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Abstract

This paper develops high-frequency econometric methods to test for jumps in the
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1 Introduction

News announcement generate significant discontinuities (jumps) in financial asset prices and

reveal important information about market expectations and risks. The prevailing presence

and high information content of jumps have been demonstrated by the rich literature on

jumps as responses to corporate news (Lee and Mykland, 2008; Lee , 2012), macroeconomic

news (Lahaye et al., 2011; Jiang et al., 2011), fiscal and monetary policies (Pástor and

Veronesi, 2012; Winkelmann et al., 2016). However, the interplay in the response patterns

of a pair of bond yields and the spread between them at high-frequency is less known.

Yield spreads have long been used to aid financial risk management and policy evaluations.

For example, a negative term spread predicts recessions (Henry and Phillips, 2020; Yang,

2020), rising credit spreads inform about increasing default risk (Del Negro and Schorfheide,

2013; Leombroni et al., 2021), and the yield spread between nominal and inflation-indexed

government bonds, commonly known as break-even inflation, is a market-based measure of

inflation expectations (Chernov and Mueller, 2012; Hanson and Stein, 2015).

This paper develops high-frequency econometric methods to infer a jump in the yield

spread of two bonds at a pre-specified point in time.1 Within the general class of continuous-

time semimartingales with Brownian and jump components, the yield spread jumps only

if at least one of the underlying bond yield processes jump contemporaneously. However,

such coherent test results are not always guaranteed in practice if we only use univariate

jump tests, such as the ones proposed by Lee and Mykland (2008) or Lee and Mykland

(2012). For instance, a univariate test may detect a jump when it is applied to the yield

spread, while it is possible that the same test detects no jump when applied to the two

individual bond yields. Figure 1 illustrates the area of incoherent test outcomes in the

space of standardized event returns of the two underlying bonds. The dotted area refers to

1This point in time can be given by the time of some pre-scheduled news announcement or jump
detection method as proposed by Bibinger et al. (2019). Notice that detecting a jump in bond yields
opposed to bond prices refers to the same statistical problem.
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Figure 1: Confidence sets of the univariate jump test of
Lee and Mykland (2012) in the event return space of bonds a and b.
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The red dot represents the null hypothesis of no jump in both bond yields, and the red 45◦ line
represents the null of equal yield changes. The dashed lines denote the 0.5% critical values of the
univariate Lee and Mykland (2012) jump test applied to the two bonds individually, and the solid
square in the middle of the plot outlines the confidence set of no jump in the two bond yields with
a family-wise error rate of 1%. The gray shaded area forms the 99% confidence set for the null that
the yield changes of the two bonds have the same magnitude using the Lee and Mykland (2012)
test on the spread. The dotted area is where incoherent test outcomes occur, i.e., a jump in the
yield spread is detected but there is no jump in the two bond yields. The two bond returns are
standardized to have unit variance and a correlation of 0.85.

return combinations with contradicting test results, where neither of the two bond yields

are tested to contain a jump, but the spread between them displays evidence of a jump.

The larger the correlation between the two bonds, the larger the dotted area. To avoid

such incoherent results, joint methods for detecting jumps in bond yields and their spread

are required.

We propose an intersection union test (IUT) that is based on two nested elementary

hypotheses: the hypothesis of no jump in both bond yields (the red dot in Figure 1) and

the hypothesis of equal yield changes in the two bonds (the red diagonal line in Figure 1).

The first step is to test for a jump in at least one of the two underlying bond yields. If the

first step is rejected, we proceed with the second step to test the equality of the two yield

changes. The rejection of both elementary hypotheses detects a jump in the spread. The

proposed IUT is a special case of step-wise tests that are nested in sequence, and hence
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controls the joint error rate without multiplicity adjustment, see Hsu and Berger (1999)

and further generalizations by Goeman and Solari (2010). We also show that the IUT

procedure fulfills the closure principle of Marcus et al. (1976), which guarantees coherent

test results.

Univariate tests for the presence of jumps in discretely observed semimartingale models

have been proposed by Aı̈t-Sahalia and Jacod (2009) and Lee and Mykland (2008), for ex-

ample. Dumitru and Urga (2012) provide an overview and empirical comparison of existing

tests. Hansen and Lunde (2006) highlight that trading frictions, such as price discreteness

and bid-ask bounces, play a non-trivial role at high observation frequencies. Commonly

referred to as the market microstructure noise, these frictions keep observed prices and

yields away from discretely observed semimartingales, and distort simple estimators of

volatility and jumps. Therefore, Podolski and Ziggel (2010), Aı̈t-Sahalia et al. (2012), Lee

and Mykland (2012) and Bibinger et al. (2019) provide noise-robust, univariate jump tests

in latent observation models. An extension of the univariate methods to contemporaneous

jumps (cojumps) in bivariate semimartingale models is proposed by Jacod and Todorov

(2009) and Bibinger and Winkelmann (2015).

Testing for jumps in at least one of the two bond yields in the first step can be

accomplished in two different ways. The first approach is to use univariate jump tests

on each of the two bond yields with a Bonferroni correction. The Bonferroni approach is

conservative in detecting a jump, and can be improved especially when the joint distribution

of changes in bond yields under the null is available. We propose a bivariate jump test as

a more powerful alternative. In a semimartingale model with discrete observations that

are corrupted by market microstructure noise, we generalize the univariate pre-averaging

methods of Lee and Mykland (2012) and Bibinger and Winkelmann (2015) to the bivariate

case. A feasible central limit theorem for a pair of bond returns at some given event time τ

under the hypothesis of no jumps, forms the basis of the bivariate jump test. The bivariate
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jump test is conceptually different to a cojump test since it has power against jumps in

only one of the two bonds. Although the area of incoherent test results does not disappear

when combining confidence sets of the bivariate jump test and the univariate test for jumps

in the spread, it substantially reduces the area where such conflicting test outcomes can

occur.

The limiting distribution of the changes in both bond yields is also used in constructing

the test for the equality of event returns in the second step. Since the spread is a simple

linear combination of the two underlying bond yields, the test for equal event returns is

equivalent to the univariate jump test of Lee and Mykland (2012) applied to the spread.

The IUT procedure makes use of the information on jumps in the two underlyinig bond

yields when testing jumps in the spread. To put it simply, if the changes in the bond yields

are small, the IUT requires a larger movement in the yield spread to detect a jump. In

contrast, a single-step univariate jump test on the spread ignores the magnitude of the two

bond yield changes. It treats all bond yield changes that result in the same change in the

yield spread equally.

The finite sample performance of the two-step IUT procedure is examined using Monte

Carlo simulations. We quantify its rate of detecting jumps under different scenarios, and

compare the difference in using the Bonferroni and bivariate jump test in the first step

of the procedure. Simulation results show that correct classification of jumps depends on

the magnitude of the noise variance, sampling frequency, and the size of the jumps in the

two bond yields as well as the yield spread. When the noise variance is high, the test

procedure has difficulty detecting jumps that are smaller in size. For a given jump size, we

can increase the power of the procedure by increasing the frequency of observations over

a fixed time interval. Uniformly, across all combinations of jump sizes in bond yields, the

IUT based on the bivariate jump test is more powerful in detecting jumps in the spread

than the procedure based on the Bonferroni test.
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Changes in high-frequency bond yields in response to macroeconomic news releases

have become an important tool in empirical macroeconomics and financial economics, see

Swanson (2021) and Hanson and Stein (2015) for example. The jump behavior of individual

U.S. government bonds and related characteristics have been studied by Jiang et al. (2011)

and Hördahl et al. (2020) and the references therein. We demonstrate the IUT procedure

using high-frequency data on U.S. government bond yields around prescheduled FOMC

announcements, inflation and employment news releases between 2015 and 2020. The

jump characteristics of term spreads and break-even inflation rates at different horizons

are examined. In contrast to previous papers, we focus on the high-frequency responses of

the yield spreads.

The empirical results show that in contrast to jumps in bond yields, jumps in yield

spreads are rare. In line with evidence provided by Jiang et al. (2011), we find that bond

yields are very sensitive to news releases. The bivariate jump test detects a jump in the

underlying bond yields for the majority of all news releases. However, in most cases, these

jumps are not accompanied by a jump in yield spreads. Short-horizon yield spreads jump

in only 10–20% of the cases where the underlying bond yields display a significant jump.

This fraction is almost twice as large for long-horizon yield spreads. While it is well known

that employment news releases play an important role in government bond markets, we

document that this translates to the movements in yield spreads. The publication of non-

farm payroll figures leads to the most frequent and largest jumps in yield spreads. Although

responses of yield spreads to monetary policy, inflation and employment news releases differ

in the frequency and size of jumps, we find a strong resemblance across the different types

of news releases. That is, event returns of bonds that relate to jumps in term spreads or

break-event inflation are clustered in very similar regions of the event return space. This

suggests a common pattern of comovements in government bonds across the different news

releases when they trigger a jump in respective yield spreads. As in the jump regression
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model of Li et al. (2017), this insight supports the idea of an underlying factor structure

with pairwise constant factor loadings across different event types.

The remainder of the paper is structured as follows. Section 2 introduces the economet-

ric model for the bond yields and the IUT procedure for a jump in the yield spread. Section

3 studies the finite sample properties of the two-step IUT procedure via simulations. After

discussing the empirical study in Section 4, we conclude in Section 5. Detailed technical

assumptions can be found in Appendix A and proofs in Appendix B. Appendix C contains

the list of government bonds used in the empirical section.

2 Econometric method

This section introduces the theoretical framework to investigate jumps in two bond yields

and their spread at some fixed point in time using intra-day data observed with market

microstructure noise.

2.1 Underlying stochastic process

Let yt denote the time-t vector of bond yields that relate to the efficient prices of some

bond a and bond b.2 We consider yt on a normalized interval with some fixed start and

end time, surrounding a fixed and known event time τ . The bond yields can be described

by a continuous-time bivariate Itô semimartingale:

yt = y0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt, t ∈ [0, 1]. (1)

The continuous part consists of the starting value y0, a two-dimensional drift bt, the

2 × 2 spot-covolatility Σt = σtσ
′
t, and a two-dimensional standard Brownian motion Wt.

2For a zero coupon bond the relationship between yields, yt, and prices, Pt, is y
(i)
t = − logP

(i)
t /m(i),

with time to maturity m(i), i = a, b. Detecting jumps in the bond yields and bond prices are interchange-
able. Given the focus of the paper, we refer to yields directly instead of log prices.
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Jt is a purely discontinuous process that can be completely characterized by its jumps.

Assumptions on the different components of yt are further formalized in Appendix A. Model

(1) is fairly general and includes most models for asset prices in financial econometrics,

particularly those introduced by Duffie and Kan (1996) for bond yield processes. The

occurrence of jumps is not restricted to the event time τ , but can be distributed anywhere

on [0, 1]. The statistical methods below remain valid, provided that the estimation of

covolatility Σt is robust to such jumps at t 6= τ .

If we were able to observe the yt in continuous time, we could have observed all jumps

directly. The return ∆yt = yt−yt−, yt− = lims<t,s→t ys is zero in the case of no jump at time

t, and ∆yt = ∆Jt otherwise. However, in any practical applications we have only finitely

many observations of the two bond yields. We consider observation times ti, i = 1, ..., n,

that are discrete, synchronous, and equally spaced across bonds. The sampling interval

ti − ti−1 has length 1/n. Besides the finite n, we follow most of the market microstructure

literature and posit an additive, latent observation model in discrete time:

ỹi = yti + εi. (2)

We observe a noisy version of the efficient process yti , where εi
i.i.d∼ (0, η), i = 1, ..., n,

is the market microstructure noise with a 2 × 2-dimensional covariance matrix η. Aı̈t-

Sahalia and Yu (2009) find a negative relationship between the level of the noise variance

and different liquidity measures. Less liquid assets usually have larger noise variance.

Distorting effects through potential differences in the liquidity of bonds are captured by

the noisy observation model (2). Methods to test for significant noise are proposed by Aı̈t-

Sahalia and Xiu (2019), for example. Similar to the jump component, increments of the

noise term do not vanish asymptotically. Hence, covolatility estimators that are not robust

to market microstructure are asymptotically dominated by the noise. Jump detection is
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more complicated in cases where jump returns are weakened by the noise while no-jump

returns are amplified. Lee and Mykland (2012) highlight the importance of noise-robust

jump tests compared to methods that do not account for market microstructure noise. In

our setup, market microstructure is an i.i.d. process independent of yt. We extend the

model to more general setups in the simulation with endogenous and heteroskedastic noise.

Nonsynchronicity of the multivariate data is of less importance, because we focus on a fixed

event time τ .

2.2 Bivariate distribution of pre-averaged event returns

Given the noisy observation model (2), smoothing the observed yields is the most intuitive

approach to diminish the impact of market microstructure noise. Following the general pre-

averaging approaches of Podolskij and Vetter (2009), Jacod et al. (2009) and Christensen et

al. (2010), we use the mean of the observed yield vector over Mn discrete noisy observations

ỹi = (ỹ
(a)
i ỹ

(b)
i )′,

ŷi = M−1
n

(i+Mn−1)∧n∑
j=i

ỹj, i = 1, ..., n, (3)

where the block length is Mn = c
√
n, and c is a constant tuning parameter. The block

length Mn = c
√
n balances the order of the noise and continuous component of the efficient

yields. Since the microstructure noise is centered and serially uncorrelated, taking averages

of noisy observations reduces the impact of the noise component. As a result, the estimated

return vector at announcement time τ ,

∆ŷτn = ŷτn − ŷτn−Mn , (4)

is close to the latent increment of the yield ∆yτ , and is no longer dominated by the noise.

The following proposition describes the limiting distribution of the estimated event return
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of the two bonds ∆ŷτn = (∆ŷ
(a)
τn ∆ŷ

(b)
τn)′. It is a direct extension of Lemma 1 of Lee and

Mykland (2012) and Proposition 3.1 of Bibinger et al. (2019) from the univariate to the

bivariate case.

Proposition 2.1 In the model presented in Section 2.1 under Assumptions 1 and 2 in

Appendix A, the return vector (4) of pre-averaged yields satisfies

n1/4 (∆ŷτn −∆yτ )
(st)−→ MN

(
0,Γτ

)
, (5)

where MN denotes a mixed normal distribution, and the 2 × 2 covariance matrix Γτ has

elements

Γ(i,j)
τ = 1/3

(
Σ(i,j)
τ + Σ

(i,j)
τ−

)
c+ 2c−1η(i,j), i, j = a, b. (6)

Proposition 2.1 shows that the simple pre-averaging approach consistently estimates the

event return. The limiting spot variances Σ
(i,i)
τ , i = a, b and covariance Σ

(a,b)
τ can be random

(in the case of stochastic volatility, for example), and therefore the limiting distribution

in (5) is a mixed normal. The return estimator has the optimal rate of n1/4, which is a

direct consequence of the choice of the block length Mn and the order of the continuous

components of the yield yt. However, the simple averaging in (3) does not provide an

efficient estimator. Bibinger et al. (2019) propose an efficient estimator of jumps in a

univariate setting based on spectral statistics. As the variance-covariance matrix in (6)

indicates, the diagonal and off-diagonal elements of Γτ have the same structure, provided

that the microstructure noise displays a covariation η(a,b) 6= 0 across the bonds a and b.

Γτ accounts for contemporaneous jumps in (co)volatility by referring to spot (co)volatility

before (Στ−) and at (Στ ) the event (see, for example, Bibinger and Winkelmann, 2018; Li

et al., 2021, for studies on jumps in (co)volatility).

Stable convergence in law (st) and a consistent estimator of the covariance Γ̂τ provide a

feasible, self-normalizing version of (5), which we will exploit below. Compatible estimators
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for integrated (co)volatility and noise in the present modeling context are proposed by

Christensen et al. (2010) and Koike (2016).

2.3 A two-step test for jumps in the yield spread

We investigate the joint jump behavior of the two bond yields y
(a)
t and y

(b)
t and their spread,

y
(a)
t − y

(b)
t , at the event time t = τ . Consider the following elementary hypotheses:

• HC
0 (τ): ∆yτ = 0. The null hypothesis is that there is no jump in both bond yields at

time τ , while the alternative, HC
1 (τ), allows for jumps in the yields of either bond a

or bond b, or both. Section 2.4 introduces a bivariate jump test for this purpose.

• HE
0 (τ): ∆y

(a)
τ = ∆y

(b)
τ . The null hypothesis is that the event returns of bond a and

bond b are the same. In other words, the return of the yield spread is zero at time τ .

The event returns of the two bonds have different magnitudes under the alternative

hypothesis HE
1 (τ). Section 2.4 provides a test for this purpose.

Combinations of the two local hypotheses partition the entire event return space into

disjoint subsets. We are particularly interested in the following partition:

(A) = {∆yτ : HE
0 (τ) ∪ HC

0 (τ)}: Both bond yields do not jump or display a cojump with

equal jump size.

(B) = {∆yτ : HE
1 (τ) ∩HC

1 (τ)}: the yield spread jumps.

The classical procedure for the testing problem above is the intersection union test

(IUT), which requires both elementary hypotheses to be rejected in order to reject the

union (A) (Berger, 1982). Notice that HC
0 (τ) is a special case of HE

0 (τ). In analog to the

step-wise procedure of Hsu and Berger (1999), we first verify the more restrictive hypothesis

HC
0 (τ) at some level α in the first step, and if HC

0 (τ) is rejected, we test HE
0 (τ) at level

α in the second step. Set (A) is rejected if and only if the hypotheses in both steps are
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rejected, in which case the vector of event returns is assigned to set (B). The two-step

procedure controls the probability of rejecting at least one true null hypothesis (family-wise

error) for all possible configurations of true null hypotheses to be α at most without the

need of any multiplicity correction across the two steps. This is in analogue to the closed

testing principle of Marcus et al. (1976) to test hypotheses that are nested in sequence,

starting with the most restrictive one. In the current context, the closed testing principle

requires rejecting the intersection of the two elementary hypotheses HE
0 (τ)∩HC

0 (τ) at level

α in the first step, before testing HE
0 (τ) at level α in the second step. If the hypotheses in

both steps are rejected, a jump in the spread is detected. The two steps of the closed test

procedure are compatible to those of the IUT procedure. Because HC
0 (τ) is a special case of

HE
0 (τ), testing HE

0 (τ)∩HC
0 (τ) is in fact identical to testing the more restrictive hypothesis

HC
0 (τ). The closed test principle also provides a link to the power considerations in Finner

and Strassburger (2002), see also Goeman and Solari (2010). In what follows we propose

methods to test HC
0 (τ) and HE

0 (τ) before investigating the finite-sample performance of the

IUT procedure in Section 3.

2.4 χ2-jump tests

The first step of the IUT procedure requires testing the null hypothesis of no jump in both

bond yields at event time τ , HC
0 (τ) : ∆yτ = 0, against the alternative of a jump in at least

one of the two bond yields, HC
1 (τ) : ∆yτ 6= 0. The most intuitive approach is to consider

HC
0 (τ) as an intersection hypothesis of two univariate jump tests on the event returns of

bonds a and b. This can be achieved using the univariate Lee and Mykland (2012) test,

n1/4 ∆ŷ
(i)
τn

Γ̂
(i,i)
τ

(d)−→ N(0, 1), i = a, b , (7)
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on the event returns of bonds a and b separately with a Bonferroni adjustment. This

approach rejects HC
0 (τ) as soon as one of the two tests rejects its null hypothesis of no

jump at level α/2. Such a Bonferroni approach assumes independent test statistics, and

thus considers the worst case scenario. It is the most conservative in testing HC
0 (τ) and

consequently in testing the union hypothesis HE
0 (τ) ∪ HC

0 (τ) of the IUT. We can improve

on the Bonferroni test using the χ2-jump test stated in Corollary 2.2.

Corollary 2.2 Given Proposition 2.1, the bivariate χ2-jump test at the event time τ refers

to the following test statistic and asymptotic distribution under HC
0 (τ):

√
n ∆ŷ′τnΓ̂−1τ ∆ŷτn

(d)−→ χ2(2). (8)

The χ2-jump test has critical region

{√
n ∆ŷ′τnΓ̂−1τ ∆ŷτn > q1−α(χ2(2))

}
, (9)

where q1−α(χ2(2)) denotes an upper quantile of the χ2 distribution with two degrees of

freedom at significance level α. The bivariate test has asymptotic level α under HC
0 (τ). The

test is consistent under the alternative HC
1 (τ) with divergence rate n1/2.

Corollary 2.2 shows a standard result in multivariate statistics for the sum of squares of

the vector of whitened event returns, zτ = Γ̂
−1/2
τ ∆ŷτn. Under HC

0 (τ), elements of the 2× 1

vector n1/4zτ are independent standard normal random variables. As a result, the sum

of squares
√
n zτ ′zτ in (8) has an asymptotic χ2 distribution with two degrees of freedom.

The
√
n convergence rate is a direct consequence of the n1/4 rate of pre-averaged returns

in Proposition 2.1.

Corollary 2.2 also provides a method to test the magnitude of the two returns in the

second step. The aim is to distinguish the null hypothesis of equal yield changes of bonds
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a and b, HE
0 (τ) : ∆y

(a)
τ = ∆y

(b)
τ , against the alternative of different return sizes, HE

1 (τ) :

∆y
(a)
τ 6= ∆y

(b)
τ . We impose a linear restriction, R′ = (1 − 1), on the χ2-test statistic in

Corollary 2.2, which transforms (8) under HE
0 (τ) into

√
n (R′∆ŷτn)(R′Γ̂τR)−1(R′∆ŷτn)

(d)−→ χ2(1). (10)

The test statistic (10) takes the square of the estimated event returns of bond a and bond

b,
(
n1/4(∆ŷ

(a)
τn −∆ŷ

(b)
τn)
)2

, and divides it by the variance of the difference R′Γ̂τR. This test

statistic is equivalent to the square of the univariate statistic of Lee and Mykland (2012)

in (7), applied to the yield spread. Hence, testing for equal event returns is equivalent to

a univariate test for no jump in the spread.

Figure 2 combines the two elementary jump tests to illustrate the partitions (A) and

(B) of the two-step IUT procedure on the two-dimensional space of event returns of bond

a and bond b. The test procedure uses a significance level of 1%, and the two bond

returns are standardized to have unit variance and a correlation of ρ = 0.85. The left

panel uses the Bonferroni-adjusted univariate Lee and Mykland (2012) test on the two

bond yields in the first step, which gives the square shaped confidence set. Its union with

the 45◦ corridor, which is the confidence set for the univariate jump test on the spread

in the second step, forms the area of set (A). The right panel uses the χ2 bivaraite jump

test in the first step, which leads to a much smaller confidence set compared with the

Bonferroni-adjusted approach shown in the left panel. It is worth noting that the elliptical

shape of the χ2 confidence set and the width of the diagonal corridors are influenced by

the correlation ρ between the two bonds. Considering the whitened and standardized case

with zτ = Γ̂
−1/2
τ ∆ŷτn, the χ2 confidence set is a circle and the diagonal corridor widens.

Given the empirical observation that bond yields are usually positively correlated, varying

degree of elliptical shape is common in practice. Its union with the 45◦ corridor defines
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Figure 2: Partitions (A) and (B) of the IUT for jumps in yield spreads in the event
return space of bonds a and b.
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The gray shaded area indicates the region where the union null (A) = {∆yτ : HE
0 (τ)∪HC

0 (τ)} of no jump
in the spread is not rejected with family-wise error rate of 1%. The two white areas form the intersection
alternative (B) = {∆yτ : HE

1 (τ) ∩ HC
1 (τ)}, where a jump in the yield spread is detected. The two bond

returns are standardized to have unit variance and a correlation of 0.85.

the area of set (A) where a jump in the yield spread is not detected. It is evident that

the χ2-based IUT procedure leads to a smaller area for set (A). Hence, compared with

the Bonferroni-adjusted approach, the χ2-based IUT is more powerful in detecting jumps

across all combinations of event returns for bonds a and b. Finally, the cost of the χ2-based

IUT in achieving coherent test outcomes relative to testing only the spread for a jump

seems small. The rejection area of the IUT in panel (b) of Figure 2 is close to that of the

univariate jump test on the spread. We quantify those differences in finite sample in the

simulation study below.

3 Simulation study

We use simulations to examine the finite-sample properties of the two-step IUT procedure.

The test for equal event returns is equivalent to the univariate Lee-Mykland jump test,
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whose properties has been examined by Lee and Mykland (2012) and Bibinger et al. (2019).

Therefore, we do not repeat this exercise here. The simulation setup emulates that of Lee

and Mykland (2012) and captures some key characteristics of the empirical data used in

Section 4.

We consider observations of the two bond yields on a three-hour time interval that is

centered around the event time τ . The yield of bond a is generated by

y
(a)
t = 1 +

∫ t

0

σs dWs + J
(a)
t , t ∈ (0, 1], (11)

with a Heston-type stochastic volatility

dσ2
s = 0.0162

(
0.8465− σ2

s

)
ds+ 0.117σs dBs, (12)

where Bt andWt are two independent standard Brownian motions. We adopt the parameter

values of Lee and Mykland (2012) and assume 252 trading days per year with 9 hours of

trading on each day. The yield of bond b is

y
(b)
t = ρ

(
1 +

∫ t

0

σsdWs

)
+
√

1− ρ2
∫ t

0

dW̃s + J
(b)
t , t ∈ (0, 1], (13)

where ρ is the correlation between the continuous components of the two bond yields, and

W̃t is a standard Brownian motion that is independent of Bt and Wt. The correlation is

fixed to be ρ = 0.85, which is the average correlation of the 10-year nominal and inflation-

indexed bonds in the data studied in Section 4. We set the jump process in both bond

yields to be Jt = 0 for t < τ and Jt = ∆Jτ for t ≥ τ . Three different jump sizes are

considered at t = τ : small jump ∆J
(i)
τ = 0.3, medium jump ∆J

(i)
τ = 0.6, and large jump

16



∆J
(i)
τ = 1, i = a, b. The market microstructure noise is generated by

ε
(j)
i = 0.0861∆y

(j)
ti + 0.06

(
∆y

(j)
ti + ∆y

(j)
ti−1

)
+ Ui, i = 0, . . . , n, j = a, b, (14)

where (Ui)0≤i≤n is a sequence of normally distributed random variables with mean 0 and

variance q2. We consider two parameterizations of q, 0.1 and 0.01, which governs the noise

level (market quality parameter). The cross-correlation between the yields yt and the noise

violates one of our theoretical assumptions. However, simulation results show that this

correlation does not affect the finite-sample performance of the test. Therefore, we work

with this more general and realistic setting. The (co)volatility and noise are estimated using

the approach of Christensen et al. (2010). The pre-averaging estimator of (co)volatility uses

a window size of
√
n/3, while the jump tests use a block size of Mn =

√
n/18. The constant

c = 1/18 is chosen according to Table 5 of Lee and Mykland (2012).

Table 1 shows the rejection frequencies of set (A) using the two-step IUT proecedure

at level α = 1%. The first column reports two different sampling frequencies of 30-second

and 5-second, with their respective sample sizes in parentheses. Two different procedures

are recorded in the second column of Table 1. The first approach uses two univariate jump

tests with a Bonferroni adjustment in its first step, while the second approach uses the

χ2-jump test from Corollary 2.2 in its first step. The second step of the two procedures

are identical, which uses the χ2 test for equal event returns. The jump sizes reported in

columns three and four belong to the union null hypothesis of set (A), while all other

columns correspond to the intersection alternative (B) of a jump in the spread. Both of

the two test procedures exhibit good size properties, with actual sizes below the nominal

level of 1% in all cases. In the case of equal jump sizes shown in column four, the first step

tests detect the medium sized jumps with high probability, such that the outcome of the

IUT is almost fully determined by the test for equal returns in the second step. Differences
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Table 1: Rejection frequencies of set (A) using the two-step IUT procedure.

Jump size bond a 0 0.6 0.3 0.6 1 0.6 1

Jump size bond b 0 0.6 0 0 0 0.3 0.3

Noise level: q = 0.01

30-sec
(n=360)

Bonferroni 0.005 0.001 0.053 0.556 0.949 0.380 0.935
χ2 test 0.005 0.002 0.220 0.994 1.000 0.590 1.000

5-sec
(n=2160)

Bonferroni 0.003 0.009 0.470 1.000 1.000 0.994 1.000
χ2 test 0.007 0.009 0.945 1.000 1.000 1.000 1.000

Noise level: q = 0.1

30-sec
(n=360)

Bonferroni 0.000 0.001 0.011 0.396 0.883 0.111 0.826
χ2 test 0.000 0.001 0.031 0.705 0.998 0.148 0.909

5-sec
(n=2160)

Bonferroni 0.003 0.007 0.188 0.982 1.000 0.748 1.000
χ2 test 0.005 0.007 0.324 1.000 1.000 0.757 1.000

The average volatility for the two bond yields on the three-hour block is
√

0.8465/(252× 3).
Tests are conducted at nominal level of α = 1% using 3,000 repetitions. Rows labeled
Bonferroni refer to the two-step IUT procedure where the univariate Lee and Mykland
(2012) test is used to test for jumps in the two bond yields at level α/2 = 0.5% in the first
step. Rows labeled χ2 test implement the χ2(2) test (8) in the first step. Jump sizes and
noise levels are reported in basis points.

between the Bonferroni and χ2 procedures and different noise levels are small under the

union null hypothesis.

The scenario where only one of the two bond yields contains a jump is studied in

columns five to seven of Table 1. The magnitude of the small jump is less than two times

the spot volatility in the case of 30-second sampling. Therefore, it is not surprising that

both IUT procedures have difficulties in detecting the jump in the spread. Under the 30-

second sampling scheme, both the Bonferroni and χ2 test detect no jump in the spread

with high probabilities. This problem is aggravated by higher noise levels. However, once

the size of the spread jump increases, or the observation frequency increases to 5-second,

the percentage of correctly detecting a jump in the spread quickly approaches 100%. The

Bonferroni approach almost always has lower power than the χ2 approach, because it does

not make use of the information about the correlation of the two bond yields. The power
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gain in using the χ2 approach is particularly large in the case of medium sized jump, high

noise level, and low sampling frequency.

Columns eight and nine of Table 1 report the results for the cases where both asset

prices cojump but with different magnitudes. The difference between the Bonferroni and

χ2 test becomes small. This is because the medium and large sized jumps in bond a are

easily detected in the first step by either of the two approaches, and the test for equal event

returns in the second step is identical. Comparing column eight and column five, both of

which have a spread jump of size 0.3, the detection rate is higher when both bond yields

have jumps than when only one bond yield has a jump. The improvement in detecting

spread jumps is more pronounced for the Bonferroni approach and when the sampling

frequency is high.

In summary, the IUT procedure has good size under the union null hypothesis of no

jump in the spread, but its power depends on a few factors. Firstly, larger jump size in the

spread leads to higher power, which is expected. Secondly, a higher noise level reduces the

power, especially when the observation frequency is low and the jump size is small. When

the observation frequency is high and the jump in the spread has medium or large size,

the noise level only has very limited impact on the performance of the testing procedure.

Thirdly, the IUT based on the χ2-jump test dominates the Bonferroni-based approach

uniformly, which is shown in Figure 2, and we also demonstrate in finite sample in Figure

3.

Panel (a) of Figure 3 illustrates the power gain of the IUT based on the χ2 test over

the Bonferroni-based IUT test. Across all combinations of event returns for bond a bond

b, the χ2 procedure has at least the same power as the Bonferroni approach. If the jumps

in the two bond yields fall in the colored areas, the χ2-based IUT procedure has a higher

probability of correctly identifying a jump in the spread than the Bonferroni-based IUT

procedure. The power gain can reach up to 80% in the darker shaded areas. The region
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Figure 3: Power gaps.

(a) Power gain IUT: χ2 vs. Bonferroni
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(b) Power loss: χ2-based IUT v.s.
univariate jump test on the spread
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For any combination of yield changes of bond a (x-axis) and b (y-axis), Panel (a) shows the power
gain of the IUT procedure based on the bivariate χ2-jump test over the Bonferroni-based IUT
approach. Panel (b) shows the power loss of the IUT based on the bivariate jump test over the
univariate jump test on the spread. Darker red (blue) color signals higher power gain (loss). Data
are simulated with n = 360, q = 0.01. Other parameters are chosen as described above.

where the χ2 test exhibits power gains has a similar shape to the region of incoherent test

results depicted in Figure 1 (the dotted area).

Panel (b) of Figure 3 depicts the power loss of using the two-step IUT procedure based

on the χ2 test compared with the univariate jump test on the spread alone. This can be

interpreted as the cost to pay in order to achieve a coherent test for jumps in the spread.

The loss in power is driven by the fact that part of the confidence region of the χ2 bivariate

jump test is outside the confidence region of the univariate jump test on the spread. These

areas will always exist, because the confidence set of the χ2 test can never be a subset of the

confidence set of the univariate jump test on the spread when both of them are conducted

at the same significance level. The colored areas show the jump sizes in the two bond yields

where the univariate jump test on the spread has higher probability of correctly identifying

a jump in the spread than the IUT procedure based on the χ2 bivariate jump test. In
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our simulation, the areas of power loss in the event-return space appear non-negligible,

the power loss never exceeds 20%. Instead of assuming that jump sizes are known and

interpreting the blue colored area as a loss, in practice jump sizes need to be estimated and

estimated jump sizes in the blue colored region are likely to belong to the null hypothesis

of no jumps in bond yields and therefore should be taken as evidence against a jump in

the yield spread.

4 Empirical evidence

We use the two-step IUT procedure to test for jumps in the term spread and break-

even inflation at major news announcement times in the U.S.. We focus on the χ2-based

approach given its superior properties demonstrated above.

4.1 Yield spread data

We study 41 pre-scheduled federal open market committee (FOMC) announcements, 63

consumer price inflation (CPI) and 47 non-farm payroll (NFP) news releases between

January 2015 and March 2020. For each release date, we download yield quotes on an

interval spanning from one-hour before to one and a half hour after the publication time.

The publication times are 2:00 p.m. EST for the FOMC statements and 8:30 a.m. EST for

the CPI and NFP releases. Our empirical analyses use 30-seconds mid-quotes of specific

U.S. Treasury bonds with maturities close to 2, 10 and 20 years. In addition to the

nominal bonds, we also consider inflation-indexed bonds, which compensate investors for

inflation and thereby provide measures of real interest rates. The entire list of bonds and

their detailed information are given in Appendix C. The data are obtained from Refinitiv

DataScope Select provided by Thomson Reuters Tick History.

Table 2 presents the descriptive statistics of the nominal and inflation-indexed bond
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Table 2: Descriptive statistics of government bond yields and yield spreads.

Maturity
Nominal bonds Indexed bonds Term spread Break-even inflation

2Y 10Y 20Y 2Y 10Y 2Y10Y 2Y20Y BEI2Y BEI10Y

Panel A: observed 30-second returns

ave(∆ỹi) -0.003 -0.005 -0.004 -0.007 -0.006 -0.002 -0.001 0.004 0.000
std(∆ỹi) 0.483 0.259 0.216 0.392 0.276 0.334 0.332 0.410 0.223
med(|∆ỹi|) 0.390 0.300 0.200 0.500 0.300 0.300 0.290 0.405 0.020

Panel B: microstructure noise

p-value 0.000 0.147 0.179 0.000 0.127 0.007 0.057 0.000 0.000
rejection rate 0.709 0.391 0.311 0.695 0.378 0.676 0.483 0.808 0.748
noise level η 0.121 0.121 0.103 0.152 0.124 0.154 0.146 0.176 0.066

The bond data are 30-second observations in the 2.5-hour window around FOMC announcements, CPI and
non-farm payroll news releases from January 2015 to March 2020. All statistics are in basis points. The p-value
refers to the autocorrelation based test for microstructure noise proposed by Aı̈t-Sahalia and Xiu (2019). The
fraction of rejecting the null of no noise using the same test at 5% significance level is reported in row labeled
rejection rate. The average noise level is estimated using Proposition 1 of Lee and Mykland (2012).

yields, as well as the respective spreads. We study two term spreads and two break-

even inflation rates at different horizons: the yield differential between the 10-year and

2-year nominal bonds (2Y10Y), the 20-year and 2-year nominal bonds (2Y20Y), the 2-

year nominal and inflation-indexed bonds (BEI2Y), and the 10-year nominal and inflation-

indexed bonds. Panel A of Table 2 shows the mean and standard deviation of observed

30-second yield changes in basis points. The average yield change is always close to zero,

and the standard deviation varies between 0.2 to 0.5 basis points. The last row in Panel A

presents the median of the absolute 30-second yield change to gauge the typical movements

in each series. All of them are well below one basis point and decrease as the horizon

increases. This trend is in line with the smaller standard deviation for longer-horizon

series.

Panel B of Table 2 provides evidence on the prevalence of market microstructure noise

in the bond data. We report the median p-value and the percentage of rejections at a 5%

level for the autocorrelation based noise test proposed by Aı̈t-Sahalia and Xiu (2019). The

small p-values and high rejection rates of no noise, particularly for shorter-term bond yields
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and yield spreads, support the importance of our noise-robust method proposed in Section

2. The noise level in the last row of Table 2 reports the average value of the estimated

η, obtained using the noise estimator of Lee and Mykland (2012). This estimator has the

ability to account for autocorrelated noise and jumps in the bond yields. The noise level

has similar magnitudes to the high noise level used in the simulation in Section 3 across

different bonds and spreads.

We also examine the time-variation of spreads over the 2.5-hour time interval around

news announcements. Figure 4 depicts the 10% and 90% quantiles of observed changes

in the 20-year-2-year term spread and 10-year break-even inflation across the 41 FOMC

announcements. It is evident that the return of the 20-year-2-year term spread has higher

variations than that of the 10-year break-even inflation, consistent with the statistics from

Table 2. The FOMC press release time at 2:00 p.m. is accompanied by a spike in the

quantile range in both panels. The quantile range widens after the announcement time,

Figure 4: Quantile range of changes in yield spreads around FOMC announcements.

(a) 20-year-2-year term spread
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This figure depicts the 10% and 90% quantile of 30-second changes in the spread of bond yields in
basis points across 41 FOMC announcements in the sample. Panel (a) depicts the spread between
the 20-year and 2-year nominal bond yields, and Panel (b) shows the yield spread between the
10-year nominal and inflation-indexed bonds.
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suggesting larger post-event variance in the spread. The post-event volatility is estimated

below using data starting from 30 minutes after the announcement time. Figure 4 also

suggests the existence of gradual jumps, i.e. the yield adjustments pick up slightly before

the announcement time in some cases, and trigger strongly elevated returns over a few 30-

second observations. Therefore, instead of using Equation (4) to estimate the event return,

we use ∆P̂τn = P̂τn+2 − P̂τn−Mn−1. That is, the three return observations from 30-second

pre-announcement to 1-minute post-announcement are all included in the estimated event

return. The gradual adjustment may be considered a feature of the market microstructure

noise, which results from a thin order book as discussed at length by Barndorff-Nielsen et

al. (2009). Further details on the estimation and the testing procedure are discussed in the

next section.

4.2 Jumps in yield spreads

One advantage of high-frequency statistical methods is that we can zoom in on each

individual announcement or news release separately, and analyze their distinct effects on

the bond yields and yield spreads. We examine locally around each news release whether

the yield spreads jump using the two-step IUT procedure based on the χ2 test and estimate

their jump sizes. Parameter values for the pre-average return and volatility estimation are

chosen as described in Sections 3 and 4.1. In estimating the pre- and post-event volatility,

we use 1-hour estimation windows starting from one hour before and half an hour after

the event time, respectively. Furthermore, thresholding techniques are employed to remove

jumps that may occur within those estimation windows. In line with the pre-averaging

methods proposed by Koike (2016), we apply a universal threshold based on the median

absolute deviations of the pre-average returns for volatility estimation. The volatility is

estimated using pre-averaged yields of three-minute windows.

Table 3 summarizes the results from the two-step testing procedure. For each event
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Table 3: Rejection frequencies in each step of the IUT test procedure at news release
times between 2015 and 2020.

Term spread Break-even inflation

Event Jump 2Y10Y 2Y20Y BEI2Y BEI10Y

Monetary policy: Bond yields (Step 1) 0.659 0.683 0.537 0.268
41 FOMC releases Yield spread (Step 2) 0.073 0.268 0.073 0.073

Inflation: Bond yields (Step 1) 0.571 0.571 0.476 0.349
63 CPI releases Yield spread (Step 2) 0.111 0.159 0.063 0.127

Employment: Bond yields (Step 1) 0.851 0.872 0.872 0.532
47 NFP releases Yield spread (Step 2) 0.106 0.340 0.191 0.128

Term spread refers to the spread between a pair of nominal U.S. government bond yields with a 10-
year and 2-year maturity (2Y10Y) and a 20-year and 2-year maturity (2Y20Y), respectively. Break-even
inflation is the spread between a nominal and an inflation-indexed bond yields of the same maturity.
We consider the 2-year (BEI2Y) and 10-year (BEI10Y) break-even inflation. We use the 1% level of
significance and a 1.5-minute jump window at the announcement time to allow for delayed or gradual
adjustments. The number in the row for the bond yields (Step 1) represents the fraction of the total
number of news releases where the bivariate χ2-jump test rejects the null of no jump in the two asset
prices. The number in the row for the yield spread (Step 2) represents conditional on a rejection in the
first step, the fraction of news releases where the test for equal event returns is rejected.

type and the four different yield spreads, we report the frequencies of detecting a jump in

at least one of the two bond yields (Step 1) and detecting a jump in the spread between

them (Step 2). These results show that for all three types of news releases, usually more

than 50% of them trigger a jump in at least one of the two bond yields. The largest

percentages come from the release of non-farm payrolls, where about 87% of all 47 news

releases are associated with a jump in either the 2-year, 10-year or 20-year bond yields.

However, this high probability of jumps in the bond yields across the different events does

not translate to jumps in the yield spreads. The occurrence of jumps in spreads is much

less likely, ranging from 6.3% to 34% of the respective releases. Comparing the percentages

of jumps in bond yields and jumps in yield spreads for each event type, it appears that for

the shorter-horizon in columns three and five, roughly 10–20% of the jumps in bond yields

are accompanied by a jump in yield spreads. A similar homogeneity across the types of
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news releases exists for the longer-horizon yield spreads reported in column four and six.

However, the fraction of the jumps in bond yields that are accompanied by a jump in yield

spreads is around 25–40%.

To obtain a better understanding of the response patterns of the bond yields and spreads

across different news releases, Figure 5 shows the scatter plots of the estimated event returns

of two pairs of bond yields. We use the 2-year and 20-year bond yields (left column)

and 10-year nominal and inflation-indexed bond yields (right column) as examples, but

other combinations of bond yields show similar patterns. The empty circles represent the

situations where the two-step IUT procedure based on the χ2 bivariate jump test does not

detect a jump in the spread, and the green circles denote the pairs of event returns where

a jump is detected in their spread. It is evident from Figure 5 that across all three types

of news releases, the term spread and break-even inflation do not jump in most cases. The

combinations of event returns that relate to significant jumps in yield spreads are further

away from the 45◦ line for the term spread than for break-even inflation. This implies that

the region (A), where no jump in the yield spread can be detected, is usually wider for the

term spread than for break-even inflation. As a result, some pairs of event returns that

appear quite far away from the 45◦ line are not classified as jumps in the term spread, while

they would suffice to be detected as a jump in break-even inflation.

Despite the varying frequencies and magnitudes of jump sizes, the plots show a high

degree of similarity across the monetary policy, inflation and employment news releases.

Event returns that are associated with a jump in the respective yield spread seem to cluster

around a very similar area across the different types of news announcements. Jumps in

the term spread usually result from much stronger yield adjustments in the 2-year bond

compared with the 20-year bond. Jumps in the break-even inflation rates are usually

associated with stronger responses in the nominal than the inflation-indexed bond yields.

This implies that over the time period from 2015 to 2020, the news releases that have
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Figure 5: Estimated even returns of U.S. government bonds at news release times in
2015–2020.

(a) Term spread: Monetary policy
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(b) BEI: Monetary policy
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(c) Term spread: Inflation
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(d) BEI: Inflation
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(e) Term spread: Employment
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(f) BEI: Employment
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Panels in the left column depict the estimated event returns for nominal bonds with 20 years (20Y) and 2
years (2Y) maturity. Panels in the right column plot the estimated event returns for the 10-year nominal
and inflation-indexed bonds. Based on the IUT procedure, the empty circles represent situations without
a jump in the respective yield spread. The green circles represent cases where a jump in the spread is
detected at the 1% level. The event returns are estimated using a 1.5-minute jump window.
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significant effects on yield spreads tend to narrow the term spread and increase the break-

even inflation.

Table 4 shows the average magnitude of jumps in the yield spreads for the three different

news releases. The release of non-farm payroll data has the strongest impact on the term

spreads and break-even inflation. It alters the 10-year-2-year term spread by 4 basis points

on average, and the 2-year break-even inflation by 3.2 basis points. In comparison with

the median absolute change in the yield spreads across all 30-second observations reported

in Table 2, the average size of the spread jump is huge. Consistent with the result from

Table 3 where the FOMC announcements lead to the fewest number of jumps in break-

even inflation, they also result in the smallest jump sizes of 1.9 and 0.6 basis points. Still,

compared with median absolute changes in the yield spreads, these detected jumps are

sizeable.

Table 4: Average jump size of yield spreads in basis points at news release times between
January 2015 and March 2020.

Event
Term spread Break-even inflation

2Y10Y 2Y20Y BEI2Y BEI10Y

Monetary policy 1.903 3.013 1.880 0.606

Inflation 1.430 1.887 2.259 0.913

Employment 4.000 3.693 3.155 0.749

The number in each cell shows the average of absolute jump return in basis
points. Jump sizes are estimated using 1.5-minute window at the announce-
ment times.
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5 Conclusion

This paper argues that inference about jumps in the yield spread of two bonds requires a

joint approach that includes evidence on jumps in the two underlying bond yield processes.

This requirement is an immediate consequence of the high-frequency model, where a jump

in the spread exists only if at least one of the underlying yield processes has a jump. Ignoring

this inherent connection by basing inference only on a univariate jump test applied to the

spread tends to overestimate the number of jumps in yield spreads and puts the coherence

of test results at risk. We propose an intersection union test (IUT) for jumps in the spread,

which explicitly takes into account the joint jump behavior of the two bond yields and their

spread. The proposed IUT uses a two-step procedure that includes testing the hypothesis

of no jumps in both underlying bond yields against a jump in at least one of the two yield

processes. We propose a bivariate jump test for this task. The methods we employ are

robust to the presence of market microstructure noise in the observed bond yield data.

Monte Carlo simulations reveal good finite sample properties of the proposed two-step test

procedure.

We use the two-step IUT procedure to analyze high-frequency responses of government

bond yields to monetary policy announcements, inflation and employment releases in

the period of 2015–2020. Focusing on two term spreads and two break-even inflation

rates at different horizons, the empirical results show that in contrast to jumps in bond

yields, jumps in term spreads and break-even inflation are rare events. Despite differences

in the frequency and magnitude of jumps in yield spreads across the different types of

news releases, our analyses show that the respective high-frequency response pattern of

the underlying bond yields are quite similar. Given the distinct information content of

monetary policy, inflation and employment news releases, this homogeneity deserves more

comprehensive empirical investigations that go beyond the purpose of the present paper.
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Although the methodology proposed in this paper is illustrated in the context of govern-

ment bonds and yield spreads, it can directly be applied to other high-frequency asset price

data. For example, stocks that are cross-listed in different stock exchanges are expected

to have the same movements under the different listings. We can use the IUT procedure

to discover mis-pricing or synergies between them, especially at the time when earnings

announcements are released.
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Pástor, L. and Veronesi, P. (2012) Uncertainty about government policy and stock prices,

Journal of Finance 67, 1219–1264.

Podolskij, M., Vetter, M., 2009. Estimation of volatility functionals in the simultaneous

presence of microstructure noise and jumps. Bernoulli 15 (3), 634–658.

Podolskji, M. and Ziggel, D. (2010), New tests for jumps in semimartingale models, Stat.

Inference Stoch. Process. 13 (1), 15–41.

Swanson E.T. (2021), Measuring the effects of federal reserve forward guidance and asset

purchases on financial markets, Journal of Monetary Economics 118, 32–53.

Winkelmann, L., Bibinger, M. and Linzert, T. (2016) ECB monetary policy surprises:

Identification through cojumps in interest rates, Journal of Applied Econometrics 31 (4),

613–629.

Yang,P.R. (2020) Using the yield curve to forecast economic growth, Journal of Forecasting

39, 1057–1080.

34



SUPPLEMENTARY ONLINE APPENDIX

A Assumptions

In this appendix, we are more precise about the underlying semimartingale model which

directly translates from Bibinger et al. (2019). The assumptions impose the maximal

degree of generality that still allow the estimation of pre-averaged prices (3) and returns

(4) in the context of Proposition 2.1. We consider (1) on some filtered probability space

(Ω,F , (Ft),P). The jumps Jt in (1) are split into compensated (small) jumps and finitely

many large jumps:

Jt =

∫ t

0

∫
R2

δ(s, z)1{|δ(s,z)|≤1}(µ− ν)(ds, dz) +

∫ t

0

∫
R2

δ(s, z)1{|δ(s,z)|>1}µ(ds, dz), (15)

with the jump size function δ, defined on Ω×R+×R2, and the Poisson random measure µ,

which is compensated by ν(ds, dz) = λ(dz)⊗ds with a σ-finite measure λ. The smoothness

of the elements of the drift b
(i)
t and σ

(i,j)
t , i, j = a, b of spot squared volatility Σt = σtσ

′
t is

defined by the following assumption:

Assumption 1 In (1), for assets i, j = a, b, the drift (b
(i)
t )t≥0 is a locally bounded process.

The volatilities never vanish, inft∈[0,1] σ
(i,i)
t > 0 almost surely. For all 0 ≤ t + s ≤ 1,

t ≥ 0, some constants Cn, C̃n > 0, some β > 1/2 and for a sequence of stopping times Tn

increasing to ∞, we have that

∣∣∣E[σ(i,j)
(t+s)∧Tn − σ

(i,j)
t∧Tn |Ft

]∣∣∣ ≤ Cn s
β , (16)

E
[

sup
t∈[0,s]

|σ(i,j)
(t+t)∧Tn − σ

(i,j)
t∧Tn|

2
]
≤ C̃n s . (17)

We impose the following regularity conditions on the (co)jumps
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Assumption 2 Assume for the predictable function δ in (15) that supω,x |δ(t, x)|/γ(x) is

locally bounded with a non-negative deterministic function γ that satisfies

∫
R2

(γr(x) ∧ 1)λ(dx) <∞ , (18)

with jump activity index r, 0 ≤ r < 4/3.

The index r in (18) measures the (co)jump activity of the bond yields in (1). Smaller values

of r make (16) more restrictive. r = 0 results in finite-activity jumps and r = 1 implies

jumps that are summable. The upper bound on r is proved by Bibinger et al. (2019) to

make the univariate version of Proposition 2.1 hold.

B Proof

Proposition 2.1

We fill the missing part of the proof of Proposition 3.1 of Bibinger et al. (2019) for the

bivariate model. We state here only the crucial extensions of the covariance of the Brownian

component and the noise. The higher order n of the drift part allows us to neglect the

drifts. Properties of the pre-averaged estimator (drift, Brownian and jump parts) for the

individual bonds i = a, b, including the mixed normality is shown in Bibinger et al. (2019),

and carry over to the bivariate setting. Hence the missing part which proves Proposition

2.1 is the covariance between the Brownian components Ct and noise ε of the two assets at

some known stopping time τ , respectively.

We rewrite the vector of pre-averaged returns of the observed yields in terms of in-

crements ∆ỹi = ỹi − ỹi−1, and study the independent Brownian and noise component
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separately.

M−1
n

(
Mn−1∑
k=0

ỹτn+k −
−1∑

k=−Mn

ỹτn+k

)
= M−1

n

Mn−1∑
k=0

(ỹτn+k − ỹτn+k−Mn)

= M−1
n

(
Mn−1∑
k=1

∆ỹτn+k(Mn − k) +
Mn−1∑
k=0

∆ỹτn−k(Mn − k)

)
(19)

The strategy of the proof in Bibinger et al. (2019) is then to exploit the above equation

with respect to the individual signal parts of the process y
(i)
t , i = a, b in (2) and (1). For

the covariance of the increments of the Brownian components this gives:

Cov

[
Mn−1∑
k=1

∆C
(a)
(τn+k)/n

Mn − k
Mn

+
Mn−1∑
k=0

∆C
(a)
(τn−k)/n

Mn − k
Mn

,

Mn−1∑
k=1

∆C
(b)
(τn+k)/n

Mn − k
Mn

+
Mn−1∑
k=0

∆C
(b)
(τn−k)/n

Mn − k
Mn

]

=
Mn−1∑
k=1

E
[
∆C

(a)
(τn+k)/n∆C

(b)
(τn+k)/n

](
1− k

Mn

)2

+
Mn−1∑
k=0

E
[
∆C

(a)
(τn−k)/n∆C

(b)
(τn−k)/n

](
1− k

Mn

)2

,

with uncorrelated increments on disjoint intervals in case of stochastic volatility. Itô

isometry,

E

[∫ t

0

σ(a,a)
s dW (a)

s

∫ t

0

σ(b,b)
s dW (b)

s

]
=

∫ t

0

E[σ(a,a)
s σ(b,b)

s ]ρ(a,b)s ds,

and the smoothness of the volatility and correlation imply that

E
[
∆C

(a)
(τn+k)/n∆C

(b)
(τn+k)/n|Fτ

]
= E

[∫ (τn+k)/n

(τn+k−1)/n
σ(a,b)
s ds|Fτ

]
+OP (n−2)

=
ρ
(a,b)
τ σ

(a,a)
τ σ

(b,b)
τ

n
+OP

(√
Mn

n
n−1

)
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for k = 1, ...,Mn − 1. Similarly, we obtain to the left of τ

E
[
∆C

(a)
(τn−k)/n∆C

(b)
(τn−k)/n|Fτ

]
= E

[∫ (τn−k)/n

(τn−k−1)/n)
σ(a,b)
s ds|Fτ

]
+OP (n−2)

=
ρ
(a,b)
τ− σ

(a,a)
τ− σ

(b,b)
τ−

n
+OP

(√
Mn

n
n−1

)
.

The increments in iid noise contribute

E
[
∆ε

(a)
τn−k∆ε

(b)
τn−k|Fτ

]
= E

[
(ε

(a)
τn−k − ε

(a)
τn−k−1)(ε

(b)
τn−k − ε

(b)
τn−k−1)

]
= 2η(a,b).

Finally, in conjunction with the identities

Mn−1∑
k=1

(
1− k

Mn

)2

=
1

3
Mn −

1

2
+

1

6
M−1

n , and
Mn−1∑
k=0

(
1− k

Mn

)2

=
1

3
Mn +

1

2
+

1

6
M−1

n ,

we obtain the asymptotic covariance of event returns of asset a and b:

√
MnE

[
∆ŷ(a)τn ∆ŷ(b)τn

]
→

(
ρ
(a,b)
τ σ

(a,a)
τ σ

(b,b)
τ

3
+
ρ
(a,b)
τ− σ

(a,a)
τ− σ

(b,b)
τ−

3

)
c2 + 2η(a,b). (20)

C Data on government bonds

Tables A.1 provides information on the U.S. Treasury bonds used in the empirical analyses.

We use maturities that are closest to 2, 10 and 20 years at the time of each news release

as proxies to extract data on the bond yields.
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Table A.1: The list of U.S. Treasury bonds used in the empirical analyses.

Treasury Inflation-Protected Securities

CUSIP Coupon Maturity CUSIP Coupon Maturity

912828GD6 2.375 1/15/2017 912828SA9 0.125 1/15/2022
912828SQ4 0.125 4/15/2017 912810FR4 2.375 1/15/2025
912828GX2 2.625 7/15/2017 912828H45 0.250 1/15/2025
912828HN3 1.625 1/15/2018 912828XL9 0.375 7/15/2025
912828UX6 0.125 4/15/2018 912828N71 0.625 1/15/2026
912828JE1 1.375 7/15/2018 912828S50 0.125 7/15/2026
912828JX9 2.125 1/15/2019 912828V49 0.375 1/15/2027
912828C99 0.125 4/15/2019 9128282L3 0.375 7/15/2027
912828LA6 1.875 7/15/2019 9128283R9 0.500 1/15/2028
912828MF4 1.375 1/15/2020 912810FD5 3.625 4/15/2028
912828K33 1.375 4/15/2020 912828Y38 0.750 7/15/2028
912828NM8 1.250 7/15/2020 9128285W6 0.875 1/15/2029
912828PP9 1.125 1/15/2021 912810FH6 3.875 4/15/2029
912828Q60 0.125 4/15/2021 9128287D6 0.250 7/15/2029
912828QV5 0.625 7/15/2021 912828Z37 0.125 1/15/2030

Treasury Bonds

CUSIP Coupon Maturity CUSIP Coupon Maturity

912810DX3 7.500 11/15/2016 912810EY0 6.500 11/15/2026
912810DY1 8.750 5/15/2017 912810EZ7 6.625 2/15/2027
912810DZ8 8.875 8/15/2017 912810FA1 6.375 8/15/2027
912810EA2 9.125 5/15/2018 912810FB9 6.125 11/15/2027
912810EB0 9.000 11/15/2018 912810FE3 5.500 8/15/2028
912810EC8 8.875 2/15/2019 912810FF0 5.250 11/15/2028
912810ED6 8.125 8/15/2019 912810FG8 5.250 2/15/2029
912810EE4 8.500 2/15/2020 912810FJ2 6.125 8/15/2029
912810EF1 8.750 5/15/2020 912810FP8 5.375 2/15/2031
912810EG9 8.750 8/15/2020 912810FT0 4.500 2/15/2036
912810EH7 7.875 2/15/2021 912810PT9 4.750 2/15/2037
912810EJ3 8.125 5/15/2021 912810PU6 5.000 5/15/2037
912810EK0 8.125 8/15/2021 912810PW2 4.375 2/15/2038
912810EL8 8.000 11/15/2021 912810PX0 4.500 5/15/2038
912810ES3 7.500 11/15/2024 912810QA9 3.500 2/15/2039
912810ET1 7.625 2/15/2025 912810QB7 4.250 5/15/2039
912810EV6 6.875 8/15/2025 912810QC5 4.500 8/15/2039
912810EW4 6.000 2/15/2026 912810QD3 4.375 11/15/2039
912810EX2 6.750 8/15/2026 912810QE1 4.625 2/15/2040
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