Aus dem Institut für Pharmakologie und Toxikologie Fachbereich Veterinärmedizin der Freien Universität Berlin

DISSERTATION

Nahrungsaufnahme und Sättigung: Mögliche Wechselwirkungen zwischen Cholezystokinin und Serotonin

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

von

Dagmar Wenz aus Marburg an der Lahn

Gutachter: 1. Prof. Dr. med. H. Fink

2. Prof. Dr. med. I. Roots

3. Priv.-Doz. Dr. med. F. Stöckmann

Datum der Urkundenverleihung: 07.12. 2007

Inhaltsverzeichnis

1	Einleitung	6	
1.1	Adipositas	6	
1.1.1	Klassifizierung der Adipositas	6	
1.1.2	Prävalenz der Adipositas	8	
1.1.3	Begleiterkrankungen der Adipositas	9	
1.1.4	Behandlungsindikation der Adipositas	10	
1.1.5	Pharmakotherapie der Adipositas	11	
1.1.6	Neuere Ansatzpunkte in der medikamentösen Therapie der		
	Adipositas	13	
1.2	Die Regulation von Hunger und Sättigung	16	
1.3	Cholezystokinin und Sättigung	21	
1.1.3	Pharmakologische Beeinflussung des cholezystokinergen Systems		
	und der Nahrungsaufnahme	23	
1.4	Serotonin und Sättigung	26	
1.4.1	Pharmakologische Beeinflussung des serotonergen System	ms und	
	der Nahrungsaufnahme	27	
1.4.2	Serotoninrezeptoren und Nahrungsaufnahme	28	
1.5	Interaktionen von Serotonin und Cholezystokinin		
	bei der Kontrolle der Nahrungsaufnahme	30	
2	Zielstellung	34	
3	Material und Methoden	36	
3.1	Tiermaterial	36	
3.2	Haltungsbedingungen	36	
3.3	Verwendete Substanzen und Darreichungsform	37	
3.4	Durchführung der Experimente	39	
3.5	Versuchsgruppen	39	

3.6	Substanzen, deren Effekte auf die Nahrungsaufnahme über			
	Cholezystokinin vermittelt werden	40		
	a. Camostat			
	b. Sojabohnen Trypsin Inhibitor (STI)			
	c. Devazepid			
3.7	Substanzen, deren Effekte auf die Nahrungsaufnahme über das			
	serotonerge System vermittelt werden	40		
	Fenfluramin			
3.8	Kombinationsversuche	40		
	a. Camostat und Fenfluramin			
	b. STI und Fenfluramin			
3.9	Statistik	41		
4	Ergebnisse	42		
4.1	Einzelversuche	42		
4.1.1	Wirkung von Camostat auf die Futteraufnahme	42		
4.1.1.1	Effekt von Camostat auf die Köpermasse und den			
4.1.1.2	Wasserverbrauch nach vierundzwanzig Stunden	43		
4.1.2	Wirkung von Devazepid auf die Nahrungsaufnahme	44		
4.1.3	Wirkung von STI auf die Futteraufnahme	45		
4.1.3.1	Wirkung von STI auf die Körpermasse und den			
4.1.3.2	Wasserverbrauch nach vierundzwanzig Stunden	46		
4.1.4	Wirkung von Fenfluramin auf die Futteraufnahme 47			
4.1.4.1	Wirkung von Fenfluramin auf dir Körpermasse und den			
	Wasserverbrauch nach vierundzwanzig Stunden	49		
4.2	Kombinationsversuche	50		
4.2.1	Wirkung der Kombination von Camostat und Fenfluramin auf die			
	Futteraufnahme	50		
4.2.2	Frühe Vorbehandlung mit Camostat in Kombination mit			
	Fenfluramin	52		
4.2.3	Wirkung der Kombination von Fenfluramin und STI auf die			
	Nahrungsaufnahme	53		

5	Diskussion	54
5.1	Cholezystokinin und Sättigung	54
	Camostat und STI	
5.2	Serotonin und Sättigung	59
	Fenfluramin	
5.3	Kombinationsversuche	60
6	Zusammenfassung	68
7	Abkürzungsverzeichnis	70
8	Literaturverzeichnis	72
9	Danksagung	91
10	Erklärung an Eides statt	92
11	Lebenslauf	93

7 Abkürzungsverzeichnis

ACC: Acetyl-CoenzymA-Carboxylasen

AGRP: Agouti – bezogenes Protein (*Agouti related protein*)

BHS: Blut-Hirn-Schranke

BMI: *Body-Mass-Index*

CART: Cocain- / Amphetamin-reguliertes Transcript (Cocain- and amphetamin related

transcript)

CB-1: Cannabinoid- Rezeptor 1

CCK: Cholezystokinin

CRH: Corticotropin-freisetzender Faktor (*Corticotropin Releasing Factor*)

CNTF: Ziliarer neurotropher Faktor

CVO: Cerebroventrikuläre Organe

FOY 305: Camostat

GH: Wachstumshormon (*Groth hormon*)

GHs: Growth hormon secretagogue

GHsR: Growth hormon secretagogue Rezeptor

GLP: Glukagon-ähnliches Peptid Glukagon-like-Peptide

GPCR: G-Protein-gekoppelten-Rezeptoren

5- HT: Serotonin; 5- Hydroxytryptamin

i.p.: intraperitoneal

IUPHAR: International Union of Pharmacology

I-Zellen: Intermediärzellen

KHK: Koronare Herzerkrankung

LH: Lateraler Hypothalamus

MAO: Monoaminooxidase

MCH: Melanin-konzentrierendes Hormon (Melanin concentrating hormone)

MCR: Melanocortin – Rezeptor

α- MSH: α- Melanozyten-stimulierendem Hormon

NA: Noradrenalin

N. vagus: Nervus vagus

NPY: Neuropeptid Y

ObR: Obesity Receptor

OLETF: Otsuka Long Evans Tokushima Fatty

PMCH: Pro – Melanin – konzentrierendes Hormon

p.o.: per os

POMC: Proopiomelanocortin

PYY 3-36: C-terminales Fragment von Peptid YY

s.c.: subcutan

SSRI: Selektive Serotonin-Wiederaufnahmehemmer

STI: Soybean trypsin inhibitor

TSH: Thyrotropin-Releasing- Hormon

VMH: Ventromedialer Hypothalamus

WHR: Waist to hip ratio

WHO: Weltgesundheitsorganisation (World Health Organization)

Y2R: NPY-Y2-Rezeptor

ZNS: Zentrales Nervensystem

9 Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen meiner Arbeit beigetragen und mich trotz mancher Zweifel vielfältig unterstützt haben.

Dabei gilt mein besonderer Dank:

Frau Prof. Dr. Heidrun Fink für die Bereitstellung des Themas,

meinem Betreuer Herrn PD Dr. Jörg-Peter Voigt für das lange Durchhaltevermögen und die viele Geduld bei jedwegen Problemen,

Herrn PD Dr. A. Rex, Frau Hartmann und allen Mitarbeitern des Instituts für Pharmakologie und Toxikologie des Fachbereichs Veterinärmedizin der medizinischen Fakultät Charité, welche mir immer helfend zur Seite standen.

Außerdem meinen Eltern Anneliese und Hans Wenz, sowie meinen Geschwistern Jörg und Uwe und deren Familien,

Marcel Möller und unserer Tochter Emma Pauline, die es mir vor Ihrer Geburt ermöglicht hat, noch einmal Kraft und Zeit für diese Arbeit aufzubringen.

10 Erklärung an Eides Statt

Hiermit erkläre ich Eides Statt, dass die vorgelegte Dissertation von mir selbst und ohne die Hilfe Dritter verfasst wurde, in Teilen keine Kopie anderer Arbeit darstellt und die benutzten Hilfsmittel und die Literatur vollständig angegeben sind.

Dagmar Wenz

11 Lebenslauf

Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht

Publikationen:

Voigt JP, Wenz D, Voits M, Fink H. Does increased endogenous CCK interact with serotonin to reduce food intake in rats? Peptides. 2000 Dec;21(12):1895-901.