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Structure of the thesis

This thesis consists of two main and two additional chapters, each of them presented as a stand-alone
manuscript. The main part of the thesis focusses on the ecology of urban red foxes with both chapters
dealing with their adjustments to urban environments. In chapter 1 we report on our investigation of
genetic structure of foxes within Berlin and the surrounding countryside, as well as the effects of human
land use on gene flow between urban and rural areas and through the urban matrix. Chapter 2 investigates
habitat selection and space use patterns of red foxes radio collared within the urban area and deals with
effects of the landscapes as well as the impact of human presence on movements and habitat selection.

Both chapters will be discussed jointly in the general discussion of this thesis.

Chapter 3 is a methodological examination of additional assets arising from the use of the radio collars we
deployed. Finally, chapter 4 presents an interdisciplinary perspective on urban foxes by investigating the
perception of foxes in the general public. It uses the red fox as a model species to understand the effects
of socio-demographic factors on knowledge about, risk perception of and attitudes towards wildlife. The

discussion of the additional works is part of the corresponding manuscripts.
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Zusammenfassung

Die globalen Landveranderungen durch den Menschen stellt eine immense Bedrohung fir natiirliche
Okosysteme dar, mit vielfiltigen Folgen fiir Wildtier-Populationen. Landverinderungen dienen unter
anderem der landwirtschaftlichen Versorgung der menschlichen Bevolkerung, dem Ressourcengewinn
und der industriellen Produktion, sowie der Schaffung von Wohnraum. Die weltweite Ausbreitung
stadtischer Rdume schafft verinderte, menschlich tiberformte und somit neuartige Okosysteme fiir
Wildtierarten. Letztere (iberlebten entweder in von der Urbanisierung eingeschlossenen Resten
urspriinglicher Habitate oder besiedelten Stadtgebiete aktiv. Diese neuartigen Lebensraume bieten hohe
Nahrungsdichten und vielfdltige Brutmoglichkeiten, sind jedoch durch ein hohes Mall an menschlicher
Stoérung, Larm- und Lichtverschmutzung sowie Habitat-Fragmentierung gekennzeichnet. Die Fahigkeit, mit
diesen Umgebungsbedingungen zurechtzukommen, hangt von der phanotypischen Plastizitdt oder
Okologischen Flexibilitdt von Arten (und Individuen) innerhalb der bestehenden Merkmalsausstattung ab,
oder alternativ von einer sehr schnellen Evolution, die neue genetische Grundlagen fiir neue Merkmale als
evolutionare Anpassungen an das Stadtleben liefert. Dem Rotfuchs (Vulpes vulpes) als Allesfresser
mittlerer GroBe mit einer breiten geografischen Verteilung ist es gelungen, Stadte auf der ganzen Welt
erfolgreich zu besiedeln. Aufgrund ihrer allgegenwartigen Prdasenz in vom Menschen dominierten
Landschaften, von landwirtschaftlichen Flachen bis zu dicht bebautem Gebiet, wird gemeinhin davon
ausgegangen, dass Rotfilichse gut mit menschlicher Prasenz zurechtkommen. Obwohl es die Flexibilitat der
Art offensichtlich ermdglichte, diese Lebensrdume zu besiedeln, geht das Leben in der Ndhe des Menschen
auch mit Herausforderungen fir den Fuchs einher. Hohe Sterblichkeitsraten, niedrige durchschnittliche
Lebensdauern und heimliche Verhaltensweisen deuten auf Einschrdankungen fiir diesen urspriinglich
scheuen Generalisten hin, die unzureichend untersucht sind. Treffen wir also anhand oberflachlicher

Feststellungen falsche Aussagen liber das wahre AusmaR der phanotypischen Plastizitat der Flichse?

Um diese Frage zu beleuchten, analysierten wir (i) mittels genetischer Proben entlang eines rural-urbanen
Gradienten die genetische Struktur der Flchse auf Populationsebene. Wir untersuchten, inwiefern das
urbane Umfeld den Genfluss innerhalb und zwischen den Fuchspopulationen in Stadt und Land
beeinflusste und wie die stadtische Umgebung diesen jenseits von einzelnen Landschaftselementen
moglicherweise beeintrachtigt hat. (ii) Des Weiteren erforschten wir die individuelle Lebensraumnutzung
von Fichsen mit Hilfe der Besenderung von Tieren im Berliner Stadtgebiet. Wir untersuchten
insbesondere, wie Flichse auf verschiedene Landschaftstypen - einschlieRlich menschlicher Strukturen wie
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bebauter Flachen und Verkehrsadern - reagierten und mit unterschiedlichen Ausmalien an menschlicher

Prasenz und Aktivitat umgingen.

Die Ergebnisse des ersten Kapitels zeigen, dass der Genfluss der Flichse zwischen Berlin und Brandenburg
begrenzt war und zwei Populationen bestanden, die genetische differenzierbar waren. Obwohl
Landschaftselemente dabei einen gewissen Einfluss auf den Genfluss ausilibten, schienen sie fir die
Abwanderungsrouten der Flichse eine eher untergeordnete Rolle zu spielen. So hatten dicht bebaute
Gebiete nur schwache negative Auswirkungen auf den Genfluss und auch Grinflachen wie Stadtparks und
Walder trugen nur wenig zum Genfluss bei. Flichse vermieden es, die Stadtgrenze zu lberqueren und
migrierten trotz des inhdrenten Mortalitatsrisikos (iberwiegend entlang von Transportinfrastruktur wie
Autobahnen und Eisenbahnlinien. Dies weist darauf hin, dass Vermeidungsverhalten gegeniber dem

Menschen das Migrationsverhalten der Flichse mitbestimmt.

Im zweiten Kapitel berichten wir Gber die Raumnutzung der Flichse und verglichen dafiir den aktiv
genutzten mit dem insgesamt verfligbaren Lebensraum. Die Ergebnisse zeigten, dass Flichse dicht bebaute
Gebiete oder Gebiete mit einem hohen Versiegelungsgrad nicht mieden, obgleich hohe menschliche
Bevolkerungsdichten durchaus vermieden wurden. Die Fiichse nutzten ferner nicht vermehrt Griinflachen
wie offentliche Parks oder stadtische Walder. Bevorzugt genutzt wurden Brachflachen - inklusive der
Flachen entlang von Bahntrassen - und Garten von Einfamilienhdusern und Wohnhausern, die fur die
Offentlichkeit entweder unzugénglich oder mit geringer menschlicher Présenz assoziiert sind. SchlieRlich
war die Meidung hoher menschlicher Bevodlkerungsdichten innerhalb typischer menschlicher
Aktivitatszeiten ausgepragter. Die Ergebnisse legen nahe, dass die Raumnutzung der Fichse durch

Vermeidungsverhalten gegenliber dem Menschen (mit)bestimmt wurde.

Obwohl Flchse in stadtischen Lebensrdaumen anscheinend gut zurechtkommen, konnten wir zeigen, dass
menschliche Prasenz Konsequenzen fir die Tiere auf individueller und auf Populationsebene hat. Lokale
und zeitliche Aktivitdten der Menschen driangen Flichse zur Anpassung ihrer Bewegungsmuster bei der
Nutzung des stadtischen Lebensraums. Die Ergebnisse zeigen somit die Grenzen der phanotypischen
Plastizitat dieser Art auf. Wir hoffen, dass unsere Erkenntnisse dazu fuhren werden, diverse Faktoren

jenseits von Landschaftstypen in Studien zur Okologie der Wildtiere besser zu beriicksichtigen.
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Weitere Arbeiten

Fir die Untersuchung des Raumnutzungsverhaltens verwendeten wir VHF-Sender, die einen tri-axialen
Beschleunigungssensor enthalten, der Bewegungen der Messeinheit im dreidimensionalen Raum misst.
Da diese das theoretische Potenzial zur Fern-Detektion von Verhaltensweisen liefern, fliihrten wir dazu
eine methodische Studie durch (drittes Kapitel). Wir besenderten Fichse in Gefangenschaft und
dokumentierten ihr Verhalten wahrend der Messungen, um damit anschlieRend verschiedene Maschine
Learning Programme darin zu trainieren, Verhaltensweisen aus den Beschleunigungsdaten abzuleiten.
Dabei konnten wir zeigen, dass neuronale Netzwerke, besser als herkdmmliche Ansatze, das Potential

besitzen mithilfe von Beschleunigungsdaten Verhaltensweisen der Tiere zu klassifizieren.

Die Anwesenheit von Fiichsen in stadtischen Gebieten ist auch fir die Bevolkerung von Interesse. Neben
der méglichen Ubertragung von Krankheiten verursachen Fiichse Sachschidden an privatem und
offentlichem Eigentum und verursachen Stérungen (z. B. durch Geriiche oder Gerdusche). Kurze Flucht-
distanzen und ungewohnte Anndherung der Tiere an Menschen (oft in Garten und manchmal gar in
Hausern) schiiren zudem Angste in der Bevélkerung, fithren zu Arger und kénnen in der Forderung nach
einer Populationskontrolle stadtischer Fuchspopulationen gipfeln. Um besser zu verstehen, welche
Faktoren die Wahrnehmung von Wildtieren beeinflussen, flihrten wir eine reprasentative Umfrage durch
(viertes Kapitel). Wir fanden heraus, dass Einstellung und Risikowahrnehmung gegeniiber Flichsen
maRgeblich die Haltung der Teilnehmenden beeinflusste, ob und welcher Form populations-
beeinflussenden MaRnahmen durchgefiihrt werden sollten, wahrend Fachwissen dies nicht tat.
Einstellung und Risikowahrnehmung hingen dabei hauptsachlich vom Bildungsgrad, Alter, Geschlecht und

der Wohnumgebung der Teilnehmenden ab.
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Summary

Global human land alteration poses an immense threat to natural ecosystems with consequences to
wildlife populations on numerous scales. Land is altered for agricultural supply of the human population,
the gain of resources, and industrial production as well as for providing living space. The sprawl of urban
agglomerations around the world creates novel ecosystems for wildlife species that remained in natural
remnants enclosed by urbanization processes or actively colonized urban areas. These novel habitats
provide high food abundances and diverse breeding opportunities but are also characterized by a high
degree of human-induced disturbance, land- and light pollution and habitat fragmentation. The capacity
to adjust to these novel environmental conditions depends on the behavioural plasticity or ecological
flexibility of species (and individuals), or on rapid evolutionary processes that provide the genetic base for
adaptive trait changes. The red fox (Vulpes vulpes) as a generalist predator of medium size and a broad
geographic distribution, managed to successfully inhabit cities around the globe. Due to their ubiquitous
presence in human dominated landscapes, ranging from agricultural land to densely built-up areas, it is
commonly assumed that red foxes cope well with human presence. Although the fox’s inherent
behavioural plasticity obviously enables the species to populate those areas, living in close proximity to
humans may come with some downsides too. High mortality rates, low average life spans and elusive
behaviours indicate a trade-off for this naturally shy generalist that is poorly addressed. Do we thus draw
wrong conclusions about the actual boundaries of the behavioural plasticity of red foxes, based on shallow

observations?

To address this issue we (i) looked at genetic patterns on the population level by analysing red fox samples
across a rural to urban continuum. We investigated how the urban matrix affected gene flow in foxes and
how the urban environment potentially shaped the red fox population genetics beyond the effects of
single landscape elements. We then (ii) researched space use of foxes on an individual level by radio-
collaring individuals across the Berlin area. We examined how foxes adjust their habitat use within the city
depending on landscape - including manmade structures such as built-up areas and traffic infrastructure -

as well as on human presence and activity.

The results of the first chapter revealed that gene flow between urban and rural fox population of Berlin
and Brandenburg was limited, resulting in two genetically separable populations. Landscape did effect

gene flow through the urban matrix to a certain extent but seemed to play a minor role for fox dispersal.



For instance, while built-up areas had only weak impeding effects on gene flow despite their high degree
of urbanization, urban green spaces like city parks and forests did not serve as gene flow enhancement
either. Foxes avoided crossing the city border and predominantly dispersed along urban transport
infrastructure such as larger streets and railways, despite the inherent mortality risk. This indicates that

also human-induced fear drives dispersal behaviour in the studied red fox population.

The second chapter reports on movement and space use of the foxes based on the comparison of used to
available habitat. The results show that foxes did not avoid built-up areas or high degrees of
imperviousness (ground sealing), while high human population densities were avoided. The foxes further
did not preferentially select green spaces like public parks or urban forests. Wasteland areas - including
verges along railways - and gardens of residential houses were predominantly used by the studied
individuals, providing sites inaccessible to humans or with low human presence. Finally avoidance of
humans was more distinct during times of human activity. The results pinpoint that the foxes’ space use

was partly driven by avoidance behaviour towards humans.

Our study showed that although foxes cope well with the urban landscape as a species, human presence
has consequences on a population level and on an individual scale. Human local and temporal activities
pushed the foxes into an adjustment of movement patters and their use of the urban habitat. The results
also revealed the limits of this adjustment even in a flexible species like the red fox. We hope that our
findings enhance the consideration of multiple factors beyond landscape for future studies on the ecology

of wildlife.
Additional works

For studying space use behaviour, we used radio collars that include a tri-axial accelerometer that
measures deflections of the unit within the three-dimensional space. As recorded acceleration data hold
an understudied potential to analyse animal behaviour using remote tracking, we also included a
methodological work into our project (third chapter). We radio collared captive foxes and documented
the behaviours they displayed during measurement, to train different machine learning programs in the
inference of behaviours from the acceleration data. We showed that neural networks may provide an
improved ability for the classification of animal behaviours from acceleration data using machine learning

compared to established approaches.



The presence of foxes in urban areas also concerns people. In addition to the possible transmission of
diseases, foxes cause damage on private property and in public spaces and induce disturbances (e.g. due
to odours or noises). Short fleeing distances and unfamiliar approaches of the animals (in gardens and
sometimes even houses) stir up fears in the population, but can also create annoyance and calls for control
of the urban fox population. We therefore conducted a representative survey to look more closely into
the factors affecting wildlife perception (fourth chapter). We found that attitude towards and risk
perception of foxes mainly influenced the participants’ preferences on whether and how to deal with the
fox population, while factual knowledge did not influence their positions. Risk perception and attitude

mainly depended on education, age, gender and living environment of the participants.
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General introduction

The human footprint and its implications for wildlife

The human footprint on earth is large and ubiquitous. The entire global ecosystem is in a critical
environmental transition on a planetary scale that is threatening the sustainability of life on earth,
including humans (Barnosky et al., 2012; Vitousek et al. 1997). The latter concerns, amongst others, the
scarcity of critical resources, the degradation of ecosystem services, and the erosion of the planet’s
capability to cope with human waste (Steffen et al., 2011). Worldwide changes to former natural forests,
green spaces and waterways undermine the capacity of ecosystems to sustain food production, maintain
healthy freshwater bodies and forests, regulate climate and air quality, and ameliorate infectious diseases
(Foley et al., 2005). Humans have largely altered the face of the earth (Fig. 1) and global land use - including
croplands, pastures, plantations, and urban areas, accompanied by large increases in energy, water and
fertilizer use - results in a critical loss of biodiversity (e.g. Brook et al., 2003). Up to half of the planet’s
species are predicted to be lost within in the next 50 years (Thomas et al., 2004). For example,
approximately one quarter of all living (marine and terrestrial) mammals worldwide is at risk of extinction
to date (Schipper et al., 2008) and more than 75% of insect biomass has been lost within less than 30 years

in protected areas in Germany (Hallmann et al., 2017).

The global human Impact

(% land affected)

I None (5.22%)
B 1 (11.09%)
[ 2 (48.82%)
[ 13 (16.74%)
[ 14 784%)
[ 5 a.70%)
B 6 (2.98%)
B 712 261%)

Figure 1: Spatial distribution of thirteen overlapping human induced stressors per 1-km? area, and the percentage of

terrestrial lands affected globally (in parentheses). Modified from Kennedy et al. 2019.



One crucial aspect of human land alteration is urbanisation: During the past 100 years, a rapid transition
of natural land into urban agglomerations as well as the expansion of existing urban areas has led to the
majority of the world’s population living in cities (Heisler & Brazel, 2010) and the urbanisation process is
predicted to increase further (Ritchie & Roser, 2018), with global consequences for wildlife. The
encroachment of cities into natural habitats around the world represents a permanent loss of natural
habitat needed for wildlife species (Miller & Hobbs, 2002) but it also leads to an “urbanisation” of various
wild animal species. Compared to sprawling agricultural monocultures, urban areas provide
heterogeneous structures and harbour a variety of ecological niches for animals. Therefore it is often
argued that urban areas may be essential to actually conserve biodiversity, given the inadequacy of natural
protected area systems (Lundholm & Richardson, 2010). However, living in urban areas effectively means
that animals mostly dwell in ‘novel habitats’ - habitats characterized by ecological conditions that may
substantially differ from conditions in natural habitats (Lundholm & Richardson, 2010; Pickett et al., 2001).
Urban related ecological conditions that may affect life history traits of animals, for example, concern
increased temperatures within the cityscape (Heisler & Brazel, 2010), intense habitat fragmentation
(Fahrig, 2003; Gibb & Hochuli, 2002), noise pollution, light pollution by artificial night lighting (Katz & Levin,
2016; La Sorte et al., 2017) and also the influence of human activities (Rabele, 1994; Shochat et al., 2006a)
as well as the density and activities of their companion animals (Lenth et al., 2008; Plaza et al., 2019).
Consequently, the urban habitat represents a major challenge for the adaptive capacities of a wild animal
species (Ditchkoff et al., 2006). As habitat changes due to human land alteration and urbanization occurred
on a short ecological rather than a longer-term evolutionary time scale, it is likely that urbanisation tests
the limits of the tolerance (phenotypic plasticity) or adaptability of species to cope with such conditions
(Smith et al., 2018). This makes urban areas an ideal setting to study phenotypic plasticity and resilience

in the behaviour of wildlife.

The presence of wild animals in urban areas also gives rise to potential conflicts with their human
inhabitants (Distefano, 2005). Amongst others, the implications of the presence of urban wildlife for
people include the transmission of zoonoses (Ahmed et al., 2019; Morse et al., 2012), perceived risks,
including fear regarding direct encounters (Carter et al., 2020; Hanisch-Kirkbride, at al., 2013), loss of
livestock, companion animals and damages to property (Bagchi & Mishra, 2006; Czech et al., 2000) but
also “recreational" aspects, e.g. positive aspects for people through the delights of encountering wild

species (Cordingley et al., 2016; Rockel & Kealy, 1991). It would therefore be of great interest to establish



a framework to predict the potential effects of urbanisation measures on wildlife populations, not only
with regard to conservation of biodiversity but also for the purpose of resolving human-wildlife conflicts
(Baker & Harris, 2007; McKinney, 2006). The ecological discipline of urban ecology which started as
recently as the 1970s (McDonnell, 2011) has become an established discipline in ecological research
accordingly, with a steadily increasing number of scientific publications (McDonnell, 2015; Weiland and
Richter, 2009). It pursues a practical impact by making cities more attractive, more enjoyable, and better
for the health of people and that of the planet (Goode et al., 2020) but also pursues understanding the

fundamental principles of adjustment and adaptation of species to changing ecosystem conditions.

Despite the growth of this discipline and although an increasing number of species is found in urban
habitats, for many species the level of knowledge is still poor about the degree of tolerance to urban
conditions (known as phenotypic plasticity) and the adjustment mechanisms of wild animals (Magle et al.,
2012). Species substantially vary regarding their behavioural response to human proximity, many species
cannot persist in human dominated areas, whereas others cope well and even flourish in the novel
ecosystems (Mpgller, 2009; Shochat et al., 2006b). The extent to which urban dwelling animals apparently
adjust their ecology and behaviour to urban areas is often used to categorise such wildlife (Fischer et al.,
2015), e.g., in “urban avoiders”, “urban utilisers” and “urban dwellers”. Urban avoiders like the mountain
lion (Puma concolor, Gehrt et al., 2010) are species that reach their highest densities in the most natural
sites (Blair 1996) such as remnants of natural habitats (Markovchick-Nicholls et al., 2008) and that rarely
occur in developed areas (Fischer et al. 2015). Fischer et al. (2015) based their definition of urban dwellers
and urban utilisers on the relative importance of natural and developed areas to their population
dynamics. Following their classification system, urban dwellers are species whose persistence in an
urbanised landscape is independent of natural areas, e.g., the orb-weaving spider (Nephila plumipes, Lowe
et al. 2014). Urban utilisers only occur in urban environments as non-breeders or as breeders that are
present only because of dispersal from adjacent natural areas as in the case of the northern brown
bandicoot (Isoodon macrourus, FitzGibbon et al., 2007). The exact definition of such classifications as well
as its terminology varies between authors and the use of “urban adapters” or “urban exploiters” as
categories is also common (see Blair, 1996; McKinney, 2002). The boundaries of these classifications are
often fluid and some species might be difficult to assign to one specific category. What these attempts at
such classifications certainly demonstrate is that wildlife clearly shows different capacities to adjust to the

urban habitat.



Red fox plasticity

Mammalian urban dwelling species in Europe include bats, hedgehogs, mice, voles, the racoon (Procyon
lotor), the Eurasian badger (Meles meles), the European otter (Lutra lutra) and others (Baker & Harris,
2007; Bateman & Fleming, 2012). One species that successfully inhabits cities and urbanised areas is the
red fox (Vulpes vulpes). The phenomenon of the city fox was first observed in Great Britain in the 1970s
(Harris & Rayner, 1987; Soulsbury et al., 2011; White et al., 1996) and it was scientifically documented for
various British cities such as London, Bristol or Oxford (e.g., Baker et al., 2000; Harris, 1979, 1981; lossa et
al., 2008; Trewhella et al., 1988). As red foxes inhabit urban areas in numerous countries, urban fox
populations have been studied in many other places around the world, for example in Belarus (Sidorovich
et al., 2006), in Sapporo, Japan (Uraguchi et al., 2009), or in Zurich and Geneva in Switzerland (Contesse et
al., 2003; Gloor, 2002; Fischer et al., 2005). For several decades, the red fox is also established in major

German cities.

For mesocarnivores like the red fox, urban areas provide a variety of potential spatial niches, including
streets, parks and other public green spaces, squares and built-up areas, all with a different degree of
artificiality and human disturbance (Bateman & Fleming, 2012). These areas may be used by the animals
for different purposes, for instance green areas may provide shelter and suitable den sites (Adkins & Stott,
1998; Baker et al., 2000; Baker & Harris, 2007), railways, streets and other linear features may serve as
corridors for movements (Lewis et al., 1993). In addition to urban areas, red foxes also inhabit a large
variety of different natural habitat types. Their natural range covers the hot deserts of North Africa, the
Middle East and the Mediterranean as well as the temperate climate zone and the snowy landscapes in
the global north, including Siberia, Scandinavia and North America. The species’ geographical distribution
makes the red fox the most wide-spread terrestrial wild carnivore on the planet (Schipper et al., 2008). It
therefore displays an impressive level of apparent adaptability and flexibility with regard to its habitat
requirements such as choice of sleeping or breeding space, diet and even social structure (Baker et al.,

2004; Bateman & Fleming; 2012, lossa et al., 2009).

The special ability of the red fox to populate diverse environments is therefore a key element in research
into how wild animals adjust to new habitats, including novel urban habitats. Furthermore, because it is
abundant in many places, the red fox may serves as a model species to provide insights into the adjustment

strategies of animals that may benefit the protection of rare and threatened wild animal species, for which

4



small population sizes and their threat status may limit research opportunities. The abundance of red foxes
also harbours a certain potential for conflict. For example, regarding its role as a potential carrier of
zoonoses such as rabies and as host of the small fox tapeworm (Echinococcus multilocularis) as well as
other infectious diseases of relevance to companion or domestic animals such as canine distemper virus
(CDV) or sarcoptic mange. While rabies is officially extinct in Germany and most parts of central Europe,
infections with alveolar echinococcosis caused by the fox tapeworm are dangerous to humans although
rare (Combes et al., 2012). This parasite was for example detected in Geneva and Zurich, Switzerland with
varying levels of prevalence in city foxes (Fischer et al., 2005; Hofer et al., 1999). Finally, the potential to
study evolutionary processes in a species with high phenotypic plasticity may be of interest to scientists
asking questions about fundamental evolutionary process, with urbanisation being considered a quasi-
experimental setup of an extreme environment. Consequently the species has been in the focus of early
urban ecological research, with Stephen Harris and his colleagues in Bristol and David Macdonald and his

colleagues in Oxford studying the ecology and behavior of red foxes in settlement areas in the 1970s.

The results of these and subsequent studies show that red foxes reach high densities in urban areas with
tenfold to fifteenfold higher population densities thanin rural areas (e.g. Chautan et al., 2000; Harris, 1981;
Trewhella et al., 1988). The urban environment appears to have certain advantages for an opportunistic
omnivore. For instance, red foxes and other mesocarnivores may benefit from human activities by the
ability to exploit anthropogenic resources (Newsome, 2015) due to a certain inherent tolerance of these
species towards human presence (McKinney, 2006). Besides high food availability and density (Contesse
et al., 2003), the absence of natural apex predators could play a role here (Baker & Harris, 2007; Bateman
& Fleming, 2012; Crooks & Soulé, 1999). On the down side, living in the city may also involve fitness costs.
For example, fox mortality within cities is particularly high from road traffic (Baker et al., 2007) and in case
of disease outbreaks, high urban fox population densities accelerate rates of intraspecific transmission
(Baker et al., 2000). Especially sarcoptic mange and canine distemper virus (CDV) outbreaks can kill large
proportions of a red fox population within a short time. For instance, Soulsbury at al. (2007) reported a
short-term, mange-induced decline in fox density in Sweden of up to 95%. Human presence may also
negatively influence red fox behaviour - mesocarnivores were observed to display a diverse range of
behavioural responses to human presence and human activity (Barrueto et al., 2014; Sévéque et al., 2020;

Wang et al., 2015; Wilmers et al., 2013).



Objectives & purpose of this study

This study focused on human-induced limitations to the ability of red foxes to operate within an urban
setting, by considering two key aspects of life history traits: (1) their population structure in terms of

genetic exchange and dispersal opportunities, (2) their use of and movement through space.

(1) Urban areas are known to restrict animal movements and thus limit the functional connectivity - the
connectivity of the landscape from the species perspective (Tischendorf & Fahrig, 2000) - of the urban
environment. The urban matrix is thus likely to have an impact on a species’ ability to disperse (Bohonak,
1999). It has been shown for numerous species that urban populations are affected by geographical
barriers and may become reproductively isolated (e.g. Gortat et al., 2017; Lourenco et al., 2017). Physical
barriers often predominantly concern small and moderately mobile species (Beninde et al., 2018; Combs
et al., 2018; Munshi-South, 2012). Apart from physical barriers, however, human presence and activities
may also restrict animals in urban areas if the species avoids humans which may often be perceived as a
threat (Samia et al., 2015). If sufficiently common, such behaviour-related restrictions in movement
capacity should impede genetic exchange amongst individuals (possibly resulting in distinct genetic
subpopulations), even in a mobile species such as the red fox which is physically capable of crossing

manmade barriers such as streets, railway lines or freshwater bodies such as rivers (Adkins & Stott, 1998).

To address the effect of the urban matrix on red fox populations we studied the population genetic
structure as well as gene flow patterns across a rural to urban gradient. We asked whether urban and rural
populations are genetically distinct, and how different landscape elements may affect red fox dispersal
patterns, testing three different hypotheses:

(1.1) Due to their inherent plasticity and mobility, red foxes disperse unhampered throughout the city.
This predicts that urban and adjoining rural populations are panmictic, the urban fabric has no influence

on gene flow and there should be no population or landscape genetic structure.

(1.2) Red fox dispersal is solely affected by physical barriers such as rivers, built-up areas and highways.
This predicts that multiple physical barriers limit gene flow, resulting in several scattered genetic
populations with a distribution concomitant to major physical barriers, as revealed by a landscape genetic

analysis.



(1.3) Red fox dispersal is primarily affected by behavioural barriers. This predicts that there is population
structure and that dispersal is limited by the city border where the rural landscape transits to the urban
environment. Accordingly, two major genetic subpopulations are predicted and landscape related factors
beyond physical barrier effects (such as disturbance levels) are expected to affect gene flow within city

boundaries.

(2) An animal’s use of space and habitat selection emerges from its movement patterns, which are, in turn,
determined by their behavioural or physiological states and by extrinsic factors (Karelus et al., 2019).
Human presence may be such an extrinsic factor, affecting urban wildlife movement. In their review of
movement studies worldwide, Tucker et al. (2018) concluded that movements of mammals in areas with
a comparatively high human footprint were on average one-half to one-third the extent of their
movements in areas with a low human footprint. Such decreasing animal movements may arise from
habitat fragmentation, barrier effects, or an increase in resource availability (Prange et al., 2004; Said et
al., 2005; Sawyer et al., 2013). Whereas movement distances may become shorter in environments with
higher resources, some studies also report longer movements as a result of habitat loss, habitat
fragmentation or altered movement routes (Lenz et al., 2011; Tigas et al., 2002). Either way, human activity
may limit animal movements (and space use accordingly), and therefore influence the behaviour and
ecology of urban red foxes, for example by restricting their foraging opportunities or increasing their

mortality.

We therefore studied space use patterns in response to different landscape features as well as to human
population density (including human activity times) within the urban matrix. We asked which of these

factors influence red fox habitat selection, testing the three following hypotheses:

(2.1) Red fox behavioural plasticity and adjustment to urban environments enables it to fully exploit the
urban area. This predicts that foxes should use the urban landscape evenly, with little evidence for
avoidance or preference for specific landscape elements, and human population density should not affect

red fox movement.

(2.2) Red foxes rely on green vegetation areas i.e., natural-like habitats. This predicts that they avoid built-
up areas and grey spaces (like streets and places) and specifically select green spaces, including public

green spaces and forested areas. Again, human population density should have no effect.



(2.3) Red foxes adjust their use of space to human presence and activity times. This predicts that foxes
show preference or avoidance behaviour to covariates associated with human presence such as an
avoidance of densely populated areas, a preference for sites that are inaccessible to humans (such as

wasteland), and a preference for undisturbed habitat at times of overall increased human activity.

Our results may enhance the understanding of the opportunities as well as the limits of adjustment to
urban environments in a human commensal species and elucidate the underlying mechanisms of emerging

patterns in red fox behaviour.
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1 | INTRODUCTION

Urbanization results in dramatic environmental change (Johnson &
Munshi-South, 2017) and some species flourish in these semi-artifi-
cial ecosystems (Mgller, 2009; Shochat, Warren, Faeth, Mcintyre, &
Hope, 2006). Yet, urbanization affects key aspects of wildlife ecol-
ogy such as survival, foraging and reproductive success (Wilson et
al., 2016). Moreover, it has a substantial impact on the movement
ecology and dispersal ability of populations (Johnson & Munshi-
South, 2017; Tucker et al., 2018). Urban species may for example be
restricted by geographical barriers and become reproductively iso-
lated (Gortat, Rutkowski, Gryczynska, Kozakiewicz, & Kozakiewicz,
2017; Lourenco, Alvarez, Wang, & Velo-Antoén, 2017). The physical
structure of the urban environment is thus likely to have an impact
on dispersal capacity (Bohonak, 1999).

However, the urban environment imposes much more on wildlife
than the need to navigate a highly altered landscape. Animals often
perceive humans as predators and avoid areas of human activity
(Samia, Nakagawa, Nomura, Rangel, & Blumstein, 2015). Individuals
from the rural surroundings of an urban area might thus face a be-
havioural barrier to enter urbanized areas. Within the city, species
with the physical capability of crossing the urban matrix may face
behavioural barriers if they avoid man-made objects (with their ar-
tificial structures or scents) or human presence per se. Different
scenarios are thus conceivable for population structure and drivers
of gene flow across the urban-rural continuum and the perception
of human-induced risks may differentiate urban and rural popula-
tions beyond physical barriers. The role of behavioural limitations
to movement has been frequently overlooked. Examining the func-
tional connectivity—the connectivity of the landscape from the
species’ perspective (Tischendorf & Fahrig, 2000)—of the urban
landscape would thus help to assess the relative importance of
physical and behavioural dispersal barriers and thereby make an im-
portant contribution to understanding the ecology and evolution of
wildlife in novel environments.

Molecular genetic methods permit inferences about wildlife
dispersal without the need to collect extensive field data on in-
dividual movements (Frantz, Do Linh San, Pope, & Burke, 2010;
Guillot, Leblois, Coulon, & Frantz, 2009). Recently, numerous stud-
ies of gene flow in urban areas have been published, but many of
those focus on smaller and less mobile species that are thought
to face major barriers in urban areas (Beninde, Feldmeier, Veith, &
Hochkirch, 2018; Combs, Puckett, Richardson, Mims, & Munshi-
South, 2018; Munshi-South, 2012). Studies on larger and more vag-
ile species, in contrast, analysed the population genetic structure
of animals from peripheral suburban populations or from isolated
sampling sites within urban and rural areas (Blanchong, Sorin, &
Scribner, 2013; Santonastaso, Dubach, Hauver, Graser, & Gehrt,
2012; Stillfried, Fickel, et al., 2017; Wandeler, Funk, Largiader,
Gloor, & Breitenmoser, 2003). There is currently no thorough anal-
ysis of the population and landscape genetic structure of a vagile
species in an urban-rural continuum available, using continuous in-

dividual-based sampling. This would permit to identify drivers of
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urban gene flow, including those unrelated to the physical proper-
ties of the landscape.

Landscape genetic methods are particularly suited to assess
functional connectivity. Specifically, hypotheses on how the en-
vironment influences gene flow in a target species can be evalu-
ated by statistically relating the distribution of genetic similarities
among individuals to landscape characteristics (Cushman, McKelvey,
Hayden, & Schwartz, 2006; Schwartz et al., 2009). Several statisti-
cal problems have been recently solved, such as the nonindepen-
dence among ecological distances and the subjective assignment
of resistance values to environmental features (Peterman, 2018;
Prunier, Colyn, Legendre, Nimon, & Flamand, 2015; Sawyer, Epps,
& Brashares, 2011). Landscape genetic approaches are still evolv-
ing (Balkenhol, Waits, & Dezzani, 2009; Manel & Holderegger, 2013;
Richardson, Brady, Wang, & Spear, 2016) and some methodological
aspects remain relatively underexplored. For example, while a simu-
lation study by Shirk, Landguth, and Cushman (2017) has suggested
that not all genetic distance measures perform equally well in model
selection, different genetic distance measures have not been tested
with the same empirical data set.

Aiming to gain a more fundamental understanding of the impact
of urbanization on wildlife populations at a large spatial scale, we
here focus on a mobile mesopredator, the red fox (Vulpes vulpes). Red
foxes are ecologically flexible (Voigt & Macdonald, 1984) and occur
in various habitat types. Their populations prosper even in highly
urbanized habitats. In Berlin, our focal city, the first reports of foxes
date from the 1950s (Saar, 1957) and by the 1990s the entire city
was populated (Boérner, Wittstatt, Schneider, 2009). Their ubiquitous
distribution in highly artificial and fragmented areas as well as their
movement ecology make foxes an ideal model for this study. On the
one hand, foxes are very mobile. Urban animals have been reported
to routinely cross streets and even rivers (Adkins & Stott, 1998) and
gene flow may be unhampered by the urban landscape. On the other
hand, anthropogenic infrastructure could represent significant gene
flow barriers for mobile carnivores (Riley et al., 2006) and both te-
lemetry and genetic studies point towards the existence of distinct
urban and rural fox populations (Janko et al., 2011; Wandeler et al.,
2003).

Here, we used continuous sampling of individuals both within
Berlin as well as the adjoining rural countryside to evaluate three hy-
potheses. (a) The null hypothesis was that, due to their niche breadth
and mobility, foxes disperse unhampered throughout the city and
urban and adjoining rural populations are panmictic. This predicts
that the urban fabric has no influence on gene flow, resulting in the
absence of population and landscape genetic structure. (b) The frag-
mentation hypothesis posits that fox dispersal was (solely) affected
by physical barriers such asrivers, built-up areas and highways. Under
this hypothesis, multiple physical barriers limit gene flow, resulting in
several scattered genetic populations. (c) The urban island hypothe-
sis (Gloor, Bontadina, Hegglin, Deplazes & Breitenmoser, 2001) ex-
pects that dispersal may (also) be affected by behavioural barriers,
which are most likely to occur at the border of the city where the

rural landscape changes into the urban environment. Accordingly,
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individuals within the city are habituated to manmade structures and
human presence, while individuals from the rural surroundings are
not and thus face a behavioural barrier to enter the urban area. This
predicts two genetic populations resulting from limited gene flow
across the city border. We further expect that urban foxes disperse
along artificial structures and through built-up areas when crossing
the urban matrix.

In order to examine these predictions, we used assignment-based
population genetic approaches to identify the location of abrupt
genetic discontinuities and resistance-modelling-based landscape
genetic approaches to assess the functional connectivity of the land-
scape. We tested three genetic distance measures to address the
performance of different genetic distance measures in model selec-
tion and to generate robust results.

2 | MATERIALS AND METHODS

2.1 | Study area, sampling and laboratory
procedures

The Berlin metropolitan area (Figure 1a) has 3.5 million inhabitants
and covers ~900 km?. It has been steadily changing during the last
century and independent villages and satellite agglomerations were
incorporated into the city. Thus, the urban landscape structure is
quite heterogeneous, ranging from extremely urbanized areas of
dense housing and high proportions of impervious surfaces to dis-
tricts where forests and lakes represent up to 75% of land cover. The
city areaincludes around 2,500 city parks, some areas of agricultural
cultivation, 160 km? of forest and several lakes. The countryside
around Berlin is characterised by sparse urban agglomerations, ag-
riculture and forest. The landscape transition from the countryside
to (sub-)urban areas does not fully correspond to the administrative
boundaries between Berlin and Brandenburg as there are several
forests, lakes and green areas that reach into the city (Figure 1b).
These green spaces and lakes are commonly used as recreational
areas.

Between 2010 and 2015, tissue samples from 374 foxes
were collected (Figure 1a): Within Berlin, 188 fox carcasses
were collected for a municipal disease monitoring program. For
each individual, location (street, house number/km, postal code),
sex and age category were known. The 186 samples from rural
Brandenburg were collected by hunters and made available to the
veterinary authorities or the authors of this study. No animal was
killed with the aim of providing samples for this study. For 116
Brandenburg samples, the location or the cadastral unit of origin
was known, for the remaining 70 individuals, only the nearest vil-
lage to the harvest site was recorded. In these cases, we chose
a random forest location within 2 km of the village recorded as
sampling site. No information on sex and age was available for the
samples from Brandenburg.

Tissue samples were stored at -20°C or in absolute ethanol. We

genotyped the samples using 16 microsatellite loci: DGN3, DGN14,

FH2541, REN161A12, REN162B09, REN69B24, V374, V402, V502,
Vv-C01.424, Vv-C08.618, Vv-CPH11, Vv-CPH2, Vv-INUO55,
VVM124, VVM189 (Breen et al., 2001; Mariat, Amigues, & Boscher,
1998; Moore, Brown, & Sacks, 2010; Wandeler & Funk, 2006; Yan
et al., 2015). The data are publicly available (see Data Accessibility).
Detailed information on laboratory procedures is given in Appendix
S1.

2.2 | Population genetic analysis

To assess the suitability of the microsatellites for population genetic
analyses, we tested each locus for deviations from Hardy-Weinberg
and linkage equilibrium using cenerop v.4.7.0 (Rousset, 2008). We
also used cenepop to calculate F g values (Weir & Cockerham, 1984).
To avoid deviations resulting from Wahlund effects and isolation-
by-distance (Frantz, Cellina, Krier, Schley, & Burke, 2009), when
analysing the full data set, we subsampled the complete data set to
generate 10 data sets consisting of 24 spatially clustered individu-
als (details in Appendix S2). We tested each set for significant de-
ficiency or excess of heterozygotes and linkage disequilibrium (LD)
among loci using the Markov chain method in cenerop with 10,000
dememorization steps, 20 batches and 5,000 subsequent iterations.
We used the false discovery rate (FDR) to account for multiple tests
(Verhoeven, Simonsen, & Mclintyre, 2005).

We used two Bayesian-based clustering methods to es-
timate the number of genetic subpopulations (K), sTRuCTURE
v. 2.3.4 (Pritchard, Stephens, & Donnelly, 2000) and GENELAND
v. 3.3.2 (Guillot, Estoup, Mortier, & Cosson, 2005). Running con-
ditions and specifications are described in Appendix S3. We used
Microsatellite analyser MSA 4.05 (Dieringer & Schlotterer, 2003)
to calculate observed and expected heterozygosities and the num-
ber of alleles across all loci. The level of genetic differentiation
between genetic clusters inferred by sTRUCTURE and GENELAND was
assessed using Fg (Weir & Cockerham, 1984) in spacepi 1.4 (Hardy
& Vekemans, 2002); significance was tested with 10,000 permuta-
tions of individual genotypes between populations. We analysed
the complete data set using the Estimated Effective Migration
Surfaces (EEMS) method (Petkova, Novembre, & Stephens, 2016).
It uses georeferenced genetic data and can identify locations of
abrupt genetic discontinuities (i.e., gene flow barriers) in data
sets characterised by isolation-by-distance patterns (details in
Appendix S4). We plotted the results for the run with the high-
est log-likelihood, using the reemspLoTs package in r (Petkova et
al., 2016).

2.3 | Landscape resistance modelling

Functional connectivity was assessed using REsISTANCEGA 3.1-3
(Peterman, 2018). It calculates pairwise resistance distances be-
tween individuals and uses a linear mixed effects model based on

genetic algorithms to maximize the fit of resistance surfaces to the
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FIGURE 1 Sample distribution and land cover maps of the study area. (a) The location of the study area within Germany and the
geographic origin of samples, with size of the circles indicative of the number of samples collected from a locality. The dotted- and thin-
lined polygons show the boundaries of the study area used in landscape resistance modelling for the complete data set and the Berlin-only
data set, respectively. (b) Land cover map of the landscape genetics study area. (c) Habitat categories considered in the genetic landscape
resistance modelling of the city of Berlin, with the black dots showing the location of the 184 samples that were included in the analysis.
(d) Habitat categories considered in the genetic landscape resistance modelling of Berlin and the surrounding countryside, with the black
dots showing the location of the 286 samples that were included in the analysis. Habitat data were taken from the German authoritative
topographic cartographic information system (ATKIS) [Colour figure can be viewed at wileyonlinelibrary.com]

data. The process is based on stochastic search algorithms that solve
optimisation problems by mimicking processes of natural selection
(Scrucca, 2013). The optimisation process uses log-likelihood as
the objective function. Mixed models were fitted using the maxi-
mum likelihood population effects (MPLE) parameterization (Clarke,
Rothery, & Raybould, 2002) implemented in the R package Ime4
(Bates, Méchler, Bolker, & Walker, 2014). A simulation study by Shirk,
Landguth, and Cushman, (2018) has shown that this linear-mixed-ef-
fects-model-based method had a high accuracy in model selection.
RESISTANCEGA can optimise categorical and continuous resistance
surfaces, as well as multiple resistance surfaces simultaneously
(Peterman, 2018). All analyses in this work were based on categori-
cal resistance surfaces and the commute-time geographic resistance
distance (Kivimaki, Shimbo, & Saerens, 2014), equivalent to cir-

cuit-theory-based resistance distances (McRae, Shah, & Mohapatra,

2013). Model fit was assessed with the corrected Akaike informa-
tion criterion (AICC): A specific model was considered a better fit if
the difference in AIC_(AAIC)) to the next model was >2 AIC_ units.
To check for convergence, each optimisation run in the study was
performed twice for each landscape feature or combination of land-
scape features. Using the ca.prep() function, we set the maximum
value to be assessed during optimization of categorical resistance
surfaces to 500 and retained all other default parameters of the
GA.PrRep() function.

We performed separate analyses for foxes sampled within Berlin
and the full data set including the surrounding countryside. We split
the analysis because subtle behavioural patterns within the urban
area may be missed in a joint analysis of the complete data set. Also,
the greater precision of sampling locations within Berlin allowed a

fine-scale analysis of the permeability of the urban environment (see
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below). Except when mentioned, Arcmap v.10.3 (ESRI Inc) was used to
prepare resistance surfaces. Potential movements of individuals at
the edge of the study area can be artificially constrained by the prox-
imity to the boundary (Koen, Garroway, Wilson, & Bowman, 2010).
The extent of the study areas was therefore obtained by plotting
a minimum convex polygon around the sampling locations. Then,
based on dispersal distances obtained by capture-mark-recapture
methods (Harris & Trewhella, 1988; Trewhella & Harris, 1990) we
added a 5 km buffer around this feature.

Landscape classification was based on the German topographic
cartographic information system ATKIS (Figure 1b, Gruenreich,
1992). Seven landscape categories, hereafter called environmen-
tal predictors, were considered to potentially influence gene flow
(Figure 1c-d, Figure S1). (a) arable/green: all types of arable land and
grassland, fallow land, allotments, airports, public parks, cemeter-
ies and bare soils; (b) built-up areas: residential, industrial and com-
mercial areas; (c) the city border of Berlin (or variations thereof; see
below); (d) forests: irrespective of their composition; (e) motorways:
with tunnelled sections within the city not considered; (f) railways:
including major stations but excluding tramways and (g) larger water
bodies: including lakes and major rivers (which do not overlap with
other shapes), excluding small streams, creeks and underground ca-
nals (line elements that overlap other shapes). For the initial analyses
within the city area only, we pooled all arable land, green and forests
into a single (h) all vegetation layer (Figure 1c; Figure S2). To distin-
guish the actual landscape from environmental predictors used for
functional connectivity analysis, environmental predictors appear in
italics throughout the text.

In addition to ATKIS, we used data from the 2012 Copernicus
Urban Atlas (https://land.copernicus.eu/) that uses high-resolution
remote sensing data to provide detailed land cover information of
larger European urban areas and their hinterland. It comprised 27
different land cover types (Table S1), of which six, classified under
urban fabric, give an indication of the degree of imperviousness of
land cover (Montero, Van Wolvelaer, & Garzén, 2014). We used
the following (nonoverlapping) categories of the Urban Atlas to
subdivide the built-up area layer within the city (see Figure S3): (a)
Continuous urban fabric (sealing level (S.L.) >80%), (b) discontinuous
dense urban fabric (S.L. 50%-80%), (c) discontinuous medium dense
urban fabric (S.L. 30%-50%), (d) industrial, commercial, public, military
and private units and (e) a pooled layer consisting of discontinuous
low density urban fabric (S.L. 10%-30%), discontinuous very low den-
sity urban fabric (S.L. <10%) and all the remaining built-up areas not
covered by the previous categories.

We converted all layers into grids. Not considering cells without
data, each cell in the initial grid had a value of zero or one, depending
on whether it contained a feature under consideration. For linear
predictors and water bodies we used a priority rule, meaning that
every grid cell containing a linear predictor was coded as belong-
ing to that predictor, independently of the proportion of the cell it
covered. For shape predictors, we used a majority rule, with the cell
being attributed to the single predictor with the largest area within
the cell. Grid cell size was set to 250 x 250 m, giving rise to 233,798

grid cells without ‘no data’ cells, when ignoring three geographic out-
liers (Figure 1a). Since we only considered one animal per grid cell,
this resulted in 286 individuals being included in the analysis. Given
the ecology of the species and the occasional lack of precision of
the location information, we considered this to be an adequate com-
promise between computation time and spatial resolution. When
focusing on the individuals in Berlin only, grid cell size was set to
100 x 100 m, given the higher accuracy of the sampling location and
the smaller size of the study area. This resulted in 125,728 grid cells

without “no data” cells, and 184 individuals being analysed.

2.4 | Genetic distance measures

Interindividual genetic distance measures are not equally accurate in
model selection, especially when faced with weaker genetic struc-
ture (see Shirk et al., 2017). We therefore compared the perfor-
mance of three measures: (a) genetic distances based on Factorial
Correspondence Analysis (FCA), an eigenvector-based multivariate
analysis closely related to principal component analysis (PCA); (b) Nei's
genetic distance applied to individuals (DNei, Nei & Takezaki, 1983), as
used by Beninde et al. (2016) and (c) the proportion of shared alleles
between two individuals averaged over loci (DPS, Bowcock et al., 1994),
that is frequently used in landscape resistance modelling (Landguth et
al., 2010; Trumbo, Spear, Baumsteiger, & Storfer, 2013). FCA clusters
variance between loci into composite gradients. It accentuates differ-
ences between individuals better than measures that weight all loci
equally. The latter includes D, which uses the number of direct dif-
ferences between genotypes. D,; considers allele frequencies when
calculating genetic distances and ranges from O for identical genotypes
to 1 when genotypes are completely dissimilar.

We used GeNeTIX v. 4.05.2 (Belkhir, 2004) to perform an FCA on
a multiple contingency table of the genetic data and used the first
10 FCA axes as a compromise between model accuracy and noise
generation (Shirk et al., 2017). We calculated an Euclidean distance
matrix for all individuals from their values on each FCA axis using the
R package Ecodist (Goslee & Urban, 2007) and refer to this distance
measure as “FCA”. We used the r packages Alleles in Space (Miller,
2005) to calculate D,; and Adegenet (Jombart, 2008) to calculate
Dpe.

2.5 | Optimisation of resistance surfaces: Single
categorical environmental predictors

We first used the ss _ opTiM() command in RESISTANCEGA to optimise the
resistance of single categorical environmental predictors and test
model selection performance of the genetic distance measures. In
order to complete these analyses within a reasonable time, we lim-
ited initial tests to the seven ATKIS predictors (five for Berlin only).
We performed a (pseudo-)bootstrap procedure using the resisT.BooT()
command, which subsamples individuals and resistance matrices with-

out replacement at each iteration, refits the MLPE model to different
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resistance distance matrices and recalculates AIC_scores. We sampled
75% of the observations at each iteration. This was done in order to
assess the relative support of each optimised resistance surface and
the robustness of the model selection results given different sample
combinations. For each genetic distance measure, we assessed model
fit based on the differences between corrected Akaike information cri-
terion (AAIC ) values. When comparing genetic distance measures, the
measure that gave rise to the highest marginal R? values (while generat-

ing biologically meaningful results) was considered the most adequate.

2.6 | Multiple resistance surfaces

After optimising individual categorical resistance surfaces, the rel-
evant variables must be combined into a composite resistance sur-
face. This is necessary to test whether models with several landscape
features are better supported than models with single landscape
features and, ultimately, to gain an understanding of the functional
connectivity of the entire landscape (Khimoun et al., 2017; Ruiz-
Lopez et al., 2016).

2.7 | Multiple resistance surfaces: Automatically
combining categorical predictors

We used the samples from Berlin, the best genetic distance meas-
ure and the five ATKIS categories to compare two approaches that
combine categorical predictors into a single surface. Firstly, we used
RESISTANCEGA'S ALL _ coMB() wrapper function which automatically com-
bines and optimises all possible combinations of the five categorical
predictors and runs the resist.sooT() command to conduct a bootstrap
analysis. However, the ms _opTiM() command gives different resist-
ance values to a linear feature depending on which other feature it

overlaps with, which may lead to erroneous conclusions (Section 3).

2.8 | Multiple resistance surfaces: Single-surface
optimisation for combining categorical predictors

We therefore also tested a second approach for combining categori-
cal predictors into a single surface: Rather than letting RESISTANCEGA
automatically combine different surfaces, we applied the single-
surface optimisation (ss _opTiM()) procedure to resistance grids con-
taining multiple environmental predictors, i.e. each grid contained N
categorical predictors and each cell in the grid had a value ranging
from zero to N, depending on whether it was classified as one of the
N predictors or whether it was classified as matrix, i.e., the remaining
uniform study area not containing the features under investigation.
We will refer to these grids as “multicategorical” surfaces (to differ-
entiate them from composite surfaces obtained using ALL _ coms()).
The principle underlying the multicategorical models is to add indi-
vidual predictors based on model support (AIC_ values) but to only

retain a new predictor if its addition improved support (AAIC_ > 2

471
MOLECULAR ECOLOGY \V\VA I [l A%

after a RresisT.BooT() bootstrap analysis). Individual predictors whose
model support was AAIC_ < 2 with distance were not considered.
The optimisation for each feature or combination of features was
performed twice and only included the distance matrix from the op-
timisation run with the lowest AIC_ value in bootstrap analysis. We

will refer to this as the “stepwise optimisation” procedure.

2.9 | Multiple resistance surfaces: Dealing with
overlapping linear features

In order to assess the effect of the overlap of linear predictors,
we considered all possible priority combinations of predictors. We
tested, for example, individual surfaces where linear predictor 1
took precedence over linear predictor 2 at points of overlap and vice
versa. We also tested the support of a surface where all points of
overlap between linear features were classified as a distinct feature.
In each case, the combination with the highest model support after
bootstrapping was retained for further analysis.

2.10 | Multiple resistance surfaces: Effect of initial
cell values of multicategorical surfaces

Preliminary exploratory analyses suggested that in the stepwise opti-
misation, the initial cell values of a predictor influenced the optimised
resistance value for the predictors (and hence model support). We
therefore coded individual predictors relative to their resistance/
permeability inferred in the initial individual analysis. For example, in
order to obtain the highest model support when manually combining
two different categorical predictors in a single grid, a predictor in-
ferred to be permeable had to be given a grid value of zero, a predic-
tor resisting gene flow a grid value of two and all other cells a value of
one. In order to test more formally whether the optimised resistance
values were sensitive to the starting values of the input surface, we
took multicategorical surfaces with different combinations of predic-
tors that were retained in the stepwise optimisation procedure and
inverted the values of the input surface. We performed a total of four

independent optimisation runs for each initial and inverted surface.

2.11 | Multiple resistance surfaces: Optimising
multicategorical surfaces of Berlin

After these initial tests based on ATKIS categories all vegetation,
built-up areas, water bodies, motorways, railways, we refined the
composite Berlin model further. We performed single-surface op-
timisation for both the forest and arable/green layers (which had
been previously pooled in all vegetation) as well as the five Urban
Atlas categories of built-up areas to test model support of each
individual layer. We then followed a stepwise optimisation pro-
cedure to generate a multicategorical surface. If the difference in

model support between individual predictors was AAIC_ < 2, we
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added both predictors individually and jointly to the previous mul-
ticategorical model and only retained the model with the highest
support.

2.12 | Multiple resistance surfaces: Optimising
multicategorical surfaces of the whole study area

We also used a stepwise procedure to generate a multicategori-
cal surface for the whole Berlin/Brandenburg study area. To gain
a more detailed assessment of the interface between the city and
the surrounding countryside as a possible gene flow barrier, we
created a concave hull of the administrative city border using the
ConcaveHull plug-in for QGIS (QGIS Development Team, 2018).
We then drew 1, 2, 3, 4 and 5 km buffers around the concave hull
and used the ss _opTiM() command in RESISTANCEGA to separately op-
timise the resistance of all five inner and outer borders (Figure S4).
We then used the boundary model with the highest support to-
gether with the six remaining ATKIS predictors to identify the best-
supported multicategorical surface. Again, we performed the ResisT.

BooT() bootstrap analysis for each optimisation run, to circumvent
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potential problems with imprecise locations of individuals sampled
in Brandenburg.

The best-supported multicategorical resistance surfaces for the
Berlin and Berlin/Brandenburg data sets were used to predict move-
ment/gene flow patterns across both study areas using circuiTscAPE
v.4.0.5 (McRae, 2006). Animal movement paths were inferred be-
tween all pairs of sample location as well as between 200 random lo-
cations generated for both data sets using ARcmMaAP v.10.3 and located

along the border of the study areas.

3 | RESULTS

After correction for multiple tests, locus V502 deviated from Hardy-
Weinberg equilibrium (HWE) in five out of 10 subsampled data sets
(Table S2), its F,q values ranging between 0.40-0.53 in these five
data sets. The locus was thus excluded from further analyses. No
other locus showed systematic deviation from HWE. Some loci were
in linkage disequilibrium in some subsampled data sets, but no pair
deviated more than once (Table S3). We therefore performed further

population genetic analyses with all loci except V502.

Sample size
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FIGURE 2 Geographic distribution of the population genetic clusters. (a) sTrucTure results: plot of the number of clusters against their
estimated log-likelihood (bottom) and geographic representation of the K = 2 assignment analysis (top). The pattern of the pie chart indicates
the assignment probabilities averaged across all individuals sampled in the same location, with the two different colours representing
membership of different clusters and the size indicating the number of collected samples from one locality. (b) GeNeLAND results: plot of the
number of clusters inferred by the ten initial GeNeLAND runs (bottom) and geographic representation of the modal assignment to one of the
two clusters, i.e., the pattern of the pie chart indicates the proportion of individuals from a locality assigned to one of the two clusters (top).
Bottom right insert shows the location of the study area within Germany [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 EEMS-estimated effective (a)
migration and diversity rates. (a)

Interpolated surface of the posterior

mean migration rates m (on a log,, scale) .
depicting deviations from continuous

gene flow. Negative values in red indicate

areas of reduced migration rates, whereas LI

positive values in blue indicate higher- Coh e :
than-expected migration rates. (b) Plot g o 8 ’
highlighting regions where the effective 24

migration rates are significantly higher

(highlighted in blue) or lower (highlighted

in orange) than the overall average rate.

(c) Interpolated surface of the posterior

mean diversity rates g (on a log,, scale)

depicting effective diversity across the

study area. Diversity rates g describe the

genetic dissimilarity between distinct (c)
individuals from the same deme. Negative g7
values in red indicate areas of diversity, p
whereas positive values in blue indicate
higher-than-expected diversity. (d) Plot

highlighting regions where the effective . -
diversity rates are significantly higher

(highlighted in blue) or lower (highlighted .

in orange) than the overall average rate. ’ %
A total of 1,000 demes were used in the
analyses [Colour figure can be viewed at

wileyonlinelibrary.com]

3.1 | Population structure

The log-likelihood values inferred by sTRucTure provided clear
support for the presence of two genetic clusters (Figure 2a). The
corresponding clusters approximately consisted of (a) samples
collected in the centre, west and south of Berlin and (b) samples
from all rural localities and north-eastern Berlin, yet their precise
geographic distribution was not clear-cut (Figure 2a; Figure S5).
The location of the genetic discontinuity identified by sTRUCTURE
approximately corresponds to the course of the rivers Spree and
Havel (Figure S5). GeNeLAND also inferred K = 2 as the most likely
number of clusters in each of the 10 initial runs (Figure 2b). The
samples assigned to one cluster almost all originated from within
the Berlin city border, whereas the second cluster contained sam-
ples almost exclusively collected in the countryside (Figure 2b),
i.e., GENELAND identified an urban and a rural cluster, with the
boundary quite accurately corresponding to the administrative
city border. The EEMS contour plot of effective migration rates
identified a band of (slightly) reduced long-distance migration
rates that covered most of the city, but also extended to the south
of the study area (Figure 3a). In the east of Berlin, migration rates
were significantly lower than the overall average rate (Figure 3b).

Independently of the clustering method, the more urban cluster

had reduced genetic diversity compared to the rural cluster (Table
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S4) and the clusters were significantly differentiated from each
other. Differentiation between both sTrucTure clusters (Fg; = 0.026;
p < .0001) was higher than between the two GeNeLAND clusters
(Fsr = 0.011; p < .0001). The EEMS contour plot of effective di-
versity illustrated that in southwest Berlin effective diversity rates

were significantly lower than the overall average rate (Figure 3c, d).

3.2 | Optimisation of resistance surfaces: Single
categorical environmental predictors

When considering the five ATKIS environmental predictors, the re-
sults obtained after bootstrapping (Table 1) were qualitatively similar
to initial model results (Table S5). The three genetic distance measures
did not converge on the same results in the model selection process
(Table 1). In the analyses using Dy; and Dy, motorways was always
identified as the most significant factor facilitating gene flow, with rail-
ways ranked as second best model (also facilitating gene flow) and all
other models (except one: water bodies in one run using the D, genetic
measure) having a difference in AAIC_ < 2 with the distance model. In
the FCA, the difference between the distance model and all five pre-
dictors was large (AAICC > 6.2), with the ranking of the five models
remaining identical between the two independent optimisation runs

(Table 1). The water bodies model that best explained gene flow with
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the FCA measure (water bodies being a strong gene flow barrier) had an
average marginal R? of 0.289, a substantially higher model fit than the
best model's average marginal R? of 0.057 and 0.054 for Dyiand Dy,

respectively. We therefore used FCA for further analyses.

3.3 | Multiple resistance surfaces: Automatically
combining categorical predictors

When considering the prebootstrapping results of the optimisa-
tion of all possible combinations of the five single ATKIS envi-
ronmental predictors (aLL _ coms() function, Table Sé), only three
combinations had a AAIC. > 2 below the best single-feature
model (water bodies). After bootstrapping, 11 combinations had a
AAIC_ > 2 below the water bodies-only model, with the best model
containing railways and water bodies (resistance values: railways: 1,
matrix: 185, overlap water bodies/railways: 250, water bodies: 434,
Table S7; Figure S6). When simultaneously optimising and overlay-
ing different categorical resistance surfaces that included linear
features, REsISTANCEGA gave different resistance values to a linear
feature depending on which feature it overlapped with. For ex-
ample, in the model that included all five environmental predic-
tors, RESISTANCEGA optimised the resistance value of 24 different

categorical features (Figure S7).

3.4 | Multiple resistance surfaces: Single-surface
optimisation for combining categorical predictors &
dealing with overlapping linear features

The two best-supported models in the FCA-based analysis of in-
dividual features were water bodies and railways. When combining
these two predictors in a single-surface optimisation, the high-
est model support was obtained (after bootstrapping) when giv-
ing water bodies precedence over railways in the resistance grid
(when water bodies overlap with railways, the cell is classified as
water body; Table S8). When adding the next best-supported mo-
torways model to the single-surface analysis, the highest model
support was obtained when water bodies took precedence over
motorways and motorways took precedence over railways (water
bodies > motorways > railways; Table S9). After bootstrapping, the
three best “overlap” models had almost identical model support
(AAIC_ < 2; Table S9). Water bodies always strongly impeded gene
flow, while railways and motorways conducted gene flow. When
adding all vegetation (and hence built-up areas) to each of these
three overlap models in a single-surface analysis, the model with
water bodies > motorways > railways was again the best-supported
model after bootstrapping (Table S10). In summary, when only
considering the ATKIS data, the best permeability model for Berlin
included all five tested features (Table 2; Figure S8). Water bod-
ies strongly resisted gene flow (resistance: 1574), railways (resist-
ance: 1) and motorways (resistance: 4) enhanced gene flow. Built-up

areas (resistance: 291) were more permeable than all vegetation

(resistance: 494). The following analyses were based on the water
bodies > motorways > railways overlap model.

3.5 | Multiple resistance surfaces: Effect of initial
cell values of multicategorical surfaces

Multicategorical models whose starting cell values had been in-
verted gave rise to different optimised resistance values for the pre-
dictors and had a lower model support than the noninverted original

multicategorical surfaces (Table S11).

3.6 | Multiple resistance surfaces: Optimising
multicategorical surfaces of Berlin

When repeating single-feature optimisations but splitting the all
vegetation predictor into the two predictors forest and arable/
green and the built-up areas into the five Urban Atlas categories,
water bodies, railways and motorways were still the individual fea-
tures with the highest model support (Table 2), with arable/green
generating a better model support than the all vegetation model
(Table 2). Similarly, two Urban Atlas land cover categories (seal-
ing levels [S.L.] of 30%-50% and >80%) had higher model sup-
port than the predictor including all built-up areas (Table 2). The
fourth-best (arable/green) and the fifth-best (S.L. 50%-80%) indi-
vidual models had similar model support (AAIC_ = 0.5; Table 2).
The resistance value inferred for each single predictor is given in
Table S12. A better-supported model was obtained when adding
S.L. 30%-50% to the water bodies, railways, motorways (“mrw”)
model than when adding the arable/green predictor or both
arable/green and S.L. 30%-50% to the mrw model (Table 2). Adding
further single-feature predictors to the single-feature optimisation
procedure in order of decreasing support (and testing all possible
combinations when AAIC_ < 2 between two individual predic-
tors) resulted in three multicategorical models having comparable
support (Table 2). The overall best model (Figure 4) included rail-
ways (inferred resistance value: 1), motorways (resistance: 2), S.L.
30%-50% (resistance 8), S.L. 50%-80% (resistance: 103), S.L.>80%
(resistance: 469), water bodies (resistance: 784) as well as the re-
maining matrix (resistance: 282). Despite differences in the resist-
ance surface values between the models, the circuiTscape current
maps for the best supported model and the model with the fewest
predictors were very similar, both suggesting that gene flow within
the city of Berlin mostly occurred along linear landscape elements

(railways and motorways, Figure 4).
3.7 | Multiple resistance surfaces: Optimising
multicategorical surfaces of the whole study area

All city border models and obtained better support than the distance

only model and inferred the city border to resist gene flow (Table
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TABLE 1 Boostrap results of the single-predictor rResisTANCEGA analysis for the city of Berlin

Run 1 Run 2
Predictor avg. AIC_ k AAIC, avg.weight avg.mR? avg. AIC_ k AAIC, avg.weight avg.mR?
(a) Nei's genetic distance (D)
Motorways -21,765.0 3 0 0.977 0.035 -21,770.8 3 0 0.977 0.036
Railways -21,750.0 3 15.0 0.016 0.057 -21,755.5 3 15.3 0.016 0.057
Built-up areas -21,747.9 3 171 0.002 0.017 -21,753.4 3 17.4 0.002 0.017
Water bodies -21,747.9 3 17.1 0.002 0.022 -21,753.3 2 17.5 0.002 0.018
Distance -21,747.8 2 17.2 0.002 0.018 -21,753.3 3 17.5 0.002 0.022
All vegetation -21,747.7 3 17.3 0.001 0.018 -21,753.2 3 17.6 0.001 0.018
(b) Proportion of shared alleles (D)
Motorways -21,744.2 3 0 0.418 0.025 -21,761.1 3 0 0.946 0.034
Railways -21,741.1 3 3.1 0.228 0.054 -21,748.9 3 12.2 0.038 0.054
Water bodies -21,740.6 3 3.6 0.258 0.051 -21,746.5 3 14.6 0.004 0.017
Built-up areas -21,738.7 3 5.5 0.036 0.017 -21,746.3 2 14.8 0.004 0.018
Distance -21,738.5 2 5.7 0.031 0.018 -21,746.2 3 14.9 0.004 0.017
All vegetation -21,738.4 3 5.8 0.029 0.017 -21,746.1 3 15.0 0.004 0.020
(c) Ten-axes-based factorial correspondence analysis (FCA)
Water bodies 130,757.2 3 0 0.701 0.289 130,743.3 3 0 0.707 0.289
Railways 130,771.3 3 14.1 0.222 0.057 130,759.2 3 15.9 0.206 0.057
Motorways 130,779.9 3 22.7 0.076 0.014 130,766.9 3 23.6 0.087 0.014
All vegetation 130,800.7 3 43.5 0.001 0.030 130,787.4 3 44.1 <0.001 0.027
Built-up areas 130,803.4 3 46.5 <0.001 0.029 130,790.3 3 47.0 <0.001 0.029
Distance 130,810.0 2 52.8 <0.001 0.007 130,796.9 2 53.6 <0.001 0.007

Notes: Three different genetic distance measures (a-c) and five environmental predictors from the German authoritative topographic cartographic
information system (ATKIS) were compared (Section 2). The initial model results are presented in Table S5. To check for convergence, each
optimisation was performed twice for each landscape feature (Run 1 & Run 2). Avg. AIC_, average of the AlCc values obtained for each model in
1,000 bootstrap iterations; k, number of parameters; AAICC, difference in the avg. AICC values between the best supported model (lowest avg.
AICC) and each subsequent model; Avg.weight, average of the AIC_weights obtained for each model in 1,000 bootstrap iterations; Avg.mRz, average
marginal R? of 1,000 bootstrap iterations. Predictors are sorted according to increasing avg.AIC_values

S13). The best-supported model (the city border converted into a
concave hull) had a marginal R? of 0.42. The city border concave was
also the most significant single predictor influencing gene flow when
considering all other predictors (Table 3; Figure S9). Considering the
bootstrapping results of the FCA-based genetic distance only, five
of the six remaining single-feature models better explained gene
flow than the distance only model (the exception being motorways;
Table 3). Forest and arable/green were the only environmental fea-
tures inferred to facilitate gene flow (Table S14). Again, the three
genetic distance measures did not converge on the same results in
the model selection process (Table 3), with the support of the city
border model in particular changing with the genetic distance meas-
ure considered. Also, the marginal R? values obtained with Dy and
and Dy were considerably lower than those obtained with the FCA-
based measure (Table 3).

When performing a stepwise procedure to create a multicate-
gorical surface, two multicategorical models had almost identical
support. The overall best-supported model (after bootstrapping)
contained city border concave, built-up areas, railways and water

bodies (Table 4), where water bodies took precedence over railways

(Table S15). While railways (resistance: 1) and the remaining hab-
itat matrix (resistance: 2) enhanced gene flow, city border con-
cave (resistance: 498) and water bodies (resistance: 70) provided
a greater resistance than built-up areas (resistance: 6). The sec-
ond-best model (with almost identical support) had the same pre-
dictors (with similar resistance values) but did not include railways.
Considering both models, the circuitscare maps did not show a
clearly-defined corridor network in the Brandenburg countryside
(Figure S9).

4 | DISCUSSION

In the present work, we aimed to assess the importance of physi-
cal and behavioural dispersal barriers to drive population and
landscape genetic structure of the red fox across the Berlin met-
ropolitan area. We found support for the fragmentation hypoth-
esis with major water bodies and densely built-up areas resisting
gene flow. Contrary to our prediction, however, these barriers did

not create several scattered populations across the city, possibly
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TABLE 2 Results of the multicategorical functional connectivity analysis for the city of Berlin
Predictors avg.AlC_ k AAIC, avg.weight avg.mR?
Water*Railways*Motorways*S.L.30%-50%*S.L.50%- 130,726.1 8 0 0.194 0.169
80%*S.L. > 80%
Water*Railways*Motorways*S.L.30%-50%"S.L.50%- 130,726.7 9 0.6 0.244 0.199
80%*S.L. > 80%*Industry
Water bodies*Railways*Motorways* 130,727.4 7 1.3 0.153 0.188
S.L.30%-50%*S.L. > 80%
Water bodies*Railways*Motorways*S.L.30%-50% 130,730.2 4.1 0.044 0.168
Water*Railways*Motorways*S.L.30%-50%*S.L. > 80% 130,730.6 8 4.5 0.115 0.184
*Industry
Water*Railways*Motorways*S.L.30%-50%%*S.L.50%- 130,731.8 9 5.7 0.072 0.152
80%*S.L. > 80% *Remaining built-up
Water*Railways*Motorways*S.L.30%-50%"S.L. > 80% 130,731.9 8 5.8 0.030 0.150
*Remaining built-up
Water*Railways*Motorways*All vegetation*Built-up 130,736.5 6 10.4 0.031 0.157
areas
Water bodies*Railways *Motorways*Arable/green 130,738.2 6 12.1 0.039 0.113
Water bodies*Railways*Motorways*Arable/ 130,738.3 12.2 0.058 0.220
green*S.L.30%-50%
Water bodies*Railways *Motorways 130,741.7 5 15.6 0.011 0.195
Water bodies*Railways 130,749.5 4 23.3 0.005 0.087
Water bodies 130,769.1 3 43.0 0 0.293
Railways 130,784.0 3 57.9 0 0.057
Motorways 130,792.9 3 66.8 0.003 0.014
Arable/Green 130,800.5 3 74.3 0.001 0.049
S.L.30%-50% 130,801.6 3 75.4 0 0.017
S.L.>80% 130,809.1 3 83.0 0 0.051
All vegetation 130,813.7 3 87.6 0 0.030
S.L.50%-80% 130,815.5 3 89.4 0 0.038
Built up areas 130,816.5 3 90.4 0 0.029
Industry 130,817.4 3 91.3 0 0.030
Remaining built-up 130,820.8 3 94.7 0 0.023
Forest 130,822.9 3 96.8 0 0.009
Distance 130,823.1 2 97.0 0 0.007

Notes: The best-supported multicategorical surfaces combining different environmental predictors were obtained using a stepwise procedure:
Individual predictors were added based on model support (corrected Akaike information criterion values, AIC ), but only retained if their addition
improved support of the multicategorical model (AAIC_ > 2). Presented here are the bootstrapping results based on two optimisation runs (Table
S12) that were performed for each (combination of) landscape features. avg. AIC, average of the AIC_ values obtained for each model in 1,000
bootstrap iterations; k, number of parameters; AAIC,, difference in the avg; AIC, values between the best supported model (lowest avg.AIC ) and
each subsequent model; avg.weight, average of the AIC_ weights obtained for each model in 1,000 bootstrap iterations; avg.mR?, average marginal R?
of 1,000 bootstrap iterations. Predictors are sorted according to increasing avg.AIC_values. S.L., sealing level

because motorways and railways served as movement corridors.
We also found support for the urban island hypothesis and in-
ferred limited gene flow across the city border, indicating an effect
of behavioural barriers. Urban foxes further made use of artificial
structures when dispersing through the urban matrix. Our results
may thus suggest a hierarchy of drivers of genetic structure with a
general behavioural effect and impediment through physical barri-
ers underneath. However, the specifics of our results also suggest
that genetic structure was relatively weak and, therefore, disper-

sal rates still high.

4.1 | Population genetic structure and gene flow

The genetic clustering algorithms both inferred K = 2 as the mostly
likely number of subpopulations, yet they differed in the spatial
distribution of the clusters. For GeneLAND, the cluster boundary
closely coincided with the administrative city border, whereas for
STRUCTURE the urban cluster mostly excluded the north and north-
east of the city. The location of the sTrRucTure-inferred genetic
discontinuity approximately corresponded to the course of the

rivers Spree and Havel (Figure S5). EEMS also identified reduced
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FIGURE 4 Cartographic representation of results from genetics-based resistance modelling for foxes in the city of Berlin. (a) Optimised
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to gene flow based on (b) the sample locations and (c) sampling locations simulated at the edge of the study area. (d) Optimised resistance
surface of the best-supported multicategorical model with fewest predictors and the corresponding Circuitscape connectivity map showing
conductance to gene flow based on (e) the sample locations and (f) sampling locations simulated at the edge of the study area [Colour figure
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migration (broadly) around the city of Berlin, but especially in East
Berlin. Despite discrepancies, all three population genetic methods
inferred the presence of a cluster located within the confines of the
city. Furthermore, the landscape resistance modelling identified (a
concave hull of) the administrative city border as the main barrier
to fox dispersal in the study area (Figure S9). Finally, the F4-based
approach and the EEMS method confirmed reduced genetic diver-
sity within (parts of) the city compared to the surrounding country-
side. Our results therefore provided general support for a genetic
differentiation between urban and rural areas, i.e., the urban island
hypothesis.

While the three population genetic methods inferred the pres-
ence of an urban island, they differed in its proposed location and
composition. Different solutions for the partitioning of a data set
may result from differences in the assumptions and algorithms un-
derlying the statistical methods (Guillot et al., 2009) and the way
they deal with weak or hierarchical genetic structure (Frantz et al.,
2006; Puechmaille, 2016; Rowe & Beebee, 2007) as well as with
deviations from random mating that are not due to physical barriers
(e.g., isolation-by-distance, presence of relatives, Rodriguez-Ramilo
& Wang, 2012). As all three methods inferred a ‘circular’ cluster in
the centre of the sampling distribution and the diversity within the
city was reduced, it appears unlikely that the partitioning was an

artefact of an isolation-by-distance pattern (Frantz et al. 2009).

Perhaps the most likely explanation for the observed outcome is
that population genetic structure is weak because of high disper-
sal rates in our vagile study species. A simulation study suggested
that sTRucTURE was efficient at inferring the correct number of ge-
netic clusters even at lower levels of genetic differentiation (i.e.,
F¢r = 0.02-0.03), but this was not necessarily the case for its accu-
racy in assigning individuals to these clusters (Latch, Dharmarajan,
Glaubitz, & Rhodes, 2006). While, by definition, GeNELAND infers
abrupt genetic discontinuities, the deviation from IBD inferred by
EEMS also appeared to be relatively slight (Figure 3). We therefore
conclude that our results provided evidence for genetic differen-
tiation between urban and rural foxes, but that dispersal between

urban and rural areas was ongoing.

4.2 | Performance of genetic distance measures

While resisTaNCEGA offers high potential to gain a species-specific
understanding of the functional connectivity of the landscape,
careful consideration of some technical aspects seems necessary.
In the present study, the fit of a model testing single categorical
environmental predictors and its rank relative to other predictors
clearly differed between genetic distance measures. In the simula-

tion study by Shirk et al. (2017) most metrics performed equally
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TABLE 3 Boostrap results of the single-predictor rResisTANCEGA analysis for the complete data set
Run 1 Run 2
Predictor avg. AIC_ k AAIC, avg.weight avg.mR? avg. AIC_ k AAIC, avg.weight avg.mR?
(a) Nei's genetic distance (D)
Built-up areas  310,883.2 3 0 0.838 0.008 310,901.4 3 0 0.824 0.008
Forests 310,890.0 3 6.8 0.156 0.014 310,907.9 3 6.5 0.171 0.014
Arable/green  310,904.2 3 21.0 0.003 0.009 310,922.6 3 21.2 0.004 0.009
City border 310,929.6 3 46.4 0.003 0.016 310,947.6 3 46.2 0.002 0.017
concave
Water bodies  310,938.6 3 55.4 <0.001 0.014 310,957.3 & 55.9 <0.001 0.014
Railways 310,942.3 3 59.1 <0.001 0.010 310,960.7 3 59.3 <0.001 0.010
Motorways 310,955.9 3 72.7 <0.001 0.028 310,974.2 S 72.8 <0.001 0.028
Distance 310,956.8 2 73.6 <0.001 0.012 310,975.3 2 73.9 <0.001 0.011
(b) Proportion of shared alleles (D)
Built-up areas  310,892.3 3 0 0.956 0.007 310,921.3 3 0 0.951 0.007
Forests 310,902.5 S 10.2 0.039 0.011 310,931.4 S 10.1 0.044 0.011
Arable/green 310,909.8 3 17.5 0.004 0.008 310,939.1 3 17.8 0.004 0.008
City border 310,937.3 S 45.0 0.001 0.014 310,967.0 S 45.7 <0.001 0.014
concave
Railways 310,943.9 3 51.6 <0.001 0.010 310,973.3 3 52.0 <0.001 0.010
Water bodies  310,944.2 & 51.9 <0.001 0.013 310,973.7 3 52.4 <0.001 0.013
Distance 310,956.4 2 64.1 <0.001 0.012 310,985.5 3 64.2 <0.001 0.026
Motorways 310,956.7 & 64.4 <0.001 0.026 310,985.9 2 64.6 <0.001 0.012
(c) Ten-axes-based factorial correspondence analysis (FCA)
City border 310,842.9 0 0.663 0.389 310,860.3 8 0 0.721 0.386
concave
Built-up areas  310,878.6 35.7 0.211 0.058 310,899.7 3 39.4 0.170 0.057
Forests 310,889.3 46.4 0.095 0.054 310,910.6 3 50.3 0.089 0.052
Arable/green 310,910.9 68.0 <0.001 0.038 310,931.4 3 711 0.001 0.037
Water bodies  310,921.5 78.6 0.031 0.172 310,941.0 3 80.7 0.020 0.170
Railways 310,954.5 111.6 <0.001 0.065 310,973.9 3 113.6 <0.001 0.064
Motorways 310,990.1 147.2 <0.001 0.027 311,010.0 3 149.7 <0.001 0.011
Distance 310,991.0 148.1 <0.001 0.012 311,010.1 2 149.8 <0.001 0.011

Notes: Three different genetic distance measures and seven environmental predictors from the German authoritative topographic cartographic
information system (ATKIS) were compared (Section 2). The initial model results are presented in Table S14. To check for convergence, each analysis
was performed twice for each landscape feature (Run 1 & Run 2). avg. AIC_, average of the AIC_ values obtained for each model in 1,000 bootstrap
iterations; k, number of parameters; AAIC, difference in the avg; AIC_values between the best supported model (lowest AIC ) and each subsequent

model; avg.weight, average of the AIC_weights from 1,000 bootstrap iterations; avg.mR?, average marginal R? of 1,000 bootstrap iterations.

Predictors are sorted according to increasing avg.AIC_values

well in model selection accuracy, except in situations of low ge-
netic structure and small sample size. The discrepancies between
genetic distance measures reported here are therefore consistent
with high dispersal rates.

Shirk et al. (2017) performed Principal Components Analyses
(PCA) on multiple contingency tables and found that genetic dis-
tances based on multiple-axes PCA maximise model selection ac-
curacy, with other measures performing almost as well in cases of
high levels of genetic structure. PCA assumes continuous, normally
distributed data (Dytham, 2011), whereas Factorial Correspondence

Analysis (FCA) was designed for multistate categorical variables

(She, Autemm, Kotulas, Pasteur, & Bonhomme, 1987) and is thus
more suitable for the analysis of allele states. Analogous to Shirk et
al. (2017), our 10-axes FCA metric led to a better model fit (in terms
of marginal R?) than the other two measures and generated biologi-
cally meaningful results. Future research will show whether this is a
general feature of FCA and how much this depends on the number
of axes included. With a modest strength of the genetic signal, a few
large eigenvectors may have insufficient diagnostic power to infer
more subtle processes. The geographical distribution of the target
species may also matter (Shirk et al., 2017). We considered 10 axes

to be a good compromise between accuracy and noise and (almost)
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TABLE 4 Results of the
multicategorical functional connectivity
analysis for the complete data set

Predictors

City border concave*Built-up
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areas*Water bodies*Railways

City border concave*Built-up
areas*Water bodies

City border concave*Built-up areas

City border concave*Built-up
areas*Arable/Green

City border concave*Built-up

areas*Forest

City border concave

Built-up areas
Forest
Arable/Green
Water bodies
Railways
Motorways

Distance

avg.AlC_ k AAIC, avg.weight avg.mR?
310,624.2 6 0 0.475 0.373
310,624.4 5 0.2 0.371 0.384
310,665.4 4 41.2 0.008 0.397
310,668.6. 5 44.3 0.138 0.481
310,675.7 5 51.5 0.008 0.340
310,810.5 3 186.3 <0.001 0.384
310,851.2 3 226.9 <0.001 0.057
310,862.3 3 238.0 <0.001 0.053
310,883.1 3 258.9 <0.001 0.037
310,893.7 3 269.5 <0.001 0.170
310,925.5 3 301.3 <0.001 0.065
310,961.1 3 336.9 <0.001 0.027
310,961.7 2 3375 <0.001 0.012

Notes: The best-supported multicategorical surfaces combining different environmental predictors
were obtained using a stepwise procedure: Individual predictors were added based on model
support (corrected Akaike information criterion, AICC, values), but only retained if their addition
improved support of the multicategorical model (AAIC_ > 2). Presented here are the bootstrapping
results based on two optimisation runs (summarised in Table S15) that were performed for each
(combination of) landscape features. avg. AIC_, average of the AlCc values obtained for each model
in 1,000 bootstrap iterations; k, number of parameters; AAICC, difference in the avg; AICC, values
between the best supported model (lowest avg.AICc) and each subsequent model; avg.weight,
average of the AIC_weights obtained for each model in 1,000 bootstrap iterations; avg.mR?,
average marginal R? of 1,000 bootstrap iterations. Predictors are sorted according to inceasing

avg.AIC_values

all single ATKIS predictors had better model support than the dis-
tance model alone.

4.3 | Pitfalls in landscape resistance modelling

Our results show that a subtle understanding of gene flow requires
the simultaneous consideration of multiple landscape features.
However, an issue that emerged as nontrivial was the generation
of composite resistance surfaces that include linear features. When
considering multiple linear features, model support may depend on
the rule for classifying a grid cell where linear features overlap. The
comparison of all combinations of environmental predictors using
the ALL _ coms() command was hampered by the way the input grids
were created. As we applied a priority rule to linear and a majority
rule for shape predictors, they frequently overlapped when generat-
ing composite surfaces. This led to the creation of separate catego-
ries for each type of overlap and decreased model support. Without
a priority rule the linear features would have been interrupted in the
input grid. A different option could be to create single-feature input
grids by reclassifying a grid containing all features. This poses the
problem of how to deal with overlapping linear features and linear

features that run in parallel.

As a solution to these dilemmas, we adopted the multicate-
gorical approach where we applied the single-surface optimisa-
tion procedure to grid surfaces containing multiple environmental
predictors. This allowed us to explicitly test different overlap sce-
narios. In combination with the stepwise approach of creating mul-
ticategorical surfaces, this required fewer optimisation runs than
the comparison of all possible combinations using ALL _ coms(). This
might be an important consideration when having a large(r) num-
ber of predictors. A drawback of the multicategorical approach was
that model support and optimised resistance values were sensitive
to starting values of the input surface. The method(s) for simul-
taneously considering multiple landscapes therefore need(s) to be
chosen carefully.

Finally, the layers in this study were very general. For example,
we assumed that every stretch of motorway as well as every Urban
Atlas category had a consistent effect on gene flow over space and
time. We are well aware that this approach reflects the actual struc-
ture of the habitat only to some extent, especially in the urban area:
The already highly heterogeneous structure of a rapid growing me-
tropolis like Berlin is subject to permanent fluctuation. These pro-
cesses cannot be reflected in the spatial data set and sometimes the
same environmental predictors may even have opposite effects on

gene flow. A highway in Berlin, for example, may be a strong barrier
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if it is fenced-in and rarely interrupted by bridges or underpasses.
In contrast, the same motorway may serve as a corridor on other
stretches, if it is combined with long, continuous green strips con-
necting highly fragmented built-up areas. Consequently, those layers
can only serve as an approximation of the functional connectivity of
the real landscape. Nevertheless, this may still yield valuable insights
into dispersal processes.

4.4 | The urbanisland

Our results provided general support for a genetic differentiation
between urban and rural areas, i.e. the urban island hypothesis.
The observed genetic structure was relatively weak, indicating
that some individuals from the surrounding areas do disperse into
Berlin. With abundant high-quality food and a lack of hunting pres-
sure, the city is possibly a better-quality habitat for foxes, despite
an increased mortality. Urban foxes could therefore be expected
to stay within the city and individuals from the surrounding areas
to disperse into the urban area. However, there was no support for
a constant influx of foxes from the countryside and the (genetic)
exchange between the urban agglomeration and the rural coun-
tryside was sufficiently reduced to maintain genetic structure.
In line with this, a radio-tracking study of foxes in Zurich showed
limited movement across an the urban-rural boundary (Gloor,
2002). Colonising urban areas may thus require behavioural shifts
such as an improved tolerance of the presence of humans (Gloor
et al., 2001). Such behavioural changes have often been inter-
preted as resulting from phenotypic plasticity, allowing habitu-
ation to humans (Bateman & Fleming, 2012; Kauhala, Talvitie, &
Vuorisalo, 2016; Vuorisalo, Talvitie, Kauhala, Blauer, & Lahtinen,
2014). However, work on urban birds suggested that avoidance
of humans may have a genetic basis and urban colonisation may
result from selection for fearless individuals (Carrete et al., 2016;
Carrete & Tella, 2009; Mgiller et al., 2015). The presence of a ge-
netically distinct urban population may thus result from a founder
effect followed by limited urban-rural exchange due to differences
in avoidance behaviour (see also below).

Given the political history of Berlin, there remains another
explanation for the presence of an urban cluster: Between 1961
and 1989 the “Berlin Wall” (partially following the river Spree)
separated West Berlin from eastern Berlin and the surrounding
federal state of Brandenburg. While a founder effect may have
created an initial reduction in genetic diversity among urban foxes,
impermeable border fortifications could have limited gene flow
and thus artificially maintained genetic differentiation between
urban and rural foxes. However, genetic exchange between urban
and rural foxes must also have remained sufficiently low in the
ensuing 30 years to maintain genetic structure (with generation
time being 2-3 years, DeCandia et al., 2019). Based on F¢; values
(Fsr 2 0.027), Wandeler et al. (2003) detected genetic differentia-
tion between urban and rural foxes for the then recently (15 years)

established fox population within Zurich. However, assignment

tests provided evidence for ongoing urban-rural gene flow. A re-
cent re-analysis of the same data set identified only one evolu-
tionary cluster (DeCandia et al., 2019). Further research in other
metropolitan areas might help to clarify whether the urban island

is a general phenomenon or a specificity of Berlin.

4.5 | Gene flow within the cityscape

Gene flow in Berlin foxes was hampered by physical barriers. The
landscape resistance models identified major water bodies as the
most significant predictor resisting gene flow in the urban area.
Contrary to our predictions, foxes did not freely move through the
urban landscape. The best-supported multicategorical model(s) in-
ferred highly urbanised areas (sealing levels >80%) to represent an
important impediment to gene flow. On the other hand, urban fox
dispersal did not depend on corridors of natural vegetation as it was
described for other species (Goldingay et al., 2013; Munshi-South,
2012) either. While suburban areas with low degrees of impervi-
ousness were inferred to be more permeable for dispersers than
densely built-up areas, our results suggest that railways and motor-
ways served as the main dispersal corridors. This last result is in line
with results from radio-tracking studies in Edinburgh where railway
lines were the main conduit for long-distance dispersal of male foxes
(Kolb 1984).

Railway lines and motorways are highly artificial structures.
On the circular railway around the city centre, trains pass continu-
ously day and night. Similarly, the multilane motorways connecting
the districts of Berlin are extremely busy with high-speed traffic.
While railway-tracks are usually embedded within vegetated verges,
motorways are not, and generally, dispersal along such transport
infrastructure carries a high mortality risk (200-250 road-killed
foxes are found in Berlin each year: Bérner, 2014). Yet, what both
landscape elements have in common (besides their linearity), is the
absence of human activity, in terms of pedestrians and cyclists. The
green spaces of Berlin, in contrast, are usually crowded. Although
the actual mortality risk in green spaces and sparse built-up areas
is low, they show less conductance to gene flow than motorways
and railways (Figure 3), despite the latter's inherent mortality risk.
Consequently, foxes may use artificial structures as corridors but
avoid areas of human activity (see also Table 5). Adkins and Stott
(1998) reported that city foxes stayed shy and preferably used sites
when human activity was low. The authors concluded that foxes do
not avoid human constructions—but humans themselves. Beyond
physical barriers, human activity may thus represent a significant

impediment to dispersal in urban foxes.

4.6 | The landscape of fear

Over centuries, foxes have been intensively hunted by humans
- and still are. Although no hunting is conducted within the city,

foxes should thus maintain a certain level of “background fear” (see
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TABLE 5 Detected landscape resistance versus expected resistance effect of environmental predictors under the assumption of
disturbance due to artificiality of the predictor or disturbance due to associated human activity and detected resistance pattern

Expected effect of the environmental predictor

Disturbance due to manmade structures (signs of

Predictor human neighbourhood)
Motorways High resistance
Railways Medium resistance

Green spaces High conductance

Laundré, Hernandez, & Ripple, 2010). The concept of a “landscape of
fear” (Laundré, Hernandez, & Altendorf, 2001; Laundré et al., 2010)
is frequently applied to foraging behaviour and predator-prey rela-
tionships, but the authors promote its consideration for various life
history traits. It describes how fear (or predator-induced stress) af-
fects how animals use landscapes. It is not the actual predation risk
but the anticipation of risks that limits movement in a landscape of
fear (Laundré et al., 2010; Lima, 1998). In the context of our study,
this could indicate that human activity drives urban foxes into costly
trade-offs as they primarily disperse along structures with little
human activity (hence low perceived risk) but high inherent mor-
tality risks. This result conflicts with a model of fearless individuals
entering and roaming through the city. Rather, behavioural plasticity
may have allowed some foxes to enter the city and facilitate habitua-
tion to human presence to some extent, modifying but not obliterat-
ing their landscape of fear.

Movement constraints imposed by human activity could be even
more relevant for rural foxes that are less accustomed to human
presence (see also Stillfried, Gras, et al., 2017). Our results show that
rural foxes, unlike their city relatives, do not use artificial structures
as dispersal corridors and that dispersal was limited by the city bor-
der (Figure 3). It may thus not be the rural foxes’ physical capacity to
move but the fear to do so that hinders rural foxes from entering the
urban island and prevents admixture.

No matter how the genetic differentiation arose, the urban
island could persist due to additional behavioural movement lim-
itations. Human presence may thus be the key driver of red fox
dispersal behaviour and impact both the separation into rural and
urban clusters as well as the dispersal processes within the urban

area.
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Appendix S1: Methods used for genotyping 16 microsatellite loci

DNA was extracted using an ammonium acetate-based salting-out procedure (S. A. Miller, Dykes, & Polesky, 1988).
DNA extracts were quantified using a Drop-Sense 16 spectrophotometer (Trinean, Gentbrugge, Belgium). We used
16 microsatellite loci that were amplified in three Polymerase Chain Reactions (PCR). Multiplex 1 contained loci
DGN14, REN69B24, V374*, V402, Vv-C01.424 and VVM189. Multiplex 2 contained loci FH2541%*, Vv-CPH11, Vv-
INUO55 and VVM124. Multiplex 3 contained loci DGN3*, REN161A12*, REN162B09, V502*, Vv-C08.618 and Vv-
CPH2. The 5’-ends of the reverse primers of the loci marked with an asterisk were labelled with the ‘pigtail’
sequence GTTTCTT to limit noise from variable adenylation during PCR (Brownstein, Carpten, & Smith, 1996). Each
PCR contained 1 x QIAGEN Multiplex Master Mix and 0.2 uM of each primer (except VVM189 at 0.4 uM). PCRs
started with 5 min denaturation at 95 °C, followed by cycles of denaturation at 95 °C for 30 s, annealing for 90 s
and extension at 72 °C for 90 s. For all three multiplexes, the initial annealing temperature of 64 °C was reduced by
one degree every cycle for six cycles. This was followed by 29 cycles of annealing at 58 °C. The final incubation was
at 68 °C for 10 min. The PCRs were performed in a Mastercycler nexus (Eppendorf, Hamburg, Germany). PCR
products were genotyped using a capillary sequencer (ABI 3730XL, Applied Biosystems). Allele sizes were
determined using GENEMAPPER version 4.0 (Applied Biosystems). The genetic profiles of all samples consisted of

at least 11 loci.

References:

Miller, S. A., Dykes, D. D., & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human
nucleated cells. Nucleic Acids Research, 16(3), 1215.

Brownstein, M. J., Carpten, J. D., & Smith, J. R. (1996). Modulation of non-templated nucleotide addition by Taq
DNA polymerase: primer modifications that facilitate genotyping. Biotechniques, 20(6), 1004—-1006.
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Appendix S2: Generation of ten subsampled data sets consisting of 24 spatially clustered individuals.

To avoid deviations from Hardy-Weinberg equilibrium (HWE) resulting from Wahlund effects and isolation-by-
distance, we tested the 16 microsatellite loci in ten subsampled data sets each consisting of 24 spatially clustered
individuals. A data set was obtained by randomly selecting an individual from the complete dataset of 387
individuals and including its 23 nearest geographic neighbours. We aimed to avoid that any two of the ten
subsamples shared more than two individuals between them, and we therefore repeatedly generated 15 datasets
until ten of these 15 datasets fulfilled this criterion. We used the INTERSECT() function in program R v3.5.2 (lhaka &
Gentleman 1996) to estimate the number of individuals shared between each combination of datasets. In the final

selection, only one pair of datasets shared (two) individuals (Fig. A).
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Fig. A: Location of the ten subsamples of 24 individuals (data set 1 to 10) used to test the 16 microsatellite loci for deviations
from Hardy-Weinberg and linkage equilibria. One point can represent more than one individual. Two geographic outlier

individuals are omitted from the plot.

Reference:
lhaka, R., & Gentleman, R. (1996). A language for data analysis and graphics. Journal of Computational and
Graphical Statistics, 5, 299-314.
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Appendix S3: Running modalities of the Bayesian clustering analyses.

In order to estimate the number of genetic subpopulations (K) using STRUCTURE, ten independent runs of K=1-10
were conducted with 10° Markov chain Monte Carlo (MCMC) iterations after a 10°-iteration burn-in length, using
the admixture and correlated-allele-frequency models. ALPHA, the Dirichlet parameter for the degree of
admixture, was allowed to vary between subpopulations and set be non-uniform (priors: a=0.05, 6=0.001). The
most probable number of subpopulations was chosen based on the ten log-likelihood values inferred for each K
and their convergence. The assignment of individuals to the detected clusters was calculated by averaging each
individual’s proportion of membership over the ten runs. To determine the number of genetic clusters, the
GENELAND algorithm was run 10 times, with K=1-10 and 10° MCMC iterations with a thinning of 1000, maximum
rate of the Poisson process equal to sample size, maximum number of nuclei in the Poisson-Voronoi tessellation
equal to three times the sample size and uncertainty attached to the spatial coordinates fixed at 250m. The
Dirichlet model served as a prior for all allele frequencies. Next, the algorithm was run an additional 100 times with
a fixed value for K, according to the inferred number of clusters, conducting 10® MCMC iterations with thinning of

1000 and all further parameters as described above.
Appendix S4: Running modalities of the Estimated Effective Migration Surfaces (EEMS) method

The Estimated Effective Migration Surfaces method uses a stepping stone model to evaluate whether migration
rates between neighbouring demes are higher than expected and interpolates a surface illustrating effective
migration between and effective diversity within each deme. We ran the method simulating 1000 demes, after
first adjusting the parameters until reaching a recommended proportion of acceptance of 20-30%:

mEffctProposalS2 = 5, mSeedsProposalS2 = 0.18, mrateMuProposalS2 = 0.20, qEffctProposalS2 = 0.032,

gSeedsProposalS2 = 0.14. We performed ten independent runs with 107 iterations, sampling every 9999th

iteration after a burn-in of 2x106 iterations.
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Table S1: Land use categories employed in the 2012 Copernicus Urban Atlas. In the Urban atlas, cities are mapped at a scale of
1:10.000, with the smallest identifiable surface being 0.25 ha in urbanised areas and 1 ha in non-urbanised areas. The minimum
accuracy of the data is 85 % for artificial surfaces and 80 % for the other classes.

1. Artificial surfaces

11 Urban Fabric
11100 Continuous urban fabric (S.L.: >80%)
11210 Discontinuous dense urban fabric (S.L. 50%-80%)
11220 Discontinuous medium density urban fabric (S.L. 30%-50%)
11230 Discontinuous low density urban fabric (S.L. 10%-30%)
11240 Discontinuous very low density urban Fabric (S.L. <10%)
11300 Isolated structures

12 Industrial, commercial, public, military and private units
12100 Industrial, commercial, public, military and private units
12210 Fast transit roads and associated lands
12220 Other roads and associated lands
12230 Railways and associated lands
12300 Port areas
12400 Airports
Mine, dump and construction sites

13100 Mineral extraction and dump sites
13300 Construction sites
13400 Land without current use

Artificial non-agricultural vegetated areas

14100
14200

Green urban areas
Sports and Leisure facilities

2. Agricultural and Semi-natural

21000 Arable land (annual crops)
22000 Permanent crops
23000 Pastures
24000 Complex and mixed cultivation patterns
25000 Orchards
3. Forest (natural and plantation)
31000 Forests
32000 Herbaceous vegetation associations
33000 Open spaces with little or no vegetation
4. Wetlands 40000 Wetlands
5 Water 50000 Water
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Table S2: Significance values of the GENEPOP exact test for Hardy-Weinberg deviations in 10 datasets of 24 spatially clustered
individuals. The data sets were obtained by randomly selecting an individual from the complete dataset of 387 individuals and
including its 23 nearest geographic neighbours (see also Appendix 2). Values that are underlined were significant before the
multiple-test correction, while values in bold were still significant after this correction. DSet 1 to DSet 10: Subsampled data sets
1 to 10 (corresponding to dataset 1 to 10 shown in Fig. A of Appendix 2).

microsatellite Subsampled data sets

locus DSet 1 DSet 2 DSet 3 DSet 4 DSet 5 DSet 6 DSet 7 DSet 8 DSet 9 DSet 10
DGN14 <0.001 0.400 0.005 0.039 0.802 0.252 0.707 0.089 0.863 0.670
DGN3 0.234 0.015 0.015 0.008 0.132 0.057 0.049 0.049 <0.001 0.134
FH2541 0.041 0.865 0.523 0.666 0.452 0.321 0.407 0.267 0.999 0.769
REN161A12 0.162 0.807 0.949 0.190 0.234 0.471 0.930 0.231 0.835 0.642
REN162B09 0.291 0.572 0.695 0.765 0.177 1.000 0.033 0.228 1.000 0.110
REN69B24 0.653 0.575 0.005 0.928 0.176 0.184 0.085 0.913 0.053 0.083
V374 0.232 0.856 0.279 0.523 0.135 0.164 0.167 0.768 0.434 0.265
V402 0.243 0.822 0.544 0.303 0.010 0.456 0.896 0.470 0.152 0.519
V502 0.052 0.049 0.001 0011  <0.001 <0.001  0.001 0.002 0.010 1.000
VV-C01.424 0.247 0.628 0.665 0.812 0.107 0.356 0.697 0.042 0.742 0.650
VV-C08.618 0.471 0.504 0.237 0.639 0.121 0.158 0.895 0.033 0.490 0.189
VV-CPH11 0.118 1.000 0.453 0.663 0.583 0.536 0.399 0.315 0.053 1.000
VV-CPH2 0.400 0.659 0.377 0.264 0.881 1.000 0.701 0.689 0.222 0.424
VVINUO55 0.349 0.455 0.112 0.448 0.830 0.860 0.108 0.023 0.786 0.612
VVM124 0.918 0.417 0.415 0.548 0.028 0.797 0.041 0.742 0.772 0.053
VVM189 0.021 0.007 0.775 0.044 0.601 0.596 0.009 0.009 0.001 0.003

Table S3: Results of the GENEPOP exact test for Linkage Disequilibrium (LD). Significant pairs and corrected p-values among the
120 primer pairs, in 10 subsampled data sets each consisting of 24 spatially clustered individuals (see Appendix 2).

Simulated population locus 1 locus 2 p-value
run [l out of X DGN14 REN161A1 <0.001
run IX out of X V402 VVM189 <0.001
run IX out of X DGN* REN162B09 <0.001
run X out of X FH2541 REN161A12 <0.001

Table S4: Summary statistics for clustering results. Estimates of genetic diversity in the two inferred genetic clusters from
GENELAND and STRUCTURE (see also Figs. 1c & 1d). N: number of individuals, He: expected heterozygosity, Ho: observed
heterozygosity, A: average number of alleles across loci. The colour information in column one is indicative of the identity of the
cluster in Figs. 1c & 1d.

Software Cluster N H. H, A

GENELAND Berlin (orange) 203 0.78 0.74 10.7
Brandenburg (blue) 171 0.77 0.71 11.7

STRUCTURE Central Berlin (orange) 118 0.73 0.70 9.3
Other (blue) 256 0.78 0.73 11.9
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Table S5: Initial pre-bootstrapping results of the single-predictor ResistanceGA analysis for the city of Berlin. Three different genetic distance measures and five environmental
predictors from the German authoritative topographic cartographic information system (ATKIS) were compared (see Material and Methods). To check for convergence, each
opimisation was performed twice for each landscape feature (Run 1 & Run 2). Predictors are sorted according to increasing corrected Akaike information criterion (AIC.) values.
k = number of parameters, AAIC, = difference in the AIC, values between the best supported model (lowest AIC.) and each subsequent model. mR’ = marginal R’, Resistance =
resistance value inferred for each parameter (matrix= the remaining uniform study area not containing the features under investigation).

2 2

Predictor AIC, k AAIC, mR Resistance Predictor AIC, k AAIC, mR Resistance
Matrix  Predictor Matrix  Predictor

Run 1 Run 2

a) Nei’s genetic distance (Nei)

Motorways -38935.2 3 0 0.036 500 1 Motorways -38935.8 3 0 0.036 589 1

Railways -38911.2 3 24.0 0.058 33 1 Railways -38911.2 3 24.6 0.058 33 1

Distance -38906.1 2 29.1 0.018 Distance -38906.1 2 29.7 0.018

Water bodies -38905.7 3 29.5 0.022 1 2 Water bodies -38905.7 3 30.1 0.022 1 2

Built-up areas -38904.5 3 30.7 0.017 1 1 Built-up areas -38904.5 3 313 0.017 1 1

All vegetation -38904.0 3 31.2 0.017 1 1 All vegetation -38904.1 3 31.7 0.017 1 1

Null -38647.3 1 287.9 0 Null -38647.3 1 288.5 0

b) Proportion of shared alleles (Dps)

Motorways -38897.9 3 0 0.024 31 1 Motorways -38914.7 3 0 0.033 323 1

Railways -38895.6 3 2.3 0.055 31 1 Railways -38895.6 3 19.1 0.055 31 1

Water bodies -38891.5 3 6.4 0.052 82 1 Distance -38889.8 2 24.9 0.017

Distance -38889.8 2 8.1 0.017 Water bodies -38888.9 3 25.8 0.020 1 2

Built-up areas -38888.4 3 9.5 0.017 1 1 Built-up areas -38888.4 3 26.3 0.017 1 1

All vegetation -38887.9 3 10.0 0.017 1 1 All vegetation -38887.9 3 26.8 0.017 1 1

Null -38642.6 1 255.3 0 Null -38642.6 1 272.1 0

c) 10-axes based Factorial Correspondence Analysis (FCA)

Water bodies 232528.8 3 0 0.303 1 44 Water bodies 232528.8 3 0 0.303 1 44

Railways 232577.5 3 48.7 0.055 99 1 Railways 232577.5 3 48.7 0.055 99 1

Motorways 232593.0 3 64.2 0.014 500 1 Motorways 232592.9 3 64.1 0.014 500 1

All vegetation 232625.9 3 97.1 0.029 9 1 All vegetation 232626.0 3 97.2 0.026 8 1

Built-up areas 232632.2 3 103.4 0.028 1 6 Built-up areas 232632.2 3 103.4 0.028 1 7

Distance 232643.5 2 114.7 0.006 Distance 232643.5 2 114.7 0.006

Null 233094.8 1 566.0 0 Null 233094.8 1 566.0 0
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Table S6: Initial pre-bootstrapping results from the optimisation of all possible combination of the five single ATKIS environmental predictors (ALL_coms() function). To check for
convergence, each optimisation was performed twice for each (ccombination of) landscape feature (Run 1 & Run 2). AIC, = corrected Akaike information criterion, k = number of
parameters, AAIC, = difference in the AIC, values between the best supported model (lowest AIC.) and each subsequent model. mR* = marginal R%.

2

Predictor AIC, k AAIC, mR Predictor AIC, k AAIC, mR
a) Runil b) Run2

Built-up areas*Water bodies 232522.3 5 0 0.296 Built-up areas*Water bodies 232522.5 5 0 0.296
Vegetation*Water bodies 232524.3 5 2.0 0.301 Vegetation*Water bodies 232524.2 5 1.7 0.289
Railways*Water bodies 232526.3 5 4.0 0.262 Railways*Water bodies 232526.4 5 3.9 0.073
Built-up areas*Railways*Water bodies 232528.4 7 6.1 0.306 Built-up areas*Motorways*Water bodies 232527.9 7 5.4 0.275
Built-up areas*Motorways*Water bodies 232528.7 7 6.4 0.289 Built-up areas*Railways*Water bodies 232527.9 7 5.4 0.282
Water bodies 232528.8 3 6.5 0.303  Water bodies 232528.8 3 6.3 0.303
Built-up areas*Vegetation*Water bodies 232529.4 7 7.1 0.280 Railways*Vegetation*Water bodies 232529.3 7 6.8 0.293
Motorways*Vegetation*Water bodies 232529.5 7 7.2 0.293 Built-up areas*Vegetation*Water bodies 232529.4 7 6.9 0.288
Motorways*Water bodies 232529.5 5 7.2 0.295 Motorways*Water bodies 232529.5 5 7.0 0.294
Railways*Vegetation*Water bodies 232529.7 7 7.4 0.298 Motorways*Vegetation*Water bodies 232529.8 7 7.3 0.280
Motorways*Railways*Water bodies 232534.0 7 11.7 0.291 Motorways*Railways*Water bodies 232534.2 7 11.7 0.290
Built-up areas*Motorways*Vegetation*Water bodies 232534.5 9 12.2 0.285 Built-up areas*Motorways*Railways*Water bodies 232535.3 9 12.8 0.280
Built-up areas*Motorways*Railways*Water bodies 232535.4 9 13.1 0.302 Built-up areas*Railways*Vegetation*Water bodies 232535.7 9 13.2 0.298
Motorways*Railways*Vegetation*Water bodies 232535.5 9 13.2 0.295 Built-up areas*Motorways*Vegetation*Water bodies 232536.1 9 13.6 0.276
Built-up areas*Railways*Vegetation*Water bodies 232536.7 9 14.4 0.300 Motorways*Railways*Vegetation*Water bodies 232536.5 9 14.0 0.291
Built-up art'aas*Motorways*Rainays*Vegetation* 2325413 1 19.0 0.282 Built-up ar.eas*Motorways*Railways*Vegetation* 232541.8 1 19.3 0.284
Water bodies Water bodies

Railways*Vegetation 232574.3 5 52.0 0.052 Railways*Vegetation 232574.3 5 51.8 0.052
Railways 232577.5 3 55.2 0.055 Railways 232577.5 3 55.0 0.055
Built-up areas*Railways 232579.1 5 56.8 0.051 Built-up areas*Railways 232577.8 5 55.3 0.056
Motorways*Railways 232579.4 5 57.1 0.057 Motorways*Railways 232579.5 5 57.0 0.058
Motorways*Railways*Vegetation 232581.1 7 58.8 0.053 Motorways*Railways*Vegetation 232580.8 7 58.3 0.051
Built-up areas*Motorways*Railways 232581.9 7 59.6 0.055 Built-up areas*Railways*Vegetation 232581.8 7 59.3 0.050
Built-up areas*Railways*Vegetation 232582.6 7 60.3 0.049 Built-up areas*Motorways*Railways 232581.9 7 59.4 0.053
Built-up areas*Motorways*Railways*Vegetation 232588.6 9 66.3 0.054 Built-up areas*Motorways*Railways*Vegetation 232587.5 9 65.0 0.051
Motorways 232593.0 3 70.7 0.014 Motorways* 232593.0 3 70.5 0.014
Built-up areas*Motorways 232603.3 5 81.0 0.013 Motorways*Vegetation 232603.3 5 80.8 0.013
Motorways*Vegetation 232603.3 5 81.0 0.013 Built-up areas*Motorways 232603.3 5 80.8 0.013
Built-up areas*Motorways*Vegetation 232612.4 7 90.1 0.012 Built-up areas*Motorways*Vegetation 232612.4 7 89.9 0.012
Vegetation 232626.0 3 103.7 0.026  Vegetation 232625.9 3 103.4 0.029
Built-up areas*Vegetation 232629.3 5 107.0 0.029 Built-up areas*Vegetation 232629.8 5 107.3 0.026
Built-up areas 232632.2 3 109.9 0.028 Built-up areas 232632.2 3 109.7 0.028
Distance 232643.5 2 121.2 0.006 Distance 232643.5 2 121.0 0.006
Null 233094.8 1 572.5 0.000 Null 233094.8 1 572.3 0.000
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Table S7: Boostrap results from the optimisation of all possible combination of the five single ATKIS environmental
predictors (ALL_coms() function). In the initial analysis (summarised in Table S6), the optimisation procedure was repeated
twice for each landscape feature. For each combination of landscape feature, we only included the distance matrix from the
run with the lowest corrected Akaike information criterion (AIC.) in the bootstrap analysis. avg. AIC. = average of the AlCc
values obtained for each model in 1000 bootstrap iterations. k = number of parameters, AAIC, = difference in the avg. AIC.
values between the best supported model (lowest AIC.) and each subsequent model. avg.weight = average of the AIC,
weights obtained for each model in 1000 bootstrap iterations. avg.mRz = average marginal R’ of 1000 bootstrap iterations.
Predictors are sorted according to increasing averaged AIC, values.

Predictor avg. AIC, k DAIC.  avg.weight mR®
Railways*Water bodies 130723.9 5 0.0 0.585 0.074
Built-up areas*Water bodies 130732.8 5 8.9 0.116 0.283
Built-up areas*Vegetation*Water bodies 130733.9 7 9.9 0.026 0.268
Built-up areas*Motorways*Water bodies 130733.9 7 10.0 0.028 0.277
Motorways*Vegetation*Water bodies 130734.4 7 10.5 0.024 0.268
Vegetation*Water bodies 130734.4 5 10.5 0.053 0.288
Built-up areas*Railways*Water bodies 130734.6 7 10.7 0.033 0.293
Railways*Vegetation*Water bodies 130735.2 7 11.3 0.021 0.285
Built-up areas*Motorways*Vegetation*Water bodies 130735.5 9 11.6 0.011 0.265
Motorways*Water bodies 130736.4 5 12.4 0.024 0.282
Built-up areas*Motorways*Railways*Water bodies 130736.5 9 12.6 0.011 0.289
Motorways*Railways*Vegetation*Water bodies 130736.6 9 12.7 0.009 0.279
Motorways*Railways*Water bodies 130736.6 7 12.7 0.017 0.278
Built-up areas*Railways*Vegetation*Water bodies 130737.1 9 13.2 0.008 0.286
Built-up areas*Motorways*Railways*Vegetation*Water bodies 130737.3 11 13.4 0.006 0.272
Water bodies 130738.7 3 14.7 0.009 0.290
Railways*Vegetation 130750.2 5 26.3 0.001 0.053
Motorways*Railways*Vegetation 130752.1 7 28.1 0.001 0.054
Built-up areas*Motorways*Railways 130752.5 7 28.6 0.001 0.055
Built-up areas*Railways 130752.8 5 28.9 0.001 0.053
Built-up areas*Railways*Vegetation 130752.8 7 28.9 0.000 0.050
Motorways*Railways 130753.2 5 29.3 0.001 0.059
Railways 130754.0 3 30.1 <0.001 0.057
Built-up areas*Motorways*Railways*Vegetation 130754.2 9 30.3 <0.001 0.055
Motorways 130763.0 3 39.1 0.010 0.014
Motorways*Vegetation 130766.7 5 42.8 0.002 0.013
Built-up areas*Motorways 130766.7 5 42.8 0.002 0.013
Built-up areas*Motorways*Vegetation 130769.9 7 459 <0.001 0.012
Vegetation 130783.2 3 59.3 <0.001 0.027
Built-up areas*Vegetation 130783.3 5 59.4 <0.001 0.027
Built-up areas 130786.0 3 62.1 <0.001 0.029
Distance 130792.8 2 68.9 <0.001 0.007
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Table S8: Results of single-surface optimisation (SS_OPTIM()) procedures with two linear environmental predictors (see
Materials and Methods), modelling different overlap scenarios. Results are for the Berlin-only dataset, using the FCA-based
genetic distance measure. (i), (ii): Initial pre-bootstrapping results. Optimisation was performed twice for each combination of
landscape features; (iii) Bootstrapping results. For each combination of landscape feature, we only included the distance matrix
from the run (marked with ) with the lowest corrected Akaike information criterion (AIC.) in the bootstrap analysis.
“>” indicates which predictor took priority, meaning that every grid cell containing a point of overlap with other linear
predictors, the cell was codified as belonging to the predictor with priority. ‘Bridges’ predictor: A cell with two overlapping
linear predictors was classified as a distinct predictor. Predictors are sorted according to increasing AIC, values. avg. AlCc =
average of the AICc values obtained for each model in 1000 bootstrap iterations. AAICc = difference in the (avg.) AlCc values
between the best supported model and each subsequent model. k = number of parameters, mR* = marginal R, avg.mRz =
average marginal R® of 1000 bootstrap iterations. avg.weight = average of the AICc weights obtained for each model in 1000
bootstrap iterations. Resistance = resistance value inferred for each parameter (matrix= the remaining uniform study area not
containing the features under investigation).

Predictor AIC, k AAIC, mR* Resistance

(i) first analysis

Water bodies>Railways 2325149 4 0 0.085 Rail: 1, Matrix: 111, Water: 500
Bridges 232516.5 5 1.6 0.211 Rail: 1, Matrix: 28, Overlap: 405, Water: 494
Water bodies 232528.8 3 13.9 0.303 Matrix: 1, Water: 44
*Railways>Water bodies 232561.8 4 46.9 0.121 Rail: 1, Matrix: 63, Water: 416
Distance 232643.5 2 128.6 0.006

Null 233094.8 1 579.9 0

(ii) repeat analysis

*Water bodies> Railways 2325149 4 0 0.088 Rail: 1, Matrix: 105, Water: 500
*Bridges 232516.1 5 1.2 0.226 Rail: 1, Matrix: 25, Overlap: 249, Water: 499
*Water bodies 232528.8 3 13.9 0.303 Matrix: 1, Water: 44
Railways>Water bodies 232561.8 4 46.9 0.120 Rail: 1, Matrix: 105, Water: 416
Distance 232643.5 2 128.6 0.006

Null 233094.8 1 579.9 0

Predictor avg. AIC, k AAIC, avg.weight avg.mR’
(iii) bootstrapping

Water bodies>Railways 130723.1 4 0 0.705 0.089
Bridges 130728.6 5 5.5 0.268 0.219
Water bodies 130742.4 3 19.3 0.025 0.290
Railways>Water bodies 130750.0 4 26.9 0.002 0.121
Distance 130795.6 2 72.5 <0.001 0.007
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Table S9: Results of single-surface optimisation (SS_OPTIM()) procedures with three linear environmental predictors (see
Materials and Methods), modelling different overlap scenarios. Results are for the Berlin-only dataset, using the FCA-based
genetic distance measure. (i), (ii): Initial pre-bootstrapping results. Each optimisation was performed twice for each
combination of landscape features; (iii) Bootstrapping results. For each combination of landscape features, we only included
the distance matrix from the run (marked with an ) with the lowest corrected Akaike information criterion (AIC,) in the
bootstrap analysis. “>” indicates which predictor took priority, meaning that every grid cell containing a point of overlap with
other linear predictors, the cell was codified as belonging to the predictor with priority. ‘Bridges’ predictor: A cell with two
overlapping linear predictors was classified as a distinct predictor. avg. AlCc = average of the AlCc values obtained for each
model in 1000 bootstrap iterations. AAICc = difference in the (avg.) AlCc values between the best supported model and each
subsequent model. k = number of parameters, mR* = marginal R, avg.mR2 = average marginal R* of 1000 bootstrap iterations.
avg.weight = average of the AlCc weights obtained for each model in 1000 bootstrap iterations. Resistance = resistance value
inferred for each parameter (matrix= the remaining uniform study area not containing the features under investigation).
Predictors are sorted according to increasing AIC. values.

Predictor AIC, k  DAIC mR’ Resistance

(i) first analysis

Water bodies>Motorways>Railways 2324984 5 0 0.139 Motorways: 1, Rail: 23, Matrix: 1278, Water: 9376
*Motorways>Water bodies>Railways 232500.7 5 2.3 0.135 Motorways: 1, Rail: 2, Matrix: 192, Water: 1077
*Water bodies>Railways>Motorways 2325015 5 3.1 0.111 Motorways: 1, Rail: 4, Matrix: 376, Water: 2011
Bridges 2325146 6 16.2 0.100 Motorways: 1, Rail: 1, Matrix: 96, Bridges: 453, Water: 526
Water bodies>Railways 2325149 4 16.5 0.085 Rail: 1, Matrix: 111, Water: 500
*Railways>Water bodies>Motorways 2325419 5 43.5 0.158 Motorways: 1, Rail: 6, Matrix: 430, Water: 2737
*Motorways>Railways >Water bodies 2325449 5 46.5 0.133 Motorways: 1, Rail: 13, Matrix: 298, Water: 2349
Railways>Motorways >Water bodies 232559.1 5 60.7 0.090 Rail: 1, Motorways: 2, Matrix: 54, Water: 271
Distance 2326435 2 1451 0.006

Null 2330948 1 596.4 0.000

(i) repeat analysis

*Water bodies>Motorways>Railways 232495.7 5 0 0.197 Motorways: 1, Rail: 101, Matrix: 4000, Water: 46145
Motorways>Water bodies>Railways 2325009 5 5.2 0.150 Motorways: 1, Rail: 3, Matrix: 250, Water: 1605
Water bodies>Railways>Motorways 2325043 5 8.6 0.093 Motorways: 1, Rail: 8, Matrix: 941, Water: 3398
*Bridges 232512.8 6 17.1 0.102 Motorways: 1, Rail: 2, Matrix: 155, Bridges: 665, Water: 848
*Water bodies>Railways 2325149 4 19.2 0.088 Rail: 1, Matrix: 105, Water: 500
Motorways>Railways >Water bodies 2325471 5 514 0.127 Motorways: 1, Rail: 5, Matrix: 322, Water: 1491
*Railways>Motorways >Water bodies 2325473 5 51.6 0.156 Motorways: 1, Rail: 3, Matrix: 171, Water: 1176
Railways>Water bodies>Motorways 2325486 5 52.9 0.093 Motorways: 1, Rail: 2, Matrix: 141, Water: 554
Distance 2326435 2 147.8 0.006

Null 233094.8 1 599.1 0.000

Predictor avg.AIC.  k AAIC.  avg.weight avg.mR’

(iii) bootstrapping

Water bodies>Railways>Motorways 1307414 5 0 0.205 0.112

Motorways>Water bodies>Railways 1307415 5 0.1 0.366 0.136

Water bodies>Motorways>Railways 1307417 5 0.3 0.365 0.195

Bridges 130746.8 6 5.4 0.032 0.104

Water bodies>Railways 1307496 4 8.2 0.025 0.090

Railways>Water bodies>Motorways 130765.1 5 23.7 0.002 0.159

Motorways>Railways >Water bodies 130766.6 5 25.2 0.005 0.134

Railways>Motorways >Water bodies 130768.4 5 27.0 <0.001 0.156

Distance 130823.1 2 81.7 <0.001 0.007
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Table $10: Results of single-surface optimisation (SS_OPTIM()) procedures testing the model support when adding all vegetation and built-up areas to the three best-supported
overlap models in a single-surface analysis (see Table S9). Results are for the Berlin-only dataset, using the FCA-based genetic distance measure. (i), (ii): Initial pre-bootstrapping
results. Each optimisation was performed twice for each combination of landscape features; (iii) Bootstrapping results. For each combination of landscape feature, we only
) with the lowest corrected Akaike information criterion (AIC.) in the bootstrap analysis. “>" indicates which predictor
took priority, meaning that every grid cell containing a point of overlap with other linear predictors, the cell was codified as belonging to the predictor with priority. avg. AlCc =
average of the AlCc values obtained for each model in 1000 bootstrap iterations. AAICc = difference in the (avg.) AlCc values between the best supported model and each
subsequent model. k = number of parameters, mR’ = marginal R, avg.mR2 = average marginal R® of 1000 bootstrap iterations. avg.weight = average of the AlCc weights
obtained for each model in 1000 bootstrap iterations. Resistance = resistance value inferred for each parameter (matrix= the remaining uniform study area not containing the

included the distance matrix from the run (marked with

xr

features under investigation). Predictors are sorted according to increasing AIC, values.

Predictor AIC, k  DAIC mR’ Resistance

(i) first analysis

Water bodies>Motorways>Railways 2324984 5 0 0.139 Motorways: 1, Rail: 23, Matrix: 1278, Water: 9376
*Motorways>Water bodies>Railways 232500.7 5 2.3 0.135 Motorways: 1, Rail: 2, Matrix: 192, Water: 1077

*Water bodies>Railways>Motorways 232501.5 5 3.1 0.111 Motorways: 1, Rail: 4, Matrix: 376, Water: 2011
*Motorways>Water bodies>Railways*Vegetation*Built-up areas 2325056 6 7.2 0.105 Rail: 1, Motorways: 1, Built-up: 121, Vegetation: 146, Water: 498
*Water bodies>Railways>Motorways*Vegetation*Built-up areas 2325099 6 11.5 0.091 Rail: 1, Motorways: 1, Built-up: 175, Vegetation: 216, Water: 615
Water bodies>Motorways>Railways*Vegetation*Built-up areas 232510.7 6 12.3 0.213 Rail: 1, Motorways: 1, Vegetation: 8, Built-up: 80, Water: 554
Distance 2326435 2 1451 0.006

Null 2330948 1 596.4 0.000

(i) repeat analysis

*Water bodies>Motorways>Railways*Vegetation*Built-up areas 2324938 6 0 0.156 Rail: 1, Motorways: 4, Built-up: 291, Vegetation: 494, Water: 1574
*Water bodies>Motorways>Railways 232495.7 5 1.9 0.197 Motorways: 1, Rail: 101, Matrix: 4000, Water: 46145
Motorways>Water bodies>Railways 2325009 5 7.1 0.150 Motorways: 1, Rail: 3, Matrix: 250, Water: 1605

Water bodies>Railways>Motorways 2325043 5 10.5 0.093 Motorways: 1, Rail: 8, Matrix: 941, Water: 3398
Motorways>Water bodies>Railways*Vegetation*Built-up areas 2325069 6 13.1 0.102 Rail: 1, Motorways: 1, Built-up: 156, Vegetation: 199, Water: 500
Water bodies>Railways>Motorways*Vegetation*Built-up areas 2325109 6 17.1 0.096 Rail: 1, Motorways: 1, Built-up: 234, Vegetation: 328, Water: 678
Distance 2326435 2 149.7 0.006

Null 2330948 1 601 0.000

Predictor avg.AIC.  k  AAIC.  avg.weight avg.mR’

(iii) bootstrapping

Water bodies>Motorways>Railways*Vegetation*Built-up areas 130695.6 6 0 0.463 0.158

Water bodies>Railways>Motorways 130700.2 5 4.5 0.063 0.113

Motorways>Water bodies>Railways 1307006 5 5.0 0.171 0.136

Motorways>Water bodies>Railways*Vegetation*Built-up areas 1307009 6 5.3 0.107 0.107

Water bodies>Motorways>Railways 1307006 5 5.0 0.160 0.197

Water bodies>Railways>Motorways*Vegetation*Built-up areas 130702.6 6 7.0 0.035 0.094

Distance 130781.0 2 85.4 <0.001 0.007
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Table S11: Results of single-surface optimisation (SS_OPTIM()) procedure testing whether model support of multi-categorical surfaces is sensitive to the starting values of the
input surface. We took multi-categorical surfaces with different combinations of predictors that were retained in the step-wise optimisation procedure (see Tables S8, S9 & S10)
and inverted the values of the input surface. We performed a total of four independent optimisation runs for each initial and inverted surface. “>” indicates which predictor took
priority, meaning that every grid cell containing a point of overlap with other linear predictors, the cell was codified as belonging to the predictor with priority. Predictors were
sorted according to increasing corrected Akaike information criterion (AIC.) values. k = number of parameters, AAICc = difference in the AlCc values between the best-supported
model and each subsequent model. mR* = marginal R’. Resistance = resistance value inferred for each parameter (matrix= the remaining study).

Predictor AIC, k AAIC, mR’ Starting values Resistance

(a)

Water bodies>Railways 2325147 4 0.195 Railways: 0, Matrix: 1, Water: 2 Railways: 1, Matrix: 33, Water: 499

Water bodies>Railways 232514.7 4 0 0.193 Railways: 0, Matrix: 1, Water: 2 Railways: 1, Matrix: 33, Water: 499

Water bodies>Railways 2325149 4 0.2 0.085 Railways: 0, Matrix: 1, Water: 2 Railways: 1, Matrix: 111, Water: 500

Water bodies>Railways 2325149 4 0.2 0.088 Railways: 0, Matrix: 1, Water: 2 Railways: 1, Matrix: 105, Water: 500

Water bodies>Railways 2326357 4 121.0 0.029 Water: 0, Matrix: 1, Railways: 2 Water: 1, Matrix: 109, Railways: 215

Water bodies>Railways 232635.7 4 121.0 0.029 Water: 0, Matrix: 1, Railways: 2 Water: 1, Matrix: 109, Railways: 214

Water bodies>Railways 2326357 4 121.0 0.029 Water: 0, Matrix: 1, Railways: 2 Water: 1, Matrix: 109, Railways: 215

Water bodies>Railways 2326357 4 121.0 0.029 Water: 0, Matrix: 1, Railways: 2 Water: 1, Matrix: 110, Railways: 215

Distance 2326435 2 1288 0.006

Null 233094.8 1 4513 0

(b)

Water bodies>Motorways>Railways 232495.7 5 0 0.197 Railways: 0, Motorways: 1, Matrix: 2, Water: 3 Motorways: 1, Railways: 101, Matrix: 4000, Water: 46145
Water bodies>Motorways>Railways 232495.7 5 0 0.149 Railways: 0, Motorways: 1, Matrix: 2, Water: 3 Motorways: 1, Railways: 35, Matrix: 2199, Water: 16430
Water bodies>Motorways>Railways 2324984 5 2.7 0.139 Railways: 0, Motorways: 1, Matrix: 2, Water: 3 Motorways: 1, Railways: 23, Matrix: 1278, Water: 9376
Water bodies>Motorways>Railways 232499.3 5 3.6 0.113 Railways: 0, Motorways: 1, Matrix: 2, Water: 3 Motorways: 1, Railways: 12, Matrix: 1204, Water: 5759
Water bodies>Motorways>Railways 232599.2 5 1035 0.053 Water: 0, Matrix: 1, Motorways: 2, Railways: 3 Motorways: 1, Water: 87, Matrix: 4022, Railways: 13346
Water bodies>Motorways>Railways 232601.0 5 105.3 0.063 Water: 0, Matrix: 1, Motorways: 2, Railways: 3 Motorways: 1, Water: 63, Matrix: 4143, Railways: 14586
Water bodies>Motorways>Railways 232601.0 5 105.3 0.041 Water: 0, Matrix: 1, Motorways: 2, Railways: 3 Motorways: 1, Water: 40, Matrix: 2406, Railways: 4582
Water bodies>Motorways>Railways 232608.0 5 1123 0.089 Water: 0, Matrix: 1, Motorways: 2, Railways: 3 Motorways: 1, Water: 11, Matrix: 1038, Railways: 4906
Distance 2326435 2 147.8 0.006

Null 233094.8 1 599.1 0

(c)

Water>Motorw.>Rail*All vege.*Built-up areas 232490.9 6 0 0.215 Rail.: 0, Motor.: 1, Vege.: 2, Built-up: 3, Water: 4 Rail.: 1, Motorw.: 7, All vege.: 294, Built-up: 251, Water: 2349
Water>Motorw.>Rail*All vege.*Built-up areas 232493.8 6 2.9 0.156 Rail.: 0, Motor.: 1, Vege.: 2, Built-up: 3, Water: 4 Rail.: 1, Motorw.: 4, Built-up: 291, All vege.: 494, Water: 1574
Water>Motorw.>Rail*All vege.*Built-up areas 232505.7 6 148 0.109 Rail.: 0, Motor.: 1, Vege.: 2, Built-up: 3, Water: 4 Rail.: 1, Motorw.: 2, Built-up: 307, All vege.: 357, Water: 829
Water>Motorw.>Rail*All vege.*Built-up areas 232510.7 6 19.8 0.213 Rail.: 0, Motor.: 1, Vege.: 2, Built-up: 3, Water: 4 Rail.: 1, Motorw.: 1, All vege.: 8, Built-up: 80, Water: 554
Water>Motorw.>Rail*All vege.*Built-up areas 232600.6 6 109.7 0.057 Water: 0, Built-up: 1, Vege.: 2, Motor.: 3, Rail.: 4 Motorw.: 1, Water: 129, All vege.: 5011, Built-up: 6201, Rail.: 20351
Water>Motorw.>Rail*All vege.*Built-up areas 232601.5 6 110.6 0.049 Water: 0, Built-up: 1, Vege.: 2, Motor.: 3, Rail.: 4 Motorw.: 1, Water: 109, All vege.: 5791, Built-up: 6661, Rail.: 16167
Water>Motorw.>Rail*All vege.*Built-up areas 232606.1 6 115.2 0.054 Water: 0, Built-up: 1, Vege.: 2, Motor.: 3, Rail.: 4 Motorw.: 1, Water: 27, All vege.: 2039, Built-up: 2688, Rail.: 5587
Water>Motorw.>Rail*All vege.*Built-up areas 232606.4 6 1155 0.080 Water: 0, Built-up: 1, Vege.: 2, Motor.: 3, Rail.: 4 Motorw.: 1, Water: 29, Built-up: 2118, All vege.: 2494, Rail.: 9811
Distance 2326435 2 152.6  0.006

Null 2330948 1 603.9 0
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Table S12: Initial results of the multi-categorical functional connectivity analysis for the city of Berlin. Individual predictors were added based on corrected Akaike information
criterion (AlCc) model support, but only retaining if their addition improved support of the multi-categorical model (AAICc>2; see Materials and Methods). Presented here are
the results from the two initial (first & repeat analysis) optimisation runs that were performed for each (combination of) landscape features. Given previous results (Table S10),
water bodies took precedence over motorways at points of overlap, while both took precedence of railways. Predictors were sorted according to increasing AIC. values. k =
number of parameters, AAICc = difference in the AlCc values between the best-supported model and each subsequent model. mR* = marginal R’. Resistance = resistance value
inferred for each parameter (matrix= the remaining uniform study area not containing the features under investigation).

2

Predictor AIC, k  AAIC, mR Resistance

(i) first analysis

“Water bodies*Railways*Motorways*S.L.30-50%*S.L.>80% 2324738 7 0 0.189 Rail: 1, S.L.30-50%: 1, Motorways: 3, Matrix: 254, S.L.>80%: 555, Water: 1185
“Water*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80% 2324759 9 21 0.151 Rail: 1, Motorways: 1, S.L.30-50%: 35, S.L.50-80%: 58, Remaining built-up: 259, Matrix: 284,
*Remaining built-up ' ’ ’ S.L.>80%: 394, Water: 527

Water bodies*Railways*Motorways*S.L.30-50% 2324793 6 5.5 0.168 Rail: 1, Motorways: 3, S.L.30-50%: 19, Matrix: 234, Water: 1214
Water*Railways*Motorways*S.L.30-50%*S.L.>80% *Industry 2324817 8 7.9 0.166 Motorways: 1, Rail: 2, S.L.30-50%: 9, Matrix: 290, S.L.>80%: 807, Industry: 849, Water: 947
Water*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80% 2324842 8 10.4 0.139 Rail: 1, Motorways: 2, S.L.50-80%: 84, Matrix: 271, S.L.30-50%: 304, S.L.>80%: 685, Water: 727
“Water bodies*Railways*Motorways*Arable/green*S.L.30-50% 232489.7 7 15.9 0.223 Rail: 1, Motorways: 1, S.L.30-50%: 3, Arable/green: 12, Matrix: 166, Water: 650
Water*Railways*Motorways*S.L.30-50%*5.L.>80% *Remaining built-up ~ 232497.5 8 237 0217 ‘Al 1 Motorways: 2, Matrix: 113, S'L'S3E'>‘rgf2_19285é Remaining built-up: 427, Water: 833,
Water bodies*Railways *Motorways 2324984 5 24.6 0.139 Motorways: 1, Rail: 23, Matrix: 1278, Water: 9376

Water bodies*Railways *Motorways*Arable/green 2324998 6 26.0 0.153 Rail: 1, Motorways: 3, Matrix: 258, Arable/green: 649, Water: 1049
Water*Railways*Motorways*s.L.30-50%*5.L.50-80%*5.L >80%*Industry 2325002 9 264  0.106 | 1 Motorways:1,5.1.50-80%: 91, 359;3&/23; ﬁg’ Matrix: 237, 5.L.>80%: 323, Industry:
Water*Railways*Motorways*All vegetation*Built-up areas 232510.7 6 36.9 0.213 Rail: 1, Motorways: 1, All vegetation : 8, Built-up areas: 80, Water: 554

Water bodies*Railways 2325149 4 41.1 0.085 Rail: 1, Matrix: 111, Water: 500

“Water bodies 2325288 3 55.0 0.303 Matrix: 1, Water: 44

“Railways 2325775 3 103.7 0.055 Rail: 1, Matrix: 99

Motorways 232593.0 3 119.2 0.014 Motorways: 1, Matrix: 500

*Arable/Green 232601.4 3 127.6 0.048 Arable/Green: 1, Matrix: 67

*S.L.30-50% 232606.3 3 132.5 0.016 S.L.30%-50%: 1, Matrix: 647

*S.L.>80% 2326174 3 143.6 0.050 Matrix: 1, S.L.>80%: 8

“All vegetation 2326259 3 1521 0.029 Vegetation: 1, Matrix: 9

S.L.50-80% 232629.1 3 155.3 0.035 S.L.50%-80: 1, Matrix: 140

“Built up areas 2326322 3 158.4 0.028 Matrix: 1, Built-up: 6

“Industry 2326329 3 159.1 0.029 Matrix: 1, Industry: 6

“Remaining built-up 2326405 3 166.7 0.022 Matrix: 1, Remaining built-up: 7

Distance 2326435 2 169.7 0.006

*Forest 2326449 3 171.1 0.009 Matrix: 1, Forest: 2

Null 2330948 1 621.0 0.000
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Predictor AIC, k BDAICC mR Resistance
(i) repeat analysis
% Da: * « o % o % o % Rail: 1, Motorways: 3, S.L.30-50%: 43, S.L.50-80%: 142, Matrix: 292, Industry: 452,

Water*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80%*Industry ~ 232473.4 9 0 0.201 $.L.>80%: 633, Water: 1756
“Water*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80% 2324737 8 0.3 0.169 Rail: 1, Motorways: 2, S.L.30-50%: 8, S.L.50-80%: 103, Matrix: 282, S.L.>80%: 469, Water: 784
“Water bodies*Railways*Motorways*S.L.30-50% 2324749 6 1.5 0.179 Rail: 1, Motorways: 3, S.L.30-50%: 3, Matrix: 278, Water: 1196
x o * * % * Motorways: 1, Rail: 51, S.L.30-50%: 1033, Matrix: 3848, Industry: 12803,
Water*Railways*Motorways*S.L.30-50%*S.L.>80% *Industry 2324786 8 5.2 0.185 S.L.>80%: 21019, Water: 24576
Water*Railways*Motorways*S.L.30-50%*S.L.50-80%*S.L.>80% Rail: 1, Motorways: 1, S.L.30-50%: 111, Matrix: 143, S.L.50-80%: 147, Remaining built-up: 319,
% - ) 2324843 9 10.9 0.114 ) )

Remaining built-up Water: 456, S.L.>80%: 459
*Water*Railways*Motorways*s.L.30-50%*5.L.580% *Remaining built-up ~ 2324855 8 121  0.49 ‘@i 1 Motorways: 2, S.L.30-50%: 59, M\;tar:;'lg;’;{ema'”'"g built-up: 166, 5.L.>80%: 545,
“Water*Railways*Motorways*All vegetation*Built-up areas 2324938 6 20.4 0.156 Rail: 1, Motorways: 4, Built-up areas: 291, All vegetation : 494, Water: 1574
“Water bodies*Railways*Motorways 2324957 5 223 0.197 Motorways: 1, Rail: 101, Matrix: 4000, Water: 46145
“Water bodies*Railways *Motorways*Arable/green 232498.7 6 25.3 0.111 Rail: 1, Motorways: 2, Matrix: 193, Arable/green: 237, Water: 790
Water bodies*Railways*Motorways*Arable/green*S.L.30-50% 232511.2 7 37.8 0.123 Motorways: 1, Rail: 2, S.L.30-50%: 5, Arable/green: 102, Matrix: 313, Water: 385
“Water bodies*Railways 2325149 4 41.5 0.088 Rail: 1, Matrix: 105, Water: 500
Water bodies*RaiIways*Motorways*S.L.30-50%*S.L.>80% 2325278 7 54.4 0.298 Motorways: 1, Rail: 1, Matrix: 305, S.L.30-50%: 400, Water: 416, S.L.>80%: 451
Water bodies 2325288 3 55.4 0.303 Matrix: 1, Water: 44
Railways 2325775 3 104.1 0.055 Rail: 1, Matrix: 99
“Motorways 2325929 3 1195 0.014 Motorways: 1, Matrix: 500
Arable/Green 232601.4 3 128.0 0.048 Arable/Green: 1, Matrix: 69
S.L.30%-50% 232613.7 3 1403 0.013 S.L.30%-50%: 1, Matrix: 29
S.L.>80% 232617.4 3 144.0 0.050 Matrix: 1, S.L.>80%: 8
All vegetation 232626.0 3 1526 0.026 Vegetation: 1, Matrix: 8
*S.L.50%-80% 232629.1 3  155.7 0.037 S.L.50%-80: 1, Matrix: 217
Built-up areas 232632.2 3 158.8 0.028 Matrix: 1, Built-up: 7
Industry 2326329 3 1595 0.029 Matrix: 1, Industry: 6
Remaining built-up 232640.5 3 167.1 0.022 Matrix: 1, Remaining built-up: 7
Distance 2326435 2 170.1 0.006
Forest 2326449 3 171.5 0.009 Matrix: 1, Forest: 2
Null 2330948 1 621.4 0.000
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Table S13: Results of single-surface optimisation (SS_OPTIM()) procedures testing the effect the Berlin city border on gene flow
in Berlin/Brandenburg (the complete data set). The single-feature analysis tested for the effect of the administrative city
border, the administrative city border converted into a concave hull, as well as the outer and inner borders of 1-, 2-, 3, 4- and 5-
km buffer around the concave hull. (i), (ii): Results from two initial optimisation runs performed for each landscape feature; (iii)
Bootstrapping results. Since corrected Akaike information criterion (AIC,) values were equal between the two optimisation
runs, we used the results from the first run in the bootstrap analysis. Predictors are sorted according to increasing AIC, values.
AAICc = difference in the (avg.) AlCc values between the best supported model and each subsequent model. k = number of
parameters, mR? = marginal R, avg.mR2 = average marginal R® of 1000 bootstrap iterations. avg.weight = average of the AlCc
weights obtained for each model in 1000 bootstrap iterations. Resistance = resistance value inferred for each parameter
(matrix=the remaining uniform study area not containing the features under investigation).

Predictor AIC, k AAIC, mR’ Resistance

(i) first analysis

City border concave 555283.5 3 0 0.416 Matrix: 1, Border: 154
City border concave + 1 km 555346.7 3 63.2 0.337 Matrix: 1, Border: 160
City border concave + 2 km 555349.2 3 65.8 0.279 Matrix: 1, Border: 183
City border concave + 3 km 555414.2 3 130.7 0.229 Matrix: 1, Border: 147
City border 555435.9 3 152.5 0.268 Matrix: 1, Border: 92
City border concave + 5 km 555461.1 3 177.7 0.194 Matrix: 1, Border: 124
City border concave + 4 km 555473.3 3 189.9 0.146 Matrix: 1, Border: 119
City border concave - 1 km 555477.1 3 193.6 0.211 Matrix: 1, Border: 63
City border concave - 5 km 555488.5 3 205.0 0.086 Matrix: 1, Border: 43
City border concave - 4 km 555499.7 3 216.2 0.076 Matrix: 1, Border: 40
City border concave - 3 km 555507.7 3 224.3 0.112 Matrix: 1, Border: 33
City border concave - 2 km 555509.7 3 226.2 0.128 Matrix: 1, Border: 42
Distance 555549.5 2 266.0 0.011

Null 556351.0 1 1067.6 0

(i) repeat analysis

City border concave 555283.5 3 0 0.416 Matrix: 1, Border: 154
City border concave + 1 km 555346.7 3 63.2 0.337 Matrix: 1, Border: 160
City border concave + 2 km 555349.2 3 65.8 0.279 Matrix: 1, Border: 183
City border concave + 3 km 555414.2 3 130.7 0.229 Matrix: 1, Border: 147
City border 555435.9 3 152.5 0.268 Matrix: 1, Border: 92
City border concave + 5 km 555461.1 3 177.7 0.194 Matrix: 1, Border: 124
City border concave + 4 km 555473.3 3 189.9 0.146 Matrix: 1, Border: 120
City border concave - 1 km 555477.1 3 193.6 0.211 Matrix: 1, Border:
City border concave - 5 km 555488.5 3 205.0 0.086 Matrix: 1, Border: 43
City border concave - 4 km 555499.7 3 216.2 0.076 Matrix: 1, Border: 40
City border concave - 3 km 555507.7 3 224.3 0.112 Matrix: 1, Border: 33
City border concave - 2 km 555509.7 3 226.2 0.128 Matrix: 1, Border: 42
Distance 555549.6 2 266.1 0.011

Null 556351.0 1 1067.6 0

Predictor avg. AIC, k AAIC, avg.weight avg.mR’

(iii) bootstrapping

City border concave 310808.4 3 0 0.699 0.400

City border concave + 1 km 310858.9 3 50.5 0.107 0.315

City border concave + 2 km 310859.8 3 51.4 0.156 0.237

City border concave + 3 km 310895.0 3 86.6 0.021 0.200

City border 310909.7 3 101.3 <0.001 0.255

City border concave + 5 km 310926.1 3 113.6 0.005 0.182

City border concave - 1 km 310925.5 3 117.7 0.003 0.209

City border concave + 4 km 310932.3 3 117.1 0.004 0.138

City border concave - 5 km 310936.7 3 1239 0.005 0.087

City border concave - 4 km 310943.0 3 128.3 0.001 0.077

City border concave - 3 km 310945.4 3 134.6 <0.001 0.113

City border concave - 2 km 310961.5 3 137.0 <0.001 0.129
Distance 310926.1 2 153.1 <0.001 0.012
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Table S14: Initial pre-bootstrapping results of the single-feature ResistanceGA analysis for the complete dataset. Three different genetic distance measures and seven
environmental predictors from the German authoritative topographic cartographic information system (ATKIS) were compared (see Material and Methods). To check for
convergence, optimisation was performed twice for each landscape feature (Run 1 & Run 2). Predictors are sorted according to increasing average corrected Akaike information
criterion (AIC.) values. k = number of parameters, AAIC. = difference in the AIC, values between the best supported model (lowest AIC.) and each subsequent model. mR? =
marginal R’. Resistance resistance/conductance value inferred for each parameter (matrix= the remaining uniform study area not containing the features under investigation).

2 2

Predictor AIC, k AAIC, mR Resistance AIC, k AAIC, mR Resistance
Matrix  Predictor Matrix  Predictor
a) Nei’s genetic distance (Nei), run 1 run 2
Built-up areas -98031.1 3 0 0.024 1 2 -98031.1 3 0.024 2
Forests -98024.0 3 7.1 0.037 6 1 -98024.0 3 0.037 6 1
Arable/green -98014.5 3 9.5 0.026 3 1 -98014.5 3 0.026 3 1
Motorways -98000.6 3 13.9 0.075 452 1 -98000.6 3 0.075 452 1
City border concave -97993.9 3 6.7 0.045 1 10 -97993.9 3 0.045 1 10
Water bodies -97988.5 3 5.4 0.040 1 3 -97988.5 3 0.040 1 3
Railways -97988.3 3 0.2 0.029 1 2 -97988.3 3 0.029 1 2
Distance -97982.8 2 5.5 0.034 -97982.8 2 0.034
Null -97496.7 1 486.1 0.000 -97496.7 1 0.000
b) Proportion of shared alleles (Dps) , run 1 run 2
Built-up areas -97533.6 3 0 0.020 1 2 -97533.6 3 0.020 2
Forests -97523.2 3 104 0.029 4 1 -97523.2 3 0.029 4 1
Arable/green -97522.1 3 1.1 0.023 3 1 -97522.1 3 0.023 3 1
Motorways -97510.3 3 11.8 0.069 354 1 -97510.3 3 0.069 354 1
City border concave -97502.1 3 8.2 0.037 1 7 -97502.1 3 0.037 7
Railways -97500.2 3 1.9 0.029 1 2 -97500.2 3 0.029 2
Water bodies -97498.4 3 1.8 0.035 1 2 -97498.4 3 0.035 2
Distance -97496.8 2 1.6 0.033 -97496.8 2 0.033
Null -97033.3 1 463.5 0.000 -97033.3 1 0.000
c) 10-axes based Factorial Correspondence Analysis (FCA) , run 1 run 2
City border concave 555283.5 3 0 0.416 1 154 555283.5 3 0.416 1 154
Built-up areas 555345.4 3 61.9 0.056 1 7 555345.4 3 0.056 1 7
Forests 555368.1 3 22.7 0.051 500 1 555368.1 3 0.051 500 1
Arable/green 555404.3 3 36.2 0.036 16 1 555404.3 3 0.036 16 1
Water bodies 555412.1 3 7.8 0.171 1 31 555412.1 3 0.171 1 31
Railways 555478.8 3 66.7 0.063 1 14 555478.8 3 0.063 1 14
Distance 555549.5 2 70.7 0.011 555549.5 2 0.011
Motorways 555552.0 3 2.5 0.025 388 1 555551.4 3 0.011 1 1
Null 556351.0 1 799.0 0.000 556351.0 1 0.000
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Table S15: Initial results of the multi-categorical functional connectivity analysis for the complete dataset (Berlin & Brandenburg). Individual predictors were added based on

corrected Akaike information criterion (AlCc) model support, but only retaining if their addition improved support of the multi-categorical model (AAICc>2; see Materials and

Methods). Presented here are the results from the two initial (first & repeat analysis) optimisation runs that were performed for each (combination of) landscape features. We

also tested two overlap scenarios, once where water bodies took precedence over railways at points of overlap (Water bodies>Railways), and another where the opposite was

the case (Railways >Water bodies). Predictors were sorted according to increasing AIC. values. k = number of parameters, AAICc = difference in the AlCc values between the
2 . 2 . : . . . .

best-supported model and each subsequent model. mR® = marginal R”. Resistance = resistance value inferred for each parameter (matrix= the remaining uniform study area not

containing the features under investigation).

Predictor AIC, k  AAIC. mR’ Resistance

(ii) first analysis

City border concave* Built-up areas*Water bodies 5549383 5 0 0.400 Matrix: 1, Built-up areas: 6, Water bodies: 70, City border: 498

City border concave *Built-up areas *Water bodies>Railways 5549393 6 1.0 0.390 Railways: 1, Matrix: 2, Built-up areas: 19, Water bodies: 109, City border: 760
City border concave *Built-up areas * Railways >Water bodies 554964.1 6 25.8 0.451 Matrix: 1, Railways: 4, Built-up areas: 48, Water bodies: 186, City border: 1615
“City border concave* Built-up areas 5550173 4 79.0 0.425 Matrix: 1, Built-up areas: 11, City border: 499

“City border concave* Built-up areas * Arable/green 555018.1 5 79.8 0.520 Arable/green: 1, Matrix: 6, Built-up areas: 34, City border: 2358

“City border concave* Built-up areas *Forests 555038.2 5 99.9 0.359 Matrix: 1, Forest: 1, Built-up areas: 16, City border: 486

“City border concave 555283.5 345.2 Matrix: 1, City border: 154

“Built-up areas 5553454 3 407.1 0.056 Matrix: 1, Built-up areas: 7

*Forests 555368.1 3 429.8 0.051 Forests: 1, Matrix: 500

“Arable/green 5554043 3  466.0 0.036 Arable/Green: 1, Matrix: 16

“Water bodies 555412.1 3 473.8 0.171 Matrix: 1, Water bodies: 31

“Railways 5554788 3 540.5 0.063 Matrix: 1, Rail: 14

Distance 555549.5 2 611.2 0.011

“Motorways 555552.0 3 613.7 0.025 Motorways: 1, Matrix: 388

Null 556351.0 1 1412.7 0

(i) repeat analysis

City border concave* Built-up areas*Water bodies 5549380 5 0 0.402 Matrix: 1, Built-up areas: 6, Water bodies: 72, City border: 500

City border concave *Built-up areas *Water bodies>Rail 5549403 6 2.3 0.417 Railways: 1, Matrix: 2, Built-up areas: 13, Water bodies: 108, City border: 736
City border concave *Built-up areas *Rail>Water bodies 554965.7 6 27.7 0.475 Matrix: 1, Railways: 3, Built-up areas: 26, Water bodies: 155, City border: 1274
City border concave* Built-up areas 5550173 4 79.3 0.425 Matrix : 1, Built-up areas :11, City border : 500

City border concave* Built-up areas *Forests 5550809 5 1429 0.324 Matrix: 1, Forest: 2, Built-up areas: 47, City border: 984

City border concave* Built-up areas * Arable/green 5551351 5 197.1 0.194 Matrix: 1, Arable/green: 6, Built-up areas: 21, City border: 434

City border concave 555283.5 3 3455 Matrix: 1, City border: 154

Built-up areas 5553454 3 407.4 0.056 Matrix : 1, Built-up areas : 7

Forests 555368.1 3 430.1 0.051 Forests: 1, Matrix: 500

Arable/green 5554043 3  466.3 0.036 Arable/Green: 1, Matrix: 16

Water bodies 555412.1 3 474.1 0.171 Matrix: 1, Water bodies: 31

Railways 555478.8 3  540.8 0.063 Matrix: 1, Rail: 14

Distance 555549.5 2 6115 0.011

Motorways 555554.1 3 616.1 0.011 Motorways: 1, Matrix: 1

Null 556351.0 1 1413.0 0
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Fig. S1: Single-predictor input rasters for the whole study area (Berlin & Brandenburg) based on the ATKIS data. (A)
arable/green, (B) built-up areas, (C) concave city border, (D) forests, (E) major water bodies, (F) motorways and (G)
railways. The green surface represents the predictor under investigation. The grid cell size was 250 x 250 m.
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Fig. S2: Single-predictor input rasters for the city of Berlin based on the ATKIS data. (A) all vegetation, (B) built-up

areas, (C) major water bodies, (D) motorways and (E) railways. The green surface represents the predictor under
investigation. The grid cell size was 100 x 100 m.
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Fig. S3: Geographic distribution of the Copernicus Urban Atlas imperviousness land cover types that were located
in the built-up areas and used in the present analysis. Due to the rare occurrence of discontinuous very low density
urban fabric and remaining built-up areas, the corresponding categories were merged with discontinuous low
density urban fabric (the created the remaining built-up areas predictor). The data are represented in the form of
the 100 x 100 m grid used for analysis.
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Fig. S5: Clustering results of STRUCTURE for the city of Berlin, including water bodies and city border. The size of

the pie charts represents the number of samples per spot; the colours represent the percentage assignment to the
detected clusters.
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Fig. S6: Best-supported resistance model (water bodies & railways) resulting from the optimisation of all possible
combination of the five single ATKIS environmental predictors (ALL_coms() function). The surface has a distinct
resistance value for areas where water bodies and railways overlap.
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analysis where possible combination of the five single ATKIS environmental predictors were optimised using the
ALL_coms() function. ResistanceGA gave different resistance values to the linear features depending on with which
other feature they overlapped with. For geographic scale, please refer to Fig. S5.
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Fig. S8: Best-supported multi-categorical resistance surface for Berlin based on ATKIS data, resulting from single-
surface optimisation (SS_OPTIM()) procedure, where the individual environmental features were added and
optimised step-by-step based on the model support of the individual features. At points of overlap, water bodies
took precedence over motorways and railways in the resistance grid, while motorways took precedence over
railways.
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Fig. S9: Cartographic representation of results from genetics-based resistance modelling for foxes across the whole study area. (a) Optimised resistance
surface of the overall best multi-categorical model and the corresponding CIRCUITSCAPE connectivity map showing conductance to gene flow based on (b) the
sample locations and (c) sampling locations simulated at the edge of the study area. (d) Optimised resistance surface of the second-best-supported multi-
categorical model (AAICc<2) and the corresponding CIRCUITSCAPE connectivity map showing conductance to gene flow based on (e) the sample locations and
(f) sampling locations simulated at the edge of the study area.
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2.1 Abstract

Urban areas test the boundaries of the capacities of wildlife species to adjust to novel environments. The
red fox (Vulpes vulpes) is one of several carnivores considered to be an opportunistic generalists which
successfully inhabits urban areas worldwide. This success predicts that red foxes are expected to adjust to
the urban environment as well as to actual human presence and activity. Yet, today’s carnivores in urban
landscapes descended from usually shy and elusive rural ancestors subjected to intense hunting pressure
by humans for centuries. This suggests that the behavioural adjustment of the urban dwelling animals to
human activities has its limits and that human presence per se should in general be avoided. The
classification of red foxes and other carnivores as “urban dwellers” or “urban adapters” does not separate
adjustment to anthropogenic structures and environments from adjustments to human activities. To
address this issue we analysed high resolution movements of red foxes in the conurbation of Berlin,
Germany, across a variety of urban habitats which differed in the density of the built-up area and the
degree to which human activity was present. We generated available habitat selection points based on
movement patterns and characterised locations available to and used by foxes by assessing covariates
associated with landscape classes, degree of urbanisation and human presence. These were analysed with
a step selection function and a generalised linear mixed model framework. The results indicated that foxes
preferred locations with low human presence such as abandoned areas and railways and avoided public
green spaces and city forests exposed to intensive human use. Areas of high human population density
were avoided by foxes, irrespective of the ubiquitous presence of foxes throughout the city area, whereas
artificial environments such as built-up areas were not. We conclude that actual human presence and
activities set stronger limits to the animals’ life history than anthropogenic structures, even in established

urban commensals such as the red fox.

Keywords: habitat selection, landscape of fear, spatial ecology, urban ecology
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2.2 Introduction

Understanding how animals use space and chose habitats is a fundamental issue in ecology (Gaillard et al.
2010). An animal’s use of space and choice of habitats emerge from its movement patterns (Karelus et al.
2019). The underlying behavioural strategies may depend on intrinsic as well as extrinsic conditions such
as climate, predation risks (Raynor et al. 2017, Heithaus 2001), resource dispersion or resource
competition (Carr & Macdonald 1986, Rosenzweig 1991). Thus habitat selection and movement patterns
may document micro evolutionary strategies in behaviour on an individual scale and reflect macro

evolutionary patterns of adaptation (Morris 2003).

The behavioural strategies of animals largely depend on the availability of habitat types (Mysterud & Ims
1998). Urban areas provide a variety of different habitat types, ranging from highly built-up areas and
areas of high percentages of sealed ground to green, vegetated patches in parks, cemeteries or remnants
of natural areas. Depending on their degree of synanthropy (Fischer et al. 2015) urban wildlife species may
prefer or avoid different urban sites. As naturally shy and elusive species (Macdonald 1978, Mahon et al.
1989) red foxes (Vulpes vulpes) might prefer patches within urban environments that are similar to natural-
like habitats present in the rural environment of their ancestors. However, as established human
commensal species, their inherent plasticity (Macdonald 1978) may enable behavioural adjustments by
red foxes to urban living, resulting in an even use of both natural and built-up habitats without specific
preferences. Consistent with this idea, one study on habitat selection by red foxes found that they did not
consistently select a particular habitat (Cavallini & Lovari 1994). Urban landscapes are not only
characterised by artificial structures, sealed surfaces or man-made barriers but also by human presence
and activities. The presence of people in different city areas and, more indirectly, the local density of the
human population may modify fox habitat use patterns. Consistent with this idea, a recent camera trap
study showed that red fox activity patterns were determined by several interacting drivers (Diaz-Ruiz et
al. 2015). Diaz-Ruiz et al. (2015) suggested to investigate the importance of human presence in greater
detail as fox activity rhythms seemed to be determined by human presence in sites where human
disturbance was high. More recently, a study on landscape resistance to gene flow across the urban-rural
gradient demonstrated that human presence may be a key driver of fox dispersal patterns (Kimmig et al.

2020).

In other words, foxes might or might not respond to anthropogenic influences on the landscape, in terms
of the degree of built-up area and anthropogenic structures, and/or they might respond to human
presence and activity as such. These ideas and results suggest three hypotheses on which specific element

of potential anthropogenic disturbance red foxes might respond most strongly to. Hypothesis (i) suggests
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that the foxes’ behavioural plasticity and adjustment to urban environments enables them to fully exploit
the urban area. This predicts that foxes should evenly use the urban landscape, no specific landscape
elements are especially avoided, and human population density should not have an impact on red fox
movements. Hypothesis (ii) suggests that even in urban environments red foxes rely on green, vegetated
areas. This predicts that they avoid built-up areas and grey spaces, specifically select green spaces,
including public green spaces and forested areas, whilst human population density is of no relevance.
Hypothesis (iii) suggests that red foxes adjust their space use to human presence, i.e. foxes should avoid
habitats associated with human presence. This predicts that foxes should avoid densely populated areas
and prefer sites inaccessible to humans. If foxes avoid human presence and activities, their preference of
undisturbed habitat (such as wasteland) should be more distinct at times of overall increased human

activity.

In this study we used GPS movement data to assess which source of anthropogenic disturbance affects
red fox movement and space use behaviour in urban environments. This included a comparison of
(movement) habitat selection during key human activity times with habitat selection at times of reduced

or no human activity.

2.3 Materials & Methods

Study area and trapping

The Berlin metropolitan area in the Northeast of Germany (52.5200° N, 13.4050° E, Fig. 1a) is characterised
by a high level of heterogeneity. The city, populated by 3.5 million inhabitants, includes highly
industrialised and densely built-up parts with fully sealed surfaces as well as spacious forested areas.
Around 40% of the 900km? city area are covered by forest (~¥18%) and other green spaces (~12%),
agriculture (~4%) and water (~7%). The built-up areas are interspersed by around 2,500 public green
spaces, 75,000 allotment gardens, 220 cemeteries and numerous waste land sites with a total of around

11,000ha (GRIS 2021).

We used animal-borne global positioning system (GPS) data of sixteen wild red foxes that were captured
within the Berlin city area between 2015 and 2018 (Fig. 1b, Fig. S1). Foxes were trapped at multiple
locations, using wooden live traps of two meter length (Weisser, trap number 0580) with wire trigger. At
capturing sites, traps were set, regularly baited with dog food and left open for several months. Camera

traps were used to verify fox visits at the traps to decide when traps should be armed. During armed



periods, traps were monitored through electronic trap supervision which sent an alert once the trapdoors

were closed (Trapmaster, EPV Electronics GmbH) and traps were also checked on a regular basis.
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Figure 1: a: Location of the study area within Germany. b: The city area of Berlin (map: OSM) with the human

population density raster and GPS localizations of the radio collared foxes. c: legend referring to panel b.

The ensuing handling of trapped foxes was conducted at the trapping location. Animal handling permits
were approved by the respective animal welfare licensing committee of Berlin (“Landesamt fiir Gesundheit
und Soziales”, permit number: G 0211/15). Foxes were first transferred to a crush cage where they were
weighed and their general physical condition was checked to define the appropriate dosage of analgesics.
Only foxes of a good weight (>4.5kg) and good health were included in the study. They were anaesthetised
using a combination of medetomedine (0.07mg/kg) and midazolam (0.8mg/kg). Drugs were administered
by intramuscular injection in the quadriceps or gluteal muscles. During anaesthesia, the face of the foxes
was covered with a towel and the eyes treated with a gel to prevent the cornea from drying out. During
the entire a procedures a veterinarian regularly checked vital signs, pulse and oxygen saturation were
monitored with a non-invasive pulse oximetry device, with the sensor attached to the tongue of the fox.
All foxes were deployed with VHF-ACC-GPS collars (e-obs®, Griinwald, models 1C-heavy (~180g) or 1C-light

(~110g)). At the end of the procedure foxes were placed in the trap on a bedding of hay where they woke



up and from where they could leave the trap on their own and at a time of their own choosing. The raw
data taken by the radio collars were stored on-board. During a daily one hour time frame a VHF signal was
emitted that could be detected by a handheld receiver to locate the fox and the data downloaded in the

field, using the handheld e-obs base station.

Data and analysis

GPS locations (fixes) were sampled every four or every twenty minutes, with some foxes starting at a four
minute sampling interval which was later reduced to twenty minutes. Additionally, acceleration data (ACC)
were sampled every two minutes. In order to extend battery lifetime, GPS sampling intervals were reduced
to four hours during times of inactivity as defined by a programmed ACC threshold (ACC informed GPS-
downregulation) and reactivated and set back to the original interval as soon as the foxes moved again. In
order to accommodate ACC-informed GPS downregulation during inactivity of the foxes, we filled the
resulting gaps in the data stream with the fox’s last fix. Fixes with odd time stamps, locations outside the
study area and locations resulting in highly irregular speeds between points were considered technical
outliers and excluded from the curated dataset. Gaps originating from such tag errors or tag malfunction
remained in the data set. In order to make the data comparable between all individuals, we resampled the
fixes to twenty minutes intervals. Raw GPS fixes and individual information are stored at movebank.org

and can be shared upon request.

Environmental data were extracted at each fix using package amt (Signer et al. 2019) in R. All
environmental data originated from the cartographic information service “Geoportal Berlin (FIS broker)”
and are available for download. The human population density values were extracted from the polygon
“Einwohnerdichte 2019”, the percentage degree of sealed surface (imperviousness) from the dataset
“Flachennutzung, Stadtstruktur 2015 und Versiegelung 2016”. The landscape classification was based on
the land use categories of the “Reale Nutzung 2015 (Umweltatlas)”. All layers were converted into raster
with 10 x 10m resolution. We used the following seven landscape categories reclassified from the original
land use data set: (i) Public green spaces — city parks and publicly accessible green areas, (ii) City forest —
forested areas within Berlin irrespective of their composition, (iii) Wasteland — abandoned areas and
fenced areas such as building land, industrial building remains and construction sites, including fenced
verges of railway lines, (iv) Built-up areas — residential, industrial and commercial areas of medium dense
or dense housing, (v) Housing with gardens — residential houses with gardens and sparse housing
surrounded by green areas, (vi) Allotment gardens — small rental gardens, usually a mixture of small

buildings and green spaces and arranged in colonies, and (vii) Grey spaces — streets, places and squares.



We used the step selection function (SSF) in the amt package to generate ten alternative locations for
each fix in each step, to assess ‘available’ habitat. SSF are suitable to identify fine-scale behavioural
responses of animals to their environment as they provide an objective method for defining habitat
availability in terms of movement constraints (Fieberg et al. 2021, Fortin et al., 2005) and were developed
to deal with serial dependence (Thurfjell et al., 2014). So, rather than treating fixes as independent events,
step-selection functions model animal tracks, under consideration of serial appearance (the sequence of
fixes), step length and turning angles. The amt package provides spatial modelling functions too but is
designed to assess habitat selection by each individual. As behaviour may vary between animals depending
on sex, age, body condition, life history stage or personality (Lesmerises & St-Laurent 2017, Leclerc et al.
2016, Stamps 2007), we built a generalised linear mixed model using the g1mmTMB package (Magnusson
et al. 2017) to assess general habitat selection patterns across individuals and account for inter-individual

differences (see also Muff et al. 2019).

In order to test for differences between diurnal and nocturnal behaviour of the foxes in relation to human
activity patterns, we run three different land use models: one for data recorded during daytime (from
sunrise to dusk), one for nocturnal data (from dusk to sunrise) and a global one with data for all 24 hours.
In order to resemble human activity times and patterns more closely, “daytime” includes also fixes
measured during dusk whereas “night-time” also included fixes during morning twilight. We also run single
models for imperviousness and human population density and compared the latter for diurnal and
nocturnal fixes. Finally we ran a full model, including all land use categories as well as human population
density and imperviousness using both the full data set and a movement data set which only included fixes
when foxes were active (with a minimum step length of 20m between points) and therefore excluded
longer resting events. Environmental continuous variables were scaled and centred to aid model
convergence. The used (1) versus available (0) fixes were used as response variable. Fox identity and step
identity were included as random intercepts in the models. Following Muff et al. (2019), random slopes
per individual for the explanatory variables were also included in the model, using a Poisson error

distribution.

2.4 Results

All sixteen radio collared foxes were adult with most individuals being in their second year of life and few
older individuals. Seven male and nine female foxes were tracked for up to 403 days (Fig. S1). The most
common cause for the end of the deployment was mortality from road traffic. Home range sizes

substantially varied between individuals (from 14 ha to 200 ha, 95% kernel), as did diurnal space use
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patterns (see Table S1 and Fig. S2). The mean distance between two consecutive GPS points was 56m in
the full dataset and 137m when only fixes of active movement were included. During times of activity (with
19% of movement fixes recorded between sunrise and sunset) foxes moved similar mean distances during
day (152m), night (133m) and twilight (154m). The mean distance moved during dawn (112m) was smaller
than during dusk (166m).

Habitat selection

The degree of imperviousness of areas played no role in habitat selection (generalised linear mixed model
[glmm], parameter estimate f = 0.04 £ 0.04, p = 0.374, Fig. 2a). The glmm for human population density
(B =-0.19 £ 0.06, p = 0.002) showed significant avoidance of high human population densities, so foxes

preferably used areas with low human population densities (Fig. 2b).

The glmm for the selection probability of land use classes showed positive selection values for wasteland,
residential houses with gardens and built-up areas and negative selection for allotment gardens, public
green spaces and city forests in relation to grey spaces as reference class (Fig. 3), with significant positive
selection for wasteland (Bwasteland = 0.54 £ 0.27, p = 0.045) and significant negative selection for forest (Brorest

=-0.88 + 0.45, p = 0.049). The complete model output is reported in Table S2.
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Figure 2: a: The percentage degree of imperviousness of the study area had no significant effect on the selection

probability by the study animals. b: Increasing human population density decreased selection probability.
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Figure 3: (a) Selection of different land scape types. Positive values indicate preference, negative values avoidance
of land scape types in relation to the reference category grey spaces (indicated by the dashed line). (b) Order of

selection of land use types from most (top) to least selected (bottom).

Diurnal effects

Modelling habitat selection separately for the daytime and the night-time dataset showed that wasteland,
residential houses with gardens and built-up areas show positive, public green spaces, allotment gardens
and forests negative selection values in relation to grey spaces as a reference value (Fig. 4). Wasteland was
preferentially selected during daytime (1.17 £ 0.42, p < 0.005) in relation to grey spaces as a references
value. The complete model output is in the supplementary material table S3 (daytime) and table S4 (night-
time). High human population density values were significantly avoided during both periods, daytime (B =

-0.36 £ 0.15, p = 0.018) and night-time (B =-0.19 + 0.06, p = 0.007).
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Figure 4: Selection of different landscape types during night-time (a) and daytime (b). Positive values indicate
preference, negative values avoidance of landscape types in relation to the reference category grey spaces (indicated
by the dashed line). Selection probability in relation to human population density during night-time (c) and during

daytime (d). Higher human population densities are significantly less selected.

Space use and movement habitat selection - full model

According to the full model, including all land use covariates, population density and imperviousness (Fig.
5a), high human population densities (Bpopulation density =-0.12 * 0.05, p = 0.011) and imperviousness
(Bimperviousness = -0.15 £ 0.05, p = 0.004) were significantly avoided. Forests were significantly avoided (Brorest
=-0.90 £ 0.46, p < 0.05), residential houses with gardens (Bhousing with gardens = 0.56 £ 0.19, p = 0.03), built-up
areas (Bouit-up areas = 0.51 £ 0.18, p = 0.006) and wasteland (Bwastelana = 0.77 £ 0.25, p = 0.002) were
significantly preferred (see Table S5 for all values). The order of selection probability regarding land use
types is equivalent to the pure land use model (see Fig. 3b). It is important to note that all covariates may
be relevant to the biological interpretation as significance values depend on the selected reference value
(e.g. if wasteland is set as a reference value, all other covariates are significantly avoided [Fig. S3, Table

S6]).



Fig. 5b shows the model predictions, using only points of active movement only, to analyse movement
habitat use excluding resting behaviour. According to the model output city forests (Brorest = -0.77 + 0.33,
p = 0.020) as well as allotment gardens (Baliotment gardens = -0.61 + 0.24, p = 0.013) are significantly avoided

(complete output in table S7).
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Figure 5: Selection probability of different covariates using all GPS data (a) and movement data only (b). Positive
values indicate preference, negative values avoidance of landscape types in relation to the reference category grey

spaces (indicated by the dashed line).

2. 5 Discussion

Our study shows that habitat selection in urban red foxes is influenced by several factors, including habitat
type, the level of human presence and activity time. Foxes changed land use as a function of human activity
patterns, preferring habitat types difficult to access for people during the day and being less selective

during the night when human activity decreased.
Inter-individual variability and model selection

It has been described many times that home range sizes of red foxes (and other carnivores) can vary by
one or more orders of magnitude, with larger home range size in areas of low resource availability and
smaller territories in high-resource areas such as cities and suburbs (e.g., Morellet et al. 2013). In Berlin,
home range sizes also varied by more than one order of magnitude, from very small to larger home range

sizes (Table S1). These varying home range sizes as well as the variance detected in the model predictions
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on (movement) habitat selection revealed large scale inter-individual differences that were also apparent
with a classic electivity index analysis by Fiderer et al. (2019) in a rural fox population. Larger than expected
variation in life-history traits among individuals within a population apart from well-described trait-related
differences such as sex (Fredga et al. 1994) or age (Charlesworth 1994) as well as contrasting life histories
have been described for wildlife populations before (e.g. Van Noordwijk & De Jong 1986, Gaillard et al
2010). However, this insight is often not considered in ecological data analysis. We therefore selected a
model that not only corrected for individual spatial and temporal dependence but also for inter-individual
variability to generate robust models, even though classic resource selection functions and other
comparable approaches produced more significant results. The inter-individual variability also highlights

that sample sizes are crucial to investigate habitat use in a flexible predator.
Urban space use

The hypothesis that foxes do not select specific habitat types can clearly be rejected by this study. Overall,
foxes preferred wasteland, residential houses with gardens and built-up areas and avoided city forests,
public green spaces and allotment gardens. The strong avoidance of forested areas is in contrast to
previous findings of a general preference for woodlands by foxes in rural areas (Fiderer et al. 2019). One
explanation which is consistent with our other results that foxes avoid high human presence and
population densities, may be the presence and activities of people within these urban forests. For instance,
according to the “Association of German Foresters”, one of the largest urban forests that was partly
incorporated in the home ranges of two study foxes, is visited by an estimated double-digit million number
of people every year. In terms of landscape, forests are probably the most natural, “greenest” areas in the
city, whereas other green areas which included trees, grassland and shrubs were provided by the 2,500
publicly owned and accessible city parks. These parks were also avoided by foxes, presumably for similar
reasons, whereas wasteland (including railways) were highly preferred habitats. Also, foxes did neither
avoid built-up areas (Fig. 3) nor did they avoid areas with a high percentage of impervious surface (Fig. 2),
although the latter is avoided when human population density is controlled for (Fig. 5). Cavallini and Lovari
(1994) found that within their home range, foxes strongly and consistently selected the habitat with
the densest cover for resting and their requirement of dense cover has been repeatedly demonstrated
(e.g. Robertson et al. 2000, White et al. 2006). Such cover is available on wasteland areas, in public parks,
in residential housing gardens and also in allotment gardens. Nevertheless, allotment gardens were also
avoided compared to built-up areas and wasteland. Consequently, the hypothesis that foxes primarily
prefer green and avoid grey areas can be rejected too. Not all wasteland areas are actually green spaces,

they also include brown areas, building remains and abandoned industrials areas, and the covariate used
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here further included the city’s railway lines. The selection probabilities for the mentioned landscape types
as well as the avoidance of high human population density therefore indicates an avoidance behaviour
towards human presence and activity. Studies in London (Harris 1977), Toronto (Adkins and Stott 1998)
and Switzerland (Weber & Meia 1996) showed that a lack of regular disturbance by humans is important
for foxes when they select den sites. In Melbourne, avoidance of humans was a major precondition for
selecting natal den sites (Marks et al. 2006). The avoidance of areas dominated by human activity in Berlin
was not limited to den or resting sites but also applied to general habitat use and movement behaviour

(see also below).
Diurnal patterns

The fox is usually described as a predominantly nocturnal or crepuscular animal (e.g. Maurel 1980, Cavallini
& Lovari 1994, Diaz-Ruiz et al. 2016). According to Maurel (1980), the diurnal activity of foxes is limited to
the period of returning to the main burrow area. In contrast, we found that around one fifth of active
movement fixes occurred between sunrise and sunset and foxes with access to rather undisturbed areas
used large areas within their home ranges during the day (Table S1, Fig. S2). A camera trap study on activity
patterns also reported variation among individuals regarding the extent of diurnal activities (Diaz-Ruiz et
al. 2016). Monterroso et al. (2014) described the red fox as «facultative nocturnal species” and stated that
such species may exhibit substantial flexibility to locally adjust their foraging strategies. Diaz-Ruiz et al.
(2016) found that red fox activity rhythms were determined by human presence where human disturbance
was high and that diurnal activity decreased in areas with higher levels of human disturbance whereas the
temporal overlap with prey activity was on average low. Our results suggest that the selection of
undisturbed habitat such as wasteland or of space with low human activities such as residential houses
with gardens was more pronounced during times of human activity. Built-up areas were also preferred at
all times, but this is difficult to interpret with respect to their level of human-related disturbance as they
include a variety of different structures including more and less disturbed spaces. Their positive selection
nevertheless indicates that foxes did not avoid houses or artificial structures per se. Allotments appeared
to be more strongly avoided during human activity times, which seems logical as people do not reside in
those gardens so they are mainly used during daytime. Finally, the avoidance of increasing human

population density seems more distinct at times of human activity (Fig. 3 c-d).
Vigilance behaviour

As stated above, Cavallini and Lovari (1994) found that foxes preferred habitats with dense cover for
resting. They also described this finding as unexpected, as in their study area foxes were not hunted for

about ten years. They assumed that either more favourable thermic conditions or “the permanence of
12



a previously adaptive behaviour (with either a genetic or acultural basis) may explain this tendency”
(p 245). Our study is consistent with the latter explanation and suggests that foxes may have maintained
a certain level of shyness or vigilance towards humans as a measure of predator avoidance behaviour even
after dozens of “hunt-free” urban fox generations. This is in line with previous findings regarding human-
driven dispersal patterns (Kimmig et al. 2019) based on a transfer of the “landscape of fear” concept from
feeding ecology (Laundré et al., 2010). Railway lines were included in the wasteland category as both
elements share their inaccessibility to people and were present in all fox home ranges. When available,
foxes selected these areas with one fox almost entirely living (and dying) on a railway segment. Considering
the mortality risks associated with this urban infrastructure, the pressure to find spaces free of people

might be high.
Movement

The overall pattern of habitat use was similar for the full dataset and the movement only dataset, but
selection preferences were less distinct for movement data (except for forest and allotment gardens). This
is in line with our finding that selective patterns are less distinct at night-time (when human activity is
reduced), when most fox movements occur. The habitat use during active movement nevertheless showed

the described preference patterns.

Mammalian carnivores mainly move to find and capture food, avoid competitors, avoid predators, find
mates, and scent-mark and otherwise communicate with conspecifics (Powell 2012) but their movement
is restricted by humans (Tucker et al. 2018). Although food availability was not included in our study, the
avoidance of feeding competitors as a driving factor for habitat selection seems less important in urban
areas where food resources are ubiquitously available and abundant (Macdonald 1983, Macdonald &
Johnson 2015). Accordingly, previous studies showed group-living and less territorial behaviour in urban
red foxes and a territoriality which is generally not too strict (Baker et al. 1998, Baker et al. 2004, Cavallini
1996). Our results suggest that the avoidance of predators in terms of humans, drives fox habitat use
during movement. Interestingly, our results also showed that the avoidance of allotment gardens is more
pronounced when focusing on fixes during active movements, although these areas probably provide the
largest amount of food besides built-up areas. Because of their mixed plant composition, allotment
gardens provide insects, earthworms, rodents, bird nests and voles as well as crops, fruits and leftovers
from humans. Built-up areas were also less selected during fox activity. This could indicate that they are
also important for resting behaviour, which seems likely in cases when wasteland is not always available
to an individual fox and large city areas consist of apartment blocks without residential houses, making

backyards and verges along apartment blocks the only protected patches with cover.
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More fine scale analysis of movement data in combination with high resolution geographic data which
reveal information on local food availability may help to further clarify the role of resource distribution on
space use and movement patters. We conclude that human presence is a main driver of space use and

activity patterns in urban areas in a commensal species.
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Figure S1: Deployment times of the 16 radio-collared study foxes.



Table S1: Summary on age, sex, weight, deployment and home range sizes of the 16 study animals. Due to short
deployment times and high fluctuations, no proper home range estimation was possible for individuals marked with
* symbol. HR = home range.

AnimalID sex age weight duration HR 95% HR [ha] HR [ha] HR [ha] HR [ha]
[years] [kg] [days] kernel [ha] day night dawn dusk
Rudi m 1 6,1 13 *
Gerlinde f 1,5 53 403 100 67 107 78 84
Kalle m 1,5 6,05 21 220 32 248 41 47
Frida f 1,5 4,8 84 176 50 242 182 88
Felicitas f 1,5 4,86 59 122 41 156 125 60
Gisel f 1,5 4,9 159 151 117 151 112 114
Hazel f 4,5 5,8 145 44 43 44 51 38
Ida f 1,5 4,8 160 151 61 154 75 89
Jack f 3 7,1 344 80 48 89 94 47
Kyna m 1,5 5,6 263 72 34 75 37 45
Presidente f 7 6 23 95 11 95 61 20
Manu m 2 7 17 *
Nikita m 1,5 6,8 102 31 5 32 10 2
Oregano f 6 5,7 71 14 2 15 6 5
Porthos m 1,5 6,1 240 143 57 160 89 69
Qu m 1,5 5,9 389 43 7 48 25 21
+ [+
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Figure S2: Example of diurnal home range visualizations for two different study foxes. On the left, fox “Kalle”, living
mainly in built-up, crowded areas, on the right, fox “Gerlinde”, living mainly on undisturbed wasteland. Blue colour
indicates the kernel density estimate based on nocturnal points, yellow the estimate for points measured during

daytime, pink during morning twilight and grey during evening twilight.



Table S2: GImmTMB output for the land use raster (signifiance codes: 0 ‘*** 0.001 ‘**' 0.01 ‘*’ 0.05 ‘.’ 0.1’ 1).

Covariate Estimate Std. Error z value Pr(>|z|) significance
Public green spaces -0.4216 0.3113 -1.354 0.1757

City forest -0.879 0.4464 -1.970 0.0488 *
Wasteland 0.5427 0.2711 2.002 0.0453 *

Built-up areas 0.1899 0.1530 1.241 0.2146

Housing with gardens  0.2506 0.1602 1.564 0.1177

Allotment gardens -0.3077 0.2571 -1.197 0.2313

Table S3: GImMmTMB output for the land use raster based on GPS data taken during daytime (signifiance codes: 0

“k**0.001 “** 0.01 *’ 0.05° 0.1 " 1).

Covariate Estimate Std. Error zvalue Pr(>|z|) significance
Public green spaces -0.2680 0.4032 -0.665 0.50632

City forest -0.9735 0.6004 -1.621 0.10494

Wasteland 1.1711 0.4154 2.819 0.00481 *ok

Built-up areas 0.4520 0.2793 1.618 0.10562

Housing with gardens ~ 0.4783 0.4146 1.154 0.24865

Allotment gardens -1.8226 1.0267 -1.775 0.07588

Table S4: GImmTMB output for the land use raster based on GPS data taken during night-time (signifiance codes: 0

“k**0.001 “**' 0.01 *’ 0.05° 0.1 " 1).

Covariate Estimate Std. Error zvalue Pr(>|z|) significance
Public green spaces -0.42352 0.28749 -1.473 0.1407
City forest -0.76015 0.40554 -1.874 0.0609
Wasteland 0.31959 0.22207 1.439 0.1501
Built-up areas 0.05272 0.13024 0.405 0.6856
Housing with gardens  0.08445 0.08799 0.960 0.3372
Allotment gardens -0.31752 0.22788 -1.393 0.1635

Table S5: GImmTMB output for the full model based on the complete data set (signifiance codes: 0 “***’ 0.001 ‘**’

0.01#70.05°0.1°"1).

Covariate Estimate Std. Error zvalue Pr(>|z|) significance
Population density -0.12056 0.04735 -2.546 0.01090 *
Imperviousness -0.15277 0.05365 -2.847 0.00441 ok

Public green spaces -0.36298 0.32320 -1.123 0.26139

City forest -0.89933 0.45618 -1.971 0.04868 *
Wasteland 0.76608 0.24993 3.065 0.00218 *x

Built-up areas 0.50749 0.18358 2.764 0.00570 *E

Housing with gardens  0.55870 0.18585 3.006 0.00265 *E
Allotment gardens -0.21658 0.27880 -0.777 0.43727
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Figure S3: Full model for the complete dataset with wasteland as a reference value.

Table S6: GImmTMB output for the full model with wasteland as the reference covariate (significance codes: 0 “***’
0.001 “**0.01 “** 0.05 ‘0.1’ 1).

Covariate Estimate Std. Error zvalue Pr(>|z|) significance
Population density -0.10897 0.04691 -2.323 0.020174 *
Imperviousness -0.19668 0.05476 -3.591 0.000329 HkE

Public green spaces -1.60300 0.31042 -5.164 2.42e-07 ok

City forest -2.00287 0.47437 -4.222 2.42e-05 ok

Grey spaces -1.27250 0.16766 -7.590 3.21e-14 Rk
Built-up areas -0.62368 0.18501 -3.371 0.000749 *oxk
Housing with gardens  -0.58407 0.22563 -2.589 0.009636 *E
Allotment gardens -1.26848 0.27915 -4.544 5.52e-06 rEE

Table S7: GImmTMB output for the full model based on the movement data subset (significance codes: 0 “***’ 0.001
“**'0,01* 0.05‘70.1°"1).

Covariate Estimate Std. Error zvalue Pr(>|z|) significance
Population density -0.09118 0.04857 -1.877 0.0605

Imperviousness -0.09190 0.05949 -1.545 0.1224

Public green spaces -0.55293 0.32763 -1.688 0.0915 .

City forest -0.76810 0.32929 -2.333 0.0197 *
Wasteland 0.19722 0.18435 1.070 0.2847

Built-up areas 0.05835 0.15989 0.365 0.7152

Housing with gardens  0.16670 0.14014 1.190 0.2342

Allotment gardens -0.60597 0.24358 -2.488 0.0129 *
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Abstract

1. Remotely tracking distinct behaviours of animals using acceleration data and machine
learning has been carried out successfully in several species in captive settings. In order
to study the ecology of animals in natural habitats, such behaviour classification models
need to be transferred to wild individuals. However, at present, the development of those
models usually requires direct observation of the target animals. 2. The goal of this study
was to infer the behaviour of wild, free-roaming animals from acceleration data by training
behaviour classification models on captive individuals, without the necessity to observe
their wild conspecifics. We further sought to develop methods to validate the credibility of
the resulting behaviour extrapolations. 3. We trained two machine learning algorithms pro-
posed by the literature, Random Forest (RF) and Support Vector Machine (SVM), on data
from captive red foxes (Vulpes vulpes) and later applied them to data from wild foxes. We
also tested a new advance for behaviour classification, by applying a moving window to
an Artificial Neural Network (ANN). Finally, we investigated four strategies to validate our
classification output. 4. While all three machine learning algorithms performed well under
training conditions (Kappa values: RF (0.82), SVM (0.78), ANN (0.85)), the established
methods, RF and SVM, failed in classifying distinct behaviours when transferred from cap-
tive to wild foxes. Behaviour classification with the ANN and a moving window, in contrast,
inferred distinct behaviours and showed consistent results for most individuals. 5. Our
approach is a substantial improvement over the methods previously proposed in the litera-
ture as it generated plausible results for wild fox behaviour. We were able to infer the
behaviour of wild animals that have never been observed in the wild and to further illus-
trate the credibility of the output. This framework is not restricted to foxes but can be
applied to infer the behaviour of many other species and thus empowers new advances

in behavioural ecology.

Introduction

Animal-borne sensors such as temperature loggers, salinity loggers or microphones are used
to study a wide variety of parameters in wild animals without disturbance by human
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observers [1]. In the study of movement ecology of species [2], animal-borne sensors make it
possible to track the locations of wild animals. The first attempts to remotely track animal
locations were made in the 1960s through VHF telemetry [3]. In more recent years it has
become common practice to track animal locations with satellite systems [4], enabling
researchers to study where individuals dwell. However, the spectrum of ecological questions
that can be addressed by using location data alone is limited. By combining such data with
behavioural data, more in-depth studies of species will become possible [5]. Yet, in contrast
to recording locations, remotely tracking the behaviour of free-ranging animals is not well
established at this point.

The principal underlying remote-tracking of behaviour is to attach accelerometers to ani-
mals to record their body movement. The first major study utilizing acceleration data to study
the behaviour of animals was conducted in 1996 [6]. Since then, many studies have shown that
acceleration data can be used to infer the behaviour of animals by employing various machine
learning algorithms [5, 7]. To train these algorithms for pattern recognition and data classifica-
tion, the acquisition of acceleration data was coupled with direct observation of the behaviours
of the tagged animals. Using one portion of this ground-truthed data set to train the algorithm
and another portion to infer behaviour from it allows validation of the inferred behaviour.

Extrapolating behaviours from acceleration data of wild individuals is a challenge since it is
often impossible to test whether the extrapolated behaviours are correct or not. Some models
were trained and validated on the same wild individuals [8-10], which requires direct observation
of the studied individuals at least for a certain period of time. However, the promising advance of
behaviour classification through machine learning is the ability to study the behaviour of wild
animals without observing (and possibly disturbing) them. Furthermore, direct observation may
often not be a feasible option, especially when target species are elusive or cryptic.

For other models, additional sensors such as GPS [11] or depth and speed sensors for
aquatic species [9, 10, 12] were employed to identify the behaviours executed. In these cases,
the information from the additional sensors was used to investigate the behavioural context
the animal was in at the time of data recording, in order to delimit likely behaviours. For stud-
ies in which no validation was possible, various behaviours were grouped into broad, easily
distinguishable categories to reduce confusion of similar behaviours [13, 14]. Thus, accurately
inferring distinct behaviours of wild individuals still poses a problem.

The Random Forest (RF) and the Support Vector Machine (SVM) are popular approaches
to infer animal behaviour from acceleration data and have yielded good results under training
conditions [5, 15]. Yet, to our knowledge, there are no studies successfully transferring a
behaviour classification model trained on captive individuals to wild individuals.

To study the complex behaviour- or movement ecology of wild animals, however, a
valid data set of linked GPS locations and behavioural data is needed. In this study, we,
therefore, aim to test the capacity of different machine learning algorithms in inferring the
behaviour of wild foxes (Vulpes vulpes) from acceleration data. We provide a framework to
infer the behaviour of wild red foxes based on an Artificial Neural Network (ANN) trained
on captive red foxes.

Our framework further addresses the issues of working with small training data sets (a com-
mon obstacle in wildlife- and conservation research) by using a new approach to efficiently
exploit the given data set. Finally, we suggest how to validate the inferred behaviours when
observation of free-ranging individuals is not a feasible option. We propose four strategies to
assess the credibility of the output by combining the classified behaviour with GPS and tempo-
ral information. The study set-up, together with our novel approach, enables us to test the use
of machine learning for behaviour classification and to empower behaviour classification of
wildlife through acceleration data in the future.
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Material and methods
Data collection and acceleration logger setup

Animal catching and handling have been approved from the State Office for Health and Social
Affairs, department of veterinary affairs (permit number: IC113-G0211/15) and the ethics
committee of the Leibniz Institute for Zoo and Wildlife Research in Berlin (permit number:
2015-03-04) and have been conducted according to applicable national and international
guidelines. Approvals have been received prior to beginning research. To reduce stress during
handling, all foxes got anesthetized before the deployment of radio collars. For anaesthesia we
first used a long established mixture of Xylazin (10-16mg/kg) and Ketamin (12-20mg/kg) and
later switched to an improved mixture of Ketamin (4mg/kg), Medetomidin (70ug/kg) and
Midazolam (0,6mg/kg) that is better tolerated.

For gathering the acceleration and GPS data sets, used in this study, we deployed
UHEF-GPS collars (“1C-light” and “1C-heavy”, E-obs GmbH, Munich, Germany; Fig 1) on
adult red foxes, both, in captivity and in the wild. Both captive and wild individuals were
tagged with the same type of sensors and acceleration data logger settings. Captive individ-
uals were observed to train and test the models and wild individuals were used to apply
them. For the training data set, two individuals (female, approx. 8 years old) were collared
in a game park enclosure in the north-west of Berlin between November 2015 and June
2016. Their enclosure mainly consisted of a sandy and stony substrate and was partially
covered with concrete, grass and weeds. Several trees, tree roots, piles of stones and
cement tubes provided a heterogeneous environment with both opportunities to hide
and climb. One of the cement tubes led to an artificial, observable den. The two foxes
were chosen to be collared, because of their lacking fear towards visitors and noises and
the resulting possibility to be observed outside their den for several hours per day. For the
field dataset, data from wild foxes were used that were radio-collared by Kimmig et al. in
the city of Berlin, Germany, between 2015 and 2018. In total 17 wild individuals (10
female, 7 male) were caught. Out of those, for 9 individuals (7 females, 2 males), three
consecutive months of data were available and they were therefore included in the analy-
sis. All individuals were adults (with ages ranging from 1.5 to 7 years) and their urban and
suburban habitats were characterized by a heterogeneous structure, including green spaces
as well as concrete.

The acceleration loggers that were embedded in the UHF-GPS collars were set up to mea-
sure acceleration in short intervals at a frequency of two minutes. Data was recorded for three
axes perpendicular to each other at a sampling rate of 33.33Hz per axis. There were 110 accel-
eration measurements taken for each axis in each measurement interval. Resulting from the
sampling rate and the number of measurements for each axis the duration of each recording
interval was 3.3 seconds. We refer to a single recording interval as a burst.

To train the algorithms we used the raw ground-truthed data of the captive foxes that were
observed during the recording of acceleration data. A specific UHF-pinger signal indicated
the start of each burst for the observer who then noted the displayed behaviour. All measured
behaviours had been previously classified in an ethogram that was established through obser-
vations before and after collaring the individuals (with all steps conducted by the same
observer). It contained the following behaviours: feeding, grooming, resting, caching, trotting
and walking (for a detailed description of the behaviours see S1 Table). The pinger signal
could be detected acoustically with a UHF Wide Range Receiver that was set to the unique
frequency of the collars (see [16]) and was not audible to the foxes.

During a burst, the animal in focus was observed closely and the behaviour was noted. Each
observation was linked to the corresponding acceleration burst via the unique timestamp.
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Fig 1. Camera trap picture of a wild red fox (“Gerlinde”), collared in Berlin in 2016. The arrows symbolize the X-, Y- and Z-axis (corresponding to
sway-, surge- and heave-motion).

https://doi.org/10.1371/journal.pone.0227317.9001

Due to slight shifts in the collars’ timestamps, the raw acceleration data of a number of con-
secutive bursts—ideally encompassing a distinctive change in behaviour (e.g. resting followed
by trotting)—was visually inspected and compared to the noted behaviours. The timestamps
of observations were corrected accordingly.

After excluding all bursts containing more than one behaviour, 4159 bursts of six different
behaviour classes were used as the input for the model training (feeding: 367, grooming: 1140,
resting: 2114, caching (bury food to consume it later): 197, trotting: 179, walking: 162).

Data preparation

We calculated summary statistics from the raw acceleration data, separately for each burst, to
serve as predictors for the machine learning algorithms. The following predictors were calcu-
lated per axis: mean, standard deviation, inverse coefficient of variation, variance, skewness
and kurtosis. Additional predictors represent combinations of all three axes and were calcu-
lated according to the corresponding literature: q [5], pitch and roll [17] and overall dynamic
body acceleration (ODBA) [18]. In addition to the summary statistics, we added the whole
spectrum of a Fast Fourier Transformation of each axis to the set of predictors. As most of the
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time-related information in the raw acceleration data is lost when calculating the summary sta-
tistics we decided to use the full spectrum to utilize this information. For a complete list of pre-
dictors see S2 Table. We performed all data transformations and the construction of the ANN
in R [19] and Rstudio [20]. The sum_data function in the accelerateR package (W. Rast,
unpublished data.) was used for summary statistics and Fast Fourier Transformation
calculation.

Data classification

Established methods: Support vector machines (SVM) and random forest (RF). Sup-
port Vector Machines separate data of different classes from each other by constructing a
hyperplane between them. Classification of new data is subsequently based on their relative
position to the hyperplane. By default, the classification is binary. For applications with multi-
ple classes, more hyper-planes between classes will be constructed [21]. We used the imple-
mentation of an SVM in the R package “e1071” [22] with the kernel type “radial”.

Random Forests are an improvement of the classical Classification and Regression Trees
(CART) [23]. While in CART all predictors are used, the RF picks a random subset of predic-
tors to fit a tree. This is repeated several times, and the final prediction is the result of all trees
combined by a majority rule [24]. We used the implementation of an RF in the R package
“randomForest” [25] with the standard settings using 500 trees.

Artificial neural network (ANN). ANNs are similar to biological neural networks and
consist of multiple nodes that are distributed over several layers and interconnected [26].
Nodes are activated based on the input variables (predictors) and an activation function. In the
simplest cases, this function is a summation of all input variables that are passed to a specific
node. These functions also include weights that change the influence of every input variable
and are set during the training phase. For training, a ground-truthed data set is needed on
which the ANN establishes the node connections and the weights so that the output of the
ANN corresponds to the target classes of the model data. The activation or non-activation of
nodes serve as input for the next layer of nodes. The last layer usually consists of nodes repre-
senting the target classes. Their activation leads to the assignment of data to a class.

For our study, we chose a three-layer network with the output of the last layer being a spe-
cific behaviour class. We used a feed-forward type architecture for the ANN and used the
Keras package [27] to implement it.

Moving window

One strategy that has been tested with continuously recorded data is to apply a moving win-
dow to partition the acceleration data and to compute summary statistics for each of the result-
ing segments. In different studies, these windows could partially overlap or not overlap at all
[28-30]. An application example very similar to our approach is the assessment of car driver
aggressiveness using continuous data by Ferreira et al. [31]. However, to our knowledge, this
approach has never been used on burst data in wildlife ecology.

We applied a moving window to every recorded burst to increase the sample size of our
data set since it was found that ANNs show better performance with increasing sample size
[32, 33] and require large training data sets [34]. In the first set, this window reduced the
amount of data within the burst from the original 110 measurements down to a subset of the
window length. We then computed the summary statistics and Fast Fourier Transformation
(S2 Table) for this subset. In a second step, the window was moved by one position so that the
first measurement of every axis was removed and one new measurement for every axis was
added to the end of the window (see Fig 2). We then computed all variables for the second
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Fig 2. Schematic representation of the moving window approach: Starting at the beginning of a data set (“burst”,
here n = 10), a fixed number of consecutive data (“window”, here n = 4) is taken out and analysed. In the further
step-by-step analysis, the window is shifted by one data set until the window has reached the end of the complete data
set (7 steps in the schematic example).

https://doi.org/10.1371/journal.pone.0227317.9002

window and so forth. The window was moved until it included the last measurement of the
original burst, resulting in a number of predictor sets representing the same burst. In contrast
to extracting random subsets, this approach preserves the order of the data for a specific behav-
iour, and we were able to calculate the Fourier spectrum which is dependent on the correct
order of measurements.

Model evaluation

To evaluate the model performance of all three machine learning algorithms, we trained them
on 70% of the data (training data). We then inferred the behaviour for the remaining 30% (test
data) by classifying them with the trained model and assigning a specific behaviour to each
burst accordingly (or assigning “other”, respectively as described below). Since the number of
observations per behaviour class differed, we split the data of each behaviour class separately
in a random fashion so that the original proportions of behaviour counts were similar in the
training and test data sets. We applied the moving window to the training and test sets after
the split. We calculated the recall (true positives / (true positives + false negatives)) and preci-
sion (true positives / (true positives + false positives)) [7] for each behaviour. For the sake of
completeness, we also calculated the accuracy ((true positives + true negatives) / total number
of samples). For comparison with other models we calculated Cohens Kappa with Kappa = (p,
P/ =p.)withp, = > (TP, /n)andp, = > ((TP. + TN,)/n * (TP, + FP,)/n). With
<n> being the total sample size and <c> the number of classes [35].

To reduce confusion of behaviours, a threshold was set for the ANN assignments. Only
behaviour assignments that exceeded a probability of 0.7 were accepted. All assignments below
that threshold were classified as “other” behaviour. This was necessary to account for the fact
that captive individuals may not execute the full range of behaviours available to the species,
which would lead to some behaviour (e.g. hunting or fighting) not being included in the
model. If wild individuals displayed any of these behaviours, they could be incorrectly classi-
fied as one of the behaviours included in the model. We expect that such classifications would
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be assigned at low probability so that we can avoid these errors by implementing the threshold.
Similarly, recordings in which the individual changed its behaviour during a burst should not
be characteristic for any specific behaviour and therefore should also fall below the threshold.

Model selection

Artificial Neural Networks are used for a variety of tasks such as image recognition, sentiment
analysis or regression. The necessary sample size and ANN architecture depend on the specific
task [36]. Finding the optimal properties for the best performing ANN is not achieved by a sci-
entific method but rather by trial and error [33]. To find the best window size we trained the
ANN on window sizes from 20 to the full 110 and finally decided on 79. We evaluated all mod-
els by calculating the recall, precision and the proportion of “other” behaviours. As recall and
precision are calculated for each behaviour, we first computed their means and then calculated
the mean of the resulting mean recall and precision as well as the proportion of “other” behav-
iours. The latter was subtracted from one to be on the same scale as recall and precision. A
General Additive Model (GAM) was applied to the calculated means for all window sizes. We
calculated the slope m of the GAM fit for each window size using the difference quotient m =
(Ay,-Ay, 1)/ (Ax,-AX,, ). Variable x corresponds to the window size and y to the calculated
model performance, n corresponds to a specific window size and n-1 to the previous window
size. A window size of 79 provided the best trade-off between small window size and high per-
formance (see “Model selection” in the Results).

Application to wild individuals

For our subsequent analysis of behaviour inference, we selected wild foxes for which at least
three consecutive months of acceleration data were available (N = 9). We considered all
months in which data was recorded for at least half of the month. In addition to the accelera-
tion data, the tags recorded GPS locations every four minutes for the first eight weeks, after
that every 20 minutes (GPS for fox “Gerlinde” was only recorded every 20 minutes). Using
acceleration informed GPS measurement, this interval was reduced to every four hours when
a fox was inactive. We trained all three classification models on the complete ground-truthed
dataset of the captive foxes and applied the trained model to classify the data of the wild foxes.
As the moving window results in multiple behaviour outputs for each burst, only one behav-
iour was assigned to each burst, following majority rule. We consider all classifications within
one burst as equal and determine the absolute majority.

Validation of behaviour assignments

We assessed the plausibility of the ANNs’ behavioural assignments by examining the following
four aspects: (i) biological credibility of the behaviour assignments (ii) consistency over indi-
viduals and time (iii) coherence with the GPS data and (iv) coherence with ODBA.

To address biological credibility (i), we calculated the time-dependent composition of
behaviours throughout the day and compared it to the literature on fox behaviour. As seasonal
shifts can influence behavioural compositions, we separated the behaviour assignments by
month. For each day within a single month, we counted the number of assignments of each
behaviour (for each minute covered by the tag schedule) in the 24 hours. We further used the
corresponding plots to (ii) visually compare the daily patterns over time and between individu-
als. (iil) We incorporated the given GPS information of the free-ranging individuals because
we expected the GPS data to correspond with specific behavioural classes. For instance, spatial
clustering of GPS data should correspond with stationary resting behaviour. We treated points
as a cluster when consecutive GPS points were within a 50m radius of the first GPS point of
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that cluster. Points recorded more than 50m away were defined as the first point of a new clus-
ter. Since it was possible that clusters consisted of only a single point, we only considered
behaviour assignments to be spatially clustered when at least 10 classified behaviour items
were assigned to the same cluster. We then calculated for each behaviour the proportion of
behaviour assignments that were within a cluster. In addition, we investigated the coherence
of GPS based speed measure and movement-related behaviour classifications (trotting and
walking). We, therefore, calculated the speed of the moving animal based on the spatial and
temporal distances between consecutive GPS points. Due to independent schedules, GPS and
acceleration data were not recorded exactly simultaneously. Hence acceleration data that was
recorded within 10 seconds of a GPS measurement were considered. Finally, we (iv) compared
the temporal distribution of ODBA values and behaviour assignments by constructing acto-
grams using accelerateR.

Results

Training conditions: Captive foxes

We could classify all six behaviours during the validation using SVM and RF. Classification
success differed between the behaviour classes for both algorithms. We achieved the best classi-
fication success for resting and the lowest for caching and walking (Table 1). The confusion
matrices (53 and S4 Tables) showed that grooming and walking were confused more often
compared to other behaviours. Recall can be interpreted as the proportion of behaviour events
that were correctly classified. Feeding (SVM), for example, had a recall of 0.43, meaning that
43% of all feeding events were correctly classified as feeding. Precision can be interpreted as
the probability for an assignment to be correct. Feeding had a precision of 0.58, meaning that
a single assignment of feeding is correct with a chance of 58%. Both algorithms show compara-
ble results only for resting. The SVM performs worse for all other behaviours. Our initial test-
ing showed that the SVM performed better without the addition of the FFT spectrum but we
kept the model this way to ensure the comparability of all three models. We added the accu-
racy metric that is often used for model evaluation but will not endorse its use for this study:
As accuracy uses the true negatives it is influenced by the large number of resting observations
that we got. Since most of the resting data is classified correctly these data is treated as true

Table 1. Recall and precision of the classification output compared for support vector machine (SVM), random forest (RF) and artificial neural network (ANN).
All algorithms are capable of classifying and inferring fox behaviour with a high success rate (exceptions are caching and walking for SVM and RF).

Feeding Grooming Resting Caching Trotting Walking

SVM

recall 0.43 0.33 0.98 0.37 1.00 0.27
precision 0.58 0.70 0.98 0.21 0.19 0.36
accuracy 0.92 0.77 0.94 0.90 0.81 0.95
RF

recall 0.70 0.93 0.92 0.68 0.96 0.43
precision 0.71 0.80 0.99 0.59 0.91 0.84
accuracy 0.94 0.91 0.95 0.96 0.99 0.98
ANN

recall 0.83 0.88 0.96 0.67 0.96 0.74
precision 0.84 0.95 0.98 0.83 0.91 0.71
accuracy 0.93 0.92 0.95 0.95 0.96 0.95

https://doi.org/10.1371/journal.pone.0227317.t001
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negatives for all other behaviour classes and thus resulting in higher accuracy values for those
behaviour classes.

The Kappa values for the RF and SVM are 0.81 and 0.51 respectively. Our initial testing
with training both models without the Fast Fourier Spectrum resulted in Kappa values of 0.81
and 0.78 for RF and SVM respectively. The performance of the RF remains the same while the
performance of the SVM decreased due to the addition of the Fast Fourier spectrum.

Like RF and SVM, the ANN could predict all six behaviours during validation. Also, classi-
fication success differed between behaviour classes. The performance of the ANN is overall
comparable to the RF but performs better than the SVM. The confusion of walking behaviour
with grooming is reduced compared to the SVM and RF (S6 Table). The kappa value of 0.85
for the ANN was also higher than for the RF (0.81) and SVM (0.51). The proportion of assign-
ments that did not surpass the threshold was 0.04.

Model performance of the ANN appears to be dependent on the window size (Fig 3) and
decreases towards both ends of the window size spectrum. Smaller window sizes seem to have
a stronger impact on model performance than larger window sizes. The GAM fit has its maxi-
mum at window size 79, with the slope of the GAM fit close to 0. We thus considered 79 to be
the best trade-off between model performance and window size and used it for the final model
(see Discussion).

Field conditions: Application to wild foxes

We here show the results for all wild foxes and plots for those two wild foxes (“Que” and “Ger-
linde”), whose collars yielded data over a whole year. Graphic representation of all remaining
individuals is presented in the supplemental material (S1-S7 Figs).

0.8

Model Performance

Window Size
Fig 3. ANN model performance in relation to window size. Black dots show the computed performance values. The
blue line is the result of a General Additive Model, k = 40 [37] fit. The y-axis on the left side labelled “Model
Performance” corresponds to the Model Performance line (blue) and Raw Metrics points (black). The orange line is
the calculated slope of the model performance, which corresponds to the y-axis on the right side labelled “Slope”. The
green vertical line represents the best window size of 79.

https://doi.org/10.1371/journal.pone.0227317.9003
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When the trained SVM and RF models were applied to classify the behaviour of the nine
wild foxes, all bursts were classified as grooming. No resting, caching, feeding, trotting or walk-
ing events were detected (Table 2). When applying the trained ANN to the wild fox data, all six
behaviour categories were assigned in all nine individuals (Table 3). For the field data of “Que”
and” Gerlinde”, a proportion of 1% did not exceed the 70% threshold and was therefore
labelled “other”. For both foxes feeding, caching and walking were assigned at low rates.

Validation and credibility of the behaviour assignments

Biological credibility of the behaviour assignments (i) and consistency over individuals
and time (ii). Looking at the time-dependent composition of each individual’s behaviour
(Fig 4, S1-S7 Figs), a similar pattern of behavioural composition over time is clearly noticeable
(months without full data recording ought to be excluded for feasible interpretation). Clearly,
there is a high proportion of resting behaviour during the middle of the day, while trotting is
mostly inferred during dark hours. Trotting is also inferred more often than walking. There
seems to be a seasonal change in resting behaviour, with resting events being more explicitly
limited to the daytime in summer months. Feeding events are more often inferred during dark
hours than during the daytime, when mostly resting and some grooming are classified.

In the comparison between individuals some differences emerge. Some individuals, e.g.,
show less trotting (S2 Fig), more walking (53 Fig) or much more grooming than others (57
Fig). Despite this variation, the general pattern of behaviour composition appears very similar
across all individuals.

(iii) Coherence with GPS. Resting behaviour appears to be highly associated with GPS
clusters (Fig 5A), while all other behaviours are inferred mostly outside of clusters. This also

Table 2. Number of occurrences of every classified behaviour for the wild foxes. Count of all behaviour assignments compared for support vector machine (SVM) and
random forest (RF). Overall, all foxes show similar proportions of behaviours throughout their measurement periods. As all individuals were tagged for different time peri-
ods, the absolute number of assignments differs between individuals.

Individual
SVM
Gerlinde
Gisel
Hazel
Ida

Jack
Kyna
Nikita
Porthos
Que

RF
Gerlinde
Gisel
Hazel
Ida

Jack
Kyna
Nikita
Porthos
Que

https://doi.org/10.1371/journal.pone.0227317.t1002

Measure

count
count
count
count
count
count
count
count

count

count
count
count
count
count
count
count
count

count

feeding

o o oo o oo oo

o oo oo o oo

(=}

grooming resting caching trotting walking other
289248 0 0 0 0 0
102920 0 0 0 0 0
103951 0 0 0 0 0
110337 0 0 0 0 0
243742 0 0 0 0 0
159211 0 0 0 0 0
72653 0 0 0 0 0
149254 0 0 0 0 0
274792 0 0 0 0 0
289248 0 0 0 0 0
102920 0 0 0 0 0
103951 0 0 0 0 0
110337 0 0 0 0 0
243742 0 0 0 0 0
159211 0 0 0 0 0
72653 0 0 0 0 0
149254 0 0 0 0 0
274792 0 0 0 0 0
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Table 3. Number of occurrences of every classified behaviour for the wild foxes. Count and proportion of all behaviour assignments of the artificial neural network
(ANN). Overall, all foxes show similar proportions of behaviours throughout their measurement periods. As all individuals were tagged for different time periods, the abso-
lute number of assignments differs between individuals.

Individual Measure
Gerlinde count
proportion
Gisel count
proportion
Hazel count
proportion
Ida count
proportion
Jack count
proportion
Kyna count
proportion
Nikita count
proportion
Porthos count
proportion
Que count
proportion

Feeding
2288
0.005
3019
0.03
2887
0.03
1311
0.01
3420
0.01
1070
0.007
2318
0.03
1266
0.008
1317
0.008

https://doi.org/10.1371/journal.pone.0227317.t1003

Grooming Resting Caching Trotting Walking Other
78194 171890 1016 30020 1664 4176
0.23 0.61 0.007 0.12 0.02 0.01
16545 61405 1464 10766 7193 2528
0.16 0.60 0.01 0.10 0.07 0.02
26014 57094 1319 8570 4874 3193
0.25 0.55 0.01 0.08 0.04 0.03
25162 65354 241 12848 1612 3789
0.23 0.59 0.002 0.12 0.01 0.03
136086 72507 523 17116 5092 8996
0.56 0.30 0.002 0.07 0.02 0.04
45185 104491 266 6016 750 1433
0.28 0.66 0.001 0.04 0.005 0.009
10430 47996 465 2678 7639 1127
0.14 0.66 0.006 0.04 0.11 0.02
32624 91370 3555 16236 530 3673
0.22 0.61 0.02 0.11 0.004 0.02
64092 166349 1875 32531 5749 2879
0.27 0.59 0.004 0.10 0.006 0.01

applies to all other wild foxes (S8A-S14A Figs). For the analysis of the correspondence
between behaviours and GPS based speed measurements, we used only acceleration data
recorded within 10 seconds of a GPS fix (for Que: 7%; Gerlinde: 5%). Resting events were
classified at lower GPS-based speed than trotting events (Fig 5B, S8B-S14B Figs).

(iv) Coherence with ODBA. The actograms show that trotting is predominantly classified
at times when ODBA values are high. Trotting, as well as high ODBA, occur mostly during
night-time. Resting, in turn, is most often classified at times with low ODBA values (Fig 6).
This is also valid for all remaining foxes (S15-S21 Figs).

Discussion

In the present study we sought to advance the abilities to remotely assess the behaviour of ani-
mals in the wild without directly observing (and respectively disturbing) the target animals.
We therefore, tested the capacity of three machine learning algorithms (SVM, RF and ANN)
to infer wild fox behaviour after training with a ground-truthed data set of two captive red
foxes. The performances of the RF and the ANN were on similar levels under training condi-
tions, the SVM overall performed worse than the other two. The ANN with the moving win-
dow approach, however, was able to infer caching and walking behaviour much better than
the other two. Both RF and SVM generally performed well in inferring behaviour during vali-
dation (Table 1) and showed comparable results to other studies [5, 38, 39]. When applied to
the wild foxes, however, they both failed to discriminate the different behaviours (Table 2).
The application of a model trained on one individual to a conspecific (that the model was
not trained on), is crucial to bring this method into practical use, yet this remains a major
obstacle. One ra