
Aus dem Institut für Biometrie und Klinische Epidemiologie
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin
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Abstract

Background
A valid sample size calculation is a key aspect for ethical medical research. While the sample
size must be large enough to detect an existing relevant effect with sufficient power, it is at the
same time crucial to include as few patients as possible to minimize exposure to study related
risks and time to potential market approval. Different parameter assumptions, like the expected
effect size and the outcome’s variance, are required to calculate the sample size. However,
even with high medical knowledge it is often not easy to make reasonable assumptions on
these parameters. Published results from the literature may vary or may not be comparable to
the current situation. Adaptive designs offer a possible solution to deal with those planning diffi-
culties. At an interim analysis, the standardized treatment effect is estimated and used to adapt
the sample size. In the literature, there exists a variety of strategies for recalculating the sample
size. However, the definition of performance criteria for those strategies is complex since the
second stage sample size is a random variable. It is also known since long that most existing
sample size recalculation strategies have major shortcomings, such as a high variability in the
recalculated sample size.

Methods
Within Thesis Article 1, me and my coauthors developed a new performance score for compa-
ring different sample size recalculation rules in a fair and transparent manner. This performance
score is the basis to develop improved sample size recalculation strategies in a second step.
In Thesis Article 2, me and my supervisor propose smoothing corrections to be combined with
existing sample size recalculation rules to reduce the variability. Thesis Article 3 deals with the
determination of the second stage sample size as the numerical solution of a constrained opti-
mization problem, which is solved by a new R-package named adoptr. To illustrate the relation
of the three Thesis Articles, all new approaches are applied to a clinical trial example to show
the methods’ benefits in comparison to an established sample size recalculation strategy.
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Results
The global aim of defining high-performance sample size recalculation rules was approached
considerably by my work. The performance of adaptive designs with sample size recalculation
can now be compared by means of a single comprehensive score. Moreover, our new smoo-
thing corrections define one possibility to improve an existing sample size recalculation rule with
respect to this new performance score. The new software further allows to directly determine
an optimal second stage sample size with respect to predefined optimality criteria.

Conclusions
I was able to reduce methodological shortcomings in sample size recalculation by four aspects:
providing new methods for 1) performance evaluation, 2) performance improvement, 3) perfor-
mance optimization and 4) software solutions. In addition, I illustrate how these methods can
be combined and applied to a clinical trial example.



Zusammenfassung

Hintergrund
Eine valide Fallzahlberechnung ist ein zentraler Aspekt für ethische medizinsiche Forschung.
Während die Fallzahl groß genug sein muss, um einen vorliegenden relevanten Effekt mit
genügend großer Power zu entdecken, ist es gleichzeitig wichtig, so wenig Patient*innen wie
möglich einzuschließen, um studienbezogene Risiken sowie die Zeit bis zur Marktzulassung zu
minimieren. Verschiedene Parameterannahmen, wie die erwartete Effektgröße und die Varianz
des Endpunktes, werden benötigt, um die Fallzahl zu berechnen. Auch mit hoher medizinischer
Expertise ist es häufig nicht einfach, die zugrundliegenden Parameterannahmen zu treffen.
Publizierte Ergebnisse aus der Literatur können variieren oder auf die aktuelle Situation nicht
übertragbar sein. Adaptive Designs sind eine Möglichkeit, um mit diesen Planungsunsicher-
heiten umzugehen. Zur Zwischenanalyse wird der Behandlungseffekt geschätzt und genutzt,
um die Fallzahl anzupassen. In der Literatur gibt es eine Vielzahl an Strategien die Fallzahl
anzupassen. Die Definition von Beurteilungskriterien dieser Strategien ist jedoch komplex, da
die Fallzahl der zweiten Stufe eine Zufallsvariable ist. Hinzu kommt, dass viele existierende
Fallzahlrekalkulations-Strategien Defizite haben, beispielsweise eine hohe Variabilität in der
rekalkulierten Fallzahl.

Methoden
Im Promotionsartikel 1 entwickelten meine Koautor*innen und ich einen neuen Performance-
Score für einen fairen und transparenten Vergleich von Fallzahlrekalkulations-Strategien. Dieser
Performance-Score diente im zweiten Schritt als Basis, um verbesserte Fallzahlrekalkulations-
Strategien zu entwickeln. Hierfür schlugen meine Betreuerin und ich im Promotionsartikel 2
Smoothing-Korrekturen zur Varianzreduktion vor, die mit bereits existierenden Fallzahlrekalku-
lations-Strategien kombiniert werden können. Im Promotionsartikel 3 wurde die Fallzahl der
zweiten Stufe als numerische Lösung eines Optimierungsproblems aufgefasst, welche durch
das neue R-Paket adoptr berechnet wird. Um den Zusammenhang der drei zugrundeliegenden
Artikel zu illustrieren, wurden die neuen Methoden auf ein klinisches Studienbeispiel angewandt
und ihre Vorteile gegenüber einer etablierten Fallzahlrekalkulations-Strategie erläutert.
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20 Abstract

Ergebnisse
Das übergeordnete Ziel qualitativ hochwertige Fallzahlrekalkulations-Strategien zu definieren,
wurde durch meine Arbeit beträchtlich vorangetrieben. Die Performance von adaptiven De-
signs mit Fallzahlrekalkulation kann nun durch einen umfassenden Score beurteilt werden.
Darüberhinaus stellen die neuen Smoothing-Korrekturen eine Möglichkeit dar, um Fallzahlre-
kalkulations-Strategien hinsichtlich des neuen Performance-Scores zu verbessern. Die neue
Software erlaubt darüber hinaus, eine optimale Fallzahl der zweiten Stufe in Bezug auf vorab
definierte Optimalitätskriterien zu bestimmen.

Schlussfolgerungen
Im Rahmen dieser Arbeit habe ich durch vier Aspekte dazu beigetragen, methodische Defizite
im Bereich der Fallzahlrekalkulation zu reduzieren: 1) Performance-Bewertung, 2) Performance-
Verbesserung, 3) Performance-Optimierung und 4) Software-Lösungen. Zusätzlich wird illus-
triert wie diese Methoden kombiniert und auf ein klinisches Studienbeispiel angewandt werden
können.



1 Introduction

It is the common interest of patients, medical professionals, authorities, and pharmaceutical
companies to demonstrate “efficacy and safety of new treatments” in clinical trials (Bretz et al.,
2017). After the clinical goal is defined, it is the biostatistician’s responsibility to suggest an
appropriate statistical design (Dragalin, 2006). One major statistical design aspect is the sample
size determination. Sample size calculation is one of the most common topics in biostatistical
consulting and an important criterion for judging medical research projects by ethics committees
(Kieser, 2018). The sample size is calculated to detect a relevant treatment effect with sufficient
power while the type I error rate is protected. In the ICH-E9 guideline it is stated on page 19
that the

“number of subjects in a clinical trial should always be large enough to provide a
reliable answer to the questions addressed” (ICH, 1998).

Indeed, in a study with too small sample size, time and money would be wasted without the
chance of reaching the study aim. On the other hand, if more patients than necessary are re-
cruited, later recruited patients in the inferior arm are unnecessarily treated with a less effective
treatment, although evidence for the other arm is already sufficient and the market approval is
unnecessarily prolonged. Determining the “correct” sample size is therefore a critical task. To
perform sample size calculation, several parameter assumptions are required which are based
on medical knowledge and on published findings from the literature. While the power and sig-
nificance level leave only little room for discussion, it is a much more difficult task to determine
the targeted treatment effect and the outcome’s variance, as historical studies might not be
comparable to the current situation, deviate in their findings or even do not exist at all. Hence,
the sample size may be calculated based on vague assumptions and is therefore ethically ques-
tionable. In addition, Koch (2006) points out the difficult prediction of placebo responses and
therefore misguidingly calculated sample sizes as one reason for study failures.

To deal with planning uncertainties related to sample size determination, the idea of updating
the sample size during an ongoing trial seems appealing. Adaptive group sequential designs
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present the framework for this. While in a classical study design, the sample size of the trial
is fixed before the recruitment of patients starts, adaptive designs allow for an update of the
sample size during an ongoing trial. Especially for studies that recruit over a longer period of
time, interim looks seem appealing. Jennison and Turnbull (1999) state that sequential methods
often reduce time and costs compared to a fixed sample size design. In an adaptive design,
one or more interim analyses are integrated. Those interim analyses include the opportunity of
stopping early due to either futility or early proof of efficacy, or due to safety reasons. Otherwise,
the study continues with the subsequent stage and further patients are included. The innovative
aspect is that adaptive designs allow for trial design modifications based on the results of the
interim analysis or new external information. Bauer et al. (2016) state on page 339:

“Adaptive confirmatory designs have shaken the classical design paradigm that the
details of the design and statistical analysis all have to be laid down in advance.”

Whereas in principle, adaptive designs allow various design modifications such as a change of
the target population, a switch in endpoints or drop of study arms, sample size recalculation can
be seen as the most prominent adaptive design element (Bauer et al., 2016). Thereby, sample
size recalculation in adaptive designs is not restricted to a particular medical research area. Ap-
plications of such designs can be found in research on Alzheimer’s disease (Wang et al., 2015),
knee osteoarthritis (Bowden and Mander, 2014), schizophrenia (Mehta and Pocock, 2011), can-
cer (Mauer et al., 2012), depression (Fedgchin et al., 2019), sepsis (Hager et al., 2019) or
multiple sclerosis (Zajicek et al., 2012). Adaptive study designs are the subject of regulatory
guidance documents in Europe and the United States and there is still active methodological
research ongoing, also with respect to other study types than classical randomized, controlled
trials, e.g., for single-arm phase IIa trials (Schmidt et al., 2018) or diagnostic studies (Stark
and Zapf, 2020). The European Medicines Agency (EMA) through its Committee for Medicinal
Products for Human Use (2007) provided the first regulatory guidance on adaptive designs with
a clear focus on caution. In line with this, the Food and Drug Administration (FDA) (2019) re-
cently published their finalized guidance on adaptive designs for medical device clinical studies
including principles for the design, performance and report.
There exists a variety of so called sample size recalculation rules in the literature. In here, the fo-
cus is on sample size recalculation after unblinded interim analyses, which allows to re-estimate
the treatment effect. The treatment effect is a main parameter and often subject to uncertainty
(Wassmer and Brannath, 2016, Kieser, 2020). In contrast, blinded interim analyses can only be
used to re-estimate nuisance parameters such as the outcome’s variance (Kieser and Friede,
2003, Proschan, 2009). Blinded interim analyses will not be the topic in the remainder of this
thesis. Many of the published sample size recalculation rules rely on conditional power argu-
ments, e.g., Proschan and Hunsberger (1995), Cui et al. (1999), Denne (2001), Shun et al.
(2001), Posch et al. (2003), Chen et al. (2004), Gao et al. (2008), Mehta and Pocock (2011).
The conditional power depends on the true treatment effect and different approaches exist to
deal with this unknown parameter. For example, the assumed conditional power describes the
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probability of correctly rejecting the null hypothesis at the end of the trial based on the assumed
treatment effect in the planning stage, compare e.g. Bauer and König (2006). The observed
conditional power describes the probability of correctly rejecting the null hypothesis at the end
of the trial given the data observed at interim. Extended approaches are given by Mehta and
Patel (2006) who suggested to also take economic considerations into account and Mehta and
Pocock (2011) who proposed a decision rule approach to update the sample size. This ap-
proach was extended by requiring a minimum conditional power for an increase in sample size
(Hsiao et al., 2019). Jennison and Turnbull (2015) suggested a cost benefit approach where the
number of patients is outweighed against an increased conditional power. Pilz et al. (2019) pro-
posed a general formulation of an optimization approach for a two-stage design taking first and
second stage parameters into account. These are just some examples of the broad literature
published on sample size recalculation.

Despite the great variety of sample size recalculation approaches, there exists no clear guid-
ance on how to choose and compare a specific design. Neither the EMA nor the FDA give com-
ments on this aspect in their related guidelines (European Medicines Agency (EMA) through its
Committee for Medicinal Products for Human Use, 2007, Food and Drug Administration (FDA),
2019). Whereas for a standard fixed design, performance assessment is well established with
respect to evaluating sample size and power, the performance assessment of adaptive designs
is more complex, as the conditional power and second stage sample size are random variables
in this case. Sample sizes are usually updated based on the observed interim data in adaptive
designs (Kieser, 2020). The observed interim effect, however, is usually based on rather small
interim sample sizes and is thus subject to a considerable random error. This may “lead to
highly variable second-stage sample sizes” (Dragalin, 2006). Therefore, Wassmer and Bran-
nath (2016) suggest to consider and calculate the conditional power for a range of effect sizes.
Another strategy to account for the variability of the interim effect estimate is to use Bayesian
conditional power concepts for sample size recalculation, which rely on a prior distribution for
the interim effect (Spiegelhalter and Freedman, 1986, Dmitrienko and Wang, 2006). Besides
the variability in sample size, other points of criticism are that recalculated sample sizes are
very large and the fact that the target power is often not met (Bauer and Köhne, 1994, Levin
et al., 2013). Therefore, to fully profit from the benefits of adaptive sample size recalculation,
there remain open methodological tasks to be solved. Another important aspect is the avail-
ability of software, which is essential for the application and thus also recognition of statistical
methodology (Bauer et al., 2016), since adaptive designs are often related to high compu-
tational requirements. Software reviews on adaptive designs can be found in Wassmer and
Vandemeulebroecke (2006), Tymofyeyev (2014), Wassmer and Brannath (2016), Grayling and
Wheeler (2020). Commercial software for sample size recalculation is provided by, e.g., East®

(Cytel, 2020) with ADAPT® and SURVADAPT®. Within the open source software R (R Core
Team, 2021), there also exist several related packages, compare e.g., Vandemeulebroecke
(2009), Wassmer and Pahlke (2021). Nevertheless, Bauer et al. (2016) emphasize the need
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for software. Pallmann et al. (2018) even go further and mention unavailable software as time-
limiting factor when considering the application of adaptive study designs.

This thesis is structured as follows: After this introduction, in the methods section, I describe
the underlying study setting, the basic mathematical framework and the methodology developed
within this thesis. In the results section, I summarize the results from the three Thesis Articles
and illustrate their relation by additional results of a comparative clinical trial example. In the
discussion section, I highlight the achievements and the limitations of my work in the context
of the existing literature, describe briefly the main aspects of the Thesis Related Articles and
deduce practical recommendations for applications. Moreover, I draw the final conclusions and
give an outlook for planned future work.

Aim of this thesis

My PhD position was funded by the German Research Foundation by the joint Berlin and Hei-
delberg project called “Optimal Rules for Adaptive reCalculation of sampLE size in clinical trials
(ORACLE)” (grant RA 2347/4-1). For this reason, the Heidelberg project partners define the
collaborators and coauthors of my work.
The global aim of this thesis is to overcome existing problems of adaptive designs with sample
size recalculation and to make a contribution to the optimization of such designs. This overall
aim is addressed in four steps: First, I will suggest a new performance score for adaptive study
designs which allows for a fair and comprehensive judgment and comparison of existing recal-
culation rules. Second, using this score, I will suggest methods to improve existing sample size
recalculation rules with respect to variability reduction. Third, optimal sample size recalculation
rules can be directly deduced by defining an optimization problem with predefined optimality
criteria, where the new performance score defines an attractive option. Finally, I will also fill the
gap of missing software.
These aspects are addressed in the following three Thesis Articles, which comprise my cumu-
lative thesis:

1) C. Herrmann, M. Pilz, M. Kieser, G. Rauch (2020). “A new conditional performance score
for the evaluation of adaptive group sequential designs with sample size recalculation.”
Statistics in Medicine, 39, 2067–2100. doi: 10.1002/sim.8534.

2) C. Herrmann, G. Rauch (2021). “Smoothing corrections for improving sample size re-
calculation rules in adaptive group sequential study designs.” Methods of Information in
Medicine, 60, 1-8. doi: 10.1055/s-0040-1721727.

3) K. Kunzmann1, M. Pilz1, C. Herrmann, G. Rauch, M. Kieser (2021). “The adoptr package:
1Authors contributed equally
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adaptive optimal designs for clinical trials in R.” Journal of Statistical Software, 98, 1-21.
doi: 10.18637/jss.v098.i09.

Apart from these three articles, during my thesis work, my collaborators and I wrote five other
Thesis Related Articles, which are in different publications stages:

I) M. Pilz, K. Kunzmann, C. Herrmann, G. Rauch, M. Kieser (2019). “A variational approach
to optimal two-stage designs.” Statistics in Medicine, 38:4159-4171. doi: 10.1002/sim.8291.

II) X. Li, C. Herrmann, G. Rauch (2020). “Optimality criteria for futility stopping bound-
aries for group sequential designs with a continuous endpoint.” BMC Medical Research
Methodology, 20, 274. doi: 10.1186/s12874-020-01141-5.

III) C. Herrmann1, C. Kluge1, M. Pilz, M. Kieser, G. Rauch (2021). “Improving sample size
recalculation rules in adaptive clinical trials by resampling.” Pharmaceutical Statistics. doi:
10.1002/pst.2122.

IV) M. Pilz, K. Kunzmann, C. Herrmann, G. Rauch, M. Kieser (2021). “Optimal planning of
adaptive two-stage designs.” Statistics in Medicine, 40, 3196-3213. doi: 10.1002/sim.8953.

V) M. Pilz, C. Herrmann, G. Rauch, M. Kieser. “Optimal unplanned design modification in
adaptive two-stage trials.” (submitted in 2020)

1Authors contributed equally





2 Methods

2.1 The underlying study setting

Within this thesis, a two-armed clinical trial with a normally distributed endpoint is considered.
The one-sided superiority test problem is formulated as

H0 : µI − µC ≤ 0 versus H1 : µI − µC > 0, (2.1)

where µI and µC refer to the population means in the intervention and the control group, re-
spectively. The study is planned with a two-stage adaptive group sequential study design with
a single interim analysis, following the recommendation of the European Medicines Agency
(EMA) through its Committee for Medicinal Products for Human Use (2007) to keep the number
of design modifications low. The global one-sided significance level is set to α. In the following,
the fundamentals of the considered adaptive design will be outlined. Details on the theory of
adaptive designs are provided, e.g., by Bretz et al. (2009), Wassmer and Brannath (2016). The
test statistic for the interim analysis, which is exclusively based on the data of the first stage, is
the standard test statistic of the two-sample Z-test given by

Z1 = XI,1 −XC,1
σ

·
√
n1
2 , (2.2)

where XI,1 and XC,1 are the observed means at interim per group. The variance σ2 is sup-
posed to be known and equal in both groups. Note that it can also be considered as the
Z-approximation of the t-test if the standard deviations are not known and σ is replaced by the
pooled standard deviation.
At the interim analysis after having observed n1 patients per group, the trial can be stopped
early or continued with the possibility to adapt the sample size:

• The trial is stopped after the first stage with the rejection of the null hypothesis if Z1 ≥ q1−α1 ,
where α1 is the local, adjusted one-sided significance level with α1 < α and q1−α1 is the

27
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corresponding standard normal quantile.

• The trial is stopped for futility after the first stage if Z1 < q1−α0 , where q1−α0 with α0 > α is
the futility stopping boundary.

• If q1−α0 ≤ Z1 < q1−α1 , the trial continues with the second stage and further patients are
recruited. The number of the additional patients n2(z1) is usually calculated based on the
observed interim test statistic z1 and can therefore be written as a function of z1.

If the trial continues to the second stage, the normally distributed, independent incremental test
statistic Z2 is calculated exclusively based on the data of the second stage as

Z2 = XI,2 −XC,2
σ

·
√
n2
2 , (2.3)

where the index 2 refers to the data of the second stage. Note that Z1 and Z2 are stochasti-
cally independent by construction and can be combined by the inverse normal combination test
(Lehmacher and Wassmer, 1999) as follows,

Z1+2 = w1 · Z1 + w2 · Z2√
w2

1 + w2
2

, (2.4)

with predefined weights w1, w2 such that w2
1 + w2

2 = 1. The test statistic Z1+2 defines the
test statistic for the final analysis. Weights are often chosen as w1 = √

n1/
√
n1 + n2 and

w2 = √n2/
√
n1 + n2, which corresponds to an optimal choice if the sample size is not adapted.

Note that apart from the inverse normal combination test, there also exist other combination
tests, e.g., as proposed by Bauer and Köhne (1994), or the conditional error function approach
(Proschan and Hunsberger, 1995, Müller and Schäfer, 2004) for combining the stage-wise data.
The methods proposed in the Thesis Articles and presented in here are not restricted to a spe-
cific combination function. If Z1+2 ≥ q1−α1+2 with a local, adjusted one-sided significance level
α1+2 < α, the null hypothesis is rejected at the final analysis. Otherwise, the null hypothesis
cannot be rejected. The different options are visualized in Figure 2.1.
Note that due to the interim analysis, a multiple testing problem arises and therefore the stage-
wise local significance levels α1 and α1+2 must be adjusted. Within this thesis, a global one-
sided significance level of α = 0.025 was chosen and local critical values q1−α1 , q1−α1+2 accor-
ding to the most simple adjustment strategy proposed by Pocock (1977), given by equal local
significance levels α1 = α1+2 = 0.0147. Moreover, a binding futility boundary q1−α0 was applied
which means that whenever Z1 < q1−α0 , a trial stop at interim is mandatory. Note that by
applying a binding futility boundary, the local significance levels might be increased to fully
exhaust the global level. Apart from Thesis Article 2 (Herrmann and Rauch, 2021), we neglected
this possible modification in the work presented in this thesis. The futility stopping boundary
was set to q1−α0 = 0 which is equivalent to stopping the trial when the effect size points in
the wrong direction. Whenever the observed interim test statistic suggests a second stage of
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Figure 2.1 Schematic scheme of options in a two-stage adaptive design with binding futility stopping
bound α0, local significance levels α1 and α1+2, respective quantiles q and test statistics Z1 and Z1+2.

the trial, i.e., q1−α0 ≤ Z1 < q1−α1 , further patients may be recruited. The corresponding interval
RA := [q1−α0 ; q1−α1) is called the recalculation area and for α0 = 0.5 and α1 = 0.0147 given by
[0; 2.178). If the trial continues to the second stage, there exists a large variety of sample size
recalculation strategies of which some of the most prominent ones based on conditional power
arguments are summarized in detail in Thesis Article 1 (Herrmann et al., 2020). In here, the
“restricted observed conditional power approach” is exemplary described as one of the most
common options. This approach was also investigated and adapted in Thesis Articles 1 and 2
(Herrmann et al., 2020, Herrmann and Rauch, 2021). The restricted observed conditional power
approach mimics the principles of sample size calculation in a fixed design. The approach
determines the second stage sample size such that a certain conditional power for the final
analysis is attained where the condition refers to the observed interim outcome. The conditional
power describes the probability of correctly rejecting the null hypothesis after having observed
n patients under knowledge of the interim test statistic z1,

CP∆(z1, n) :=



0, if z1 < q1−α0 ,

1− Φ
(
q1−α1+2 ·

√
w2

1+w2
2

w2
− z1 · w1

w2
−∆ ·

√
n1
2 ·

√
n−n1
n1

)
,

if z1 ∈ [q1−α0 ; q1−α1),

1, if z1 ≥ q1−α1 ,

(2.5)
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where Φ(·) stands for the standard normal distribution function. Since the conditional power
depends on the unknown true standardized treatment effect size ∆ = (µI − µC)/σ with known
common standard deviation σ, there exist different strategies in the literature for approaching
the true effect size, e.g., by the observed interim effect, by the initially assumed effect, or by
a prior distribution referred to as predictive power (Spiegelhalter et al., 1986, Dmitrienko and
Wang, 2006, Lan et al., 2009). The restricted observed conditional power approach makes use
of the observed interim treatment effect. This approach is used here for illustration without the
intention to recommend this option. In a first step, the sample size in the recalculation area is
determined such that a pre-specified conditional power value of 1 − β is attained if the interim
test statistic falls within the recalculation area by using formula (2.5). If the recalculated sample
size exceeds a maximally feasible sample size nmax, this maximum sample size is chosen
instead. Additionally, the approach requires a minimal conditional power for the updated sample
size. If for a certain effect size, a conditional power of 1 − βmin ≤ 1 − β cannot be achieved
with the maximally feasible sample size, the sample size remains at n1 such that the trial is
stopped after the first stage. Note that in that case, the recalculation area RA, also consists of
“recalculated” second stage sample sizes equal to zero. Without loss of generality, the power
parameters were set as 1 − β = 0.8 and 1 − βmin = 0.6 within the remainder of this thesis. A
more detailed description of the restricted observed conditional power approach can be found
in Thesis Article 1 (Herrmann et al., 2020). The approach is graphically illustrated in Figure 2.2.
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Figure 2.2 Sample size recalculation according to the restricted observed conditional power approach
for n1 = 50, nmax = 200, α1 = α1+2 = 0.0147, α0 = 0.5 and with recalculation area [q1−α0 ; q1−α1), where
cincr describes the smallest value of the interim test statistic that suggests nmax. The graph is similar to
Figure 1 in Thesis Article 1 (Herrmann et al., 2020).
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2.2 New methodological approaches

2.2.1 Thesis Article 1: Evaluating sample size recalculation with a new condi-
tional performance score

To improve sample size recalculation in general, one needs an instrument to judge the perfor-
mance of sample size recalculation approaches. Zhang et al. (2016) state on page 3388:

“In the area of flexible sample size designs, performance assessment and compari-
son perhaps are the most confusing issue.”

While in a fixed sample size design a good performance is naturally classified by a design meet-
ing a certain power given an assumed effect, there are different perspectives to be considered
for judging a sample size recalculation rule in an adaptive study design. One perspective is to
evaluate the global (or overall) performance that is looking at the properties of the adaptive de-
sign before the study starts. For example, the global power as one global performance measure
describes the probability of correctly rejecting the null hypothesis either at interim or at the final
stage. Thus, global power and global average sample size are often reported as performance
measures for adaptive sample size designs, compare e.g., Lehmacher and Wassmer (1999),
Liu et al. (2008), Mehta and Pocock (2011). Another point of view is the conditional perspec-
tive assessing the properties of the adaptive design when the interim results suggest a trial
continuation. Both perspectives are required simultaneously and valid, however when raising
the question how a good approach to calculate the second stage sample size would look like,
one naturally falls within the second perspective as sample size recalculation is only done if the
interim effect falls within the recalculation area. In principle, for the conditional perspective one
is also interested in sample size and power, however both – conditional power and sample size
– are random variables now, which are best described by location and variation measures. The
term conditional sample size is used in this thesis to describe the total sample size n1 + n2(z1),
under the condition that the observed interim test statistic z1 falls within the recalculation area.
Although the literature often focuses on the global perspective, global performance measures
alone are not sufficient. Even if a design performs well with respect to overall power, the re-
calculation strategy can still not be considered as satisfactory if the average conditional power
is low and the high global power is due to a good power at interim. Moreover, a high average
conditional power might not be sufficient if it is subject to high random variability.
Several authors have published on global performance measures and scores for adaptive de-
signs, compare e.g., Liu et al. (2008), Wu and Cui (2012), Fang et al. (2018). However, until
now there was no performance score measuring the conditional perspective which seems very
natural in an adaptive setting.
Thesis Article 1 (Herrmann et al., 2020) presents a new performance score for the evaluation of
sample size recalculation rules in adaptive study designs from the conditional perspective. The
formal definition of the performance score is rather technical and requires several mathematical
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definition steps. In here, only a brief description of the construction will be provided. However,
a full understanding will be easier when reading the complete Thesis Article 1 (Herrmann et al.,
2020). The conditional performance score takes values between 0 and 1, where higher values
indicate a better performance. Furthermore, the conditional performance score also includes
measures of variation next to measures of location. More precisely, the conditional performance
score CS consists of a conditional power and a conditional sample size (as defined above) sub-
score, SCP and SCN , and is given by

CS(∆) = 0.5 · (SCP (∆) + SCN (∆)) . (2.6)

Note that in general also a different weighting of the two sub-scores is possible but for sim-
plicity reasons I rely on an equal weighting in here. Irrespectively of the chosen weights, both
sub-scores consist of a location and variation component, eCN and vCN , for the the condi-
tional sample size and a location and variation component, eCP and vCP , for the conditional
power. The components are averaged according to customized weights γe,CN + γv,CN = 1 and
γe,CP + γv,CP = 1 as follows:

SCN (∆) = γe,CN · eCN (∆) + γv,CN · vCN (∆), (2.7)

SCP (∆) = γe,CP · eCP (∆) + γv,CP · vCP (∆). (2.8)

In the remainder of this thesis, I assume γe,CN = γv,CN = γe,CP = γv,CP = 0.5. The score
components are graphically illustrated in Figure 2.3. By construction, the sub-scores as well as
the location and variation components values also range between 0 and 1. The sub-scores as
well as its variation and location components can thus be reported and interpreted separately,
which allows investigating the reasons for a high or low total score.
The idea of the conditional sample size location component is to evaluate the relation of the
difference of the expected conditional sample size and a predefined target value CN target

∆ to the
maximally possible deviation of the conditional sample size CNmax − CNmin, i.e.,

eCN (∆) = 1−

∣∣∣E[CN(Z1)]− CN target
∆

∣∣∣
CNmax − CNmin

. (2.9)

The location component for the conditional power is given accordingly by

eCP (∆) = 1−

∣∣∣E[CP (Z1)]− CP target∆

∣∣∣
CPmax − CPmin

. (2.10)

In case ∆ = 0 or the related fixed sample size nfix∆ exceeds the maximally feasible sample size
nmax, an increase in sample size is considered as not meaningful. Thus, the predefined target
values depend on the treatment effect ∆ and are given explicitly in Table 2.1.
The variation components evaluate the ratio of the variance of CN or CP to the maximally
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Figure 2.3 Illustration of the conditional performance score’s composition with conditional power and
conditional sample size sub-scores SCP and SCN , location components eCP , eCN and variation compo-
nents vCP , vCN .

possible variance V armax(CN) or V armax(CP ) and take the square root thereof,

vCN (∆) = 1−
√
V ar(CN(Z1))
V armax(CN) , (2.11)

as well as

vCP (∆) = 1−
√
V ar(CP (Z1))
V armax(CP ) . (2.12)

The maximal deviations and maximally possible variances are defined independently of the true
standardized treatment effect and are also given in Table 2.1. Since the score is also supposed
to be applied to group sequential study designs with constant stage 2 sample sizes, the variation
component for the conditional sample size vCN is defined as 1 in that case. In accordance with
the global performance score by Liu et al. (2008), the conditional performance score can be
evaluated pointwise or averaged over a range of plausible effect sizes.
A rule of thumb for differentiating low, moderate and high performance score values is given in
Thesis Article 1 (Herrmann et al., 2020, Chapter 4.9).
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Table 2.1 Values underlying the conditional performance score.

Performance Target value Target value Maximally possible Maximally possible

measure for nfix
∆ ≤ nmax for nfix

∆ > nmax deviation variance

and ∆ 6= 0 or ∆ = 0

CN nfix
∆ n1 nmax − n1 ((nmax − n1)/2)2

CP 1− β α 1− α ((1− 0)/2)2

CN : Conditional sample size; CP : Conditional power; nfix
∆ : Sample size for standardized effect size ∆ in fixed

sample size design; nmax: maximally feasible sample size; n1: first stage sample size; α: global significance
level; 1− β: anticipated conditional power value.

With this new performance score, it is now possible to evaluate and compare different sample
size recalculation rules. More specifically, the power and sample size sub-scores as well as their
location and variation components allow identifying sources for good and bad performance. By
this new methodological research, sample size recalculation rules can be developed with a clear
focus on performance improvement.

2.2.2 Thesis Article 2: Improving sample size recalculation with smoothing cor-
rections

With the new performance score, there exists now an option to judge and evaluate sample size
recalculation rules. It can provide a basis to improve existing approaches. One common point of
criticism with respect to many published sample size recalculation rules is the high variability in
the recalculated sample size (Dragalin, 2006, Bauer et al., 2016). One reason for this feature is
a sudden and abrupt increase from the first stage’s to the maximum sample size (cf. also green
line in Figure 2.2). This “jump” in sample size is part of many sample size recalculation func-
tions, as for very small interim effect sizes a continuation of the trial to the second stage might
not seem justified (second stage sample size equals 0), whereas starting from some minimally
relevant interim effect, the second stage sample size is increased to meet a certain conditional
power value which results in the maximum sample size nmax. The lowest interim effect starting
from which a large second stage sample size seems appropriate is, however, rather arbitrary.
A specific rule might for example suggest a trial stop for an observed interim effect of 0.22
but the same rule can suggest the continuation of the trial with the maximum sample size for
an observed interim effect of 0.23 (Herrmann and Rauch, 2021). The idea of Thesis Article 2
(Herrmann and Rauch, 2021) was therefore to evaluate whether a smoothed increase in sample
size from n1 to nmax improves the performance with respect to a reduced random variability. In
the article, several smoothing corrections were proposed that can be combined with established
recalculation approaches including such a jump in sample size, like the restricted observed con-
ditional power approach (Figure 2.2). More precisely, five possible smoothing corrections were
suggested in Thesis Article 2 (Herrmann and Rauch, 2021). Figure 2.4 shows the shape of two
exemplary smoothing functions when applied to the established restricted observed conditional
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Figure 2.4 Sample size recalculation according to the restricted observed conditional power approach
(reference) and combined with step-wise and convex smoothing correction for n1 = 50, nmax = 200,
α1 = α1+2 = 0.01476, α0 = 0.5 and with recalculation area [q1−α0 ; q1−α1), where cincr describes
the smallest value of the interim test statistic that suggests nmax. The graphs are similar to Figure 1 in
Thesis Article 2 (Herrmann and Rauch, 2021).

power approach. One can see that the sample size is increased from the stage 1 sample size
n1 to the maximum sample size nmax within the interval [q1−α0 ; cincr), where cincr is the small-
est interim test statistic that suggests the maximum sample size. Of course, the shape of the
smoothing function can also be formulated analytically as done in Thesis Article 2. In the follow-
ing, the formulas for the total sample size n1+2 per group for the so-called step-wise and the so
called convex smoothing corrections are exemplary presented. Step-wise smoothing as plotted
in Figure 2.4 can be expressed as

n1+2,step−wise(z1) =


n1 for z1 ∈ [q1−α0 ; cincr

3 ),

n1 + nmax−n1
3 for z1 ∈ [ cincr

3 ; 2 · cincr
3 ),

n1 + 2 · nmax−n1
3 for z1 ∈ [2 · cincr

3 ; cincr),

(2.13)

whereas convex smoothing as plotted in Figure 2.4 can be described by

n1+2,convex(z1) = n1 + nmax − n1
cincr2 · z1

2 for z1 ∈ [q1−α0 ; cincr). (2.14)

The sample size in the remaining recalculation area, [cincr; q1−α1), is given by the reference
sample size function, thus in here by the restricted observed conditional power approach. The
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smoothing corrections were proposed to improve the performance of existing sample size re-
calculation rules with respect to the variability of the conditional sample size and the conditional
power. Thesis Article 2 shows that the different smoothing corrections perform differently well
with respect to this aim as described in more detail in the following Results Section 3.1.2. Note
that another possible approach towards variability reduction in conditional sample size is to re-
calculate the sample size based on a resampled observed interim test statistic as suggested
and evaluated in Thesis Related Article III (Herrmann et al., 2021).

2.2.3 Thesis Article 3: Optimizing sample size recalculation by constrained op-
timization in the R-package adoptr

Instead of improving existing sample size recalculation rules, an alternative appealing option is
to directly determine an “optimal” design with respect to predefined optimality or performance
criteria. To follow this approach, an adaptive two-stage design can be interpreted as a five-tuple
of parameters

D = (n1, q1−α0 , q1−α1 , n2(·), c2(·)) , (2.15)

where n2(·) describes the stage 2 sample size function and c2(·) the stage 2 critical value
function, where the null hypothesis is rejected at the final stage if Z2 > c2(z1) for an observed
test statistic Z1 = z1. In the additional Thesis Related Article I of Pilz et al. (2019), we introduced
the optimization of the complete adaptive two-stage design D under a customized score S̃,
where the expected overall sample size was chosen as score-example. The mathematical
description of the optimization problem to determine the optimal parameters D with respect
to minimization of a customized score S̃ subject to constraints on the type I error rate and power
at a specific standardized effect size ∆ > 0 is given by

minimize S̃∆(D)

subject to type I error rate ≤ α

power ≥ 1− β.

(2.16)

By applying Lagrange multipliers, the constrained variational problem (2.16) can be transformed
into an unconstrained problem, which in turn can be solved by the help of Euler-Lagrange equa-
tions as shown in the additional Thesis Related Article I (Pilz et al., 2019).

An alternative to the analytic solution strategy of using Lagrange multipliers and the corre-
sponding Euler-Lagrange equation is to translate the variational problem into a multivariate
optimization problem embedded into a finite parameter space, which is related to the approach
by Englert and Kieser (2013), and to solve it directly over all five parameters simultaneously
by numerical integration. The latter approach allows a convenient evaluation and comparison
of different optimality criteria, while the variational approach with the Euler-Lagrange equations
can be very complex and time-consuming. The multivariate optimization problem was realized
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in the newly developed R-package adoptr, which is presented in Thesis Article 3 (Kunzmann
et al., 2021). The core idea of the approach is as follows:

• First, it is distinguished whether the observed interim test statistic z1 falls within the recal-
culation area RA = [q1−α0 ; q1−α1) or not. Note that in a general optimization setting, the
values of α0 and α1 need not to be pre-specified. If z1 /∈ RA, the functions n2(·) and c2(·)
are constant. If z1 ∈ RA, a discrete set of pivot points z(i)

1 , i ∈ {1, . . . , k}, is required to de-
termine the two functions n2(·) and c2(·) by cubic Hermite splines. Hence, an optimization
problem of dimension 3 + 2k with the parameters(

n1, q1−α0 , q1−α1 , n
(1)
2 , ..., n

(k)
2 , c

(1)
2 , ..., c

(k)
2

)
, (2.17)

has to be solved.

• Since the score function of the optimization problem is often an integral, e.g., the expected
overall sample size or the expected conditional performance score, the pivot points are
also used as the nodes of the Gauss-Legendre quadrature rule. Using the expected
overall sample size E[n1+2(Z1)] as score function for illustration, this reads as

E[n1+2(Z1)] = E[n1 + n2(Z1)]

= n1 +
∫
n2(z1)f(z1)dz1 ≈ n1 +

k∑
i=1

ωi · n2(z(i)
1 )f(z(i)

1 ),
(2.18)

where f is the probability density function of Z1 and ωi 6= 0, i = 1, ..., k, are the respective
weights of the Gauss-Legendre quadrature rule (Rannacher, 2017).

• For solving the optimization problem of dimension 3 + 2k, the package nloptr (Johnson,
2018) is used.

Apart from a fully flexible optimization, it is furthermore possible to fix certain design parame-
ters of the five-tuple D. Moreover, the user may define customized scores where the conditional
performance score proposed in Thesis Article 1 (Herrmann et al., 2020) defines an attractive
possibility. The R-package adoptr (Kunzmann et al., 2020) supports normally and binary dis-
tributed endpoints. So far, we have looked at the performance of a design at predefined point
priors under the null or alternative hypothesis. Furthermore, the adoptr package also supports
continuous prior distributions for the standardized treatment effect, e.g., a truncated normal dis-
tribution.

Using the constrained optimization framework of Thesis Related Article I (Pilz et al., 2019) and
the corresponding software solution proposed in Thesis Article 3 (Kunzmann et al., 2021), it is
now possible to directly determine an optimal design with sample size recalculation with respect
to arbitrary constraints and optimization criteria.





3 Results

The three approaches developed within this thesis, which were presented above, were eval-
uated by means of Monte-Carlo simulation studies and/or clinical trial examples to illustrate
how the methods behave in different realistic data situations. In the underlying Thesis Articles
(Herrmann et al., 2020, Herrmann and Rauch, 2021, Kunzmann et al., 2021), extensive results
for the new performance score, the smoothing corrections and the R-package adoptr are pro-
vided and discussed. In here, the main results of the Thesis Articles are briefly summarized.
To illustrate the connection of the three Thesis Articles, additional results not published in the
related articles are presented for a clinical trial example to which all three new methods were
applied. All results were generated by using the software R (R Core Team, 2021, Version 4.0.3).
The simulation and parameter settings for the underlying Monte-Carlo simulation studies which
allow to reproduce the results can be deduced from the corresponding Thesis Articles. These
rather technical settings are omitted here for the sake of simplicity.

3.1 Results of Thesis Articles

3.1.1 Thesis Article 1: Results for the conditional performance score

For the evaluation of the conditional performance score, we applied the score to four established
sample size recalculation approaches, namely

1) the observed conditional power approach (OCP), e.g., described in Posch et al. (2003),

2) the restricted observed conditional power approach (ROCP), e.g., Chen et al. (2004) and
also compare Figure 2.2,

3) the promising zone approach (PZ) (Mehta and Pocock, 2011), and

4) the optimization function approach (OF) (Jennison and Turnbull, 2015),

each for a range of different effect sizes. We judged the plausibility of the conditional perfor-
mance score by comparing its sub-scores for conditional power and sample size (SCN and SCP )
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and location and variance components (eCN , eCP , vCN , vCP ) across the different recalculation
approaches and across different effect sizes. Higher variabilities in conditional sample size (cf.
definition in Section 2.2.1) or conditional power were reflected by lower variance components
(vCN or vCP ) and thus resulted in higher sub-scores for conditional sample size and power (SCN
and SCP ), compare Tables 1 and 2 in Thesis Article 1 (Herrmann et al., 2020). Similarly, larger
deviations of the observed mean values from the target values as depicted in Figure 2 of Thesis
Article 1 (Herrmann et al., 2020) resulted in worse location components (eCN or eCP ), which im-
pacts the respective sub-score performance, cf. Table 2 in Thesis Article 1. Table 3.1 displays
the main results of Thesis Article 1 given by the point-wise score and its component-values for
varying effect sizes.

Table 3.1 Performance score (CS), sub-scores (SCN , SCP ) and score components (eCN , vCN , eCP ,
vCP ).

∆ Approach eCN vCN SCN eCP vCP SCP CS

0.0 OCP 0.053 0.680 0.366 0.762 0.412 0.587 0.477
(–) ROCP 0.851 0.359 0.605 0.868 0.385 0.626 0.615

PZ 0.617 0.699 0.658 0.843 0.448 0.646 0.652
OF 0.438 0.391 0.414 0.773 0.378 0.576 0.495

0.1 OCP 0.090 0.592 0.341 0.680 0.361 0.520 0.431
(1571) ROCP 0.790 0.291 0.540 0.789 0.292 0.541 0.541

PZ 0.595 0.651 0.623 0.766 0.361 0.564 0.593
OF 0.396 0.383 0.389 0.686 0.320 0.503 0.446

0.2 OCP 0.138 0.512 0.325 0.593 0.349 0.471 0.398
(395) ROCP 0.728 0.255 0.491 0.701 0.236 0.468 0.480

PZ 0.576 0.622 0.599 0.681 0.309 0.495 0.547
OF 0.362 0.388 0.375 0.594 0.302 0.448 0.411

0.3 OCP 0.965 0.451 0.708 0.705 0.376 0.540 0.624
(177) ROCP 0.493 0.247 0.370 0.601 0.220 0.410 0.390

PZ 0.605 0.593 0.599 0.619 0.292 0.456 0.527
OF 0.822 0.403 0.612 0.710 0.325 0.518 0.565

0.4 OCP 0.598 0.407 0.502 0.787 0.427 0.607 0.555
(101) ROCP 0.949 0.278 0.613 0.701 0.249 0.475 0.544

PZ 0.869 0.579 0.724 0.718 0.311 0.515 0.619
OF 0.679 0.421 0.550 0.800 0.376 0.588 0.569

0.5 OCP 0.433 0.386 0.410 0.850 0.503 0.676 0.543
(65) ROCP 0.686 0.329 0.508 0.782 0.313 0.547 0.527

PZ 0.635 0.594 0.614 0.795 0.362 0.579 0.597
OF 0.466 0.435 0.450 0.870 0.452 0.661 0.556

∆: standardized effect size; OCP: observed conditional power approach; ROCP: restricted observed con-
ditional power approach; PZ: promising zone approach; OF: optimization function approach; numbers in
brackets present the required sample sizes in the fixed design. The table corresponds to an excerpt of Tables
1 and 2 in Thesis Article 1 (Herrmann et al., 2020). For a detailed parameter description, see Thesis Article 1
(Herrmann et al., 2020).

Under the null hypothesis, the promising zone approach performs best with respect to the con-
ditional sample size and power sub-scores (cf. Table 3.1, Columns 5 and 8) and therefore also
has the best total conditional performance score compared to the other three recalculation ap-
proaches (cf. Table 3.1, Column 9). For ∆ = 0.1 and ∆ = 0.2, the ranking with respect to the
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conditional performance score remains the same with the promising zone approach performing
best (cf. Table 3.1, Column 9). While the observed conditional power approach was the worst
performing approach for ∆ ≤ 0.2, it is the best performing approach for ∆ = 0.3. This stems
from the fact that the recalculated sample sizes for ∆ = 0.2 and ∆ = 0.3 are similar but the
target sample size values change from n1 = 50 to 177 such that the conditional sample size
sub-score value is enormously increased (cf. Table 3.1, Column 3). The ranking for ∆ = 0.4
and ∆ = 0.5 is again the same with the promising zone approach performing best due the good
conditional sample size performance (cf. Table 3.1, Column 5).
Note that the primary goal of Thesis Article 1 was to illustrate the application of the conditional
performance score and not to find a definite ranking of different recalculation approaches. The
published recalculation rules all include different parameters and possibilities to tune them, so
the constellations considered in here might not have been the optimal ones with respect to the
new score.

3.1.2 Thesis Article 2: Results for sample size recalculation with smoothing
corrections

In Thesis Article 2 (Herrmann and Rauch, 2021), we have evaluated how to overcome abrupt
jumps in sample size in standard sample size recalculation rules to reduce the variability in
conditional sample sizes and conditional power. For the sake of illustration, we have chosen
the restricted observed conditional power approach as a reference recalculation rule, combined
it with five different newly proposed smoothing corrections, and compared the resulting new
approaches. Comparison was performed with respect to conditional power, conditional sample
size and the conditional performance score from Thesis Article 1 (Herrmann et al., 2020) for a
range of true underlying effect sizes, stage 1 and 2 sample size constellations as well as different
adjustment strategies for multiple testing. Table 3.2 displays the main results as published
in Supplementary Table 4 of Thesis Article 2 (Herrmann and Rauch, 2021) for a multiplicity
adjustment according to Pocock (1977) and a range of effect sizes. Note that unlike the other
results presented in this thesis, the global significance level was fully exhausted in Thesis Article
2 by choosing α1 = α1+2 = 0.01476 instead of α1 = α1+2 = 0.0147. However, the conditional
performance score results from Table 3.2 differ only by at most 0.001 from choosing significance
levels α1 = α1+2 = 0.0147 (data not shown).

The results for other sample size constellations and other multiplicity adjustments were compa-
rable and can be deduced from Table 1 and Supplementary Tables 2, 3 and 5 in Thesis Article 2
(Herrmann and Rauch, 2021). For all smoothing corrections, the expected second stage sample
size naturally increases as the smoothing causes a sample size increase in an area where the
sample size usually jumps from the interim to the maximum sample size, compare Figure 2.4.
As a consequence, also the average conditional power is naturally increased (cf. Table 3.2,
Column 5). The smoothing approaches cause a variance reduction in the conditional sample
size compared to the standard sample size recalculation approach for most considered effect
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Table 3.2 Performance evaluation of smoothing corrections.

∆ Approach E[CN ] Var(CN) SCN E[CP ] V ar(CP ) SCP CS

0.0 Reference 72.403 2315.261 0.605 0.154 0.094 0.627 0.616
(–) Linear 126.096 2039.918 0.445 0.236 0.089 0.594 0.519

Step-wise 106.867 2331.292 0.489 0.218 0.087 0.606 0.547
Sigmoid 116.892 3561.255 0.379 0.241 0.091 0.588 0.483
Concave 146.366 2003.897 0.380 0.249 0.088 0.588 0.484
Convex 105.826 2478.141 0.482 0.222 0.090 0.598 0.540

0.1 Reference 81.548 2836.295 0.540 0.231 0.125 0.540 0.540
(1571) Linear 132.947 1986.652 0.426 0.317 0.108 0.522 0.474

Step-wise 115.584 2318.376 0.460 0.298 0.108 0.531 0.496
Sigmoid 126.247 3403.540 0.357 0.323 0.108 0.518 0.437
Concave 150.776 1884.502 0.375 0.331 0.105 0.519 0.447
Convex 115.117 2534.299 0.447 0.304 0.111 0.524 0.486

0.2 Reference 90.800 3125.985 0.491 0.317 0.146 0.468 0.480
(395) Linear 138.420 1838.551 0.419 0.403 0.114 0.469 0.444

Step-wise 123.562 2130.691 0.447 0.385 0.117 0.474 0.460
Sigmoid 134.347 3045.228 0.351 0.410 0.113 0.466 0.409
Concave 153.599 1769.403 0.374 0.416 0.109 0.469 0.422
Convex 123.242 2369.011 0.431 0.390 0.119 0.468 0.450

0.3 Reference 100.195 3191.827 0.370 0.411 0.152 0.410 0.390
(177) Linear 142.079 1744.103 0.608 0.495 0.107 0.517 0.563

Step-wise 129.620 1929.064 0.552 0.477 0.112 0.500 0.526
Sigmoid 140.454 2656.991 0.537 0.502 0.105 0.523 0.530
Concave 153.886 1757.232 0.646 0.507 0.101 0.532 0.589
Convex 130.271 2158.494 0.537 0.484 0.113 0.502 0.520

0.4 Reference 107.786 2932.545 0.613 0.509 0.141 0.475 0.544
(101) Linear 140.663 1703.894 0.589 0.579 0.091 0.585 0.587

Step-wise 131.213 1741.666 0.618 0.564 0.098 0.566 0.592
Sigmoid 140.152 2332.493 0.544 0.585 0.089 0.592 0.568
Concave 149.193 1816.565 0.552 0.588 0.085 0.600 0.576
Convex 132.134 1952.366 0.599 0.571 0.097 0.571 0.585

0.5 Reference 111.499 2534.837 0.507 0.587 0.118 0.547 0.527
(65) Linear 136.913 1662.355 0.486 0.644 0.070 0.656 0.571

Step-wise 129.872 1576.203 0.517 0.632 0.077 0.637 0.577
Sigmoid 137.159 2084.516 0.453 0.649 0.067 0.663 0.558
Concave 142.997 1856.021 0.451 0.651 0.064 0.670 0.560
Convex 130.829 1754.830 0.499 0.637 0.075 0.642 0.571

∆: standardized effect size; CS: conditional performance score; E[CN ]: expected conditional sample size per
group; V ar(CN): variance of conditional sample size; E[CP ]: expected conditional power; V ar(CP ): variance
of expected conditional power; Reference: restricted observed conditional power approach (ROCP) without
smoothing correction; Linear / Step-wise / Sigmoid / Concave / Convex: ROCP with five different candidate
smoothing corrections; numbers in brackets present the required sample sizes in the fixed design. The table
corresponds to an excerpt of Supplementary Table 4 in Thesis Article 2 (Herrmann and Rauch, 2021). For a
detailed parameter description, see also Thesis Article 2 (Herrmann and Rauch, 2021).

sizes (Column 4). Additionally, the variance in conditional power is reduced by the smoothing
corrections for all considered effect sizes (Column 6). When considering the conditional perfor-
mance score, which summarizes variance and location aspects of sample size and conditional
power, the smoothing corrections only provide a net benefit for underlying standardized effect
sizes ∆ ≥ 0.3 (Column 7). Overall, no smoothing correction always outperforms the other
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smoothing corrections. However, the step-wise followed by the convex smoothing approach
show a reasonable or good performance for most considered effect sizes such that these two
smoothing corrections are recommended from the five candidates investigated.

3.1.3 Thesis Article 3: Results for the optimization approach implemented in the
R-package adoptr

In Thesis Article 3 (Kunzmann et al., 2021), we present the new R-package adoptr (Kunzmann
et al., 2020) implementing a numerical approach to find an optimal design with sample size
recalculation. The article provides several examples how to apply this approach in practice. By
these examples, we see, e.g., that the optimization under uncertainty presented by continuous
priors, comes at the price of a larger expected sample size as well as a higher number of ite-
rations for the optimization procedure. Similarly, adding constraints, e.g., a conditional power
constraint, or fixing certain parameters also increases the expected sample size. However,
Thesis Article 3 puts less focus on the results of specific optimization problems but on the soft-
ware implementation of their solution.
The key design principles of adoptr presented in Thesis Article 3, which can be interpreted as
the main results of the underlying programming task, are interactivity, reliability and extensibility
(Kunzmann et al., 2021). Considering interactivity, adoptr consists of a step-wise problem for-
mulation since it is supposed to motivate the investigation of different adaptive design optimiza-
tion scenarios. This goes in hand with the software being open-source and available on CRAN
(2021) for transparency reasons. Furthermore, there exists a broad online documentation for
the functions as well as vignettes to support the exploration of different optimization possibilities.
The second design principle is reliability of software for clinical trials. Therefore, adoptr uses
the R-package testthat (Wickham, 2020) for conducting an extended test suite to detect and
localize errors during development as described in Thesis Article 3 (Kunzmann et al., 2021).
In addition, there is an extensive validation report that compares results obtained by numerical
integration with simulated results as well as with the corresponding results of other available
R-packages, e.g., rpact (Wassmer and Pahlke, 2021). Extensibility is the third design principle
of adoptr. An optimal trial design highly depends on the pre-defined optimality criteria, which is
the score and the constraints. Within Thesis Article 3 (Kunzmann et al., 2021), we present some
exemplary suggestions but adoptr provides explicitly room for defining customized scores and
constraints.

3.2 Clinical trial example

To illustrate how the new methods are related, the methodology of Thesis Articles 1, 2 and 3
is applied to a clinical trial example in the field of Alzheimer’s disease. The aim is to com-
pare a therapy of a cholinesterase inhibitor and an add-on therapy (intervention group I) with
the monotherapy of receiving only the cholinesterase inhibitor (control group C). The primary
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endpoint is given by the change in the ADAS-Cog from baseline to month 6. The ADAS-Cog
score was initially proposed by Rosen et al. (1984) and is a score ranging between 0 and 70
where higher values indicate a worse outcome. For the sake of simplicity, the score values are
assumed to be approximately normally distributed. However, this normal assumption is less im-
portant if the stage 1 sample size is sufficiently large. The one-sided hypotheses are formulated
as

H0 : (µI,baseline − µI,6months)− (µC,baseline − µC,6months) ≤ 0

and

H1 : (µI,baseline − µI,6months)− (µC,baseline − µC,6months) > 0.

(3.1)

Wang et al. (2015) describe common shortcomings of clinical trials on Alzheimer’s disease,
such as a high pre-trial insecurity about the treatment effect. Cummings et al. (2012) mention
the use of adaptive designs in Alzheimer’s disease studies to use accumulating data for making
trial modifications. For the sake of illustration, an adaptive design with the possibility to recal-
culate the sample size at interim and the possibility to stop early for efficacy or futility will be
applied. To test the above null hypothesis, a one-sided approximate Z-test (cf. Section 2.1) with
a global one-sided type I error of α = 0.025 is applied. The maximum sample size per group
is restricted to nmax = 450, similar to Wang et al. (2015, Supplementary Table 1). For the first
stage, a sample size of n1 = 70 per group was chosen. Note that by this sample size setting, the
performance of our methods is illustrated in an alternative setting compared to the simulations
provided above, where n1 = 50 and nmax = 200. With this maximum sample size per group, the
standard group sequential approach with a constant stage 2 sample size n2 = 450 − 70 = 380
and the above specified parameters yields approximately 67% power for a standardized treat-
ment effect of ∆ = 0.2 and approximately 94% power for ∆ = 0.3. This can serve as a reference
in the remainder. A binding futility stopping boundary of α0 = 0.5 was chosen such that the trial
is stopped at interim if the effect size points in the opposite direction. The local significance
levels were chosen as α1 = α1+2 = 0.0147 according to Pocock (1977). Moreover, the com-
bined test statistic of both stages is defined by the inverse normal combination test (Lehmacher
and Wassmer, 1999). The above described adaptive design in principle allows incorporating an
arbitrary rule for sample size recalculation. When applying sample size recalculation, the simu-
lation of different adaptive design options and different data scenarios in the planning stage is
inevitable (Mayer et al., 2019). As the aim of this example is to illustrate the relation of the Thesis
Articles’ methodology, the following four sample size recalculation approaches are compared:

1) Restricted observed conditional power approach as an established reference design (cf.
Figure 2.2),

2) Restricted observed conditional power approach with the newly developed step-wise smoo-
thing correction (cf. Equation (2.13)), Thesis Article 2,

3) Restricted observed conditional power approach with the newly developed convex smoo-
thing correction (cf. Equation (2.14)), Thesis Article 2, and
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4) Newly developed optimization approach with the conditional performance score as the
optimization function with fixed critical values and futility bound, Thesis Articles 1 and 3.

Performance results for approaches 1) to 3) are obtained by a Monte-Carlo simulation study
with 10’000 simulation runs. Performance results for approach 4) are achieved by the R-package
adoptr presented in Thesis Article 3 (Kunzmann et al., 2021) with numerical integration using
k = 7 interpolation points and cubic Hermite splines. For determining the corresponding optimal
sample size curve as given in Figure 3.1, we thereby rely on a point prior at ∆ = 0.3, which is
also the effect that can be detected with more than 90% power. Note that due to the inverse
normal combination approach, the c2-function in the optimization approach is fixed by

Z1+2 = w1Z1 + w2Z2√
w2

1 + w2
2

> q1−α1+2

⇔ Z2 >
q1−α1+2

√
w2

1 + w2
2 − w1Z1

w2
=: c2(Z1).

(3.2)

The four approaches are evaluated and compared with respect to conditional performance mea-
sures, i.e., expected conditional sample size and its variation, expected conditional power and
its variation, as well as the new conditional performance score with its sub-scores for standar-
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Figure 3.1 Sample size curve for the optimization approach described in Section 3.2 with a point prior
at the standardized treatment effect ∆ = 0.3, stage 1 sample size n1 = 70 and maximum sample
size nmax = 450 per group, adjusted significance levels α1 = α1+2 = 0.0147 and binding futility
stopping bound α0 = 0.5.
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Table 3.3 Performance results for the clinical trial example in Section 3.2.

∆ Approach E[CN ] V ar(CN) SCN E[CP ] V ar(CP ) SCP CS

0.1 1) Reference 165.402 17931.270 0.522 0.337 0.150 0.453 0.488
(1571) 2) Step 237.384 14088.970 0.467 0.391 0.124 0.459 0.463

3) Convex 236.804 15215.172 0.456 0.397 0.126 0.455 0.455
4) Optimal 172.833 190.514 0.828 0.274 0.088 0.433 0.631

0.2 1) Reference 185.212 17816.854 0.374 0.450 0.151 0.432 0.403
(395) 2) Step 247.462 13039.132 0.506 0.500 0.117 0.505 0.505

3) Convex 248.146 14152.321 0.495 0.506 0.117 0.507 0.501
4) Optimal 174.263 142.507 0.682 0.377 0.104 0.460 0.571

0.3 1) Reference 197.675 15675.805 0.642 0.562 0.129 0.519 0.581
(177) 2) Step 243.885 11960.453 0.623 0.602 0.093 0.593 0.608

3) Convex 245.288 13010.846 0.609 0.607 0.092 0.597 0.603
4) Optimal 174.377 109.963 0.972 0.484 0.105 0.514 0.743

0.4 1) Reference 196.729 12844.165 0.575 0.644 0.096 0.611 0.593
(101) 2) Step 229.266 10836.494 0.556 0.674 0.066 0.679 0.618

3) Convex 230.834 11709.808 0.543 0.678 0.064 0.684 0.614
4) Optimal 173.477 92.101 0.876 0.582 0.093 0.583 0.729

0.5 1) Reference 194.327 10840.641 0.555 0.705 0.063 0.700 0.628
(65) 2) Step 215.179 10026.244 0.538 0.726 0.040 0.762 0.650

3) Convex 216.827 10834.320 0.526 0.729 0.038 0.768 0.647
4) Optimal 172.106 81.217 0.832 0.664 0.074 0.657 0.745

∆: standardized effect size; E[CN ]: expected conditional sample size per group; V ar(CN): variance of con-
ditional sample size; E[CP ]: expected conditional power; V ar(CP ): variance of expected conditional power;
SCN , SCP : conditional performance sub-scores for sample size and power; CS: conditional performance score;
1) Reference: restricted observed conditional power approach as reference; 2) Step: restricted observed con-
ditional power approach combined with step-wise smoothing; 3) Convex: restricted observed conditional power
approach combined with convex smoothing; 4) Optimization: optimization approach with R-package adoptr; num-
bers in brackets present the required sample sizes in the fixed design. The underlying parameter values for this
additional simulation study are given in the description above in this Section 3.2.

dized treatment effects ∆ ranging between 0.1 and 0.5 by steps of 0.1. The results are given in
Table 3.3.

All the newly developed sample size approaches counteract steeply increasing sample size
curves and therefore reduce the variability in conditional sample size (cf. Column 4).
More precisely, the smoothing corrections 2) and 3) reduce the sample size variation by increas-
ing the conditional sample size (cf. Column 3) and therefore also increase the conditional power
(cf. Column 6) compared to reference approach 1). The optimization approach 4) reduces the
variability very strongly by smaller expected sample sizes (cf. Column 3) and therefore de-
creased conditional power values (cf. Column 6) compared to approach 1).
The conditional performance sub-scores also reflect these observations. The variance reduction
in conditional sample size for approaches 2) and 3) achieves only sometimes an improvement
in the sample size sub-score compared to the reference approach 1) (cf. Column 5), due to a
lower performance in the location component of the performance score. Approach 4) reduces
the variance of the conditional sample size tremendously, such that it always leads to high con-
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ditional sample size sub-score values (cf. Column 5). The conditional power sub-scores for
approaches 2) and 3) outperform reference approach 1) (cf. Column 8) due to higher condi-
tional power values combined with smaller variances. Approach 4), however, almost always
has a worse conditional power sub-score compared to the other three approaches 1) to 3)
(cf. Column 8) due to a worse performance with respect to location. As the differences of the
four approaches are stronger for the conditional sample size sub-score than for the conditional
power sub-score values, approach 4) is the best performing approach with respect to the overall
conditional performance score (cf. Column 9). However, it is also valid to judge the sub-scores
separately, which allows different conclusions.





4 Discussion

The aim of this thesis was to overcome shortcomings related to sample size recalculation in
adaptive study designs, which was addressed by the following contributions:

1. Comprehensive performance evaluation and comparison of sample size recalculation rules
in adaptive designs by a newly developed performance score in Thesis Article 1 (Herr-
mann et al., 2020),

2. Improving established sample size recalculation rules by reducing their variability in condi-
tional sample size and conditional power with newly developed smoothing corrections
in Thesis Article 2 (Herrmann and Rauch, 2021),

3. Optimizing adaptive two-stage designs with sample size recalculation by a newly devel-
oped constrained optimization framework in Thesis Article 3 (Kunzmann et al., 2021),

and

4. Newly developed software for all methods described in all Thesis Articles.

Additional methods related to these four aspects were also proposed in the Thesis Related
Articles I to V.

Due to the lack of a clear guidance on how to choose and compare specific sample size recal-
culation rules, we suggested a conditional performance score for a fair and comprehensive
judgment and comparison of sample size recalculation rules. As described in Section 2, there
exist the global and the conditional perspective for evaluating adaptive designs with sample size
recalculation. Since existing performance scores refer only to the global evaluation perspec-
tive (Liu et al., 2008, Wu and Cui, 2012, Fang et al., 2018), we filled the remaining gap and
introduced a performance score from the conditional perspective in Thesis Article 1 (Herrmann
et al., 2020). Within the score, we incorporated components evaluating the variance of the con-
ditional power and sample size, which was not addressed in the literature so far, and stressed
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the importance of these variance components since the interim effect is a random variable. The
conditional performance score can be reported as an average performance measure over a
range of reasonable effect sizes or separately. Moreover, the sub-scores for conditional sample
size and conditional power as well as the location and variation components can be reported
and interpreted separately.
To improve existing sample size recalculation rules, we introduced smoothing corrections to
be combined with standard recalculation rules in Thesis Article 2 (Herrmann and Rauch, 2021)
to reduce the high variability in the conditional sample size (Dragalin, 2006, Bauer et al., 2016)
and conditional power, and therefore to indirectly address the randomness of the observed
interim effect. We evaluated a selection of smoothing classes exemplary combined with the
restricted observed conditional power approach. We observed a reduced variance in condi-
tional power and in conditional sample size. Moreover, the smoothing corrections increased
the overall conditional performance for medium and large observed standardized effect sizes.
Therefore, they present a possible improvement strategy for sample size recalculation strate-
gies based on conditional power arguments and are easy to apply.
In Thesis Article 3 (Kunzmann et al., 2021), we addressed the optimization of adaptive two-
stage designs with sample size recalculation. The underlying R-package adoptr (Kunzmann
et al., 2020) provides a tool with great flexibility. There exists a range of software for design-
ing group sequential trials, e.g., ADDPLAN® (ICON plc, 2019), East® (Cytel, 2020), PASS®

(NCSS, 2021) and SAS® (SAS Institute Inc, Cary, NC, 2020) and software related to their
optimization, e.g., the R-packages OptGS (Wason and Burkardt, 2015) and rpact (Wassmer
and Pahlke, 2021). Software for adaptive study designs is rather rare, e.g., the R-package
adaptTest (Vandemeulebroecke, 2009). The R-package adoptr is a software solution solving
constrained optimization problems. This approach can be interpreted as an extension of the
approach by Jennison and Turnbull (2015) since it provides room for choosing arbitrary objec-
tive functions. With the possibility of formulating specific target power and/or maximum sample
size constraints, the newly suggested optimization approach can address common points of
criticism of adaptive designs with sample size recalculation as formulated by Bauer and Köhne
(1994) and Levin et al. (2013). Moreover, the R-package adoptr is an elegant solution if one
does not want to base sample size recalculation rules on conditional power arguments taking
into account that their use is controversially discussed in the literature (Bartroff and Lai, 2008,
Jennison and Turnbull, 2015, Levin et al., 2013).
The R-package adoptr underlying the optimization approach is available on CRAN (2021) and
therefore addresses the lack of software for adaptive designs (Bauer et al., 2016). In ad-
dition, the R-code underlying the other Thesis Articles is also publicly available on GitHub
(https://github.com/shareCH/SSR-conditional-score; https://github.com/shareCH/SSR-

smoothing-corrections).
To outline the relation of the three Thesis Articles, a clinical trial example was included in
this thesis for illustration. We have seen that both the smoothing corrections combined with a

https://github.com/shareCH/SSR-conditional-score
https://github.com/shareCH/SSR-smoothing-corrections
https://github.com/shareCH/SSR-smoothing-corrections
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standard sample size recalculation rule and the optimization approach optimizing the stage 2
sample size curve performed better than the reference sample size recalculation rule when as-
sessed with the new conditional performance score. In particular, we could see that the resulting
“optimal” stage 2 sample size curve mimics the smoothing corrections as the sample size curve
is first increasing and then decreasing. One might argue that a sample size curve should in-
tuitively decrease with increasing observed interim effect. However, the smoothing corrections
and the optimization overcome a steep and arbitrary “jump” in the sample size curve, which is
also not intuitive. Moreover, concave sample size functions were declared as optimal for specific
settings in the literature (Pilz et al., 2020). This can be explained by the influence of the variation
components in the performance score. When deciding on a specific sample size recalculation
approach, one generally has to choose between the simple, less complex established rules with
potential smoothing corrections or other improvement tools, e.g., as proposed in Thesis Related
Article III (Herrmann et al., 2021), and a more complex numerical solution optimizing specific
parameters. Both perspectives seem valid and may even come to similar results in specific
settings.

The presented new methodology also comes along with some limitations as well as open ques-
tions to be addressed in future work. While the new conditional performance score presented
in Thesis Article 1 was primarily developed for normally distributed endpoints, extensions to
binary and time-to-event endpoints seem attractive but need some formula adjustments. Fur-
thermore, instead of an equal weighting, it might also be interesting to give a different weight to
sample size compared to power or a different weight to location compared to variation. A po-
tential limitation of Thesis Article 3 is that optimization problems in general come along with the
problem of the definition of optimality criteria and prior assumptions. The solutions are optimal
with respect to the pre-defined criteria but their definition is the crucial point. Therefore, opti-
mized sample size recalculation rules are complex and can never be considered independently
of suitable scoring criteria. In general, it is therefore worth to consider a selection of parameter
constellations as well as different constraints. Another limiting factor is that not every constraint
combination leads to a solvable optimization problem.
The simulations shown in this work are based on specific design settings and assumptions.
However, the underlying methodology could also be applied if the underlying study design is
varied. For example, we could also base the conditional power on the assumed treatment effect
instead of the observed effect at interim or on a prior distribution, which corresponds to the
so-called predictive power (Spiegelhalter et al., 1986) that may be more efficient in some cir-
cumstances. Similarly, a different adjustment for multiple testing, e.g., as proposed by O’Brien
and Fleming (1979) or Lan and DeMets (1983), might be applied. In the Thesis Related Article II
(Li et al., 2020), we also proposed alternative views to define futility stopping criteria. Moreover,
other combination functions for the stage-wise test statistics, e.g. by Bauer and Köhne (1994),
may be used. Note that the general comparison of group sequential study designs with a con-
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stant stage 2 sample size and adaptive study designs can be found, e.g., in Tsiatis and Mehta
(2003), Kelly et al. (2005), Levin et al. (2013) and is omitted in here.

Within this thesis, I did not further present the results of the Thesis Related Articles. The-
sis Related Article I (Pilz et al., 2019) served as the theoretical foundation for the numerical
optimization approach of Thesis Article 3 (Kunzmann et al., 2021). The application of the
new constrained optimization approach in clinical practice was moreover described in Thesis
Related Article IV (Pilz et al., 2021). In addition, the theory is also extended to unplanned
interim analyses in Thesis Related Article V (Pilz et al., Submitted). The specific aspect of
choosing futility stopping boundaries in an optimal way is addressed in Thesis Related Article II
by Li et al. (2020). Finally, in addition to smoothing corrections, we also suggested another way
of reducing the variability of the recalculated sample sizes by resampling the observed interim
effect size. This approach is published in Thesis Related Article III (Herrmann et al., 2021).

Regarding future work, the open aspects mentioned above will be addressed by me and my
colleagues in an already accepted follow-up project funded by the German Research Founda-
tion (grant number RA 2347/4-2).
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