column with 0's

fftf = Search last column for max

ffft = Search last row for max

All combinations are allowed.

The two sequences for a pairwise alignment must be present in a single FASTA

�le. It is important to note that the �rst sequence becomes the top of the dynamic

programming matrix in case one wants to use the con�guration options for the DP

matrix. For DNA and RNA a simple match / mismatch scoring system is applied

138

10.1. Command Line

whereas for protein sequences a scoring matrix is used. If two diagonals are speci�ed

the corresponding banded version of the algorithm is applied. The diagonals are

enumerated from the negative length of the second sequence to the positive length

of the �rst sequence. Hence, a lower diagonal of −2 and a upper diagonal of 2 would

specify a banded alignment that includes the main diagonal starting in the upper

left corner of the dynamic programming matrix. As for multiple alignments, the

�nal computed alignment can be written to a �le in FASTA or MSF format.

139

10. PairAlign

140

TreeRecon

TreeRecon is a command line tool providing distance-based tree reconstruction algo-

rithms, namely the UPGMA and neighbor-joining algorithm. The input of the tool

is a symmetric Phylip distance matrix. The output is a phylogenetic tree in DOT or

Newick format. The DOT format is a description language for graph visualization

whereas the Newick format is a very succinct textual description of a phylogenetic

tree. Tools such as Graphviz (www.graphviz.org) can be used to render DOT graph

�les.

11.1 Command Line

The command line options of ./pair_align are given below.

Usage: tree_recon -m <Phylip distance matrix> [Options]

-h, --help displays this help message

-V, --version print version information

Main Options:

-m, --matrix <Phylip distance matrix> file with distance matrix

At least 3 species required.

-b, --build [nj, min, max, avg, wavg] tree building method (default nj)

nj = Neighbor-joining

min = UPGMA single linkage

max = UPGMA complete linkage

avg = UPGMA average linkage

wavg = UPGMA weighted average linkage

/*Neighbor-joining creates an

unrooted tree. We root that tree

at the last joined pair.*/

-o, --outfile <Filename> output filename (default tree.dot)

-f, --format [dot | newick] output format (default dot)

As noted previously, the UPGMA algorithm supports di�erent options to merge

141

11. TreeRecon

clusters, namely single linkage, complete linkage and (weighted) average linkage. For

the neighbor-joining algorithm at least 3 species have to be present in the distance

matrix.

142

Part IV

Outlook

143

Discussion

We presented in this thesis a new segment-based approach, called SeqAn::T-Co�ee,

to compute a multiple alignment of amino acid and DNA sequences. The results

on protein benchmark data sets such as BAliBASE and PREFAB suggest that our

method can compete with state-of-the-art alignment programs. The proposed meta-

alignment algorithm is faster and more accurate than the so far best sequence-based

method M-Co�ee.

Our multi-read alignment method, called SeqCons, o�ers two di�erent algorithms;

a realignment algorithm derived from the original ReAligner program (Anson and

Myers, 1997) and a novel graph-based algorithm. The realignment algorithm is able

to compute consensus sequences in large resequencing projects whereas the graph-

based algorithm is to our knowledge one of the �rst programs that can be readily

used for insert sequencing.

In the following Section 12.1 we address the limitations of our algorithms to

clearly delineate the use cases where they are applicable and where this is not the

case. Both programs o�er several opportunities for future research and we are going

to present a few possible extensions in Section 12.2 and in the following Chapter 13.

We conclude this chapter with a brief discussion of SeqAn in Section 12.3.

12.1 Limitations

Throughout this thesis a k-partite alignment graph was used to represent and build

a multiple sequence alignment of k sequences. The graph as an additional layer of

abstraction allowed us to compute alignments using sequence segments instead of

single characters. Similarly, the graph could be used to align abstract entities such as

145

12. Discussion

genes. With respect to sequence segments, we presented a multiple segment-match

re�nement algorithm that resolves overlapping and contradicting matches so that

all parts of a match can be used. Through the course of this thesis, this segment-

match re�nement algorithm turned out to be both, a blessing and a curse. It is a

blessing since it allowed us to compute very accurate alignments. In particular, in

comparison to the other segment-based algorithm, called DIALIGN, our re�nement

approach seems to be more apt to compute accurate alignments according to the

benchmark results. The re�nement is, however, also a curse since the required, re-

cursive cutting of matches shortens the length of the initial matches. Especially for

divergent protein sequences this cutting has a strong detrimental in�uence and leads

to a graph whose vertices represent on average only very few or just a single charac-

ter. For meta-alignments, however, we usually encounter well-preserved regions in

all subalignments. Hence, the shortening of matches is less pronounced. This can be

seen in Figure 12.1 where we plotted for each alignment instance of BAliBASE the

average number of sequence characters per vertex over the number of sequences in

the given instance. There is a clear trend in the data that for an increasing number

of sequences the average segment length is decreasing. We observed a similar trend

with respect to the average sequence identity. The more related the sequences are,

the longer is the average segment length.

The SeqAn::M-Co�ee protocol clearly bene�ts from using segments. The �gure

underlines that probably one of the main reasons for the faster meta-alignment of

SeqAn::M-Co�ee compared to the original M-Co�ee is the use of segments. However,

one can also observe that in the stand-alone SeqAn::T-Co�ee version an accurate

protein alignment usually demands an alignment granularity at the level of a single

character, unless one aligns less than 20 sequences. In that respect, the graph is

inferior to other alignment models since it requires additional memory for storing

the alignment edges, the segment information and the graph topology. Because of

this graph segmentation issue, our method cannot be recommended yet for deep

protein and DNA alignments of more than 200 sequences.

Likewise, a true genome alignment certainly requires the identi�cation of non-

collinear features such as transpositions, translocations, duplications or inversions.

The current SeqAn alignment algorithms all require collinearity. Thus, they cannot

detect these important features. However, we discuss possible adaptations of our

method in Chapter 13 when we highlight some future challenges in the area of

146

12.2. Possible Extensions

0 50 100 150

1

2

3

4

5

6

7

8

Number of sequences

A
vg

. s
eg

m
en

t l
en

gt
h

0 50 100 150

1

2

3

4

5

6

7

8

(a) SeqAn::M-Co�ee

0 50 100 150

1

2

3

4

5

6

7

8

Number of sequences

A
vg

. s
eg

m
en

t l
en

gt
h

0 50 100 150

1

2

3

4

5

6

7

8

(b) SeqAn::T-Co�ee

Figure 12.1: Each circle represents one alignment instance on BAliBASE. On the left, we

plotted the average number of sequence characters per vertex using SeqAn::M-Co�ee. On

the right, we plotted the average number of sequence characters per vertex using SeqAn::T-

Co�ee.

multiple sequence alignments.

12.2 Possible Extensions

The default SeqAn::T-Co�ee algorithm computes all possible pairwise alignments.

This simple procedure could be improved by restricting the computation of global

and local alignments to a few informative sequence pairs. In addition, we have not

taken into account yet the level of segmentation induced by the data. Especially in

the meta-alignment method, the di�erent levels of segmentation observed in di�erent

windows of the alignment could be a good indicator for the alignment accuracy and

the sequence conservation. Similarly, one could group the sequences according to

the level of fragmentation they cause if their matches are included. One could then

delay the integration of the sequences causing the highest level of fragmentation

using, for instance, a double progressive algorithm (Pei and Grishin, 2006, 2007).

So far, SeqAn::T-Co�ee does not employ an iterative re�nement loop of the initial

multiple alignment. A recent publication (Wheeler and Kececioglu, 2007) suggests

that well-designed iterative re�nement loops can improve the quality of a MSA

and a number of successful tools such as MAFFT (Katoh et al., 2005) and MUS-

147

12. Discussion

CLE (Edgar, 2004b) employ re�nement schemes. Hence, such a re�nement proce-

dure might be a useful addition to SeqAn::T-Co�ee. Possible further extensions and

applications of the proposed segment-based alignment include the comparison of

di�erent assemblies, an improved alignment of closely related, genomic sequences or

an identi�cation of conserved blocks. In addition, the alignment graph might be a

suitable model for comparing genomic sequences as outlined in the next Chapter 13.

Our sequence consensus program SeqCons provides very accurate multi-read

alignments and hence, the method lends itself for an improved detection of genetic

variation such as SNP calling, haplotype separation or repeat resolution. The graph-

based approach could also prove to be useful to bridge the gaps between contigs or

to close small repeat regions. The bottleneck of the current method is the com-

putation of the pairwise alignments among all overlapping reads using a dynamic

programming solution with quadratic runtime. One possible extension is to replace

this dynamic programming approach with an index based all-against-all compar-

ison, which is signi�cantly faster in practice. The index construction takes O(n)

time where n is the total length of all reads. Using then an index-based �lter algo-

rithm such as SWIFT (Rasmussen et al., 2005) we can e�ciently identify potential

overlaps. The realignment algorithm could be further improved by parallelizing the

realignment of di�erent windows of the input multi-read alignment. Since each read

is only allowed to move in a region delimited by the read's length and a user-de�ned

bandwidth, the local realignment modi�cations could be computed in a distributed

manner.

12.3 SeqAn

Throughout this thesis we emphasized the highly modular design of our own mul-

tiple sequence alignment programs and the SeqAn library in general. Although

the amount of core data structures and algorithms available in the library is quite

comprehensive by now, it is by no means complete. Solely in the �eld of multiple

sequence alignments we have not touched yet, algorithms using terminal gap penal-

ties, statistical algorithms for pairwise alignments, methods for sequence weighting

or techniques that iteratively compute an alignment and reestimate a guide tree

from the alignment for the next iteration. We do, however, provide basic pairwise

alignment algorithms, alignment and tree data structures, methods to reconstruct

148

12.3. SeqAn

guide trees, basic �le input and output routines and a comprehensive set of graph

algorithms and data structures. In short, quite a number of core components are

available that allow the rapid development of a new algorithm or application if and

only if the programmer is willing to contribute the missing piece. Hence, SeqAn is

not a plug-and-play software package but rather a get-you-started library.

The biggest strength of the SeqAn library is that the ready-to-use components are

by no means limited to alignment applications. The library comprises a multitude

of index, string and graph data structures and algorithmic components that range

from simple string matching algorithms to sophisticated su�x array construction

algorithms. We put special emphasis on a generic implementation of these core

components and thus, the users are free to combine these core building blocks in

their own way. Hence, the library eases the development of new applications and

helps to save time and costs for creating sequence analysis software. In addition, a

library helps to improve the software quality since each component error is corrected

only once, while all component users bene�t. Moreover, SeqAn aims at providing the

most e�cient algorithms currently available, which are quite often not the fastest

one to implement. Hence, SeqAn might be quite often a better choice than an ad

hoc implementation of a given algorithm. Finally, the user-base of the library helps

to disseminate new algorithms.

Besides our attempts to promote SeqAn as an experimental platform that allows

the development and testing of new applications we also recently started to create

some prefabricated applications that can be used out of the box in the lab. The

�rst published applications are a read mapper (Weese et al., 2009; Emde et al.,

2010), a tool for constructing variable order Markov chains (Schulz et al., 2008) and

the discussed alignment applications (Rausch et al., 2008b, 2009). In summary, we

envision two kinds of SeqAn users. The biologists using one of the applications and

the bioinformaticians adapting, extending and customizing the library to solve their

own research problems.

149

12. Discussion

150

Future Challenges

The de�ning property of an alignment is collinearity; an alignment preserves the

order of sequence characters. Almost all published methods, tools and benchmarks

have been developed using this speci�c collinearity assumption. The increasing

amount of genomic sequences and the comparison of huge protein families with

possibly shu�ed domains demand a more generic sequence comparison model that

takes into account sequence rearrangements.

Similarly, numerous methods, tools and benchmarks focused on structurally cor-

rect alignments. The benchmarks either used manually re�ned alignments with

respect to structure or a structure alignment tool as a gold standard. Methods

and tools then competed for the best scores on one of these benchmarks. How-

ever, structure prediction is only one multiple sequence alignment application. As

a result, only little is known about the accuracy of alignment tools for phyloge-

netic studies, genomic alignments comprising mega base sequences, deep alignments

comprising hundreds of protein or DNA sequences and multi-read alignments com-

prising thousands of small reads that overlap by only a few bases. Especially for the

last problem, we showed how much a multi-read alignment di�ers from a classical

alignment of less than a hundred protein sequences. Besides having to cope with

the massive amount of data, one has to consider di�erent alignment data struc-

tures, fast methods to compute pairwise alignments using banded and overlap dy-

namic programming approaches and methods that speed-up the de facto standard

consistency-based progressive alignment paradigm.

In this chapter, we highlight some of the key challenges evoked by the rapidly

growing sequence databases and the new high-throughput sequencing technologies.

Novel techniques such as RNA-Seq and ChIP-Seq o�er the potential to study gene

151

13. Future Challenges

regulation, disease mechanisms and all kinds of cellular processes at an unprece-

dented accuracy. Similarly, whole genome sequencing o�ers the potential to elu-

cidate phylogenetic relations and mechanisms of genome evolution. These novel

applications require, however, �exible and scalable methods. For non-collinear pro-

tein alignments, genome comparison and deep alignments we point out some of the

challenges and �rst attempts to address them in Section 13.1, Section 13.2 and

Section 13.3, respectively.

13.1 Non-Collinear Protein Alignments

POA (Lee et al., 2002) and ABA (Raphael et al., 2004) were the �rst tools that began

to questionize whether a multiple sequence alignment should be collinear. The ABA

representation can handle multi-domain protein sequences where a single domain of

one sequence is repeated or shu�ed in another sequence. Similarly, our k-partite

alignment graph can represent such information. As an example, we show in Fig-

ure 13.2 the alignment graph corresponding to the ABA graph shown in Figure 13.1.

Extending the graph to handle gapped sequence segments is a non-trivial technical

problem but a more serious matter is that the initial alignment graph derived from

pairwise segment-matches almost never resembles the one depicted in Figure 13.2.

Given such an ideal graph, one could simply identify the connected components and

these components would highlight all the relevant features. In practice, however,

the components are not clearly separated but rather entwined because of contra-

dicting initial matches. Some of the very large alignment instances on BAliBASE,

for instance, resulted in a fully connected graph. One could, of course, select a

consistent subset of the initial input matches (without segment-match re�nement)

but the results of DIALIGN have shown that such an approach is at the expense of

quality according to the benchmarks. For ABA, we unfortunately lack this crucial

benchmarking information.

In short, there seems to be no de�nite answer yet on how to solve such non-

collinear alignments in a satisfactory manner. The most promising approach is

probably an iterative method that starts with the best multiple local alignment and

then adds further local alignment components one by one. For the alignment graph,

one possible objective is to exploit the pattern of alignment edges. Ideally conserved

regions manifest themselves in the k-partite alignment graph as a clique (Bron and

152

13.2. Genome Comparison

Figure 13.1: An alignment of shu�ed and repeated domains of four sequences shown on

the right using a De Bruijn graph (Raphael et al., 2004).

Figure 13.2: An alignment graph of shu�ed and repeated domains of four sequences.

The three components of the graph are highlighted in black, dark gray and light gray.

Kerbosch, 1973). Depending on the degree of conservation, some clique edges might,

however, be absent. If one excludes duplicated protein domains, a non-collinear

alignment resembles the well-studied assignment problem (Burkard, 2002). In our

case, it is a �partial assignment� problem on a k-partite graph since a given protein

domain does not have to be conserved in all of the sequences.

13.2 Genome Comparison

Similar to multi-domain protein alignments, a comparison of whole genomes de-

mands an extension of the classical alignment operations beyond substitutions, dele-

tions and insertions. For genomic sequences one has to take into account more

complex operations such as transpositions, translocations, duplications or inver-

153

13. Future Challenges

sions. Unfortunately, suitable comparison models, algorithms and implementations

are rare for such genomic sequences.

Applications of genome comparisons are numerous. On the one hand, cross-

species genome comparisons may help to reveal conserved regions, phylogenetic

relations and patterns of genomic evolution. On the other hand, a comparison

of closely related organisms or di�erent members of the same species may eluci-

date the essential mechanisms for an organisms' phenotypic complexity. Especially

the latter comparisons of closely related sequences have gained enormous practi-

cal importance with the new high-throughput sequencing technologies such as 454

Life Sciences (www.454.com), Illumina (www.illumina.com) and Applied Biosys-

tems SOLiD Sequencing (www.appliedbiosystems.com). Using these technologies,

the basic method is to align a set of sequenced reads derived from one organism

to the target genome of a closely related organism. This method o�ers the poten-

tial to clearly delineate the extent of genomic variability (e.g. SNPs), to compare

patterns of alternative splicing and to reveal the full range of genomic rearrange-

ments through the use of mate pairs. Stretched, contracted or reversed mate-pairs

can be used to identify deletions, insertions or inversions (Korbel et al., 2007). For

instance, an insertion in the newly sequenced genome causes a mate-pair spanning

this insertion to be contracted when mapped to the reference genome. Similarly, a

deletion in the newly sequenced genome causes a mate-pair spanning this deletion

to be stretched if it is mapped to the reference. An inversion a�ecting only one read

of a mate-pair can be detected by an altered orientation of the a�ected read. These

three cases are summarized in Figure 13.3.

In addition, the growing databases of structural variants and SNPs such as db-

SNP (Smigielski et al., 2000) or the Database of Genomic Variants (Iafrate et al.,

2004) can be readily used to map reads directly against the di�erent variants as

exemplarily shown in Figure 13.4 for a potential deletion or insertion. Likewise, the

raw read depth can be directly used to detect copy number variations.

The 1000 Genomes Project aims at cataloging the amount of naturally occurring

human variation (www.1000genomes.org). With the help of such a catalog and

with all of the techniques mentioned above, researchers have the great potential

to characterize human diseases on the DNA level (Pleasance et al., 2009b). These

disease-speci�c genomic variants ranging from coding and non-coding substitutions,

insertions and deletions to genomic rearrangements and copy number changes will

154

13.2. Genome Comparison

Figure 13.3: Deviations from the expected mate-pair distance indicate possible insertion

or deletions. Inversions can be detected if the order of the two mate-pair reads is preserved

but one of them changed its orientation.

Figure 13.4: A reference sequence (middle) with a known insertion / deletion shown in

dark gray. The three possible junction sequences can be directly used to map the sequenced

reads in order to test if the structural variant is present or not. To avoid misaligned reads

one could take only 30bp to the left and right of the breakpoint for reads of length 36.

soon be indispensable to advance clinical therapy of prevalent diseases.

Large-scale cross-species genome comparison usually try to identify conserved

blocks �rst. Mauve, for instance, termed such regions locally collinear blocks (Dar-

ling et al., 2004). Unfortunately, the identi�cation of such conserved blocks becomes

155

13. Future Challenges

the more di�cult the more divergent the sequences are. Another complicating factor

is the support for each rearranged region. For example, the �rst version of Mauve

could identify only rearranged region that were shared among all input genomes.

Besides Mauve, a number of other tools for computing and visualizing genomic com-

parisons appeared recently (Blanchette, 2007). We listed the most important ones

already in Table 2.3 on page 47 of the introduction.

In summary, there are two types of genome comparison. The �rst type actu-

ally compares a set of genomic sequences whereas the second one uses a reference

sequence to align a set of sequenced reads. In the latter case, the �nal multi-read

alignment is subsequently analyzed to call structural variants, single nucleotide poly-

morphisms or genomic rearrangements and to determine gene expression levels or

alternative splicing patterns.

13.3 Deep Alignments

Today, we are starting to align thousands of protein, DNA and RNA sequences of

relatively short length. Given the unprecedented pace and throughput of the new

sequencing technologies it is only a matter of time until we need to take care of deep

genomic alignments, that is, a comparison of dozens of genomes. It is quite clear

that no standard consistency-based progressive aligner is going to be able to handle

such data sets using current protocols. MUMmer and many other tools have already

shown that index-based methods are certainly the most scalable methods. Hence,

one of the main questions is how established and working techniques of protein

aligners can be adapted and transferred to deep alignments.

A popular approach to handle deep alignments is based on the notion of a hier-

archical alignment or template alignment. Instead of aligning all sequences simulta-

neously, this approach is two-staged. In the �rst stage, sequences are clustered and

each cluster is multiple aligned. In the second step, the pro�les of every single clus-

ter alignment are multiple aligned. This pro�le alignment then serves as a template

for merging all cluster alignments into a single global multiple sequence alignment.

156

13.4. Concluding Remarks

13.4 Concluding Remarks

Throughout the past years, a number of interesting review articles have covered cer-

tain aspects of multiple sequence alignments. Among many others, we want to point

out a recent review of computational methods for genomic alignments (Blanchette,

2007), an in-depth review of accurate protein sequence alignments for divergent

protein sequences (Pei, 2008), an evaluation of parameter choices in progressive

alignment methods (Wheeler and Kececioglu, 2007) and two program-centered mul-

tiple sequence alignment review articles (Edgar and Batzoglou, 2006; Pirovano and

Heringa, 2008). The impact of next generation sequencing technologies is covered

by a huge number of review articles but probably the most fascinating papers in

this area are those at the edge of research. Two recent Nature papers highlight,

for instance, the power of these techniques to identify genomic variants present in a

cancer genome (Pleasance et al., 2009b,a).

157

Bibliography

M. I. Abouelhoda and E. Ohlebusch. Multiple genome alignment: Chaining al-

gorithms revisited. In Proc. 14th Annual Symposium on Combinatorial Pattern

Matching, Lect. Notes Comput. Sci., pages 1�16, 2003.

E. Althaus and S. Canzar. Bioinformatics research and development, chapter LASA:

A tool for non-heuristic alignment of multiple sequences, pages 489�498. Springer,

2008.

E. Althaus, A. Caprara, H. P. Lenhof, and K. Reinert. Multiple sequence align-

ment with arbitrary gap costs: Computing an optimal solution using polyhedral

combinatorics. Bioinformatics, 18 Suppl 2:S4�S16, 2002.

E. Althaus, A. Caprara, H.-P. Lenhof, and K. Reinert. A branch-and-cut algorithm

for multiple sequence alignment. Math. Programm., 105:387�425, 2006.

S. F. Altschul, W. Gish, E. W. Myers, and D. J. Lipman. Basic local alignment

search tool. J. Mol. Biol., 215(3):403�410, Oct. 1990.

S. F. Altschul, T. L. Madden, A. A. Scha�er, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman. Gapped BLAST and PSI-BLAST: A new generation of protein

database search programs. Nucleic Acids Res., 25(17):3389�3402, 1997.

E. L. Anson and E. W. Myers. Realigner: A program for re�ning DNA sequence

multi-alignments. In Proc. 1st Annual International Conference on Research in

Computational Molecular Biology, RECOMB, pages 9�16, New York, NY, USA,

1997. ACM.

F. Armougom, S. Moretti, O. Poirot, S. Audic, P. Dumas, B. Schaeli, V. Keduas, and

C. Notredame. Expresso: Automatic incorporation of structural information in

159

Bibliography

multiple sequence alignments using 3D-Co�ee. Nucleic Acids Res., 34:W604�608,

Jul 2006.

S. Batzoglou, D. B. Ja�e, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger,

J. P. Mesirov, and E. S. Lander. ARACHNE: A whole-genome shotgun assembler.

Genome Res., 12(1):177�189, 2002.

M. Blanchette. Computation and analysis of genomic multi-sequence alignments.

Annu. Rev. Genomics Hum. Genet., 8(1):193�213, 2007.

M. Blanchette, W. J. Kent, C. Riemer, L. Elnitski, A. F. Smit, K. M. Roskin,

R. Baertsch, K. Rosenbloom, H. Clawson, E. D. Green, D. Haussler, and

W. Miller. Aligning multiple genomic sequences with the threaded blockset

aligner. Genome Res., 14(4):708�715, 2004.

C. Bron and J. Kerbosch. Finding all cliques of an undirected graph. Commun.

ACM, 16(9):575�577, 9 1973.

M. Brudno, C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov, E. D. Green, A. Sidow,

and S. Batzoglou. LAGAN and Multi-LAGAN: E�cient tools for large-scale mul-

tiple alignment of genomic DNA. Genome Res., 13:721�731, Apr 2003.

J. Buhler. E�cient large-scale sequence comparison by locality-sensitive hashing.

Bioinformatics, 17(5):419�428, 2001.

R. E. Burkard. Selected topics on assignment problems. Discrete Appl. Math., 123

(1-3):257�302, 2002.

S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vingron.

q-gram based database searching using a su�x array (QUASAR). In RECOMB

'99: Proceedings of the third annual international conference on Computational

molecular biology, pages 77�83, New York, NY, USA, 1999. ACM.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.

MIT Press, Cambridge, MA, 2001.

G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner. WebLogo: A sequence

logo generator. Genome Res., 14(6):1188�1190, 2004.

160

Bibliography

A. C. Darling, B. Mau, F. R. Blattner, and N. T. Perna. Mauve: Multiple alignment

of conserved genomic sequence with rearrangements. Genome Res., 14(7):1394�

1403, 2004.

M. O. Dayho�, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change

in proteins. In Atlas of Protein Structure, pages 345�352. National Biomedical

Reasearch Foundataion, 1979.

A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg.

Alignment of whole genomes. Nucleic Acids Res., 27(11):2369�2376, 1999.

A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg. Fast algorithms for large-

scale genome alignment and comparison. Nucleic Acids Res., 30(11):2478�2483,

2002.

G. Denisov, B. Walenz, A. L. Halpern, J. Miller, N. Axelrod, S. Levy, and G. Sutton.

Consensus generation and variant detection by Celera Assembler. Bioinformatics,

24(8):1035�1040, 2008.

C. B. Do, M. Brudno, and S. Batzoglou. ProbCons: Probabilistic consistency-

based multiple alignment of amino acid sequences. In D. L. McGuinness and

G. Ferguson, editors, AAAI, pages 703�708. AAAI Press / The MIT Press, 2004.

C. B. Do, M. S. Mahabhashyam, M. Brudno, and S. Batzoglou. ProbCons: Proba-

bilistic consistency-based multiple sequence alignment. Genome Res., 15:330�340,

Feb 2005.

A. Döring, D. Weese, T. Rausch, and K. Reinert. SeqAn - An e�cient, generic C++

library for sequence analysis. BMC Bioinformatics, 9:11, Jan 2008.

H. Edelsbrunner. Dynamic Data Structures for Orthogonal Intersection Queries.

Tech. Univ. Graz, Technical Report Rep. F59, 1980.

R. Edgar. MUSCLE: A multiple sequence alignment method with reduced time and

space complexity. BMC Bioinformatics, 5(1):113, 2004a.

R. C. Edgar. MUSCLE: Multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Res., 32(5):1792�1797, 2004b.

161

Bibliography

R. C. Edgar. Local homology recognition and distance measures in linear time using

compressed amino acid alphabets. Nucleic Acids Res., 32(1):380�385, 2004c.

R. C. Edgar and S. Batzoglou. Multiple sequence alignment. Curr. Opin. Struct.

Biol., 16(3):368 � 373, 2006.

R. C. Edgar and K. Sjolander. A comparison of scoring functions for protein sequence

pro�le alignment. Bioinformatics, 20(8):1301�1308, 2004.

A.-K. Emde. Progressive alignment of multiple genomic sequences. Master's thesis,

Freie Universität Berlin, 2007.

A.-K. Emde, M. Grunert, D. Weese, K. Reinert, and S. R. Sperling. MicroRazerS:

Rapid alignment of small RNA reads. Bioinformatics, 26(1):123�124, 2010.

J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood

approach. J. Mol. Evol., 17:368�376, 1981.

J. Felsenstein. PHYLIP - Phylogeny inference package (Version 3.2). Cladistics, 5:

164�166, 1989.

D.-F. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to

correct phylogenetic trees. J. Mol. Evol., 25:351�360, 1987.

R. D. Finn, J. Tate, J. Mistry, P. C. Coggill, S. J. Sammut, H.-R. Hotz, G. Ceric,

K. Forslund, S. R. Eddy, E. L. L. Sonnhammer, and A. Bateman. The Pfam

protein families database. Nucl. Acids Res., 36(suppl 1):D281�288, 2008.

W. M. Fitch. Toward de�ning the course of evolution: Minimum change for a speci�c

tree topology. Systematic Zoology, 20:406�416, 1971.

R. Giegerich, S. Kurtz, and J. Stoye. E�cient implementation of lazy su�x trees.

Software: Practice and Experience, 33(11):1035�1049, 2003.

A. Gogol-Döring and K. Reinert. Biological sequence analysis using the SeqAn C++

library. CRC Press Inc., 2009.

O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol.,

162(3):705�708, Dec 1982.

162

Bibliography

O. Gotoh. Alignment of three biological sequences with an e�cient traceback pro-

cedure. J. Theor. Biol., 121(3):327�37, 1986.

O. Gotoh. Consistency of optimal sequence alignments. Bull. Math. Biol., 52:509�

525, 1990.

O. Gotoh. Multiple sequence alignment: Algorithms and applications. Adv. Bio-

phys., 36:159�206, 1999.

C. Grasso and C. Lee. Combining partial order alignment and progressive multi-

ple sequence alignment increases alignment speed and scalability to very large

alignment problems. Bioinformatics, 20(10):1546�1556, 2004.

S. K. Gupta, J. D. Kececioglu, and A. A. Schä�er. Improving the practical space and

time e�ciency of the shortest-paths approach to sum-of-pairs multiple sequence

alignment. J. Comput. Biol., 2:459�472, 1995.

A. L. Halpern, D. H. Huson, and K. Reinert. Segment match re�nement and ap-

plications. In WABI '02: Proceedings of the Second International Workshop on

Algorithms in Bioinformatics, pages 126�139, London, UK, 2002. Springer-Verlag.

P. Havlak, R. Chen, K. J. Durbin, A. Egan, Y. Ren, X.-Z. Song, G. M. Weinstock,

and R. A. Gibbs. The atlas genome assembly system. Genome Res., 14(4):721�

732, 2004.

S. Heniko� and J. G. Heniko�. Amino acid substitution matrices from protein blocks.

Proc. Natl. Acad. Sci. U.S.A., 89(22):10915�10919, 1992.

D. G. Higgins and P. M. Sharp. CLUSTAL: A package for performing multiple

sequence alignment on a microcomputer. Gene, 73(1):237�244, 1988.

M. Hohl, S. Kurtz, and E. Ohlebusch. E�cient multiple genome alignment. Bioin-

formatics, 18(suppl 1):S312�320, 2002.

X. Huang, J. Wang, S. Aluru, S.-P. Yang, and L. Hillier. PCAP: A whole-genome

assembly program. Genome Res., 13(9):2164�2170, 2003.

A. J. Iafrate, L. Feuk, M. N. Rivera, M. L. Listewnik, P. K. Donahoe, Y. Qi, S. W.

Scherer, and C. Lee. Detection of large-scale variation in the human genome. Nat.

Genet., 36:949�951, Sep 2004.

163

Bibliography

G. Jacobson and K.-P. Vo. Heaviest increasing/common subsequence problems. In

CPM '92: Proceedings of the Third Annual Symposium on Combinatorial Pattern

Matching, pages 52�66, London, UK, 1992. Springer-Verlag.

K. Katoh, K. Misawa, K. Kuma, and T. Miyata. MAFFT: A novel method for rapid

multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.,

30:3059�3066, Jul 2002.

K. Katoh, K. Kuma, H. Toh, and T. Miyata. MAFFT version 5: Improvement

in accuracy of multiple sequence alignment. Nucleic Acids Res., 33(2):511�518,

2005.

J. D. Kececioglu. Exact and approximation algorithms for DNA sequence reconstruc-

tion. PhD thesis, University of Arizona, Tucson, AZ, USA, 1992.

J. D. Kececioglu. The maximum weight trace problem in multiple sequence align-

ment. In Proc. 4th Annual Symposium on Combinatorial Pattern Matching, Lect.

Notes Comput. Sci., pages 106�119, London, UK, 1993. Springer-Verlag.

J. D. Kececioglu and D. Starrett. Aligning alignments exactly. In Proc. 8th An-

nual International Conference on Research in Computational Molecular Biology,

RECOMB, pages 85�96, New York, NY, USA, 2004. ACM.

J. D. Kececioglu and W. Zhang. Aligning alignments. In Proc. 9th Annual Sympo-

sium on Combinatorial Pattern Matching, Lect. Notes Comput. Sci., pages 189�

208. Springer Verlag, 1998.

J. D. Kececioglu, H.-P. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, and M. Vingron.

A polyhedral approach to sequence alignment problems. Discrete Appl. Math.,

104(1-3):143�186, 2000.

W. J. Kent. BLAT � The BLAST-like alignment tool. Genome Res., 12:656�664,

Apr 2002.

J. O. Korbel, A. E. Urban, J. P. A�ourtit, B. Godwin, F. Grubert, J. F. Simons,

P. M. Kim, D. Palejev, N. J. Carriero, L. Du, B. E. Taillon, Z. Chen, A. Tanzer,

A. C. E. Saunders, J. Chi, F. Yang, N. P. Carter, M. E. Hurles, S. M. Weissman,

T. T. Harkins, M. B. Gerstein, M. Egholm, and M. Snyder. Paired-end mapping

164

Bibliography

reveals extensive structural variation in the human genome. Science, 318(5849):

420�426, 2007.

S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M. Shumway, C. Antonescu, and

S. Salzberg. Versatile and open software for comparing large genomes. Genome

Biol., 5(2):R12, 2004. ISSN 1465-6906.

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and memory-e�cient

alignment of short DNA sequences to the human genome. Genome Biology, 10

(3):R25, 2009.

M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan,

H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thomp-

son, T. J. Gibson, and D. G. Higgins. Clustal W and Clustal X version 2.0.

Bioinformatics, 23(21):2947�2948, 2007.

T. Lassmann and E. Sonnhammer. Kalign - An accurate and fast multiple sequence

alignment algorithm. BMC Bioinformatics, 6(1):298, 2005. ISSN 1471-2105.

C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial

order graphs. Bioinformatics, 18(3):452�464, 2002.

M. Lermen and K. Reinert. The practical use of the A* algorithm for exact multiple

sequence alignment. J. Comput. Biol., 7:655�671, 2000.

H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling

variants using mapping quality scores. Genome Res., 18:1851�1858, Nov 2008a.

M. Li, B. Ma, D. Kisman, and J. Tromp. PatternHunter II: Highly sensitive and

fast homology search. Genome Inform., 14:164�175, 2003.

R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: Short oligonucleotide alignment

program. Bioinformatics, 24(5):713�714, 2008b.

D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A tool for multiple sequence

alignment. Proc. Natl. Acad. Sci. U.S.A., 86:4412�4415, 1989.

B. Ma, J. Tromp, and M. Li. PatternHunter: Faster and more sensitive homology

search. Bioinformatics, 18(3):440�445, March 2002.

165

Bibliography

B. Ma, Z. Wang, and K. Zhang. Alignment between two multiple alignments. In

Proc. 14th Annual Symposium on Combinatorial Pattern Matching, Lect. Notes

Comput. Sci., volume 2676 of Lect. Notes Comput. Sci., pages 254�265. Springer,

2003.

L. J. McGu�n, K. Bryson, and D. T. Jones. The PSIPRED protein structure

prediction server. Bioinformatics, 16(4):404�405, 2000.

K. Mehlhorn, S. Näher, and C. Uhrig. LEDA: A platform for combinatorial and

geometric computing. Springer, 1999.

B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: Finding local

similarities by multiple sequence alignment. Bioinformatics, 14(3):290�294, 1998.

J. C. Mullikin and Z. Ning. The Phusion assembler. Genome Res., 13(1):81�90,

2003.

M. Murata, J. S. Richardson, and J. L. Sussman. Simultaneous comparison of three

protein sequences. Proc. Natl. Acad. Sci. U.S.A., 82(10):3073�3077, 1985.

E. W. Myers. A fast bit-vector algorithm for approximate string matching based on

dynamic programming. Journal of the ACM, 46(3):395�415, 1999.

E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan,

S. A. Kravitz, C. M. Mobarry, K. Reinert, K. A. Remington, E. L. Anson, R. A.

Bolanos, H.-H. Chou, C. M. Jordan, A. L. Halpern, S. Lonardi, E. M. Beasley,

R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R. Nusskern, M. Zhan,

Q. Zhang, X. Zheng, G. M. Rubin, M. D. Adams, and J. C. Venter. A whole-

genome assembly of drosophila. Science, 287(5461):2196�2204, 2000.

G. Myers and W. Miller. Chaining multiple-alignment fragments in sub-quadratic

time. In Proc. 6th Annual ACM-SIAM Symposium, pages 38�47, Philadelphia,

PA, USA, 1995. Soc. Ind. Appl. Math.

G. Navarro and M. Ra�not. Flexible pattern matching in strings. Cambridge Uni-

versity Press, 2002.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443�453,

1970.

166

Bibliography

C. Notredame, D. Higgins, and J. Heringa. T-Co�ee: A novel method for fast and

accurate multiple sequence alignment. J. Mol. Biol., 302:205�217, 2000.

R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman. Algorithms for loop

matchings. SIAM Journal on Applied Mathematics, 35(1):68�82, 1978.

O. O'Sullivan, K. Suhre, C. Abergel, D. G. Higgins, and C. Notredame. 3DCo�ee:

Combining protein sequences and structures within multiple sequence alignments.

J. Mol. Biol., 340(2):385 � 395, 2004.

I. Ovcharenko, G. G. Loots, B. M. Giardine, M. Hou, J. Ma, R. C. Hardison,

L. Stubbs, and W. Miller. Mulan: Multiple-sequence local alignment and vi-

sualization for studying function and evolution. Genome Res., 15(1):184�194,

2005.

M. H. Overmars. Designing the computational geometry algorithms library CGAL.

In FCRC '96/WACG '96: Selected papers from the workshop on applied compu-

tational geormetry, pages 53�58, London, UK, 1996. Springer.

J. Pei. Multiple protein sequence alignment. Curr. Opin. Struct. Biol., 18(3):382 �

386, 2008.

J. Pei and N. V. Grishin. MUMMALS: Multiple sequence alignment improved by

using hidden Markov models with local structural information. Nucleic Acids

Res., 34:4364�4374, 2006.

J. Pei and N. V. Grishin. PROMALS: Towards accurate multiple sequence align-

ments of distantly related proteins. Bioinformatics, 23:802�808, Apr 2007.

J. Pei, B.-H. Kim, and N. V. Grishin. PROMALS3D: A tool for multiple protein

sequence and structure alignments. Nucleic Acids Res., 36(7):2295�2300, 2008.

P. A. Pevzner, H. Tang, and G. Tesler. De novo repeat classi�cation and fragment

assembly. Genome Research, 14(9):1786�1796, 2004.

W. Pirovano and J. Heringa. Multiple sequence alignment. Methods Mol. Biol., 452:

143�61, 2008.

167

Bibliography

E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray,

C. D. Greenman, I. Varela, M. L. Lin, G. R. Ordóñez, G. R. Bignell, K. Ye, J. Ali-

paz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins,

P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M.

Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J.

Mudie, Z. Ning, T. Royce, O. B. Schulz-Triegla�, A. Spiridou, L. A. Stebbings,

L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell,

D. R. Bentley, P. A. Futreal, and M. R. Stratton. A comprehensive catalogue of

somatic mutations from a human cancer genome. Nature, Dec 2009a.

E. D. Pleasance, P. J. Stephens, S. O'Meara, D. J. McBride, A. Meynert, D. Jones,

M. L. Lin, D. Beare, K. W. Lau, C. Greenman, I. Varela, S. Nik-Zainal, H. R.

Davies, G. R. Ordoñez, L. J. Mudie, C. Latimer, S. Edkins, L. Stebbings, L. Chen,

M. Jia, C. Leroy, J. Marshall, A. Menzies, A. Butler, J. W. Teague, J. Mangion,

Y. A. Sun, S. F. McLaughlin, H. E. Peckham, E. F. Tsung, G. L. Costa, C. C.

Lee, J. D. Minna, A. Gazdar, E. Birney, M. D. Rhodes, K. J. McKernan, M. R.

Stratton, P. A. Futreal, and P. J. Campbell. A small-cell lung cancer genome with

complex signatures of tobacco exposure. Nature, Dec 2009b.

G. P. Raghava, S. Searle, P. Audley, J. Barber, and G. Barton. OXBench: A

benchmark for evaluation of protein multiple sequence alignment accuracy. BMC

Bioinformatics, 4(1):47, 2003.

B. Raphael, D. Zhi, H. Tang, and P. Pevzner. A novel method for multiple alignment

of sequences with repeated and shu�ed elements. Genome Res., 14(11):2336�2346,

2004.

K. Rasmussen, J. Stoye, and G. Myers. E�cient q-gram �lters for �nding all epsilon-

matches over a given length. In RECOMB, pages 189�203, 2005.

T. Rausch and K. Reinert. The problem solving handbook for computational biology

and bioinformatics, chapter Practical multiple sequence alignment. (Accepted for

publication) Springer, 2010.

T. Rausch, A.-K. Emde, and K. Reinert. Robust consensus computation. BMC

Bioinformatics, 9(Suppl 10):P4, 2008a.

168

Bibliography

T. Rausch, A.-K. Emde, D. Weese, A. Döring, C. Notredame, and K. Reinert.

Segment-based multiple sequence alignment. Bioinformatics, 24(16):i187�192,

2008b.

T. Rausch, S. Koren, G. Denisov, D. Weese, A.-K. Emde, A. Doring, and K. Rein-

ert. A consistency-based consensus algorithm for de novo and reference-guided

sequence assembly of short reads. Bioinformatics, 25(9):1118�1124, 2009.

K. Reinert. A polyhedral approach to sequence alignment problems. PhD thesis,

Universität Saarbrücken, 1999.

K. Reinert, H.-P. Lenhof, P. Mutzel, K. Mehlhorn, and J. Kececioglu. A branch-and-

cut algorithm for multiple sequence alignment. In Proc. 1st Annual International

Conference on Research in Computational Molecular Biology, RECOMB, pages

241�249, 1997.

K. Reinert, J. Stoye, and T. Will. An iterative method for faster sum-of-pairs

multiple sequence alignment. Bioinformatics, 16(9):808�814, 2000.

P. Rice, I. Longden, and A. Bleasby. EMBOSS: The european molecular biology

open software suite. Trends Genet., 16(6):276 � 277, 2000.

B. Rost. Review: Protein secondary structure prediction continues to rise. J. Struct.

Biol., 134(2-3):204 � 218, 2001. ISSN 1047-8477.

N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstruct-

ing phylogenetic trees. Mol. Biol. Evol., 4:406�425, 1987.

D. Sanko�. Simultaneous solution of the RNA folding, alignment and protosequence

problems. SIAM Journal on Applied Mathematics, 45(5):810�825, 1985.

D. Sanko� and J. B. Kruskal. Time warps, string edits, and macromolecules: The

theory and practice of sequence comparison. Addison-Wesley, Reading, MA, 1983.

M. Schatz, A. Phillippy, B. Shneiderman, and S. Salzberg. Hawkeye: An interactive

visual analytics tool for genome assemblies. Genome Biology, 8(3):R34, 2007.

T. D. Schneider and R. M. Stephens. Sequence logos: A new way to display consensus

sequences. Nucleic Acids Res., 18:6097�6100, 1990.

169

Bibliography

M. H. Schulz, D. Weese, T. Rausch, A. Döring, K. Reinert, and M. Vingron. Fast

and adaptive variable order Markov Chain construction. In Proc. 8th International

Workshop on Algorithms in Bioinformatics, pages 306�317. Springer-Verlag, 2008.

A. S. Schwartz and L. Pachter. Multiple alignment by sequence annealing. Bioin-

formatics, 23:e24�29, Jan 2007.

V. A. Simossis and J. Heringa. PRALINE: A multiple sequence alignment toolbox

that integrates homology-extended and secondary structure information. Nucleic

Acids Res., 33:W289, 2005.

V. A. Simossis, J. Kleinjung, and J. Heringa. Homology-extended sequence align-

ment. Nucleic Acids Res., 33(3):816�824, 2005.

E. M. Smigielski, K. Sirotkin, M. Ward, and S. T. Sherry. dbSNP: A database of

single nucleotide polymorphisms. Nucl. Acids Res., 28(1):352�355, 2000.

T. F. Smith and M. S. Waterman. Identi�cation of common molecular subsequences.

J. Mol. Biol., 147(1):195�197, 1981.

R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic

relationships. Univ. Kansas Sci. Bull., 38:1409�1438, 1958.

D. Sommer, A. Delcher, S. Salzberg, and M. Pop. Minimus: A fast, lightweight

genome assembler. BMC Bioinformatics, 8(1):64, 2007.

A. Subramanian, J. Weyer-Menkho�, M. Kaufmann, and B. Morgenstern.

DIALIGN-T: An improved algorithm for segment-based multiple sequence align-

ment. BMC Bioinformatics, 6(1):66, 2005.

A. Subramanian, M. Kaufmann, and B. Morgenstern. DIALIGN-TX: Greedy and

progressive approaches for segment-based multiple sequence alignment. Algo-

rithms Mol. Biol., 3(1):6, 2008.

W. Taylor. Protein structure comparison using iterated double dynamic program-

ming. Protein Sci., 8(3):654�665, 1999.

The UniProt Consortium. The Universal Protein Resource (UniProt). Nucl. Acids

Res., 35(suppl 1):D193�197, 2007.

170

Bibliography

J. Thompson, F. Plewniak, and O. Poch. BAliBASE: A benchmark alignment

database for the evaluation of multiple alignment programs. Bioinformatics, 15:

87�88, Jan 1999a.

J. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple

sequence alignment programs. Nucl. Acids Res., 27(13):2682�2690, 1999b.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-speci�c gap penalties and weight matrix choice. Nucleic Acids Res., 22:

4673�4680, 1994.

J. D. Thompson, P. Koehl, R. Ripp, and O. Poch. BAliBASE 3.0: Latest develop-

ments of the multiple sequence alignment benchmark. Proteins, 61:127�136, Oct

2005.

T. Treangen and X. Messeguer. M-GCAT: Interactively and e�ciently construct-

ing large-scale multiple genome comparison frameworks in closely related species.

BMC Bioinformatics, 7(1):433, 2006.

G. Venter et al. The sequence of the human genome. Science, 291(5507):1304�1351,

2001.

M. Vingron and P. Argos. A fast and sensitive multiple sequence alignment algo-

rithm. Comput. Appl. Biosci., 5(2):115�121, 1989.

M. Vingron and P. Argos. Motif recognition and alignment for many sequences by

comparison of dot-matrices. Journal of Molecular Biology, 218(1):33 � 43, 1991.

I. M. Wallace, O. O'Sullivan, D. G. Higgins, and C. Notredame. M-Co�ee: Com-

bining multiple sequence alignment methods with T-Co�ee. Nucleic Acids Res.,

34:1692�1699, 2006.

I. V. Walle, I. Lasters, and L. Wyns. SABmark - A benchmark for sequence alignment

that covers the entire known fold space. Bioinformatics, 21(7):1267�1268, 2005.

L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J.

Comput. Biol., 1:337�348, 1994.

171

Bibliography

M. S. Waterman and M. Eggert. A new algorithm for best subsequence alignments

with application to tRNA-rRNA comparisons. Journal of Molecular Biology, 197

(4):723�728, 1987.

D. Weese and M. H. Schulz. E�cient string mining under constraints via the deferred

frequency index. In P. Perner, editor, Proc. 8th Industrial Conference on Data

Mining, pages 374�388. Springer Verlag, Jul 2008.

D. Weese, A.-K. Emde, T. Rausch, A. Döring, and K. Reinert. RazerS - fast read

mapping with sensitivity control. Genome Research, 19(9):1646�1654, 2009.

T. J. Wheeler and J. D. Kececioglu. Multiple alignment by aligning alignments.

Bioinformatics, 23:559�568, Jul 2007.

D. R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly

using de bruijn graphs. Genome Research, 18(5):821�829, 2008.

Y. Zhang and M. S. Waterman. An eulerian path approach to global multiple

alignment for DNA sequences. Journal of Computational Biology, 10(6):803�819,

2003.

H. Zhou and Y. Zhou. SPEM: Improving multiple sequence alignment with sequence

pro�les and predicted secondary structures. Bioinformatics, 21(18):3615�3621,

2005.

M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using

thermodynamics and auxiliary information. Nucl. Acids Res., 9(1):133�148, 1981.

172

Curriculum Vitae

Der Lebenslauf ist in der Online-Version

aus Gründen des Datenschutzes nicht enthalten

173

Index

A

Alignment

De�nition . 24

Matrix . 27

Multiple alignment 77

Pairwise alignment 69

Pro�le . 27

Scoring . 25

Alignment algorithms

Anchor-based alignment.41

Banded alignment.72

Global alignment.69

Gotoh . 70

Local alignment 71

Needleman-Wunsch 69

Overlap alignment 72

Segment-based alignment 77

Semi-global alignment72

Smith-Waterman.71

Waterman-Eggert 71

Alignment data structures

Alignment graph 27, 56

Alignment matrix 55

Fragment store 58

Amino acid . 4

Assembly . 90

B

BAliBASE . 44

Benchmarks

BAliBASE . 44

PREFAB . 45

SABmark . 45

C

Chaining. .42

Chromosome . 3

Consistency . 39

Constant gap costs26

D

De novo sequence assembly 90

Deep alignments . 156

Distance matrix 35, 83

DNA. .3

Domain identi�cation 9

Dynamic programming. 31

E

Exon. .6

174

Index

F

Function prediction 8

G

Gene. .6

Genetic code . 5

Genome alignment 41

Genome comparison 153

Gotoh . 70

Graph

Algorithms. .64

Alignment graph 62

Automaton . 61

De Bruijn graph 18, 29

Directed graph 17, 59

Hidden Markov model.61

Iterators . 64

k-partite graph.18

Theory. .17

Tree .18, 60

Undirected graph.17, 59

Graph algorithms

Breadth-�rst search 18

Connected components 19

Depth-�rst search 18

Strongly connected components . . 19

Topological sort 19

Guide tree

Neighbor-joining 36

UPGMA . 35, 83

H

Homology extension.40

I

Integer linear programming 32

Intron . 6

Iterative alignment.39

L

Linear gap costs . 26

M

Mate-pair . 89

Merging of subalignments 37

Multi-read alignment 11, 89

Multiple alignment de�nition.24

Multiple alignment tools 45

Multiple sequence alignment

De�nition . 24

Gap penalties 106

History . 13

Introduction . 6

Multi-read alignment 52, 89

Scoring . 25

Scoring matrix 110

Segment-based alignment 51, 77

Tree reconstruction 112

N

Needleman-Wunsch 69

Next generation sequencing 89

Non-collinear alignment 152

Nucleotide . 3

P

PairAlign . 137

Paired-end sequencing 89

175

Index

Pairwise alignment 69

Partial order alignment 42

Phylogeny . 11

Polyploid organism 12

PREFAB . 44

Pro�le . 9

Progressive alignment 34, 85

Property map. 63

Protein . 4

Protein benchmarks 14, 44

R

Read . 11

Read mapping . 91

Realignment . 93

Reference-guided sequence assembly. .90

Re�nement . 39

RNA. .4

RNA sequence alignment.44

S

SABmark . 44

Seeded alignment . 41

Segment-match re�nement 79

SeqAn

Content . 20

Design . 19

Discussion . 148

SeqAn::T-Co�ee . 105

SeqCons . 125

Sequence consensus 125

Smith-Waterman. .71

Splicing . 6

Structural variation 154

Structure based multiple alignment . . 40

Structure prediction.7

Sum of pairs score.25, 26

T

Tools

PairAlign . 137

SeqAn::T-Co�ee 105

SeqCons . 125

TreeRecon . 141

Trace . 32

Transcription . 5

Translation . 5

Tree reconstruction 35

TreeRecon . 141

Triplet extension . 84

W

Waterman-Eggert . 71

176

	I Introduction
	Motivation
	Biological Background
	Multiple Sequence Alignment in Computational Biology
	Structure prediction
	Function prediction
	Domain identification
	Modeling binding sites
	Phylogeny
	Sequence consensus

	History of the Problem
	Guide to the Thesis
	Notation
	Graph theory
	The SeqAn library

	Multiple Sequence Alignments
	Alignment Definition
	Alignment Scoring
	Sum of pairs score

	Alignment Representation
	Alignment matrices and profiles
	Alignment graphs
	De Bruijn graphs
	Partial order graphs

	Exact Alignment Algorithms
	Dynamic programming
	Combinatorial algorithms

	Heuristic Alignment Algorithms
	Progressive alignment
	Methods using structure and sequence homologs
	Anchor-based alignment
	Others

	RNA Alignment Algorithms
	Alignment Benchmarks
	Available Implementations

	Contribution
	Dissecting Multiple Sequence Alignment Tools
	Segment-Based Multiple Sequence Alignment
	Multi-Read Alignment

	II Algorithms and Data Structures
	Alignment Data Structures
	Alignment Containers
	Alignment matrix
	Alignment graphs
	Fragment store

	Implementation
	Alignment matrix
	Alignment graphs
	Fragment store

	Pairwise alignment
	Algorithms
	Needleman-Wunsch
	Gotoh
	Smith-Waterman
	Waterman-Eggert

	Implementation

	Multiple Sequence Alignment
	Overview
	Algorithmic Components
	Segment-match generation
	Segment-match refinement
	Alignment graph construction
	Distance matrix computation
	Guide tree construction
	Triplet extension
	Progressive alignment

	Implementation

	Multi-Read Alignment
	Overview
	ReAligner
	Algorithmic components
	Implementation

	Graph-based Multi-Read Alignment
	Algorithmic components
	Implementation

	III Tools and Applications
	SeqAn::T-Coffee
	SP and TC Score
	Parameter Evaluation
	Gap penalties
	Scoring matrix
	Pairwise alignment algorithms
	Tree reconstruction

	Results
	BAliBASE
	PREFAB
	DNA sequence alignment

	Command Line

	Sequence Consensus
	Multi-Read Alignment in De Novo Assembly
	Multi-Read Alignment in Reference-Guided Sequence Assembly
	Command Line

	PairAlign
	Command Line

	TreeRecon
	Command Line

	IV Outlook
	Discussion
	Limitations
	Possible Extensions
	SeqAn

	Future Challenges
	Non-Collinear Protein Alignments
	Genome Comparison
	Deep Alignments
	Concluding Remarks

