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As a canonical response to the applied magnetic field, the electronic states of a metal are fundamentally
reorganized into Landau levels. In Dirac metals, Landau levels can be expected without magnetic fields,
provided that an inhomogeneous strain is applied to spatially modulate electron hoppings in a way similar to the
Aharonov-Bohm phase. We here predict that a twisted zigzag nanoribbon of graphene exhibits strain-induced
pseudo Landau levels of unexplored but analytically solvable dispersions at low energies. The presence of such
dispersive pseudo Landau levels results in a negative strain resistivity characterizing the (1 + 1)-dimensional
chiral anomaly if partially filled and can greatly enhance the thermopower when fully filled.
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I. INTRODUCTION

A magnetic field applied to a metal can quantize the
orbital motion of electrons and populate them on discrete
energy bands known as the Landau levels (LLs) [1], which
are responsible for a number of transport properties. When
the applied magnetic field is scanned, LLs can successively
pass through the Fermi surface, giving rise to quantum os-
cillations such as the Shubnikov–de Haas effect [2,3] and
the de Haas–van Alphen effect [4]. In recently discovered
topological semimetals [5–10], the presence of LLs accounts
for the nonconservation of chiral charge transport, i.e., the
chiral anomaly [11–13], which is observable through a neg-
ative longitudinal magnetoresistivity [14–20] resulting from
the chiral magnetic effect [18–21]. The integer quantum Hall
effect in the massive two-dimensional electron gas [22–24],
the half-integer quantum Hall effect in graphene [25–30], and
the fractional quantum Hall effect in incompressible quantum
liquids [31–35] all derive from particular filling factors of
LLs.

Landau levels, remarkably, have been proposed to ex-
ist in elastically strained Dirac metals in the absence of
magnetic fields [36–39], leading to strain-induced transport
phenomena such as quantum oscillations [40,41], quantum
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anomalies [42,43], and Hall-like effects [44–47], similar to
those in the context of the regular magnetotransport. Such
strain-induced pseudo Landau levels (pLLs) have been ex-
perimentally observed by scanning tunneling spectroscopy
(STS) in nanobubbles [48,49] and nanoripples [50,51] of
graphene and directly imaged by angle-resolved photoemis-
sion spectroscopy (ARPES) in wafer-scale epitaxially grown
graphene on a silicon carbide (SiC) substrate with nanoprisms
[52]. To interpret the transport experiments involving pLLs,
one should ideally understand the pLL dispersions. However,
as presumably the most flexible Dirac metal and thus the
most promising experimental venue, graphene requires great
experimental effort in fine-tuning the strain in a triaxial pat-
tern for the induction of the regular flat Dirac-Landau levels
[44,53,54], while simple strain patterns such as those arising
from bending [55–57] or twisting [58] a graphene nanoribbon
(GNR) produce complicated dispersive pLLs.

In this paper, we propose a general method based on the
band theory to analytically derive the band structure of pLLs
induced in a twisted zigzag GNR and then use the resolved
pLL dispersions to interpret the transport signatures of the
twisted GNR. In Sec. II, we show that the twisted GNR
exhibits a bulk zero mode which is the strain-induced zeroth
pLL (pLL0) by nature. By linearizing the Hamiltonian of the
twisted GNR in the vicinity of the bulk zero mode, i.e., the
pLL guiding center, we derive the dispersions of the pLLs at
low energies. In Sec. III, we study the low-energy transport
of the twisted GNR in the framework of the semiclassical
Boltzmann formalism and elucidate that the dispersive pLLs
engender a negative strain resistivity if partially filled and can
enhance the thermopower if fully filled. Section IV concludes
the paper and envisages a few other venues to which our
general method may be applied.
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FIG. 1. (a) Graphene nanoribbon (GNR) with zigzag edges along
the x direction. Denoting the honeycomb lattice constant by a, we
have δx = √

3a and δy = 3
2 a. The nearest neighbor vectors (blue)

are thus (α1, α2, α3) = ( 1
2 δx x̂ + 1

3 δyŷ,− 1
2 δxx̂ + 1

3 δyŷ, − 2
3 δyŷ), and

the next nearest neighbor vectors (red) are (β1, β2, β3) = ( 1
2 δx x̂ +

δyŷ, − 1
2 δx x̂ + δyŷ, δxx̂). In the presence of open boundary conditions

along the y direction, the unit cell of the zigzag GNR is chosen
as the shaded area (yellow) containing 2N sites on each sublattice.
(b) The hexagonal Brillouin zone (green) of the honeycomb lattice
in panel (a) contains two Dirac cones at the BZ corners labeled by K
and K ′, respectively. In the presence of spatially uniform anisotropic
hoppings (t1, t2, t3) = (t + δt, t + δt, t ), where δt < 0, the two Dirac
cones are oppositely displaced away from BZ corners as illustrated
by the red and blue arrows. (c) A twisted GNR (blue) is obtained
by applying a torsional strain that rotates the right (left) edge of the
undeformed GNR (light blue) of length L and width W by a small
angle of �/2 (−�/2).

II. ELECTRONIC STRUCTURE OF THE TWIST-INDUCED
PSEUDO LANDAU LEVELS

We start from the strain-free tight-binding Hamiltonian of
graphene with only nearest neighbor hopping terms

H0 =
∑

r

∑
i

tia
†
r br+αi + H.c., (1)

where ar(br) is the electronic annihilation operator at site
r = (x, y) belonging to the A(B) sublattice of the honeycomb
lattice with lattice constant a = 0.142 nm [59–61], and αi is
the ith nearest neighbor vector along which the hopping is ti
independent of r. In the following, unless otherwise specified,
we choose the x direction to be parallel to the zigzag edges
[Fig. 1(a)], so that (α1,α2,α3) = (

√
3

2 ax̂ + 1
2 aŷ,−

√
3

2 ax̂ +
1
2 aŷ,−aŷ). This tight-binding Hamiltonian encodes two en-
ergy bands ε(k) = ±| ∑i tieik·αi |, which exhibit Dirac cones
at the Brillouin zone (BZ) corners [62] for isotropic hoppings
ti=1,2,3 = t . For anisotropic hoppings (t1, t2, t3) = (t + δt, t +
δt, t ), the Dirac cones are translated from the BZ corners to
k±

W = [± 2√
3a

arccos(− 1
2

t
t+δt ), 0], as illustrated in Fig. 1(b).

An elastic strain can deform the crystalline lattice of
graphene, break the translational symmetry, and spatially
modulate the hoppings through the empirical formula [63]

ti → ti exp{g[1 − α̃i(r)/αi]}, (2)

where g = 3.37 is the Grüneisen parameter [63,64], α̃i(r) is
the strain-modulated spacing between a chosen lattice site at r

and its ith nearest neighbor, and αi = a is the strain-free coun-
terpart of α̃i(r) as illustrated in Fig. 1(a). For the simple twist
lattice deformation [Fig. 1(c)] characterized by the parame-
ter λ = �/L that measures the rotational angle of the GNR
unit cell [Fig. 1(a)] per unit length along the x direction, we
have α̃i(r) ≈ (α2

i + λ2α2
i,xy2)1/2 for a sufficiently small twist

λa � 1 [65]. We note that α̃i(r) preserves the modi-
fied x-direction translational symmetry �(δx ) = T (δx )R(λδx ),
which should be defined as a regular translation by δx along
the x direction combined with a counterclockwise rotation by
an angle of λδx around the x axis [Fig. 1(c)]. Applying Fourier
transform in the x direction, we find that the modulation
[Eq. (2)] yields for the twisted zigzag GNR a tight-binding
Hamiltonian

H =
∑
kx,y

a†
kx,y−δy/3

[
2t (y) cos

(
1
2 kxδx

) + t ŝ−δy

]
bkx,y + H.c.,

(3)
where ŝ−δy bkx,y = bkx,y−δy and t (y) = t exp{g[1 − (1 +
3
4λ2y2)1/2]} corresponding to the hoppings along α1 and
α2, while the hopping along α3 is preserved as t . Therefore,
the effect of the twist is similar to that of the aforementioned
anisotropy (t1 = t2 �= t3), relocating the Dirac cones but in a
space-dependent fashion.

To scrutinize this relocation, we take the continuum limit
such that the shift operator can be estimated through lineariza-
tion as ŝ±δy ≈ 1 ± δy

d
dy , which leads to the Bloch Hamiltonian

for the twisted GNR

Hkx,y = [
2t (y) cos

(
1
2 kxδx

) + t
]
τ x − itδy

d

dy
τ y. (4)

The nanoribbon tight-binding Hamiltonian [Eq. (3)] then be-
comes H = ∑

kx,y
ψ

†
kx,y

Hkx,yψkx,y with Pauli matrices τ x and

τ y acting on ψkx,y = (akx,y, bkx,y+δy/3)T . If t (W
2 ) < 1

2 t , for any
given momentum 4π

3δx
� kx � 8π

3δx
, we can always find within

the twisted GNR a pair of spatial coordinates

y0 = ± 2√
3λ

√{
1 + 1

g ln
[−2 cos

(
1
2 kxδx

)]}2 − 1, (5)

at which the first term in Eq. (4) changes sign. Therefore,
for each choice of sign in Eq. (5), there exists a bulk zero
mode �0(y), which is an even function of y − y0, satisfying
Hkx,y�0(y)|y=y0 = 0. Such a bulk zero mode comprises the
twist-displaced Dirac points associated with different values
of y0.

To better understand the nature of these bulk zero modes,
we investigate the spectrum of the Bloch Hamiltonian
[Eq. (4)] at low energies. Because of the exponentially de-
caying t (y), analytically resolving the eigenvalues of Hkx,y

is usually not feasible. However, if the twist is sufficiently
small, t (y) varies slowly on the lattice scale and can be well
estimated in the vicinity of the bulk zero mode through the
linearization t (y) ≈ t (y0)[1 − �y0 (y − y0)/t], where �y0 =
3
4λ2y0gt/[1 + 3

4λ2y2
0]1/2. This helps simplify the Bloch

Hamiltonian [Eq. (4)] into a minimally coupled Dirac
Hamiltonian

Hkx,y ≈ �y0 (y − y0)τ x − itδy
d

dy
τ y, (6)
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whose eigenvalues are dispersive pLLs (see Appendix A for
detailed derivations)

ε±
n (kx ) = ±sgn(tδy�y0 )

√|2ntδy�y0 |

= ±3t

2

√√√√√ngλa

2√
3

√{
1 + 1

g ln
[
2 cos

(
1
2 kxδx

)]}2 − 1

1 + 1
g ln

[
2 cos

(
1
2 kxδx

)] ,

(7)

where the momentum dependence is incorporated through �y0

by making use of Eq. (5) and mapping its domain of definition
from [ 4π

3δx
, 8π

3δx
] to [− 2π

3δx
, 2π

3δx
], which is located in the first BZ

of the twisted GNR. We mention that these pLLs are bounded
from above: By noting that the pLL energies cannot exceed
the merging points of the two Dirac cones, i.e., the Lifshitz
transition points ε±

Lif = ±t , one can estimate from Eq. (7)

the maximal pLL index as nmax = � 2
√

3
9gλa [1 − 1

(1+g−1 ln 2)2 ]−1/2	,
where �·	 is the floor function; but we emphasize that Eq. (7)
fails before n reaches nmax because it is based on the lineariza-
tion of the Bloch Hamiltonian [Eq. (4)]. It is worth noting that
the pLLs characterized by Eq. (7) are doubly degenerate due
to the multivaluedness of sgn(tδy�y0 ) associated with the con-
tributions from both the upper (y0 > 0) and the lower (y0 < 0)
sectors of the GNR. The bulk zero modes of the nanoribbon
tight-binding Hamiltonian [Eq. (3)] connecting Dirac points
K and K ′ are none other than the doubly degenerate pLL0 and
belong to the family of pLLs.

We have applied numerical simulations to the nanoribbon
tight-binding Hamiltonian [Eq. (3)] and find that the disper-
sive pLLs are indeed well captured by Eq. (7) at low energies
[Fig. 2(a)]. We also notice that the pLLs are actually bounded
between two Dirac cones in the momentum dimension. This
is because when kx approaches the Dirac points, y0 eventually
becomes comparable to the spatial extent of the pLL wave
functions; the wave functions then begin to overlap, lose their
degeneracy, and recombine into dispersive snake states which
constitute the Dirac cones [67] [Fig. 2(b)]. While the energy
bands inside the Dirac cones are qualitatively analogous to
those in strain-free Dirac cones [Fig. 2(c)], the strained Dirac
cones host far fewer bands, because the strain confines the
snake states to the center of the GNR, thereby reducing the
effective width of the system.

Besides the pLLs and the bulk states in the Dirac cones of
the twisted GNR, we also find a pair of flat bands traversing
the whole BZ in Fig. 2(a). We argue that such bands can
only be the edge states of the GNR. To justify this argu-
ment, we analyze the nanoribbon tight-binding Hamiltonian
[Eq. (3)] from another point of view by treating it as a Su-
Schrieffer-Heeger (SSH) model [68] with bipartite hoppings
2t (y) cos( 1

2 kxδx ) and t . Between the Dirac points, the GNR
unit cell is divided into three segments by the two domain
walls at y0 such that the outer two segments (i.e., |y| > |y0|)
are topological SSH chains with 2t (y) cos( 1

2 kxδx ) < t , while
the inner segment (i.e., |y| < |y0|) is a trivial SSH chain with
2t (y) cos( 1

2 kxδx ) > t . Therefore, there are in total four “end
states” associated with the outer two segments. Two of them
are the doubly degenerate pLL0 centered at y0, while the other
two located at ±W

2 constitute the edge states. In the rest of the

FIG. 2. Band structure of the twisted GNR with N = 1200.
(a) The low-energy spectrum (blue) is composed of dispersive pLLs
and two Dirac cones from which these pLLs emerge. The dispersions
of these pLLs are accurately captured by Eq. (7) (red), which is
overlaid on the energy bands. The twist parameter adopted is λ =
0.0005a−1, at which the maximal C-C bond elongation appearing at
the edges of the GNR is 27%. Such strain, though large, should be
sustainable in graphene [66]. (b) A closer look of the left Dirac cone
in panel (a). The dashed curve is the envelope of the cone ε±

D (kx ) =
±[2 cos( 1

2 kxδx ) − 1]t . Each pLL is doubly degenerate, formed by the
confluence of two bulk bands at the right sector of the envelope.
(c) Dirac cone located at K of an undeformed GNR of the same width
harbors many more bands than that in panel (b) in the same energy
window.

first BZ, recalling t (y) < t , we have 2t (y) cos( 1
2 kxδx ) < t for

any y ∈ [−W
2 , W

2 ], making the entire GNR unit cell a topolog-
ical SSH chain possessing a doubly degenerate flat edge state.
Therefore, the BZ-wide flat bands are the edge states of the
twisted GNR.

Before we leave this section, we briefly discuss the effect
of electron-electron interactions which we have ignored so
far. It is well known that a repulsive Coulomb interaction
can create local ferromagnetic order at the two edges of a
strain-free zigzag GNR such that the two edges have opposite
magnetization [69–73]. The most important consequence on
band structure is that a small band gap opens up at the Dirac
points [71–73], which should in general deform the pLLs in
Eq. (7). However, this band gap is inversely proportional to
the ribbon width [71] and quickly becomes much smaller than
the pLL spacing for realistic interaction strengths and wide
ribbons we consider here. (An additional gap arises at k = π

δx
,

but is unlikely to affect the pLLs located within [− 2π
3δx

, 2π
3δx

].)
Therefore, we would expect Eq. (7) to characterize the pLL
dispersions even in the presence of interaction. Similar to
the zigzag edge state, the pLL0 may also carry local fer-
romagnetic order and form in the twisted zigzag GNR an
“edge-compensated” antiferromagnetism [74].
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III. TRANSPORT SIGNATURES OF THE TWISTED
GRAPHENE NANORIBBON

In Sec. II, we have obtained the pLL dispersions [Eq. (7)]
by studying the Bloch Hamiltonian [Eq. (4)] in the vicinity of
y0, where the bulk zero mode, i.e., the pLL0, is centered. In the
present section, we adopt these results to study the transport
signatures of the twisted GNR at low energies.

A. Density of states

To derive the transport properties of the twisted GNR, it
is instructive to first investigate the density of states (DOS)
contributed by the doubly degenerate pLLs and the two
Dirac cones from which these pLLs emerge. Without loss
of generality, we will set the chemical potential μ > 0 in
the following, while the μ < 0 case can be treated using the
particle-hole transformation.

We first examine the pLLs whose dispersions have been
found in Eq. (7). It is critically important to note that these
pLLs are only well defined between the Dirac cones. There-
fore, the actual extent of the nth pLL (pLLn) is [−kn

x , kn
x ],

which is only a portion of the domain [− 2π
3δx

, 2π
3δx

] except
when n = 0 [Fig. 2(a)]. The bound kn

x can be determined by
finding the intersection of ε+

n (kx ) with the Dirac cone enve-
lope ε+

D (kx ) = [2 cos( 1
2 kxδx ) − 1]t . Upon finding kn

x , the DOS
contributed by pLLs is

gL(μ) = 2
∑

n

∫ kn
x

−kn
x

dkx

2π
δ[μ − ε+

n (kx )] = 2

π

∑
n

νn(μ)
dε+

n
dkx

|μ
, (8)

where dε+
n

dkx
|μ is calculated in the left BZ here and below.

In Eq. (8), we also define for the pLLn the occupancy pa-
rameter νn(μ) = θ (ε�

n − μ) − θ (εD
n − μ) with θ (·) being the

Heaviside step function and εD
n ≡ ε+

n (−kn
x ) = ε+

D (−kn
x ) [ε�

n ≡
ε+

n (0)] marking the minimum (maximum) of the electron-like
pLLn. The values of εD

n and ε�
n for the lowest few pLLs are

listed in Table I.
As for the bulk bands harbored by the Dirac cones, we

may treat their contribution to the DOS as identical to that
of Dirac cones in a strain-free GNR of renormalized width,
as explained in Sec. II and Figs. 2(b) and 2(c). In the limit of
large GNR width, the DOS associated with the bulk states in

TABLE I. The energy bounds of lowest 20 pLLs in a twisted
GNR with λ = 0.0005a−1 and N = 1200.

n εD
n /t ε�

n /t n εD
n /t ε�

n /t

1 0.0224 0.0496 11 0.1080 0.1644
2 0.0354 0.0701 12 0.1143 0.1717
3 0.0463 0.0859 13 0.1203 0.1787
4 0.0559 0.0991 14 0.1262 0.1854
5 0.0647 0.1108 15 0.1320 0.1920
6 0.0729 0.1214 16 0.1375 0.1983
7 0.0806 0.1311 17 0.1430 0.2044
8 0.0879 0.1402 18 0.1483 0.2103
9 0.0949 0.1487 19 0.1536 0.2160
10 0.1016 0.1567 20 0.1587 0.2217

FIG. 3. Transport properties of the twisted GNR vs the chem-
ical potential μ. Red and blue curves stand for the analytical and
numerical results, respectively. Shaded areas denote the only direct
band gap of pLLs, which is located between the pLL0 and the
pLL1. (a) DOS of the twisted GNR. Note that the mismatch between
the numerical DOS and the analytical DOS [Eq. (10)] in the pLL
gap is because Eq. (10) excludes the contribution of the flat edge
state [Fig. 2(a)]. (b) The longitudinal electrical conductivity whose
theoretically proposed value is given by Eq. (13). (c) The Seebeck co-
efficient calculated from panel (b) using the Mott relation [Eq. (14)].
For all panels, the data are broadened by convolving in energy a
Lorentzian of width δε = 0.0024t to simulate the effects of disorder
and finite temperature.

the Dirac cones can then be written as

gD(μ) = 2W ξ (μ)
∫

dq
(2π )2

δ[μ − ε(q)] = 4N

3π

μ

at2
ξ (μ),

(9)

where ε(q) = ± 3
2 ta(q2

x + q2
y )1/2 are the dispersions charac-

terizing the Dirac cones before projection into the one-
dimensional BZ, and the multiplier ξ (μ) = Nλ(μ)/N0(μ)
concerns the difference in energy band numbers with
Nλ(μ) ≈ 1 + 2

∑
n>0 θ (μ − εD

n ) [N0(μ) ≈ 2N
πt μ] being the

number of bands in a single Dirac cone of the twisted
(undeformed) GNR intersecting the chemical potential
μ > 0. A more substantial derivation of ξ (μ) is provided in
Appendix B. The total DOS is then the combination of
Eqs. (8) and (9),

g(μ) = 2

π

∑
n

1
dε+

n
dkx

|μ
νn(μ) + 4N

3π

μ

at2
ξ (μ), (10)

which is substantiated by comparing to the DOS of the
nanoribbon tight-binding Hamiltonian [Eq. (3)] numerically
evaluated through the tetrahedron method [75] as illustrated
in Fig. 3(a).

B. Negative strain resistivity

We now present the analysis of the longitudinal electri-
cal conductivity of the twisted GNR. At sufficiently low
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temperatures, we may apply the Sommerfeld expansion to
the Boltzmann formalism and keep only the lowest order
contribution, which, for the pLLs, reads

σ xx
L (μ) = 2e2

∑
n

τn(μ)
∫ kn

x

−kn
x

dkx

2π

[
vx

n(kx )
]2

δ[μ − ε+
n (kx )]

= 2e2

π h̄2 τ (μ)
∑

n

dε+
n

dkx

∣∣∣∣
μ

νn(μ), (11)

where vx
n(kx ) = 1

h̄
dε+

n
dkx

is the band group velocity for the pLLn

and we have used the energy-dependent relaxation time ap-
proximation [76] and assumed identical relaxation time τ (μ)
for all energy bands. The contribution to the electrical conduc-
tivity from the bulk states in the Dirac cones may be written
as

σ xx
D (μ) = 2e2W χ (μ)

∫
dq

(2π )2
τ (μ)v2

x (q)δ[μ − ε(q)]

= 3N

2π
χ (μ)

e2

h̄2 τ (μ)aμ, (12)

where vx(q) = 1
h̄

∂ε(q)
∂qx

is the band velocity associated with the
Dirac cone. Similar to the DOS contribution [Eq. (9)], which
is modified from the strain-free Dirac cone contribution by
a multiplier ξ (μ), the conductivity contribution [Eq. (12)]
also requires a multiplier χ (μ) to incorporate the difference
in band numbers. We argue that χ (μ) ≈ 1

2ξ (μ) because the
energy bands in Dirac cones of the twisted GNR are no longer
“V-shaped” as those hosted by the strain-free Dirac cones, but
are nearly half “V-shaped” as illustrated in Fig. 2(b), making
the number of Dirac cones contributing to the electrical con-
ductivity effectively one (see Appendix B).

A comprehensive understanding of the electrical conduc-
tivity also requires the knowledge of the relaxation time τ (μ),
especially its energy dependence, which is sensitive to the
details of scattering mechanism. For strain-free graphene,
the screened Coulomb scattering dominates [77,78] and the
relaxation time becomes τ (μ) ∝ μ due to the “Diracness”
of the charge carriers [79,80]. In the presence of twist, the
Dirac cones are broken into pLLs and the μ dependence of
the relaxation time would change. Using Fermi’s golden rule
[81], the scattering time can be written as τ (μ) = C/g(μ),
where C = h̄

2π
|Vi f |−2 encodes the detailed information of the

scattering mechanism with Vi f being the scattering matrix
element between the initial state |i〉 and the final state | f 〉.
When the Drude contribution is the major source of scattering,
the parameter C becomes a constant proportional to the den-
sity of the impurities [82] consistent with the first-order Born
approximation prediction [83]. For other types of scatterers,
such as charged impurities, the parameter C is expected to
have a smooth dependence on μ. In terms of the parameter
C, the total longitudinal electrical conductivity comprising
Eqs. (11) and (12) reads

σ xx(μ) =
2
π

∑
n

1
at

dε+
n

dkx

∣∣
μ
νn(μ) + 3N

2π

μ

t χ (μ)
2
π

∑
n

1
1
at

dε+n
dkx

|μ
νn(μ) + 4N

3π

μ

t ξ (μ)

e2

h̄2 Ca2t2. (13)

Assuming Drude scattering, the electrical conductivity σ xx

is calculated as a function of μ in Fig. 3(b); our theoretical

FIG. 4. Strain resistivity of a twisted GNR with N = 1200. [(a),
(b)] Numerically calculated energy bands (blue) and analytically
predicted pLLs [Eq. (7)] (red) for (a) λa = 4.917×10−4 and (b) λa =
5.022×10−4. [(c), (d)] Enlargements of panels (a) and (b) in the
vicinity of the Dirac point K . [(e), (f)] Resistivity (orange) and
conductivity (green) as functions of the twist λ at (e) μ = 0.024t and
(f) μ = 0.057t . These two chemical potentials are marked by hori-
zontal orange lines in panels (a)–(d). The resistivity and conductivity
data are broadened by convolving in energy a Lorentzian of width
δε = 10−4t .

prediction Eq. (13) is seen to capture the essential features of
the numerical results. Though Fig. 3(b) is quantitatively cor-
rect only for C = const., the pLLs should generally manifest
themselves through singularities in the DOS g(μ) and hence
dips in σ xx, as long as C has a smooth μ dependence.

We now analyze the λ dependence of the electrical con-
ductivity [Eq. (13)]. When the twist λ is allowed to vary in
a narrow range in which only the dispersive pLL1 is par-
tially filled with the chemical potential μ1 = 0.024t [lower
orange lines, Figs. 4(a) to 4(d)], the values of the occupancy
parameters νn(μ) and the multipliers ξ (μ) and χ (μ) remain
intact. Moreover, the band velocities ∼ dεn

dkx
of the pLLs are in-

creasing functions of λ (see Appendix A). Consequently, both
the total electrical conductivity σ xx and the pLL contribution
σ xx

L increase with the twist λ, giving rise to a negative strain
resistivity ρxx = 1/σ xx [84] as illustrated by the orange curve
in Fig. 4(e). Such an effect is analogous to the negative mag-
netoresistivity [14–20] in topological semimetals with only
chiral LLs (cf. pLL1) partially filled (i.e., in the quantum limit)
and may serve as a manifestation of the (1 + 1)-dimensional
chiral anomaly [13], which coincides with the valley anomaly
in graphene [82]. For a higher chemical potential μ2 = 0.057t
[upper orange line, Figs. 4(a) to 4(d)] outside the quantum
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limit, pLL1 (pLL2,3,4) is always fully (partially) filled during
the variation of the twist; a negative strain resistivity aris-
ing from pLL2,3,4 then emerges [Fig. 4(f)]. We mention that
the pLL-induced negative strain resistivity can only occur
when λ is scanned in a narrow range; otherwise, the bot-
toms of subbands in the Dirac cones [Figs. 4(c) and 4(d)]
can in general cross the chemical potential, giving rise to
quantum-oscillation-like signals in both the resistivity and the
conductivity. Consequently, the negative strain resistivity may
become obscured. Lastly, we note that the thermal conductiv-
ity of the GNR is related to the electrical conductivity through

the Wiedemann-Franz law κxx = π2k2
B

3e2 T σ xx. Therefore, it also
increases with λ in the quantum limit, giving rise to a negative
strain-thermal resistivity similar to that in Weyl superconduc-
tors [85].

C. Enhanced thermopower

We now study the thermoelectric effect in the twisted GNR.
Because of the preservation of the time-reversal symmetry, the
twisted GNR exhibits no Nernst effects or thermal Hall effects
in the presence of a temperature gradient ∂xT . However, the
Seebeck coefficient is compatible with the time-reversal sym-
metry and can be conveniently determined through the Mott
relation [86]

Sxx(μ) = −π2k2
BT

3eσ xx

dσ xx

dμ
, (14)

which arises from the Sommerfeld expansion [76] at low
temperatures kBT � μ. For the broadening δε = 0.0024t cho-
sen for σ xx in Fig. 3(b), the temperature is kBT ∼ δε . If
we are only interested in pLLs (outside the gray patches
in Fig. 3) which are far from the charge neutrality point,
kBT � μ indeed stands and the application of the Mott
relation is legitimate. On the other hand, for higher tem-
peratures comparable to the Fermi temperature, a deviation
from the Mott relation has been observed [87–89]. The ther-
mopower becomes sensitively dependent on the scattering
mechanisms [77,78,90,91] and is likely to be dominated by
charged impurities [77,78], while electron-electron scattering
and electron-optical-phonon scattering may also contribute
[90,91].

We note that every time a pLL is fully filled, σ xx is greatly
suppressed but experiences a sudden boost, giving rise to large
values of both 1

σ xx and | dσ xx

dμ
|, thus significantly enhancing

the Seebeck coefficient as illustrated by the sequence of dips
around ε�

n in Fig. 3(c), which mimic those produced by the
ordinary flat Dirac-Landau levels resulting from uniform real
magnetic fields [87–89,92,93]. The enhanced Seebeck coeffi-
cient is accompanied by a boosted Peltier coefficient through
the Thomson relation �xx = T Sxx [76].

IV. DISCUSSION AND CONCLUSIONS

During our derivation of the pLL dispersions and the asso-
ciated transport properties, two assumptions have been made.
First, we assume the continuum limit and strongly localized
pLLs so that both the shift operators ŝ±δy and the hopping t (y)
can be expanded only to the linear order. We argue that this
is a legitimate estimate when the GNR width is not too small.

In fact, as we will show in Appendix C, the quadratic and
cubic order terms in the expansions of ŝ±δy and t (y) can only
contribute a correction of order of 10−4t when N = 1200,
which should be safely negligible. Second, we assume that
the effect of the next nearest neighbor hopping is negligible.
This is because such an effect can be in principle canceled
by a fine-tuned electric field [82]. In realistic graphene, the
strain-free next nearest neighbor hopping ranges from 0.02t
to 0.2t [59] and thus should deform the twist-induced pLLs
to some extent in the absence of the applied electric field.
The response of pLLs to the next nearest neighbor hopping
is discussed in detail in Appendix D.

To summarize, we have studied the strain-induced pLLs
in a twisted GNR. By tracking the formation of the bulk
zero mode located on the domain wall of the GNR unit cell,
which is effectively an SSH model, we reduce the low-energy
theory of the twisted GNR into an exactly solvable minimally
coupled Dirac theory to derive the momentum dependence
of the pLLs. Such dispersive pLLs produce a negative strain
resistivity if partially filled and can enhance the thermopower
if fully filled.

The method we have adopted deriving the pLL dispersions
is by no means ad hoc and should be in principle trans-
plantable to GNRs under other inhomogeneous strain patterns
or magnetic fields with complicated or even arbitrary spa-
tial profiles. It can also be conveniently generalized to other
graphene-like Dirac materials made of photons [94], magnons
[95], phonons [96,97], and Majorana particles [98,99], since
strain-induced flat Dirac-Landau levels have been reported
in these materials. Our work may also be adapted to su-
perconducting Dirac matter such as Weyl superconductors
[85,100,101] and d-wave superconductors [102,103], where
strain may be the only hope to Landau quantize the Bogoli-
ubov quasiparticles.
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APPENDIX A: DERIVATION OF PLL DISPERSIONS

In Sec. II of the main text, we have derived the dispersions
[Eq. (7)] of the pLLs in a twisted GNR. We here present a
detailed solution of the eigenvalue problem of the minimally
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coupled Dirac Hamiltonian Hkx,y [Eq. (6)], from which the
pLLs arise. Explicitly, the eigenvalue problem of Hkx,y is
written as[

�y0 (y − y0) − tδy
d

dy

]
f−(y) = ε f+(y),

[
�y0 (y − y0) + tδy

d

dy

]
f+(y) = ε f−(y), (A1)

where f+(y) and f−(y) constitute the eigenvector �(y) =
eikxx[ f+(y), f−(y)]T corresponding to the eigenenergy ε. In a
more compact form, Eq. (A1) can be rewritten as[

�2
y0

(y − y0)2 − t2δ2
y

d2

dy2
− stδy�y0

]
fs(y) = ε2 fs(y), (A2)

with s = ±. For transparency, we introduce the dimensionless
coordinate

ξy =
√∣∣∣∣�y0

tδy

∣∣∣∣(y − y0), (A3)

which helps simplify Eq. (A2) as

d2 fs

dξ 2
y

− ξ 2
y fs +

[
ε2

|tδy�y0 |
+ s · sgn(tδy�y0 )

]
fs = 0. (A4)

We define an auxiliary function gs(ξy) = eξ 2
y /2 fs(ξy) that trans-

forms Eq. (A4) into the exactly solvable Hermite’s differential
equation

d2gs

dξ 2
y

− 2ξy
dgs

dξy
+

[
ε2

|tδy�y0 |
+ s · sgn(tδy�y0 ) − 1

]
gs = 0,

(A5)
which possesses square-integrable solutions only when the
eigenenergy ε adopts discrete values

ε2
n = 2n|tδy�y0 |, (A6)

where n is a non-negative integer. The solutions of Eq. (A5)
are the Hermite polynomials gsgn(tδy�y0 )(ξy) = Hn(ξy) and
g−sgn(tδy�y0 )(ξy) = sgn(n)Hn−1(ξy), making the eigenvectors

�±
n>0(y) = 1√

2n+1π
1
2 n!

eikxxe− 1
2 ξ 2

y

[ ±Hn(ξy)√
2nHn−1(ξy)

]
,

�0(y) = 1√
π

1
2

eikxxe− 1
2 ξ 2

y

[
H0(ξy)

0

]
, (A7)

when sgn(tδy�y0 ) > 0. When sgn(tδy�y0 ) < 0, the eigen-
vectors should be written as τ x�±

n>0(y) and τ x�0(y). The
y dependence of the eigenvectors is incorporated through
Eq. (A3). By plugging these acquired eigenvectors into
Eq. (A1), we may specify the sign of the eigenenergy εn,
which is not encoded in Eq. (A6). Specifically, the eigenen-
ergies associated with the eigenvectors �±

n>0(y) [τ x�±
n>0(y)]

and �0(y) [τ x�0(y)] are ε±
n>0 = ±√

2n|tδy�y0 | (ε±
n>0 =

∓√
2n|tδy�y0 |) and ε+

0 = 0 (ε−
0 = 0), respectively. The pLL

dispersions can then be written as Eq. (7), which possesses
twofold degeneracy.

As analyzed in Sec. III, the dispersive pLLs impact the
transport properties, e.g., Eqs. (10) and (13), through the
derivative of Eq. (7) calculated at the left BZ. Explicitly, it

FIG. 5. Schematic plot of the band structure of the left Dirac
cone. (a) The energy bands, labeled as εt

n(kx ), of a twisted GNR
with εD

n=1,...,5 marking the confluence of these bands into pLLs.
(b) A Dirac cone of an undeformed GNR. The dashed curve
is the boundary of the Dirac cone. The left (right) boundary is
characterized by ε−

D (kx ) = t − 2t cos( 1
2 kxδx )|kx<kD [ε+

D (kx ) = −t +
2t cos( 1

2 kxδx )|kx>kD ]. (c) An artificial band structure is constructed
by adding to (a) energy bands [red and denoted as εa

n (kx )], which
are (almost) parallel to the right boundary of the Dirac cone, making
the modified energy bands εi

n(kx ) = {εt
n(kx ), εa

n (kx )} also V shaped,
resembling those in panel (b).

reads

dε+
n

dkx

∣∣∣∣
μ

= 3
√

3

4g

√
2√
3
ngλa[

γ 2
μ

(
γ 2

μ − 1
)]3/4

√
1 − 1

4 e2g(γμ−1)

eg(γμ−1)
at, (A8)

where we have defined the parameter

γμ = 1√
1 − 4μ4/27t4n2g2λ2a2

. (A9)

It is straightforward to find that dε+
n

dkx
|μ is an increasing function

of the twist λ because γμ is a decreasing function of λ. There-
fore, if λ is allowed to vary in a narrow range such that only
pLL1 is partially filled, the electrical conductivity Eq. (13)
becomes an increasing function of λ, resulting in a negative
strain resistivity.

APPENDIX B: DERIVATION OF MULTIPLIERS

The fact that Dirac cones of a twisted GNR [Fig. 2(b)]
contain far fewer bands than those of an undeformed GNR
[Fig. 2(c)] requires multipliers ξ (μ) and χ (μ) to be intro-
duced when calculating the DOS [Eq. (9)] and the electrical
conductivity [Eq. (12)], respectively. To figure out the values
of these multipliers, we now analyze the bulk bands hosted
by the left Dirac cone (i.e., the one located at kD = − 2π

3δx
) of

twisted and/or undeformed GNR with close attention paid to
the morphology and transport properties associated with these
bulk bands.

For the bulk bands inside the Dirac cone of a twisted GNR,
as illustrated in Fig. 5(a), when kx increases, an energy band
first goes downhill along the left boundary of the Dirac cone
and reaches its minimum in the vicinity of the right boundary
of the cone. It then climbs uphill toward the right boundary, at
which it merges with another energy band and they evolve into
a doubly degenerate pLL. The transport associated with this
Dirac cone is only contributed by the partially filled energy
bands, labeled by εt

n(kx ), which intersect the chemical poten-
tial μ > 0. The number of such bands, denoted as Nλ(μ), can
be estimated by counting the number of pLLs emerging from
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the Dirac cone below the chemical potential μ. Explicitly, we
have

Nλ(μ) ≈ 1 + 2
∑
n>0

θ
(
μ − εD

n

)
, (B1)

where θ (·) is the Heaviside step function. The first term in
Eq. (B1) relates to the electron-like copy of the doubly degen-
erate pLL0. The DOS at chemical potential μ is then

gt
D(μ) =

′∑
n

∫
dkx

2π
δ
[
μ − εt

n(kx )
] = 1

2π

′∑
n

1∣∣ dεt
n

dkx

∣∣
μ

, (B2)

where the primed summation only runs over the Nλ(μ) par-
tially filled energy bands. It is worth noting that these energy
bands are generally not monotonic and each of them may
intersect the chemical potential μ at most twice. In that case,
we may divide εt

n(kx ) at its minimum into two monotonic
segments and let the summation run over both segments.
Nevertheless, we conclude from Eq. (B2) that the DOS is
dominated by the energy bands with small group velocities.
In contrast, the electrical conductivity obtained through the
Boltzmann formalism,

σ t
D(μ) = e2τ (μ)

′∑
n

∫
dkx

2π

(
1

h̄

dεt
n

dkx

)2

δ
[
μ − εt

n(kx )
]

= e2τ (μ)

2π h̄2

′∑
n

∣∣∣∣dεt
n

dkx

∣∣∣∣
μ

, (B3)

is mainly contributed by the energy bands with large group
velocities.

Inside the Dirac cone of an undeformed GNR, we see
that most of the energy bands are V shaped and go downhill
(uphill) along the left (right) boundary of the cone, leaving
the band minima in the center around kD. In addition, there is
a state whose energy is a monotonously increasing function of
kx. It evolves into the zigzag edge state away from kD on the
left [Fig. 5(b)]. The proximity of band minima to the Dirac
point kD indicates a convenient way to estimate the number
of partially filled energy bands, denoted as N0(μ). Specif-
ically, the nanoribbon tight-binding Hamiltonian [Eq. (3)]
is reduced to a Toeplitz tridiagonal matrix at kD, whose
eigenvalues are exactly solvable as εu

n (kD) = −2t cos( nπ
4N+1 )

with n = 1, 2, . . . , 4N . By confining these band minima be-
low the chemical potential μ but above the Dirac point,
we obtain a requirement for band index n as 2N + 1 � n �
� 4N+1

π
arccos(− μ

2t )	, which is valid if μ � −2t cos( 2N+1
4N+1π ).

For μ < −2t cos( 2N+1
4N+1π ), the only partially filled energy

band is the one evolving into the zigzag edge state, with
index n = 2N + 1. This implies the number of energy bands
intersecting the chemical potential μ may be estimated as

N0(μ) ≈
⌊

4N + 1

π
arccos

(
− μ

2t

)⌋
− 2N

+ θ

[
− μ − 2t cos

(
2N + 1

4N + 1
π

)]
. (B4)

We note that N0(μ) can be greatly simplified if the chemical
potential μ is close to the Dirac point, imposing requirement
εu

n (kD) � t , or, equivalently, n − 2N � N , on the partially
filled energy bands. Such a requirement leads to a uniform

subband gap �εu
n = εu

n+1(kD) − εu
n (kD) ≈ πt

2N , which gives an
alternative estimate N0(μ) ≈ μ

�εu
n

= 2N
πt μ. In the limit of large

GNR width, these N0(μ) energy bands contribute to the DOS

gu
D(μ) = W

∫
dq

(2π )2
δ[μ − ε(q)] = 2Nμ

3πat2
= 1

2h̄vF
N0(μ),

(B5)

where vF = 3at
2h̄ is the Fermi velocity of the Dirac cone. As for

the electrical conductivity, we have

σ u
D(μ) = e2W τ (μ)

∫
dq

(2π )2

[
1

h̄

∂ε(q)

dqx

]2

δ[μ − ε(q)]

= 3N

4π

e2

h̄2 τ (μ)aμ = e2vF

4h̄
τ (μ)N0(μ), (B6)

which also depends on vF and N0(μ).
To figure out the values of the multipliers, a connection

between gt
D(μ) [σ t

D(μ)] and gu
D(μ) [σ u

D(μ)] is useful. Such
a connection can be established by introducing an artificial
band structure, in which we require the energy bands εt

n(kx ) to
merge with the right boundary of the Dirac cone rather than
penetrating the cone and becoming pLLs. Equivalently, each
energy band εt

n(kx ) is spliced with an artificial segment εa
n (kx ),

whose group velocity is ∼ 3at
2h̄ , as illustrated in Fig. 5(c). The

reshaped energy bands, labeled as εi
n(kx ) = {εt

n(kx ), εa
n (kx )}

are also V shaped, resembling those in Fig. 5(b). Therefore,
we may treat the artificial band structure in Fig. 5(c) as a
Dirac cone in an undeformed GNR whose effective width
is smaller than the one considered in Fig. 5(b), because the
subband gap is larger. Since the Fermi velocity associated with
this Dirac cone is approximately vF = 3at

2h̄ , by comparing to
Eqs. (B5) and (B6), the associated DOS gi

D(μ) and electrical
conductivity σ i

D(μ) may be written down as

gi
D(μ) = gu

D(μ)
Nλ(μ)

N0(μ)
, (B7a)

σ i
D(μ) = σ u

D(μ)
Nλ(μ)

N0(μ)
. (B7b)

Alternatively, by comparing to Eqs. (B2) and (B3), we write
gi

D(μ) and σ i
D(μ) as

gi
D(μ) = gt

D(μ) + 1

2π

′∑
n

1∣∣ dεa
n

dkx

∣∣
μ

≈ gt
D(μ), (B8a)

σ i
D(μ) = σ t

D(μ) + e2τ (μ)

2π h̄2

′∑
n

∣∣∣∣dεa
n

dkx

∣∣∣∣
μ

≈ 2σ t
D(μ), (B8b)

where we have noticed that the group velocities (∼ 3at
2h̄ ) of

the artificially added energy bands εa
n (kx ) are much larger

than those associated with the band bottoms of εt
n(kx ), whose

contributions are enclosed in gt
D(μ), so that the dominating

contribution to gi
D(μ) is from gt

D(μ). On the other hand, the
large band velocities indicate that the artificially added energy
bands εa

n (kx ) should have a significant contribution to the
electrical conductivity σ i

D(μ). The contribution from εa
n (kx )

should be roughly the same as that from the energy bands
εt

n(kx ), because the band bottoms of εt
n(kx ) barely affect the

transport in the Boltzmann formalism.
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We make use of Eqs. (B7) and (B8) and obtain the multi-
pliers as

ξ (μ) = gt
D(μ)

gu
D(μ)

≈ gi
D(μ)

gu
D(μ)

= Nλ(μ)

N0(μ)
, (B9a)

χ (μ) = σ t
D(μ)

σ u
D(μ)

≈ 1

2

σ i
D(μ)

σ u
D(μ)

= 1

2

Nλ(μ)

N0(μ)
, (B9b)

which result in a transport theory [Eqs. (10) and (13)] that can
actually capture the most important features of the numerical
results.

APPENDIX C: HIGHER ORDER TERMS
IN THE CONTINUUM THEORY

The pLL dispersions in the main text [Eq. (7)], while in
good agreement with the numerics [Fig. 2(a)], are obtained by
expanding both the modified hopping t (y) and the shift oper-
ators ŝ±δy to the linear order in the nanoribbon tight-binding
Hamiltonian [Eq. (3)]. This approximation becomes accurate
under the following conditions: (i) the wave functions vary
slowly on the lattice scale δy, such that the linearization of ŝ±δy

is legitimate; and (ii) the bulk zero mode is strongly localized
at the domain wall y0 such that the widths of the pLL wave
functions are sufficiently small, making the linear expansion
of t (y) valid. Such a requirement also guarantees minimal
overlap between the pLLs and the edge states. In more real-
istic conditions, we also need to consider in the expansions
the higher order terms, which turn out to account for the
slight discrepancy between Eq. (7) and numerics [Fig. 2(a)].
In the rest of this section, we will show that the leading-order
discrepancy scales as n3/2, where n is the pLL index.

Starting from Eq. (3), we now expand both t (y) and ŝ±δy up
to the cubic order and treat the quadratic order term δHD,(2)

kx,y

and cubic order term δHD,(3)
kx,y

as perturbations to the Dirac
Hamiltonian [Eq. (6)]. Explicitly, these terms are

δHD,(2)
kx,y

= − t ′′(y0)(y − y0)2

2t (y0)
tτ x + 1

2
tδ2

y

d2

dy2
τ x, (C1a)

δHD,(3)
kx,y

= − t ′′′(y0)(y − y0)3

6t (y0)
tτ x − 1

6
itδ3

y

d3

dy3
τ y, (C1b)

where the kx dependence is acquired from y0 through Eq. (5).
The matrix elements of such perturbations are easily eval-
uated using ladder operators, and the perturbation theory
calculations are lengthy but straightforward. Specifically, the
quadratic order terms in Eq. (C1a) contribute a correction

δε±,(2)
n (kx ) = ±n

3
2 t

{3t ′′(y0)t (y0) + [t ′(y0)]2}δ
3
2
y t ′′(y0)

|2t ′(y0)| 5
2 [t (y0)]

1
2

, (C2)

which arises from the second-order perturbation theory calcu-
lation of Eq. (C1a), but the cubic order terms in Eq. (C1b) give
rise to

δε±,(3)
n (kx ) = ∓ 3

16
n

3
2 t

{t ′′′(y0)[t (y0)]2 + |t ′(y0)|3}δ
3
2
y

|t ′(y0)| 3
2 [t (y0)]

3
2

, (C3)

at the first-order perturbation level. Therefore, one cannot
naively expect that the quadratic order terms [Eq. (C1a)] al-
ways have a more profound influence than the cubic order

FIG. 6. Higher order corrections to the pLL dispersions. As in
the main text, N = 1200 and λ = 0.0005a−1 such that the maximal
C-C bond elongation at the edges of the GNR is 27%. (a) Two leading
(n3/2) contributions to the relative correction to pLL1, δε+

1 /ε+
1 , as

predicted by the continuum theory. The solid red line is the quadratic
order contribution δε

+,(2)
1 /ε+

1 [Eq. (C2)] and the dashed blue line is
the cubic order contribution δε

+,(3)
1 /ε+

1 [Eq. (C3)]. (b) The differ-
ence between the numerical pLL dispersions and the Dirac theory
[Eq. (7)], ε+,exact

n − ε+
n (blue) and the leading corrections to the Dirac

theory δε+,(2)
n + δε+,(3)

n (red), with 1 � n � 5.

terms [Eq. (C1b)]. In fact, the relative importance between
Eqs. (C2) and (C3) is sensitive to the value of kx as well as
the type of the lattice deformation, though they both scale as
n3/2. For the twist deformation characterized by Eq. (2), the
sizes of these contributions at n = 1 (relative to the pLL1 dis-
persion ε+

1 ) are plotted in Fig. 6(a). Both diverge at the Dirac
points, but δε±,(2)

n diverges more quickly; in contrast, δε±,(3)
n

dominates around |kxδx| = π/2, and the two corrections
become comparable near the � point. Figure 6(b) compares
δε+,(2)

n + δε+,(3)
n with ε+,exact

n − ε+
n , the difference between

the numerical pLL dispersions and the Dirac theory prediction
[Eq. (7)]. The discrepancy can be traced to subleading correc-
tions arising from even higher order terms in the expansions of
t (y) and ŝδy . Since the linear order expansions of ŝ±δy and t (y)
already capture the numerical energy bands to a high accuracy
of 10−4t , which can be further increased by including the
quadratic and the cubic order terms, we choose not to include
more terms in the expansions of ŝ±δy and t (y).

APPENDIX D: NEXT NEAREST NEIGHBOR EFFECTS

Our discussion of the twisted GNR in the main text is
based on a tight-binding model with only nearest neighbor
hoppings, while the next nearest neighbor effect is in gen-
eral not negligible in realistic graphene. In this section, we
investigate the response of pLLs to the next nearest neighbor
hoppings.

With the next nearest neighbor hopping terms included, the
strain-free Hamiltonian [Eq. (1)] has an additional term

δH0 = −
∑

r

(t ′
i a

†
r ar+βi

+ t ′
i b

†
rbr+βi

) + H.c., (D1)
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where (β1,β2,β3) = (α1 − α3,α2 − α3,α1 − α2) are three
of the six next nearest neighbor vectors. In the presence of
an elastic strain, as in Eq. (2), the hopping integrals t ′

i [104]
are modulated through

t ′
i → t ′

i exp{g[1 − β̃i(r)/βi]}, (D2)

where β̃i(r) is the strain-modulated spacing between a chosen
lattice site at r and its ith next nearest neighbor and βi is the
strain-free counterpart of β̃i(r) as illustrated in Fig. 1(a).

Focusing on the twist deformation, the tight-binding
Hamiltonian for the twisted GNR [Eq. (3)] should be supple-
mented by

δH = −
∑
kx,y

ψ
†
kx,y

[
2t ′

1(y)(ŝ−δy + ŝδy ) cos
(

1
2 kxδx

)
+ 2t ′

3(y) cos(kxδx )
]
ψkx,y, (D3)

where the hopping integrals along β1,2 and β3 are re-
spectively t ′

1(y) = t ′ exp{g[1 − (1 + 1
4λ2y2)1/2]} and t ′

3(y) =
t ′ exp{g[1 − (1 + λ2y2)1/2]} with t ′ being the isotropic next
nearest neighbor hopping in the absence of strain.

In the lowest order approximation, we may write ŝ−δy +
ŝδy ≈ 2 so that only onsite terms appear in Eq. (D3). This
observation suggests that the effect of δH may be greatly sup-
pressed if we apply an appropriate electric field E = −∂yφ(y),
which also induces an onsite potential in the GNR Hamilto-
nian. Since the pLLs sit at the domain wall y0, we require the
external electric potential energy to cancel the onsite energy
resulting from the next nearest neighbor hoppings. Therefore,
the electric potential at y0 is

φ(y0) = −1

e

[
4t ′

1(y0) cos
(

1
2 kxδx

) + 2t ′
3(y0) cos(kxδx )

]
. (D4)

Making use of Eq. (5), we can remove the kx dependence in
Eq. (D4) so that the applied electric potential reads

φ(y) = 1

e

[
2t ′

1(y)t

t (y)
− t ′

3(y)t2

t2(y)
+ 2t ′

3(y)

]
. (D5)

With this electric field, both the electronic structure and the
transport of the twisted GNR are governed by the nearest
neighbor effect, which is the concern of the main text. Al-
though the next nearest neighbor effect can be suppressed
by an external electric field, the realization of such an elec-
tric field is unfortunately not easy due to the complicated
space dependence associated with the electric potential φ(y)
in Eq. (D5). In the following, we show that our prediction
on the negative strain resistivity and enhanced thermopower
should still be qualitatively correct even without the applied
external electric field.

By expanding the shift operators ŝ−δy + ŝδy ≈ 2 + δ2
y

d2

dy2

and next nearest neighbor hopping t ′
1,3(y) at y = y0 to the

quadratic order of y − y0, we can calculate for the pLL dis-
persions [Eq. (7)] the perturbative correction as

δε±
n (kx ) = −4t ′

1(y0) cos
(

1
2 kxδx

) − 2t ′
3(y0) cos(kxδx )

+
{

− 2

[
d2t ′

1

dy2

∣∣∣∣
y0

tδy

|�y0 |
− t ′

1(y0)
|�y0 |δy

t

]

FIG. 7. Band structure and DOS of a twisted GNR with next
nearest neighbor hopping. As in the main text, N = 1200 and λ =
0.0005a−1 such that the maximal C-C bond elongation at the edges
of the GNR is 27%. The strain-free next neatest neighbor hopping
is t ′ = 0.1t . (a) Low-energy bands from numerical simulations of
the tight-binding model (blue) with the analytical predictions (red)
of Eqs. (7) and (D6) for the pLLs and Eq. (D9) for the edge states
overlaid. The particle-hole symmetry is broken by the next nearest
neighbor hopping, and both the pLL0 and the edge states are now
dispersive. (b) The corresponding numerical DOS, broadened by
convolution with a Lorentzian of width δε = 0.0024t .

× cos

(
1

2
kxδx

)
− d2t ′

3

dy2

∣∣∣∣
y0

tδy

|�y0 |
cos(kxδx )

}

×
(

n + δn0

2

)
, (D6)

which is strongly kx dependent but only weakly depends on
the pLL index n. Although Eq. (D6) is valid for 4π

3δx
� kx �

8π
3δx

, one can again shift the domain of kx into the first BZ

so that the cos( 1
2 kxδx ) terms change sign. The previously flat

pLL0 now becomes dispersive, and the particle-hole symme-
try is manifestly broken.

A comparison between our theory for the pLLs and nu-
merical spectrum is given in Fig. 7(a). We find Eqs. (7) and
(D6) yield reasonably good agreement for the low-lying pLLs
comparing to the existing DFT calculations in Ref. [58]. Even
better agreement could be achieved by keeping higher order
gradients in Eq. (D3), as we have done in Appendix C. As
illustrated in Fig. 7(a), the next nearest neighbor hoppings do
not destroy the dispersive pLLs. We thus expect the negative
strain resistivity, which results from the intervalley transport
mediated by partially filled dispersive pLLs, should persist.
We also plot the numerical DOS in Fig. 7(b); as in the t ′ = 0
case, because of the flatness of the pLLs near the � point, the
DOS is sharply peaked and expected to produce an enhanced
thermopower there.

Before we leave this section, we mention that the enhanced
thermopower may also arise from the edge states, which are
now dispersive and may produce features in the DOS similar
to those resulting from the pLLs. It is therefore useful to find
the edge state dispersion explicitly. In the framework of the
perturbation theory, we first consider the zero mode localized
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on the A sublattice at the lower edge [see Fig. 1(a)] by writing
the Schrödinger equation

2t (y j ) cos
(

1
2 kxδx

)
φ j + tφ j+1 = 0, (D7)

where y j = −W
2 + ( j − 1)δy marks the position of the a j site

and φ j is the associated probability amplitude. Note the wave
function associated with the B sublattice vanishes near the
lower edge. Since we have assumed strong deformation at the
edge, φn decays rapidly in the bulk for any kx; thus, we can
approximate the slow-varying function t (y) by t (−W

2 ). The
normalized wave function then reads

φn ≈ [
1 − 4�2 cos2

(
1
2 kxδx

)]1/2[−2� cos
(

1
2 kxδx

)]n−1
, (D8)

where � ≡ t (−W
2 )/t < 1/2. Further approximating t ′

1(y) and
t ′
3(y) by their values at y = −W/2, we obtain the edge state

dispersion as the expectation value of δH in Eq. (D3),

〈δH〉 ≈ 4
t
(−W

2

)
t

t ′
1

(−W
2

)
(1 + cos kxδx ) − 2t ′

3

(−W
2

)
cos kxδx.

(D9)

This is degenerate with another edge state localized at the
upper edge. As shown in Fig. 7(a), Eq. (D9) is a good approx-
imation to the numerical edge state dispersion, which again
traverses the entire BZ and is now well separated from the
Dirac point. The edge band notably produces a shoulder on
the pLL peak at ε ≈ 0.17t .
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