Journal of

%

Clinical Medicine

Article

Tomoelastography for Longitudinal Monitoring of
Viscoelasticity Changes in the Liver and in Renal Allografts
after Direct-Acting Antiviral Treatment in 15 Kidney Transplant
Recipients with Chronic HCV Infection

Stephan R. Marticorena Garcia 1'*{%, Christian E. Althoff !, Michael Diirr >{9, Fabian Halleck 2, Klemens Budde 2,

Ulrike Grittner 3400, Christian Burkhardt 1, Korinna J6hrens >, Jiirgen Braun

6(®, Thomas Fischer 1,

Bernd Hamm !, Ingolf Sack ! and Jing Guo !

check for

updates
Citation: Marticorena Garcia, S.R.;
Althoff, C.E.; Diirr, M.; Halleck, E.;
Budde, K.; Grittner, U.; Burkhardt, C.;
Johrens, K.; Braun, J.; Fischer, T.; et al.
Tomoelastography for Longitudinal
Monitoring of Viscoelasticity Changes
in the Liver and in Renal Allografts
after Direct-Acting Antiviral
Treatment in 15 Kidney Transplant
Recipients with Chronic HCV
Infection. J. Clin. Med. 2021, 10, 510.
https:/ /doi.org/10.3390/jcm10030510

Academic Editor: Magdi Yaqoob
Received: 3 December 2020
Accepted: 23 January 2021
Published: 1 February 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Radiology, Charité—Universitidtsmedizin Berlin, Corporate Member of Freie Universitit
Berlin, Humboldt-Universitit zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany;
christian.althoff@charite.de (C.E.A.); christian.burkhardt@charite.de (C.B.); thom.fischer@charite.de (T.F.);
bernd. hamm@charite.de (B.H.); ingolf.sack@charite.de (L.S.); Jing.Guo@charite.de (J.G.)

Department of Nephrology and Medical Intensive Care, Charité—Universitdtsmedizin Berlin, Corporate
Member of Freie Universitit Berlin, Humboldt-Universitit zu Berlin, and Berlin Institute of Health,
Charitéplatz 1, 10117 Berlin, Germany; michael. duerr@charite.de (M.D.); fabian.halleck@charite.de (F.H.);
klemens.budde@charite.de (K.B.)

Institute of Biometry and Clinical Epidemiology, Charité—Universitdtsmedizin Berlin, Corporate Member of
Freie Universitdt Berlin, Humboldt-Universitdt zu Berlin, and Berlin Institute of Health, Charitéplatz 1,
10117 Berlin, Germany; Ulrike.Grittner@charite.de

4 Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany

Department of Pathology, Charité—Universititsmedizin Berlin, Corporate Member of Freie Universitat
Berlin, Humboldt-Universitit zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany;
korinna.joehrens@uniklinikum-dresden.de

Institute for Medical Informatics, Charité—Universitdtsmedizin Berlin, Corporate Member of Freie
Universitdt Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health, Charitéplatz 1,

10117 Berlin, Germany; juergen.braun@charite.de

*  Correspondence: stephan.marticorena-garcia@charite.de; Tel.: +49-30-450-527082; Fax: +49-30-450-7527911

a

Abstract: Besides the liver, hepatitis C virus (HCV) infection also affects kidney allografts. The
aim of this study was to longitudinally evaluate viscoelasticity changes in the liver and in kidney
allografts in kidney transplant recipients (KTRs) with HCV infection after treatment with direct-acting
antiviral agents (DAAs). Fifteen KTRs with HCV infection were treated with DAAs (daclatasvir
and sofosbuvir) for 3 months and monitored at baseline, end of treatment (EOT), and 3 (FU1) and
12 (FU2) months after EOT. Shear-wave speed (SWS) and loss angle of the complex shear modulus
(), reflecting stiffness and fluidity, respectively, were reconstructed from multifrequency magnetic
resonance elastography data with tomoelastography post-processing. After virus elimination by
DA As, hepatic stiffness and fluidity decreased, while kidney allograft stiffness and fluidity increased
compared with baseline (hepatic stiffness change at FU1: —0.14 m/s, p <0.01, and at FU2: —0.11m/s,
p < 0.05; fluidity at FU1: —0.05 rad, p = 0.04 and unchanged at FU2: p = 0.20; kidney allograft
stiffness change at FU1: +0.27 m/s, p = 0.01, and at FU2: +0.30 m/s, p < 0.01; fluidity at FU1 and FU2:
+0.06 rad, p = 0.02). These results suggest the restoration of mechanically sensitive structures and
functions in both organs. Tomoelastography can be used to monitor the therapeutic results of HCV
treatment non-invasively on the basis of hepatic and renal viscoelastic parameters.

Keywords: hepatitis C virus; liver fibrosis; kidney transplantation; direct-acting antiviral agents;
magnetic resonance elastography; tomoelastography; stiffness
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1. Introduction

Hepeatitis C virus (HCV) infection is associated with chronic inflammation and is a
predisposing factor for liver fibrosis, leading to an accumulation of extracellular matrix
proteins [1]. Besides the liver, HCV infection also affects the kidney [2-5], causing increased
morbidity and mortality of kidney transplant recipients (KTRs) compared with patients
who have normal renal function [6,7]. Furthermore, immunosuppression commonly ap-
plied to KTRs could also lead to a high risk of HCV reactivation and recurrence, resulting
in the progression of hepatic fibrosis and, ultimately, a high incidence of liver cirrhosis and
hepatocellular carcinoma [8,9]. Direct-acting antiviral agents (DA As) are very effective in
viral eradication, decreasing the risk of hepatocellular carcinoma [10-13]. As they are very
effective in HCV therapy [14-17], DA As are recommended by the current Kidney Disease
Improving Global Outcomes (KIDGO) guidelines for treating HCV-infected patients with
renal disease [18].

In KTRs with HCV infection who are treated with DAAs, the kidney allograft re-
quires attention, as sofosbuvir, one of the commonly used DAAs, is excreted mainly by
the kidneys [19]. Although sufficiently safe in dysfunctional native or transplanted kid-
neys [13,19-23], the influence of DAAs on renal structure and perfusion, reflected by
viscoelastic parameters, is largely unknown. The viscoelasticity of soft organs such as
the kidneys is known to be sensitive to early changes in extracellular matrix protein ac-
cumulation and blood perfusion. However, viscoelastic parameter changes due to DAA
treatment have only been reported for the liver. Earlier studies have shown that multi-
frequency magnetic resonance elastography (MRE) with novel tomoelastography data
processing was highly sensitive to structural changes in dysfunctional native [24,25] and
transplanted [26] kidneys. On the basis of that work, we hypothesize that the viscoelas-
tic parameters of the transplanted kidney reflect possible early structural and functional
changes after DAA treatment that are not detected by other biomarkers such as serum
creatinine and proteinuria [25].

The aim of this study was to longitudinally assess the mechanical response of: (i) the
liver and (ii) the transplanted kidney to DAA treatment in HCV-infected KTRs by tomoe-
lastography. We also investigated the association of mechanical changes with biochemical
markers that are directly related to the functional status of the liver and kidney allografts.

2. Materials and Methods
2.1. Study Population

In this prospective, single-center study (EudraCT number: 2014-004551-32) [27], KTRs
with chronic HCV infection and clinical indication for DAA treatment were recruited at the
transplant center of our hospital between December 2015 and July 2016. MRE experiments
were approved by our local institutional review board (EA1/075/17, EA1/019/15) and all
subjects gave written informed consent.

The inclusion criteria were: (i) age at least 18 years; (ii) diagnosed with chronic HCV
infection of genotype Ia or Ib, defined by having detectable anti-HCV antibodies and a
HCV RNA viral load for more than 3 months; (iii) untreated with, or be non-responding to,
other anti-HCV treatment; (iv) having an estimated glomerular filtration rate (eGFR) above
30 mL/min/1.73 m? for more than 12 months (estimated from blood creatinine levels by
the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [28]). The
exclusion criteria were: (i) contraindications to daclatasvir and sofosbuvir, co-infections
such as human immunodeficiency virus or hepatitis B virus, or chronic decompensated
liver disease (Child-Pugh class B or C); (ii) polycystic liver or kidney disease; (iii) history
of kidney allograft rejection; (iv) history of malignancies; (v) contraindications to magnetic
resonance imaging (MRI); and (vi) current participation in other drug trials. A study flow
diagram is given in Figure 1.
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Figure 1. Study flow diagram. eGFR = estimated glomerular filtration rate.

2.2. Study Protocol

Patients received 60 mg daclatasvir and 400 mg sofosbuvir (DAAs) daily over a period
of 3 months. HCV RNA and clinical data were assessed according to the study protocol
of the DAA safety study of Duerr et al. [27]. Laboratory markers from blood and urine
analysis were taken at four time points when MRE was performed: baseline, at the end
of treatment (EOT), 3 months after EOT (FU1), and 12 months after EOT (FU2). FU1 also
corresponds to a sustained virological response (SVR) after 12 weeks (SVR12). The study

timeline is depicted in Figure 2.
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Figure 2. Study design. MRE = multifrequency magnetic resonance elastography; LT = laboratory

tests; EOT = end of treatment; SVR = sustained virological response; red bar = treatment period.
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2.3. Response to Therapy

HCV RNA levels < 15 IU/mL were considered as SVR. Patients with SVR12 were de-
fined as responders, according to [13]. A recurrence of HCV (HCV RNA levels > 151U/mL),
confirmed by two consecutive positive HCV RNA analyses, was considered as viral relapse.
In cases of viral relapse, the treatment with combined daclatasvir and sofosbuvir was
extended to 24 weeks.

2.4. Tomoelastography

To address the previously reported post-prandial effects on liver viscoelasticity [29,30],
all patients were instructed to fast for at least two hours before MRE examinations. To
exclude confounding factors such as cholestasis and venous congestion in investigating
liver stiffness [31], blood serum bilirubin and the diameter of the inferior vena cava
were monitored at all time points using T2-weighted images. Multifrequency MRE was
conducted as described in [30]. In brief, three compressed-air-powered actuators were
used, two of which were placed posteriorly and a third anteriorly directly above the liver
or kidney allograft. The air pressures used in the liver and for the kidney allograft were 0.5
and 0.3 bar, respectively.

All imaging examinations were performed on a 1.5 T MRI scanner (Magnetom
Sonata; Siemens, Erlangen, Germany) using a 12-channel phased-array surface coil. Three-
dimensional wave fields were acquired using a single-shot, spin-echo planar imaging
sequence with flow-compensated motion-encoding gradients (MEG) as detailed in [32].
Eight wave-phase offsets were recorded over a full vibration period. Four vibration fre-
quencies were applied: 30, 40, 50 and 60 Hz in the liver, and 40, 50, 60 and 70 Hz in the
kidney allograft. Under free breathing, 11 axial slices with 2.7 x 2.7 x 5 mm?3 resolution
covering the entire liver and 9 paracoronar slices with 2.5 x 2.5 x 2.5 mm? resolution
covering the entire kidney allograft along the longitudinal axis were acquired in two and
four minutes, respectively. Other MRE parameters for the liver were: repetition time
(TR) = 1180 ms; echo time (TE) = 55 ms; parallel imaging with a generalized autocalibrat-
ing partial parallel acquisition (GRAPPA) factor of 2; MEG frequency = 47.62 Hz for all
mechanical frequencies; and MEG amplitude = 25 mT/m. Other MRE parameters for the
kidney allograft were: TR = 1200 ms; TE = 55 ms; parallel imaging with a GRAPPA factor
of 2; MEG frequency = 48.45 Hz for vibration frequencies of 40 Hz, 50 Hz and 60 Hz, and
52.41 Hz for a vibration frequency of 70 Hz; MEG amplitude = 25 mT/m.

2.5. Data Processing

Tomoelastography parameter reconstruction was performed with the publicly avail-
able server-based processing pipeline [33]. We used multifrequency dual elasto-visco
inversion (MDEV) for reconstruction of the phase angle of the complex shear modulus (¢
in rad) [34] and wavenumber-based MDEV (k-MDEV) for reconstruction of shear-wave
speed (SWS in m/s) [35]. SWS reflects tissue stiffness, while ¢ is related to the solid—fluid
behavior of the tissue. Since larger values of ¢ (¢ > ¢ /4) are considered to be dominated by
fluid tissue properties, ¢ is also referred to as “fluidity”. Maps of SWS and ¢ are referred
to hereinafter as elastograms. The regions of interest were drawn manually on the basis of
the MRE magnitude images and the corresponding elastograms. In kidney allografts, the
entire parenchyma, comprising the cortex and medulla, was considered for analysis.

2.6. Biopsy and Histological Staging

All percutaneous biopsies were performed under ultrasound guidance by a single
interventional radiologist using an Acuson X700 (Siemens, Erlangen, Germany). For each
patient, three intercostal biopsies of the right lobe were performed using an 18G Quick-
Core® Biopsy Needle (William Cook Europe ApS, Bjaeverskov, Denmark) [36]. One patient
with an increased risk of bleeding was treated by transjugular liver biopsy (Liver Access
and Biopsy Needle Set, LABS-200-], 19G; William Cook Europe ApS, Bjaeverskov, Denmark)
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according to [37]. Biopsy samples with a minimum length of 2.0 cm were obtained and
directly conserved in 4% formalin.

Histopathological analyses were performed by a single pathologist with high expertise
(more than 20 years) in liver pathology. The modified Scheuer classification [38,39] was
used for staging fibrosis and inflammation.

2.7. Laboratory Tests

All laboratory values such as viral load (HCV RNA, IU/mL; assayed by quantitative
reverse transcription polymerase chain reaction), alanine aminotransferase (ALT), aspartic
acid aminotransferase (AST), blood platelet count, total bilirubin, creatinine, and protein-
uria were collected at baseline, at EOT, at FU1, and at FU2 (Figure 2). Serological fibrosis
scores such as aspartate aminotransferase to platelet ratio index (APRI) [40] and fibrosis-4
(FIB-4) [41], based on blood serum values, were calculated according to the following
formulae:

_ AST (U/L)
APRL = Platelet count (10° /L) x 100 (1)
FIB—4 — Age (years) x AST (U/L) o

Platelet count (10°/L) x +/ALT (U/L)

2.8. Statistical Data Analysis

Descriptive summary statistics are presented as group mean and standard deviation
(SD) or median and interquartile range (IQR) for skewed data. Analyses of liver and kidney
allograft SWS, ¢ as well as ALT level, proteinuria and eGFR were performed at four time
points before and after treatment; linear mixed models with random intercept were used
to account for repeated measures in subjects. Multiple imputation using chained equa-
tions and 30 imputed datasets (imputation method: predictive mean matching, package
“mice”) [42] was used for the estimation of missing values for 15 individuals. For the
imputation model, we used all outcome variables and information on sex, age, and time
point. Model-based mean differences or mean estimates for different time points relative to
baseline and 95% confidence interval (CI) are reported. All model-based estimates were
adjusted for age. Correlations for repeated measures using the R package “rmcorr” [43]
were calculated for the SWS and ¢ of the liver, the SWS and ¢ of the kidney allograft, FIB-4
and APRI with 39 degrees of freedom, and 55 measures for 15 individuals. Associations
between MRE and laboratory values were assessed by linear mixed models using bivariate
analysis and multiple models with SWS as the outcome, adjusted for age. For the analysis
of the correlation between SWS and ¢ of the liver, and fibrosis score and portal /periportal
activity, the Spearman rank correlation coefficient was used. To evaluate the association
between SWS and ¢ of the liver and lobular activity, which for our study only comprised

two different values (0 or 1), we used the Mann-Whitney test using the formula: r = %,

where 7 is the total sample size and Z is the Z-statistic of the Mann—-Whitney test. Statistical
analysis was performed with SPSS Statistics for Windows, version 25 (IBM, Armonk, NY,
USA), GraphPad Prism v.6 (GraphPad software, La Jolla California USA), and R v4.0.2
(R Core Team, Vienna, Austria). A two-sided significance level of « = 0.05 was used. No
adjustment for multiple testing was applied in this exploratory analysis; therefore, all
p-values are descriptive only.

3. Results
3.1. Study Population

Of 1365 KTRs, 32 were identified during standard clinical follow-up as having chronic
HCYV infection. Fifteen of these complied with the inclusion and exclusion criteria (mean
age (SD): 48 (13) years; seven female). Further descriptions are given in Table 1 and the
study flow diagram in Figure 1.
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Table 1. Demographics.

Characteristics Kidney Allograft Recipients

Number of participants 15
Number of men 8
Number of women 7
Age in years

Mean (SD) 48 (13)
Body mass index in kg/m?

Mean (SD) 23.3 (4.5)
Time since kidney transplantation in years

Mean (SD) 13.1 (6.9)

SD = standard deviation.

3.2. Viral Response and Laboratory Values

The mean (SD) level of HCV RNA was 1.73 x 10° (1.28 x 10°) IU/mL at baseline.
The median interval between the initiation of therapy and viral clearance was 20 (IQR
11-28) days. Fourteen of 15 patients attained SVR12. In all patients who responded to DAA
treatment, viral RNA was undetectable at each MRE follow-up (EOT, FU1 and FU2; Figure
3A). In one patient, a viral relapse occurred 21 days after EOT. Therefore, according to [27],
the DAA treatment was extended to 24 weeks, leading to an undetectable viral load at
FU1L. In this patient, a second viral relapse was detected 18 days after the end of the second
therapy period. Viral load was below the detection limit at EOT and FU1; however, the
amount of viral RNA was high at FU2 (1.25 x 10° IU/mL) owing to the second relapse
(high-value dot in Figure 3A).

1251
1001

751

ALTin U/mL

501

251

N e

Months Months

Figure 3. Laboratory results after antiviral treatment. (A) Viral load; complete viral clearance was achieved in all patients
(n =15) by 1 month after treatment initiation. The high value at 15 months (FU2) represents the single patient with viral
relapse (first and second relapse 21 days after end of treatment (EOT) and 18 days after prolonged treatment are not shown);
this patient had been HCV-negative for 3 months (EOT) and 6 months (FU1) after prolonged antiviral therapy (see text). (B)
Alanine aminotransferase (ALT) was found to have decreased at the 3-month measurement, corresponding to EOT, and it
showed constant low values during follow-up; this included the patient with viral relapse.

In comparison with baseline, ALT values decreased to normal levels directly after
treatment at EOT (—29 U/L, CI = —41-—17; p < 0.001) and then remained stable until
FU1 (—-28 U/L, CI = —40-—16; p < 0.001) and FU2 (—29 U/L, CI = —40-—16; p < 0.001;
see Figure 3B). Bilirubin values were not elevated at any time (all p >0.35). eGFR and
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proteinuria levels showed no substantial changes over the entire study period (p > 0.89 and
p > 0.61). Details of laboratory values are provided in Table 2.

Table 2. Laboratory results.

Variable Baseline End of Treatment FU1 FU2
(n=15) (n=13) (n=14) (n=13)
Viral parameters
HCV-RNA (10° x IU/mL)
Mean (SD) 1.73 (1.28) 0(0) 0(0) 0.09 (0.33)
Mean difference vs baseline (95% CI) —1.72 (-2.35-—-1.08) —1.72(—2.36——1.08)  —1.64 (—2.28-—1.01)
p-value, comparison with baseline <0.001 <0.001 <0.001
Liver parameters
ALT (U/L)
Mean (SD) 48 (29) 19 (8) 20 (9) 20 (7)
p-value, comparison with baseline <0.001 <0.001 <0.001
Billirubin (mg/dL)
Mean (SD) 0.52 (0.21) 0.42 (0.16) 0.46 (0.24) 0.47 (0.35)
p-value, comparison with baseline 0.348 0.805 0.751
Renal parameters
eGFR (mL/min/1.73m?)
Mean (SD) 56 (17) 57 (19) 56 (18) 53 (20)
p-value, comparison with baseline 0.996 1.0 0.886
Proteinuria (mg/L)
Mean (SD) 238 (275) 215 (287) 239 (235) 364 (500)
p-value, comparison with baseline 0.887 0.614 0.642

Mean difference vs. baseline. 95% CI is adjusted for age and based on multiple linear mixed models after multiple imputation of missing
values. HCV RNA = hepatitis C virus ribonucleic acid; SD = standard deviation; CI = confidence interval; eGFR = estimated glomerular
filtration rate; FU1 = follow-up 1 (3 months after end of treatment); FU2 = follow-up 2 (12 months after end of treatment).

3.3. Tomoelastography—Liver

A decrease in liver stiffness and fluidity 3 months after EOT (FU1) was observed,

as shown in Figure 4A. Compared with baseline, no changes were observed at EOT for
liver SWS or liver ¢ (—0.10 m/s, CI = —0.21-0.01; p = 0.088/—0.03 rad, CI = —0.08-0.02;
Figure 5A, B). Analysis of longitudinal measurements for the entire study cohort showed
a decrease in liver SWS at FU1 (mean difference compared with baseline = —0.14 m/s,
CI = —0.25-—0.04, p = 0.005) and at FU2 (mean difference = —0.11 m/s, CI = —0.23—-—0.001,
p = 0.047; Figure 5A). Accordingly, ¢ decreased at FU1 (—0.05 rad, CI = —0.10-—0.002,
p = 0.038), while it remained unchanged at FU2 (—0.04, CI = —0.09-—0.01, p = 0.195;
Figure 5B) compared with baseline. Both liver SWS and ¢ of the single patient who
experienced viral relapse were persistently high at all four time points (high values in
Figure 5A,B). Detailed results are given in Table 3.

Analysis of repeated measures correlation demonstrated a positive correlation between

SWS and ¢ (r = 0.81, CI = 0.67-0.90; Figure 5C). No venous or bile-duct congestion in any

patient was shown in the T2-weighted images.

3.4. Tomoelastography—Kidney Allograft

An increase in kidney allograft stiffness and fluidity 3 months after EOT (FU1) was

observed, as shown in Figure 4B. No changes in SWS and ¢ were observed at EOT com-
pared with baseline (mean differences from baseline for SWS = +0.19 m/s, CI = —0.04-0.41,
p = 0.13; for ¢ = +0.04 rad, CI = —0.01-0.10, p = 0.17; Figure 6A,B). Compared with
baseline, SWS and ¢ were increased in kidney allografts at FU1 (mean differences for
SWS = +0.26 m/s, CI = 0.05-0.48, p = 0.01; for ¢ = +0.06 rad, CI = 0.007-0.11, p = 0.02) and
at FU2 (mean differences for SWS = +0.30 m/s, CI = 0.08-0.52, p = 0.004; for ¢ = +0.06 rad,
CI = 0.009-0.12, p = 0.02). These results are illustrated in Figure 6A,B, and details are
presented in Table 3. Renal SWS and ¢ were positively correlated (r = 0.66, CI = 0.44-0.81;
Figure 6C).
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Figure 4. Representative MRE images. T2-weighted (T2w) images, tomoelastography wave-field images (50 Hz), elas-
tograms and fluidity maps of the liver (A) and kidney allograft (B) at baseline and after 6 months (follow-up 1). Shear-wave
speed and loss angle of the complex shear modulus increase in the liver after treatment with direct-acting antivirals, while

both parameters increase in the kidney allograft.
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Figure 5. Results of liver tomoelastography after antiviral treatment. (A) Decrease in liver shear wave speed (SWS),

accompanied by (B) reduced loss angle of the complex shear modulus (¢) at FU1, and SWS at FU2 compared with baseline
(at FU1 for SWS p = 0.005, and for ¢ p = 0.038; at FU2 for SWS p = 0.47, and for ¢ p = 0.195). In one patient who suffered
viral relapse with constant high values in (A,B), no substantial changes in SWS and ¢ were observed. (C) Analysis of
repeated-measures correlation showed a strong correlation between SWS and ¢ (r = 0.81, CI = 0.67-0.90). EOT, end of

treatment; FU1, follow-up 1; FU2, follow-up 2.
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Table 3. Multifrequency MRE.

Variable Baseline End of Treatment FU1 FU2
(n=15) (n=13) (n=14) (n=13)

Liver

Shear wave speed (ms)

Mean (SD) 1.66 (0.31) 1.56 (0.27) 1.52 (0.28) 1.55 (0.26)
p-value, comparison with baseline 0.088 0.005 0.047

Phase angle of the loss modulus (rad)

Mean (SD) 0.52 (0.12) 0.50 (0.10) 0.47 (0.09) 0.49 (0.09)
p-value, comparison with baseline 0.382 0.038 0.195

Kidney allograft

Shear wave speed (ms)

Mean (SD) 2.41 (0.25) 2.59 (0.35) 2.67 (0.27) 2.70 (0.21)
p-value, comparison with baseline 0.136 0.012 0.004

Phase angle of the loss modulus (rad)

Mean (SD) 0.73 (0.06) 0.78 (0.08) 0.79 (0.03) 0.80 (0.04)
p-value, comparison with baseline 0.180 0.021 0.018

SD = standard deviation; CI = confidence interval; FU1 = follow-up 1 (3 months after end of treatment); FU2 = follow-up 2 (12 months after

end of treatment).
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Figure 6. Results of kidney allograft tomoelastography after antiviral treatment. (A) Increase in kidney transplant shear
wave speed (SWS) and (B) loss angle of the complex shear modulus (¢) at FU1 (SWS, p = 0.01; ¢, p = 0.02) and FU2 (SWS,
p =0.004; @, p = 0.02) compared with baseline. (C) Analysis of repeated-measures correlation shows a strong correlation
between SWS and ¢ (r = 0.66, 95% CI = 0.44-0.81). EOT, end of treatment; FU1, follow-up 1; FU2, follow-up 2.

Renal SWS was not correlated with eGFR (r = —0.06, CI = —0.37-0.26) or with protein-
uria (r = 0.03, CI = —0.29-0.34).

3.5. Histopathology

The following scores and grades were recorded: fibrosis (FO,n=1;F1,n=3;F2,n=7
and F3, n = 2), inflammation in terms of portal and periportal activity (GO, n =4; G1,n =3;
G2, n =3 and G3, n = 3), and lobular activity (GO, n =7, G1,n =6, G2, n =0 and G3, n = 0).
Liver SWS and ¢ were positively correlated with fibrosis score (Spearman rank coefficient,
r = 0.358 and 0.521). The inflammation scores were either not correlated at all or only
weakly correlated with liver SWS and ¢. Further details are provided in Table 4.

3.6. Serological Fibrosis Score

Compared with baseline, the APRI score showed a decrease at EOT (estimated means
£ SD at baseline = 0.46 £ 0.19; at EOT = 0.24 £ 0.07; p < 0.001) and remained stable
throughout follow-up (at FU1 = 0.28 £ 0.08, p = 0.002; at FU2 = 0.30 + 0.21, p = 0.012). A
similar observation was made for FIB-4 score, where a decrease was found at EOT when
compared with baseline (at baseline = 1.43 =+ 0.66; at EOT = 1.19 & 0.47; p = 0.59), but there
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was no difference in further follow-up (at FU1 = 1.33 £ 0.59; p = 0.945, at FU2 = 1.46 £ 1.08;
p = 1.0). Liver SWS was moderately correlated with APRI score (r = 0.44, CI = 0.14-0.66)
and was not correlated with FIB-4 score (v = 0.12, CI = —0.20-0.42).

Table 4. Correlation analysis between liver tomoelastography and histopathological scores.

Variable Fibrosis Score Portal/Periportal Activity Lobular Activity
(n=13) (n=13) (n=13)
Shear wave speed 0.358 2 —0.227 2 0.040°
Phase angle of the 05212 01472 0.277°

loss modulus

2 Spearman rank correlation coefficient. ® Correlation coefficient based on the Mann-Whitney test.

4. Discussion

In this prospective study, tomoelastography-based magnetic resonance elastography
(MRE) was used for the first time to assess the short- and long-term outcome of DAA
treatment in HCV-infected KTRs. In the following section, we focus upon our main
findings in the liver and kidney.

4.1. Viscoelastic DAA Response in the Liver

We observed hepatic stiffness decrease after DAA treatment, in agreement with pre-
vious studies that used single-frequency MRE at 60 Hz [44] and ultrasound elastography
(USE) [19,45-50]. These results suggest that reduction of the inflammation caused by DAA
treatment is most probably the cause of the reduction in hepatic stiffness. Viral load and
ALT, which is an indirect marker for HCV inflammatory activity [51], were markedly
reduced in our cohort. In the literature, various mechanisms are discussed that might
potentially link inflammation to liver stiffness [52-54]; among these, reversal of interstitial
edema by DAA treatment might consistently explain the observed reduction of stiffness
and fluidity at FU1 [52,53]. Another important element of liver stiffness is fibrosis. The
antifibrotic effect of daclatasvir and sofosbuvir by downregulation of the tumor necrosis
factor alpha (TNF-«)/nuclear factor kappa B (NF-kB) pathway [55] might have caused
regression of liver fibrosis and contributed to the observed decrease in liver stiffness.

Interestingly, liver stiffness remained unchanged after DAA treatment in one patient
only. Since this was the only patient who had a viral relapse, one might speculate about
the ability of tomoelastography to predict, on the basis of the persistence of abnormally
high liver stiffness, the success of DAA treatment at early time points. Notably, the
non-responsiveness of this patient was not seen by HCV RNA load, ALT or serological
fibrosis scores. The success of viral eradication in other studies has been reported, similarly
to the present study, as being about 93% [10,13,56]. Thus, there is a need to identify
those patients who will not respond to DAA therapy early, so that their therapy can be
changed. Other studies using USE did not lead to a prediction of viral relapse based on
liver stiffness [44,49,57,58]. However, USE has a limited field of view and cannot cover
deep-lying tissues. By contrast, tomoelastography depicts the entire liver in 3D, which
might explain the unique sensitivity of this method to DAA therapy.

Our observations on liver stiffness were paralleled by liver fluidity, which was intro-
duced for the first time within the context of hepatic treatment response. The observed
decrease in hepatic fluidity indicates a transition of the liver towards more solid-like behav-
ior as a result of DAA treatment. We suspect that the decrease in fluidity was associated
with changes in fluid-tissue interactions as a result of subsided inflammation after DAA
treatment. Similarly, a positive correlation between hepatic inflammation and the damping
ratio of the shear modulus has been reported in animal models [59]. A possible mechanism
that links fluidity and inflammation is related to fluid pressure: sinusoidal hydrostatic
pressure and lymphatic fluid are abnormally elevated in chronical hepatitis [60], thereby
leading to a higher fluid content in the tissue and increased MRE fluidity. This could be
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an explanation of the observation in our study that histological fibrosis scores are better
correlated with fluidity than with stiffness.

4.2. Viscoelastic DAA Response in Kidney Allografts

Proteinuria and serum creatinine, two markers for glomerular destruction [18], re-
mained unchanged over the entire examination period after DAA treatment in our study.
We obtained stable eGFR values over the course of 12 months, similarly to other stud-
ies [20,61-63]. Interestingly, we observed renal stiffening after DAA treatment, possibly as
a result of altered kidney allograft perfusion. The high sensitivity of tomoelastography to
functional and structural changes in renal tissue was demonstrated earlier in dysfunctional
native [24,25] and transplanted [26] kidneys by the same technique used in the present
study. In our earlier study [25], changes in renal stiffness outperformed eGFR in detecting
patients with lupus nephritis at CKD stage 1—an early stage where renal function is not
compromised. The observed stiffening of transplanted kidneys after DAA is in contrast to
the previously reported stiffness decrease when renal function was compromised [24,25,63].
This is an encouraging result, as it suggests that DAA treatment does affect kidney allograft
function, in agreement with other studies of DAA safety [18,27].

Fluidity, as a second mechanical parameter provided by tomoelastography, was used
for the first time in this study for renal tissue characterization. We attribute the observed
increase in fluidity to the possible elevation of renal perfusion after DAA treatment. The
underlying mechanism might be similar to the observed effect in the liver, but with an
opposite sign: here, regression of the disease results in an increased fluid content due
restored renal perfusion. Although transient elastography has gained wide acceptance
for determining liver stiffness [31], its use for renal transplants is not recommended. The
lack of a visual control to visualize detailed anatomical structures of the kidney and the
fixed measurement at a depth of 4 cm are the main limitations. Thus, only ultrasound
elastography methods based on acoustic radiation force impulse (ARFI) imaging are
currently included in the European Federation for Ultrasound in Medicine and Biology
(EFSUMB) guidelines and only as a complementary tool for the diagnosis of chronic
allograft nephropathy [64].

This study has several limitations. Owing to the limited numbers of KTRs with
HCYV infection, our sample size was small. There was no placebo control. Furthermore,
liver biopsy was only performed at baseline because of its invasive nature. However,
surrogate scores based on serological markers could be obtained at all times, and these
showed a positive correlation between hepatic SWS and fibrosis. Another limitation was
the inability to identify histopathological changes in kidney allografts. However, this study
was intended to monitor the in vivo mechanical response of both the liver and kidney to
DAA treatment without reference to ex vivo tissue examination.

In conclusion, tomoelastography is a non-invasive and quantitative multifrequency
MRE technique to assess the response to DAA treatment and longitudinal changes in the
liver and in kidney allografts without the need for contrast medium. Hepatic stiffness and
fluidity decreased while kidney allograft stiffness and fluidity increased after virus elimi-
nation by DAA treatment, suggesting that this treatment restores mechanically sensitive
structures and functions in the liver and kidney.
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