
Enhanced Test Case Generation with
the Classification Tree Method

Inauguraldissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von
Peter Michael Kruse

Berlin 2013
D 188

Betreuerin: Prof. Dr.-Ing. Ina Schieferdecker

Erstgutachterin: Prof. Dr.-Ing. Ina Schieferdecker
Zweitgutachter: Prof. Dr. rer. nat. habil. Bernd-Holger Schlingloff
Drittgutachter: Prof. Dr. phil.-nat. Jens Grabowski

Tag der Disputation: 25. August 2014

ii

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Ina Schieferdecker
and Joachim Wegener, for their professional guidance, inspiring discussions, and en-
couragement during the period of this research. Furthermore, I would like to thank
all my colleagues from Berner & Mattner Systemtechnik GmbH. Thanks also go to
my friends, my parents, and my family for their support and encouragement. Spe-
cial thanks go to Stefanie Winzek and Malte Zander for numerous helpful comments,
hints, and suggestions on early versions of this work.

v

Abstract

To make a statement on software quality, a methodical approach on software test-
ing is absolutely necessary. One common approach is the classification tree method
introduced in 1993. All relevant test aspects of a system under test and their charac-
teristics are divided into disjoint subsets. Test cases are then generated by combining
specific characteristics of each aspect. Depending on the size (cardinality) and num-
ber of different aspects, the number of possible combinations grows exponentially.
Therefore tools for applying the classification tree method offer coverage criteria for
automated test case generation. Typically current coverage criteria are minimal or
complete combination. Additionally, test case generation needs to consider specific
dependencies between characteristics of test aspects.

Existing approaches do not offer a prioritization of certain test aspects during test
case generation. However, prioritization of test aspects is important for a number of
different reasons: Test resources may be limited, testing can be expensive, as it may
be destructive, or it may be desirable to only use a subset of test cases as an initial
test.

Current approaches can be divided into deterministic and non-deterministic tech-
niques. The current classification tree editor uses a non-deterministic technique to
generate test cases. Resulting test suites vary in size and composition. During test
case generation, dependencies and the classification tree itself are stored in different
data structures. Therefore, test cases additionally need to be validated against the
dependency rules during test case generation.

Up to now, no approach supports the automated generation of test sequences from
classification trees. Test sequences can however be defined manually by the user.

This work presents a new approach for qualifying the classification tree with test
aspects of importance (e.g. test costs, test duration, probabilites etc.). These num-
bers can be used for prioritized test case generation and to optimize test suites and,
therefore, to reduce their size.

For dependency handling, we use an integrated data structure holding both the
classification tree and its dependency rules. The data structure is also used for a new
deterministic test case generation, which handles dependencies directly during the
process of test case generation. The resulting test suite should be equal or smaller
in size while generation should be as fast as or even faster than current generation
approaches.

Finally, a new approach for automatic test sequence generation from classification
trees is presented as well. We identify parameters for test sequence generation and
develop new dependency rules and new generation rules.

Results are then compared using common algorithms and standard benchmarks.

vii

Zusammenfassung

Um eine Aussage über die Qualität von Software machen zu können, sind method-
ische Ansätze für den Softwaretest dringend erforderlich. Ein typischer Ansatz ist
die 1993 vorgestellte Klassifikationsbaum-Methode. Bei ihr werden alle testrele-
vanten Aspekte eines Testsystems und seine Eigenschaften in disjunkte Teilmengen
zerlegt. Testfälle werden dann aus der Kombination von spezifischen Charakter-
istika aller Testaspekte gebildet. Je nach Anzahl der Testaspekte und der Menge
der enthaltenen Elemente wächst die Anzahl der möglichen Kombination exponen-
tiell. Werkzeuge zur Unterstützung der Klassifikationsbaum-Methode bieten da-
her Abdeckungskriterien für die automatische Testfallgenerierung an. Typische Ab-
deckungskriterien sind die Minimalkombination oder die vollständige Kombination.
Darüber hinaus werden Abhängigkeiten zwischen Testaspekten berücksichtigt. Pri-
orisierung von Testaspekten während der Testfallgenerierung bietet bislang keiner
der bestehenden Ansätze, dabei wäre diese aus einer Reihe von Gründen sehr wichtig:
Testressourcen sind in der Regel begrenzt und Testen ist kostenintensiv, insbeson-
dere beim destruktiven Testen. Auch kann es gewünscht sein, nur eine Untermenge
aller Testfälle als Eingangstest zu nutzen.

Bestehende Ansätze zur Testfallgenerierung lassen sich in zwei Gruppen untertei-
len, deterministische und nicht-deterministische Techniken. Der aktuelle Klassifi-
kationsbaum-Editor generiert Testfälle nicht-deterministisch, so dass resultierende
Testsuiten aus verschiedenen Durchläufen in Größe und Zusammenstellung vari-
ieren. Außerdem werden Klassifikationsbaum und Abhängigkeitsregeln in unter-
schiedlichen Datenstrukturen gespeichert, so dass Testfälle umständlich auf Gültig-
keit gegen die Abhängigkeitsregeln geprüft werden müssen.

Keiner der bestehenden Ansätze unterstützt die automatische Generierung von
Testsequenzen aus Klassifikationsbäumen. Testsequenzen können bislang nur ma-
nuell definiert werden.

In dieser Arbeit präsentieren wir einen neuen Ansatz um Klassifikationsbäume
mit Gewichten (Testkosten, Testdauer, Wahrscheinlichkeiten, usw.) zu qualifizieren.
Die Gewichte werden von der priorisierenden Testfallgenerierung genutzt. So kann
die resultierende Testsuite optimiert und ihr Umfang reduziert werden.

Abhängigkeitsregeln werden zusammen mit dem Klassifikationsbaum in einer Da-
tenstruktur gespeichert. Diese wird auch für die deterministische Testfallgener-
ierung genutzt, welche die Abhängigkeitsregeln direkt während der Erzeugung von
Testfällen berücksichtigt. Im Vergleich zur bisherigen Testfallgenerierung darf die
hierbei entstehende Testsuite weder größer sein noch darf ihre Erzeugung länger
dauern.

Schließlich präsentieren wir einen neuen Ansatz zur automatischen Generierung
von Testsequenzen aus Klassifikationsbäumen. Wir identifizieren Parameter für die
Generierung und neue Abhängigkeitsregeln.

Alle Ergebnisse werden in standardisierten Benchmarks mit anderen Algorithmen
verglichen.

ix

Declaration

The work presented in this thesis is original work undertaken between January 2009
and November 2013 at Berner & Mattner Systemtechnik GmbH. Portions of this
work have been published elsewhere:

• Peter M. Kruse and Magdalena Luniak: Automated Test Case Generation Using
Classification Trees in Proceedings of StarEast 2010, Orlando, Florida, USA,
2010. Best Paper Award. Concerning Prioritized Test Case Generation [KL10a].

• Peter M. Kruse and Magdalena Luniak: Automated Test Case Generation Using
Classification Trees in Software Quality Professional, Volume 13, Issue 1, issued
by the American Society for Quality (ASQ), 2010. Concerning Prioritized Test
Case Generation [KL10b].

• Peter M. Kruse and Joachim Wegener: Sequenzgenerierung aus Klassifikations-
bäumen in Softwaretechnik-Trends, Band 31, Ausgabe 1, as part of the Pro-
ceedings zum 31. Treffen der Fachgruppe TAV der Gesellschaft für Informatik,
Paderborn, Germany, 2011. Concerning Test Sequence Generation [KW11a].

• Peter M. Kruse and Joachim Wegener: Test Sequence Generation from Classifi-
cation Trees in Sistemas e Tecnologias de Informação, Actas da 6a Conferência
Ibérica de Sistemas e Tecnologias de Informação (CISTI 2011), Chaves, Portu-
gal, 2011 [KW11b].

• Peter M. Kruse and Kiran Lakhotia: Multi Objective Algorithms for Automated
Generation of Combinatorial Test Cases with the Classification Tree Method
in Symposium on Search Based Software Engineering (SSBSE 2011), Szeged,
Hungary, 2011 [KL11].

• Peter M. Kruse: Test Sequence Generation from Classification Trees using Multi-
agent Systems in Proceedings of 9th European Workshop on Multi-agent Sys-
tems (EUMAS 2011), Maastricht, the Netherlands, 2011 [Kru11].

• Peter M. Kruse and Joachim Wegener: Test Sequence Generation from Classifi-
cation Trees in Proceedings of ICST 2012 Workshops (ICSTW 2012), Montreal,
Canada, 2012 [KW12].

• Javier Ferrer and Peter M. Kruse and J. Francisco Chicano and Enrique Alba:
Evolutionary Algorithm for Prioritized Pairwise Test Data Generation in Pro-
ceedings of Genetic and Evolutionary Computation Conference (GECCO) 2012,
Philadelphia, USA, 2012 [FKCA12].

• Peter M. Kruse and Ina Schieferdecker: Comparison of Approaches to Priori-
tized Test Generation for Combinatorial Interaction Testing, in Proceedings of
Federated Conference on Computer Science and Information Systems (FedC-
SIS) 2012, Wroclaw, Poland, 2012 [KS12].

x

Portions of this work have been published as part of EU-ICT STREP FP7-ICT-
2009-5 257574 FITTEST (Future Internet Testing) deliverables:

• Peter M. Kruse: D5.1 - Report on the generation of Classification Trees, March
2012.

• Peter M. Kruse: D5.2 - Interface Implementation to Internet Testing Infrastruc-
ture and Extended User Interface, October 2012.

• Peter M. Kruse: D5.3 - Report on Test Suite Optimization and New Test Case
Generation Techniques, May 2013.

This work is supported by diploma and master theses instigated and supervised by
me:

• Magdalena Luniak: Priorisierende Kombinationsregeln in der Klassifikations-
baum-Methode (Prioritized Combination Rules for the Classification Tree Me-
thod), Diploma thesis, TU Berlin, 2009 [Lun09].

• Robert Reicherdt: Testfallgenerierung mit Binary Decision Diagrams für Klas-
sifikationsbäume mit Abhängigkeiten (Test Case Generation with Binary Deci-
sion Diagrams for Classification Trees with Dependency Rules), Master thesis,
TU Berlin, 2010 [Rei10].

• Nick Walther: Testsequenz-Generierung und Repräsentation mit der Klassifi-
kationsbaum-Methode (Test Sequence Generation and Representation with the
Classification Tree Method), Diploma thesis, HU Berlin, 2011 [Wal11].

• Henno Schooljan: Test Sequence Validation and Generation using Classification
Trees, Master thesis, TU Delft, 2013 [Sch13].

xi

Curriculum Vitae

The CV is not included in the online version for reasons of privacy.

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht ent-
halten.

xiii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goal . 4
1.3 Approach . 5
1.4 Results . 6
1.5 Structure . 7

2 Background 9
2.1 Combinatorial Testing . 9

2.1.1 Coverage Criteria . 10
2.1.2 Constraints . 10

2.2 Classification Tree Method . 11
2.3 Classification Tree Editor . 12
2.4 Dependencies . 13
2.5 Test Case Generation . 14

2.5.1 Test Case Generation with Dependencies 15
2.6 Test Sequence Generation . 16

3 Related Work 19
3.1 Combinatorial Testing . 19

3.1.1 Greedy Approaches . 19
3.1.2 Meta-heuristic Search Approaches 22
3.1.3 Algebraic Approaches . 22

3.2 Test Sequence Generation and Validation 23
3.3 Conclusion . 25

4 Enhancements 27
4.1 Prioritization and Qualification . 27

4.1.1 Example . 28
4.1.2 Qualification with Usage Model 29
4.1.3 Qualification with Error Model 30
4.1.4 Qualification with Risk Model . 31
4.1.5 Conclusion on Qualification . 33

4.2 Constraints Handling . 33
4.2.1 Tree Transformation . 35
4.2.2 Approach . 36

xv

Contents

4.2.3 Example . 38
4.3 Prioritized Generation . 40

4.3.1 Prioritized Minimal Combination 40
4.3.2 Prioritized Pairwise Combination 43
4.3.3 Plain Pairwise Sorting . 46
4.3.4 Class-based Statistical Combination 48

4.4 Deterministic Test Case Generation . 50
4.4.1 Preparation . 50
4.4.2 Phase 1 . 51
4.4.3 Phase 2 . 51
4.4.4 Example . 54
4.4.5 Variation . 56

4.5 Test Sequence Generation . 57
4.5.1 New Dependency Rules . 58
4.5.2 New Generation Rules . 58
4.5.3 General Approach . 59
4.5.4 Decision Tree Approach . 60
4.5.5 FSM Approach . 60

4.6 Statechart Approach for Test Sequence Generation 61
4.6.1 New Generation Rules . 61
4.6.2 Approach . 62
4.6.3 Conversion of Existing Statecharts to Classification Trees . . . 63
4.6.4 Conversion of Classification Trees to Statecharts 67
4.6.5 Algorithm . 67

5 Evaluation 73
5.1 Prioritized Generation . 73

5.1.1 Comparison of PPC vs. Sorting 74
5.1.2 Comparison of PPC with DDA . 77

5.2 Deterministic Test Case Generation . 80
5.2.1 Comparison of BDDPRE and BDDPOST 84
5.2.2 Comparison to Other Approaches 84

5.3 Test Sequence Generation . 85
5.3.1 Decision Tree Approach . 85
5.3.2 FSM Approach . 85
5.3.3 Conclusion . 86

5.4 Statechart Approach for Test Sequence Generation 87

6 Conclusion 91
6.1 Prioritized Generation . 92
6.2 Deterministic Test Case Generation . 93
6.3 Test Sequence Generation . 94
6.4 Future Work . 95

xvi

Contents

A Appendix 109
A.1 Test Sequence Generation Examples . 109

xvii

1 Introduction

Software has become a central part of our everyday life, both visible to and hidden
from human notice. Software controls alarm clocks, coffee and washing machines,
the garage door, or the house alarm system. Car engines have a software-driven
engine control unit. Car radios use software to play music files from a wirelessly
connected mobile phone, which itself contains software. Traffic lights and intelligent
traffic signs are controlled by software, as well as GPS devices used to guide our
ways. There is already software inside the human body as part of pacemakers or
intelligent prostheses.

While there are many benefits from the presence of software in every day life,
there are also risks. Software malfunction can lead to discomfort and loss of money.
In some applications, malfunction of software may even be life-threatening.

Therefore, it is essential for the producers and developers of software to avoid all
kinds of malfunction whenever possible. Avoiding errors in software development is
usually performed using quality assurance. Quality assurance in software develop-
ment normally contains a defined software development processes, a major aspect of
which is software testing.

Software testing is used to gain levels of confidence in the software quality. So
while testing generally speaking cannot prove the absence of errors, it can show
that the software is performing in accordance with its specification for tested sce-
narios. The software specification usually consists of functional and non-functional
requirements. While software testing can be set up and performed easily, it is still
time-consuming and labor intensive.

Other approaches for ensuring software quality include formal reviews and math-
ematical proofs, but both of them tend to be even more laborious and complex in
application.

Obviously, it is desirable to reduce testing efforts to a feasible minimum to get good
test results with reasonable efforts and within resource constraints. Therefore, there
are several approaches for test case design and test case selection.

One common approach is the equivalence class partitioning that derives valid and
invalid partitions for input data from the functional specification. For each partition,
only one representative is tested as all values from one partition range are consid-
ered to result in the same outcome. From the broad range of all possible values,
the determination of only one representative per partition can lead to a tremendous
reduction of test effort.

The combinatorial interaction test design is based on the observation that many
errors occur due to interactions between parameters. Therefore, it is crucial to select

1

1 Introduction

test cases combining as many different parameters as possible and to avoid redun-
dant test cases, which recombine parameters already combined in earlier test cases.

The classification tree method is a common approach based on the equivalence
partitioning and can be used for both test planning and test design. It allows for
a systematic specification of the system under test and its corresponding test cases.
The classification tree editor implements the combinatorial test design and allows to
automatically generate test suites for given coverage levels.

1.1 Motivation

The classification tree method is supported by a graphical editor, the classification
tree editor. The editor adopts results from the field of combinatorial interaction test-
ing, which allows generating certain test suites automatically once the system under
test has been specified.

Some test cases can be more important than others. To identify the importance of a
test case, it is necessary to make a statement on the order of test cases. For different
test aspects, there might be different values of importance. For the test aspect costs,
these values might be Euro values, for the test aspect duration, it would be some
time unit. Having an order of importance it would be possible to select only the most
important test cases in accordance with standards or available resources. So for soft-
ware with low standards, e.g. a multimedia player, a smaller set of test cases might
be sufficient in contrast with a pacemaker, where larger sets of test cases would be
desirable. For time constraints, the same considerations are applicable, e.g. if less
time is available for regression testing, then only a subset of the most important n
test cases could be performed while for initial and final testing, a larger set of test
cases may be considered. Other aspects of importance would be occurrence and fail-
ure probabilities. Having a test suite containing test cases in order of occurrence
probability, testers could use the most probable configuration as an initial test and
continue testing only if this first test cases passes. Otherwise, it could be interesting
to start with the least probable configuration and test how thorough all infrequent
scenarios have been considered. The same considerations apply for failure probabili-
ties as well.

Currently, the classification tree method does not provide measures of importance
nor does the classification tree editor use these measures to sort test cases.

For test case selection, the use of coverage criteria is quite common. The classifi-
cation editor can create test suites for given coverage levels, e.g. pairwise coverage.
There is also support for constraints. As there might be combinations of parameters
which cannot occur at the same time, it is possible to exclude them from test case
generation and to check manually-created test cases against dependency rules. One
advantage of the classification tree method is its replicability. Classification trees can
easily be reviewed. All test aspects are represented as classifications in the classifi-
cation tree; all possible instances for these aspects are classes under corresponding
classifications. The replicability of test cases is, however, limited. The classification

2

1.1 Motivation

tree editor allows for specifying generation rules for the test case generator which
then generates test cases based on a random process. So while each run generates a
test suite that fulfills the generation rule with desired coverage levels, results from
different generation runs may vary. It is therefore not possible to repeat a certain
test case generation and obtain exactly the same results. Certain industry stan-
dards (e.g. ISO 26262), however, require tractability of test cases and their design.
So while a test suite generated with the current classification tree editor fulfills cov-
erage levels, later manipulations to the test suite cannot be revealed. Additionally,
the current classification tree editor performs badly with complex dependency rules
or compositions of contradictory rules.

It would therefore be desirable to have a deterministic test case generation which
produces exactly the same result for the same generation problems and handles de-
pendency rules neatly.

Usually, software is used continuously. After performing one task, there are typ-
ically further things to do: A media player plays one track after another, car nav-
igation leads to the destination and gives directions for several intersections and
junctions, and washing machines perform several actions as part of the washing cy-
cle. For testing these different continuous actions, test cases must therefore reflect
these elements in a certain order. The outcome of one test case is used as the input
for the next test case. The composition of several test cases into a larger test scenario
is called test sequence. The elements of the test sequence are called test steps. Test
sequences can then be used to model consecutive events. For practical reasons, it is
rarely possible to test all possible test sequences, so test sequence design is a crucial
task. In addition to countless configurations for single test steps, there are poten-
tially endless different orders and repetitions of test steps. Furthermore, test steps
cannot be composed in any arbitrary order as it is required for some configurations
of the software that other things have been done first.

Currently, it is possible to manually specify test sequences in the classification tree
editor. There is, however, no predefined way of specifying constraints between test
steps of a test sequence. There are no measures of coverage and there is no automatic
generation of test sequences available with the classification tree method.

So while the classification tree method and the corresponding editor are of great
help for test engineers, there are still a number of shortcomings:

1. The classification tree method and its editor do not allow the prioritization of
certain test aspects and do not offer prioritized test case generation either.

2. The current classification tree editor offers only limited functionality for auto-
mated test case generation. Complex systems with constraints, for example,
are processed only slowly and test results cannot be reproduced, due to the ran-
dom generation process. Moreover, automated test case generation is prone to
errors.

3. Test sequences can be defined only manually. There is neither a concept for

3

1 Introduction

dependency rules between single test steps nor automated test sequence gener-
ation in the classification tree editor.

1.2 Goal

The goal of this work is to handle each issue identified in the previous section and
develop a solution or at least an improvement for it.

To allow the prioritization of test aspects and the prioritized test case generation,
we develop prioritization models to be integrated into the classification tree. This al-
lows the tester to assign priority values to elements of the classification tree. We then
extend existing combination rules for test case generation using these priority values.
We also develop new combination rules taking these values into account for statis-
tical testing. Resulting test cases then have a defined importance for the test suite
resulting from the priorities assigned to elements of the classification tree used for
this test case. Additionally, the introduction of coverage measures allows measuring
coverage level of generated test cases. All generation rules still support dependency
rules specified for the system under test in the classification tree. This allow testers
to generate test suites with an order of importance specified by the priority values
assigned to classification tree elements and to select subsets of test suites that have
a defined quality, calculated using coverage rates with the new coverage measures.

The handling of dependency rules during test case generation is not ideal in exist-
ing approaches for test case generation with the classification tree method. Also, for
reasons of reproducibility, it can be desirable to use deterministic test case genera-
tion. Therefore, the goal is to develop a new approach for dependency rule handling
and a new deterministic approach for test case generation with constraints using the
innovative dependency handling. The goal is to develop a unified representation for
both the dependency rules and the classification tree, in order to ease the handling
of constraints. This unified representation is then used to develop deterministic test
case generation, which must support generation rules to specify coverage levels for
resulting test suites and should be as efficient as or even more efficient than current
approaches. The latter requires the ability to generate test cases for a subset of the
classification tree as well as the support for the current granularity of combination
rules. Implicit dependencies, given by refinements in the classification tree, must be
respected. Test case generation must provide only valid test cases, of course. If there
already are test cases (e.g. from manual definition), it should be possible to generate
a test suite containing these test cases and still complete the coverage level defined
by the generation rule.

For testing the continuous behavior of the system with the classification tree method,
we must develop a way to allow for the generation of test sequences. Advanced de-
pendency rules are introduced to model continuous behavior of the system under test.
The advanced dependency rules allow the tester to specify the legal transitions of dif-
ferent states of the system. Then the test sequence generation produces test suites
of test sequences that fulfill the advanced generation rules specifying desired cover-

4

1.3 Approach

age level. New coverage levels for continuous systems are to be defined. Of course,
the test steps of generated test sequences still have to comply with the conventional
dependency rules already known for test case generation.

1.3 Approach

For the prioritized test case generation, we extend the classification tree elements
with explicit values of importance, so-called weights. We identify qualification mod-
els to provide these weights with a semantic meaning. New combination rules are
then used together with the qualified tree for prioritized test case generation, which
results in an ordered test suite. The test amount can be optimized with respect to
certain quality goals.

The handling of dependency rules is performed using an integrated data struc-
ture containing both the classification tree and the dependency rules. Since the data
structure represents the classification tree with all integrated dependency rules, it
contains only valid test cases.

This integrated data structure is exploited for new, unprioritized test case genera-
tion. The tester can specify coverage levels using generation rules.

We identify Binary Decision Diagrams (BDD) as a proper data structure for the
integrated representation of dependency rules and the classification tree.

For the test sequence generation, we define new dependency rules which describe
constraints between single test steps. New generation rules allow specifying coverage
and granularity of the resulting suite of test sequences.

We split our approach into the following steps:

1. Definition of prioritization models, selection of aspects that are important for
test set optimization.

2. Qualification of the classification tree by using prioritization models.

3. Development of an algorithm for mapping the set of valid test cases given by a
classification tree and its dependencies onto a logical expression.

4. Development of prioritized test case generation rules.

5. Development of a deterministic algorithm for generating test suites matching
given coverage criteria expressions.

6. Development of test sequence dependency rules and generation rules.

7. Development of an algorithm for test sequence generation.

8. Evaluation of our approaches using standard benchmarks.

5

1 Introduction

1.4 Results

All goals have been successfully completed. For the prioritized test case generation,
we have developed and implemented the prioritized test case generation using quali-
fied classification trees. For qualification, we introduce three difference usage models
allowing us to specify the value of importance directly in the classification tree. These
weights can be assigned to classification tree elements and are then considered dur-
ing prioritized test case generation. To handle dependencies in prioritized test case
generation, we establish a mapping of the classification trees and dependencies onto
a logical expression, representing the set of valid test cases in a Binary Decision
Diagram. The prioritized test case generation is then compared against existing ap-
proaches. In most cases, our prioritized test case generation performs better than or
as well as existing approaches.

A new deterministic test case generation using the integrated representation of
classification tree and dependency rules as BDD has been developed and imple-
mented. Handling of dependency rules has been improved over existing approaches
for test case generation in the classification method. We have then compared our
new approach using a large set of benchmarks and compare our result with both
previous test case generation of the classification tree method as well as existing ap-
proaches for combinatorial testing. Our approach performs better than previous test
case generation with the classification tree method in terms of both result set size
and generation time. The performance in comparison with other combinatorial test
case generation techniques, though, is not always better in terms of result set size
and generation time. For specific tasks, e.g. the smallest test suite generated using a
deterministic approach, our new test case generation is still very good.

For the new test sequence generation with the classification tree method we have
developed new advanced dependency rules and new advanced test generation rules.
The advanced dependency rules allow testers to specify constraints between differ-
ent steps of a test sequence in addition to existing dependency rules describing con-
straints between different classifications and classes during a single test step. For
the advanced generation rules, we have developed new coverage levels specific to
the continuous nature of systems under test. After all approaches and rules had
been developed, we have implemented several prototypes using different represen-
tation techniques. We needed three attempts until we found a good representation
and interpretation of classification trees. Preliminary results from the first two at-
tempts are, however, included to allow a comparison and provide some of the lessons
learned. Our third approach for test sequence generation interprets classification
trees as statecharts with some simplifications. We then travel the statechart using a
multi-agent system. To the best of our knowledge, there are no existing benchmark
suites available for continuous testing in combinatorial testing so we had to select a
suite of benchmarks on our own. In the identified set of benchmark scenarios, test
sequence generation performs well in all scenarios tested.

6

1.5 Structure

1.5 Structure

In Chapter 2, we provide the background for this work. We introduce combinatorial
testing, the classification tree method and the classification tree editor. Existing test
case generation approaches for the classification tree method are presented as well.

Important terms and basics for understanding this work as well as related work
are presented in Chapter 3. Several approaches and techniques for combinatorial
testing, both greedy and search-based, are described. Then, fundamental work on
test sequence generation and validation is presented.

In Chapter 4 we design our enhancements for test case and test sequence gener-
ation with the classification tree method. We select three prioritization models and
give a prioritization example to then qualify the classification tree. For dependency
handling, we transform both the classification tree and its dependency rules into
an integrated data structure, a Binary Decision Diagram. Afterwards we use this
data structure for dependency handling in prioritized test case generation. Addition-
ally, we exploit the data structure for a new deterministic test case generation as
well. We introduce our implementation for test case generation. For our new test
sequence generation we design the requirements for both new dependency rules and
new generation rules. Actual generation is then done by converting the classification
tree into a statechart and traversing it using a multi-agent system.

We evaluate our approaches in Chapter 5. We implement our algorithms in Java 6
and use the classification tree editor tool for prototype integration. This offers direct
access to the data model of the classification tree editor, containing the classification
tree, generation rules and dependency rules. First, we apply a prioritized benchmark
to the prioritized pairwise combination. We then optimize our new deterministic test
case generation approach using a small set of standard benchmarks and compare it
to the previous test case generation of classification tree editor, too. We then apply a
large set of standard benchmarks to the optimized deterministic test case generation
approach. Finally, we introduce a set of case studies for test sequence generation and
use them to evaluate our new test sequence generation approach.

In Chapter 6, we assess all three approaches. We show advantages and disadvan-
tages and draw conclusions. At the end, we give an overview of future work.

7

2 Background

In this chapter, we present combinatorial testing, test case generation with coverage
criteria and the classification tree method together with the CTE tool. We used CTE
to evaluate our results.

2.1 Combinatorial Testing

Combinatorial testing, also called combinatorial interaction testing (CIT [CSR06]) or
combinatorial test design (CTD), is a technique that designs tests for a system under
test by combining input parameters. For each parameter of the system, a value is
chosen. This collection of parameter values is called test case. The set of all test
cases constitutes the test suite for the system under test.

For a complete test of any given system, it would be necessary to select all possible
values for each parameter and completely combine it with all possible values of the
remaining parameters. Testing all possible test cases may prove that the system is
fault-free and therefore helps to gain high confidence in system quality. Since the
number of resulting test cases grows exponentially with the number of parameters
and their possible parameter values, complete combination is only used for very small
systems with only few input parameters and possible values or for safety critical
systems, such as aircraft control software.

To reduce the amount of test cases without losing too much confidence in the sys-
tem, several approaches have been developed. These approaches can be divided into
two groups: Approaches reducing the number of parameter values and approaches
reducing the number of parameter combinations. Approaches from both groups can
be combined to further reduce the size of test suites.

Boundary value analysis or equivalence class grouping, for example, aim to intro-
duce sections for input parameter values [Mye79]. It is assumed, that each candidate
of a section results in the same system behavior. This grouping into classes reduces
the number of parameter values and therefore leads to a reduced test suite size.

For the reduction of combinatorial complexity, some approaches introduce cover-
age criteria. The usage of t-wise coverage is based on the fact that many faults in
systems are triggered by the interaction of two or more parameters. For certain er-
rors to show, it is therefore not always necessary to test all possible combinations of
parameter values. t-wise coverage can be defined as follows: A test suite fulfills a
given t-wise coverage, if it contains each t-wise combination of parameter values at
least once [WP01].

9

2 Background

2.1.1 Coverage Criteria

We distinguish between three kinds of coverage levels: Minimal coverage, maximal
coverage and levels in between.

For minimal coverage (with t = 1), all values from each parameter need to be
included in the resulting test suite at least once. The parameter with the highest
number of values determines the resulting test suite size. One test case is needed for
each value of this parameter, combined with the values of all the other parameters
with a smaller number of values.

For maximal coverage (with t = n), all values from each parameter are com-
pletely combined with values from all the other parameters. The number of test cases
in the resulting test suite size can be calculated by forming the Cartesian product of
all parameters.

The remaining coverage levels are coverage levels with t-wise parameter inter-
action (1 < t < n). These coverage levels are used, because they offer a good compro-
mise in terms of both, test suite size and parameter interaction. The resulting test
suite is smaller than a test suite for maximal coverage, while the parameter inter-
action is better than plain minimal coverage. Their optimal sizes, however, cannot
easily be predicted and the calculation of minimal t-wise test suite is NP-complete.
Lei and Tei showed this for t = 2 [LT98] and Wiliam and Probert proved this for all
t ≥ 2, too [WP01].

Finding a non-minimal test suite for a t-wise coverage level, however, is a trivial
task, since the complete combination includes coverage for all levels of t < n, too.

2.1.2 Constraints

In real world scenarios some of the possible parameter value combinations may not
be valid. Therefore, constraints have been introduced. They allow specifying invalid
combinations which will be excluded or skipped during test case generation.

Constraints can be found in many specifications of a software system. They are
typically given in natural language and exist for several reasons, such as limitations
of the components used in the target system, available resources and even market-
ing decisions. While constraints reduce the number of valid test cases, their pres-
ence makes interaction testing more challenging [CDS07]. The impact of constraints
varies with the (test) problem, but their presence causes problems for many existing
CIT tools. Of the numerous existing tools supporting combinatorial interaction test
design only a few offer full constraints support. Of these few tools those with full
published details are even rarer.

Constraints that are expressed explicitly in the system description can give rise
to implicit relationships between other choices. In fact, treatment of these implicit
relationships is the key complicating factor in solving constrained CIT problems.

In the presence of constraints:

• the number of required t-sets to produce a solution can not be calculated and

10

2.2 Classification Tree Method

• lower and upper bounds of the solution size cannot be calculated.

So while explicitly forbidden tuples can be immediately removed from the t-set of
tuples to cover, implicitly forbidden tuples may arise during calculation and evalua-
tion. And while constraints always decrease the number of feasible system configu-
rations, they might both increase and decrease the sample size [CDS07].

2.2 Classification Tree Method

The classification tree method [GG93] (CTM) has been introduced in 1993. It de-
scribes a systematic approach to test case design and was inspired by the category
partition method [OB88] by Ostrand and Balcer. In the category partition method
(CPM) input data and environment parameters are analyzed for characteristics and
their influence on the test object.

Applying the classification tree method involves two steps—designing the classifi-
cation tree and defining test cases.

Designing the classification tree. In the first phase, all aspects of interests and
their disjoint values are identified. Aspects of interests, also known as parameters,
are called classifications, their corresponding parameter values are called classes.

Any system under test can be described by a set of classifications, holding both
input and output parameters. Each classification can have any number of disjoint
classes, describing the occurrence of the parameter. All classifications together form
the classification tree. For semantic purpose, classifications can be grouped into com-
positions.

Additionally, all classes can be refined using new classifications with classes again.
Figure 2.1 shows an example tree: The test object is a function performing opera-

tions on a list. Two aspects of interest have been identified, sorting and list length,
so there are two classifications in the tree.

Figure 2.1: Classification Tree for “List Operation” Example

These characteristics will influence the test object behavior. For each classification,
the input domain is divided into disjoint subsets, the classes. The significant occur-
rences empty, one element, more than one element can be identified for list length
property and sorted, all equal, reverse order, and unsorted for the sorting property.

11

2 Background

Thus, all parameters are classified and categorized.
Definition of test cases. Having composed the classification tree, test cases are

defined by combining classes of different classifications. For each classification, a sig-
nificant representative (class) is selected. Classifications and classes of classifications
are disjoint. Since classifications contain only disjoint values—obviously lists cannot
be sorted and unsorted at the same time—test cases cannot contain several values of
one classification. This small example would result in 12 different combinations to
test.

2.3 Classification Tree Editor

Figure 2.2: CTE XL Layout

The Classification Tree Editor is a graphical editor to create and maintain clas-
sification trees [WG93]. It supports the two steps of the classification tree method
with distinct areas in its program window. First, the upper part of the program win-
dow, the tree editor, is used to span classification trees. Then, the lower part of the
program window, containing combination table and test case tree, is used to actually
specify test cases.

Lehmann and Wegener have extended the editor [LW00] to adopt results from the
field of combinatorial interaction testing [NL11], which allows the automatic gener-
ation of test suites after the specification of the system under test has been given.

A screenshot of the extended classification tree editor (CTE XL) is provided in
Figure 2.2.

The tree editor is located in the center of the application. The graphical represen-
tation of classification tree elements is as follows:

12

2.4 Dependencies

• The root node has rounded corners.

• Classifications have a thin border.

• Classes do not have any border.

• Compositions have a thick border.

The lower part consists of a test case tree on the left and the combination table on
the right.

In the combination table, the tester can select and combine the classes for a test
case. Selected classes are represented by a solid cycle. When there is no selected
class in a classification yet, all classes are marked with a question mark.

The test case tree is on the left side. It is used to create and edit test cases. Test
cases are represented by a cycle and can be combined into test groups. Test groups
are represented by a small folder icon. Test groups can contain further test groups.

Test sequences can also be defined in CTE XL. In contrast to atomic test cases,
test sequences consist of several test steps. A sequence is represented with a small
triangle, containing test steps with a small arrow. When executing a test sequence,
it passes, if all test steps successively pass in the order they are defined.

2.4 Dependencies

With the introduction of combinatorial aspects, Lehmann and Wegener also intro-
duced dependency rules for the CTE XL [LW00]. Dependency rules are used to spec-
ify constraints between different elements of the classification tree.

An example for this scenario is list processing (Figure 2.3).

Figure 2.3: Classification Tree for the “Element Counting" Example

The algorithm searches a given list for a given pivot element. The list can be empty
(length = 0), consist of one element (length = 1), or contain more than one element
(length > 1); resulting in three different list lengths. If the list contains one element

13

2 Background

only, it can be either the pivot element or not. With the list consisting of more than
one element, the parameter contains element can assume the values no, once, or
many. The last influence on the algorithm is list sorting. The parameter sorting of
lists can be sorted, all equal, reverse order, or unsorted.

There are several dependencies here. Since length > 1 is the only scenario where
sorting applies it can be modeled as implicit dependency.

If list sorting is all equal, the list can contain the element several times or not at
all, but not just once. This dependency cannot be modeled in the tree, but has to be
specified as an explicit dependency for this classification tree.

The CTE dependency manager in Figure 2.4 shows how the dependency between
all equal and contains element with no or many is formulated in the CTE.

Figure 2.4: Dependency Manager

The CTE XL allows to specify any kind of logical dependency rules, containing
{AND, OR, NOT, ⇒, ⇔, XOR, NOR, NAND }. Parentheses are used to formulate
more complex expressions.

2.5 Test Case Generation

The original edition of CTE only contained manual test case specification [WG93].
The extended version by Lehman and Wegener introduced automatic test case gen-
eration [LW00]. Their CTE XL allows creating test suites that fulfill certain given

14

2.5 Test Case Generation

coverage levels. Supported coverage levels are minimal combination, pairwise com-
bination, threewise combination, and complete combination.

A screenshot of the CTE XL test case generator is provided in Figure 2.5. The
minimal combination is represented by the + sign, the complete combination by the
* sign. The screenshot shows a generation rule for the list example from Figure 2.1
demanding the complete combination of list length and sorting.

Figure 2.5: Test Case Generator

2.5.1 Test Case Generation with Dependencies

One motivation for this work is the handling of dependencies in CTE XL. Normally,
CTE XL handles dependencies quite well and takes care of them during test case gen-
eration. There is, however, a problem with concatenated dependency rules: When
there are dependency rules which depend on the fulfillment of other dependency
rules, CTE XL sometimes tends to not completely handle all dependency rules si-
multaneously. This behavior results in test suites containing invalid test cases. An
invalid test case is a test case violating at least one dependency rule.

A simple example is the classification tree given in Figure 2.6 consisting of four
classifications with two classes each. It shall have three dependency rules d1 = a→!c,

15

2 Background

Figure 2.6: Dependency Example

d2 = g → c and d3 = e → c. In this simple situation, CTE XL is not capable of gener-
ating an all-valid test suite covering all pairs between param1, param2, param3, and
param4, but always creates a test suite containing invalid test cases due to invalid
(forbidden) combinations of classes.

Additionally, the handling of dependency rules resulting in an empty test suite,
because all test cases are invalid and thus the number of valid test cases is zero, is
not working correctly in CTE XL. For these scenarios, CTE XL still creates test suites,
although the tool recognizes, that all containing test cases are invalid afterwards.

2.6 Test Sequence Generation

In [CDFY99] Conrad et al. present the automatic import of Simulink Models into
classification trees. They use imported models for systematic determination of test
scenarios. Test scenarios can be either test sequences or test cases.

A test scenario is a series of stimuli in a certain order and with assigned dura-
tions. They use the combination table of the classification tree editor to define signal
courses. With additional metadata, they annotate the type of the course. Supported
course types are step, ramp and spline, with step being the default. Their system
can be used to model both discrete and continuous signals. The reuse of modeling
information from the development for test activities reduces time and costs for test
modeling.

The approach is further described in [Con05]. The work focuses on the integration
of test scenarios for embedded systems into the development process. Model-based
specification, design and implementation are in place, but testing still can be im-
proved. Since testing all feasible combinations is nearly impossible, a good selection
of test scenarios determines extent and quality of the whole test. The automatic cre-
ation is desirable, but only yet possible to a limited extent, which leads to largely
manual test design. The problems of ad-hoc test scenario selections are redundancy
and possible gaps. They are typically in a very concrete notation with a low level of
abstraction, making reuse difficult.

The given example tree from Figure 2.7 results in the parallel state machine given

16

2.6 Test Sequence Generation

Figure 2.7: Example Tree for Conrad’s Approach

in Figure 2.8. The notation and syntax follows [Har87].

Figure 2.8: Resulting Parallel State Machine

The proposed solution is a model-based testing (MBT) approach [EFW01] based on
an abstract model of the input data. The input partitioning of this approach implies
a parallel state machine model. Each classification forms one of the parallel parts
(AND-states) of the state machine. The states denote the individual equivalence
classes defined for the classification. Test sequences can be viewed as paths through
such a test model.

Making the underlaying test model explicit allows us to compare Conrad’s ap-
proach with other MBT approaches. Furthermore, the test model can be used to
formalize different coverage criteria. Conrad suggests the systematic scenario selec-
tion based on the functional specification.

Current tools supporting the classification tree method do only allow manual defi-
nition of test sequences. There are no generation rules for test sequence generation;
desired coverage levels for a set of test sequences cannot be specified. Dependency
rules to describe constraints between single steps of test sequences do not exist and
can therefore not be checked.

17

3 Related Work

In this chapter, we give an overview of related work. First, we summarize combi-
natorial and pairwise testing. Then, fundamental work on test sequence generation
and validation is described. We then draw conclusions from the related work.

3.1 Combinatorial Testing

Combinatorial Interaction Testing (CIT [CSR06]) is an effective testing approach for
detecting failures caused by certain combinations of components or input values. The
tester identifies the relevant test aspects and defines corresponding classes. These
classes are called parameters, their elements are called values. We assume the pa-
rameters to be disjoint sets. A test case is a set of n values, one for each parameter.
In the classification tree method, the parameters are called classifications, the values
are called classes.

CIT is used to determine a smallest possible subset of tests that covers all com-
binations of values specified by a coverage criterion with at least one test case. A
coverage criterion is defined by its strength t that determines the degree of parame-
ter interaction and assumes that all parameters are considered.

The most common coverage criterion is 2-wise (or pairwise) testing. It is fulfilled,
if all possible pairs of values are covered by at least one test case in the result test
set. A large number of CIT approaches have been presented in the past. An overview
and classification of approaches can be found in [GOA05] and [KLK08], while [NL11]
provide a recent survey of CIT and its evolution. A survey that focuses on CIT with
constraints is given in [CDS07]. Nearly all publications investigate pairwise combi-
nation methods, but most of them can be extended to arbitrary t-combinations.

The test generation techniques can be classified into algebraic, greedy and meta-
heuristic search approaches [CDS07, NL11].

3.1.1 Greedy Approaches

AETG

The automatic efficient test generator (AETG) uses a random greedy algorithm. It
has been developed at Bellcore and presented by Cohen et al. [CDFP97]. A determin-
istic variant is also available. Candidates M are generated by selecting the value that
is contained in most not yet covered t-tuples. The candidate c is chosen which covers
most new t-tuples. A parameter order is created and used to select from each param-
eter the parameter value with most of the not yet covered t-tuples. AETG supports

19

3 Related Work

pairwise, triple and n-wise. AETG does support seeding and dependencies [CDFP97],
but resulting implementation and performance remain unclear. Mixed-strength gen-
eration is realized using seeding.

ATGT

The ASM test generation tool (ATGT) uses a logic-based approach [CG10]. The test-
ing problem is mapped onto a model-checking problem. Test predicates are used to
formalize combinatorial testing as a logical problem. Then an external formal logic
tool is used to solve it. Constraints are expressed as logical predicates as well, which
is an advantage over plain tuple exclusion. Constraint processing is done as part of
the solving process avoiding expensive pre- or post-processing steps. Test cases are
generated as counter examples one at a time while a monitoring process keeps track
of covered tuples.

A collecting technique groups not covered tuples to assist in finding good test cases
in each step. Final reduction is performed on the complete test suite to avoid redun-
dant test cases. The algorithm is non-deterministic since the tool randomly selects
the next predicates for test case generation.

DDA

The deterministic density algorithm (DDA) is an iterative algorithm that generates
a test set for pairwise class coverage [CC04].

Each test case is constructed stepwise using a greedy algorithm. Initially, the pa-
rameter with the largest factor density is selected. The parameter’s value is selected
by its level density.

If there is more than one paramenter with the same level density available, lexi-
cographical order is used as a tie-breaking rule. The concepts of densities have the
following meaning [BC07]:

• Factor density calculates the expected value of not yet covered pairs per param-
eter.

• Level density calculates the expected value of not yet covered pairs per param-
eter value.

DDA guarantees logarithmic growth of the test suite size in relation to the number
of parameters [CC04].

There is a prioritizing variant of DDA which respects the importance of pairs dur-
ing test case generation [BC06]. The prioritization weights are given by the user.
The goal is to cover pairs with high weights early in test case generation. This mod-
ification of the DDA for prioritizing test case generation consists of modified density
functions. The weighted density function calculates the expected value of weights of
covered pairs in relation to the number of not yet covered pairs [BC06].

Both variants skip dependencies for performance reasons.

20

3.1 Combinatorial Testing

IPO

In parameter order (IPO) was presented by Lei and Tai [LT98]. Their algorithm gen-
erates test suites in a constructive way. First a test suite is created to cover only
the first two parameters p1 and p2. Then all additional parameters are taken into
account one after another (p3 ... pn). Taking into account additional parameters in-
cludes two steps: horizontal growth (the enhancement of existing test cases to have
parameter values for newly integrated parameters) and vertical growth (adding new
test cases for new combinations (tuples) due to the introduction of parameters). IPO
only supports pairwise combination. It does not support dependencies between pa-
rameters. The PairTest tool implements IPO.

PICT

Pairwise independent combinatorial testing (PICT) has been developed by Czerwonka.
The generation process consists of two phases: preparation and generation [Cze06].

In the preparation phase, all possible parameter interactions are calculated and
lists of tuples are composed. Each tuple is marked either uncovered, covered, or
excluded.

In the generation phase, test cases are built using a deterministic, heuristic greedy-
algorithm. First, seed combinations are added to the current test case candidate as
long as they do not violate constraints. From the list with most tuples still uncovered,
the first uncovered tuple is chosen. Since tuples have components from different lists
(e.g. at least two for t = 2), the algorithm iterates through the list(s) of the other
part(s) of the tuple. From this second list, tuples are added that do not violate the
existing test case configuration. If no new tuple can be taken (because all tuples have
already been used in other test cases), an already covered tuple is randomly chosen
to be reused. From each list tuples are taken, so that in the end, there is a selection
for each list and the test case is complete. Generation finishes when there are no
more uncovered tuples left.

PICT supports seeding, dependencies and t-wise generation for any t. Mixed-
strength criteria and parameter hierarchies are also possible with PICT.

Spec Explorer

Spec Explorer is a CIT generator and a path covering tool [GQW+09]. The solution
differs from others as the algorithm generates interaction combination based solely
on constraint resolution and model enumeration as provided by the constraint en-
gine. In contrast to other approaches which typically work bottom-up (single test
cases are created until coverage is completed), the algorithm creates the result set in
a top-down fashion as the solver enumerates combinations. The approach supports
constraints and uses heuristics heavily to overcome scalability issues when inter-
nally storing the complete set of all possible combinations. It goes one step further
than ATGT [CG10] by avoiding reduction steps.

21

3 Related Work

The benchmarks and comparisons by others [SRG11], however, show that perfor-
mance in terms of result set size needs further improvements. Test generation takes
much longer than with the other approaches presented in this section.

3.1.2 Meta-heuristic Search Approaches

CASA

A technique for compiling constraints into a Boolean satisfiability (SAT) problem and
integrating constraint checking into existing algorithms is presented in [CDS07].
The technique is integrated into both greedy and simulated annealing algorithms
and experiences with its application are reported. The authors provide description for
constraint handling, their prototype is proposed to be extendable to other algorithms
and to incorporate constraints into algorithms for construction constrained covering
arrays.

In the simulated annealing algorithm (as an example for meta-heuristic searches),
the outer search is a binary search because result set size is not known at the start.
Therefore it needs multiple runs to find a good result set size. In each inner search,
the actual annealing takes place. An array is filled with valid values and then grad-
ually improved to become a covering array. Constraints can be given as Boolean
formulae allowing SAT solvers to be used for checking. Forbidden tuples are marked
as already covered to support the algorithm.

The initial approach had some scaling issues, so major improvements resulted in
the final Covering Arrays by Simulated Annealing (CASA) approach [GCD09]. It uses
one side narrowing now instead of the binary search and checking of single items has
been enhanced to check for slightly larger groups.

3.1.3 Algebraic Approaches

MOLS

Test case generation for pairwise combination can be performed using Mutually Or-
thogonal Latin Square (MOLS) [MN05]. A Latin square of order m is an m × m
matrix. Each field in the matrix is filled by one of the m different numbers. In each
column and each row, each number occurs exactly once.

The first step is to find the MOLSs of a given order. The order of MOLSs is defined
by the number of parameter values per parameter. The generation of test cases is
then done by reading the details from the MOLS. The algorithm and definitions are
given in [MN05]. The problem with MOLS is that their computation is rarely trivial.
For prime numbers and the power of prime numbers, there is an algebraic approach.
For all other cases, there is no efficient way to create MOLS. If all parameters have
the same number of parameter values, the algorithm creates a reasonable set of test
cases. If not, MOLSs are created with maximum order, which is the parameter with
the largest number of parameter values. This leads to many redundancies in the
resulting test suite. However, there are methods to optimize these test suites [Wil02].

22

3.2 Test Sequence Generation and Validation

This approach does not support dependencies. Because of their fixed size and order,
there is no way to incorporate additional information (e.g. semantics, weights ...) to
test case generation.

3.2 Test Sequence Generation and Validation

Model checking aims to prove certain properties of program execution by completely
analyzing its finite state model algorithmically [BE10, JM09]. Provided that the
mathematically defined properties apply to all possible states of the model, it is
proven that the model satisfies the properties. However, when a property is violated
somewhere, the model checker tries to provide a counter-example. Being the sequence
of states, the counter-example leads to the situation which violates the property. A
big problem with model checking is the state explosion problem: The number of states
may grow very quickly when the program becomes more complex, increasing the total
number of possible interactions and values. Therefore, an important part of research
on model checking is state space reduction, to minimize the time required to traverse
the entire state space.

The Partial-Order Reduction (POR) method is regarded as a successful method for
reducing this state space [JM09]. Other methods in use are symbolic model check-
ing, where construction of a very large state space is avoided by use of equivalent
formulas in propositional logic, and bounded model checking, where construction of
the state space is limited to a fixed number of steps.

Two temporal logics are compared and debated extensively [Var01], Linear tempo-
ral logic (LTL) and Computation Tree Logic (CTL). Temporal logics describe model
properties and can reduce the number of valid paths trough the model.

Heimdahl et al. briefly surveys a number of approaches in which test sequences
are generated using model checking techniques [HRV+03]. The common idea is to
use the counter-example generation feature of model checkers to produce relevant
test sequences.

Krupp and Müller introduce an interesting application of CCTL logic for the ver-
ification of manually created test sequences in classification trees [KM05]. Using
a real-time model checker, the test sequences and their transitions are verified by
combining I/O interval descriptions and CCTL expressions.

Several researchers propose other approaches for test sequence generation. Wim-
mel et al. [WLPS00] propose a method of generating test sequences using proposi-
tional logic.

Ural [Ura92] describes four formal methods for generating test sequences based
on a finite-state machine (FSM) description. The question to be answered by these
test sequences is whether or not a given system implementation conforms to the
FSM model of this system. Test sequences consisting of inputs and their expected
outputs are derived from the FSM model of the system, after which the inputs can be
fed to the real system implementation. Finally, the outputs of the model and of the
implementation are compared.

23

3 Related Work

Bernard et al. [BLLP04] have done an extensive case study on test case generation
using a formal specification language called B. Using this machine-modeling lan-
guage, a partial model of the GSM 11-11 specification has been built. After a system
of equivalent constraints was derived from this specification, a constraint solver is
used to calculate boundary states and test cases.

Binder [Bin99] lists a number of different oracle patterns that can be used for soft-
ware testing, including the simulation oracle pattern. The simulation oracle pattern
is used to simulate a system using only a simplified version of the system implemen-
tation. Results of the simulation are then compared to the results of the real system.
We can regard the formal model of the system as the simulation of the system from
which expected results are derived.

Geist et al. partition a test problem into aspects of interest to guide the search
for test cases to interesting parts of the system [GFL+96], using temporal logic and
BDDs instead of traditional graph-algorithmic models. The target is transistion cov-
erage. Steps are a) building an FSM model of the test problem, b) definition of cov-
erage model, and c) test generation. All FSM transitions are stored in a BDD for
performance reasons. Test cases are generated per transition. New test cases are
evaluated for all included transitions and removed from the list of transitions to be
covered. The result set size does not necessarily have a minimum number of test
cases. The limitation of current coverage tools drives verification by simulation to
rely on massive simulations without an inherent way to drive the test generation
process by coverage considerations. Geist et al. deem sysbolic exploration not to be
a bottleneck. Their technique avoids state-space explosion. Their generation cre-
ates many test sequences of medium length, so they propose future work on creation
of longer test sequences. They see, however, a tradeoff between reduced simulation
time caused by setup conditions with longer test sequences and easier debugging and
tracing with shorter test sequences. Therefore they suggest to make the maximum
number of transitions per test sequence a user-configurable parameter.

Automatic test sequence generation and coverage criteria for testing of ASMs are
discussed by Gargantini and Riccobene [GR01].

Burton et al. present an approach to use formal specification from statecharts and
a testing heuristic to automatically generate test cases [BCM01]. For all transitions
in the statechart a Z-representation is extracted. The internal Z-representation is
then used to create an internal representation. A test sequence is then created for
each state of the internal representation. There is no minimization of test sequences.

To generate tests from Z specifications, the disjunctive normal form (DNF) method
can be used, although it is prone to state explosion [HHS03]. The authors propose to
construct a classification tree from the Z specification and use the resulting tree for
test generation. There are several suggestions for constraint learning and efficient
tree construction, although the main manual work of test case selection is left to the
tester.

Windish has applied search-based testing to Stateflow Statecharts [Win08, Win10].
A messy genetic algorithm (GA) is used to generate transition tours through Simulink

24

3.3 Conclusion

Stateflow models [OHY11]. Oh et al. identify two main challenges: Trigger blocks
containing timing constraints or counters and cyclic paths which might require sev-
eral traversals before triggering a transition. A further problem is the a priori un-
known length of the resulting tour. Stateflow models supports hierarchies and con-
currences which they directly used to avoid sequentialization and therefore do not
suffer from state explosion.

A technique for test sequence generation is introduced by Kuhn et al.: They gen-
erate event sequences for a given set of system events. They allow specifying t-
way sequences, which includes all t-events being tested in every possible t-way or-
der [KKL10].

Recent application of test sequence generation can be the state-based testing of
AJAX web applications [MTR08]. The authors apply model extraction and model
learning to AJAX web applications. The resulting FSM is then tested using concrete
data from traces obtained during model learning.

3.3 Conclusion

There are only limited possibilities to support explicit prioritization of parameters
and parameter values. The only known algorithm supporting prioritized test case
generation is the deterministic density algorithm (DDA) published in [BC06], which
is an extension of [CC04]. The extended algorithm generates a test suite by succes-
sively constructing single test cases. During test case construction it accounts for (1)
uncovered pairs in the test suite generated so far and (2) user assigned weights. Pairs
with higher weights are covered earlier than pairs with lower weights. For efficiency
reasons, this algorithm does not consider explicit dependencies. To our knowledge, it
does not support any t-wise combination other than pairwise.

Therefore, we will design new test case generation algorithms for classification
trees with incorporated prioritization weights. In [HRSR09] a first approach for com-
bining classification trees with priorities has been presented.

Currently, there is no test sequence generation available for combinatorial testing.
The only known approach is the t-way sequence generation [KKL10] which is limited
to combinations of parameter values of one parameter at a time and does not handle
parameter interactions of several parameters.

For that reason, we will also design test sequence generation algorithms for classi-
fication trees.

25

4 Enhancements

In this chapter, we design our enhancements for test case and test sequence gener-
ation with the classification tree method. We select three prioritization models and
give a prioritization example to then qualify the classification tree (Section 4.1). For
dependency handling, we transform both the classification tree and its dependency
rules into an integrated data structure, a Binary Decision Diagram (Section 4.2). Af-
terwards we use this data structure for dependency handling in prioritized test case
generation (Section 4.3). Additionally, we exploit the data structure for a new deter-
ministic test case generation (Section 4.4). For our new test sequence generation we
design new dependency and generation rules (Section 4.5). Actual generation is then
done by converting the classification tree into a hierarchical concurrent finite state
machine and traversing it using a multi-agent system (Section 4.6).

4.1 Prioritization and Qualification

Prioritization is used to allow the assignment of values of importance to several clas-
sification tree elements. The values of importance are called weights. To cover all
kinds of test aspects, these weights can differ. Higher and lower weights should re-
flect higher and lower importance, respectively. Consequently, we are able to compare
the elements of the classification tree to determine their importance under a given
test aspect and to prioritize test aspects during test case generation.

We analyzed several existing prioritization techniques. Elbaum et al. give good
overviews of existing approaches [EMR02, ERKM04].

Many existing prioritization techniques are not applicable in the classification tree
for methodical reasons. Among these can be that the level of abstraction does not fit
or the required details are not included in the classification tree. For example, test
cases cannot be optimized on state coverage since the classification tree method is a
black-box test design approach.

The following three models have been selected to provide a basis for prioritization
as they are applicable for the classification tree method:

• Prioritization based on a usage model [WPT95]: This prioritization tries to
reflect usage distribution of all classes in terms of usage scenarios. Classes with
high occurrence are assigned higher weights than classes with low occurrence.

• Prioritization based on an error model [EMR02]: This prioritization aims to
reflect distribution of error probabilities of all classes. Classes with high prob-

27

4 Enhancements

ability of revealing an error are assigned higher weights than classes with low
probability.

• Prioritization based on a risk model [Aml00]: This prioritization is similar
to prioritization based on error model, but additionally takes error costs into
account. Risk is defined as the product of error probability and error costs.
Classes with a high risk are assigned higher weights than classes with low
risk.

The selected prioritization models will now be used for qualifying the classification
tree.

4.1.1 Example

We will use the following example throughout all prioritized generation algorithms.
The example in figure 4.1 shows a classification tree for the system under test Adap-
tive Cruise Control (ACC). Its task is to adapt the speed of a vehicle to keep a certain
distance to preceding vehicles. Three aspects of interest (Speed, Daylight and kind
of Preceding Vehicle) have been identified for the system under test. These classifi-
cations are direct children of the root node. The classifications are partitioned into
classes which represent the partitioning of the concrete input values. In our example
the refinement aspect Shape is identified for the class Car and it is divided further
into the two classes Limousine and Cabriolet.

Figure 4.1: Test Object ACC

For the qualification with different priority models, there are several things to
consider: Consistency is needed both locally (considering a class and all siblings) as
well as globally (interaction of classes from different classifications). Additionally,
for combined constructs, such as class pairs and other tuples, a uniform calculation
is needed. For refined elements, we also need to define a handling. The presence of
constraints can have an impact on the priority model as well, so we need to clarify
this issue.

28

4.1 Prioritization and Qualification

4.1.2 Qualification with Usage Model

Occurrence Probability is always given for classes with respect to the parent classi-
fication. For class c an occurrence value pc denotes the relative frequency for c in
comparison to all sibling classes d, e, f The sum of all occurrence values pn for sib-
lings from classification C must always be 1. We require that a value is given for all
classes of all classifications in the classification tree, before these values can be used
for prioritized test generation. Occurrence values for siblings are directly compara-
ble without normalization. Given that classifications are independent of each other,
occurrence values from different classifications are also directly comparable. Under
this assumption, composed constructs, such as pairs, can be formed by multiplying
individual values of all involved classes.

We define refined classes to be interpreted as conditioned probabilities. The actual
value can then be calculated using the Bayes-Theorem.

Since handling of constraints is done without knowledge of priorities, the qualifi-
cation of the classification tree has to be done with constraints in mind.

Figure 4.2: ACC Test Object with Occurrence Values

Occurrence values for the ACC example are given in Figure 4.2.

Table 4.1: Occurrence Probabilities for Class Pairs
low medium high Day Night
0.3 0.5 0.2 0.52 0.48

Motorcycle 0.05 0.015 0.025 0.01 0.026 0.024
Limousine 0.63 0.189 0.315 0.126 0.3276 0.3024
Cabriolet 0.07 0.021 0.035 0.014 0.0364 0.0336

Truck 0.25 0.075 0.125 0.05 0.13 0.12
Day 0.52 0.156 0.26 0.104 - -

Night 0.48 0.144 0.24 0.096 - -

All expected occurrence probabilities for combined class pairs are given in Ta-
ble 4.1.

29

4 Enhancements

4.1.3 Qualification with Error Model

Error Probability is always given as absolute values for classes without any relation
to the parent classification. For class c an error value ec denotes the absolute value
for c in comparison to all other classes d, e, f ... of the classification tree. We require
that a value is given for all leaf classes in the classification tree, before these values
can be used for prioritized test generation. Error values for siblings are directly com-
parable without normalization, as well as error values from different classifications.
Composed constructs, such as pairs, can be formed by multiplying individual values
of all involved classes.

Since error values are independent of each other, we do not introduce a handling
for refined classes as conditioned probabilities. Instead, we only allow error values
on leaf classes.

Again, handling of constraints is done without knowledge of priorities, so the qual-
ification of the classification tree has to be done with constraints in mind.

Figure 4.3: ACC Test Object with Error Values

Error values for the ACC example are given in Figure 4.3.

Table 4.2: Error Probabilities for Class Pairs
low medium high Day Night
0.01 0.03 0.03 0.03 0.07

Motorcycle 0.13 0.0013 0.0039 0.0039 0.0039 0.0091
Limousine 0.07 0.0007 0.0021 0.0021 0.0021 0.0049
Cabriolet 0.1 0.001 0.003 0.003 0.003 0.007

Truck 0.05 0.0005 0.0015 0.0015 0.0015 0.0035
Day 0.03 0.0003 0.0009 0.0009 - -

Night 0.07 0.0007 0.0021 0.0021 - -

All expected error probabilities for combined class pairs are given in Table 4.2.

30

4.1 Prioritization and Qualification

4.1.4 Qualification with Risk Model

Risk values are always given absolute for classes without any relation to the parent
classification. For class c a risk value rc denotes the absolute value for c in compari-
son to all other classes d, e, f ... of the classification tree. Risk is given in two values,
error probability and cost of an error. The actual risk, then, is the product of the two.
We require that values are given for all leaf classes in the classification tree, before
these values can be used for prioritized test generation. Risk values for siblings are
directly comparable without normalization, as well as risk values from different clas-
sifications. Composed constructs, such as tuples, can be formed by multiplying the
combining individual error probabilities with the summed individual costs.

Since risk values are independent of each other, we do not introduce a handling
for refined classes as conditioned probabilities. Instead, we only allow risk values on
leaf classes.

The qualification of the classification tree has to be done with constraints in mind,
since handling of constraints is done without knowledge of priorities.

Figure 4.4: ACC Test Object with Cost Values

Cost values for the ACC example are given in Figure 4.4. The resulting risk values
are given in Figure 4.5.

Table 4.3: Costs for Class Pairs
low medium high Day Night

e10,000 e20,000 e30,000 e25,000 e25,000
Motorcycle e10,000 e20,000 e30,000 e40,000 e35,000 e35,000
Limousine e20,000 e30,000 e40,000 e50,000 e45,000 e45,000
Cabriolet e30,000 e40,000 e50,000 e60,000 e55,000 e55,000

Truck e40,000 e50,000 e60,000 e70,000 e65,000 e65,000
Day e25,000 e35,000 e45,000 e55,000 - -

Night e25,000 e35,000 e45,000 e55,000 - -

All expected costs for combined class pairs are given in Table 4.3.
All expected risks for combined class pairs are given in Table 4.4.

31

4 Enhancements

Figure 4.5: ACC Test Object with Resulting Risk Values

Table 4.4: Risks for Class Pairs
low medium high Day Night
100 600 900 750 1,750

Motorcycle 1,300 26 117 156 136.5 318.5
Limousine 1,400 21 84 105 94.5 220.5
Cabriolet 3,000 40 150 180 165 385

Truck 2,000 25 90 105 97.5 227.5
Day 750 10.5 40.5 49.5 - -

Night 1,750 24.5 94.5 115.5 - -

32

4.2 Constraints Handling

4.1.5 Conclusion on Qualification

In Table 4.5 we provide additional values for occurrence probability, failure probabil-
ity, failure costs, and the calculated risk for all leaf classes from our example.

Table 4.5: ACC Test Object Information
Preceding Vehicle

Motorcycle Limousine Cabriolet Truck
Usage 0.05 0.63 0.07 0.25
Failure 0.13 0.07 0.1 0.05
Cost e10,000 e20,000 e30,000 e40,000
Risk 1,300 1,400 3,000 2,000

Speed Daylight
low medium high Day Night

Usage 0.3 0.5 0.2 0.52 0.48
Failure 0.01 0.03 0.03 0.03 0.07
Cost e10,000 e20,000 e30,000 e25,000 e25,000
Risk 100 600 900 750 1750

Note the difference between the occurrence probability values in the table and the
figure for the subclasses of the class Car. We explained in previous sections that
the occurrence probabilities for classes are conditional probabilities, having a refined
class as an ancestor node in the classification tree. In our example the probability of
the class Cabriolet is 0.1 only when the class Car is chosen. Therefore, the absolute
occurrence probability for this class is 0.07.

As shown in Table 4.5 it is, for example, much more probable that the preceding
vehicle is a Limousine. If we focus on finding errors connected to the most common
usage scenario, we will expect test cases covering the class Limousine to be more
important than those covering the class Cabriolet. But if we focus on finding errors
that have a high risk, we prefer test cases covering the class Cabriolet since it is
associated with the highest risk.

4.2 Constraints Handling

Classification trees can have implicit dependency rules in terms of refinements. Classes
can have ancestor classifications with only local validity [GG93].

In the example from Section 4.1.1, the class Car has a refinement in terms of the
classification Shape (Figure 4.1). The test aspect Shape therefore only applies if and
only if the Preceding Vehicle is a Car. If it is a Truck or a Motorcycle, the classification
Shape does not apply because Car has not been selected.

In contrast to implicit dependency rules in the classification tree method, the clas-
sification tree editor CTE XL also allows the specification of explicit dependency
rules [LW00].

Explicit dependency rules allow specifying details of the test system, which seem
to be orthogonal to the classification tree. It is possible to exclude combinations of

33

4 Enhancements

classes from different classifications, for example.
For our example, we will now introduce two dependency rules. First we require,

that Motorcycles can only occur during the day, or more formal:

D1 = Motorcycle→ Day

Additionally we assume, that Trucks cannot drive with a high Speed:

D2 = Truck→ ¬high

These explicit dependency rules are heavily used by test engineers, but they are
problematic during test case generation. In test case generation, there needs to be a
check for validity making the whole test generation process a complicated task.

For test case generations, there are three different ways of handling explicit de-
pendency rules: afterwards, during, and beforehand.

Handling after Test Case Generation

The simplest realization is the handling of dependencies just after the actual test
case generation. A normal, regular test case generation is performed, while com-
pletely ignoring any dependency rules. When the generation is finished, each test
case is checked for validity. Invalid test cases are eliminated and new test cases are
generated for the now missing tuples, if needed.

One disadvantage of this method is that there might not be any valid test at all
containing the missing tuple, so invalid test cases will be generated again and again.
The test case selection has no connection to the validity of test cases, checking and
filtering is performed afterwards. This approach is only applicable for small test
problems, where all possible combinations can be tried.

Immediate Handling during Test Case Generation

The advantage of this approach is the handling of dependency rules during test case
generation. This approach will generate only valid test cases, so there is no need
for checking and filtering afterwards. This approach, however, requires numerous
operations. When composing a single test case, there needs to be a check for validity
after each single addition of test elements.

For example, an existing valid test case fragment containing class ai from classifi-
cation A needs to be re-evaluated again when class bj from classification B is about
to be added, to check, if ai and bj can co-exist.

This approach ensures that only valid test cases are generated. The validity checks,
however, are rather expensive; they need time. Combinations of classes are evalu-
ated as long as a valid combination is found, which in the worst case might be the
last available combination.

34

4.2 Constraints Handling

Handling before Actual Test Case Generation

This approach allows the test case generation without taking care of dependency
rules, since there are only valid combinations in the classification tree. Invalid com-
binations do not exist in the tree. There is only one checking and filtering operation
before the actual test case generation. There is no need for filtering after the test
case generation and there are no expensive comparison operations during test case
generation. The actual test case generation therefore is rather cheap, the initial
preparation of the tree, however, might need additional effort.

4.2.1 Tree Transformation

We are going to present approaches for tree preparation. We require the following
conditions to be met:

• The test case generation is performed on a tree without explicit dependencies.

• A prepared tree must have the same semantics as the original tree.

• Transformations must be deterministic. The transformation of equal trees re-
sults in the same result.

We use the mechanism of refinements to transform tree and explicit dependency
rules into a classification tree with only implicit dependencies. Refinements are used
to model aspects, which only apply for certain classes.

We see two tracks here:

• Transformation of only those tree elements, which are affected by dependency
rules.

• Full transformation.

Limited Transformation

The approach is rather simple. For all classifications that are part of dependency
rules, we perform the following:

• The first classification in the tree remains.

• To all its classes, copies of the second classification are attached.

• For the classes of these clones, copies of the third classification are created and
attached, and so on.

In the end, the tree has the same levels of refinements as it had parallel classifica-
tions at the beginning. For all leaf classes, there is only one check for validity.

This tree fulfills all three requirements: There are no additional explicit require-
ments in the tree. The resulting tree has the same semantics as the original tree. We,

35

4 Enhancements

however, need to introduce an interpretation for classification-clones. Their interpre-
tation is trivial, we treat copies the same way as originals. Determinism is gained by
providing a fixed transformation order. The effort of transformation is determined by
the number of dependency rules. For few rules, the resulting number of leaf classes
(and therefore validity checks) is low. For many rules, effort will rise to the full trans-
formation approach, especially if all classifications are part of dependency rules.

Full Transformation

The transformation process is rather trivial. Instead of handling only classifications
that are part of dependency rules, we simply take all classifications of the classifica-
tion tree here.

This also meets our three requirements: There are no additional explicit require-
ments in the tree. The resulting tree has the same semantics as the original tree.
We, again, need to introduce an interpretation for classification-clones, which, again,
is trivial, since we treat copies the same way as originals. Determinism is gained by
providing a fixed transformation order. The transformation is very laborious, espe-
cially for trees with only few dependency rules, as there are many leaf classes to be
checked afterwards.

4.2.2 Approach

Arriving here, we decided to convert classification trees into logical expressions for
Binary Decision Diagrams (BDD). Binary Decision Diagrams [Lee59] can be used
to represent Boolean functions as compact data structures. We use the most com-
mon variant of BDDs, reduced ordered binary decision diagrams (ROBDD), and use
the term BDD for simplicity. ROBDDs feature variable ordering and graph reduc-
tion [Bry86].

We perform a transformation of the classification tree to Binary Decision Diagrams
from the root of the tree down to all leafs of the classification tree. For each element
in the classification tree, there is a logical equivalent.

Classifications

In any classification C, exactly one class c is selected.

Figure 4.6: Classification C with Classes (c1, c2, . . . , cn)

The classification C with classes (c1, c2, . . . , cn) (Figure 4.6) results in:

36

4.2 Constraints Handling

C = ((c1 ∧ ¬c2 ∧ ¬c3 ∧ . . . ∧ ¬cn)∨
(¬c1 ∧ c2 ∧ ¬c3 ∧ . . . ∧ ¬cn)∨
...

(¬c1 ∧ ¬c2 ∧ ¬c3 ∧ . . . ∧ cn))

(4.1)

Classifications cannot be part of dependency rules, so we can skip their name and
structure after conversion.

Compositions

In one composition, there can be classifications and further compositions. For all
child elements of compositions there must be selections.

Figure 4.7: Compositions Co with (e1, e2, . . . , en)

The compositions Co with (e1, e2, . . . , en) (with element ei being composition or clas-
sification) (Figure 4.7) results in:

Co =(e1 ∧ e2 . . . ∧ en) (4.2)

Compositions cannot be part of dependency rules, so we can skip their name and
structure after conversion.

Classes

Classes can be leaf elements of the tree (Figure 4.8) or they can carry refinement
elements (Figure 4.9).

Figure 4.8: Leaf Class Cl

Leaf classes are either selected or not resulting in true or false:

Cl =(Cl)(for leaf class) (4.3)

37

4 Enhancements

Figure 4.9: Class Cl with Refinements (E1, E2, . . . , En)

Refined classes can also be true or false.
If they are true, they are treated like compositions. If they are false, all sub classes

are also false.
The class Cl with (E1, E2, . . . , En) (with element Ei being composition or classifica-

tion), results in:

with Cl = true

Cl = (E1 ∧ E2 ∧ . . . ∧ En)

else

Cl = (¬e11 ∧ ¬e12 ∧ . . . ∧ ¬e1m∧
¬e21 ∧ ¬e22 ∧ . . . ∧ ¬e2o∧
...

¬en1 ∧ ¬en2 ∧ . . . ∧ ¬enq)

(4.4)

After transformation of the tree, dependency rules (D1 . . .Dn) can be attached to
the expression E with the ∧-operator:

ED = (E ∧D1 ∧ . . . ∧Dn) (4.5)

This expression now contains all valid test cases. Its construction, however, does
not require to calculate or enumerate all assignments.

4.2.3 Example

We will now apply the rules from the previous section and transform the classifica-
tion tree from Section 4.1.1 (Figure 4.1). The root node is a composition, so using
Formula 4.2 the starting Boolean expression is:

ACC = PrecedingVehicle ∧ Speed ∧Daylight (4.6)

Using Formula 4.1, we then transform the classifications Preceding Vehicle, Speed
and Daylight:

38

4.2 Constraints Handling

PrecedingVehicle =(Mot ∧ ¬Car ∧ ¬Tru)∨
(¬Mot ∧ Car ∧ ¬Tru)∨
(¬Mot ∧ ¬Car ∧ Tru)

Speed =(low ∧ ¬med ∧ ¬hi)∨
(¬low ∧med ∧ ¬hi)∨
(¬low ∧ ¬med ∧ hi)

Daylight =(Day ∧ ¬Nit) ∨ (¬Day ∧Nit)

(4.7)

All classes are leaf classes except class Car. For Car, we need two variants, a
regular and a negated one. Using the first part of Formula 4.4 and Formula 4.1, the
regular variant is created:

Car = Shape

= (Lim ∧ ¬Cab) ∨ (¬Lim ∧ Cab)
(4.8)

Using the second part of Formula 4.4 results in the negated variant:

¬Car = (¬Lim ∧ ¬Cab) (4.9)

Putting it all together:

ACC =PrecedingVehicle ∧ Speed ∧Daylight

=((Mot ∧ ¬Car ∧ ¬Tru) ∨ (¬Mot ∧ Car ∧ ¬Tru) ∨ (¬Mot ∧ ¬Car ∧ Tru))
∧

((low ∧ ¬med ∧ ¬hi) ∨ (¬low ∧med ∧ ¬hi) ∨ (¬low ∧ ¬med ∧ hi))
∧

((Day ∧ ¬Nit) ∨ (¬Day ∧Nit))

=((Mot ∧ (¬Lim ∧ ¬Cab) ∧ ¬Tru) ∨ (¬Mot ∧ (¬Lim ∧ ¬Cab) ∧ Tru)∨

(¬Mot ∧ ((Lim ∧ ¬Cab) ∨ (¬Lim ∧ Cab)) ∧ ¬Tru))
∧

((low ∧ ¬med ∧ ¬hi) ∨ (¬low ∧med ∧ ¬hi) ∨ (¬low ∧ ¬med ∧ hi))
∧

((Day ∧ ¬Nit) ∨ (¬Day ∧Nit))
(4.10)

As defined in Formula 4.5, the two dependency rules D1 and D2 can simply be

39

4 Enhancements

attached:

ACCD =ACC ∧D1 ∧D2

=ACC
∧

(Mot→ Day)
∧

(Tru→ ¬hi)

=((Mot ∧ (¬Lim ∧ ¬Cab) ∧ ¬Tru) ∨ (¬Mot ∧ (¬Lim ∧ ¬Cab) ∧ Tru)∨
(¬Mot ∧ ((Lim ∧ ¬Cab) ∨ (¬Lim ∧ Cab)) ∧ ¬Tru))∧
((low ∧ ¬med ∧ ¬hi) ∨ (¬low ∧med ∧ ¬hi) ∨ (¬low ∧ ¬med ∧ hi))∧

((Day ∧ ¬Nit) ∨ (¬Day ∧Nit))
∧

(Mot→ Day)
∧

(Tru→ ¬hi)

(4.11)

In the resulting Formula 4.11, each valid assignment of ACCD now holds a valid
test case.

4.3 Prioritized Generation

For the now quantified classification trees, new combination rules need to be de-
signed. These new combination rules respect the weights assigned to the classes
in the classification tree. We will introduce the following new prioritizing combina-
tion rules: Prioritized minimal combination, prioritized pairwise combination, and
class-based statistical combination. For each combination rule, we will define re-
quirements for the resulting test suite. We will then design algorithms for test case
generation. Test case coverage criteria will be given where they apply.

4.3.1 Prioritized Minimal Combination

The basic algorithm used to generate minimal combinations creates a test set cov-
ering each class at least once. At each step, it generates one test case by selecting
single classes from all classifications. It stops generating test cases as soon as all
classes are covered, but does not take the order of covering them into account. We
extend the algorithm so that it selects classes based on their weights. Classes with
a high weight are of great importance for our test objective and will be chosen first.
The distribution defined by class weights is used to reselect classes of classification
with all its classes already covered by the test suite generated. We compare the em-
pirical class distribution of such a classification with the class distribution given in
the generated test suite and choose the class that is most underrepresented in the
test suite generated so far.

Coverage Criteria

We define coverage criteria to

• measure to which degree the system under test can be tested with an optimized
test suite, and

40

4.3 Prioritized Generation

• to compare optimized test suites of different sizes to determine the benefit of
additional test resources.

We define two different criteria that measure the degree to which the classes (each
used coverage, EUC) and the weights are covered (weight coverage, WC):

EUC =
number of covered classes

number of coverable classes

WC =
sum of weights of covered classes

sum of weights of all coverable classes

Both metrics are relative, i.e. consider the fact that classes may not be coverable
because of dependencies. To understand the need of both criteria we consider a clas-
sification with 10 classes where eight have a very small weight. If the test suite
consists of only two test cases covering the two classes with the highest weights, we
get a small EUC value. But the WC value for all other test suites of size two selecting
other classes from this classification will be lower. Using our coverage criteria, the
tester can define test end criteria and measure the progress in the test process.

Algorithm

We split the calculation into two algorithms. The top level algorithm calculates the
complete test suite. It gets the set M of all valid test cases as input parameter and
initializes the set B of all coverable classes extracting them from the set M. Then it
iteratively

• passes both sets B and M to the algorithm that calculates the next test case t,

• deletes t from set M and adds it to the result list, and

• deletes all classes covered by t from set B.

The algorithm stops as soon as all classes are covered, i.e. when set B is empty. A
class c is only deleted from B, if a test case containing c has been added to the result
list. The test cases are selected from the set of valid test cases, i.e. we add only valid
test cases to the result list. The algorithm does not consider uncoverable classes since
uncoverable classes do not appear in the set B.

The algorithm for defining a single test case t (Figure 4.10) gets at each call a copy
of the updated set B of all classes not yet covered and a copy of the updated set M of
all valid test cases still available. It reduces M so that it finally contains only one test
case. In each iteration, the class k with the highest weight of all still available classes
is selected from B (Line 5), taking only already selected classifications into account.
This k is used to further restrict M (Line 7). If the restriction with k fails, i.e. there
is no test case left in M for the so far selected classes including k, the algorithms
backtracks (Line 10) and restarts selecting a new class. If a classification is already
covered, there will be no k. In this case, all test cases left in M are compared and the
test case that contains the most underrepresented classes is chosen (Line 14).

41

4 Enhancements

1: M //set of available test cases
2: B //set of classes not yet covered
3: while (|M| > 1) do
4: N = copy M for backtracking
5: k = select class from B
6: if (k was found) then
7: M = filter M with k
8: B = delete k from B
9: if (M is empty) then

10: M = N //backtracking
11: end if
12: else
13: //check underrepresentation
14: t = choose test case from M
15: M = {t}
16: end if
17: end while
18: t = getSingleElement(M)
19: return t

Figure 4.10: Test Case Generation Algorithm for Prioritizing Minimal Combination

Every test case returned by generateNextTestCase contains the class with the high-
est weight compared to all classes not yet covered. After n test case generation steps
the presented top level algorithm returns a test suite that covers at least the n most
important classes. At each generation step as many new classes as possible are se-
lected, i.e. coverage and weight of classes are maximized.

Example

In Table 4.6 the test suite generated by the presented algorithm is shown for our ex-
ample using the risk value annotations from Table 4.5 and without any user-defined
dependencies. The test suite covers all classes at least once. The classes Cabriolet,
high and Night are covered by the first test case since these classes are associated
with the highest risk values. In the last two test cases the class Night is reselected
for the classification Daylight. The algorithm did not choose class Day since its risk
value is much lower than the value for class Night. Since we want to detect failures
with a high risk we prefer test cases that cover classes with high risk values.

Table 4.6: Resulting PMC Test Suite for the Risk Model
Prec. Vehicle Speed Daylight EUC WC

#1 Cabriolet high Night 0.3 0.48
#2 Truck medium Day 0.6 0.76
#3 Limousine low Night 0.89 0.8
#4 Motorcycle high Night 1 1

The last two columns in Table 4.6 contain the coverage values for the test suite
containing only the test cases up to that row. We can see that we cover almost half

42

4.3 Prioritized Generation

of the risk values sum with only one test case. Comparing both values EUC and WC
helps finding the best test suite size with respect to test resources.

Discussion

The prioritized minimal combination allows adapting the test suite to available re-
sources. In an optimized test suite, classes with high weight are covered and the
global coverage of new classes and weights is maximized. If there are no new classes
to cover under one classification, a test suite is composed based on the distribution of
weights. Whenever there are less classes under one classification than the number
of total existing test cases exist, classes with higher weights reoccur in the test suite.
Without optimization, a test suite created with the prioritizing minimal combination
contains all classes of the classification tree, if there are no dependency rules.

Dividing the number of covered classes by the number of coverable classes gives
a good criterion for absolute coverage. Dividing the sum of all weights of covered
classes by the sum of all weights of coverable classes gives a good criterion for relative
coverage. Due to coverage criteria all results are measurable.

4.3.2 Prioritized Pairwise Combination

The basic pairwise algorithm iteratively generates test cases until all possible class
pairs are covered by at least one test case. At each generation step, it tries to select as
many new pairs as possible for the test case, but does not take any order of covering
them into account. We extend the algorithm so that test cases covering pairs of
classes with high weights are generated before those containing pairs of classes with
smaller weights.

Coverage Criteria

We define two different criteria, in analogy to the PMC coverage criteria, that mea-
sure to which degree the class pairs (each used coverage, EUC) and to which degree
the weights are covered (weight coverage, WC):

EUC =
number of covered class pairs

number of coverable class pairs

WC =
sum of weights of covered class pairs

sum of weights of all coverable class pairs

Both metrics are again relative.

Algorithm

Our prioritization pairwise combination algorithm is based on pair weights that we
define for the different prioritization models. For the usage and the failure model we
define the weight of a pair (ci, cj) as the product of the weights assigned to ci and cj.

43

4 Enhancements

1: S //result list
2: M //set of all valid test cases
3: A //set of test cases containing pair p
4: P //set of not yet covered class pairs
5: D //set of (test case, index value) pairs
6: while (|P| > 0) do
7: p = select max weight pair from P
8: A = filter M by p
9: if |A| > 1 then

10: D = calculateIndex(A, P)
11: t = selectMaxIndex(D)
12: else
13: t = take single test case from M
14: end if
15: S = append(S, t)
16: M = M – {t}
17: P = P – {classPairs(t)}
18: end while
19: return S

Figure 4.11: Test Suite Generation Algorithm for Prioritizing Pairwise Combination

The risk weight is calculated as the product of both failure rates and the sum of ci
and cj’s failure costs. The pair weight values are calculated for all possible class pairs
before test suite generation.

The new algorithm selects pairs with a high weight first but at the same time tries
to cover as many new pairs as possible. For that reason the algorithm calculates
index values that rate the test cases in terms of the covered weights and the number
of pairs not yet covered for all suitable test cases. The index value of a test case
is the sum of the weights of newly covered pairs and the quotient of the number of
newly covered pairs and the number of coverable pairs in a test case. Since we do
not use the absolute number of new covered pairs in the index calculation, test cases
covering pairs with high weights get higher index values and will be preferred during
test suite generation.

Input parameter of the algorithm (Figure 4.11) is the set M of all valid test cases.
The algorithm starts initializing the set P with all coverable pairs. Then test cases
are generated iteratively. In each iteration, the algorithm first selects the pair p with
the highest weight from P (Line 7). To set A it adds all still available test cases from
M that contain the pair p. For all test cases in set A the index value is calculated
(Line 10) and the case t with the highest index value is chosen and appended to the
result list. From several test cases with the same maximum index value, we take the
first one.

The selected test case t is deleted from the set of available test cases M and all
pairs covered by t are deleted from the set P (Line 17). The algorithm iterates until
all pairs are covered by at least one test case, i.e. the set P is empty.

In contrast to the prioritizing minimal combination algorithm, the underrepresen-
tation of already covered class pairs is not taken into account for reselection of class

44

4.3 Prioritized Generation

pairs since this calculation would be very expensive. In each iteration at least the
class pair p with the highest weight of all still available class pairs is selected from
P. After n generation steps the test suite covers at least the n most important class
pairs. At each generation step as many new class pairs as possible are selected, i.e.
coverage and weight of class pairs are maximized.

Example

For our ACC example (Figure 4.3) the prioritizing pairwise combination algorithm
generates 12 test cases using the failure model (Table 4.7). The first test case covers
the pair (Motorcycle, Night) since it has the highest weight.

Table 4.7: Resulting PPC Test Suite for Error Model
Prec. Vehicle Speed Daylight EUC WC

#1 Motorcycle medium Night 0.12 0.23
#2 Cabriolet high Night 0.23 0.41
#3 Motorcycle high Day 0.35 0.54
#4 Limousine low Night 0.46 0.63
#5 Cabriolet medium Day 0.58 0.74
#6 Truck high Night 0.65 0.81
#7 Limousine medium Day 0.73 0.88
#8 Limousine high Night 0.77 0.91
#9 Truck medium Day 0.85 0.95

#10 Motorcycle low Day 0.92 0.98
#11 Cabriolet low Night 0.96 0.99
#12 Truck low Night 1 1

The last two columns in Table 4.7 contain the values for the coverage criterion.
They show that the first three test cases (25% out of 12) from the test suite already
cover more than 50% of all class pairs’ weight. For covering 50% out of all class pairs,
the first five test cases are necessary, which are about 42% of all test cases. For a
class pair weight coverage of 90%, 95% or 99%, only eight, nine or eleven tests need
to be executed, which are 67%, 75% and 92% of all test cases, respectively. Depending
on a tester’s needs, a reduction of test effort can be gained.

Discussion

The prioritized pairwise combination allows adapting the test suite to available re-
sources. In an optimized test suite, class pairs with high weight are covered and the
global coverage of new class pairs and weights is maximized.

Without optimization, a test suite created with the prioritized pairwise combina-
tion contains all class pairs of the classification tree, if there are no dependency rules.

Dividing the number of covered class pairs by the number of coverable class pairs
gives a good criterion for absolute coverage. Dividing the sum of all weights of cov-
ered class pairs by the sum of all weights of coverable class pairs gives a good crite-
rion for relative coverage. Due to coverage criteria all results are measurable.

45

4 Enhancements

4.3.3 Plain Pairwise Sorting

In addition to PPC, we apply a sorting approach based on class pair weights to the
results of the plain pairwise algorithm (PPS). The calculation of the weights is same
as above. The sorting brings all test cases into an order so that the weight covered by
the first test cases is maximized. The algorithm sorts all test cases by their absolute
weight at first. Then, it applies as many discriminatory reorderings as there are test
cases.

Please note that this approach does not guarantee coverage of any n most impor-
tant class pairs by the n first test cases. However, the generated test suite will have
exactly the same size as the plain pairwise combination as the suite does not grow
by sorting. The generation process using sorting is deterministic too; its results,
however, differ from the PPC results.

1: init (List of all classes)
2: Map of (Pair, double) classPairWeights
3: for all class pair in List of all classes do
4: combined = weight of first pair tuple * weight of second pair tuple
5: classPairWeights.put(class pair, combined)
6: end for

Figure 4.12: Sort Algorithm Initialization

Figure 4.13 and Figure 4.14 provide the algorithms in pseudocode.

1: insert(List of testCases, testCase t)
2: double tcWeight = 0.0
3: /* Calculate insertion weight */
4: for all class pair in t do
5: tcWeight += classPairWeights.get(class pair)
6: end for
7: /* Find position for insertion */
8: int i = 0
9: for all testCaseWeights do

10: if (testCaseWeight < tcWeight) then
11: testCaseWeights.add(i, tcWeight)
12: testCases.add(i, t)
13: return
14: end if
15: i++
16: end for
17: /* If all existing test cases have higher weights, append the new test case at the end. */
18: testCaseWeights.add(tcWeight)
19: testCases.add(t)

Figure 4.13: Sort Algorithm Insertion

The insertion algorithm requires an initialization (Figure 4.12). For each class
pair, the combined weight needs to be calculated by multiplication. A HashMap is
filled with the class pair as the keys and the combined weights as the values.

46

4.3 Prioritized Generation

1: finalize(List of testCases)
2: if (|testCases| < 2) then
3: return
4: end if
5: testCase firstElem = testCases.getFirst
6: /* Set weight of all covered pairs to 0 */
7: for all class pair in firstElem do
8: classPairWeights.put(class pair, 0)
9: end for

10: List of testcases tail = l.subList(1, |testCases|)
11: /* Sort tail using insertion sort */
12: List of testcases newTail = new List
13: testCaseWeights.clear
14: for all testcase in tail do
15: insert(newTail,testcase)
16: end for
17: /* Finalize tail */
18: finalize(newTail) // recursion
19: testCases = firstElement + newTail

Figure 4.14: Sort Algorithm Finalization

In Table 4.8 the expected results for PPC are shown for the ACC example using
the usage model (Figure 4.2).

Table 4.8: Resulting Sorting Test Suite for Usage Model
Prec. Vehicle Speed Daylight WC

#1 Limousine medium Night 0.31
#2 Limousine high Day 0.52
#3 Truck medium Day 0.66
#4 Limousine low Night 0.77
#5 Truck high Night 0.85
#6 Motorcycle low Day 0.9
#7 Cabriolet medium Day 0.93
#8 Cabriolet low Night 0.96
#9 Truck low Night 0.98

#10 Motorcycle medium Night 0.99
#11 Cabriolet high Night 0.99
#12 Motorcycle high Night 1

47

4 Enhancements

4.3.4 Class-based Statistical Combination

Class-based statistical combination enables statistical testing using the classification
tree method. It is based on the class distribution, given by the user-defined weights,
within classifications. The classes of greatest importance for the defined test objective
(classes with a high weight) have a greater probability to be chosen for a test case.
The goal is to generate a test suite of size n that reflects the defined priority model
well.

The test case generation is based on a random process. It might define redundant
test cases, i.e. test cases that already exist in the test set. We allow the generation
of redundant test cases in order to test non-deterministic systems. In such systems
the repeated execution of the same test case increases the probability of revealing
failures. The test case generation might also define invalid test cases, i.e. test cases
not fulfilling the given explicit dependencies, but these test cases are not added to
the test suite.

Using class-based statistical combination, the test suite quality can differ every
time we generate a new test suite. This is due to the fact that the suite is the re-
sult of a random process. For this reason, we have introduced a method to mea-
sure the quality of the test suite. The quality assessment is based on the chi-square
test [Jan05], a statistical inference procedure. This test allows us to judge whether
the class distribution in the generated test suite differs significantly from the distri-
bution of classes that is assumed by the priority model. The chi-square test provides
us with a value of the p-coefficient which defines the level at which the test suite is
significant. Generally, the tester is free to define a significance level that is appro-
priate for the test domain. A commonly used significance level is α = 0.05. If the
p-coefficient is less than or equal α, it can be assumed that the test suite reflects the
defined priority model sufficiently. If it is not, the test suite can be generated again
to achieve a better result.

Algorithm

As input the generation algorithm (Figure 4.15) is given the number of test cases
to be generated w and the number of generation steps r. At each generation step
it constructs a test case, checks it for validity and, if valid, adds it to the result
set. The test case is generated randomly, using the distribution of classes within
their classifications. For every classification to be covered in the test case, a class is
selected on the basis of a predefined probability (Line 10). Since this construction
can produce class combinations that are not allowed, we have to check the validity
of the test case (Line 12). We need the parameter r to guarantee termination. For
complex explicit dependencies our generation procedure could end in an infinite loop
generating only invalid test cases. If the result returned by the generation procedure
contains less then w test cases, the user can start a new generation process with a
higher value for parameter r, enabling more generation steps.

48

4.3 Prioritized Generation

1: r //number of generation steps
2: w //number of test cases to be generated
3: S //set of generated test cases
4: C //set of classifications to be covered
5: while (r > 0&&|S| < w) do
6: r = r – 1
7: C = initialize classifications to be covered
8: while C contains classifications do
9: c = select classification from C

10: k = select class using distribution of c
11: t = add class k
12: if t is valid test case then
13: S = S + {t}
14: end if
15: end while
16: end while
17: return S

Figure 4.15: Test Suite Generation Algorithm for Class-Based Statistical Combina-
tion

Table 4.9: Resulting CSC Test Suite for Usage Model
Prec. Vehicle Speed Daylight

#1 Limousine medium Night
#2 Truck medium Day
#3 Cabriolet medium Night
#4 Limousine medium Night
#5 Limousine medium Day
#6 Limousine low Night
#7 Motorcycle low Day
#8 Limousine low Night
#9 Limousine low Night

#10 Truck high Day
#11 Limousine low Day
#12 Limousine medium Day

Example

Table 4.9 shows a test suite with 12 test cases generated by the presented algorithm
using the usage model. The value of p equals 0.01, i.e. the distribution of classes in
classifications is well reflected in the generated test suite. The empirical distribution
of classes in the test suite does not differ significantly from the defined theoretical
distribution of classes. Table 4.10 shows both distributions. The class medium, for
example, occurs in 50% of the test cases. The class Cabriolet, in contrast, occurs only
in one test case because its weight is very low (0.07). The proportion of classes Night
and Day is similar due to similar weights of the two.

49

4 Enhancements

Table 4.10: Empirical and Expected Distribution of Classes in the Test Suite
Class Expected Empirical

Motorcycle 0.05 0.08
Limousine 0.63 0.66
Cabriolet 0.07 0.08

Truck 0.25 0.16
low 0.3 0.41

medium 0.5 0.5
high 0.2 0.08
Day 0.52 0.5

Night 0.48 0.5

Discussion

Coverage criteria do not apply. Class-based statistical combination generates a test
suite based on the distribution of classes. The test suite is generated in a random
process, based on the distribution of classes. Logical dependencies are supported.
The Chi-square-coefficient and the test for significance allow quantitative measure-
ment of test suite quality. The test suite contains redundant test cases. Therefore,
the class-based statistical combination is suitable for the testing of non-deterministic
systems.

4.4 Deterministic Test Case Generation

We are now using the unified representation of the classification tree with all logical
dependency rules from Section 4.2 to perform our own approach for deterministic
combinatorial test case generation.

4.4.1 Preparation

In preparation for test case generation, we first initialize the BDD by transforming
the classification tree and attaching dependency rules (Figure 4.16). We call this data
structure the BDD from now on.

We then identify the tuples to be covered with the resulting test suite, e.g. for pair-
wise generation, we calculate all pairs of classes from different classifications. The
number and size of the tuples is determined by the test generation rule describing
the desired coverage level. The user can specify the desired coverage level and the
scope of the operation. Mixed strength generation is supported, too. In addition to
the global list C of not yet covered tuples, local lists L are created where each list l
only holds tuples from the same parameter interactions (e.g. the two classifications
involved into pairs).

In Pre-Check mode, we then check each single tuple i for validity by attaching it to
a copy of the BDD with ∧. If the BDD still contains valid assignments after attaching
the tuple, then there are test cases containing this tuple, so the tuple remains on

50

4.4 Deterministic Test Case Generation

1: transform tree into BDD
2: attach dependency rules to BDD
3: calculate tuple lists L
4: add all tuples to list of not-yet covered tuples C
5: if pre-check mode then
6: for all tuple list l from L do
7: for all tuple t from l do
8: if (BDD ∧ t) has no valid assignment then
9: l = l – t

10: C = C – t
11: end if
12: end for
13: end for
14: end if

Figure 4.16: Test suite generation algorithm preparation

the not yet covered list C. If, however, the BDD does no longer contain any valid
assignment after attaching the tuple, then there are no test cases containing this
tuple, the tuple is removed from the not yet covered list C and the local list l.

In Post-Check, all tuples remain in the not yet covered list C.

4.4.2 Phase 1

We have prepared a BDD data structure and we have a list of not yet covered tuples.
Actual test case generation now begins. While there are valid assignments A for the
BDD, we acquire it (Figure 4.17). The assignment a is interpreted as test case and
added to the result test suite S. We analyze the assignment a for containing tuples
T. With each containing tuple t, we do two things:

• we exclude t from the BDD by attaching it with ∧¬t (and not)

• and we remove t from the not yet covered list C.

All tuples already found will not be included in future test cases, because we ex-
clude them from the BDD completely. This ensures that we receive as many test
cases with only new tuples as possible.

We can, however, not guarantee that the number of test cases found this way is the
highest possible number of test cases with exclusive tuples. This is due to the order
in which valid assignments are selected.

We store the number of covered tuples per test case as threshold th for later refer-
ence. When there are no more valid assignments in the BDD, we reset it to the initial
state of Phase 1 and continue to Phase 2.

4.4.3 Phase 2

We continue with the initially prepared BDD data structure and a list of remain-
ing not yet covered tuples C. As there are no more test cases with exclusively new

51

4 Enhancements

1: B = copy of BDD
2: while BDD has valid assignment do
3: a = get next assignment
4: S = S + a
5: T = get all tuples from a
6: th = |T|
7: for all tuple t from l do
8: BDD = BDD ∧¬t
9: C = C – t

10: L = L – t
11: end for
12: end while
13: BDD = B // restore copy of BDD

Figure 4.17: Test suite generation algorithm for phase 1

tuples, we now try to fit in as many new tuples into a single test case as possible
(Figure 4.18).

We select not yet covered tuples from list L and attach them to the BDD with ∧
(Line 7).

To improve this process, we use tuples from the longest local lists L (Line 4), so
we prefer tuples from parameter combinations that have not been covered that much
yet.

We sort all tuples lists by their length and iterate trough them. We take the largest
list (Line 4) and go trough all tuples from it (Line 6). The tuple is then combined
with tuples from all other lists (Line 15). In each step, we make a copy of the BDD by
attaching the tuple to it using AND (Line 17). If now the BDD does not contain any
valid assignments anymore, we cannot combine this tuple with previously selected
tuples. In Post-Check, we check this tuple against the original BDD and remove it
now if needed (Line 22). If the tuple is the last tuple and no other tuple fits, we
continue with the BDD from the previous iteration. Otherwise we take the matching
tuple from the current list and continue with the new BDD (Line 20).

After combining all tuples from the largest list with other tuples, the BDD now
contains a set of candidates (Line 31). The candidates consist of valid assignments
for the BDD for all tuples from the largest list of not yet covered tuples C. While
there are candidates W, we order the list by the number of contained new tuples n
(Line 40) and drop candidates with less than threshold tuples th. We add the first
candidate from the list to the result test suite S (Line 44), remove the tuples from
the not yet covered list C and repeat.

We adapt the threshold when no candidate above the threshold has been found
(Line 52). The new threshold is the minimum of either the reduced original threshold
or the number of tuples contained in the first candidate.

The algorithm stops, when all local lists are empty, either because all tuples are
acovered by test cases or because tuples have been removed because they there are
no valid test cases.

52

4.4 Deterministic Test Case Generation

1: candidates W
2: while |C| > 0 do
3: Sort tuples lists L by |ln|
4: lmax = longest list from L
5: B = copy of BDD
6: for all tuple tmax from lmax do
7: BDD = B ∧ tmax
8: if post-check mode then
9: if (BDD) has no valid assignment then

10: L = L – tmax
11: C = C – tmax
12: continue
13: end if
14: end if
15: for all list l from L except lmax do
16: for all tuple t from l do
17: tempBDD = BDD ∧t
18: if (tempBDD) has valid assignment then
19: BDD = tempBDD
20: continue
21: else
22: if post-check mode then
23: if (BDD) has no valid assignment then
24: l = l – t
25: C = C – t
26: end if
27: end if
28: end if
29: end for
30: end for
31: W = W + valid assignments
32: end for
33: for all candidate w from W do
34: if n < th then
35: W = W – w
36: end if
37: end for
38: m = |W|
39: while |W| > 0 do
40: Sort W by number of tuples t
41: w = remove first element from W
42: n = number of not yet tuples t in w
43: if n >= th then
44: S = S + w
45: for all tuple t from w do
46: C = C – t
47: L = L – t
48: end for
49: end if
50: end while
51: if m = 0 then
52: th = min (th*0.95, n)
53: end if
54: end while

Figure 4.18: Test suite generation algorithm for phase 2

53

4 Enhancements

4.4.4 Example

We will continue using the example from Section 4.1.1. During preparation, a BDD
representing the classification tree is calculated (Formula 4.10). In contrast to Sec-
tion 4.2.3, we skip dependency rules here. We assume the generation rule to be:

pairwise(Vehicle, Speed, Daylight); (4.12)

The tuple lists L consists of three local lists l with l1 = PrecedingVehicle × Speed,
l2 = PrecedingVehicle×Daylight, and l3 = Speed×Daylight.

There are 12 tuples in l1, eight tuples in l2 and six tuples in l3 (Table 4.11), result-
ing in 26 tuples not yet covered in global list C. Since we do not use dependency rules
in our example, no checking for validity is required even in pre-check mode.

Table 4.11: Initial Tuple Lists
l1 l2 l3

(Mot, low) (Mot, Day) (low, Day)
(Mot, med) (Mot, Nit) (low, Nit)
(Mot, hi) (Lim, Day) (med, Day)

(Lim, low) (Lim, Nit) (med, Nit)
(Lim, med) (Cab, Day) (hi, Day)
(Lim, hi) (Cab, Nit) (hi, Nit)

(Cab, low) (Tru, Day)
(Cab, med) (Tru, Nit)
(Cab, hi)
(Tru, low)
(Tru, med)
(Tru, hi)

In Phase 1, the test suite S contains six test cases read from the BDD:

S ={(hi, Cab, Nit), (med, Cab, Day), (hi, Lim, Day),

(med, Lim, Nit), (low, Tru, Nit), (low, Mot, Day)}
(4.13)

Since each test case consists of three tuples (e.g. a1 = (hi, Cab, Nit) consists of (Cab,
hi), (Cab, Nit), and (hi, Nit)), the threshold th is set to 3.

Phase 2 starts with the eight tuples not yet covered in C (Table 4.12), with six
tuples from l1 and two tuples from l2.

The first set of candidates W is then calculated. The longest list with tuples is l1.
All tuples t still in l1 are combined with tuples from l2, the only other remaining list
with tuples. The first candidate set W consists of:

W ={{(Mot, med), (Mot, Nit)}, {(Mot, hi), (Mot, Nit)}, {(Tru, med), (Tru, Day)},

{(Tru, hi), (Tru, Day)}, {(Cab, low)}, {(Lim, low)}}
(4.14)

Since all candidates contain less tuples than the threshold th = 3, no candidate is
added to the resulting test suite S. Instead, the threshold is reduced to two, because

54

4.4 Deterministic Test Case Generation

Table 4.12: Tuple Lists after Phase 1
l1 l2 l3

(Mot, med) (Mot, Nit)
(Mot, hi) (Tru, Day)

(Lim, low)
(Cab, low)
(Tru, med)
(Tru, hi)

it is the minimum of the old threshold reduced (3*0.95) and the number of tuples in
the candidates (2).

In the next iteration, the first candidate w1 = {(Mot, med), (Mot, Nit)} matches the
threshold and is added to test suite S. The containing tuples {(Mot, med), (Mot, Nit)}
are removed from the lists l1, l2 and C.

The second candidate w2 = {(Mot, hi), (Mot, Nit)} does not match the threshold any-
more, because it only contains one new tuple (Mot, hi). The other tuple (Mot, Nit) has
just been removed from C.

The third candidate w3 = {(Tru, med), (Tru, Day)} again matches the threshold. It
is added to S and the containing tuples are removed from lists l1, l2 and C. All other
candidates do not match the threshold, so they are dropped. There are now eight test
cases in S.

Since candidates were found in this run, the threshold is not adapted and a new
set of candidates is generated.

The longest list with tuples is l1. Since there are no other lists li with remaining
tuples, there is no tuple combination. The second candidate set W consists of:

W ={{(Mot, hi)}, {(Lim, low)}, {(Cab, low)}, {(Tru, hi)}}. (4.15)

Since all candidates contain less tuples than the threshold th = 2, no candidate is
added to the resulting test suite S. Instead, the threshold is reduced to one, because
it is the minimum of the old threshold reduced (2*0.95) and the number of tuples in
the candidates (1).

In the next iteration, all candidates W match the threshold. All candidates are
then added to the resulting test suite S, which contains 12 test cases when the gen-
eration terminates.

S ={(hi, Cab, Nit), (med, Cab, Day), (hi, Lim, Day),

(med, Lim, Nit), (low, Tru, Nit), (low, Mot, Day),

(med, Mot, Nit), (med, Tru, Day), (hi, Mot, Nit),

(lwo, Lim, Nit), (low, Cab, Nit), (hi, Tru, Nit)}

(4.16)

55

4 Enhancements

4.4.5 Variation

In this section, we present an approach for better variation of test case generation in
Phase 1 and Phase 2.

Figure 4.19: Example for Generation without Variation

An example to illustrate the problem is given in Figure 4.19. It shows the expected
result for the generation rule pairwise(A, B, E). Test cases 1 to 10 offer a good varia-
tion on all classes of classifications references in the combination rule, A, B, and E.
For the classifications C and D, there is no variation.

While this result is completely correct, it can be desirable to include some addi-
tional variation on those classifications which do not offer new tuples to the test case.

A similar problem occurs when all tuples from a classification have been covered
during test case generation and this classification is no longer under consideration
for new test cases.

Therefore, we propose the following solution: We apply variation onto all classes of
classifications not being part of generation rules and to those classes not part of first
time covering tuples.

The algorithm given in Figure 4.20 shows our approach.

1: for all selected class without influence on new coverage do
2: get all (atomic) siblings
3: select (deterministic) random sibling (can be original class again)
4: if new testcase is valid then
5: keep it
6: else
7: use original test case
8: end if
9: end for

Figure 4.20: Test Case Variation Algorithm

The algorithm inspects all tuples that do not have any influence on tuple coverage.

56

4.5 Test Sequence Generation

This way, there is no need to differentiate between classes of classifications not part
of generation rules and classes from classifications already covered. For each class,
a list of all class siblings is generated. Only siblings without children are taken
into account. It would be possible to include them as well, but refined classes would
need to be additionally calculated for selection. From this list of siblings, one class
is chosen randomly. To keep the generation process deterministic, random selection
uses a fixed initializer. Then, the test case is checked for validity. If it is valid—it
still conforms to all dependency rules—it will be used. Otherwise, the original test
case will be used. It would be possible to search for another sibling instead of using
the original class, but in order to keep calculation time low, the algorithm has only
one try.

The final result is given in Figure 4.21. Now all classifications and classes have
proper variation.

Figure 4.21: Example for Generation with Variation

Future work is needed to analyze, if the result set size can be reduced by covering
new tuples with this variation. Additional checking for new tuples would be needed.

4.5 Test Sequence Generation

For our new approach, we want to enable test sequence generation from classifica-
tion trees. In analogy to existing approaches, we identify three kinds of parameters
for test sequence generation: the classification tree itself, dependency rules, and gen-
eration rules. The classification tree holds all parameters and their corresponding
values of the system under test. For dependency rules, we extend existing rules to
new rules describing constraints between single test steps. Our new rules apply per
test sequence. Within each test sequence, dependency rules must not be violated.
The generation rules describe desired coverage levels for the resulting set of test se-
quences. The set of test sequences as a whole must respect a single generation rule.

57

4 Enhancements

4.5.1 New Dependency Rules

Existing dependency rules allow the user to specify constraints between parameter
values of different parameters within one test case. With the new extended depen-
dency rules, it will be possible to specify constraints between parameter values from
one test step to another. The following set of dependency rules will be supported
(with i, j, k, n, o ∈ N; m ∈ Z):

• If class ci from classification C is selected in test step tn, then class cj from
classification C must be selected in the succeeding test step tn+1.

• If C = ci in tn, then C = cj in a later tn+m.

• If C = ci in tn, then C = cj in all tn+1 to tn+m.

• If C = ci in tn, then C = cj in all tn+m to tn+o.

• Compositions of any (AND, OR, NOT, NAND, NOR, XOR, ...) combination, e.g.
if C = ci OR B = bk in tn, then D = NOT dj in a later tn+m.

The existing dependency rules are a subset of our new dependency rules for tn and
tn+m with m = 0.

Classic dependency rules are valid for manually created test cases, too. We want
our new dependency rules to be available for manually created test sequences, as
well.

4.5.2 New Generation Rules

Existing generation rules specify the coverage level of the resulting test suites. For
our new generation rules, we want to specify the following parameters:

• Desired coverage level.

• (Sub-)Set of all parameter-value combinations of the classification tree.

• Minimum and maximum number of test steps per test sequence.

• Set of special starting and ending parameter value combinations.

• Maximum number of test step repetitions (both local and global per resulting
test sequence).

• Maximum number of parameter value repetitions (both local and global per
resulting test sequence).

58

4.5 Test Sequence Generation

4.5.3 General Approach

Ideally, the workflow should be as blackbox as possible. After a user has specified the
classification tree and all kinds of rules, the approach should work autonomically. We
do, however, allow user interaction for advanced users to fine tune the results.

The input for test sequence generation consists of a common classification tree,
a set of dependency rules and a single generation rule. Together, they are used to
generate an internal representation of the sequence generation problem. Then, a set
of valid transitions and steps from one state in the internal representation to the next
one is defined, using the new dependency rules. This results in a set of all valid paths
through the internal representation. From this set some valid paths are selected to
create subsets using the new generation rules. The output is then created by using
all remaining sequences.

This obviously leads to numerous sequences.
Even for classical test case generation, it becomes crucial to select subsets from

the large set of possible test cases due to test case explosion. For classical test case
generation, this can be done by both dependency rules and generation rules.

We identified decision trees and finite state machines as possible internal repre-
sentations.

We decided to implement the new dependency rules using linear temporal logic
(LTL) with the operators (X, G, F, U, R). LTL-terms fit well and fulfill most of the
requirements defined in Section 4.5.1.

For generation rules, we used computation tree logic (CTL). CTL rules do not apply
to single sequences but refer to the whole set of generated test sequences.

Additionally, we need some approach-specific rules. In state machines, we want to
limit the number of cycles. For decision trees, this setting is not needed. All other
needs in generation rules not addressed by CTL will be called approach-specific rules.

The set of valid states consists of the set of all valid test cases, which can already
be very large. Therefore, the user starts with the generation of classical test cases
and can use them as a subset of all valid test cases for the remaining test sequence
generation.

The transitions of all states are then restricted by the dependency rules, generation
rules and approach-specific rules. If no dependency rules are given, all transitions
are valid in our approach. A transition remains valid as long as there is no contradict-
ing dependency rule. One could, however, define the opposite way: Only transitions
specified in dependency rules are allowed whereas transitions not mentioned in or
contradicted by dependency rules could be removed.

After removing all forbidden transitions, a set of valid passes through the internal
representation remains. By applying generation rules and approach-specific rules,
we now select a subset. The approach-specific rules can, for example, limit the path
length, the number of cycles or the desired coverage level.

The output is a set of test sequences. Together, they fulfill the single generation
rule and approach-specific rules, either one fulfills the dependency rules.

59

4 Enhancements

We have initially implemented the generation of test sequences using decision
trees and finite state machines. Both approaches follow a simple work flow.

Generation input includes the classification tree, a set of dependency rules and gen-
eration rules. For all approaches under evaluation, these three components should be
generic. A test suite of test sequence is the output of the generation of test sequences.
The actual test sequence generation can be divided into four steps: The derivation
of nodes, the definition of valid transitions between these nodes, the composition of
valid paths (containing these transitions), and the selection of a subset of all possible
paths. The actual generation might need additional approach-specific rules.

4.5.4 Decision Tree Approach

For the decision tree approach, the work flow is as follows: The nodes contain all pos-
sible combinations of classes from the classifications. The number of nodes equals the
size of the complete coverage, the Cartesian product of all classes from all classifica-
tions of the tree. Only valid nodes—containing valid class combinations—are added
to this set. In this step, all conventional dependency rules and implicit dependencies
are handled. For this set, all valid transitions are generated. The dependency rules
are applied, where possible. Only those rules describing constraints between consec-
utive test steps can be processed. From this set of simple transitions, between two
nodes each, a decision tree is then composed. Here, all still unprocessed dependency
rules are taken into account. The resulting decision tree now contains both all valid
paths and only valid paths. In the last step, a path selection is made to fulfill the
generation rule. We developed two approaches here, a brute-force and a random ap-
proach. The brute-force approach starts traversing the decision tree in a depth first
search. When reaching an atomic node in the tree, the path is added to the result
set. When reaching a node, which will not reach anything new, this path is skipped.
The random approach randomly selects complete paths from the decision tree. Both
approaches stop as soon as the generation rule is complete.

4.5.5 FSM Approach

For a given classification tree, the user must specify a set of valid LTL rules. The
rules are then used to build a Büchi automaton using Formula Rewriting, Core Trans-
lation and actual Automaton Generation following an algorithm [GPV+95] which uses
a Tableaux Construction Method for LTL given in [CGP99, p. 132]. The Büchi au-
tomaton is then reduced to a regular FSM by removing all infinite properties using
weak Next- (and Until-) Operators in Finite Trance LTL and excluding empty se-
quences. The FSM is then converted into a Test Case FSM by identifying possible
test case candidates for each state and removing states without valid test cases. The
Test Case FSM can then be traversed with different coverage levels: State Coverage
(C0), Transition Coverage (C1) and Path Coverage (C2).

The search for a minimal State Coverage is equivalent to the search for a Hamilton
path in a directed graph [Sed03, p. 60]. The search for a minimal Transition Coverage

60

4.6 Statechart Approach for Test Sequence Generation

is equivalent to an asymmetric Traveling Salesman Problem [Pun04]. Both searches
are known to be NP-complete. The search for a minimal Path Coverage is equivalent
to the search for an Euler path [Sed03, p. 62] or in some cases the Chinese Postman
Problem [Sed03, p. 224].

Only Path Coverage has been implemented, a depth first search uses an Adjacency
matrix that allows specifying the minimum and maximum search depth (equivalent
to the resulting path length) and the minimum and maximum number of state repe-
titions.

4.6 Statechart Approach for Test Sequence Generation

We will first introduce the refined requirements for the generation rules and then
introduce the actual approach.

It can be desirable to have specific coverage levels and it can be useful to generate
a test suite with test sequences covering all possible transitions between classes of
the classification tree.

4.6.1 New Generation Rules

In analogy to conventional test generation, covering all pairs of transitions between
classes of the classification tree could be defined as well. Conventional test case
generation supports mixed strength generation as well as seeding [CDFP97], so we
require them as well.

New generation rules should allow any t-wise coverage for both classes and tran-
sitions. Note that some of Kuhn’s t-way sequences [KKL10] can be mapped onto our
generation rules.

Kuhn’s 1-way sequence coverage corresponds to 1-wise (or minimal) class coverage
here. Each class is supposed to be contained in the result set at least once. Our
approach extends conventional class coverage for test cases to test sequences.

Kuhn’s 2-way sequence coverage corresponds to our 1-wise (or minimal) transition
coverage. All valid transitions (pairs of states) are supposed to be contained in the
result set at least once. In conventional test case generation, there is no coverage
criterion for transitions.

Higher n-way (with n > 2) sequence coverage is not yet included and requires
future work. Instead, we require higher n-wise (with n > 1) coverage for both classes
and transitions. We have included pairwise class and transition coverage.

The generation rules should take classifications as parameters to specify their fo-
cus. The number of parameters should not be restricted. Elements of generation
rules should be combinable to allow mixed strength generation. Seeding [CDFP97]
of manually created test sequences should be possible. The generation algorithm
should then analyze this set and take these sequences into account. The generation
should, of course, take the dependency rules into account.

61

4 Enhancements

4.6.2 Approach

Our final approach for test sequence generation is based on an idea proposed by Con-
rad [Con05], who suggests that the interpretation of classification trees as parallel
FSMs together with a set of test sequences allows measuring coverage levels.

Figure 4.22: Classification Tree for the Keyboard Example

As an example, we use keyboard states: Given a classification tree keyboard (Fig-
ure 4.22) together with a set of (manually specified) test sequences, we can derive a
parallel state machine (Figure 4.23).

Figure 4.23: Parallel FSM for the Keyboard Example [Mir09]

In UML state charts, parallel states are called orthogonal regions [Obj10, Section
15.3.10].

Conrad’s approach, however, lacks some details:

1. He does not give any advice on how to interpret classification trees with refine-
ments. All trees in his examples are flat trees; there are no refined classes.

2. Although mappings of classification trees onto parallel FSMs exist, there is no
general interpretation for any existing (parallel) FSM as valid classification
tree.

3. There is no distinction between directions of transitions. All examples given do
not differ between transitions to or from a node. Loops are missing as well.

62

4.6 Statechart Approach for Test Sequence Generation

4. His approach does not handle dependencies. The test engineer has to decide on
his own, which combination of classes and which order of consecutive test steps
are valid.

5. There is (to the best of our knowledge) no automatic test sequence generation in
Conrad’s approach. The test engineer has to specify all test sequences manually.

We will now handle these short comings one by one:

1. The interpretation of refined classes can be easily accomplished by mapping
them on to hierarchical states in state machines. This concept is known from
Harel statecharts [Har87] as well. As in classification trees, statecharts can be
modeled top-down, from overview to detail, by refining states with a set of sub-
states. This allows different levels of granularity within a single statechart at
different hierarchies. Parallel FSMs are sometimes also known as Hierarchical
Concurrent finite State Machine (HCSM) [Luc93]. We will from now on call
Conrad’s approach, the statechart approach.

2. Conversion of existing statecharts to classification trees will be explained in the
next section (Section 4.6.3).

3. We will differentiate between different transition directions and will enforce
loop transitions (transitions where start-node and end-node are the same), if
they exist.

4. For handling dependencies, we will use our own initial dependency rule ap-
proach for test sequence generation. To have only one central dependency han-
dling, we will model transition guards using this technique as well.

5. The actual test sequence generation will be given in detail in Sections 4.6.4 and
4.6.5.

4.6.3 Conversion of Existing Statecharts to Classification Trees

To illustrate the problem, we will borrow the example from [Luc93].
The microwave (Figure 4.24) is a good example because it contains concurrency

and hierarchies.
We propose the following classification tree (Figure 4.25) as an equivalent repre-

sentation.

63

4 Enhancements

Figure 4.24: Statechart for the Microwave Example

Figure 4.25: Classification Tree for the Microwave Example

64

4.6 Statechart Approach for Test Sequence Generation

For the three orthogonal regions Mode, Display and Light, there are three clas-
sifications in the tree. The concurrency of the statechart ideally maps onto those
classifications which are also “active” in parallel in test cases. From each region,
there can only be one active state which applies for the classes of different classifi-
cations as well. The hierarchical states are mapped onto classes and classifications
with the same name in the classification tree. The additional classification is neces-
sary, as classes can contain only classifications (and compositions) as refinement but
no direct descendant classes.

Although this mapping is quite nice and intuitive, now there are details in the tree
missing (Figure 4.26): It does not contain any transitions, no start transitions and
no information on (deep) history. As there are no conditions, there are no details on
transition guards (conditioned transitions/transitions with dependencies) either.

Figure 4.26: State "Operational"

To overcome these problems, we will link these details with the respective tree
elements (Figure 4.27).

Figure 4.27: Annotated Details for the Classification “Operational”

Example: The classification “Operational” is shown with all allowed transitions
and given start node. Constraint handling will be illustrated in the next parts.

The conversion algorithm from statecharts to classification trees is given next (Fig-
ure 4.28).

65

4 Enhancements

1: create rootNode with Name of statechart
2: readState (statechart, rootNode)
3:
4: readState(state, treeItem)
5: if state is concurrent then
6: for all for each partition do
7: create a classification with name of partition
8: readChildren (partition, classification)
9: end for

10: else
11: // state is non-concurrent
12: create classification with name of parent state
13: readChildren (state, classification)
14: end if
15:
16: readChildren (state, classification)
17: if state has history then
18: classification set history (true)
19: end if
20: for all child of state do
21: create one class
22: readState (child, classification) // recursion
23: if child is start then
24: classification add start (child)
25: end if
26: for all transition of child do
27: classification add transitions (transition)
28: end for
29: end for

Figure 4.28: Statechart to Classification Tree Algorithm

First, the root node of the tree is named after the state machine. The readState-
method is then called with both the current state, which is the state machine itself
for the first call, and the current tree item, in this case the root node. The readState-
method basically differs only between concurrent and non-concurrent states (Line 5).
For concurrent states, it creates a classification for each partition with the name of
this partition (Line 7). All children are then added to the corresponding classifica-
tion. For non-concurrent states, a new classification with the name of the parent
state is added, resulting in a classification with the same name as its parent tree
item (Line 12). Children of non-concurrent states are then added to this single clas-
sification.

The readChildren-method first checks whether the state has a (deep) history and
stores this information in the corresponding classification. For each child of the state,
it creates a class element in the classification tree (Line 21). Each child is then re-
cursively processed by calling the readState-method. If one of the children is marked
as start state (it has a start transition), it is added to the list of possible start states
in the parent classification. All outgoing transitions of each child are also stored in
the classification.

66

4.6 Statechart Approach for Test Sequence Generation

In contrast to an earlier approach [HHS03], we can read more details from the
formal specification. This way, information on model internals such as constraints
and transistions can be preserved when building the classification tree, reducing
manual work by the tester. The additional details will then be used for the actual
test sequence generation (Section 4.6.5).

4.6.4 Conversion of Classification Trees to Statecharts

For the actual test sequence generation from classification trees, we make some de-
fault assumptions:

• In any given plain classification tree, there are no transitions between classes,
resulting in an unconnected graph. Test sequence generation will lead to se-
quences with only one single test step. These test suites are similar to conven-
tional test case generation. Transition coverage is, of course, not available.

• We allow all classes to be reached at start.

• Classifications do not have a (deep) history.

The conversion algorithm from classification trees to statecharts is given next (Fig-
ure 4.29).

The build-method takes a tree item as the input parameter and returns its cor-
responding state machine. First, a list of child states is prepared by recursively
building all children of the current tree item.

The build-method then distinguishes between several cases: If the current tree
item is a class or a composition (Line 9), it distinguishes again between the number of
children. If a class or a composition has more than one child (Line 10), then this tree
item is a parallel state and all children are partitions of it. If a class or a composition
has exactly one child (Line 22), it is skipped by directly adding all the child’s children
to the current tree item. In all other cases, e.g. the tree item is a class or a composition
without any children or the tree item is a classification, the prepared list of children
is used as the result’s list of children (Line 28).

All transitions and possible start states stored in the classification are read and
the result is returned.

4.6.5 Algorithm

The algorithm takes the first and second step of our generally defined workflow. The
nodes are the classes and classifications from the classification tree. Simple refine-
ment classifications are skipped. Valid transitions can directly be parsed from the
annotation in the tree. For the last two steps of the work flow, we propose the follow-
ing solution.

We use two phases and two kinds of agents to traverse the tree. Travelling is done
in such a manner that only valid paths are taken and that all travelled paths together
already result in the desired coverage so that there is no need for subset selection.

67

4 Enhancements

1: build (treeItem)
2: state = new State
3: List children = new List()
4: for all child of treeItem.getChildren do
5: childState = build(child)
6: children.add(childState)
7: end for
8: Boolean addChildren = !children.isEmpty()
9: if treeItem is Class || treeItem is Composition then

10: if treeItem.children.count > 1 then
11: addChildren = false
12: result = concurrentState(result)
13: List subStates = new List()
14: for all item of children do
15: if item is SubState then
16: result.addSubState(item)
17: end if
18: end for
19: else
20: if treeItem.children.count == 1 then
21: addChildren = false
22: result.setChildren(firstChild.getChildren())
23: result.setPosition(firstChild.getPosition())
24: end if
25: end if
26: end if
27: if addChildren then
28: result.setChildren(children)
29: end if
30: readArcs(treeItem, result)
31: return result

Figure 4.29: Classification Tree to Statechart Algorithm

For realization, we introduce two kinds of agents: The walker agent and the cov-
erage agent. Both agents will cooperatively traverse the statechart following the
algorithm given in the next section.

Walker agents: The task of this agent is to literally walk through the statechart.
The walker agents are very simple programs. There is only one kind of walker. Walk-
ers do not have a special order; all of them have the same importance. Walkers can
have different lifecycles. They are created and removed on demand. There typically
is one walker per active state. Walkers can recognize whether they are stuck, which
means that there is no valid transition available. Walkers have a list of child walkers,
which can be empty.

Coverage agents: The coverage agents are more sophisticated than the walker
agents. Their task is to measure all current and previous coverage levels and to guide
the walkers though the statechart. There are different kinds of coverage agents,
one for each type generation-rule term introduced in Section 4.6.1: State-coverage,
transition-coverage, state-pair-coverage, transition-pair-coverage, and so on. We de-
fine an order for all coverage agents by a) their complexity and b) the number of

68

4.6 Statechart Approach for Test Sequence Generation

parameters, which is the number of scopes they cover. The lifecycle of the coverage
agents start with the beginning of the generation process. They remain active un-
til the coverage criterion they handle is finished. There is one coverage agent per
generation rule term/component, e.g. the rule

state-pairwise(a, b) + transitions(a, b, c)

results into two coverage agents.
Coverage agents can determine whether they are finished, both globally and lo-

cally. From the example above, we can explain complexity and number of parameters
needed for ordering the coverage agents. We use the following formula to calculate
the order of coverage agents:

i = |order|*|parameters|

If two terms have the same index value, we will prefer the term being early in the
generation rule formula which can result into missing commutative property for cer-
tain generation rules.

Walker algorithm: The basic idea of the algorithm (Figure 4.30) is that all walk-
ers will, one by one, ask the most complex remaining coverage agent where to go next.
By walking the route proposed by the most complex coverage agent first, chances are
high to cover elements needed by simpler coverage agents, too. For example, transi-
tion coverage for a statechart already implies state coverage, too.

The very first step is the creation of coverage agents from the generation rule.
Then, the root node (statechart) is selected. This means, a walker is created for the
root node. For each classification (parallel section) under the root node, the class
(node) with the start transition is selected (Lines 4-9). There will consequently be
one walker per classification now. The selection of start nodes is repeated as long as
a selected class (state) has at least one refinement (inner states). A new walker is
then created for each refinement step and will be added to the list of child walkers.

As soon as all walkers without child walkers reach an atomic class, the first test
step is created. This test step is then checked against the conventional dependency
rules. If it is valid, then the test step is added to the test sequence (Line 12) and
the coverage measure is updated (Line 13). If it is invalid, test sequence generation
is canceled and an empty result set is given (Line 15) as there are no valid test
sequences available from this specification.

As long as generating, each walker without child walkers will now perform the
following steps. It first identifies (Line 20) the most complex remaining coverage
agent. It will then ask this agent where to go next or to stay (Line 21). The candidate
class is then checked against conventional and new dependency rules together with
all walkers already moved in this turn. If the candidate is valid, we continue with
the next walker until all walkers have walked. We then add this test step to the
test sequence (Line 32) and update the coverage. We then start the next turn of
walking walkers. If the candidate node does not offer any valid test step, the walker
will take the second best move from the coverage agent candidates and validates it

69

4 Enhancements

again until a valid test step candidate is found. If all candidates fail, the walker
will try to stay where it is. If that is not possible, it can still try to step out, which
means, its parent walker will move. If even that is not an available option, we start
backtracking (Line 35).

1: create coverage agents from rule
2: select root node // statechart
3: create walker
4: for all classification // parallel section do
5: repeat
6: select (inner) start class // node
7: create walker, add to walker child list
8: until class is atomic
9: end for

10: compose test step from selected classes
11: if valid then
12: add test step to sequence
13: update coverage
14: else
15: cancel generation with empty results
16: finished = true
17: end if
18: while not finished do
19: for all walker without child-walker do
20: find coverage agent
21: ask coverage agent where to go or stay
22: decide if stuck
23: if walk transition then
24: while entering a refined class do
25: select (inner) start class
26: create walker, add to walker list
27: end while
28: end if
29: end for
30: compose test step from selected classes
31: if valid then
32: add step to sequence
33: update coverage
34: else
35: backtracking
36: end if
37: end while

Figure 4.30: Test Sequence Generation Algorithm, Phase 1

The candidate from the previous walker is rejected now and the next best choice
from this previous walker is taken. This is done recursively until one valid candidate
can be found. If there is no candidate—the first walker does not find a valid option—
the statechart is globally stuck. It will be reset to its initial state by turning it off
and on again.

If adding test steps to the test sequence does not increase coverage for a certain
number of steps, we will reset the statechart, as well, and start a new test sequence.

70

4.6 Statechart Approach for Test Sequence Generation

We wait as many steps as there are (inner) classes in the largest classification. All
steps without progress are removed from the sequence before adding it to the result
test suite.

We repeat this until the global coverage is completed or resetting and starting a
new sequence does not increase coverage for a certain number of test sequences; then
we can stop. We again wait as many test sequences as there are (inner) classes in
the largest classification. In this case, we start a second phase for hard to reach
configurations.

Second phase: The algorithm for the second phase for hard to reach configuration
is given in Figure 4.31. The approach is inspired by [GFL+96].

1: for all coverage agent (in descending order of importance) do
2: for all not yet covered item do
3: find path from item to start in a reverse breadth first search
4: if there is valid path then
5: add test sequence of path to result set
6: else
7: drop item from coverage measure
8: end if
9: end for

10: end for

Figure 4.31: Test Sequence Generation Algorithm, Phase 2

The approach is rather simple here. For all coverage agents we get all not yet
covered items. We apply a reverse breadth first search for paths from this item to
possible start states (Line 3). If a valid path is found, it is added to the result set
(Line 5). If there is no valid path, the item is not reachable and is dropped (Line 7).

The approach guarantees the coverage of all coverable items. The result set, how-
ever, might not be minimal.

Coverage algorithm: The rating algorithm works as follows (Figure 4.32). It gets
a candidate state or transition. For state coverage, self transitions are ignored and
zero is returned. Otherwise, it then adds this candidate to a queue together with a
weight factor, with an initial weight factor of one. The initial rating is set to zero.
The candidate is added to the list of rated items. Then while the queue is not empty
the algorithm polls the next state and weight factor from the queue. If the polled
node is the original candidate and if the rating is larger than zero, the algorithm has
found a loop path with new items. This loop path is preferred by adding the value of
100 to the rating. In this case, or when the current item is on the list of rated items,
the while loop goes to its next cycle. Else this node is added to the list of rated items.
If the node is on the list of target states (it has not been used in any test step before),
the algorithm adds 10 times the weight factor to the result rating. Then, if there are
outgoing transitions, child nodes, or subsections, the weight factor is multiplied with
a punishment value of 0.95. Target states of outgoing transitions, child nodes and
subsections are then added to the queue together with the new weight factor. When
the queue is empty the rating is returned.

71

4 Enhancements

1: candidate state or transition
2: if state coverage && self transition then
3: return 0
4: end if
5: weight = 1.0
6: rating = 0
7: queue += (candidate, weight)
8: while !queue.empty do
9: (item, weight) = queue.poll

10: if item == candidate && rating > 0 then
11: rating += 100
12: continue
13: end if
14: if ratedItems contains then
15: continue
16: end if
17: ratedItems += item
18: if targetNodes contains item then
19: rating += 10 * weight
20: end if
21: if item has (outgoing transition || childnodes || subsections) then
22: weight *= 0.95
23: end if
24: for all (outgoing transition && childnodes && subsections) of item do
25: queue += (item, weight)
26: end for
27: end while
28: return rating

Figure 4.32: Rating of Candidates

For pairwise coverage, the rating algorithm needs to take into account all walkers
at once. When rating moves for state pairwise, the rating algorithm uses two lists,
one containing all positions of walkers which will be moved and one list of positions
of walkers that have already been moved in this turn. It sends walkers one at a time
to states that cover state pairs together with all walkers in the statechart.

For transition pair coverage, the rating algorithm uses a list of all transitions al-
ready taken in a move together with the list of positions of walker which still can
move during this turn. The rating algorithm then sends walkers through the state-
chart in such a manner that joint moves of walkers cover transition pairs.

The remaining part of the pair rating works just like the rating of states and tran-
sitions.

72

5 Evaluation

After designing and implementing our approaches, we evaluate them in this chapter.
We first apply a prioritized benchmark to both the prioritized pairwise combination
and the plain pairwise sorting approach (Section 5.1). We then apply a large set of
standard benchmarks to our new deterministic test case generation approach (Sec-
tion 5.2). We introduce a set of case studies for test sequence generation and evaluate
our new test sequence generation approach (Section 5.4).

5.1 Prioritized Generation

Here, we evaluate the impact of weight consideration on weight coverage and on the
absolute size of the generated test suites. A first impression is given in Figure 5.1.

Weight Covered using plain pairwise, PCC and sorting

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12
Test Number

C
um

ul
at

iv
e

W
ei

gh
t C

ov
er

ed

PPC
Sorting
Non-weighted

Figure 5.1: Comparison of PPC, Sorting, and of Non-Weighted Generation

The Figure shows a comparison of PPC, Sorting and a non-weighted generation for
the the ACC example using the usage model. As can be seen, PPC and sorting per-
form similar while the unsorted test suite does not perform that well. For a more de-
tailed and systematic evaluation, we use the set of benchmarks proposed in [BC06]:
We compare (1) our PPC approach with our sorting approach and (2) PPC with the

73

5 Evaluation

deterministic density algorithm (DDA) given in [BC06]. The given benchmark uses
four different weight distributions applied to eight scenarios. The distributions are:

• d1 (Equal weights)—All levels have the same weight.

• d2 (50/50 split)—Half of the weights for each factor are set to 0.9, the other
half to 0.1.

• d3 ((1/vmax)2 split)—All weights of levels for a factor are equal to (1/vmax)2

where vmax is the number of levels associated with the factor.

• d4 (Random)—Weights are randomly distributed.

The scenarios s1, ..., s8 with their resulting test suite sizes are given in Table 5.1.
The factors are given in a shorthand notation, for example s5 with 82726224 consists
of 2 factors with 8 values, 2 factors with 7 values, 2 factors with 6 values, and 4
factors with 2 values. The columns d1, ..., d4 provide the different results for the PPC
runs. The sort column reports the resulting test suite size for the sorting approach
regardless of the distribution.

Table 5.1: Benchmark Scenarios Result Sizes
Factors d1 d2 d3 d4 sort

s1 34 10 12 10 12 9
s2 1020 218 228 218 229 245
s3 3100 130 51 130 52 34
s4 1019181716151413121 92 100 109 106 94
s5 82726224 71 78 86 80 74
s6 1511055141 172 190 177 187 177
s7 350250 70 42 84 33 29
s8 2021023100 400 403 420 404 400

5.1.1 Comparison of PPC vs. Sorting

Size. The test suites generated using the PPC are larger than those generated using
the sorting approach (Table 5.1). The PPC-generated scenarios s3 and s7 in d1 and d3
are up to 300% larger than their sorting counterparts. The problem here seems to be
the combination of scenario and distribution. For any other distribution or scenario,
the PPC results are much smaller and, therefore, closer to the sorting results. For
the rest, the resulting PPC test suites are up to 50% larger in some cases (s3 d4 or
s7 d2). On average, the PPC test suites are 42% larger than the sorting test suites.
Ignoring the extreme values (s3 and s7 from d1 and d3), the PPC test suites are 12%
larger on average.

Applying equal sorting (d1), the PPC algorithm results in smaller test suites for
some scenarios. For s2, it is generally smaller. The normal test case generation
serving as input for the test case sorting seems to have problems with this particular

74

5.1 Prioritized Generation

scenario. To reveal the reasons behind this behavior, further investigation is needed.
For s6 d3, the PPC test suite has the same size as the sorting.

For the majority of scenario-distribution combinations, sorting results in smaller
test suites, which is not surprising since in prioritization selection focuses on class
weights first; in contrast to sorting, which tries to get the smallest test suite avail-
able.

Weight coverage. The detailed results are given in Table 5.2. The first column
gives the desired weight. The second column gives the scenario. The remaining four
columns give the number of test cases needed to reach the weight for each distribu-
tion. The values for both algorithms, PPC and sorting, are given next to each other
with the smaller value highlighted in bold font.

In d1, sorting starts very strong. Reaching 25% coverage is always better than or
equal to PPC. For 50% and 66%, PPC is only better in s2 where sorting seems to have
a general weakness, and s8. For the rest of measured weights, PPC becomes better
and better, while sorting loses its advantages from the lower values.

In d2, the prioritization performs better in all scenarios for the 25%–75% target
weights. Starting at 90%, sorting gets better with s1 and s8. For 95%, sorting also
needs fewer test cases with s4. This case needs further investigation, maybe it is just
a good weight distribution for the test case generator creating the PPS input. For
99%, sorting only performs best for s1.

In d3, sorting comes close to the PPC. For 25% coverage, both approaches perform
equally. For 50%, the PPC is only better for s2 and s7. For 66% weight coverage, the
prioritization is better for s2, s4, s6, and s8. For 75% coverage, PPC is always better
for large scenarios (s2, ..., s7). For 90% and 95% coverage, sorting performs equally
both for s7 and s3 for the latter. For 99% coverage, sorting surpasses PPC for half of
all scenarios.

In d4, the prioritization approach provides the best weight coverage. Random dis-
tribution of weights leads to a high weight coverage when performing test case com-
position with its pair selection.

In general, the PPC gives better weight coverage. There are, however, three excep-
tions: Very small scenarios, problematic distributions, and very high weight marks.
For very small scenarios, sorting has a good starting point since any pairwise-covering
test suite has a good chance for containing combinations of any class pair, even com-
binations of only high-weight pairs. In these cases, sorting can sort the good combi-
nations to the beginning. The influence of problematic distributions has already been
analyzed in detail earlier. PPC performs better on random and (1/vmax)2 split while
it has some problems on equal distributions (with low target covering marks) and is
on par with the sorting approach on the 50/50 split. For higher target marks on equal
distributions, it becomes better again since sorting has a general problem here. For
very high weight marks starting at coverage around 95% or 99% or even higher, PPC
loses its advances gradually. Since sorting performs better for 100% coverage, there
obviously must be a point ≤ 100% where both approaches perform equally.

To conclude. Having two algorithms which both generate test suites covering all

75

5 Evaluation

Table 5.2: Benchmark Detailed Result
weight d1 d2 d3 d4

25% s1 3 3 1 1 3 3 2 2
s2 27 27 9 12 27 27 12 19
s3 3 3 1 2 3 3 1 3
s4 11 10 3 4 4 4 6 7
s5 8 7 2 3 2 2 3 4
s6 23 22 7 9 12 12 11 14
s7 2 2 1 2 2 2 1 2
s8 3 3 1 1 3 3 2 3

50% s1 5 5 1 2 5 5 3 3
s2 56 60 18 36 56 60 31 47
s3 6 6 1 4 6 6 3 5
s4 24 22 8 11 8 8 15 18
s5 18 17 6 8 4 4 8 10
s6 52 49 17 24 26 26 27 36
s7 4 4 1 3 3 4 2 4
s8 8 9 3 3 6 6 5 8

66% s1 7 6 1 3 7 6 5 5
s2 79 89 27 60 79 89 50 74
s3 8 8 1 7 8 8 5 8
s4 36 34 12 17 12 14 23 28
s5 28 27 10 15 7 7 14 17
s6 74 74 25 39 38 41 43 57
s7 6 6 1 4 5 5 4 6
s8 13 15 7 8 8 9 10 15

75% s1 8 7 3 4 8 7 6 5
s2 95 110 36 79 95 110 65 95
s3 9 10 4 8 9 10 7 10
s4 45 42 16 23 16 19 29 36
s5 35 34 13 21 9 10 19 24
s6 89 92 31 53 46 53 56 73
s7 7 8 2 5 6 7 5 7
s8 18 21 12 13 9 11 15 21

90% s1 9 9 7 5 9 9 8 7
s2 132 162 87 131 132 162 104 150
s3 15 16 9 13 15 16 12 15
s4 64 63 36 38 30 35 46 56
s5 50 51 28 37 15 19 33 41
s6 123 131 73 92 83 92 90 111
s7 11 12 6 9 10 10 9 11
s8 64 46 30 30 15 19 35 43

95% s1 10 9 8 7 10 9 10 8
s2 152 190 121 163 152 190 129 181
s3 20 20 12 16 20 20 15 19
s4 74 74 53 51 42 46 59 67
s5 57 59 43 46 23 25 44 50
s6 139 149 106 114 107 120 112 131
s7 14 15 9 12 13 13 11 14
s8 92 62 56 47 19 26 55 60

99% s1 10 9 11 8 10 9 11 9
s2 180 228 169 212 180 228 169 223
s3 37 26 19 23 37 26 21 26
s4 86 88 76 77 72 70 82 82
s5 66 68 61 62 52 54 60 65
s6 159 169 148 153 149 158 148 160
s7 20 21 14 18 21 19 17 21
s8 145 120 114 122 28 45 120 13776

5.1 Prioritized Generation

possible pair combinations, the PPC covers weights better than the sorting approach
because it tries to combine high weight pairs into early test cases. The sorting ap-
proach is worse because it has no influence on the actual composition of test cases
with their contained pairs. So while both test suites contain all possible class pairs,
PPC results in early weight coverage.

5.1.2 Comparison of PPC with DDA

Size. Comparing PPC and DDA test suite sizes, there is no clear result. From 32
test suites generated with DDA and PPC, 18 DDA suites are smaller than the PPC
test suites. For the remaining 14 scenario-distribution combinations, PPC generates
smaller test suites. As already stated, PPC produces a very large test suite for the
s3 and s7 in d1 and d3 combinations. The DDA produces smaller test suites for
these combinations, similar to the sorting results. These special cases need further
investigation. The DDA, however, has two outliers with s2 and s6: The result set is
50% larger for s2 and 25% larger for s6, compared with PPC.

For the majority of results, both algorithms perform similarly. For d2, the PPC has
some advantages, for d1 and d3 DDA performs better. The scenario s6 seems to be
a good PPC scenario, while s3 and s7 are handled well by DDA. There is no general
tendency for one or the other to produce considerably different test suite sizes since
both algorithms aim to cover high weight instead of generating small test suites.

Weight coverage.

Cumulative Weight Covered For s3 Using Four Weight Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10
Test Number

C
um

ul
at

iv
e

W
ei

gh
t C

ov
er

ag
e

Distribution 1 PPC
Distribution 2 PPC
Distribution 3 PPC
Distribution 4 PPC
Distribution 1 DDA
Distribution 2 DDA
Distribution 3 DDA
Distribution 4 DDA

Figure 5.2: Cumulative Weight Covered in the First 10 Tests Using Input s3

In [BC06], the weight results are only given for s3, s4, s5, s7, and s8. We analyzed
the given figures and the results are given in Figures 5.2–5.6. The solid black lines

77

5 Evaluation

Cumulative Weight Covered For s4 Using Four Weight Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10
Test Number

C
um

ul
at

iv
e

W
ei

gh
t C

ov
er

ag
e

Distribution 1 PPC
Distribution 2 PPC
Distribution 3 PPC
Distribution 4 PPC
Distribution 1 DDA
Distribution 2 DDA
Distribution 3 DDA
Distribution 4 DDA

Figure 5.3: Cumulative Weight Covered in the First 10 Tests Using Input s4

represent the PPC results while the light gray lines represent the DDA results. Both
black and gray lines without any markers stand for d1; d2 lines carry small solid
squares; the solid triangles represent d3; and d4 has circles.

Cumulative Weight Covered For s5 Using Four Weight Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9 10
Test Number

C
um

ul
at

iv
e

W
ei

gh
t C

ov
er

ag
e

Distribution 1 PPC
Distribution 2 PPC
Distribution 3 PPC
Distribution 4 PPC
Distribution 1 DDA
Distribution 2 DDA
Distribution 3 DDA
Distribution 4 DDA

Figure 5.4: Cumulative Weight Covered in the First 10 Tests Using Input s5

For s3, PPC works better than DDA for all distributions (Figure 5.2). For d2, the
advantage is remarkably high at the beginning, although at later test cases, DDA

78

5.1 Prioritized Generation

Cumulative Weight Covered For s7 Using Four Weight Distributions

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10
Test Number

C
um

ul
at

iv
e

W
ei

gh
t C

ov
er

ag
e

Distribution 1 PPC
Distribution 2 PPC
Distribution 3 PPC
Distribution 4 PPC
Distribution 1 DDA
Distribution 2 DDA
Distribution 3 DDA
Distribution 4 DDA

Figure 5.5: Cumulative Weight Covered in the First 10 Tests Using Input s7

approaches the PPC values.
For s4, the DDA has a clear advantage for d3 and a small advantage for d1 (Fig-

ure 5.3). For d2 and d4, PPC performs slightly better.

Cumulative Weight Covered For s8 Using Four Weight Distributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Test Number

C
um

ul
at

iv
e

W
ei

gh
t C

ov
er

ag
e

Distribution 1 PPC
Distribution 2 PPC
Distribution 3 PPC
Distribution 4 PPC
Distribution 1 DDA
Distribution 2 DDA
Distribution 3 DDA
Distribution 4 DDA

Figure 5.6: Cumulative Weight Covered in the First 20 Tests Using Input s8

For s5, the PPC generally performs better than the DDA (Figure 5.4). In this
scenario, PPC gives its best results for the d3.

79

5 Evaluation

For s7 (Figure 5.5), the results are very similar to s3. The PPC generally performs
better than the DDA. The PPC has a very strong start for d2 while the DDA start is
quite similar to the other distribution starts.

For s8, the DDA starts better than PPC for d4 (Figure 5.6). For the remaining
distributions, the PPC starts better, d2 again very much better. In later test cases,
the DDA surpasses PPC for d1 and d2. PPC surpasses DDA for d4 and stays ahead
for d3 all the time.

Comparing all 240 generated test cases (4 scenarios with 4 distributions with 10
test cases each and 1 scenario with 4 distributions with 20 test cases each) for both
DDA and PPC, the PPC performs better for 192 test cases. The DDA performs better
for 47 test cases. So while the values for DDA in [BC06] are not 100% accurate, a
tendency can be seen: PPC performs better than DDA in 4 of 5 cases with respect
to weight coverage. Unfortunately, no results for DDA with s1, s2, and s6 are given.
Comparing PPC’s good performance in s6 with DDA results would be quite interest-
ing.

To conclude. PPC performs better than DDA in terms of early weight coverage;
the resulting test suites are slightly larger. However, further analysis is needed for
the missing scenarios.

5.2 Deterministic Test Case Generation

As already mentioned in Section 4.4 we develop two versions of our algorithm. Ver-
sion BDDPOST checks the tuples that must be covered for validity in phase 2; in
version BDDPRE all invalid tuples are excluded in the initialization phase.

For evaluation, we use the benchmarks presented in Table 5.3 that where pub-
lished in [GCD09]. We use the common notation for benchmarks, i.e., we write nk if
the test problem has k parameters with n values. For constraints, cm stands for m
constraints with c atomic propositions. All experiments are carried out on a PC with
an AMD Phenom II X2 555 Processor running at 3.20GHz with 4GB of RAM using
Debian Linux 6.0 Squeeze AMD64 (CASA) and Windows 7 64 Bit Edition (ATGT,
PICT, our tool). We consider both run time and the size of the result set, and present
test set size results in Table 5.4 and run time results in Table 5.5.

80

5.2 Deterministic Test Case Generation

Table 5.3: Benchmark Examples

Name Model Constraints Name Model Constraints

SPIN-S 21345 213 14 281354363 21332

SPIN-V 24232411 24732 15 25034415261 22032

GCC 2189310 23733 16 281334261 23034

Apache 215838445161 23314251 17 212833425163 22534

Bugzilla 2493142 2431 18 212732445662 2233441

1 28633415562 2203341 19 217239495364 23835

2 28633435161 21933 20 213834455467 24236

3 22742 2931 21 27633425163 24036

4 251344251 21532 22 272344162 22032

5 215537435564 2323641 23 2253161 21332

6 2734361 22634 24 2110325364 22534

7 22931 21332 25 211836425266 2233341

8 210932425363 2323441 26 287314354 22834

9 25731415161 23037 27 25532425162 21733

10 213036455264 24037 28 2167316425366 23136

11 28434425264 22834 29 21343753 21933

12 213634435163 22334 30 2733343 23134

13 212434415262 22234

81

5 Evaluation

Table 5.4: Evaluation Results, Test Set Size
related work our approach

ATGT CASA PICT BDD BDD
bc wc avg bc wc avg PRE POST

Spin-S 27 32 29.1 19 23 20.1 26 26 28
Spin-V 44 51 47.6 33 42 38.6 63 45 44
GCC 24 25 24.5 18 28 22.2 30 25 26
Apache 42 44 43 30 37 33.8 40 35 35
Bugzilla 19 23 20.8 16 19 16.7 20 17 17

1 55 62 58.7 37 44 39.7 53 50 49
2 37 42 40.3 30 36 32.6 40 34 34
3 19 22 20.7 18 20 18.2 23 19 19
4 27 31 29.1 20 25 21.9 29 25 23
5 66 72 69 46 66 51.7 65 59 60

6 31 35 33 24 29 24.4 32 29 29
7 11 12 11.7 9 9 9 12 11 11
8 57 65 60.3 38 46 41.4 56 50 50
9 22 25 23.6 20 21 20.1 23 21 22
10 62 66 63.9 42 49 44.4 58 54 55

11 62 66 63.6 40 47 43.2 59 54 55
12 56 60 57.8 37 44 41 56 46 48
13 47 51 48.6 36 43 36.9 44 39 41
14 50 55 52.8 36 40 37.7 48 43 47
15 39 45 42.2 30 39 31.6 39 33 33

16 30 34 31.9 24 29 24.4 29 26 26
17 53 58 55.5 37 46 40.5 54 46 49
18 60 65 61.7 40 47 42.3 58 53 52
19 66 70 67.9 46 70 49.6 66 58 58
20 75 79 77.2 52 56 53.2 70 67 67

21 48 55 51.7 36 39 36.8 48 46 43
22 38 45 42.1 36 37 36.1 39 39 36
23 16 17 16.4 12 15 12.7 18 14 15
24 61 69 64.6 41 49 43.2 57 55 54
25 69 74 71.3 47 57 48.7 65 63 60

26 42 45 44 29 35 31.4 42 39 38
27 44 49 46.4 36 37 36.2 44 38 41
28 70 76 74 49 63 51.6 72 66 63
29 35 38 36.9 29 34 30.9 34 31 31
30 23 28 25.5 16 22 19.9 25 24 22

82

5.2 Deterministic Test Case Generation

Table 5.5: Evaluation Results, Execution Times in Seconds [s]
related work our approach

ATGT CASA PICT BDD BDD
best worse avg best worse avg PRE POST

Spin-S 15.8 17.9 16.6 0.5 37.2 7.8 <1 0.2 0.1
Spin-V 163.5 185.4 177.9 12.3 543.1 72.9 <1 9.2 5.4
GCC 2103.2 2362.7 2249.7 66.1 3409.2 846.7 <1 69.3 20.5
Apache 1533.5 1739.2 1650.1 37.1 194.3 69.3 <1 177.6 100.7
Bugzilla 64.9 71.8 67.6 1.9 15.2 4.4 <1 1.4 0.8

1 433.9 489.2 465.9 25.0 790.3 226.4 <1 43.5 34.8
2 309.7 361.4 337.9 10.5 390.1 31.8 <1 25.6 17.1
3 22.6 25.2 23.4 0.7 5.9 1.2 <1 0.2 0.2
4 100.6 108.3 104.9 3.1 19.0 6.5 <1 2.5 2.2
5 2455.8 2777.1 2627.6 63.6 2963.1 561.0 <1 1565.1 269.3

6 171.1 186.5 178.0 5.8 52.0 15.6 <1 5.2 6.0
7 19.3 20.7 19.8 0.5 1.1 0.6 <1 0.1 0.1
8 667.8 745.7 716.5 40.9 1722.7 316.7 <1 67.3 52.6
9 107.1 114.5 111.0 6.7 23.4 8.9 <1 2.2 6.1
10 1319.1 1538.2 1446.3 56.0 2363.6 524.3 <1 204.0 280.1

11 441.6 506.4 477.5 28.0 1402.7 295.0 <1 32.5 34.9
12 1060.3 1201.5 1147.6 49.1 2278.2 202.2 <1 150.2 116.3
13 714.1 870.9 780.4 22.6 353.1 72.8 <1 77.5 73.3
14 340.4 433.1 359.3 15.1 745.8 81.9 <1 23.2 22.7
15 114.7 164.2 124.4 4.7 70.9 17.4 <1 5.2 4.0

16 229.6 315.9 249.5 7.5 56.9 17.1 <1 7.5 8.6
17 882.7 1043.4 957.4 30.8 3213.2 266.4 <1 169.2 62.7
18 1151.2 1358.1 1280.4 56.7 2199.9 463.0 1 2089.9 199.6
19 3933.3 4545.8 4262.4 89.8 3438.6 592.7 <1 2593.5 572.0
20 2075.3 2374.9 2247.8 236.9 14382.4 2175.3 <1 381.9 286.1

21 273.8 304.5 292.2 13.3 186.4 54.2 <1 14.6 19.4
22 199.6 215.6 209.8 7.4 38.1 11.1 <1 10.1 11.7
23 19.8 21.8 20.8 1.2 8.2 2.7 <1 0.1 0.1
24 671.3 788.4 729.3 39.5 2047.5 447.8 1 67.0 50.8
25 1124.5 1293.8 1223.8 143.5 4386.8 1055.3 <1 254.5 136.6

26 367.9 395.4 382.1 12.4 582.6 75.8 <1 21.1 14.6
27 135.2 157.3 146.7 5.4 34.7 11.2 <1 6.8 5.7
28 3788.3 4315.3 4120.4 157.9 10151.3 1645.5 <1 13198.3 572.3
29 842.9 976.9 919.1 23.5 153.8 48.2 <1 147.8 47.4
30 181.5 205.1 193.5 5.1 124.6 19.9 1 4.4 3.9

83

5 Evaluation

0

10

20

30

40

50

60

70

80

Sp
in-
S

Sp
in-
V
GC
C

Ap
ach
e

Bu
gz
illa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

CASA

PICT

BDD_PRE

Figure 5.7: Resulting Test Set Sizes for the Deterministic Algorithms and CASA
(CASA left column—PICT center column—BDDPRE right column)

5.2.1 Comparison of BDDPRE and BDDPOST

BDDPRE takes slightly longer for nearly all benchmarks. This is due to the fact that
we must check more tuples in the initialization phase of the algorithm. The checking
process constructs intermediate BDD results that are removed later on by the BDD
internal garbage collection. This internal garbage collection causes the increased run
time. BDDPRE is faster than BDDPOST for only 3 benchmarks. For 27 benchmarks
BDDPOST terminates faster than BDDPRE.

The evaluation results for both versions of our algorithm do not show obvious dif-
ferences in terms of test set size. BDDPRE produces smaller result sets for only 11
benchmarks. We expected a greater influence of invalid tuples. We assumed that
it would be more difficult to generate good test case candidates with invalid tuples
in the second phase of the BDDPOST version of our algorithm. In the second phase,
invalid tuple identification and candidate generation are critical points that we will
investigate further. BDDPOST produces smaller result sets for 12 benchmarks, while
for the remaining 12 benchmarks both variants produce the same test set size.

5.2.2 Comparison to Other Approaches

We compare our results for pairwise testing with results calculated by ATGT [CG10],
CASA [GCD09] and PICT [Cze06]. We choose these tools since, in contrast to other

84

5.3 Test Sequence Generation

tools, they offer unrestricted support for constraints. In our experiments we notice
considerable variance for the non-deterministic tools. Therefore we present the aver-
age case for ATGT and CASA, together with the best and the worst case both for run
time and test set size.

We found very large run time differences for CASA for example in benchmarks
GCC, 10, 20, and 28. For ATGT, this behaviour was not observed. Examples for re-
markable set size differences are benchmarks 1, 21 and 2 for ATGT and benchmarks
20 and 28 for CASA. The most striking results were produced by CASA for bench-
mark 20. The worst case for run time is about 60 times bigger than the best case, but
the difference in result set size is only four test cases (52 to 56). This behavior should
be investigated further, since it impacts the tool’s applicability.

Our algorithm clearly outperforms PICT in terms of test set size (Table 5.4), but the
non-deterministic CASA produces the best results. For 34 out of 35 benchmarks our
tool is better than the best case calculated by ATGT. The difference for the remaining
one benchmark is not bigger than one test case. PICT is the fastest tool: Calculation
times were above one second for only three benchmarks. Our tool is not quite as fast,
but it is considerably faster than both non-deterministic tools. The presented results
clearly prove the benefit of our approach.

5.3 Test Sequence Generation

5.3.1 Decision Tree Approach

For test sequence generation with the decisuion tree approach, we have not per-
formed a complete set of benchmarks. The approach suffers from state explosion as
it needs to unfold all possible parallel states for the generation of internal structures.
The apporach can only be used for small examples, but provide valueable insight into
the handling of dependency rules and possible aspects of generation rules.

5.3.2 FSM Approach

Only one small example has been evaluated with the result that the approach does
not scale well. The example is an Interior Light Control System with four input
parameters (Figure 5.8). In the classification tree, there is one classification per
parameter. The Timer parameter has three possible parameter values; therefore, the
Timer classification has three attached classes, one per value.

The three remaining parameters Door, Ignition and Light, have two parameter
values each, which are On and Off. There are three conventional dependency rules
and seven LTL rules. The conventional rules describe dependencies between differ-
ent input parameters within a single test step, while the new LTL rules describe
constraints between parameters in different test steps.

This small system results in a Büchi automaton FSM with 340 states and 1981
transitions. After interpretation as Test case FSM, 277 states and 1911 transitions

85

5 Evaluation

Figure 5.8: Classification Tree for the Interior Light Control System

Table 5.6: Results for FSM based Generation
Length Size

5 4
6 8
7 16
8 27
9 NA

remain. We had to refrain from the initial idea to offer a visual representation of this
internal data structure because of the abundance of state machine elements. For test
sequence generation, the maximum length of the sequence has been incremented
from five to nine test steps per test sequence (Table 5.6). Results for a sequence
length of nine are not available since the algorithm runs out of memory on computa-
tion.

The source of state explosion is then further evaluated using a set of simple LTL
rules and analyzing their impact on the number of states in the FSMs. It has been
analyzed that the FSM is constructed in a way that there is the complete Cartesian
product of all possible parameter values (Timer × Door × Ignition × Light) per com-
ponent of the LTL dependency rule. Another problem is the presence of redundant
states and transitions in FSMs.

5.3.3 Conclusion

While the approach works, it does not offer the visual insight as it was desired.
The dependency rules turn out to work pretty well. They offer a decent granu-

larity to describe all desired scenarios.
The generation rules, however, do not offer all details needed. They remain too

unspecific and do not reduce the set of valid nodes as desired, resulting in too large
test suites. The scalability of both approaches suffers from the explosion of valid
nodes, making the approach impractical for large problems.

For practical reasons, we come up with an idea how to reduce the complexity and
result size: We add a filter on the set of valid nodes by allowing testers to specify
specifying the set of desired nodes by taking the result of a conventional test case
generation. This enables us to apply a selection criterion on the set of valid nodes

86

5.4 Statechart Approach for Test Sequence Generation

Table 5.7: Results for Statechart Approach

Name St
at

es

T
ra

ns
is

ti
on

s
(w

it
ho

ut
st

ar
t)

M
in

im
al

Pa
ir

w
is

e

C
om

pl
et

e

St
at

e
C

ov
er

ag
e

T
ra

ns
it

io
n

C
ov

er
ag

e

St
at

e
Pa

ir
C

ov
er

ag
e

T
ra

ns
.P

ai
r

C
ov

er
ag

e

Keyboard [Mir09] 5 8 2 4 4 2 5 4 16
Microwave [Luc93] 19 23 7 28 56 9 17 29 (2) 43 (5) (70.1%)
Autoradio [Hel07] 20 35 11 33 66 13 36 36 44 (49.2%)
Citizen [Har87] 62 74 31 108 3121 47 51 (92.7%) 87 (16.2%) 27 (2.5%)
Coffee Machine 21 28 9 27 81 9 18 29 26 (21.3%)
Communication 10 12 7 NA 7 7 17 NA NA
Elevator 13 18 5 20 80 6 9 21 (2) 47 (3) (96.4%)
Tetris 11 18 10 NA 10 15 31 NA NA
Mealy Moore 5 11 5 NA 5 5 24 NA NA
Fuel Control 5 27 5 25 600 5 12 41 (4) 65 (4) (75.6%)
Transmission 7 12 4 12 12 4 9 14 (3) 27 (50.0%)
Aircraft 24 20 5 31 625 4 (86.2%) 7 (2) 39 (5) (64.0%)22 (6) (38.6%)

and it reduces the result set size. The major draw-back of filtering the set of valid
nodes, however, is that any “good” pairwise test for example is not sufficient for the
generation of test suites with pairwise coverage, since the test case generation does
not take the new dependency rules into account.

We therefore propose the statechart approach.

5.4 Statechart Approach for Test Sequence Generation

Details on case studies and results are given in Table 5.7.
The first column lists 12 examples: We use the Keyboard example [Mir09] (as given

in Figure 4.23). We found some more examples in literature, a Microwave [Luc93]
(Figure 4.24), an Autoradio [Hel07], and of course, Harel’s Citizen watch [Har87].
From the IBM Rhapsody examples, we took the Coffee Machine, the Communication
example, the Elevator, and the Tetris game. In Matlab Simulink Stateflow, we found
Mealy Moore, Fuel Control, Transmission, and Aircraft.

All examples with full details on structure and transitions can be found in Sec-
tion A.1.

The second and third column list some statistics of the resulting statecharts. Both
the number of states and number of transitions are given.

The fourth, fifth and sixth column list the results for conventional test case gen-
eration with the classification tree editor for minimal, pairwise and complete combi-
nation. Numbers indicate the size of the generated test suite. For examples without
multiple classifications, we write NA for not available in the pairwise column (the
Communication, Tetris and Mealy Moore examples), as pairwise test case generation
is only available when there are at least two classifications.

87

5 Evaluation

The seventh to tenth columns give results from experiments performed for this
work. State Coverage and Transition Coverage results are listed in column seven
and eight. When there are parallel or hierarchical classifications in the tree, a single
test step can cover more than one state. For the keyboard example, the first test step
already covers three states, the main keyboard state, the default state and the num-
bers state. A single number n indicates the size of a single generated test sequence:
It is the number of generated test steps n needed for 100% coverage. The second
test step in our keyboard example then covers the remaining two states caps_locked
and arrows resulting in a 2 in the State Coverage column. A number n followed by a
percentage value (p%) indicates the number of generated test steps n together with
a coverage level p% below 100%. In the Citizen example for Transition Coverage, 51
test steps cover 92.7% of available transition. When the number n is followed by an-
other number (m), the first number n indicates the total number of test steps while
the second number m in parentheses indicates the number of sequences.

In columns nine and ten results for State Pair Coverage and Transition Pair Cov-
erage are given. Again, a single number indicates the number of steps necessary for
100% coverage with a single test sequence. A number n followed by a percentage
value (p%) indicates a single test sequence with n test steps reaching p% coverage.
A number n followed by another number (m) indicates the number of test steps nec-
essary for 100% coverage using m test sequences. A number n followed by both
another number (m) and a percentage value (p%) indicates the number of test steps
n distributed over m test sequences resulting in a total coverage level of p%.

The set of case studies is still too small to make final statements on performance
with regard to scalability, execution times, and result set sizes. Preliminary results
are, however, already very promising.

Execution times: We are not giving detailed figures for generation times here
since they are all below 1sec on an Intel Core2Duo with 2Ghz and 3GB RAM running
our Java implementation on a single core under Windows XP.

Coverage: Results from the experiments clearly show that our approach is ca-
pable of generating test sequences with given coverage levels. For State Coverage,
100% coverage was reached for 11 of 12 scenarios. The remaining scenario only re-
sulted in 86.2% coverage (scenario Aircraft). In all 12 cases, coverage was reached in
a single test sequence.

For Transition Coverage, again for 11 of 12 cases 100% coverage has been reached.
For the Citizen scenario, only 92.7% coverage was achieved. In 11 of 12 cases, the re-
sult only consists of one test sequence, while for the aircraft scenario two sequences
were generated. The algorithm had to reset the walker agents to their initial posi-
tions to reach missing states.

For State Pair Coverage, 7 of 9 scenarios reached 100% coverage. In the Aircraft
Scenario, full Pair Coverage was not reached due to unreachable states in state cov-
erage. The Citizen showed very poor performance with only 16.2% coverage. Further
analysis and adaptation is necessary to complete this scenario.

For Transition Pair Coverage, there is only one scenario with 100% coverage which

88

5.4 Statechart Approach for Test Sequence Generation

is the simple Keyboard example. The remaining 8 scenarios show average perfor-
mance with the Citizen example again being the most difficult one.

Note: Results given here only contain implementation of walker phase one, since
phase two was not available yet.

Result set size: For state coverage, only one or two additional steps are needed for
10 of 12 cases in comparison with the conventional minimal combination. Only the
Citizen and the Tetris example need considerably more steps to reach state coverage.
Not every state can be reached from every other state here but some require addi-
tional traversal of other states and, therefore, additional test steps. For the resulting
test suite of the Citizen example, there seems to be some potential for optimization.

For state pair coverage, result set sizes are similar to conventional pairwise test
generation in 6 of 9 cases. In the Fuel Control scenario, several additional steps are
necessary to complete the test suite resulting in 41 test steps for state pairwise in
contrast to 25 test steps for conventional pairwise. The remaining 2 scenarios did not
complete.

Result sizes of transition coverage are not evaluated in our case studies since there
is no comparison available with other approaches. For the goal of test suite minimiza-
tion we will need to evaluate minimal result suite size using a brute force approach,
allowing us to compare our results. For the brute force approach, we expect to see
long execution times making it impractical for productive use.

Scalability: We have not yet tested our approach for very large scale case studies.
If performance decrease is too large, we might reduce the search depth of coverage
agents. The Citizen example already shows scalability issues with state pair and
transistion pair coverage.

Extendability: We have successfully implemented test sequence generation for
state, transition, state pair, and transition pair coverage. The implementation of
pairwise coverage problems is known to be NP-complete [WP01].

Parameter tuning: We have done experiments on the influence of the punish-
ment factor for both state and transition coverage. In a set of 100 experiments each,
we have tested all factors from 0.01 to 1.00 for all 12 scenarios. Lower values like
0.1 turns out to be much better than 0.95 as it was selected earlier. However, for one
scenario, the Communication example, higher punishment values result in smaller
test suites and better coverage. We need to investigate the influence of the other
parameters as well.

89

6 Conclusion

With software as a central part of our everyday life, software testing is the essen-
tial part of quality assurance in software development. The testing of conformance
with specifications increases the confidence in software quality. However, the com-
plete test of a software system is rarely possible due to the large amount of possible
test cases. A good test case design therefore tries to select valuable subsets of this
large test case amount, while both avoiding redundancies and combining as many
different parameters as possible. The classification tree method allows for the sys-
tematic specification of a system under test and its corresponding test cases. It is
a common approach based on the systems specification. The classification tree ed-
itor implements the combinatorial test design and allows testers to automatically
generate test suites for given coverage levels.

Our initial analysis has shown that there was no support for test case prioritization
with the classification tree method. We therefore defined values of importance for
different test aspects. These values of importance, called weights, can now be used
for prioritized test case generation. Resulting test suites contain test cases ordered
by their importance, e.g. occurrence probability. Coverage criteria help to optimize
the test suite and to identify the quality of the remaining subset. This allows testers
to select only the most important test cases and therefore reduce the test case size.

The classification tree method now allows the prioritization of certain test aspects
and also offers prioritized test case generation. Resulting test suites can be optimized
further to reduce test effort. The test case generation performs better than all other
known approaches for test case prioritization in combinatorial testing.

The generation of test cases originally was not deterministic, resulting in a lack of
replicability. The original test case generation was based on a random process, and
therefore the results from different generation runs varied. Additionally, the original
test case generation performed badly with complex dependency rules or compositions
of contradictory rules. A deterministic test case generation was therefore desired to
produce exactly the same result for the same generation problems and to handle
dependency rules neatly.

The new test generation algorithms now processes complex systems with con-
straints and their results can be reproduced. The performance in terms of both ef-
ficiency and effectiveness is better than previous approaches and equivalent to or
better than other approaches for combinatorial testing.

To reflect the continuous usage of software, test cases must reflect elements in a
certain order. The outcome of one test case is used as the input for the next test
case. Test sequences can be used to model these consecutive events. Since it is rarely

91

6 Conclusion

possible to test all possible test sequences for practical reasons, test sequence design
is a crucial task. In addition to countless configurations for conventional test case
design, there are potentially endless different orders and repetitions of test steps
in a test sequence. Furthermore, test steps cannot be composed in any arbitrary
order as it is required for some configurations of the software that other things have
been done first. We defined a way of specifying constraints between test steps of a
test sequence and introduced measures of coverage to design automatic generation
of test sequences available with the classification tree method. We use a multi-agent
approach to implement the actual test sequence generation.

Test sequences can now be generated automatically. We have developed depen-
dency rules to describe constraints between test steps and automated test sequence
generation. Continuous combinatorial testing is therefore now available. Our ap-
proach, based on a statechart representation of the system under test and using a
multi-agent system to travel the statechart, already produces good results.

6.1 Prioritized Generation

We have developed and implemented the prioritized test case generation using qual-
ified classification trees. To allow the prioritization of test aspects, we developed
prioritization models and integrated them into the classification tree. For qualifi-
cation, we introduced three different usage models allowing us to specify the value
of importance directly in the classification tree. These weights can be assigned to
classification tree elements and are then considered during prioritized test case gen-
eration. We extended existing combination rules for test case generation using these
priority values and we developed new combination rules taking these values into ac-
count. To ease the generation process, we established a mapping of the classification
tres and dependency rules onto a logical expression, representing the set of valid test
cases in a Binary Decision Diagram. We then use this internal representation for the
actual prioritzed test case generation. The prioritization checks this representation
to determine whether test cases are valid, and if there can be valid test cases for any
combinations of tuples of tree elements. This calculation is available at low runtime
cost. Resulting test cases now have a defined importance for the test suite result-
ing from the priorities assigned to elements of the classification tree used for this
test case. Additionally, the introduction of coverage measures allows measuring the
coverage level of generated test cases. All generation rules still support dependency
rules specified for the system under test in the classification tree. This allow testers
to generate test suites with an order of importance specified by the priority values
assigned to classification tree elements and to select subsets of test suites that have
a defined quality, calculated using coverage rates with the new coverage measures.
The prioritized test case generation is then compared with existing approaches. In
most cases, our prioritized test case generation performs better than or as well as
existing approaches.

A set of benchmarks using eight scenarios with four different weight distributions

92

6.2 Deterministic Test Case Generation

has successfully been applied to both algorithms, the prioritized pairwise combina-
tion and the sorting approach, demonstrating their usability.

Based on the results, a guideline on when to use which technique can be given:
If a full pairwise coverage is already established, sorting can help to select subsets
of test suites. If the weight distribution is equal or scenarios are small, there is no
reason to use prioritized test case generation. If, however, scenarios are large and
distributions tend to be non-uniform, the application of prioritized test generation
becomes worthwhile in all cases where subsets of test suites are needed. Then, a
subset selection based on weights is more successful using prioritized test generation.

For future work, we see the extension to higher n-wise coverage and a larger set
of benchmarks. Future work will also analyze the test generation times for all ap-
proaches (PPC, sorting, ...) given in this work.

Having prioritized generation, we use the representation of valid test cases for a
new test case generation for t-wise coverage.

6.2 Deterministic Test Case Generation

We developed a new approach for dependency rule handling and a deterministic ap-
proach for test case generation. We achieved this by developing a unified represen-
tation for both the dependency rules and the classification tree, in order to ease the
handling of constraints. This unified representation, a Binary Decision Diagrams,
is then used to perform deterministic test case generation. Handling of dependency
rules has been improved over existing approaches for test case generation in the
classification method. We have then compared our new approach using a large set of
benchmarks and compare our result with both previous test case generation of the
classification tree method as well as existing approaches for combinatorial testing.
Our approach performs better than previous test case generation with the classifi-
cation tree method in terms of both result set size and generation time. The per-
formance in comparison with other combinatorial test case generation techniques,
though, is not always better in terms of result set size and generation time. For
specific tasks, e.g. finding the smallest test suite generated using a deterministic
approach, our new test case generation is still very good.

In this work we have presented a new approach for combinatorial interaction test-
ing with constraints. The approach is based on our observation that a combinatorial
interaction testing problem with constraints can be represented as a single Boolean
formula. Valid test cases of the CIT problem and satisfying assignments of the cor-
responding formula are in a one-to-one relation. We use this relationship in our de-
terministic test set generation algorithm by selecting satisfying assignments of the
formula as test cases. This idea allows for a very elegant integration of arbitrary
user-defined explicit constraints and resulting implicit constraints. Binary Decision
Diagrams as an efficient representation of Boolean operators guarantee good run
time results of our algorithm.

The results of our algorithm on benchmark test problems presented in this paper

93

6 Conclusion

prove its practical applicability. Our algorithm outperforms PICT, the only known
deterministic algorithm supporting constraints, with respect to result set size. Run
time results of our algorithm are adequate for employment with realistic test prob-
lems. The new deterministic test case generation performs better than the previous
random-based test case generation of the previous classification tree editor as well
as the PICT algorithm, the only known deterministic test case generation algorithm
supporting constraints.

We are convinced that there is still potential for optimization in our approach.
We plan to improve the checking strategy for invalid tuples, since this is the most
time-consuming step in our algorithm. Furthermore, we will tune the candidate
construction used in the second phase of the algorithm which will decrease the result
set size. We will investigate the benefit of integrating a random component into our
approach even if we have to renounce determinism. We plan to conduct further case
studies to gain deeper insights on the influence of the constraints to further improve
our approach.

6.3 Test Sequence Generation

For testing continuous behavior of a system with the classification tree method, we
developed the generation of test sequences. There was not much previous work here,
we were looking for something like “parallel chinese postman” / “orthogonal chinese
postman” or similar techniques.

We have introduced advanced dependency rules to model continuous behavior of
the system under test. These advanced dependency rules allow the tester to spec-
ify the legal transitions of different states of the system and, therefore, to specify
constraints between different steps of a test sequence. Then the test sequence gen-
eration produces test suites of test sequences that fulfill the advanced generation
rules specifying desired coverage level. For the new test sequence generation with
the classification tree method we have developed new advanced test generation rules.
We have identified new coverage levels specific to the continuous nature of systems
under test to model the advanced generation rules. We have implemented several
prototypes using different representation techniques and gained the best results by
interpreting classification trees as statecharts with some simplifications. There were
no existing benchmark suites available for continuous testing in combinatorial test-
ing so we had to select a suite of benchmarks on our own. In the identified set of
benchmark scenarios, test sequence generation performed well in all scenarios we
tested.

For the test sequence generation, we identify advanced dependency rules and new
generation rules. We again use the representation of valid test cases during the
generation process.

We have successfully implemented test sequence generation for the classification
tree method using a multi-agent system. The distinction between simple walker
agents and sophisticated coverage agents enables us to generate test suites with

94

6.4 Future Work

desired coverage levels. The set of case studies is still too small to make reason-
able statements on performance, regarding scalability, execution times and result
set sizes; preliminary results are, however, already very promising. The dependency
rules and generation rules turn out to work pretty well. They offer a decent gran-
ularity to describe all desired scenarios. Since we split actual traversal of the test
problem from the rating of possible paths, we can now easily swap in single parts,
e.g. use different guidance in the coverage agents.

Existing approaches that map formal specifications (e.g. Z language [HHS03]) onto
classification trees suffer from the loss of structural details such as hierarchies, con-
currency or allowed transition, whereas our approach does not.

For future work, we see the extension to higher n-wise coverage, completion of in-
complete scenarios and a large-scale set of benchmarks. As already proposed in [KL11],
we will use search-based techniques as well to evaluate effectiveness and efficiency
of our approach. We will evaluate the influence of parameter tuning for result set
sizes and we will consider the limitation of sequence length and favoring of reset or
travel back to start, including the cost of a reset.

There are still some missing features in the test sequence generation: The classi-
fication tree editor allows specifying properties of transitions, e.g. transition types
(linear, spline, sine ...) and timing characteristics. We therefore propose to enhance
dependency rules to represent additional transition details. It would then be desir-
able to automatically generate advanced transitions during test sequence generation
also conforming to time and type constraints.

It would be interesting to see how test sequence generation can also take priority
values into account.

6.4 Future Work

In addition to several minor adjustments and enhancements to three individual test
case generation approaches, we prose two major aspects of future work for all three
of them: One is the use of search based techniques for test case generation, the other
is the parallelization of all tree generation algorithms.

We propose to investigate the use of multi-objective algorithms in order to combine
a test case generation technique, the Classification Tree Method, with a test case
selection and prioritization method [KL11]. Yoo and Harman [YH10] have already
shown that multi-objective algorithms can be applied to test case selection and prior-
itization problems. Search-based techniques can also be easily parallelized as CASA
already shows [GCD09].

This brings us to the other aspect we like to investigate further: the paralleliza-
tion of test case generation. Since multicore computers are common nowadays, all
three of our approaches are wasting execution time as they work in a single thread
only. There is already initial work on multicore BDD by Intel [He09], but it requires
reimplementation or at least modification of existing BDD libraries.

95

6 Conclusion

We think, however, that reducing the generation times further is crucial for even
better acceptance of the generation algorithms and tools implementing them.

96

List of Figures

2.1 Classification Tree for “List Operation” Example 11
2.2 CTE XL Layout . 12
2.3 Classification Tree for the “Element Counting" Example 13
2.4 Dependency Manager . 14
2.5 Test Case Generator . 15
2.6 Dependency Example . 16
2.7 Example Tree for Conrad’s Approach . 17
2.8 Resulting Parallel State Machine . 17

4.1 Test Object ACC . 28
4.2 ACC Test Object with Occurrence Values 29
4.3 ACC Test Object with Error Values . 30
4.4 ACC Test Object with Cost Values . 31
4.5 ACC Test Object with Resulting Risk Values 32
4.6 Classification C with Classes (c1, c2, . . . , cn) 36
4.7 Compositions Co with (e1, e2, . . . , en) . 37
4.8 Leaf Class Cl . 37
4.9 Class Cl with Refinements (E1, E2, . . . , En) 38
4.10 Test Case Generation Algorithm for Prioritizing Minimal Combination 42
4.11 Test Suite Generation Algorithm for Prioritizing Pairwise Combination 44
4.12 Sort Algorithm Initialization . 46
4.13 Sort Algorithm Insertion . 46
4.14 Sort Algorithm Finalization . 47
4.15 Test Suite Generation Algorithm for Class-Based Statistical Combination 49
4.16 Test suite generation algorithm preparation 51
4.17 Test suite generation algorithm for phase 1 52
4.18 Test suite generation algorithm for phase 2 53
4.19 Example for Generation without Variation 56
4.20 Test Case Variation Algorithm . 56
4.21 Example for Generation with Variation 57
4.22 Classification Tree for the Keyboard Example 62
4.23 Parallel FSM for the Keyboard Example [Mir09] 62
4.24 Statechart for the Microwave Example 64
4.25 Classification Tree for the Microwave Example 64
4.26 State "Operational" . 65
4.27 Annotated Details for the Classification “Operational” 65

97

List of Figures

4.28 Statechart to Classification Tree Algorithm 66
4.29 Classification Tree to Statechart Algorithm 68
4.30 Test Sequence Generation Algorithm, Phase 1 70
4.31 Test Sequence Generation Algorithm, Phase 2 71
4.32 Rating of Candidates . 72

5.1 Comparison of PPC, Sorting, and of Non-Weighted Generation 73
5.2 Cumulative Weight Covered in the First 10 Tests Using Input s3 . . . 77
5.3 Cumulative Weight Covered in the First 10 Tests Using Input s4 . . . 78
5.4 Cumulative Weight Covered in the First 10 Tests Using Input s5 . . . 78
5.5 Cumulative Weight Covered in the First 10 Tests Using Input s7 . . . 79
5.6 Cumulative Weight Covered in the First 20 Tests Using Input s8 . . . 79
5.7 Resulting Test Set Sizes for the Deterministic Algorithms and CASA . 84
5.8 Classification Tree for the Interior Light Control System 86

A.1 Keyboard Example . 109
A.2 Microwave Example . 110
A.3 Autoradio Example . 111
A.4 Citizen Example . 113
A.5 Citizen Example . 113
A.6 Citizen Example . 114
A.7 Coffee Machine Example . 116
A.8 Communication Example . 118
A.9 Elevator Example . 119
A.10 Tetris Example . 120
A.11 Moore Example . 121
A.12 Fuel Example . 122
A.13 Transmission Example . 123
A.14 Aircraft Example . 124

98

List of Tables

4.1 Occurrence Probabilities for Class Pairs 29
4.2 Error Probabilities for Class Pairs . 30
4.3 Costs for Class Pairs . 31
4.4 Risks for Class Pairs . 32
4.5 ACC Test Object Information . 33
4.6 Resulting PMC Test Suite for the Risk Model 42
4.7 Resulting PPC Test Suite for Error Model 45
4.8 Resulting Sorting Test Suite for Usage Model 47
4.9 Resulting CSC Test Suite for Usage Model 49
4.10 Empirical and Expected Distribution of Classes in the Test Suite . . . 50
4.11 Initial Tuple Lists . 54
4.12 Tuple Lists after Phase 1 . 55

5.1 Benchmark Scenarios Result Sizes . 74
5.2 Benchmark Detailed Result . 76
5.3 Benchmark Examples . 81
5.4 Evaluation Results, Test Set Size . 82
5.5 Evaluation Results, Execution Times in Seconds [s] 83
5.6 Results for FSM based Generation . 86
5.7 Results for Statechart Approach . 87

99

Bibliography

[Aml00] Ståle Amland. Risk-based testing: Risk analysis fundamentals and met-
rics for software testing including a financial application case study. Jour-
nal of Systems and Software, 53(3):287–295, 2000.

[BC06] Renée C. Bryce and Charles J. Colbourn. Prioritized interaction testing
for pair-wise coverage with seeding and constraints. Information & Soft-
ware Technology, 48(10):960–970, 2006.

[BC07] Renée C. Bryce and Charles J. Colbourn. The density algorithm for pair-
wise interaction testing: Research articles. Softw. Test. Verif. Reliab.,
17(3):159–182, 2007.

[BCM01] Simon Burton, John Clark, and John McDermid. Automated genera-
tion of tests from statechart specifications. In Proceedings of Formal Ap-
proaches to Testing Software (FATES) 2001, pages 31–46, August 2001.

[BE10] Dragan Bošnački and Stefan Edelkamp. Model checking software: on
some new waves and some evergreens. Int. J. Softw. Tools Technol.
Transf., 12:89–95, May 2010.

[Bin99] Robert V. Binder. Testing object-oriented systems: models, patterns, and
tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[BLLP04] Eddy Bernard, Bruno Legeard, Xavier Luck, and Fabien Peureux. Gener-
ation of test sequences from formal specifications: GSM 11-11 standard
case study. Softw. Pract. Exper., 34:915–948, August 2004.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Trans. Comput, 35:677–691, 1986.

[CC04] Charles J. Colbourn and Myra B. Cohen. A deterministic density algo-
rithm for pairwise interaction coverage. In Proc. of the IASTED Intl.
Conference on Software Engineering, pages 242–252, 2004.

[CDFP97] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gard-
ner C. Patton. The AETG System: An Approach to Testing Based on Com-
binatorial Design. IEEE Transactions on Software Engineering, 23:437–
444, 1997.

101

Bibliography

[CDFY99] Mirko Conrad, Heiko Dörr, Ines Fey, and Andy Yap. Model-based Gen-
eration and Structured Representation of Test Scenarios. In Proceedings
of the Workshop on Software-Embedded Systems Testing, Gaithersburg,
Maryland, USA, 1999.

[CDS07] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing
of highly-configurable systems in the presence of constraints. In ISSTA
’07: Proceedings of the 2007 international symposium on Software testing
and analysis, pages 129–139, New York, NY, USA, 2007.

[CG10] Andrea Calvagna and Angelo Gargantini. A formal logic approach to con-
strained combinatorial testing. Journal of Automated Reasoning, April
2010.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, 1999.

[Con05] Mirko Conrad. Systematic testing of embedded automotive software-the
classification-tree method for embedded systems (CTM/ES). Perspectives
of Model-Based Testing, 2005.

[CSR06] Myra B. Cohen, Joshua Snyder, and Gregg Rothermel. Testing across
configurations: implications for combinatorial testing. SIGSOFT Softw.
Eng. Notes, 31:1–9, November 2006.

[Cze06] Jacek Czerwonka. Pairwise testing in real world, practical extensions to
test case generators. In Proceedings of 24th Pacific Northwest Software
Quality Conference, pages 419–430. Citeseer, 2006.

[EFW01] Ibrahim K. El-Far and James A. Whittaker. Model-Based Software Test-
ing. Encyclopedia of Software Engineering, 2001.

[EMR02] Sebastian Elbaum, Alexey. G. Malishevsky, and Gregg Rothermel. Test
case prioritization: A family of empirical studies. IEEE Transactions on
Software Engineering, 28(2):159–182, 2002.

[ERKM04] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Mal-
ishevsky. Selecting a cost-effective test case prioritization technique.
Software Quality Journal, 12:185–210, 2004.

[FKCA12] Javier Ferrer, Peter M. Kruse, J. Francisco Chicano, and Enrique Alba.
Evolutionary algorithm for prioritized pairwise test data generation.
In Proceedings of Genetic and Evolutionary Computation Conference
(GECCO) 2012, Philadelphia, USA, 2012.

[GCD09] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. An improved
meta-heuristic search for constrained interaction testing. Search Based
Software Engineering, International Symposium on, 0:13–22, 2009.

102

Bibliography

[GFL+96] Daniel Geist, Monica Farkas, Avner Landver, Yossi Lichtenstein, Shmuel
Ur, and Yaron Wolfsthal. Coverage-directed test generation using sym-
bolic techniques. In Proceedings of the First International Conference on
Formal Methods in Computer-Aided Design, pages 143–158, London, UK,
1996.

[GG93] Matthias Grochtmann and Klaus Grimm. Classification trees for parti-
tion testing. Softw. Test., Verif. Reliab., 3(2):63–82, 1993.

[GOA05] Mats Grindal, Jeff Offutt, and Sten F. Andler. Combination testing strate-
gies: a survey. Softw. Test., Verif. Reliab., 15(3):167–199, 2005.

[GPV+95] Rob Gerth, Doron Peled, Moshe Y. Vardi, R. Gerth, Den Dolech Eind-
hoven, D. Peled, M. Y. Vardi, and Pierre Wolper. Simple on-the-fly au-
tomatic verification of linear temporal logic. In In Protocol Specification
Testing and Verification, pages 3–18. Chapman & Hall, 1995.

[GQW+09] Wolfgang Grieskamp, Xiao Qu, Xiangjun Wei, Nicolas Kicillof, and
Myra B. Cohen. Interaction coverage meets path coverage by smt con-
straint solving. In Proceedings of the 21st IFIP WG 6.1 International Con-
ference on Testing of Software and Communication Systems and 9th In-
ternational FATES Workshop, TESTCOM ’09/FATES ’09, pages 97–112,
2009.

[GR01] Angelo Gargantini and Elvinia Riccobene. Asm-based testing: Coverage
criteria and automatic test sequence generation. Journal of Universal
Computer Science, 7:1050–1067, 2001.

[Har87] David Harel. Statecharts: a visual formalism for complex systems. Sci-
ence of Computer Programming, 8(3):231–274, 1987.

[He09] Yuxiong He. Multicore-enabling a binary decision diagram algorithm,
2009.

[Hel07] Steffen Helke. Verifikation von Statecharts durch struktur- und eigen-
schaftserhaltende Datenabstraktion. PhD thesis, Technische Universität
Berlin, 2007.

[HHS03] Robert M. Hierons, Mark Harman, and Harbhajan Singh. Automatically
generating information from a Z specification to support the Classifica-
tion Tree Method. In 3rd International Conference of B and Z Users,
LNCS volume 2651, pages 388–407, June 2003.

[HRSR09] Andreas Hoffmann, Axel Rennoch, Ina Schieferdecker, and Nicole Radzi-
will. A generic approach for modeling test case priorities with appli-
cations for test development and execution. In Modellbasiertes Testen
(MOTES)–Von der Forschung in die Praxis (2009), 4. Workshop im Rah-
men der 39. Jahrestagung der GI, 2009.

103

Bibliography

[HRV+03] Mats P.E. Heimdahl, S. Rayadurgam, Willem Visser, George Devaraj,
and Jimin Gao. Auto-generating test sequences using model checkers:
A case study. In Proceedings of Formal Approaches to Testing of Software
(FATES 2003), 2003.

[Jan05] Ben Jann. Einführung in die Statistik. Oldenbourg, 2005.

[JM09] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
put. Surv., 41:21:1–21:54, October 2009.

[KKL10] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Practical combinatorial
testing. Technical report, National Institute for Standards and Technol-
ogy (NIST), October 2010.

[KL10a] Peter M. Kruse and Magdalena Luniak. Automated test case generation
using classification trees. In Proceedings of StarEast 2010, 2010.

[KL10b] Peter M. Kruse and Magdalena Luniak. Automated test case genera-
tion using classification trees. Software Quality Professional, 13(1):4–12,
2010.

[KL11] Peter. M. Kruse and Kiran Lakhotia. Multi objective algorithms for auto-
mated generation of combinatorial test cases with the classification tree
method. In Symposium On Search Based Software Engineering (SSBSE
2011), 2011.

[KLK08] Rick Kuhn, Yu Lei, and Raghu Kacker. Practical Combinatorial Testing:
Beyond Pairwise. IT Professional, 10(3):19–23, 2008.

[KM05] Alexander Krupp and Wolfgang Müller. Modelchecking von
Klassifikationsbaum-Testsequenzen. In GI/ITG/GMM Workshop
"Methoden und Beschreibungssprachen zur Modellierung und Verifika-
tion von Schaltungen und Systemen", April 2005.

[Kru11] Peter M. Kruse. Test sequence generation from classification trees using
multi-agent systems. In Proceedings of 9th European Workshop on Multi-
agent Systems (EUMAS 2011), 2011.

[KS12] Peter M. Kruse and Ina Schieferdecker. Comparison of Approaches to Pri-
oritized Test Generation for Combinatorial Interaction Testing. In Fed-
erated Conference on Computer Science and Information Systems (FedC-
SIS) 2012, Wroclaw, Poland, 2012.

[KW11a] Peter M. Kruse and Joachim Wegener. Sequenzgenerierung aus Klassi-
fikationsbäumen. In Proceedings zum 31. Treffen der Fachgruppe TAV
der Gesellschaft für Informatik, Paderborn, Germany, 2011.

104

Bibliography

[KW11b] Peter M. Kruse and Joachim Wegener. Test sequence generation from
classification trees. In Sistemas e Tecnologias de Informação, Actas da
6a Conferência Ibérica de Sistemas e Tecnologias de Informação, Chaves,
Portugal, 2011.

[KW12] Peter M. Kruse and Joachim Wegener. Test sequence generation from
classification trees. In Proceedings of ICST 2012 Workshops (ICSTW
2012), Montreal, Canada, 2012.

[Lee59] C.Y. Lee. Representation of switching circuits by binary-decision pro-
grams. Bell System Technical Journal, 38(4):985–999, 1959.

[LT98] Yu Lei and Kuo-Chung Tai. In-parameter-order: A test generation strat-
egy for pairwise testing. In The 3rd IEEE International Symposium on
High-Assurance Systems Engineering, HASE ’98, pages 254–261, Wash-
ington, DC, USA, 1998.

[Luc93] Paul J. Lucas. An Object-Oriented Language System For Implementing
Concurrent, Hierarchical, Finite State Machines. PhD thesis, Graduate
College of the University of Illinois at Urbana-Champaign, 1993.

[Lun09] Magdalena Luniak. Priorisierende Kombinationsregeln in der
Klassifikationsbaum-Methode. Master’s thesis, Technische Universität
Berlin, 2009.

[LW00] Eckard Lehmann and Joachim Wegener. Test case design by means of
the CTE XL. In Proceedings of the 8th European International Conference
on Software Testing, Analysis & Review (EuroSTAR 2000), Kopenhagen,
Denmark. Citeseer, 2000.

[Mir09] Mirosamek. Two orthogonal regions (main key-
pad and numeric keypad) of a computer keyboard.
http://en.wikipedia.org/wiki/File:UML_state_machine_Fig4.png, 2009.

[MN05] Soumen Maity and Amiya Nayak. Improved test generation algorithms
for pair-wise testing. In ISSRE, pages 235–244. IEEE Computer Society,
2005.

[MTR08] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. State-based test-
ing of Ajax web applications. In In Proceedings of the International Con-
ference on Software Testing (ICST 2008), April 2008.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, 1979.

[NL11] Changhai Nie and Hareton Leung. A survey of combinatorial testing.
ACM Comput. Surv., 43:11:1–11:29, February 2011.

105

Bibliography

[OB88] Thomas J. Ostrand and Marc J. Balcer. The category-partition method for
specifying and generating functional tests. Communications of the ACM,
31(6):676–686, 1988.

[Obj10] Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure Verion 2.3, 2010.

[OHY11] Jungsup Oh, Mark Harman, and Shin Yoo. Transition coverage test-
ing for Simulink/Stateflow models using messy genetic algorithms. In
Genetic Algorithms and Evolutionary Computation COnference (GECCO
2011), pages 1851–1858, July 2011.

[Pun04] Abraham P. Punnen. The traveling salesman problem: Applications,
formulations and variations. In The Traveling Salesman Problem and
Its Variations, volume 12 of Combinatorial Optimization, pages 1–28.
Springer, 2004.

[Rei10] Robert Reicherdt. Testfallgenerierung mit Binary Decision Diagrams für
Klassifikationsbäume mit Abhängigkeiten. Master’s thesis, Technische
Universität Berlin, 2010.

[Sch13] Henno Schooljahn. Test Sequence Validation and Generation using Clas-
sification Trees. Master’s thesis, Delft University of Technology, 2013.

[Sed03] Robert Sedgewick. Algorithms in Java - Part 5: Graph Algorithms.
Addison-Wesley, Boston, MA, USA, 3 edition, 2003.

[SRG11] Elke Salecker, Robert Reicherdt, and Sabine Glesner. Calculating pri-
oritized interaction test sets with constraints using binary decision dia-
grams. In Proceedings of the 2011 IEEE Fourth International Conference
on Software Testing, Verification and Validation Workshops, ICSTW ’11,
pages 278–285, Washington, DC, USA, 2011. IEEE Computer Society.

[Ura92] Hasan Ural. Formal methods for test sequence generation. Comput. Com-
mun., 15:311–325, June 1992.

[Var01] Moshe Y. Vardi. Branching vs. linear time: Final showdown. In Proceed-
ings of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2001, pages 1–22, London,
UK, 2001.

[Wal11] Nick Walther. Testsequenz-Generierung und Repräsentation mit der
Klassifikationsbaum-Methode. Master’s thesis, Humbold Universität
Berlin, 2011.

[WG93] Joachim Wegener and Matthias Grochtmann. Werkzeugunter-
stützte Testfallermittlung für den funktionalen Test mit dem
Klassifikationsbaum-Editor CTE. In Proceedings of the GI-Symposium
Softwaretechnik ’93, pages 95–102, Dortmund, 1993.

106

Bibliography

[Wil02] Alan W. Williams. Software Component Interaction Testing: Coverage
Measurement and Generation of Configurations. PhD thesis, School of
Information Technology and Engineering, University of Ottawa, 2002.

[Win08] Andreas Windisch. Search-based testing of complex simulink models con-
taining stateflow diagrams. In Proceedings of 1st International Workshop
on Search-Based Software Testing (SBST) in conjunction with ICST 2008,
pages 251–251, Lillehammer, Norway, 9-11 April 2008.

[Win10] Andreas Windisch. Search-based test data generation from stateflow
statecharts. In Proceedings of the 12th annual conference on Genetic and
evolutionary computation, GECCO ’10, pages 1349–1356, New York, NY,
USA, 2010.

[WLPS00] Guido Wimmel, Heiko Loetzbeyer, Alexander Pretschner, and Oscar Slo-
tosch. Specification based test sequence generation with propositional
logic, 2000.

[WP01] Alan W. Williams and Robert L. Probert. A measure for component inter-
action test coverage. In Proc. ACS/IEEE Intl. Conf. on Computer Systems
and Applications, volume 30, pages 301–311, 2001.

[WPT95] Gwendolyn H. Walton, Jesse H. Poore, and Carmen J. Trammell. Sta-
tistical testing of software based on a usage model. Softw. Pract. Exper.,
25(1):97–108, 1995.

[YH10] Shin Yoo and Mark Harman. Using hybrid algorithm for pareto effcient
multi-objective test suite minimisation. Journal of Systems Software,
83(4):689–701, April 2010.

107

A Appendix

A.1 Test Sequence Generation Examples

In this section, we provide all examples for the test sequence generation benchmarks.
Each example consists of a classification tree with added ID values for all tree

elements to avoid any ambiguity. In square brackets with a leading S : we provide
a list of corresponding start nodes for each classification. The list of all transitions
from within this classification concerning all contained classes is provided as comma
separated list.

Each transition (a → b) represents a directed transition from a to b. ID values for
all classes are provided for clarity.

Multiple transitions from a to b are provided as often as they occur leading to
repetition in the list.

Transitions from a in one classification A to any b in a different classification B are
only listed in the classification of origin A.

keyboard.cte

Example Keyboard States [Mir09]: A typical PC desktop keyboard features at least
two regions: The main area with all characters and a number pad. Both regions
have their own modes. While the main area has the caps lock feature, to input only
uppercase letters, the number pad can be switched between numbers and arrows
using the num lock button. Both regions and their states are independent of each
other. In the classification tree keyboard (Figure A.1), there is one classification per
keyboard region. Each classification has two classes representing the corresponding
states.

Figure A.1: Keyboard Example

109

A Appendix

main_keyboard(18) [S : default(26)] :

(default(26)→ default(26)), (default(26)→ caps_lock(30)),

(caps_lock(30)→ caps_lock(30)), (caps_lock(30)→ default(26))

numeric_keyboard(22) [S : numbers(34)] :

(numbers(34)→ numbers(34)), (numbers(34)→ arrows(38)),

(arrows(38)→ arrows(38)), (arrows(38)→ numbers(34))

microwave.cte

Microwave Example [Luc93]: The example microwave device has three independent
function blocks. It features a Light, Display and a Mode. All three features are
independent of each other. The Light can be on and off while the Display either
shows Time or Not-Time. If it shows Not-Time, then it shows one of Counter, Power
or Error. The Mode can be Operational or Disabled. If Mode is Operational, then it
is one of Idle, Set-Time, Program, or Cook.

Figure A.2: Microwave Example

Mode(17) [S : Operational(57)] :

(Operational(57)→ Disabled(61)), (Disabled(61)→ Operational(57))

Display(20) [S : Time(34)] :

(Time(34)→ Counter(45)), (Not – Time(38)→ Time(34)),

(Time(34)→ Error(53))

Light(23) [S : Off (26)] :

(Off (26)→ On(30)), (On(30)→ Off (26))

110

A.1 Test Sequence Generation Examples

Operational(65) [S : Idle(68)] :

(Idle(68)→ Set – Time(72)), (Set – Time(72)→ Idle(68)),

(Idle(68)→ Program(76)), (Program(76)→ Idle(68)),

(Program(76)→ Cook(80)), (Cook(80)→ Program(76)),

(Idle(68)→ Cook(80)), (Cook(80)→ Idle(68))

Not – Time(42) [S : ()] : (Counter(45)→ Power(49)), (Power(49)→ Counter(45))

Set – Time(108) [S : Setting(111)] :

(Setting(111)→ Error(115)), (Setting(111)→ Setting(111))

Program(119) [S : Setting(122)] :

(Setting(122)→ Power(126)), (Power(126)→ Setting(122)),

(Setting(122)→ Setting(122))

Cook(130) [S : RealCook(133)] :

(RealCook(133)→ RealCook(133))

autoradio.cte

Car Radio Example [Hel07]: The car radio consists of three main classifications, a
CD Drive (CD Fach), a Tape Deck (Cassetten Fach) and a Control Unit (Steuerung).
The CD Drive has three modes, which are Empty (cd_leer), Reading (Titel einlesen)
and Loaded (cd_voll). The Tape Deck only has Empty (t_leer) and Loaded (t_voll).
The Control Unit can either be On (An) or Off (Aus). If it is on, then there are three
distinct playback options: Radio Modus, Cassette Modus and CD Modus. Each option
features its own charateristics, there are 4 radio station keys, for example.

Figure A.3: Autoradio Example

111

A Appendix

Steuerung(17) [S : An(29)] :

(An(29)→ Aus(33)), (Aus(33)→ An(29))

CassettenFach(21) [S : t_leer(37)] :

(t_leer(37)→ t_voll(41)), (t_voll(41)→ t_leer(37))

CDFach(25) [S : cd_leer(45)] :

(cd_leer(45)→ Titeleinlesen(49)),

(Titeleinlesen(49)→ Titeleinlesen(49)),

(Titeleinlesen(49)→ cd_voll(53)), (cd_voll(53)→ cd_leer(45))

An(57) [S : RadioModus(61)] :

(RadioModus(61)→ CassetteModus(65)),

(CassetteModus(65)→ RadioModus(61)),

(CassetteModus(65)→ RadioModus(61)),

(CassetteModus(65)→ RadioModus(61)),

(CassetteModus(65)→ CDModus(69)),

(CassetteModus(65)→ CDModus(69)),

(CDModus(69)→ RadioModus(61)),

(CDModus(69)→ RadioModus(61)),

(CDModus(69)→ RadioModus(61)),

(RadioModus(61)→ CDModus(69))

RadioModus(73) [S : 1(77)] :

(1(77)→ 2(81)), (2(81)→ 1(77)), (2(81)→ 3(85)), (3(85)→ 2(81)),

(3(85)→ 4(89)), (4(89)→ 3(85)), (4(89)→ 1(77)), (1(77)→ 4(89))

CassettenModus(93) [S : t_abspielen(97)] :

(t_abspielen(97)→ vorspulen(101)),

(vorspulen(101)→ t_abspielen(97)),

(t_abspielen(97)→ zurückspulen(105)),

(zurückspulen(105)→ t_abspielen(97)),

(zurückspulen(105)→ t_abspielen(97))

CDModus(109) [S : cd_abspielen(113)] :

(cd_abspielen(113)→ nächsterTitel(117)),

(nächsterTitel(117)→ cd_abspielen(113)),

(cd_abspielen(113)→ vorherigerTitel(121)),

(vorherigerTitel(121)→ cd_abspielen(113)),

(cd_abspielen(113)→ nächsterTitel(117))

112

A.1 Test Sequence Generation Examples

citizen.cte

Citizen Watch [Har87]: The Citizen Watch was Harel’s original example to introduce
Statecharts in [Har87].

The watch can either be alive or dead. If it is alive, then it consists of six parellel
activities, which are main, alarm1-status, alarm2-status, chime-status, light, and
power. While the other five activities can be only disabled or enabled, basically, Main
is divided into severeal further substates. They are display and alarm-beep. If the
watch is on alarm-beep, then it is alarm 1 beep, alarm 2 beep or both beep.. If the
watch is not on alarm beep, it is on display. The display can be one of regular, wait,
out or stopwatch, which are then further refined.

We skip the rest of description and refer to the figures for further details.

Figure A.4: Citizen Example

Figure A.5: Citizen Example

113

A Appendix

Figure A.6: Citizen Example

Citizen(17) [S : dead(25)] :

(dead(25)→ alive(21)), (alive(21)→ dead(25))

main(281) [S : display(285)] :

(display(285)→ alarm1beep(297)), (display(285)→ alarm2beep(301)),

(display(285)→ bothbeep(305)), (alarm – beep(289)→ display(285))

alarm1 – status(33) [S : disabled(309)] :

(disabled(309)→ enabled(313)), (enabled(313)→ disabled(309))

alarm2 – status(49) [S : disabled(317)] :

(disabled(317)→ enabled(321)), (enabled(321)→ disabled(317))

enabled(349) [S : ()] :

(quiet(353)→ beep(357)), (beep(357)→ quiet(353))

chime – status(37) [S : disabled(325)] :

(disabled(325)→ quiet(353)), (enabled(329)→ disabled(325))

light(41) [S : off (337)] :

(off (337)→ on(333)), (on(333)→ off (337))

power(45) [S : ok(341)] :

(ok(341)→ blink(345)), (blink(345)→ dead(25))

display(29) [S : regular(69)] :

(out(65)→ regular(69)), (stopwatch(61)→ regular(69)),

(wait(57)→ sec(117))

114

A.1 Test Sequence Generation Examples

regular(73) [S : time(101)] :

(time(101)→ date(105)), (date(105)→ time(101)),

(time(101)→ wait(57)), (update(97)→ time(101)),

(time(101)→ alarm1(161))

beep – test(77) [S : 00(81)] :

(00(81)→ 10(89)), (10(89)→ 00(81)), (00(81)→ 01(85)),

(01(85)→ 00(81)), (10(89)→ beep(93)), (beep(93)→ 10(89)),

(01(85)→ beep(93)), (beep(93)→ 01(85))

out(153) [S : ()] :

(alarm1(161)→ alarm2(169)), (update2(173)→ alarm2(169)),

(alarm2(169)→ chime(157)), (alarm2(169)→ hr(233)),

(update1(165)→ alarm1(161)), (alarm1(161)→ hr(213)),

(chime(157)→ stopwatch(61))

stopwatch(245) [S : zero(249)] :

(zero(249)→ notzero(253)), (zero(249)→ reg(265))

update(113) [S : ()] :

(sec(117)→ min(121)), (min(121)→ 10min(125)),

(10min(125)→ hr(129)), (hr(129)→ mon.(133)),

(mon.(133)→ date(137)), (date(137)→ day(141)),

(day(141)→ year(145)), (year(145)→ mode(149)),

(mode(149)→ time(101))

chime(177) [S : off (181)] :

(off (181)→ on(185)), (on(185)→ off (181))

alarm1(189) [S : off (205)] :

(off (205)→ on(209)), (on(209)→ off (205))

update1(197) [S : ()] :

(hr(213)→ 10min(217)), (10min(217)→ min(221)),

(min(221)→ alarm1(161))

alarm2(193) [S : off (225)] :

(off (225)→ on(229)), (on(229)→ off (225))

update2(201) [S : ()] :

(hr(233)→ 10min(237)), (10min(237)→ min(241)),

(min(241)→ alarm2(169))

display(257) [S : reg(265)] :

(reg(265)→ lap(269)), (lap(269)→ reg(265)), (reg(265)→ zero(249))

run(261) [S : on(273)] :

(on(273)→ off (277)), (off (277)→ on(273))

115

A Appendix

coffee.cte

Coffee Machine Example: IBM Rhapsody features this example of a commercial cof-
fee machine. It consists of the actual CoffeeMachine, a Display and a Boiler. All three
of them can be either off or on independent of each other.

If the CoffeeMachine is on, its Main state is either idle or working while the Power
state is always in its working mode. If the machine is idle, it can be in waitMain-
tenance or in readyForCoin. When a coin is supplied, the machine changes to its
working state and produces a cup of coffee step by step: fillCoffee, pressurize, fillWa-
ter, fillMilk, fillCup, and cupReady.

The display shows progress messages either permanent or rotating.
The boiler has a temperatur sensor and cam boilWater or keepTemp.

Figure A.7: Coffee Machine Example

CoffeeMachine(19) [S : off (23)] :

(off (23)→ on(27)), (on(27)→ off (23))

Display(137) [S : off (145)] :

(off (145)→ on(149)), (on(149)→ off (145)),

(off (145)→ off (145))

Boiler(215) [S : off (219)] :

(off (219)→ off (219)), (off (219)→ on(223)),

(on(223)→ off (219))

Main(31) [S : idle(39)] :

Power(35) [S : powerControl(87)] :

116

A.1 Test Sequence Generation Examples

Message(153) [S : permanent(157)] :

(permanent(157)→ rotating(161)),

(rotating(161)→ permanent(157)),

(rotating(161)→ rotating(161))

On(227) [S : boilWater(231)] :

(boilWater(231)→ keepTemp(235)),

(keepTemp(235)→ boilWater(231))

Idle(47) [S : waitMaintenance(51)] :

(waitMaintenance(51)→ readyForCoin(55)),

(readyForCoin(55)→ waitMaintenance(51)),

(readyForCoin(55)→ working(43))

Working(59) [S : fillCoffee(63)] :

(fillCoffee(63)→ fillCoffee(63)),

(fillCoffee(63)→ pressurize(67)),

(pressurize(67)→ pressurize(67)),

(pressurize(67)→ fillWater(71)),

(fillWater(71)→ fillWater(71)),

(fillWater(71)→ fillMilk(75)),

(fillMilk(75)→ fillMilk(75)),

(fillMilk(75)→ fillCup(79)),

(fillCup(79)→ fillCup(79)),

(fillCup(79)→ cupReady(83)),

(cupReady(83)→ idle(39))

communication.cte

Communication Example: IBM Rhapsody features this example of a communica-
tion software. The State of the software can either be Disabled or Enabled. If it is
Enabled, it can be Idle, Receiving or Transmitting. In Receiving, the software is Wait-
ing_for_Byte, Validating_Command or Processing. In Transmitting, the software is
Waiting_for_Timeout or Waiting_for_Transmit_Timeout.

117

A Appendix

Figure A.8: Communication Example

State(20) [S : Disabled(24)] :

(Disabled(24)→ Idle(36)), (Enabled(28)→ Disabled(24))

Enabled(32) [S : Idle(36)] :

(Idle(36)→ Recieving(40)), (Idle(36)→ Transmitting(44))

Recieving(48) [S : Waiting_For_Byte(52)] :

(Waiting_For_Byte(52)→Waiting_For_Byte(52)),

(Waiting_For_Byte(52)→ Validating_Command(56)),

(Validating_Command(56)→ Processing(60)),

(Validating_Command(56)→ Transmitting(44)),

(Processing(60)→ Transmitting(44))

Transmitting(64) [S : Waiting_For_Timeout(68)] :

(Waiting_For_Timeout(68)→Waiting_For_Timeout(68)),

(Waiting_For_Timeout(68)→Waiting_For_Transmit_Timeout(72)),

(Waiting_For_Transmit_Timeout(72)→ Idle(36))

elevator.cte

Elevator Example: IBM Rhapsody features this example of an elevator. The elevator
operation is defined by an Action, Direction, Door and Building. Actions can be wait,
changeDirection, moving, openingDoor and closingDoor. Directions are goingUp and
goingDown. The door is either closed, opening, open, or closing. The building is either
normal or simulated.

118

A.1 Test Sequence Generation Examples

Figure A.9: Elevator Example

Action(26) [S : wait(42)] :

(wait(42)→ changeDirection(46)),

(changeDirection(46)→ wait(42)),

(wait(42)→ moving(50)),

(wait(42)→ openingDoor(54)),

(moving(50)→ openingDoor(54)),

(openingDoor(54)→ closingDoor(58)),

(closingDoor(58)→ wait(42)), (moving(50)→ moving(50))

Direction(30) [S : goingUp(34)] :

(goingUp(34)→ goingDown(38)), (goingDown(38)→ goingUp(34))

Door(120) [S : closed(124)] :

(closed(124)→ opening(128)), (opening(128)→ open(132)),

(open(132)→ closing(136)), (closing(136)→ closed(124))

Building(140) [S : normal(144)] :

(normal(144)→ normal(144)), (normal(144)→ simulated(148)),

(simulated(148)→ simulated(148)),

(simulated(148)→ normal(144))

tetris.cte

Tetris Example: IBM Rhapsody features this example of a Tetris game. The game
can either be ready, startingGame, newPiece, runningGame, paused, removePlace, or
gameOver. RunningGame is further refined into startUp, controlling, dropping, and
dropped. There are no parallel activities involved in this example.

119

A Appendix

Figure A.10: Tetris Example

Game(19) [S : ready(23)] :

(ready(23)→ startingGame(27)),

(startingGame(27)→ newPiece(31)),

(newPiece(31)→ runningGame(35)),

(runningGame(35)→ paused(39)),

(paused(39)→ runningGame(35)),

(removePiece(43)→ newPiece(31)),

(removePiece(43)→ newPiece(31)),

(paused(39)→ gameOver(47)),

(gameOver(47)→ startingGame(27)),

(runningGame(35)→ gameOver(47))

runningGame(85) [S : startup(89)] :

(startup(89)→ controlling(93)),

(controlling(93)→ dropping(97)),

(controlling(93)→ dropped(101)),

(dropping(97)→ dropped(101)),

(startup(89)→ gameOver(47)),

(dropping(97)→ dropping(97)),

(controlling(93)→ controlling(93)),

(dropped(101)→ controlling(93)),

(dropped(101)→ removePiece(43))

120

A.1 Test Sequence Generation Examples

moore.cte

Moore Example: Matlab Simulink Stateflow features this example. States are s0, s1,
s12, s121, s1123. There are no parallel activities involved in this example.

Figure A.11: Moore Example

seqrec(19) [S : s0(23)] :

(s0(23)→ s1(27)), (s1(27)→ s0(23)), (s1(27)→ s12(31)),

(s12(31)→ s0(23)), (s12(31)→ s121(35)), (s121(35)→ s12(31)),

(s121(35)→ s0(23)), (s121(35)→ s1(27)), (s121(35)→ s1213(39)),

(s1213(39)→ s0(23)), (s1213(39)→ s1(27))

fuel.cte

Fuel Example: Matlab Simulink Stateflow features this example. Parellel states
consist of O2, Pressure, Throttle, Speed, Fail and Fueling_Mode. Oxygen O2 can be
O2_warmup, O2_normaln and O2_failure. All three Pressure, Throttle and Speed
can be normal and fail. The Fail state indicates the number of fails, it can be
None, One and Multi. Multi is then further refined into Two, Three and Four. The
Fueling Mode is one of Running and Fuel_Disabled. If it is Running, it is one
of Low_Emissions (with Warmup and Normal) and Rich_Mixture (with only Sin-
gle_Failure). Fuel_Disabled can be due to Overspeed or Shutdown.

121

A Appendix

Figure A.12: Fuel Example

O2(19) [S : A(147)] :

Pressure(23) [S : normal(139)] :

(normal(139)→ fail(143)), (fail(143)→ normal(139))

Throttle(27) [S : normal(131)] :

(normal(131)→ fail(135)), (fail(135)→ normal(131))

Speed(31) [S : normal(123)] :

(normal(123)→ fail(127)), (fail(127)→ normal(123))

Fail(35) [S : None(43)] :

(None(43)→ One(47)), (One(47)→ None(43)),

(One(47)→ Two(59))

Fueling_Mode(39) [S : Running(71)] :

(Running(71)→ Overspeed(115)),

(Running(71)→ Shutdown(119))

A(151) [S : O2_warmup(155)] :

(O2_warmup(155)→ O2_normal(159)),

(O2_normal(159)→ O2_failure(163)),

(O2_failure(163)→ O2_normal(159))

Multi(55) [S : ()] :

(Two(59)→ Three(63)), (Three(63)→ Two(59)),

(Three(63)→ Four(67)), (Four(67)→ Three(63)),

(Two(59)→ One(47))

Running(79) [S : Low_Emissions(83)] :

122

A.1 Test Sequence Generation Examples

Fuel_Disabled(111) [S : ()] :

(Overspeed(115)→ Shutdown(119)),

(Overspeed(115)→ Running(71)),

(Shutdown(119)→ Rich_Mixture(87))

Low_Emissions(91) [S : Warmup(95)] :

(Warmup(95)→ Normal(99)),

(Warmup(95)→ Single_Failure(107)),

(Normal(99)→ Single_Failure(107))

Rich_Mixture(103) [S : Single_Failure(107)] :

(Single_Failure(107)→ Normal(99))

transmission.cte

Transmission Example: Matlab Simulink Stateflow features this example of a Gear
Box. The gear_state can be one of first, second, third, or forth. The selection_state can
be steady_state, downshifting or upshifting.

Figure A.13: Transmission Example

123

A Appendix

gear_state(19) [S : first(27)] :

(first(27)→ second(31)), (second(31)→ third(35)),

(third(35)→ fourth(39)), (fourth(39)→ third(35)),

(third(35)→ second(31)), (second(31)→ first(27))

selection_state(23) [S : steady_state(43)] :

(steady_state(43)→ downshifting(47)),

(downshifting(47)→ steady_state(43)),

(downshifting(47)→ steady_state(43)),

(steady_state(43)→ upshifting(51)),

(upshifting(51)→ steady_state(43)),

(upshifting(51)→ steady_state(43))

aircraft.cte

Aircraft Example: Matlab Simulink Stateflow features this example of a redundant
aircraft sub system. One component exists four times: LO, RO, LI, and RI. Each item
can be L1 or isolated. If it is L1, then it is one of passive, standby, active, or off.

Figure A.14: Aircraft Example

124

A.1 Test Sequence Generation Examples

LO(19) [S : L1(39)] :

(L1(39)→ isolated(35))

RO(2335) [S : L1(2355)] :

(L1(2355)→ isolated(2347))

LI(2303) [S : L1(2323)] :

(L1(2323)→ isolated(2315))

RI(2271) [S : L1(2291)] :

(L1(2291)→ isolated(2283))

normal(43) [S : passive(47)] :

(passive(47)→ active(51)), (passive(47)→ standby(55)),

(active(51)→ standby(55), (standby(55)→ active(51))

normal(2327) [S : passive(2351)] :

(passive(2351)→ standby(2339)), (passive(2351)→ active(2343)),

(standby(2339)→ active(2343)), (active(2343)→ standby(2339))

normal(2295) [S : passive(2319)] :

(passive(2319)→ standby(2307)), (passive(2319)→ active(2311)),

(standby(2307)→ active(2311)), (active(2311)→ standby(2307))

normal(2263) [S : passive(2287)] :

(passive(2287)→ standby(2275)), (standby(2275)→ active(2279)),

(passive(2287)→ active(2279)), (active(2279)→ standby(2275))

125

Versicherung

Ich erkläre, dass ich die vorliegende Dissertation selbständig und eigenhändig ange-
fertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel ver-
wendet habe.

Ich erkläre weiterhin, dass die Dissertation bisher nicht in dieser oder anderer
Form in einem anderen Prüfungsverfahren vorgelegen hat.

——————————————
Berlin, den

	Introduction
	Motivation
	Goal
	Approach
	Results
	Structure

	Background
	Combinatorial Testing
	Coverage Criteria
	Constraints

	Classification Tree Method
	Classification Tree Editor
	Dependencies
	Test Case Generation
	Test Case Generation with Dependencies

	Test Sequence Generation

	Related Work
	Combinatorial Testing
	Greedy Approaches
	Meta-heuristic Search Approaches
	Algebraic Approaches

	Test Sequence Generation and Validation
	Conclusion

	Enhancements
	Prioritization and Qualification
	Example
	Qualification with Usage Model
	Qualification with Error Model
	Qualification with Risk Model
	Conclusion on Qualification

	Constraints Handling
	Tree Transformation
	Approach
	Example

	Prioritized Generation
	Prioritized Minimal Combination
	Prioritized Pairwise Combination
	Plain Pairwise Sorting
	Class-based Statistical Combination

	Deterministic Test Case Generation
	Preparation
	Phase 1
	Phase 2
	Example
	Variation

	Test Sequence Generation
	New Dependency Rules
	New Generation Rules
	General Approach
	Decision Tree Approach
	FSM Approach

	Statechart Approach for Test Sequence Generation
	New Generation Rules
	Approach
	Conversion of Existing Statecharts to Classification Trees
	Conversion of Classification Trees to Statecharts
	Algorithm

	Evaluation
	Prioritized Generation
	Comparison of PPC vs. Sorting
	Comparison of PPC with DDA

	Deterministic Test Case Generation
	Comparison of BDD-PRE and BDD-POST
	Comparison to Other Approaches

	Test Sequence Generation
	Decision Tree Approach
	FSM Approach
	Conclusion

	Statechart Approach for Test Sequence Generation

	Conclusion
	Prioritized Generation
	Deterministic Test Case Generation
	Test Sequence Generation
	Future Work

	Appendix
	Test Sequence Generation Examples

