
Fachbereich Mathematik und Informatik

Numerical Simulation of

Phase Separation in Binary and

Multicomponent Systems

Inauguraldissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

am Fachbereich Mathematik und Informatik

der Freien Universität Berlin

vorgelegt von

Uli Sack

Berlin 2014



Betreuer: Prof. Dr. Ralf Kornhuber (Freie Universität Berlin)

Erstgutachter: Prof. Dr. Ralf Kornhuber (Freie Universität Berlin)

Zweitgutachter: Prof. Dr. Harald Garcke (Universität Regensburg)

Tag der Disputation: 3. September 2014



Contents

Introduction 1

1. Preliminaries 5

1.1. Phase Transformations, Phase Separation and Phase Diagrams . . . . . . . . . 5

1.2. Phase-field modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Anisotropic Allen–Cahn Equations 9

2.1. Continuous Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Ginzburg-Landau free energy . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2. Allen–Cahn Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3. Analytic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2. Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1. Euler Time Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2. Adaptive Space Discretization for Evolution Problems . . . . . . . . . . 32

2.2.3. Algebraic Solution of Discrete Spatial Problems . . . . . . . . . . . . . . 44

2.2.4. Notes on Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.5. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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Introduction

With the banishment of lead (Pb) solders from use in most electronics equipment by the

EU directives WEEE [107, 109] and RoHS [106, 108] taking effect in 2006, the necessity

arose to develop lead-free substitutes with comparable life-span and processing properties.

From amongst a number of binary, ternary, and higher alloy candidates SnAgCu variants

have emerged as the most widely used lead-free solder alloy. However, in addition to

higher cost due to the high silver content, it is widely accepted that current lead-free

solder-joints may be less reliable. The development of cheaper and more reliable solder

materials involves lengthy experiments and testing. Numerical simulations may help to

focus development by identifying promising candidates.

One of the principle causes for electronics failures is thermomechanically accelerated

phase separation and coarsening and the related derating of macroscopic properties.

Crack formation induced by thermal and mechanical stresses is facilitated by a coarser

microstructure of the solder and occurs typically along phase interfaces. The coarseness

of the microstructure is hence a useful indicator for the aging of the material and reliable

simulations of the microstructure evolution yield lifespan predictions for the considered

material. In this thesis the numerical tools for the robust and reliable microstructure

simulation are developed and presented.

We focus on the Cahn–Larché model of phase separa-

Figure 0.1 – Anisotropic phase
shapes (image taken from [120]).

tion under mechanical stress [32, 20] which couples the

the equation of elastostatic equilibrium to the Cahn–

Hilliard model of phase separation in solids [31]. The

latter is an instance of the so-called phase-field models

and allows a derivation as a gradient flow of a free en-

ergy that typically involves an interfacial energy term

and a nonconvex mixing energy. While the mixing en-

ergy drives the phase separation, the interfacial energy

penalizes large interfaces and thus drives coarsening. In natura microstructural inclusions
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may exhibit anisotropy (cf. Figure 0.1). In the Cahn–Larché model anisotropy may be

accounted for by an anisotropic interface energy and/or an anisotropic elasticity tensor

(cf. e.g. [12, 121]). Both options find some consideration in this thesis. The temperature

dependent mixing energy or Gibbs free energy in models for phase separation is typically

of logarithmic type (cf. [56, 57]) with singular derivative and nondifferentiable in the

limit case for temperature θ −→ 0. In the N -component case we have an additional

constraint that forces solutions onto the N -dimensional unit simplex.

While there are the robust and efficient Nonsmooth Schur–Newton Multigrid (NSNMG)

methods [66, 61] for the solution of the scalar Cahn–Hilliard equation with logarithmic

potential, existing numerical solvers for Cahn–Larché equations are either limited to

smooth approximations of the Gibbs free energy density [121, 95] or to periodic domains

and uniform computational meshes [42, 43, 20]. Smooth approximations of the Gibbs

free energy density, however, may severely affect the computed coarsening dynamics (cf.

Chapter 3).

For the multicomponent Cahn–Hilliard equation existing solvers typically suffer from

severe mesh dependance [16, 5, 6] or again rely on smooth approximations of the free

energy [80, 26]. To the author’s best knowledge, efficient, reliable and robust solvers

for multicomponent Cahn–Hilliard systems with logarithmic free energy are previously

unknown.

The main contribution of this thesis is threefold:

1. The NSNMG methods are extended to the multicomponent case in Chapter 4.

2. A complete numerical framework for the robust and reliable simulation of mi-

crostructure evolution in binary alloys was implemented and applied to a eutectic

AgCu alloy in Chapter 3. The framework includes adaptive space discretization for

evolution problems, a quantification scheme for the coarseness of microstructures,

and a quotient space multigrid method for indefinite linear elasticity problems.

3. A novel existence and uniqueness proof for the anisotropic Allen–Cahn equation is

given in Chapter 2 relying on the theory of maximal monotone operators [27].

The thesis is organized as follows. After some preliminary remarks on phase diagrams,

phase separation, and phase-field models in Chapter 1 we firstly focus on anisotropic

Allen–Cahn equations in Chapter 2. Apart from being of interest in their own right

Allen–Cahn-type problems arise as subproblems in the NSNMG method for the solution

2



Contents

of discrete Cahn–Hilliard equations in Chapters 3 and 4 which is the main reason to

treat them in this thesis. Existence and uniqueness of solutions is proved employing

the theory of maximal monotone operators using lower semicontinuity results for the

anisotropic interface energy and the Gibbs free energy. We go on to introduce an adaptive

mesh refinement cycle for evolution problems based on hierarchical error estimators

and address some issues that arise from temporally varying grids. Furthermore several

variants of Euler time discretization are introduced, proven to be stable and investigated

numerically.

Chapter 3 gathers and integrates existing and newly developed numerical tools to a

framework for efficient and robust microstructure evolution simulations and applies it

to a eutectic AgCu alloy. The framework includes the adaptive mesh refinement cycle

introduced in Chapter 2, the NSNMG solver, a quotient space multigrid solver for the

Neumann problem of linear elastostatics, and a coarseness quantification algorithm. The

numerical experiments indicate that in the setting considered the mechanical influence

on the coarsening behaviour is marginal while substitution of the logarithmic Gibbs free

energy by a quartic polynomial interpolant alters the coarsening dynamics considerably.

The final chapter treats multicomponent Cahn–Hilliard equations. A unified formulation

for all temperatures θ > 0 of the discretized problem is given that incorporates a weak

version of the affine constraints and existence and uniqueness of solutions is proved.

This formulation allows the straightforward application of NSNMG methods. Numerical

examples illustrate the robustness of the method with respect to temperature and the

number of components.
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provided valuable insight into his work and the engineering point of view on the matter.

I would also like to thank Jonathan Youett for his ever open ear and good humor, and

Elias Pipping for freely sharing his knowledge on lower semicontinuity theorems and

bringing back the fun to theoretical work.

Last but not least I would like to express my gratitude to Katrin, my parents, Hannelore,

and Ingrid for their emotional and/or logistical support.

3





1. Preliminaries

1.1. Phase Transformations, Phase Separation and

Phase Diagrams

In materials science the term phase describes a variety of different states of a material,

for example different states of aggregation, crystal structure, stoichiometric relations,

concentrations etc. (as e.g. in liquid phase, cubic phase). At times domains of the same

state are also termed phases (as e.g. in mean phase radius, phase shape).

Under changing conditions these phases can transform one into the other (e.g. solidifica-

tion of a melt) in which case one speaks of phase transformations or phase transitions.

Some materials may also exhibit multiple distinct phases coexisting in equilibrium under

which circumstances phase separation occurs. For binary mixtures the equilibrium phases

and phase transformations can be read from concentration-temperature phase diagrams

as in Figure 1.1 left. The lines in the diagram partition the c-θ–plane in areas of different
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Figure 1.1 – Left: Phase diagram for a AgCu alloy (modified from [99]).
Right: free energy of a hypothetic binary mixture with a miscibility gap at
a given temperature
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1. Preliminaries

phases or phase mixtures, in this case the liquid phase (L), a Ag-rich solid phase (α), a

Cu-rich solid phase (β) and mixtures thereof. Across lines phase transformations will

occur, for example when cooling a melt with given composition c0. A special feature

of this particular phase diagram is the eutectic point where the liquid phase solidifies

instantaneously into two coexistent solid phases. Also a eutectic material of composition

ceut will exhibit the lowest possible melting point for mixtures of these two constituents -

two properties sought after in solder alloys. The area of coexisting solid phases (α+ β)

in equilibrium represents a so-called miscibility gap meaning that the constituents at the

given composition and temperature do not form a heterogeneous mixture since the free

energy develops a concave zone (cf. Figure 1.1 right). The equilibrium concentrations of

the coexisting α- and β-phases may be determined from the phase diagram by following

the isothermal line to where it intersects the diagram lines of the respective pure phase

regions (cf. Figure 1.1 left). This splitting in two distinct coexisting solid phases is

known as phase separation.

In the present work we will not so much be concerned with the actual equilibria but the

dynamics of attaining equilibrium which esp. in the case of phase separation require

diffusion in solids.

1.2. Phase-field modelling

Phase-field models are so called diffuse interface models, that is they postulate a con-

tinuous transition from one phase to another in an interface region of finite width as

opposed to sharp interface models which assume a jump from one phase to the next

across a hypersurface. In consequence phase-field models involve computations in a

higher dimension because they need to resolve the finite width interface. Sharp interfaces

are often described by parametric curves or graphs which for computations require the

discretization of only d−1 dimensional objects but lack the ability to represent topological

changes such as pinch-offs, unions, or vanishing. Another d-dimensional approach that

may account for such changes is by level-set functions. For a good overview over the

different interface formulations in the setting of mean curvature flow we refer to [37].

Phase-field models also accomodate for topological changes and naturally occur in ther-

modynamical modelling (see for example [20]). For N -phase systems they consider

the phase-field c = (c1, . . . , cN) : Rd ⊃ Ω → [0, 1]N , where the components fulfill the

pointwise constraint
∑N

i=1 ci = 1. In the case of phase separation in metallic alloys we

6



1.2. Phase-field modelling

may think of the ci as concentrations of the constituents. For binary systems the sum

constraint is usually exploited to eliminate one component and obtain a scalar order

parameter c = c2 − c1 ∈ [−1, 1].

Phase-field equations are usually formulated as gradient flows for some energy functional

that take into account the mixing energy as for example described in the previous section

and the surface tension or interfacial energy and may be augmented by additional terms

that establish a coupling to other equations, e.g. elasticity or heat equations:

E(c, b) =

∫
Ω

G(x, c,∇c) + Ψ(c) dx+W (c, b),

where G is the interfacial energy density, Ψ the mixing energy density, and W sums

up possible coupling terms. Anisotropy may enter in the interfacial energy and/or the

coupling terms. Examples of phase-field models include the L2-gradient flow for E without

further coupling which results in the Allen–Cahn model for phase transition considered

in Chapter 2, the H−1-gradient flow without coupling that comprises the Cahn–Hilliard

model for phase separation which is the subject of Chapter 4, and the H−1-gradient

flow coupled to linear elasticity leading to the Cahn–Larché equations of mechanically

stressed solids under consideration in Chapter 3.

7





2. Anisotropic Allen–Cahn Equations

Originally established as a model for isothermal phase transition dynamics in [2] Allen–

Cahn equations now appear in a number of contexts and applications are widely varied.

They range from thermodynamics over image processing (cf. [79, 13]) and geoscience

(cf. [122]) to geometric PDEs (cf. [37]). The main reason we consider Allen–Cahn

equations in this work, however, is that the Schur-Newton solver for the Cahn–Hilliard

model of phase separation employed in subsequent chapters requires the solution of many

Allen–Cahn-type problems. Hence, while being of interest in their own right, Allen–Cahn

equations in this context are seen more as a means to hone our algorithmic tools than as

an end.

2.1. Continuous Problem

Considering the thermodynamic origin of Allen–Cahn equations and bearing in mind the

applications in the following chapters we follow common practice and use thermodynamics

inspired terminology albeit the presented results are more general. Here and in the

following Ω will always denote an open, bounded domain in Rd, d ∈ {1, 2, 3} with

Lipschitz boundary. In this chapter we focus on binary systems, i.e. we consider

transitions between two distinct phases only. We therefore consider an order parameter c

taking values in [−1, 1] ⊂ R on Ω (cf. Section 1.2).

2.1.1. Ginzburg-Landau free energy

For a given interface parameter ε > 0 the Ginzburg-Landau free energy functional is here

defined as

E(c) =

∫
Ω

ε

2
G(x,∇c(x)) +

1

ε
Ψ(c(x)) dx (2.1)

9



2. Anisotropic Allen–Cahn Equations

This energy functional splits into two parts - the interfacial energy and the Gibbs free

energy with densities G and Ψ respectively.

Gibbs free energy

When considering scalar Allen–Cahn equations the Gibbs free enrgy density Ψ typically

takes a double-well shape, i.e. it has two local minima, and drives uphill diffusion and

thus the formation of the two corresponding phases (see also Section 1.1). We assume it

allows a splitting

Ψ(r) = Φ(r) + Υ(r) (2.2)

where Φ : R→ R ∪ {+∞} is such that

(A1) ∃k∈R ∀r∈R : Φ(r) > k (for simplicity we will assume k = 0) and

(A2) the functional φ : L2(Ω)→ R ∪ {+∞} defined by φ(v) =
∫

Ω
Φ(v(x)) dx is proper

convex and lower semicontinuous (lsc) in L2(Ω),

and

(A3) the functional�(v) =
∫

Ω
Υ(v) dx is differentiable and its derivative D� is Lipschitz

continuous.

The following lemma states sufficient conditions such that Assumption (A2) is satisfied.

Lemma 2.1. Let Φ : RN → R ∪ {+∞} be a proper convex function with closed effective

domain dom(Φ) and Φ|dom(Φ) be continuous and satisfy

|Φ(r)| 6 c0 |r|2 + c1 ∀r ∈ dom(Φ). (2.3)

The functional φ : L2(Ω)N → R given by

φ(v) =

∫
Ω

Φ(v(x)) dx

is then proper convex and lsc in L2(Ω)N and continuous on its domain. The domain of

φ is given by the non-empty, convex, and closed set

K =
{
v ∈ L2(Ω) | v(x) ∈ dom(Φ) a.e. in Ω

}
.

10



2.1. Continuous Problem

Proof. We first note that convexity of dom(Φ), φ, and dom(φ) follows immediately from

the convexity of Φ.

We can extend Φ continuously to all of RN by

Φ̂(r) = Φ(Pr) + |r − Pr|

where P denotes the (uniquely defined) orthogonal projection onto dom(Φ). Continuity

of Φ̂ follows from the continuity of the projection P , of the norm, and of Φ on dom(Φ)

respectively. We know that |Pr − Ps| 6 |r − s| for any r, s ∈ RN from which by choosing

s = 0 we may readily deduce

|Pr| 6 |r|+ |P0| .

It follows that for all r ∈ RN

∣∣∣Φ̂(r)
∣∣∣ = |Φ(Pr) + |r − Pr|| 6 |Φ(Pr)|+ |r − Pr|

6 c0 |Pr|2 + c1 + |r|+ |Pr|

6 c0 (|r|+ |P0|)2 + 2 |r|+ |P0|+ c1

= c0 |r|2 + (2 + 2c0 |P0|) |r|+ c1 + c0 |P0|2 + |P0|

6 c2 |r|2 + c3

for some constants c2, c3 ∈ R depending only on dom(Φ). Now Theorem A.10 implies

that the superposition operator induced by Φ̂ maps L2(Ω)N continuously into L1(Ω).

We now show the claims concerning K . Let v ∈ K . Then we have v(x) ∈ dom(Φ) a.e.

in Ω and may deduce

Φ(v(x)) = Φ̂(v(x)) for a.e. x ∈ Ω

and since by the above result Φ̂(v(·)) ∈ L1(Ω) we have

|φ(v)| 6
∫

Ω

|Φ(v(x))| dx =

∫
Ω

∣∣∣Φ̂(v(x))
∣∣∣ dx <∞.

Therefore v ∈ dom(φ).

Now let v /∈ K . Then there exists a subset A ⊂ Ω with positive measure such that

v(a) /∈ dom(Φ), i.e. Φ(v(a)) = +∞, for every a ∈ A. Without loss of generality we may

11



2. Anisotropic Allen–Cahn Equations

assume that x /∈ A⇒ v(x) ∈ dom(Φ). We can conclude that

φ(v) =

∫
Ω

Φ(v(x)) dx =

∫
Ω\A

Φ(v(x)) dx+

∫
A

Φ(v(x)) dx =

∫
Ω\A

Φ̂(v(x)) dx+∞ = +∞

holds. Hence v /∈ dom(φ) and dom(φ) = K .

As the domain of a convex functional K is convex. The closedness of K is proven

as follows. Consider an L2(Ω)N -convergent sequence (vn) ⊂ K with vn −→ v. By

Theorem A.9 there is a subsequence (vnk) such that

vnk(x) −→ v(x) for a.e. x ∈ Ω.

As vnk ∈ K it follows that vnk(x) ∈ dom(Φ) for every nk and a.e. x ∈ Ω. Closedness of

dom(Φ) then implies v(x) ∈ dom(Φ) a.e., which in turn is equivalent to v ∈ K .

Finally the properness of Φ implies the existence of some r ∈ RN such that |Φ(r)| <∞.

Choose v ∈ L2(Ω)N such that v ≡ r. Then by the boundedness of Ω we have v ∈ dom(φ),

i.e. K 6= ∅:

φ(v) =

∫
Ω

Φ(v(x)) dx =

∫
Ω

Φ(r) dx = |Ω|Φ(r) <∞

The arguments above also prove the properness of φ.

Defining φ̂(v) =
∫

Ω
Φ̂(v(x)) dx we easily see that φ̂|K = φ|K . Exploiting the continu-

ity of the superposition operator induced by Φ̂ from L2(Ω)N to L1(Ω) we find that

φ|K is continuous. Let vn now be a sequence in L2(Ω)N converging towards v. If

lim infn−→∞ φ(vn) = ∞ we trivially find φ(v) 6 lim infn−→∞ φ(vn). Let’s therefore as-

sume lim infn−→∞ φ(vn) = J < ∞. Without loss of generality we may assume vn ∈ K
for al n. Closedness of K implies v ∈ K and continuity of φ|K implies

lim inf
n−→∞

φ(vn) = lim
n−→∞

φ(vn) = φ(v).

This concludes the proof.

Remark 2.1. By virtue of the compact embedding H1(Ω) ↪→ L2(Ω) any weakly convergent

sequence in H1(Ω) is strongly convergent in L2(Ω). Therefore the set K and the functional

φ in Lemma 2.1 are weakly closed and weakly lsc in H1(Ω) respectively.

Remark 2.2. A stronger condition for lower semicontinuity is found in [84, Subsection

12



2.1. Continuous Problem

1.2.1], where condition (2.3) is replaced by the condition that

|Φ(r)− Φ(s)| 6 G(|r|+ |s|) |r − s| ∀r, s ∈ dom(Φ)

holds for some affine function G : R→ R. This condition implies (2.3). The logarithmic

potential considered below does not satisfy this stronger condition while it does satisfy

(2.3) (see Lemma 2.3).

In a thermodynamic context Ψ = Ψθ is the Gibbs free energy of a binary system frequently

given by

Υ(r) =
1

2
(1− r2) (2.4)

and Φ of logarithmic form (cf. [56, 57]):

Φ(r) = Φθ(r) =


θ
2

((1 + r) log(1 + r) + (1− r) log(1− r)) r ∈ (−1, 1)

θ log(2) |r| = 1

+∞ else

(2.5)

with θ denoting dimensionless (normalized) temperature. In many phase-field publications

quartic polynomial approximations to Ψθ are used which are appropriate in the case of

shallow quench, i.e. for (normalized) temperatures close to but less than 1 (e.g. [124, 121,

55, 50]). This simplifies analytical and numerical issues enormously because the singular

nonlinearity is replaced by a well behaved polynomial which allows the use of classic

Newton methods for numerics (e.g. [55, 95]) - but may, however, yield nonphysical order

parameter values outside [−1, 1]. The deep quench limit, i.e. θ = 0, leads to the so-called

(double) obstacle potential opening stage for primal-dual active set strategies (cf. [15]).

We will stick to the original logarithmic potential and apply solvers that work robustly

for all θ ∈ [0, 1) including the double obstacle case (cf. [68, 66]).

In the following we state some properties of the logarithmic potential ([66, Proposition

2.1])

Lemma 2.2. For θ > 0 the logarithmic potential Φθ (2.5) has the following properties:

(i) Φθ(r) = Φθ(−r), i.e. Φθ is symmetric

13



2. Anisotropic Allen–Cahn Equations
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Figure 2.1 – The logarithmic potential Ψθ (left) and its derivative (right) for
various values of θ

(ii) Φθ|(−1,1) ∈ C∞(−1, 1) and

Φ′θ(r) =
θ

2
log

(
1 + r

1− r

)
Φ′′θ(r) =

θ

1− r2

(iii) Φθ(0) = 0 and arg minr∈R Φθ(r) = 0

(iv) for |r| ↗ 1

Φθ(r) −→ θ log(2) Φ′θ(r) −→ ±∞ (for r −→ ±1) Φ′′θ(r) −→∞

Note that the first statement together with (ii). implies continuity of Φθ on [−1, 1] =

dom(Φθ).

(v) Φθ is convex and strictly convex on [−1, 1] for all θ > 0

Lemma 2.3. The functional φθ defined by φθ(v) =
∫

Ω
Φθ (v(x)) dx with Φθ as defined

in (2.5) is lsc in L2(Ω).

Proof. Φθ is proper by construction, and convex by Lemma 2.2(v). Furthermore it is

continuous on its effective domain which is the closed interval [−1, 1] (Lemma 2.2(iv)).

Φθ is bounded by θ log(2) on its domain and thus satisfies the condition (2.3). Applying

Lemma 2.1 yields the claim.

Lemma 2.4. The functional � with Υ as defined in (2.4) is differentiable in L2(Ω) and

D� is Lipschitz continuous.
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2.1. Continuous Problem

Proof. An easy computation yields�(v+w) =�(v)− (v, w)−‖w‖2
0 for all v, w ∈ L2(Ω).

Hence� is Fréchet differentiable on L2(Ω) with D�(v) = − (v, ·). Therefore we have for

every v, w ∈ L2(Ω)

‖D�(v)−D�(w)‖L2(Ω)′ = sup
u∈L2(Ω)
‖u‖0=1

| (v, u) − (w, u) | = sup
u∈L2(Ω)
‖u‖0=1

| (v − w, u) |

6 sup
u∈L2(Ω)
‖u‖0=1

‖v − w‖0 ‖u‖0 = ‖v − w‖0

Corollary 2.5. The logarithmic Gibbs free energy ψθ = φθ +� given by (2.5),(2.4)

satisfies assumptions (A1),(A2),(A3).

Interfacial free energy

The interfacial energy is a generalization of the isotropic version
∫

Ω
|∇u|2 dx which is

recovered by choosing G(x, ξ) = |ξ|2. Other `p-norms (2 6 p <∞) also yield examples

for homogeneous anisotropic interface energies (see Example 2.3). In general we may

think of G
1
2 as a norm in a generalized sense (namely a Finsler metric; see e.g. [12]). For

our treatment of anisotropic Allen–Cahn equations we focus on homogeneous anisotropy

functions G(x, ξ) = γ2(ξ) and make the following assumptions on γ.

(A4) γ : Rd → R is

i. continuous on Rd and twice continuously differentiable on Rd \ {0},

ii. positively 1-homogeneous, i.e. γ(x) > 0 and

γ(λx) = λγ(x) ∀x ∈ Rd, λ > 0

iii. γ is definite, i.e. γ(x) = 0⇒ x = 0.

(A5) There is a positive constant γ0 such that for the Hessian γ′′(x) holds

〈γ′′(x)y, y〉 > γ0|y|2, ∀x, y ∈ Rd with |x| = 1 ∧ 〈y, x〉 = 0

15



2. Anisotropic Allen–Cahn Equations

Note that, in contrast to a norm, γ is not necessarily symmetric to the origin as

Example 2.5 illustrates. We state some consequences of Assumptions (A4) and (A5)

which will be needed later on. Proofs may be found in [70, 66].

Lemma 2.6. For x ∈ Rd \ {0} and α > 0 there hold

γ′(αx) = γ′(x), γ′′(αx) =
1

α
γ′′(x),

〈γ′(x), x〉 = γ(x), γ′′(x) x = 0,

implying convexity:

〈γ′′(x)y, y〉 > 0 ∀y ∈ Rd, x ∈ Rd \ {0}.

For our analysis we are of course rather interested in properties on γ2.

Lemma 2.7. The functional γ2 : Rd → R is continuously differentiable on Rd and twice

continuously differentiable on Rd \ {0} and the Hessian (γ2)′′(x) of γ2 is positive definite

for x ∈ Rd \ {0}.

Under Assumption (A4) positive definiteness of (γ2)′′(x) is actually equivalent to As-

sumption (A5) (see [58, Remark 1.7.5]). The Hessian of γ2 for any x ∈ Rd \ {0} thus

induces a norm on Rd which is of course equivalent to the Euclidean norm. What is more

the constants witnessing equivalence are independent of x:

Lemma 2.8. There are constants µ, L > 0 such that the Hessian of γ2 satisfies

µ |y|2 6
〈
(γ2)′′(x)y, y

〉
6 L |y|2 ∀x ∈ Rd \ {0}, y ∈ Rd.

A particular choice of µ, L for which the preceding inequalities hold is

L = sup
x,y∈Sd−1

〈
(γ2)′′(x)y, y

〉
, µ = inf

x,y∈Sd−1

〈
(γ2)′′(x)y, y

〉
> 0 (2.6)

These bounds also have a direct implication on the gradient (γ2)′.

Lemma 2.9. The gradient (γ2)′ : Rd → Rd is Lipschitz continuous with Lipschitz
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2.1. Continuous Problem

constant L and strongly monotone. More precisely we have

∣∣(γ2)′(y)− (γ2)′(x)
∣∣ 6 L |y − x| ∀x, y ∈ Rd and〈

(γ2)′(y)− (γ2)′(x), y − x
〉
> µ |y − x|2 ∀x, y ∈ Rd.

As a direct consequence we get the strong convexity of γ2.

Corollary 2.10. The function γ2 : Rd → R is strongly convex. More precisely we have

γ2(x)− γ2(y) >
〈
(γ2)′(y), x− y

〉
+
µ

2
|x− y|2 ∀x, y ∈ Rd.

Note that strong convexity implies coercivity.

Due to homogeneity, anisotropy functions are characterized by their sublevelsets and the

sublevelsets of their polar functions which are the subjects of the following definition.

Definition 2.1 (Frank diagram, Wulff shape): Let γ be an anisotropy function satisfying

Assumption (A4). The 1-sublevel set of γ

Fγ = {x ∈ Rd | γ(x) 6 1}

is called the Frank diagram of γ.

The 1-sublevelset of the polar function γ∗(x) = supy∈Sd−1
〈x,y〉
γ(y)

Wγ = {x ∈ Rd | γ∗(x) 6 1} = {x ∈ Rd | 〈x, y〉 6 γ(y) ∀y ∈ Sd−1}

is called the Wulff shape (also Wulff crystal or Wulff region) of γ. 4

It turns out that, while the Frank diagram illustrates energetic deviations from the

isotropic case, the Wulff shape is the energetically favored phase shape as stated by

Wulff’s Theorem (Theorem 2.16).

Example 2.3 (`p-norms). A first example for anisotropy functions γ is given by the

`p-norms

γp(x) = ‖x‖p =

(∑
i

|xi|p
) 1

p

(2.7)

A straightforward computation verifies assumptions (A4) and (A5). The choice p = 2, i.e.

the Euclidean norm, recovers the isotropic case. Frank diagram and Wulff shape coincide

17



2. Anisotropic Allen–Cahn Equations

in this case with the Euclidean unitsphere. Figure 2.2 illustrates the Frank diagram and

the Wulff shape of γp for p = 3 and p = 16.

Example 2.4 (Regularized `1-norm). Another example is a smooth approximation of

the `1-norm given by

γE(x) =
∑
i

√
x2
i + E|x|2 (2.8)

for E > 0. Verification of (A4) and (A5) is straightforward. Figure 2.2 illustrates the

Frank diagram and the Wulff shape of γE for E = 10−1 and E = 10−3.

Example 2.5 (Kobayashi). In his pioneering paper on modelling and simulation of

anisotropic crystal growth Kobayashi [81] introduces the anisotropy

γk,ā : R2 → R, γk,ā(x) =

(1 + ā cos(kβ(x))) |x| , x 6= 0

0 , x = 0
(2.9)

where k ∈ N, ā > 0 and β(x) ∈ [0, 2π] is the angle between x and the (positive) horizontal

axis. Assumption (A4) is obviously satisfied. Moreover, (γ2
k,ā)
′′ is positive definite for

ā < āc := 1
k2−1

(see [29]) so that (A5) again follows from [58, Remark 1.7.5]. Figure 2.2

illustrates the Frank diagram and the Wulff shape of γ5,0.041 and γ3,0.124.

Important properties like strong convexity, Fréchet-differentiability and Lipschitz conti-

nuity of the derivative of γ2 carry over to the interface energy part E0 : H1(Ω)→ R of

the Ginzburg-Landau energy E (2.1) given by

E0(c) =

∫
Ω

ε

2
γ2(∇c) dx. (2.10)

Lemma 2.11. The interface energy E0 (2.10) is Fréchet-differentiable on H1(Ω). The

derivative DE0(v) ∈ H1(Ω)′ at v ∈ H1(Ω) is given by

〈DE0(v), w〉 =

∫
Ω

ε

2

〈
(γ2)′(∇v),∇w

〉
dx = ε (γ(∇v)γ′(∇v),∇w) ∀w ∈ H1(Ω)

and it is Lipschitz continuous in the following sense

sup
u∈H1(Ω)
‖∇u‖0=1

|〈DE0(v)−DE0(w), u〉| 6 εL

2
‖∇v −∇w‖0 ∀v, w ∈ H1(Ω).
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2.1. Continuous Problem
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Figure 2.2 – Frank diagram (thick dashed), Wulff shape (thick) and Euclidean
unitsphere (thin dashed) for γp (top) with p = 3 (left) and p = 16 (right), γE
(middle) with E = 10−1 (left) and E = 10−3 (right), and γk,ā (bottom) with
k = 5, ā = 0.041 (left) and k = 3, ā = 0.124 (right).

Furthermore E0 is strongly convex wrt to the H1-seminorm ‖∇ · ‖0, i.e.

E0(v)− E0(w) > 〈DE0(w), v − w〉+
εµ

4
‖∇v −∇w‖2

0 ∀v, w ∈ H1(Ω).

We may extend E0 to L2(Ω) with the value +∞ and find that the extended functional is

lower semicontinuous in L2(Ω). We will use this result in our existence and uniqueness

proof in subsection 2.1.3.

Lemma 2.12. The extended functional E0 : L2(Ω)→ R ∪ {+∞} is proper convex and

lower semicontinuous in L2(Ω).

In the proof we will employ the following result.
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2. Anisotropic Allen–Cahn Equations

Lemma 2.13. Consider a function G : Ω× Rd → R ∪ {+∞} such that G(·, ξ) ∈ L1(Ω)

for all ξ ∈ Rd, G(x, ·) is continuous and proper convex for a.e. x ∈ Ω, and satisfies the

growth condition

G(x, ξ) > α0 ‖ξ‖2 − α1 ∀ξ ∈ Rd, a.e. x ∈ Ω (2.11)

with some positive constants α0, α1. For some closed (wrt ‖ · ‖H1(Ω)) convex set K ⊂
H1(Ω) the functional φ : L2(Ω)→ R

φ(v) =


∫

Ω
G(x,∇v(x)) dx v ∈ K

∞ otherwise

is then proper convex and lsc in L2(Ω).

Proof. φ proper. As G is proper in the second argument we find a ξ ∈ Rd such that

G(x, ξ) < +∞ (and not −∞) for a.e. x ∈ Ω. If we choose v(x) = 〈ξ, x〉 then we have

φ(v) =
∫

Ω
G(x, ξ) dx < +∞ by the assumption G(·, ξ) ∈ L1(Ω). Hence φ 6= +∞. From

the growth condition (2.11) follows for bounded Ω and any v ∈ dom(φ) that

φ(v) =

∫
Ω

G(x,∇v(x)) dx >
∫

Ω

(
α0 ‖∇v(x)‖2 − α1

)
dx > −α1|Ω| > −∞.

Convexity. Convexity follows immediately from the convexity of G(ξ, ·) and K .

Lower semicontinuity in L2(Ω). We start by showing weak lower semicontinuity in H1(Ω).

Since φ is convex it is weakly lsc if it is lsc in norm. Consider therefore some (strongly)

convergent sequence vn −→ v ∈ H1(Ω). Let’s assume I = lim inf φ(vn) < φ(v). It follows

immediately that I < +∞ and without loss of generality we can assume that vn ∈ K and

φ(vn) −→ I < φ(v) because otherwise we could consider a corresponding subsequence

vnk without changing the limes inferior. Closedness of K implies v ∈ K .

On the other hand we know that ∇vn −→ ∇v in L2(Ω;Rd) and therefore we can extract

a subsequence vnk such that ∇vnk(x) −→ ∇v(x) almost everywhere. Hence the (lower

semi-) continuity of G(x, ·) yields for a.e. x ∈ Ω

lim inf
nk−→∞

G(x,∇vnk(x)) > G(x,∇v(x)).

Bearing in mind that vn, v ∈ K and applying Fatou’s lemma (Lemma A.8) we may
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2.1. Continuous Problem

compute upon integration over Ω

lim inf
nk−→∞

φ(vnk) = lim inf
nk−→∞

∫
Ω

G(x,∇vnk(x)) >
∫

Ω

lim inf
n−→∞

G(x,∇vnk(x))

>
∫

Ω

G(x,∇v(x)) = φ(v)

which is a contradiction to the assumption.

Now let wn −→ w be an arbitrary sequence converging in L2(Ω). We need to ascertain

that lim infn−→∞ φ(wn) > φ(w). If lim infn−→∞ φ(wn) = +∞, there’s nothing to prove.

Hence let’s assume that

lim inf
n−→∞

φ(wn) = I < +∞

Again we can extract a subsequence in K (also denoted by wn) such that φ(wn) −→ I.

Therefore φ(wn) is bounded. Together with the growth condition (2.11) we deduce

c > φ(wn) >
∫

Ω

(α0|∇wn(x)|2 − α1) dx ∀n

and therefore ∫
Ω

|∇wn(x)|2 dx 6 c+ α1

α0

whence it follows that wn is not only bounded in L2(Ω) but also in H1(Ω). Thus we can

extract a weakly convergent (in H1(Ω)) subsequence wnk that by virtue of the compact

embedding H1 ↪→ L2 has w as its weak limit. Finally we use the H1(Ω)-weak lower

semicontinuity of φ to attain

lim inf
nk−→∞

φ(wnk) > φ(w).

The same indirect argument as above ensures that this inequality holds for the whole

sequence wn.

Proof of Lemma 2.12. By Assumption (A4) γ2 is continuous and proper on Rd and

strongly convex and coercive by Corollary 2.10 with

γ2(x) >
µ

2
|x|2 ∀x ∈ Rd.

Hence Lemma 2.13 applies and we have the claim.
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2. Anisotropic Allen–Cahn Equations

2.1.2. Allen–Cahn Equation

The anisotropic Allen–Cahn equation is postulated as the (scaled) L2-gradient flow for

the Ginzburg–Landau energy E as given in (2.1). Considering the splitting

E(c) = E0(c) +
1

ε
φ(c) +

1

ε
�(c) :=

∫
Ω

ε

2
γ(∇c)2 dx+

∫
Ω

1

ε
Φ(c) dx+

∫
Ω

1

ε
Υ(c) dx

into a smooth convex, a nonsmooth convex, and a smooth possibly nonconvex part we

have for some final time T > 0

−εdc
dt

(t)− 1

ε
D�(c(t)) ∈ ∂

(
E0(c(t)) +

1

ε
φ(c(t))

)
a.e. t ∈ (0, T ] (2.12)

where D, ∂ denote the Fréchet differential and the convex subdifferential (see e.g. [45])

respectively. With natural boundary conditions, n(x) being the outer unit normal of Ω

at x ∈ ∂Ω,

γ(∇c(x))〈n(x), (∇γ)(∇c(x))〉 = 0 ∀x ∈ ∂Ω, a.e.t > 0 (2.13)

and exploiting the definition of the subdifferential we have the variational inequality

formulation of the anisotropic Allen-Cahn equation

0 6 ε〈dc
dt
, v− c〉+ 〈D(E0 +

1

ε
�)(c), v− c〉+ 1

ε
φ(v)− 1

ε
φ(c) ∀v ∈ H1(Ω), a.e. t ∈ (0, T ]

(2.14)

Note that from (A5) follow convexity, continuity and Fréchet–differentiability of E0 in

H1(Ω).

2.1.3. Analytic properties

Existence and uniqueness of solutions

We will base our existence and uniqueness proof on an abstract result from the theory of

maximal monotone operators. It is stated together with the definition, basic properties,

and some examples of maximal monotone operators in the appendix A.1; we refer to

the monograph [27] for a thorough treatment of the subject. However we shall stress

at this point, that the subdifferential of a proper convex and lower semicontinuous (lsc)

functional is maximal monotone (see Theorem A.3).
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2.1. Continuous Problem

Theorem 2.14 (Existence and uniqueness). For every c0 ∈ dom(E) = dom(φ) there is a

unique solution to the anisotropic Allen–Cahn equation (2.12) in the sense of definition

A.3, i.e. it exists c ∈ C (0, T ;L2(Ω)) such that

1. c is locally absolutely continuous

2. c(t) ∈ dom(∂E) a.e. in (0, T )

3. 0 ∈ εdc
dt

(t) + ∂E(c(t)) a.e. in (0, T )

It is
√
tdc
dt
∈ L2(0, T ;H1(Ω)) and iff c0 ∈ dom(E) = H1(Ω)∩dom(φ) dc

dt
∈ L2(0, T ;H1(Ω)).

Proof. In order to apply Theorem A.7 with H = L2(Ω) we need to show

1. that E0 + 1
ε
φ is proper convex and L2(Ω)-lsc

2. that D� is Lipschitz continuous on dom(E0 + φ)

The latter is satisfied by Assumption (A3) or in the special case of (2.4) by Lemma 2.4.

Concerning the former we first note that the sum of convex functions is always convex

and the sum of proper functions is again proper iff the intersection of the effective

domains, i.e. the sets where they take finite values, is nonempty. Furthermore the

sum of lsc functions is lsc. Properness, convexity and lower semicontinuity in L2(Ω)

of E0 and φ are ensured by Lemma 2.12 and Assumption (A2) (or Lemma 2.1 for the

particular choice of the logarithmic potential) respectively. It remains to be shown,

that dom(E0 + φ) = dom(E0) ∩ dom(φ) is nonempty. However, since E0 is finite for all

v ∈ H1(Ω), dom(E0 +φ) is simply the domain of φ which is nonempty since the functional

is proper.

Applying Theorem A.7 yields the claim.

Sharp interface-limit and asymptotic phase shapes

Many phase-field models may also be regarded as approximations of lower dimensional

models for the evolution of a closed hypersurface Γ(t). As these models are limit models

in a certain sense for ε −→ 0 (see Theorem 2.15 below) they are usually termed the

corresponding sharp-interface limit. In the case of the isotropic Allen–Cahn equation the

sharp-interface limit is known to be given by mean curvature flow (also curve shortening
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2. Anisotropic Allen–Cahn Equations

flow) (cf. [49]).

Vn = −κ on Γ(t),

where n, Vn, and κ denote the outer normal, normal velocity and mean curvature

respectively. In the context of Finsler geometry the anisotropic mean curvature flow for

an anisotropy function γ can be written analogously as

Vnγ = −κγ on Γ(t), (2.15)

with nγ, Vnγ , κγ being the anisotropic pendants to n, Vn, and κ. This is the gradient

flow with respect to the Finsler metric induced by γ for the surface energy functional

S(Γ) =

∫
Γ

γ(n) dγ (2.16)

For precise definitions and further detail we refer to [12, 1]. Bellettini and Paolini [12]

argue formally that the sharp-interface limit to the anisotropic Allen–Cahn equation

is given by anisotropic mean curvature flow. The following result has been rigorously

proven by Alfaro et al in [1].

Theorem 2.15. Choose initial data c0 ∈ H1(Ω) ∩ L∞(Ω) and Γ0 = {x ∈ Ω | c0(x) = 0}
and let cε(x, t) and Γ(t) be the corresponding solutions to the anisotropic Allen–Cahn

equation (2.14) and anisotropic mean curvature flow (2.15) respectively. Furthermore let

Ω−t denote the part of Ω enclosed by Γ(t), Ω+
t = Ω \ Ω−t , and c̄(x, t) = χΩ+

t
(x)− χΩ−t

(x)

with

χA(x) =

1 if x ∈ A

0 else.

Then cε converges to c̄ almost everywhere in Ω× (0, T ).

Note that this result was proven under the assumption of smooth potentials Ψ (at least

C 2) but virtually arbitrary initial data. Elliott and Schätzle [46, 47] proved a similar

result in the double obstacle case, but with stronger restrictions on the initial data.

While in under isotropic mean curvature flow all particles are asymptotically spherical

(cf. [77]) the analogous anisotropic equilibrium shape is given by the Wulff shape (see

Definition 2.1) as is stated by Wulff’s Theorem (cf. [123, 75, 33]).

Theorem 2.16 (Wulff). The boundary of a scaled Wulff shape is the unique minimizer of
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2.2. Numerical Solution

the surface energy functional (2.16) among all closed hypersurfaces enclosing a prescribed

d-dimensional volume.

Hence, taking the boundary of a scaled Wulff shape Wγ as initial value, one might expect

Γ(t) to be self-similarly shrinking under anisotropic mean curvature flow. The following

theorem states that this is indeed the case (cf. [114, 58]).

Theorem 2.17. Let Γ0 = {x ∈ Rd | γ∗(x) = r0} evolve under mean curvature flow.

Then the solution is given by

Γ(t) =

{
x ∈ Rd | γ∗(x) =

√
r2

0 − 2t

}
, 0 6 t 6

r2
0

2

2.2. Numerical Solution

For the numerical approximation of the Allen-Cahn equation (2.14) we apply Rothe’s

method (or horizontal method of lines) (cf. [23]), i.e. we treat the PDE as an ODE in

function space and first discretize in time resulting in a series of nonlinear stationary

problems, the so-called spatial problems. The advantage of this approach over the

(vertical) method of lines is that it allows for evolving locally refined spatial meshes.

Since solutions to phase-field models after decomposition typically show areas of largely

constant value separated by thin transitional layers which have to be resolved, adaptivity

in space strongly recommends itself.

This section is organized as follows: Firstly we discuss several Euler time discretizations

differing in the treatment of the nonlinearities Ψ and γ for which we give existence and

stability results. Following is a description of our adaptive space discretization by P1 finite

elements and the hierarchical error estimators it is based on. Some implementational

issues arising from evolving grids are adressed in the notes on implementation (Sec.

2.2.4) after going into some detail about the solution of the algebraic (discretized spatial)

problems by means of the Truncated Nonsmooth Newton Multigrid method (TNNMG).

A number of numerical experiments conclude the section.
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2. Anisotropic Allen–Cahn Equations

2.2.1. Euler Time Discretizations

We will present four Euler time discretizations differing in the way they treat the

nonlinearities ψ and γ respectively. Starting out from a fully implicit nonlinear scheme

we discuss a semi-implicit (wrt. ψ) scheme and a linearized (wrt. γ) time discretization.

The schematic in Table 2.1 gives an overview of the considered time discretizations and

the names employed in the following.

In the isotropic and anisotropic case with quartic potential exist convergence results for

ψ \ γ nonlinear linearized

fully implicit NONLIN LIN(λ)

semi implicit NONLINSEMI LINSEMI(λ)

Table 2.1 – Overview of Euler time discretization schemes for anisotropic
Allen–Cahn equations

the implicit Euler discretization proved in [50] and [28] respectively. For the anisotropic

case with logarithmic potential convergence of time discretizations remains largely open.

Nevertheless the stability results for each considered scheme comprise an important step

towards a convergence proof. Furthermore the results show that the discrete flows retain

the Lyapunov property for the Ginzburg-Landau energy.

NONLIN

First we consider the fully implicit, nonlinear Euler method for some T > 0, some uniform

time step τ = T/M and some consistent initial condition c0 ∈ L∞(Ω)

cm ∈ H1(Ω) :
(
cm − cm−1, v − cm

)
+
τ

ε
〈DE0(cm), v − cm〉

+
τ

ε2

(
φ(v)− φ(cm) + 〈D�(cm), v − cm〉

)
> 0 ∀v ∈ H1(Ω) (2.17)

Let L∗ be the Lipschitz constant of D� . Then, under the assumption τ · L∗ 6 ε2 this

variational inequality may be reformulated as an equivalent minimization problem

cm ∈ H1(Ω) : Jm(cm) 6 Jm(v) ∀v ∈ H1(Ω) (2.18)
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for the energy functional

Jm(v) :=
τ

ε
E0(v) +

τ

ε2
φ(v) +

1

2
‖v‖2

0 +
τ

ε2�(v)−
(
cm−1, v

)
.

Defining J∗(v) = 1
2
‖v‖2

0+ τ
ε2�(v) by Lipschitz continuity ofD� we may infer monotonicity

of DJ∗ as follows

〈DJ∗(v)−DJ∗(w), v − w〉 = (v, v − w) − (w, v − w) +
τ

ε2
〈D�(v)−D�(w), v − w〉

> (v − w, v − w) − τ

ε2
|〈D�(v)−D�(w), v − w〉|

> ‖v − w‖2
0 −

τ

ε2
‖D�(v)−D�(w)‖L2(Ω)′ ‖v − w‖0

>
(

1− τ

ε2
L∗
)
‖v − w‖2

0 > 0 if τ 6
ε2

L∗
,

and hence convexity of J∗. From Lemma 2.11 and Assumption (A2) the convexity of

Jm then follows immediately; strict convexity holds for τ · L∗ < ε2, which gives

Proposition 2.18. Let τ · L∗ < ε2. Then the spatial problem (2.18) and equivalently

(2.17) allow a unique solution for all m 6M .

Proof. As Jm under the given assumptions is strictly convex and by Assumption (A2)

and Lemma 2.12 lsc., by [45, Prop. 1.2, Ch. II] all that is left to show is the coercivity of

Jm. Exploiting Assumption (A1) we have

Jm(v)− J∗(v) >
τ

2

(
inf
|x|=1

γ(x)

)2

‖∇v‖2
0 −

(
cm−1, v

)
and exploiting Lemma A.11 arrive at

J∗(v) >
1

2
‖v‖2

0 −
τ

ε2
|�(v)|

>
1

2
‖v‖2

0 −
τ

ε2

(
L∗

2
‖v‖2

0 + ‖D�(0)‖L2(Ω)′ ‖v‖0 + |�(0)|
)

=
1

2

(
1− τ

ε2
L∗
)
‖v‖2

0 − ‖D�(0)‖L2(Ω)′ ‖v‖0 − |�(0)|

We now state stability results for the given time discretization whose short proofs are

given in [70] and repeated here slightly modified to accomodate for a more general� . In
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2. Anisotropic Allen–Cahn Equations

the following µ, L are those of Lemma 2.8.

Theorem 2.19. Let τ · L∗ < ε2. Then the Ginzburg–Landau free energy E defined in

(2.1) is a Lyapunov functional for (2.17) satisfying

ε

2τ
‖cm − cm−1‖2

0 +
εµ

4
‖∇cm −∇cm−1‖2

0 + E(cm) 6 E(cm−1). (2.19)

The fully implicit Euler method NONLIN (2.17) is conditionally stable in the sense that

ε

2τ

M∑
m=1

‖cm − cm−1‖2
0 +

εµ

4

M∑
m=1

‖∇cm −∇cm−1‖2
0 6 E(c0). (2.20)

holds for all τ < ε2.

Proof. Substitution of v = cm−1 and ψ(v) = φ(v) +�(v) in (2.17) and again application

of Lemma A.11 yields∥∥cm − cm−1
∥∥2

0
6
τ

ε

〈
DE0(cm), cm−1 − cm

〉
+
τ

ε2

(
ψ(cm−1)− ψ(cm)

)
− τ

ε2

(
�(cm−1)−�(cm)−

〈
D�(cm), cm−1 − cm

〉)
6
τ

ε

〈
DE0(cm), cm−1 − cm

〉
+
τ

ε2

(
ψ(cm−1)− ψ(cm)

)
+
τ

ε2

∣∣�(cm−1)−�(cm)−
〈
D�(cm), cm−1 − cm

〉∣∣
6
τ

ε

〈
DE0(cm), cm−1 − cm

〉
+
τ

ε2

(
ψ(cm−1)− ψ(cm)

)
+

τ

2ε2
L∗
∥∥cm − cm−1

∥∥2

0

Exploiting the strong convexity of E0 as stated in Lemma 2.11 we conclude that

(1− τ

2ε2
L∗)

∥∥cm − cm−1
∥∥2

0
6
τ

ε

(
E0(cm−1)− E0(cm)− εµ

4

∥∥∇cm −∇cm−1
∥∥2

0

)
+
τ

ε2

(
ψ(cm−1)− ψ(cm)

)
Finally we use the assumption τ · L∗ < ε2 and E = E0 + 1

ε
ψ to arrive at the assertion

(2.19) after multiplication by ε/τ and some rearranging of terms.

The estimate (2.20) then follows immediately by recursive application of (2.19) bearing

in mind that E(v) > 0, ∀v ∈ H1(Ω) (by (A1)).
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2.2. Numerical Solution

NONLINSEMI

Assuming additionally that � is concave we may exploit the splitting ψ = φ +� (cf.

equation (2.2)) to overcome the stability constraints on τ in the previously described

scheme. Discretizing the expanding part explicitely leads to the semi-implicit nonlinear

Euler discretization (NONLINSEMI):

cm ∈ H1(Ω) :
(
cm − cm−1, v − cm

)
+
τ

ε
〈DE0(cm), v − cm〉

+
τ

ε2
(φ(v)− φ(cm)) > − τ

ε2

〈
D�(cm−1), v − cm

〉
∀v ∈ H1(Ω) (2.21)

Again we can formulate an equivalent minimization problem, this time for the energy

functional

Jm(v) :=
τ

ε
E0(v) +

τ

ε2
φ(v) +

1

2
‖v‖2

0 −
((
cm−1, v

)
+
τ

ε2

〈
D�(cm−1), v

〉)
Note that Jm is strictly convex for all τ > 0. Existence and uniqueness of solutions

follows as before. The semi-implict nonlinear Euler method is unconditionally stable as

stated by the following

Theorem 2.20. For all τ > 0 the Ginzburg–Landau free energy E defined in (2.1) is a

Lyapunov functional for (2.21) satisfying

ε

τ
‖cm − cm−1‖2

0 +
εµ

4
‖∇cm −∇cm−1‖2

0 + E(cm) 6 E(cm−1). (2.22)

The semi-implicit Euler method NONLINSEMI (2.21) is unconditionally stable in the

sense that

ε

τ

M∑
m=1

‖cm − cm−1‖2
0 +

εµ

4

M∑
m=1

‖∇cm −∇cm−1‖2
0 6 E(c0) (2.23)

holds for all τ > 0.

Proof. From the assumption that � is concave we can deduce by a straightforward

computation

(−�)(cm)− (−�)(cm−1)−
〈
D(−�)(cm−1), cm − cm−1

〉
> 0.

This is sometimes called gradient inequality (for convex funcions).
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2. Anisotropic Allen–Cahn Equations

The rest of the proof is very similar to that of Theorem 2.19 and therefore not repeated.

Remark 2.6. For the special choice given in (2.4) the inequalities in Theorem 2.20 are

stronger in the sense that they hold also for
(
ε
τ

+ 1
2ε

)
instead of ε

τ
(cf. [70, Thm. 3.2]).

LIN(λ)

To circumvent the costly inversion of the nonlinear operator induced by γ2 we replace

the corresponding term in the spatial problem (2.17) by the linear approximation

〈DE0(cm), v − cm〉 ≈
〈
DE0(cm−1), v − cm

〉
+ λε

(
∇cm −∇cm−1, v − cm

)
resulting in the fully implicit linearized Euler discretization (LIN(λ)):

cm ∈ H1(Ω) :(
cm − cm−1, v − cm

)
+ τλ (∇cm,∇(v − cm)) +

τ

ε2
(φ(v)− φ(cm) + 〈D�(cm), v − cm〉)

> τλ
(
∇cm−1,∇(v − cm)

)
− τ

ε

〈
DE0(cm−1), v − cm

〉
∀v ∈ H1(Ω) (2.24)

For λ > 0, τ < ε2 and c0 ∈ H1(Ω) existence and uniqueness follows as for NONLIN

considering the minimization problem for the functional

Jm(v) :=
τλ

2
(∇v,∇v) +

τ

ε2
φ(v) +

1

2
‖v‖2

0 +
τ

ε2�(v)

+
τ

ε

〈
E0(cm−1), v

〉
− τλ

(
∇cm−1,∇v

)
−
(
cm−1, v

)
=
τ

ε
Ê0(v) +

τ

ε2
φ(v) +

1

2
‖v‖2

0 +
τ

ε2�(v)−
〈
fm−1, v

〉
where Ê0 is defined as in (2.10) with γ = γ̂ :=

√
λ | · | and fm−1 ∈ H1(Ω)′ is a functional

collecting the linear terms. In order for LIN(λ) to be stable, apart from τ < ε2, we expect

λ has to be sufficiently large wrt. γ such that τ
ε
〈E0(cm−1), v〉 − τλ (∇cm−1,∇v) < 0 and

indeed we find (cf. [70])

Theorem 2.21. Let τ < ε2 and choose λ > L/2. Then the Ginzburg–Landau free energy

E defined in (2.1) is a Lyapunov functional for (2.24) satisfying

ε

2τ
‖cm − cm−1‖2

0 +
εµ

4
‖∇cm −∇cm−1‖2

0 + E(cm) 6 E(cm−1). (2.25)
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2.2. Numerical Solution

The linearized fully implicit Euler method (2.24) is conditionally stable in the sense that

ε

2τ

M∑
m=1

‖cm − cm−1‖2
0 +

εµ

4

M∑
m=1

‖∇cm −∇cm−1‖2
0 6 E(c0) (2.26)

holds under the above assumptions.

Proof. Following the first steps of the proof for Theorem 2.19 we find the inequality

(
1− τ

2ε2

)∥∥cm − cm−1
∥∥2

0
+ τλ

∥∥∇cm −∇cm−1
∥∥2

0

6
τ

ε2

(
ψ(cm−1)− ψ(cm)

)
+
τ

ε

〈
DE0(cm−1), cm−1 − cm

〉
Adding zero and exploiting Lipschitz continuity of DE0 (cf. 2.11) yields the following

upper bound for the rightmost term

τ

ε

〈
DE0(cm−1), cm−1 − cm

〉
6
τL

2

∥∥∇cm −∇cm−1
∥∥2

0
+
τ

ε

〈
DE0(cm), cm−1 − cm

〉
.

Continuing as in the proof for Theorem 2.19 yields the assertion (2.25).

The second estimate (2.26) follows as before.

LINSEMI(λ)

Our final scheme combines the two approaches to ψ and γ giving rise to the semi-implicit

linearized Euler method. As for NONLINSEMI we assume � to be concave.

cm ∈ H1(Ω) :(
cm − cm−1, v − cm

)
+ τλ (∇cm,∇(v − cm)) +

τ

ε2
(φ(v)− φ(cm))

> τλ
(
∇cm−1,∇(v − cm)

)
− τ

ε

〈
DE0(cm−1), v − cm

〉
− τ

ε2

〈
D�(cm−1), v − cm

〉
∀v ∈ H1(Ω) (2.27)
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Existence and uniqueness follow for λ > 0, τ > 0 and c0 ∈ H1(Ω) as before. The energy

functional for the equivalent minimization problem is

Jm(v) :=
τλ

2
(∇v,∇v) +

τ

ε2
φ(v) +

1

2
‖v‖2

0

+
τ

ε

〈
E0(cm−1), v

〉
− τλ

(
∇cm−1,∇v

)
−
(
cm−1, v

)
+
τ

ε2

〈
D�(cm−1), v

〉
=
τ

ε
Ê0(v) +

τ

ε2
φ(v) +

1

2
‖v‖2

0 −
〈
fm−1, v

〉
with Ê0 defined as for LIN(λ) and fm−1 ∈ H1(Ω)′ collects the linear terms. Again the

semi-implicit time discretization is unconditionally stable with respect to τ but same as

for LIN(λ) the parameter λ has to be chosen suffiently large (cf. [70])

Theorem 2.22. Let τ > 0 and choose λ > L/2. Then the Ginzburg–Landau free energy

E defined in (2.1) is a Lyapunov functional for (2.27) satisfying

ε

τ
‖cm − cm−1‖2

0 +
εµ

4
‖∇cm −∇cm−1‖2

0 + E(cm) 6 E(cm−1). (2.28)

The semi-implicit linearized Euler method (2.27) is unconditionally stable in the sense

that

ε

τ

M∑
m=1

‖cm − cm−1‖2
0 +

εµ

4

M∑
m=1

‖∇cm −∇cm−1‖2
0 6 E(c0) (2.29)

holds for all τ > 0.

The proof (cf. [70]) follows closely the proofs given above and is omitted here. Again the

result is slightly stronger in the case of Υ as in (2.4) exchanging ε
τ

for ε
τ

+ 1
2ε

.

2.2.2. Adaptive Space Discretization for Evolution Problems

For simplicity we assume from now on Υ to be given by (2.4). The spatial problems of

all considered time discretizations may be unifyingly written as the variational inequality

cm ∈ H1(Ω) :
τ

ε

〈
DẼ0(cm), v − cm

〉
+
τ

ε2
(φ(v)− φ(cm)) + α (cm, v − cm)

>
〈
fm−1, v − cm

〉
∀v ∈ H1(Ω) (2.30)
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2.2. Numerical Solution

or equivalently as the minimization problem

cm ∈ H1(Ω) : Jm(cm) 6 Jm(v) ∀v ∈ H1(Ω)

Jm(v) :=
τ

ε
Ẽ0(v) +

τ

ε2
φ(v) + α ‖v‖2

0 −
〈
fm−1, v

〉
,

(2.31)

where α is some positive constant, fm−1 ∈ H1(Ω)′ collects the explicit (linear) terms,

and Ẽ0 = E0 for the nonlinear schemes, whereas Ẽ0 = Ê0 for the linearized ones. From

here on the tilde will be dropped for notational convenience.

In the following, for simplicity, we assume Ω to be a nonempty, bounded, open polyhedral

subset of Rd, 1 6 d 6 3.

From the use of locally refined grids for the solution of the sequence of discrete spatial

problems arise several issues to be adressed. Firstly, we not only need an adaptive

refinement scheme but also a coarsening scheme from one time step to the next in order

to avoid an accumulation of unnecessary degrees of freedom over time. This coarsening

scheme amounts to choosing an initial grid for the refinement process which ensures

that no features of the previous (in time) solution are overlooked by the error estimator.

A heuristic coarsening scheme designed for the present problems is described in the

following. Secondly, we need to ensure that no information is lost from one timestep to

the next - even in case of local coarsening. We approach this issue by keeping a grid that

resolves the leaf grids of both, the current and the previous timestep. More details are

found in the paragraph ”The Subgrid Approach for Evolving Grids”.

P1-Finite Element Discretization on Nonconforming Grids

Before giving the space discretized problem we define admissible grids and piecewise

affine finite elements on such grids.

Definition 2.2 (Simplicial Partition): We call a finite set T ∈ 2Ω a simplicial partition

of Ω if each t ∈ T is a nondegenerate closed d-dimensional simplex and

Ω =
⋃
t∈T

t ∧ ∀t1,t2∈T : t1 6= t2 ⇒ t̊1 ∩ t̊2 = ∅

Furthermore we denote the set of (closed) k-faces of some t ∈ T by Fk(t) and for some

A ⊂ T Fk(A) =
⋃

t∈A Fk(t). Hence the set of vertices of T is F0(T) and so on. 4

Therefore the vertices p = {p} ∈ F0(T) ⊂ 2Ω are singletons of points p ∈ Rd. To simplify
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2. Anisotropic Allen–Cahn Equations

notation by p we will denote a vertex (i.e. element of F0) or the corresponding point in

Rd as fitting the context.

Definition 2.3 (Simplicial Grid): A simplicial partition T is called a simplicial grid if

∀t1,t2∈T : t1 ∩ t2 = ∅ ∨ ∃06k6d : t1 ∩ t2 ∈ Fk(t1) ∪ Fk(t2)

A simplicial grid is called conforming if the assertion holds also for the intersection of

the Fk(ti). 4

Note that the general definition requires the intersection of two simplices to be a subentity

(k-face) of at least one of the simplices and therefore allows for hanging nodes, whereas

in conforming grids hanging nodes are forbidden. The reason why we allow hanging

nodes will be made clear in the paragraph on ”The Subgrid Approach for Evolving Grids”

below. Figure 2.3 gives some examples and counterexamples of simplicial grids.

Definition 2.4 (Hanging Node): A vertex p ∈ F0(T) is called a hanging node if for

some t ∈ T and some k-face f ∈ Fk(t) with 0 < k < d holds p ⊂ f ∧ p /∈ F0(t). The set

of hanging nodes is denoted by F◦0(T); its complement in the set of vertices, i.e. the

non-hanging nodes by F•0(T). 4

Figure 2.3 – Examples of simplicial partitions in 2D and 3D that are simplicial
grids (a-c, e-f) and one that is not (d). Hanging nodes are marked by red
dots in the 2D grids; in the counterexample the intersection that is not a
face of either intersecting simplex is highlighted in red
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We approximate the spatial problems (2.30) by piecewise affine elements on a simplicial

grid T

ST :=
{
v ∈ C (Ω) | ∀t∈T : v|t ∈ P 1(t)

}
(2.32)

and the discretized nonlinearity

φT(v) := φST
(v) :=

∫
Ω

IT
(
Φ(v)

)
dx =

∑
p∈F•0(T)

Φ
(
v(p)

) ∫
Ω

bp(x) dx (2.33)

as obtained by replacing exact integration by a quadrature rule based on linear nodal

interpolation. Here IT stands for the interpolation operator IT : C (Ω)→ ST and the bp

denote the conforming nodal basis functions

B := {bp ∈ ST | ∀q∈F•0(T) : bp(q) = δpq}.

We note that by the requirement of continuity the hanging nodes do not contribute to

the number of unknowns because function values must be interpolated linearly from

those of surrounding (nonhanging) vertices. Proof of these claims can be found in [66,

Sect. 3.1]. For practical reasons we restrict ourselves in all our computations to hanging

nodes p that satisfy

∃e∈F1(T)∀q∈F◦0(T)\{p} : p ⊂ e̊ ∧ e ∩ q = ∅, (2.34)

that is we allow nodes only to be hanging on edges and only one hanging node per edge.

The example of a simplicial grid in Figure 2.3 would thus be excluded.

Dropping the index m for readability, the discrete spatial problems are now given by

Figure 2.4 – The support of some examples of conforming nodal basis
functions on nonconforming 2D simplicial grids. The vertex corresponding
to the respective basis function is marked red.
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cT ∈ ST :
τ

ε

〈
DẼ0(cT), v − cT

〉
+
τ

ε2
(φT(v)− φT(cT)) + α (cT, v − cT)

> 〈fT, v − cT〉 ∀v ∈ ST (2.35)

or alternatively

cT ∈ ST : JT(cT) 6 JT(v) ∀v ∈ ST

JT(v) :=
τ

ε
Ẽ0(v) +

τ

ε2
φT(v) + α ‖v‖2

0 − 〈fT, v〉 ,
(2.36)

where fT = fm−1
T results from using the (spatially) discrete solution of the previous

timestep.

Note that JT : ST → R ∪+∞ inherits strict convexity, properness and coercivity of E0

and φ. Lower semicontinuity of JT boils down to lower semicontinuity of φT which may

be shown analogously to Lemma 2.1.

We identify ST with Rn via iB : v =
∑

j vjbpj 7→ v for some fixed enumeration of the

nonhanging nodes and may also write

c ∈ Rn : J(c) 6 J(v) ∀v ∈ Rn (2.37)

with J such that the following diagram commutes or more precisely

ST
-JT R

@
@
@
@@R

iB

Rn �
�
�
���

J

J(v) = JT ◦ (iB)−1(v)

=
τ

2

m∑
i=1

|ti| γ2

(
n∑
j=1

vj∇bpj |ti

)
+
τ

ε2

n∑
j=1

Φ(vj)

∫
Ω

bpj(x) dx+ c 〈Bv, v〉 − 〈fT, v〉 .
(2.38)

Here we used n = |F•0(T)|, m = |F1(T)|, and the mass matrix B =
((
bpi , bpj

))
i,j∈{1...n}.

Adaptive Mesh Refinement

Adapting a grid to resolve local features of the solution requires local refinements of the

grid. We make the following
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Definition 2.5 (Refinement): Let T,S be simplicial grids on Ω. T is called a

refinement of S, in symbols S ≺ T, if for all s ∈ S the set {t ∈ T | t ⊂ s} is a simplicial

grid on s. The refinement is called global if T ∩S = ∅; otherwise it’s called local. It

is called conforming if T \S is a conforming grid on its covered domain and we write

S ≺· T. If T results from multiple successive refinements of S, we use the notation

S ≺≺ T resp. S ≺≺· T. 4

Note that successive conforming local refinements can result in a nonconforming grid

and may be represented by a hierarchy of grids.

Definition 2.6 (Grid Hierarchy): (T0, . . . ,Tj) is called a grid hierarchy on Ω if the

following conditions are satisfied.

a) T0 is a conforming simplicial grid on Ω.

b) ∀iTi �· A ⊂ Ti−1, i.e. Ti is a conforming refinement of some subset A of Ti−1.

Ti is called the i-th level grid. 4

Definition 2.7 (Leaf Grid): Let (T0, . . . ,Tj) be a grid hierarchy. We define the leaf

grid of the hierarchy to be

L = L(T0, . . . ,Tj) := Tj ∪
j−1⋃
i=0

{
t ∈ Ti | ∀s∈Ti+1

: t̊ ∩ s̊ = ∅
}

4

Figure 2.5 – Illustration of a grid hierarchy (left) and its leaf grid (right).
Note that each level grid is conforming.

Our computational grids will be such leaf grids of grid hierarchies on Ω and it is

straightforward to show that they are simplicial grids on Ω.

37



2. Anisotropic Allen–Cahn Equations

In order to obtain an adaptive mesh we firstly select an intial grid for the refinement cycle.

The grid is then repeatedly refined according to an error fraction marking strategy using

local error indicators based on hierarchical error estimation. The refinement process is

stopped once the relative estimated error drops below a given tolerance ϑadapt

η 6 ϑadapt ‖c‖ . (2.39)

In all our computations we will use so-called red refinement, i.e. each simplex is refined

by introducing vertices at each edge midpoint resulting in four congruent triangles in

the 2D case. Red refinement of tetrahedra is slightly more intricate and is illustrated

in lower tetrahedron of Figure 2.3e. The selection of the initial grid, hierarchical error

estimation, and the marking strategy are treated in the following paragraphs.

Selection of the Initial Grid For the refinement process in each timestep we need to

determine an initial grid. While with an overly coarse initial mesh the extended space Q
for the error estimation might not be rich enough to detect all particles present in the

solution of the previous timestep (cf. Figure 2.6 left), a very fine initial mesh will lead to

many unnecessary degrees of freedom and thus compromise overall efficiency.

In order to obtain an initial grid fine enough to resolve all relevant features of the previous

solution and coarse enough to avoid accumulation of unnecessary degrees of freedom, we

apply successive derefinement to the grid Told of the preceding timestep. In the first time

step Told is chosen to be a uniformly refined grid which is sufficiently fine to resolve all

relevant features of the initial value c0. In each of the m derefinement steps, we mark all

simplices t of Told on level j > minLevel for derefinement that satisfy either the condition

(i)
∣∣∇(Itc

old)|t
∣∣ < ϑcoarsen or the condition (ii)

∣∣∇(It′c
old)|t′

∣∣ > ϑcoarsen with t′ chosen such

that t is obtained by refinement of t′. Here, It and It′ denote the linear interpolation

on t and t′, respectively. The reasoning behind this choice is purely heuristic and relies

heavily on the assumption that the solutions show large areas of nearly constant value

(the phases) and small interfacial areas with large gradients in between, i.e. that we have

clearly separated phases. The first condition marks all elements that lie completely in

one phase and therefore do not contain any relevant information that would be lost by

coarsening. In the case that
∣∣∇(Itc

old)|t
∣∣ > ϑcoarsen the second condition ensures that

elements lying in or across phase interfaces are kept unless their father element also ’sees’

the interface (cf. Figure 2.6 middle). The middle and righthand images in Figure 2.6

illustrate the derefinement process for a hypothetical grid Told. Note that that marked
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2.2. Numerical Solution

elements are not abandoned unless all ’sibling’ elements are marked as well nor when it

would lead to multiple hanging nodes on the same edge (cf. Equation (2.34)).

Figure 2.6 – Left: A too coarse initial grid (red). The extended space - P1
elements on a uniformly refined grid (blue) - will not detect the smallest
particle. Middle: A hypothetical grid Told (red) and the derefinement marks
corresponding to conditions (i) (green) and (ii) (blue). Right: The grid from
the picture in the middle after one derefinement step.

Hierarchical Error Estimators Hierarchical error estimators are based on the approxi-

mation of the error in an extended discrete space and its subsequent hierarchical splitting.

Early works investigate the linear elliptic self-adjoint case [103, 39, 24] while elliptic

variational inequalities and elliptic obstacle problems in particular have been considered

in [83, 125, 87]. Hierarchical error estimators have been successfully applied to time-

discretized phase-field models in [68, 66]. Here we will shortly recall the procedure for

variational inequalities before applying it to the problem at hand.

Consider the variational inequality

c ∈ H : a(c, v − c) + φ(v)− φ(c) > 〈`, v − c〉 ∀v ∈ H

in a Hilbert space H and its finite element discretization

cS ∈ S : a(cS , v − cS ) + φS (v)− φS (cS ) > 〈`, v − cS 〉 ∀v ∈ S .

We assume a(·, ·), φ, φS , and ` to be a symmteric H-elliptic bilinear form, a proper,

lsc, convex functional, some discretization thereof, and a bounded linear functional

respectively, such that the existence of unique solutions to the continuous and the

discrete problems is ensured. The discretization error e := c − cS is then the unique
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2. Anisotropic Allen–Cahn Equations

solution to the defect problem

e ∈ H : a(e, v − e) + φ̂(v)− φ̂(e) > 〈r, v − e〉 ∀v ∈ H (2.40)

where the residual r and the shifted nonlinearity φ̂ are defined by

〈r, v〉 = 〈`, v〉 − a(cS , v) φ̂(v) = φ(v + cS ).

We approximate (2.40) in an extended finite element space Q ⊃ S such that for some

V ⊂ Q we have

Q = S ⊕V and S ∩V = {0}

to obtain the discrete defect problem

eQ ∈ Q : a(eQ , v − eQ ) + φ̂Q (v)− φ̂Q (eQ ) > 〈r, v − eQ 〉 ∀v ∈ Q (2.41)

Furthermore we assume that there is a direct splitting of the extension space V =

V1 ⊕ . . .⊕Vk such that the discretized nonlinearity decomposes on V

φ̂Q (v) =
k∑
i=1

φ̂iQ (vi) ∀v =
k∑
i=1

vi, vi ∈ Vi (2.42)

into convex functionals φ̂iQ : Vi → R∪ {+∞}. In order to avoid the computational effort

of solving (2.41) we perform a localization by firstly replacing the bilinear form with the

hierarchical preconditioner

b(v, w) = a(vS , wS ) +
k∑
i=1

a(vi, wi) v, w ∈ Q (2.43)

and secondly by assuming that the low frequency contributions eS may be neglected.

Note that we cannot expect eS to be zero since it is still coupled to eV by the nonlinearity

φ̂Q . Thereby we arrive at the localized discrete defect problem

ẽ ∈ V : b(ẽ, v − ẽ) + φ̂Q (v)− φ̂Q (ẽ) > 〈r, v − ẽ〉 ∀v ∈ V (2.44)
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which by virtue of the decomposition assumption (2.42) splits into k independent sub-

problems

ẽi ∈ Vi : a(ẽi, v − ẽi) + φ̂iQ (v)− φ̂iQ (ẽi) > 〈r, v − ẽi〉 ∀v ∈ Vi (2.45)

The error estimate then is given by

η := ‖ẽ‖b =

(
k∑
i=1

‖ẽi‖2
a

) 1
2

(2.46)

The local contributions ηi := ‖ẽi‖a may be used as error indicators for adaptive mesh

refinement.

One aims at approximations ẽ ≈ e that yield efficient and reliable error estimates, i.e.

C0 ‖ẽ‖b 6 ‖e‖a 6 C1 ‖ẽ‖b

where the left estimate manifests efficiency whereas the right estimate constitutes re-

liability. While for linear self-adjoint problems efficiency is obtained without unknown

constants and reliability is implied by the saturation assumption, for general nonlinear

problems of the discussed form a proof is beyond reach. For obstacle problems, however,

augmentation of the estimator by a higher order term recovers efficiency and reliability

(cf. [87, 125]).

We will now describe our approach to hierarchical a posteriori error estimation for the

spatial problems of the time-discrete anisotropic Allen–Cahn equation. A typical choice

for the extended space Q is a higher order finite element space such as the piecewise

quadratic finite elements. In the case of obstacle problems, however, this might lead to

instabilities [59, 87]. For the sake of robustness we therefore chose Q to be the piecewise

affine conforming FE-space on a once uniformly refined grid. So if S = ST and T′ � T is

a global refinement of T we choose Q = ST′ . Recall that we use red refinement such that

new nodes are introduced solely at the edge midpoints. Hence we have Q = ST′ = ST⊕V
where V is spanned by the ”linear edge bubbles” or more precisely by the fine grid nodal

basis functions associated to vertices FV
0 := F•0(T′) \ F•0(T) , i.e. the nonhanging nodes of

T′ that were not nonhanging nodes in T (cf. [66, Theorem 6.1]). Therefore each v ∈ Q
has a unique splitting v = vS + vV .

Stating the localized discrete defect problem requires a little more care in case of the
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2. Anisotropic Allen–Cahn Equations

nonlinear time discretizations, due to the nonlinear anisotropic operator replacing the

Laplacian of the isotropic case. For this end we introduce the shifted diagonalized

anisotropic operator〈
ÂQ (v), w

〉
:=
∑
p∈FV

0

〈A(cT + v(p)bp), bp〉w(p) + 〈A(cT + vS ), wS 〉 v, w ∈ Q (2.47)

with A = DÊ0. For the linearized time-discretizations and in the isotropic case this

essentially reduces to the hierarchical splitting (2.43) of the scaled Laplace operator.The

localized dicrete defect problem now reads

ẽ ∈ V :
〈
ÂQ (ẽ), v − ẽ

〉
+α (ẽ, v − ẽ)S⊕V +

τ

ε2

(
φ̂Q (v)− φ̂Q (ẽ)

)
> 〈r, v − ẽ〉 (2.48)

where (·, ·)S⊕V denotes the hierarchical splitting of the L2-scalar product. Again the

error estimate is computed as the sum of local contributions

η :=

(
k∑
i=1

‖ẽi‖2
iso

) 1
2

(2.49)

which are used as local edge based error indicators. For computational simplicity we use

the energynorm of the corresponding isotropic problem here, i.e.

‖v‖2
iso := τ (∇v,∇v) + α (v, v)

Error Fraction Marking Strategy Based on the edge based local error indicators ηi we

decide which edges to refine following the marking strategy described in [40]. The aim is

to find a minimal set of edges E such that for some prescribed κ ∈ (0, 1]∑
e∈E

η2
e > κ · η2

holds. Then all elements sharing these edges are marked for refinement. In order to

obtain such a minimal set we order the set of local indicators and sum up starting

from the largest until the criterion is met. In case the error estimate barely misses the

termination criterion (2.39), we may reduce κ such that severe overrefinement is avoided.
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Clearly, we expect the error estimate on successive grids to decrease according to

η2
j+1 = (1− κ)η2

j + κωη2
j , ω ∈ (0, 1).

Of course ω may be computed from the expected order of convergence p as ω = 1/22p.

This might however be overly optimistic in some situations. Therefore we use the error

reduction actually achieved in the previous refinement ρj =
ηj

ηolder
to determine ω by

ρ2
j = 1− (1− ω)κ

which yields

ω = 1−
(

1− ρ2
j

κ

)
.

Thus ρ(κ̃) =

√
1− 1−ρ2j

κ
κ̃ acts as a predictor for the error reduction depending on the

marked error fraction κ̃ in the following refinement step. With this we can now compute

an optimal κ̃ from the termination criterion (2.39)

κ̃ =
η2
j − ϑ2

adapt ‖c‖
2

η2
j − ρ2

jη
2
j

κ.

Note that in relevant situations, i.e. the termination criterion (2.39) is not yet met but

expected to be fulfilled in the following refinement step, we will always have 0 < κ̃ 6 κ.

This involves a saturation assumption, namely ρj < 1. In order to ensure that we don’t

fall short of the termination criterion we finally introduce a safety factor β ∈ (0, 1] such

that in the j-th refinement step we choose

λ =
η2
j − (βϑadapt)

2 ‖c‖2

η2
j − ρ2

jη
2
j

κj =

λκj−1 , if 0 < λ 6 1

κj−1 , otherwise
(2.50)

for a given κ0 ∈ (0, 1].

The Subgrid Approach for Evolving Grids

In order to use different locally refined grids in two successive timesteps without loss of

information we will make use of a grid that resolves both computational grids. Such a

grid we will call hostgrid which is defined below.
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Definition 2.8 (Hostgrid): Let S = L(S0, . . . ,Sj) and T = L(T0, . . . ,Tk), k > j be

two grids such that for all i ∈ {0 . . . , j}Si∪Ti is a conforming simplicial grid on its domain.

Then we can consider the grid H = H(S,T) = L(S0 ∪T0, . . . ,Sj ∪Tj,Tj+1 . . . ,Tk). We

call this grid the hostgrid of S and T. Relaxing this definition slightly we may call any

conforming refinement H̃ ��· H of H a hostgrid of S and T. 4

Now consider the differing leaf grids of two subsequent time steps namely Told and T and

each results from successive refinements of a common coarse grid using red refinement.

Then the hostgrid H(Told,T) is defined. Note that in the presence of green closures this

might not be the case. The reason for this definition is that such grids will induce nested

finite element spaces, STold ⊂ SH and ST ⊂ SH, which again might not be the case in the

presence of green closures, and which in turn is the reason we allow nonconforming leaf

grids, i.e. hanging nodes.

Now consider the discrete spatial problem (2.35). The right hand side is given by the

functional fT ∈ S ′T induced by the discrete solution in the previous time step cold ∈ STold

which due to STold ⊂ SH finds an exact representation in iB(SH). Hence the right hand

side may be evaluated exactly for test functions in SH using quadrature rules that are

exact on SH. Because of ST ⊂ SH we also have S ′H ⊂ S ′T and the restriction of the right

hand side (functional) to ST is again exact.

2.2.3. Algebraic Solution of Discrete Spatial Problems

The discrete spatial problems (2.37) to be solved in each time step are minimization

problems

c ∈ Rn : J(c) 6 J(v) ∀v ∈ Rn

for the proper, strictly convex, lsc energy functional (2.38) which splits into a smooth

convex and a nonsmooth strictly convex part:

J = J0 + ϕ.

Note that for the functional under consideration the nonsmooth part ϕ decomposes with

respect to the canonical directions:

ϕ(v) =
n∑
i=1

ϕi(vi), with ϕi(vi) =
τ

ε2
Φ(vi)

∫
Ω

bpi(x) dx
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being twice continuously differentiable on (−1, 1) = ˚dom(ϕi) (cf. Lemma 2.2). The

smooth part is of the form

J0(v) = α 〈Bv, v〉 − 〈f, v〉+
m∑
j=1

γj(Djv),

where γ2
j = |tj| · γ2 and Dj is the d×n-matrix computing the gradient on tj of a P1-finite

element function. Recall that by assumption γ2
j is twice continuously differentiable

except in zero and that by Lemma 2.9 (γ2
j )
′ is Lipschitz continuous. Hence we may

define a suitable generalized Hessian of γ2
j by setting ∂2γ2

j (0) = ‖tj‖Idd ∈ ∂Cγ
2
i (0)

(Clarke’s generalized Jacobian [35]) and thus construct a generalized Hessian for J0:

∂2J0(v) = αB +DT∂2γ2(Du)D. For details we refer to [66, Sect. 4.1].

In order to solve these highly nonlinear, nonsmooth convex minimization problems we

will apply the Truncated Nonsmooth Newton Multigrid method (TNNMG). Here we will

give a short overview and refer to [62, 65, 66] for details.

The TNNMG method for the problems at hand is employed as a two-step algorithm

consisting of nonlinear smoothing F and a subsequent linear correction C for acceleration:

cν+ 1
2 = cν + F(cν) (2.51)

cν+1 = cν+ 1
2 + C(cν+ 1

2 ) (2.52)

For the given energy functional such a method is known to be convergent if the operators

F , C : dom J → Rn are monotone with respect to J , i.e. J(c +F(c)) 6 J(c),∀c ∈ dom J

and analogously for C, and if for any convergent sequence (cν)ν ⊂ dom J J(cν+1) 6

J(cν + F(cν)),∀ν ∈ N implies arg minv∈dom J J(v) = limν→∞ cν (cf. [66, Theorem 4.1]).

This condition is met by the nonlinear Gauss–Seidel method given by successive mini-

mization in the coordinate directions

F(v)i = arg min
ρ∈R

J(v +
i−1∑
j=1

F(v)jej + ρei)

and even its inexact counterpart

F?(v)i = ω(v, i) · arg min
ρ∈R

J(v +
i−1∑
j=1

F?(v)jej + ρei), ω(v, i) ∈ [ω0, 1] (2.53)
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for some fixed ω0 ∈ (0, 1] ([66, Theorem 4.2]). The latter is relevant as the minimizer may

not be readily available. Convergence of a Gauss-Seidel iteration for energy functionals

that also cover the vector-valued case was proven in [86] and further generalized in [74].

As secondary correction C we apply one Newton step on a subspace reduced to components

where J is sufficiently smooth. For this end we introduce the index sets

I(v) = {i ∈ N | ∂ϕi(vi) is single-valued}

I ′(v) =

{
i ∈ I(v) | max{ lim

w↗vi
ϕ′′i (w), lim

w↘vi
ϕ′′i (w)} <∞

}
,

the reduced space

VI = span{ei | i ∈ I} ⊂ Rn,

and the truncated matrix resp. vector

(MI,J )ij = ((i ∈ I ∧ j ∈ J ) ·Mij)ij , (vI)i = ((i ∈ I) · vi)i (2.54)

for some matrix M ∈ Rm×n resp. vector v ∈ Rn and index sets I and J . Abbreviating

notation we also write MI for MI,I .

For a symmetric positive definite matrix M the truncated matrix MI is still spd on the

reduced space VI and thus would be invertible if we deleted the corresponding rows and

columns instead of truncating them. This inspires the definition

(MI)
+ =

(
(MI + Id− IdI)

−1
)
I ,

which is the inverse of MI on the reduced space in the sense that (MI)
+MI = IdI (cf. [66,

Appendix A.6, Lemma A.5]).

With the definitions ∇J(v)J = (∇J0(v + ϕ′(v))J and ∂2J(v)J = (∂2J0(v) + ϕ′′(v))J a

Newton step on the reduced space as secondary correction C is given by

C(v) = −
(
∂2J(c)I′(v)

)+∇J(v)I′(v). (2.55)

In the case of quadratic J0, i.e. in the isotropic case or for the linearized time discretiza-

tions in our context, the two-step method (2.51), (2.52) finds an equivalent reformulation

as a Newton-like method for finding the zeros of the nonlinear smoother

c ∈ Rn : F(c) = 0,
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(cf. [65, 66]).

Note that entries ϕ′′i in the reduced Newton linearization (2.55) might get arbitrarily

large, albeit the restriction to a subspace where ϕ is smooth. In order to avoid the

resulting ill-conditioned linear systems we restrict the linearization further to

I ′′(v) =
{
i ∈ I ′(v) | ϕ′′i (vi) < (Cϕ)ii

}
for some positive definite diagonal matrix Cϕ.

Bearing in mind the general convergence result we notice that we cannot expect the

correction C(cν+ 1
2 ) to be monotone or even feasible, i.e. cν+1 ∈ dom J . To enforce

monotonicity while retaining the possibility for substantial descent in case cν+ 1
2 is close

to ∂ dom J we apply a simple line search for minimal energy in direction of C(cν+ 1
2 )

orthogonally projected to dom J − cν+ 1
2 . Using the inexact Gauss-Seidel method (2.53)

and some approximation of the linear correction C(cν+ 1
2 ) + εν the overall method is thus

given by

cν+ 1
2 = cν + F?(cν) (2.56)

cν+1 = cν+ 1
2 + ρνP ν(C(cν+ 1

2 ) + εν) (2.57)

where ρν has simply to ensure monotonicity, and P ν is the Euclidean orthogonal projection

to dom J − cν+ 1
2 (cf. [66, Section 4.2.5]). In practice we determine ρν by a bisection

iteration. Finally we apply one step of a truncated multigrid to the linear system in (2.57)

in order to compute the inexact correction C(cν+ 1
2 ) + εν (cf. [62, 65, 66]).

2.2.4. Notes on Implementation

Employed Software

Computations All computational implementations in this and the following chapters

were realized on the basis of the Distributed and Unified Numerics Environment - Dune

(cf. [10, 11, 117]) which provides a common grid interface for various grid managers such

as for instance ALUGrid [30, 116] employed here, a linear algebra backend, a collection of

linear solvers, local finite element function and more in the core modules dune-common,

dune-grid, dune-istl, dune-geometry, and dune-localfunctions. Further Dune
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modules used in the present work include dune-subgrid [73, 72], dune-solvers [71],

dune-fufem [44], and dune-tnnmg developed jointly by the Computational PDEs group

at Freie Universität Berlin. They provide a meta-grid, a solver framework including a

linear multigrid solver, global finite element bases and assemblers, and the TNNMG

solver respectively. While the first two are publicly available and the third module is

available on request, the latter mentioned has so far not been published.

Visualization and illustration For the visualization of numerical solutions we used

Amirar [3] and ParaView [105]. The plots were realized in part with Matlabr [93] and

with the Python library matplotlib [78, 94] for the rest. The illustrations of grids and

basis functions were done with the help of asymptote [25, 4]. The illustrations of Wulff

shapes were realized with Mathematicar [92].

Implementation of the Subgrid Approach

The implementation of what we termed the subgrid approach above was carried out

using the dune-subgrid module [73, 72]. It provides a so-called meta-grid building upon

an existing grid manager. Within the subgrid module we can mark a subset of a given

grid managed by some external grid manager and treat it as a grid of its own. We will

refer to this externally managed grid as the hostgrid and to the marked subset as subgrid.

Refinement of the subgrid amounts to adding additional hostgrid elements to the subgrid

with prior refinement of the hostgrid if required. The term hostgrid is thus used a little

differently here than before but as we use the hostgrid here as the implementational

representation of the conceptual hostgrid above, there will be no ambiguities.

Starting out with the computational grid Told of the previous timestep we choose the

initial hostgrid H0 as small as the external grid manager allows such that Told ≺≺· H0.

The computational grid T of the current timestep is kept as a subgrid on the hostgrid

such that each refinement of T will be reflected in the hostgrid. Hence the hostgrid will

really be a hostgrid of Told and T in the sense of Definition 2.8.
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Efficient Evaluation of Anisotropies of Kobayashi Type

In his pioneering paper [81] Kobayashi used smooth anisotropies in 2D with an arbitrary

number of preference directions in the shape of

γ : R2 → R : γ(ξ) = 1 + ā cos(nx), (2.58)

where x is the angle between ξ and the positive x-axis, n the number of preference

directions and ā a parameter of anisotropic ”intensity” (cf. Example 2.5).

The implementation of the evaluation of γ (and its derivatives) is critical as especially in

the nonlinear discretizations (2.17), (2.21) the solution of the spatial problems requires

many (γ2)′- resp. (γ2)′′-evaluations. For efficient evaluation of the trigonometric functions

cosnx and sinnx we make use of the summation formulae

cosnx =

bn
2
c∑

i=0

(−1)i
(
n

2i

)
sin2i x cosn−2i x

sinnx =

dn
2
e∑

i=1

(−1)i+1

(
n

2i− 1

)
sin2i−1 x cosn−2i+1 x

Thus we are left with evaluation of powers of basic trigonometric functions. Since we

never need the angle x explicitly and the sine and cosine are given by the input argument

ξ through

cosx =
ξ1

‖ξ‖2

and sinx =
ξ2

‖ξ‖2

all we ever need to calculate are basically sums and powers of reals - and of course the

binomial coefficients. The computation of the binomials is probably the most costly part

but since we only need small n (n 6 7) in this context, we hard-wire the corresponding

binomial coefficients into the code. As either (γ2)′ and (γ2)′′ require the evaluation of

both cosnx and sinnx it is favorable to compute the required powers only once and use

them for both evaluations.

Table 2.2 compares CPU time for 108 (γ2)′-evaluations at random locations for näıve

computations using x = arctan (ξ2/ξ1) and our evaluation with and without caching of

powers and binomial coefficients. All methods have been implemented in C++ compiled

with gcc-4.3.2 and options -O3 -funroll-loops, ā has been taken to be 1 for n == 1

and 1/(n2 − 1) else. As might be expected computation time for the näıve evaluation

is independent of n while it deteriorates for evaluatio schemes using the summation

49



2. Anisotropic Allen–Cahn Equations

n näıve w/o caching caching binom. caching powers & binom.

1 12.808801 (1.00) 6.108382 (2.1) 5.028314 (2.55) 3.952247 (3.24)
2 12.924808 (1.00) 8.904556 (1.45) 5.680355 (2.28) 4.380274 (2.95)
3 12.908807 (1.00) 12.708794 (1.02) 6.276392 (2.06) 4.756297 (2.71)
4 12.892806 (1.00) 17.889118 (0.721) 7.396462 (1.74) 5.148322 (2.5)
5 12.908807 (1.00) 26.72567 (0.483) 7.52447 (1.72) 5.404338 (2.39)
6 12.924808 (1.00) 42.778673 (0.302) 9.132571 (1.42) 5.776361 (2.24)
7 12.912807 (1.00) 72.388524 (0.178) 9.104569 (1.42) 6.24039 (2.07)

Table 2.2 – CPU time in seconds and speedup-factor vs the näıve variant for
various ways of evaluation of (γ2)′

formula. The latter effect can largely be avoided, at least for small n, when one avoids

recomputation of binomial coefficients and powers of ξi. Overall speedup for our evaluation

scheme lies between 2 and 3 for 1 < n < 8 compared to näıve evaluation.

2.2.5. Numerical Results

Our starting set of numerical experiments focusses on the accuracy of the various time

discretizations NONLIN (2.17), NONLINSEMI (2.21), LIN(λ) (2.24), and LINSEMI(λ)

(2.27) introduced in Section 2.2.1 applied to a 2D model problem. Measurements of

computational effort and convergence rates of the spatial solver complete this experiment.

The second experiment illustrates qualitative effects of anisotropy on the topology of

the solution. We present an initial value whose orientation in space determines whether

pinch off occurs or not.

2D Model Problem

In order to investigate and compare the accuracy and computational effort of the nonlinear

time discretizations NONLIN and NONLINSEMI and their linearized counterparts

LIN(λ) resp. LINSEMI((λ) we consider the mean curvature flow of a scaled Wulff shape

Γ(0) = {x ∈ R2 | γ∗(x) = r0}. Theorem 2.17 states that the solution is self-similarly

shrinking.

Accuracy We assume the overall error is dominated by the discretization error and

deviations due to the phase-field regularization may be neglected. The computed radii of
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the shrinking Wulff shape are compared to the exact solution r(t) =
√
r2

0 − 2t. First we

choose the Kobayashi anisotropy γk,ā (cf. Example 2.5) with k = 3, ā = 0.124 and initial

radius r0 ≈ 0.7958. Note that for this choice of parameters we have L/2 ≈ 1.745 and

the extinction time is t∗ = r2
0/2 ≈ 0.3167. The corresponding Wulff shape is depicted in

Figure 2.2. We consider the anisotropic Allen–Cahn model (2.14) with obstacle potential

Ψ0 and ε = 4 · 10−2. A uniform time stepsize is selected to be τ = 10−4 < ε. The spatial

discretization is based on a uniform triangular grid with mesh size h =
√

2 · 2−7. Note

that this grid satisfies ε/h ≈ 3.6 leading to 12-14 nodes across the interfacial region.

Figure 2.7 shows the exact radius evolution (i.e. that of the sharp interface model) as
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Figure 2.7 – Radius evolutions over t for γ = γk,ā, k = 3, ā = 0.124. by
sharp interface model (thick dashed) and schemes left[right] NONLIN[SEMI]
(—• ) and LIN[SEMI](λ) with λ=0.7 (dotted), 0.9 (—2) and 2.0 (dashed)

well as its approximations over time t. We find that while NONLIN reproduces the

radius dynamics very well the results of LIN(λ) depend heavily on the parameter λ.

For λ = 0.7 < L/4 LIN(λ) produces unstable solutions with too fast dynamics; the

radius dynamics are approximated well for λ = 0.9 ≈ L/4 and are too slow for λ > L/4.

The semi-implicit time discretizations all produce too slow dynamics and overestimate

the extinction time t∗ by a factor of roughly 1.06 as compared to their fully implicit

counterparts. This factor reduces towards 1 for τ −→ 0 as is illustrated by Figure 2.8.

Figure 2.9 illustrates the smoothing effect of the linearization by showing the difference

of the approximations by NONLIN and LIN(0.9). Initially, large deviations occur at the

vertices which are better resolved by the anisotropic nonlinearity than by the isotropic

counterpart λ(∇·,∇·). It seems that these differences are smeared out but uniformly

remain bounded in course of the evolution.

Next we look at the smooth `1-norm γE as in example 2.4 with E = 10−1 and E = 10−3,
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Figure 2.8 – extinction time over τ for schemes NONLIN (blue w/o mark-
ers), NONLINSEMI (red w/o markers), LIN(0.9) (blue w/markers) and
LINSEMI(0.9) (red w/markers).

Figure 2.9 – Difference of approximations by NONLIN and LIN(0.9) at time
t = 10−3, 2 · 10−2, 10−1, 2.5 · 10−1

r0 ≈ 0.5008 resp. r0 ≈ 0.7002 and L/2 ≈ 4.878 resp. L/2 ≈ 32.6723 (again the

corresponding Wulff shapes are to be found in Figure 2.2). Considering L/2 as a

quantification of anisotropy, these are stronger than the previously investigated Kobayashi

anisotropy by a factor of about 3 resp. 20. This time only the fully implicit (wrt the

potential Φ) schemes are taken into account. Again we find LIN(λ) to be unstable for

λ < L/4 and stable but dynamically inaccurate for λ > L/4. In the moderate case

E = 10−1 LIN(L/4) produces satisfactory results whereas for E = 10−3 the dynamics are

widely off the mark for all stable values of λ. NONLIN on the other hand still nicely

reproduces the radius dynamics of the reference problem.

Computational Effort The nonlinear time stepping scheme is accurate independently

of any tuning parameters whereas we expect the linearized version to to be cheaper in

terms of computational effort. Again we consider the 2D model problem with mesh size

h =
√

2 ·10−10 and 4198401 degrees of freedom; other parameters as above. We report the
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Figure 2.10 – Radius evolutions over t for γ = γE, E = 10−1 (top) resp.
E = 10−3 (bottom). left: NOLIN (—• ), LIN(λ) with λ = 1.5 resp. 4.0 (—♦
), λ = 2.0 resp. 13.0 (—? ), λ = 2.5 resp. 16.0 (—2) and λ = 3.0 resp. 18.0
(dashed), and r(t) (thick dashed). right: Zoom illustrating instability of
LIN(λ) for λ < L/4.

number of TNNMG steps and measured CPU time necessary to reach a given tolerance

of tol = 10−13 when solving the spatial problem of the first time step. The results for

NONLIN and LIN(λ) are summarized in Table 2.3. For completeness we performed all

calculations with the obstacle potential and the logarithmic potential with θ = 0.1. In

the case of the obstacle potential we observe a reduction of number of iteration steps

by the factor 6 for LIN as compared to NONLIN. Due to the much more expensive

evaluation of DE0 in the nonlinear case the decrease in CPU time is even by a factor of

11.5. For the logarithmic potential case these gain factors reduce to about 1.5 and 4.4

respectively. As expected the nonlinear scheme requires considerably more CPU time due

to a more costly fine grid smoothing as well as a larger number of TNNMG iterations. In

case of the obstacle potential the difference is particularly striking: While the linearized

scheme requires only one sixth of the TNNMG steps in comparison to NONLIN the gain

in overall CPU time is by a factor of 11.
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2. Anisotropic Allen–Cahn Equations

scheme potential iteration steps cpu time [s]

obstacle 47 3444
NONLIN

logarithmic 47 5017
obstacle 8 298

LIN(0.9)
logarithmic 32 1140

Table 2.3 – Computational effort of TNNMG for a spatial problems arising
from NONLIN and LIN(λ), λ = 0.9

3D pinchoff

Our final experiment illustrates the sensitivity of the anisotropic Allen–Cahn equation to

the spatial orientation of the initial shape. To be more precise, we consider a dumbbell

shape as initial values lying parallel or diagonal to the main anisotropic directions of

the regularized `1-norm γE (E = 10−3) and compute their anisotropic Allen–Cahn flow

with obstacle potential Φ0 and ε = 2 · 10−2 with NONLIN time discretization and

τ = 2 · 10−4 < ε2. In this computation we employ spatially adaptive grids determined by

using the schemes described above with parameters minLevel = 2, ϑcoarsen = 1.7 for the

derefinement, κ = 0.8 in the marking strategy, and an error tolerance of ϑadapt = 10−2

leading to minimal mesh size of hmin =
√

2 ·2−7 concentrated in the diffuse interface. The

number of unknowns varies between roughly 570000 and 14000 over the time intervals

represented by Figures 2.11. A uniform grid of the same mesh size would contain almost

17 million nodes and be most unwieldy for sequential computations on desktop computers.

In the present setting no pinch-off occurs if the initial dumbbell shape is oriented along

one coordinate direction (cf. Figure 2.11). This is different, however, if the dumbell is

oriented diagonally to the coordinate directions (Figure 2.12), where pinch off is enforced

by the anisotropy.
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2.2. Numerical Solution

Figure 2.11 – Evolution of dumbbell shape under anisotropic Allen–Cahn
flow with regularized `1 anisotropy at t = 4 ·10−4, 6 ·10−3, 1.2 ·10−2, 2 ·10−2.
Depicted is the 0-level set and a cross-section of the grid colored according
to the phase-field
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2. Anisotropic Allen–Cahn Equations

Figure 2.12 – Evolution of dumbbell shape under anisotropic Allen–Cahn
flow with regularized `1 anisotropy at t = 4 ·10−4, 6 ·10−3, 9 ·10−3, 1.6 ·10−2.
Depicted is the 0-level set and a cross-section of the grid colored according
to the phase-field

56



3. Cahn–Larché Equations and

Simulation of a AgCu Brazing Alloy

In this chapter we are concerned with phase separation in binary alloys under thermo-

mechanical stress. Solid-solid phase separation processes typically take place in two

distinct regimes. Firstly, if the specimen is quenched, i.e. cooled down quickly, spinodal

decomposition occurs, which is a global spontaneous decomposition of the homogeneous

mixture (cf. Chapter 1) on a fast timescale as opposed to decomposition by nucleation

and growth. Secondly, on a much slower time scale, the microstructure of the decomposed

mixture coarsens which is known as Ostwald ripening or simply coarsening. A mathe-

matical model that accounts for both regimes and incorporates mechanical effects was

first proposed by Cahn and Larché [32] and subsequently generalized to concentration

dependant surface tension, mobility and Hooke tensor (cf. [42, 43, 20]).

While the analysis of the Cahn–Larché model and some of its generalizations is well

developed ([52, 95, 22]), existing numerical solution schemes are typically limited to

smooth approximations of the logarithmic Gibbs free energy ([121, 53, 95]) or periodic

domains and uniform meshes ([42, 43, 20]).

Here we present a numerical framework for the robust solution of Cahn–Larché equations

with logarithmic potential and concentration dependant material data and apply it to

simulate microstructure evolutions in a eutectic AgCu alloy focussing on the coarsening

regime.

3.1. Continuous Problem

We consider a binary mixture of constituents A and B on an open and bounded polyhedral

domain Ω ⊂ Rd, d ∈ {1, 2, 3}. The order parameter is taken to be the concentration

c = cA of species A such that cA(x) ∈ [0, 1] almost everywhere. The concentration cB of
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3. Cahn–Larché Equations and Simulation of a AgCu Brazing Alloy

constituent B is then determined by the constraint cA + cB = 1.

3.1.1. Ginzburg–Landau free energy

The Ginzburg–Landau free energy for the Cahn–Larché model is similar to the one we

considered for the Allen–Cahn model (2.1), augmented by elastic contributions

E(c,u) =

∫
Ω

1

2
G(x, c,∇c(x)) + Ψ(c) +W(c(x), ε(u(x))) dx−

∫
∂Ω

u · g ds. (3.1)

Gibbs free energy

As in the previous chapter we consider Gibbs free energy densities of the form (2.2)

satisfying Assumptions (A1)-(A3). More specifically we employ the Margules ansatz

(cf. [20])

Ψ(c) = β0Rθ
(
c log(c) + (1− c) log(1− c)

)
+ β1(1− c) + β2c+ c(1− c)

(
β3c+ β4(1− c)

) (3.2)

for a given temperature θ > 0, the universal gas constant R = 8.3144621 J(mol K)−1, and

material parameters βi. The classical logarithmic potential as considered in Chapter 2 is

recovered for the choices β0 = 1/R, β1 = β2 = 0, and β3 = β4 = 1
2
.

Interfacial energy

The interfacial energy density is here taken to be of the form

G(x, c,∇c) = Γ(c)∇c · ∇c

(cf. [20]), with a concentration dependent positive definite matrix Γ(c) ∈ Rd×d. A very

simple example is

Γ(c) = γ(c)Idd (3.3)
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3.1. Continuous Problem

with Idd being the d×d identity matrix and γ(c) interpolating linearly between the values

γA = γ(1) and γB = γ(0) corresponding to the pure constituents A and B respectively:

γ(c) = cγA + (1− c)γB. (3.4)

Elastic energy

The elastic energy density W takes the shape

W(c, ε(u)) =
1

2
(ε(u)− ε̄(c)) : σ. (3.5)

Postulating small displacements we consider the linearized strain ε(u) = 1
2
(∇u+∇uT)

and assume Hooke’s law σ = C(c) (ε(u)− ε̄(c)) with a given, positive definite tensor C(c)

that fulfills the usual symmetry conditions of linear elasticity [100] and given eigenstrains

ε̄(c). Both, Hooke’s tensor C(c) and the eigenstrains ε̄(c) are allowed to be concentration

dependent, for example linearly as in (3.4). The boundary integral term −
∫
∂Ω
u · g ds

accounts for the prescribed boundary stress g.

3.1.2. Generalized Cahn–Larché equations

Assuming conservation of mass of each component of the alloy we base the model on the

mass balance

∂tc = − divF, (3.6)

with some diffusional flux F which we assume to be

F = −M(c)∇w,

with a concentration dependent mobility matrix M(c) and the chemical potential

w =
∂E
∂c

= − div (Γ(c)∇c) + 1
2
∇cTΓ′(c)∇c+ Ψ′(c) + ∂

∂c
W(c, ε). (3.7)

Since mechanical equilibrium is expected to be attained much faster than thermodynam-

ical equilibrium, we assume that

∂E
∂u

= divσ = 0 (3.8)
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3. Cahn–Larché Equations and Simulation of a AgCu Brazing Alloy

holds throughout the evolution (cf. [95, Sect. 1.3.2]). Selecting some final time T > 0,

the above equations constitute the generalized Cahn–Larché system

∂tc− divM(c)∇w = 0 (3.9a)

− div (Γ(c)∇c) + 1
2
∇cTΓ′(c)∇c+ Ψ′(c) + ∂

∂c
W(c, ε(u))− w = 0 (3.9b)

div
(
C(c) (ε(u)− ε̄(c))

)
= 0 (3.9c)

on Ω× [0, T ] for the unknown concentration c, chemical potential w, and displacement

u. We prescribe the Neumann boundary conditions

Γ(c)∇c · n = 0, ∇w · n = 0, σ · n = g on ∂Ω× [0, T ] (3.10)

with n denoting the outward unit normal to ∂Ω and given boundary stress g. Finally,

we impose the initial condition

c(·, 0) = c0 on Ω. (3.11)

A thermodynamical derivation of the Cahn–Larché system (3.9) as a higher gradient

theory of mixtures was carried out by Böhme et al. [19, 20].

An interpretation of the Cahn–Larché equations as an H−1-gradient flow is given in [52].

Observe that the Cahn–Larché system (3.9) is invariant under infinitesimal rigid body

motions

ker(ε) = {v : Ω→ Rd | v(x) = Ax+ b with a skew symmetric matrix A}

representing the kernel of the differential operator div
(
C(c)ε(·)

)
. As only the strain ε

enters the phase field equations (3.9a) and (3.9b), the remaining elasticity equation (3.9c)

can be considered in the corresponding quotient space

H = (H1(Ω))d/ ker(ε).

The weak formulation of the Cahn–Larché equations is then given by

Find c ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′) with the property c(·, 0) = c0,
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3.1. Continuous Problem

w ∈ L2(0, T ;H1(Ω)), and u ∈ L2(0, T ; H) such that

〈ct, v〉+ (M(c)∇w,∇v) = 0 ∀v ∈ H1(Ω), (3.12a)

(Γ(c)∇c,∇(v − c)) − (w, v − c)

+φ(v)− φ(c) > (R(c,u), v − c)

 ∀v ∈ H1(Ω), (3.12b)

(C(c) (ε(u)− ε̄(c)) , ε(v)) =

∫
∂Ω

g · v ds ∀v ∈ H (3.12c)

with

R(c,u) = −Υ′(c)− 1

2
(∇c)T Γ′(c)∇c− ∂

∂c
W(c, ε(u))

holds a.e. in (0, T ].

3.1.3. Analytic properties

First existence and uniqueness results are due to Garcke. In [52] he established existence

of solutions to the Cahn–Larché system in the case of homogeneous interface tension Γ

and constant mobility. Uniqueness was shown, if additionally one assumes a constant

Hooke tensor and a linear dependance of the eigenstrains on concentration. More precisely

he proved the following theorem.

Theorem 3.1. Assume that Ω ⊂ Rd is a bounded domain with Lipschitz boundary ∂Ω,

the interfacial energy tensor takes the shape Γ(c) = γIdd with γ > 0 independent of

c, the double-well potential Ψ is given by (2.4),(2.5), the mobility M(c) = M0 > 0 is

independent of c, the boundary stress takes the form g = σn with constant stress tensor

σ on ∂Ω× (0, T ], and c0 ∈ H1(Ω) satisfies c ∈ (0, 1) almost everywhere.

Then there exists a solution to the weak Cahn–Larché system (3.12).

Assume additionally that the Hooke tensor C(c) = C0 is independent of c, and the

eigenstrain takes the form ε̄(c) = cε̄1 + (1 − c)ε̄0 with given ε̄1, ε̄0 ∈ Rd×d. Then the

weak solution to the Cahn–Larché system is unique.

Note that originally this theorem was proven for a multicomponent phase-field equation

and therefore includes the vector-valued setting following in Chapter 4. A generalization

of this result has been given by Merkle [95] who considers concentration dependent Hooke

61



3. Cahn–Larché Equations and Simulation of a AgCu Brazing Alloy

tensor and mobility and also allows more general eigenstrains. However, his result suffers

from the restriction to globally smooth Gibbs free energy densities Ψ, which excludes the

logarithmic potentials considered here.

Earlier existence results by Bonetti et al [22, 21] relying on the introduction of a smoothing

viscosity term include concentration dependent interface coefficients of the form (3.3)

and concentration dependent mobility but have to assume a homogeneous Hooke tensor.

Note, however, that the system considered there does not allow a derivation as a gradient

flow.

Another feature of the Cahn–Larché system (3.9) is thermodynamical consistence in the

sense that the Ginzburg–Landau energy acts as a Lyapunov functional for (3.9) (cf. [52,

Section 2]).

For the Cahn–Hilliard equation the sharp interface limit is well known to be the so-called

Mullins–Sekerka or Hele–Shaw model (cf. e.g. [34]).

The sharp interface limit of the Cahn–Larché model has been derived by Kwak and

Garcke in [54, 88] which is a suitably modified version of the Mullins–Sekerka model

accounting for the elastic effects by introducing the so-called Eshelby tensor.

3.2. Numerical Solution

In this section we present a discretization of the weak formulation (3.12) of the generalized

Cahn–Larché system by an Euler-type discretization in time and finite elements in space.

Again we employ Rothe’s method, i.e. we first dicretize in time to obtain a sequence of

static spatial problems which are then discretized in space (cf. Section 2.2).

Following is a description of the solvers employed to solve the arising algebraic problems.

3.2.1. Time Discretization

In order to avoid any time step restrictions, we apply an implicit Euler discretization to

the second order term and the convex part φ of the double-well potential ψ in the phase

field equation (3.12b). The remaining, often concave part � of ψ is taken explicitly (cf.,

e.g., [17]). Assuming moderate variation of the solution-dependent coefficient functions

Γ, M and C, these are frozen at the preceding time step. Note that this leads to a
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3.2. Numerical Solution

decoupling of the phase field equation (3.12b) and mechanics (3.12c), which will simplify

the algebraic solution of the discretized spatial problems later on. Denoting

K = dom(φ) = {v ∈ H1(Ω) | v(x) ∈ [0, 1] a.e. in Ω}

this approach results in the scheme:

For m = 1, . . . , find (cm, wm,um) ∈ K ×H1(Ω)×H such that

(cm, v) + τ
(
M(cm−1)∇wm,∇v

)
=
(
cm−1, v

)
∀v ∈ H1(Ω), (3.13a)(

Γ(cm−1)∇cm,∇(v − cm)
)
− (wm, v − cm)

+φ(v)− φ(cm) >
(
R(cm−1,um−1), v − cm

)
 ∀v ∈ K , (3.13b)

(C(cm) (ε(um)− ε̄(cm)) , ε(v)) =

∫
∂Ω

g · v ds ∀v ∈ H. (3.13c)

with given initial value c0 ∈ K , the displacement u0 ∈ H obtained from

u0 ∈ H :
(
C(c0)

(
ε(u0)− ε̄(c0)

)
, ε(v)

)
=

∫
∂Ω

g · v ds ∀v ∈ H,

and suitable time step size τ > 0.

To show existence and uniqueness of solutions we impose the following conditions on

coefficient functions and the initial value.

(A6) M(·), Γ(·), and C(·) are uniformly bounded from below on [0, 1], i.e., there are

constants λM, λΓ, λC > 0 such that

λM|x|2 6M(c)x · x ∀c ∈ [0, 1], x ∈ Rd,

λΓ|x|2 6 Γ(c)x · x ∀c ∈ [0, 1], x ∈ Rd,

λC|x|2 6 C(c)x : x ∀c ∈ [0, 1], x ∈ Rd×d.

(A7) The norms of M(·),Γ(·), C(·), ε̄(·),Γ′(·), C ′(·), ε̄′(·) are uniformly bounded from

above on [0, 1].

(A8) The initial value c0 is nontrivial in the sense that 0 < (c0, 1) < |Ω|.

Theorem 3.2. Assume that conditions (A6)–(A8) hold and that for a fixed m > 0
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3. Cahn–Larché Equations and Simulation of a AgCu Brazing Alloy

cm−1 ∈ K , cm−1 is nontrivial in the sense that 0 < (cm−1, 1) < |Ω|, and um−1 ∈ H.

Then there is a solution (cm, wm,um) ∈ K ×H1(Ω)×H of (3.13) and (cm,∇wm,um)

is unique.

For the proof of Theorem 3.2 the following continuity result will be helpful.

Lemma 3.3. Let z ∈ L1(Ω). Then the functional g(v) = (z, v) is continuous on each

L∞(Ω)-bounded subset of Lp(Ω), 1 6 p 6∞.

Proof. For p =∞ the assertion follows from Hölders inequality. Let 1 6 p <∞. Consider

some U ⊂ Lp(Ω) such that there is r > 0 with |v(x)| 6 r a.e. in Ω for all v ∈ U . We

define the function f : Ω× R→ R according to

f(x, v) =


z(x)v, if |v| 6 r,

z(x)r, if v > r,

−z(x)r, if v < −r.

Then the corresponding superposition operator F , given by (F (v))(x) = f(x, v(x)),

satisfies F (v) = zv for all v ∈ U . Moreover, |F (v)| 6 r|z| holds for all v ∈ Lp(Ω) and

therefore F : Lp(Ω)→ L1(Ω). As f(x, ·) is continuous on R for all x ∈ Ω and f(·, v) is

measurable on Ω for all v ∈ R Theorem A.10 implies that F : Lp(Ω) → L1(Ω) is even

continuous. Hence U 3 v 7→
∫

Ω
F (v) dx = (z, v) is continuous from U to R with respect

to ‖ · ‖Lp(Ω).

Note that the linear map g is Gâteaux differentiable on bounded functions but its Gâteaux

derivative g′(v) = g is in general not continuous on this space.

Lemma 3.4. Let cm−1 ∈ K = {v ∈ H1(Ω) | v(x) ∈ [0, 1] a.e} and um−1 ∈ H. Then the

functional Jm : H1(Ω)→ R ∪ {∞} given by

Jm(c) =

∫
Ω

1
2
Γ(cm−1)∇c · ∇c dx+ γ0

2

(
c− cm−1, 1

)2
+ φ(c)−

(
Rm−1, c

)
with some γ0 > 0 and Rm−1 = R(cm−1,um−1) is proper, strongly convex, and lower

semi-continuous on H1(Ω).

Proof. Utilizing the assumptions (A1), (A2) on Γ, the Poincaré inequality implies that the

two quadratic terms in Jm are strongly convex and continuous on H1(Ω). Furthermore

φ is convex, proper, and lower semi-continuous on H1(Ω) (cf. Lemma 2.3).
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It remains to show that the linear functional (Rm−1, ·) is lower semi-continuous. To this

end, first note that cm−1(x) ∈ [0, 1] a.e. in Ω together with smoothness of Υ implies

Υ′(cm−1) ∈ L∞(Ω). Utilizing the boundedness of the coefficient functions occurring in

Rm−1, cm−1 ∈ H1(Ω), and um−1 ∈ H1(Ω)d, we get

z = 1
2

(
∇cm−1

)T
Γ′(cm−1)∇cm−1 + 1

2
ε(um−1) : C ′(cm−1)ε(um−1) ∈ L1(Ω)

and all other terms are in L2(Ω). Lemma 3.3 implies that v 7→ g(v) := (z, v) is continuous

on K = dom(Jm) with respect to ‖ · ‖L2(Ω), and all the more with respect to ‖ · ‖H1(Ω).

Hence, the extension of g by infinity is lower semi-continuous on H1(Ω). Thus Jm is

lower semi-continuous on H1(Ω).

Note that strong convexity implies strict convexity and coercivity.

Proof of Theorem 3.2. To show existence of a solution to (3.13a)–(3.13b) we can proceed

as in [66, Theorem 3.8]: First we note that these equations are equivalent to a saddle

point problem for the associated Lagrangian functional

Lm(c, w) = Jm(c)−
(
c− cm−1, w

)2 − τ

2

(
M(cm−1)∇w,∇w

)
. (3.14)

Note that the additional integral term (c− cm−1, 1) in Jm vanishes if (3.13a) is satisfied.

While Lm(c, ·) is trivially concave and upper semi-continuous, Lemma 3.4 provides

convexity, coercivity, and lower semi-continuity of Lm(·, w). Now existence follows from

[45, Chapter VI, Proposition 2.4], if the dual functional

h(w) = − inf
v∈K
Lm(v, w)

is coercive on H1(Ω). This can be shown as in [66, Theorem 3.8] by proving that

h(w) > −Lm(c(w), w) > C‖w‖H1(Ω) − C

holds with c(w) = (1 + sgn (w, 1))/2 = const ∈ {0, 0.5, 1}.

In order to prove uniqueness, assume that (cm1 , w
m
1 ) and (cm2 , w

m
2 ) are two solutions. Then

testing (3.13a) for (cmi , w
m
i ) with wmi − wmj , j 6= i, and adding the equations yields

(wm2 − wm1 , cm1 − cm2 ) = τ
(
M(cm−1)∇(wm1 − wm2 ),∇(wm1 − wm2 )

)
. (3.15)
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Similarly testing (3.13b) for (cmi , w
m
i ) with cmj , j 6= i, yields

(
Γ(cm−1)∇(cm1 − cm2 ),∇(cm1 − cm2 )

)
+ (wm2 − wm1 , cm1 − cm2 ) 6 0. (3.16)

Inserting (3.15) into (3.16) provides uniqueness on ∇cm and ∇wm. Testing (3.13a) with

v = 1 = const finally provides uniqueness of (cm, 1) and therefore of cm.

For the remaining problem (3.13c) the assumptions (A1)–(A3) on the coefficient func-

tions ensure that the right hand side is in H1(Ω)′ and therefore the bilinear form

(C(cm)ε(·), ε(·)) is (ε(·), ε(·))-elliptic. Now Korn’s inequality (see, e.g., [100, Theo-

rem 3.5]) provides H1(Ω)d-ellipticity on the quotient space H and thus the existence of a

unique solution um ∈ H.

Note that (3.13a) yields (cm, 1) = (cm−1, 1). Hence, Theorem 3.2, c0 ∈ K and 0 <

(c0, 1) < |Ω| inductively imply existence for all time steps.

Corollary 3.5. Assume that conditions (A6)–(A8) hold. Then (3.13) has a solution

(cm, wm,um)m=1,... and (cm,∇wm,um)m=1,... is unique.

3.2.2. Adaptive Space Discretization

We will now consider the adaptive finite element discretization of the stationary problems

(3.13) arising in each timestep. For that matter we will use the terminology and notation

as introduced in Section 2.2.2.

As before the strongly local variation of the phase-field makes adaptive space discretization

mandatory. To that end we again employ hierarchical error estimates in conjunction

with the previously described marking strategy, choice of initial grid and the Subgrid

approach (cf. Section 2.2.2).

Finite element discretization

As in the previous chapter, we assume that T is the leaf grid of an underlying simplicial

grid hierarchy (T0, . . . ,Tj) with an intentionally coarse initial grid T0. We will discretize

the spatial problems (3.13) with respect to the finite element space ST (see 2.32). The
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3.2. Numerical Solution

induced subspace hierarchy will be denoted according to

S0 ⊂ . . . ⊂ Sj = ST

Sk = SL(T0,...,Tk)

(3.17)

In particular, the discretization of (3.13c) is based on the discrete quotient space HT =

S d
T/ ker(ε) = S d

T ∩H which is well defined since ker(ε) ⊂ S d
T. Recalling the approximate

nonsmooth nonlinear functional

φT(v) :=
∑

p∈F•0(T)

Φ(v(p))

∫
Ω

bp(x) dx

as defined in (2.33), assuming that cold ∈ K and uold ∈ H are approximations of cm−1

and um−1, denoting

K T = ST ∩K ,

and again dropping the index m for readability, the discretized spatial problem in the

m-th time step is given by

Find (cT, wT,uT) ∈ K T × ST ×HT such that

(cT, v) + τ
(
M(cold)∇wT,∇v

)
=
(
cold, v

)
∀v ∈ ST, (3.18a)(

Γ(cold)∇cT,∇(v − cT)
)
− (wT, v − cT)

+φT(v)− φT(cT) >
(
R(cold,uold), v − cT

)
 ∀v ∈ K T, (3.18b)

(C(cT) (ε(uT)− ε̄(cT)) , ε(v)) =

∫
∂Ω

g · v ds ∀v ∈ HT. (3.18c)

The algebraic solution of (3.18) will be considered in Section 3.2.3.

Theorem 3.6. Assume that conditions (A6)–(A8) hold and that for a fixed m > 0

cold ∈ K , cold is nontrivial in the sense that 0 <
(
cold, 1

)
< |Ω|, and uold ∈ H. Then

there is a solution (cT, wT,uT) ∈ K T × ST ×HT of (3.18) and (cT,∇wT,uT) is unique.

If there is furthermore a vertex p ∈ F•0(T) such that Φ is differentiable at cT(p), then wT

is unique.

Proof. The existence of (cT, wT,uT) and uniqueness of (cT,∇wT,uT) follows by the same

arguments as in the proof of Theorem 3.2.
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To show uniqueness of wT let p ∈ F•0(T) such that Φ is differentiable at ξ = cT(p). Then

ξ ∈ (0, 1) and we can use v± = cT ± δbp for sufficiently small δ > 0 in (3.18b). Testing

(3.18b) with v+ and v− for two solutions wT,1 and wT,2, respectively, and adding both

inequalities yields

(wT,2 − wT,1, bp) >
(Φ(ξ)− Φ(ξ + δ)

δ
− Φ(ξ − δ)− Φ(ξ)

δ

)∫
Ω

bp(x) dx.

Taking the limit δ → 0 and switching the role of wT,1 and wT,2 we get

0 = (wT,2 − wT,1, bp) = (wT,2 − wT,1, 1)
(bp, 1)

|Ω|
.

The last equation holds because wT,2 − wT,1 is constant and implies that this constant is

zero.

Note that the condition for uniqueness of wT is always fulfilled for logarithmic potentials

of the form (2.5), because 0 < cT < 1. For the obstacle potential the condition is satisfied,

if there is at least one vertex p ∈ F•0(T) in the discrete interfacial region.

Usually, cold is a finite element function on a grid Told. In case of adaptive refinement, Told

is usually different from T. Desired properties as, e.g., mass conservation (cT, 1) =
(
cold, 1

)
then impose the following restrictions on the choice of possible approximations of the

occurring L2-inner products (cf. [66, Sect. 3.4.3],[73, Sect. 5]).

(i) To guarantee mass conservation, the approximate inner products used on the left

and right hand side of (3.18a) should both be exact for v ≡ 1.

(ii) To guarantee that (3.18a) is equivalent to cT = cold for τ → 0, the approximate

inner products on the left and right hand side of (3.18a) should be the same.

(iii) To preserve the symmetric saddle point structure (see proof of Theorem 3.6), the

approximate inner products used on the left hand sides of (3.18a) and (3.18b)

should be the same.

As a consequence of (i), lumping should be carried out with respect to the hostgrid that

contains both T and Told. In general, lumping then no longer provides a diagonal matrix

and thus its main advantage is lost. Hence, lumping is avoided here and we resort to the

standard L2-inner product.
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3.2. Numerical Solution

We emphasize that for affine parameter functions Γ, C, ε̄, and M, e.g., of the form (3.4),

and finite element functions cold and uold, all integrals involved in (3.18) can be calculated

exactly using suitable quadrature rules. To this end we also employ the Subgrid approach

as described in Section 2.2.4. Numerical computations indicate that this is particularly

important for the leading order terms.

Hierarchical a posteriori error estimation for discrete Cahn–Hilliard equations

Thermomechanical stress is caused by different thermal expansion coefficients and the

lattice mismatch of the different constituents [42]. Hence, we assume that the accuracy

of the finite element approximation (3.18c) is controlled by the resolution of the diffuse

interface and thus concentrate on hierarchical error estimation of the phase-field variables

cT and wT. As the general idea has already been described in Section 2.2.2 we will only

highlight the problem specific details following [68, 66, 69].

To this end, we note that the discrete spatial Cahn–Hilliard system (3.18a), (3.18b) is

equivalent to a saddle point problem in ST× ST for a Lagrangian functional LT similar to

Lm given in 3.14. In fact, selecting cm−1 = cold and um−1 = uold, the Lagrangian LT is

obtained from Lm by replacing φ with the approximation φT. Following [68, 66], we now

derive an a posteriori error estimate by suitable approximation of the defect problem

associated with the defect Lagrangian

D(ec, ew) = Lm(cT + ec, wT + ew)− φ(cT + ec) + φT′(cT + ec).

Again we first discretize the defect problem with respect to the extended space Q × Q ,

where Q = ST′ and T′ is obtained by uniform refinement of T. Recall that we have

Q = ST ⊕V with V denoting the incremental space

V = span{bT′p | p ∈ FV
0 }

and FV
0 = F•0(T

′) \ F•0(T) being the set of non-hanging edge mid points in T. Here we

use the grid as additional index for the basis functions to stress the fact, that they are

nodal basis functions with respect to the refined grid T′.

In the second step, the discrete defect problem is localized by ignoring the coupling

between ST and V and also the coupling of the bT
′

p for all p ∈ FV
0 . Denoting Dp(r, s) =
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3. Cahn–Larché Equations and Simulation of a AgCu Brazing Alloy

D(rbT
′

p , sb
T′
p ), this results in the local saddle point problems

(ec,p, ew,p) ∈ R2 : Dp(ec,p, s) 6 Dp(ec,p, ew,p) 6 Dp(r, ew,p) ∀r, s ∈ R

for all p ∈ FV
0 that give rise to the local error indicators and the hierarchical a posteriori

error estimate

η2
p =

∥∥∥ec,pbT′p ∥∥∥2

c
+
∥∥∥ew,pbT′p ∥∥∥2

w
, p ∈ FV

0 ; η =
(∑
p∈FV

0

η2
p

) 1
2

(3.19)

for the norms

‖c‖2
c =

(
Γ(cold)∇c,∇c

)
+ γ0 (c, 1)2 ,

‖w‖2
w = τ

((
M(cold)∇(w),∇w

)
+ ‖w‖2

0,T

)
and an averaged surface tension coefficient γ0 = 1

d

∑d
i=1 Γii(0).

After elimination of ew,p, the local saddle point problems can be expressed in terms

of scalar convex minimization problems which can be easily solved, e.g., by bisection.

Numerical computations indicate efficiency and reliability of this error estimate [68], but

theoretical justification is still open.

The mesh refinement cycle based on the estimate and local error indicators (3.19) then

is executed exactly as in the previous chapter.

Algebraic reformulation

Assuming an ordering bp1 , . . . , bpn of the basis of ST with n = dim ST = |F•0(T)| we can

represent cT and wT by coefficient vectors c,w ∈ Rn. Following the proof of Theorem 3.2

we use an equivalent reformulation of (3.18a)–(3.18b) with 0 = γ0

(
cT − cold, 1

)
(1, v − cT)

added to (3.18b) resulting in the discrete variational problem to find c, w ∈ Rn such that

〈Ac, v − c〉 − 〈Bw, v − c〉+ ϕ(v)− ϕ(c) > 〈f, v − c〉 ∀v ∈ Rn

Bc + Cw = −g
(3.20)
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with A,B,C ∈ Rn×n, f, g ∈ Rn, and the functional ϕ : Rn → R ∪ {+∞} given by

Aij =
(
Γ(cold)∇bpi ,∇bpj

)
+ γ0 mimj, mi =

∫
Ω

bpi(x) dx,

Bij =
(
bpi , bpj

)
, fi =

(
R(cold,uold), bpi

)
+ γ0

(
cold, 1

)
mi

Cij = τ
(
M(cold)∇bpi ,∇bpj

)
, gi = −

(
cold, bpi

)
and

ϕ(v) =
n∑
i=1

Φ(vi)mi.

Utilizing the subdifferential ∂ϕ : Rn → 2R
n

of ϕ the phase-field system can be written as

the inclusion (
A+ ∂ϕ −B
−B −C

)(
c

w

)
3

(
f

g

)
(3.21)

with symmetric positive semi-definite C ∈ Rn×n and symmetric positive definite matrix

A ∈ Rn×n. Notice that A is the sum of a sparse matrix of rank (n − 1) and a dense

matrix of rank 1. The inclusion (3.21) is called a saddle point problem since its solutions

are saddle points of

L(c,w) =
1

2
〈Ac, c〉 − 〈f, c〉+ ϕ(c)− 〈Bc,w〉 − 〈g,w〉 − 1

2
〈Cw,w〉 .

In case of a logarithmic potential (2.5), the inclusion (3.21) can as well be written as

an equation, involving the derivative of Ψ. However, in the light of its singularities at

c = 0, 1 and desired robustness of iterative solution with respect to temperature θ, we

concentrate on the more general formulation (3.21).

3.2.3. Algebraic Solution of Discrete Spatial Problems

In this section we will discuss the efficient algebraic solution of the discrete problems (3.18)

by iterative methods. In each time step this amounts to the solution of the nonsmooth

nonlinear saddle point problem (3.18a)–(3.18b) and the linear equation (3.18c) in the

quotient space HT.
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3. Cahn–Larché Equations and Simulation of a AgCu Brazing Alloy

Nonsmooth Schur–Newton methods

We solve the saddle point system (3.21) iteratively by so-called nonsmooth Schur–Newton

multigrid methods, NSNMG methods in short. Here, it does not matter whether ∂ϕ

is set- or single-valued, because NSNMG relies on convexity rather than smoothness.

While originally introduced for saddle point problems with obstacles [67, 63], NSNMG

has been meanwhile extended to more general nonlinearities with nonsmooth convex

energies [66, 61, 64]. Since the method and corresponding results are literally the same

as for the vector-valued case (Section 4.2.2) we refer to the presentation there and the

cited references for details and just give an overview of the basic ideas here.

The NSNMG approach relies on the equivalent minimization problem

w ∈ Rn : h(w) 6 h(v) ∀v ∈ Rn

for the dual energy functional

h(w) = − inf
v∈Rn

L(v,w), (3.22)

which was already used in the proofs of Theorems 3.2 and 3.6.

Now the main observation is that h : Rn → R is convex and differentiable with Lipschitz

continuous derivative ∇h. Hence, the saddle point system (3.21) is equivalent to the

equation

∇h(w) = 0, (3.23)

where the derivative ∇h is given by the nonlinear Schur-complement

∇h(w) = B
(

(A+ ∂ϕ)−1(f +Bw)
)

+ Cw + g.

Lipschitz continuity of ∇h allows to apply Newton-like gradient related descent methods

wν+1 = wν − ρν
(
∂2h(wν)

)−1

∇h(wν) (3.24)

with ∂2h(wν) being a generalized linearization of ∇h at wν and ρν a suitable damping

parameter.
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3.2. Numerical Solution

The associated primal iterate cν is then determined by

cν = (A+ ∂ϕ)−1(f +Bwν). (3.25)

Assuming existence and uniqueness of the solution wT, it was shown in [66, 61] that the

resulting algorithm is globally convergent, if the damping parameters ρν are properly

chosen, e.g., by bisection or by the Armijo rule. Global convergence is preserved by

inexact evaluation of the directions (∂2h(wν))−1∇h(w) with increasing accuracy.

Each NSNMG iteration is stopped, if the norm of the actual correction of the dual iterate

falls below a given threshold, i.e.,

∥∥wν+1 − wν
∥∥

w
6 ϑNSNMG. (3.26)

In the numerical experiments reported below ϑNSNMG = 10−12 was chosen.

Each iteration step of NSNMG requires the (approximate) solution of the nonlinear

Allen–Cahn-type problem (3.25) and the linear system (3.24) in order to obtain ∇h(wν)

and the new iterate wν+1, respectively. In our numerical computations to be reported

below, the nonlinear Allen–Cahn-type problem (3.25) is solved in an efficient and robust

way by V(3,3) cycles of Truncated Nonsmooth Newton Multigrid (TNNMG) as described

in Section 2.2.3. The linear system (3.24) is equivalent to a linear saddle point problem

and can be solved by a multitude of direct or iterative solvers. We used the GMRES

method [112] preconditioned with a multigrid method with block Gauß–Seidel smoother

[113, 119, 126] in our numerical computations.

A multigrid method for singular elasticity problems

In order to describe the iterative solution of the elasticity problem (3.18c), we first

consider the semi-definite problem on the whole finite element space

ũT ∈ S d
T : a(ũT,v) = `(v) ∀v ∈ S d

T (3.27)

with a symmetric positive semi-definite bilinear form and a linear functional given by

a(·, ·) = (C(cT)ε(·), ε(·)) , `(·) =

∫
∂Ω

g · (·) ds+ (C(cT)ε̄(cT), ε(·))

73
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respectively. Without loss of generality we assume that g satisfies the compatibility

condition ∫
∂Ω

g · v ds = 0 ∀v ∈ ker(ε).

Then the solution space of (3.27) is given by uT + ker(ε).

For the solution of (3.27) we can now use a classical linear multigrid method with linear

Gauß–Seidel smoother with respect to the hierarchy S d
0 ⊂ · · · ⊂ S d

j = S d
T of subspaces, as

introduced in (3.17). We emphasize that the Gauß–Seidel smoother is well-defined for all

levels k because the vector valued nodal basis functions of S d
k are not contained in the

kernel ker(ε) of the bilinear form a.

It is easy to see that this multigrid method converges to the solution uT with respect to

the half-norm a(·, ·)1/2. For the Poisson problem with Neumann boundary conditions

discretized with respect to a hierarchy of quasi-uniform grids, mesh independence of the

convergence rates was shown in [90]. Mesh independence for classical multigrid applied

to the present singular elasticity problem (3.27) can be shown using the same arguments.

Notice that only the projected iterates, i.e. projected onto to H, converge to uT with

respect to the H1(Ω)d-norm. This is due to the non-uniqueness of rigid body motions of

solutions to (3.27).

3.2.4. Quantification of Coarsening

As macroscopic properties of alloys usually degrade with increasing coarseness of the

microstructure, a main aspect of the simulation of microstructure evolutions is the

quantification of coarsening. For that end we need to introduce a characteristic length

scale of a given grain distribution. It is well-known that for the Cahn–Hilliard equation

(without elasticity) such a length scale cannot grow faster than t1/3 in a time averaged

sense. (cf. [82, 36, 101, 102]). Obviously, there are no corresponding global lower bounds,

as there are stable states that do not coarsen at all.

While the inverse of the Ginzburg–Landau energy has emerged as a convenient length

scale in analysis and numerical computations (cf. [36, 55, 82, 101, 102, 121]), it suffers

from inaccessibility in physical experiments. Hence, we choose the so-called mean

intercept length L̄ as characteristic length scale to maintain quantitative comparability
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with material science experiments as for example in [19]. It gives the expected value

of the length of a secant across a precipitate. If all precipitates are roughly spherical

and of comparable size, the mean intercept length approximately translates to the mean

phase radius by a simple multiplication. In order to determine L̄ we follow standard

procedure of quantitative stereology performing a lineal analysis (cf. [118]). The details

of the applied procedure are given below.

For the following let’s call the matrix and particle (or precipitate) phases β- resp. α-phase

and assume that the phase field value cα of the α-phase is greater than that of β-phase,

cβ. In this context let Θ denote the set of secants of α-precipitates and L(ω) the length

of ω ∈ Θ. The mean intercept length is then

L̄ = E(L)

the expected value of secant length assuming uniform distribution on Θ. In order to

approximate L̄ we lay an equidistant cube mesh with mesh size h over the computational

domain and count the number of mesh edges NE and the number of line segments NL

intersecting an α-precipitate, i.e. α-secants lying on mesh lines. Partially intersecting

edges are counted as one half. Thus we have as an approximation

L̄ ≈ NE · h/NL.

If no particles of diameter less than
√

2h are present, counting the intersecting edges

amounts to counting grid vertices inside α-regions and multiplying by the dimension of

the computational domain (note that smaller particles might be overlooked this way, cf.

Fig. 3.1 left). A vertex is counted as inside α-phase iff the value of the phase field at

its coordinates is above a given threshold c0. As intersecting line segments we count

nonempty α-vertex sets which are discretely connected along single mesh lines (cf. Fig. 3.1

right). Under the assumption that the minimal distance of two neighboring precipitates

is larger than h this is exactly the number NL.

As the mean intercept length of a single spherical particle of radius r is νd · r where

νd = π
2

in 2D and νd = 4
3

in 3D, we validate our algorithm with a set of grain distributions

of equisized particles of known radius r ∈ {k · 0.05}10
k=1. We choose various mesh sizes

for the algorithm and compute the relative error of our numerical measurement. The

results are aggregated in Figure 3.2 where we plot the relative error of our mean radius

measurement over the relative mesh size, i.e. h/r. We find that our method is exact up
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Figure 3.1 – Illustration of our lineal analysis. In this example we have
NE = 12; NL = 7

to an order of magnitude of 10−3 at h/r = 0.02 for all tested cases.

For conglomerates of (roughly) spherical particles of various radii, we define the mean
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Figure 3.2 – The relative error of our mean radius measurement over relative
meshsize, i.e. h/r, for r ∈ {k · 0.05}10

k=1. Plot colors relate to radii in
ascending order by black, blue, red, green, cyan, magenta, yellow, darkgreen,
orange, darkblue. Note the inverted horizontal axis.

phase radius r̄ as

r̄ =
L̄

νd
.

Note that, in general, this differs from the arithmetic mean phase radius r̄a = 1
NA

∑NA
i=1 ri

where NA and ri are the number of particles and the radius of the i-th particle respectively.

Consider the case of two spherical particles of roughly the same size under competitive

growth. One will grow at the expense of the other until the latter one’s annihilation

as illustrated in Figure 3.3 top, while the total particle volume is conserved. While the
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3.3. Coarsening of microstructure in a eutectic AgCu brazing alloy

arithmetic mean phase radius even decreases and then jumps at the annihilation point,

our mean phase radius as computed by the mean intercept length makes a continuous

transition from the starting value to its double as seen in Figure 3.3 bottom. For

conglomerates of equisized spherical particles r̄ = r̄a holds, however.

For the competitive growth example we chose an initial configuration of two circles

with radii r1,2 = r0 = 0.2 centered at (−0.3, 0) and (0.3, 0) respectively with a smooth

transition from value -1 to 1 according to a sine profile across an interface of width

10−13. The radius refers to the zero level line. We then let one circle shrink according to

r1(t) =
√
r2

0 − 2t and the other inflate such that the overall particle volume is constant.

0.000 0.002 0.004 0.006 0.008 0.010
time

0.00

0.05

0.10

0.15

0.20

0.25

ra
di

i

Figure 3.3 – Top: Two identical particles under competitive growth at various
stages. Bottom: The radii r1 (red) and r2 (blue) of the two particles, their
arithmetic mean r̄a (dashed), and the mean phase radius r̄ (solid black) over
time

3.3. Coarsening of microstructure in a eutectic AgCu

brazing alloy

In this section we simulate the microstructure evolution in a eutectic silver/copper

(Ag71Cu29) brazing alloy utilizing the Cahn–Larché model (3.9) and its discretization

(3.18). The presentation follows that of [69], while the results are recomputations that
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differ in the following ways: Firstly, the temperature difference ∆θ = 51K was chosen as

opposed to 1000K in [69] and, secondly, the norm for the dual quantity ‖ · ‖w was chosen

independently of T, i.e. in particular there was no mass-lumping.

3.3.1. Problem setting

The computations are carried out on the square Ω = [−L,L]2 with edge length 2L =

0.1µm during the time interval from zero to T = 375 s = 6.25 min. We choose c to be the

copper concentration such that c = 0 corresponds to pure silver and c = 1 corresponds

to pure copper. Concerning the setting and material parameters, we closely follow [20],

i.e., for the alloy in question the eigenstrains are assumed to result only from thermal

expansion: ε̄(c) = ∆θA(c). In our computations we select ∆θ = 51 K, which is the

difference of the solidus temperature of eutectic Ag71Cu29 and 1000 K, the temperature

we chose for our simulations. The surface tension, mobility, and thermal expansion in

this setting reduce to scalar functions

Γ(c) = γ(c)Id, M(c) = m(c)Id, A(c) = a(c)Id.

The corresponding quantities for the pure constituents, i.e. for c ∈ {0, 1}, are given in

Table 3.1 (note that due to a different scaling in our equations, we need to rescale γ by

a factor of 2 as compared to [20]). The entries of the Hooke tensors CAg and CCu for

pure silver and copper are given in Table 3.2. In all 2D computations we assume plain

strain conditions. As in (3.4), the values of the functions γ, m, a, and C at c ∈ (0, 1) are

obtained by linear interpolation. The chemical energy density Ψ takes the form (3.2)

γAg[N] γCu[N] mAg[m5

Js
] mCu[m5

Js
] aAg[106

K
] aCu[106

K
]

3.06 · 10−10 3.808 · 10−10 7.25 · 10−25 3.65 · 10−25 18.9 16.5

Table 3.1 – Material parameters (taken from [20])

with parameters βi given in Table 3.3. The splitting (2.2) is chosen according to

Φ(c) = β0Rθ (c log(c) + (1− c) log(1− c))

+ (β4 − β3)c3 + (β3 − β4)c2 + (β2 − β1 + β4)c+ β1

Υ(c) = −β4c
2.
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C11
Ag[GPa] C12

Ag[GPa] C44
Ag[GPa] C11

Cu[GPa] C12
Cu[GPa] C44

Cu[GPa]

168 121 75 124 94 46

Table 3.2 – Entries of the Hooke tensors for pure silver and copper in Voigt
notation (taken from [20])

β0[mol
m3 ] β1[GJ

m3 ] β2[GJ
m3 ] β3[GJ

m3 ] β4[GJ
m3 ]

1.11248134 · 105 −5.20027 −7.2738 2.96683 3.01417

Table 3.3 – Fitting parameters for Margules ansatz at θ = 1000 K and given
material data (taken from [20, 18])

In order to choose a reasonable time step size τ that leads to acceptable discretization

errors we performed several computations for the classical Cahn–Hilliardequation with

logarithmic potential as model problem, i.e. c ∈ [−1, 1], Γ(c) = γId,M(c) = Id, C = 0, in

(3.9). As initial value we chose a decomposed ”melt”, i.e. starting from a random initial

distribution of c0(x) ∈ [−0.42− δ,−0.42+ δ] where δ = 10−2 we compute a Cahn–Hilliard

evolution until grain formation has mostly finished and use that as initial value for the

present computations (cf. Figure 3.4). In these computations we chose θ = 0.6 and

various values for γ and τ on uniform grids. Assuming the relationship τ = ϑ · γ the

computed mean phase radius evolutions suggest a choice of ϑ ≈ 5 (cf. Figure 3.5).

In the following computations we chose L as unit length, Ψ0 = 0.1 GJ
m3 as unit energy

Figure 3.4 – Initial value for timestepsize selection computations.

79
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Figure 3.5 – Simulated mean phase radii vs time for γ = 5 · 10−4 (left) and
γ = 2 · 10−4 (right)

density, and 10−25 m5

Js
as unit mobility resulting in a unit time of t0 = 250 s. After

nondimensionalization the interface parameter is roughly γ(c) ≈ 1.53 · 10−4. The above

presented numerical tests therefore suggest the choice τ = 7.5 · 10−4t0 = 5 · 10−4T . The

coarsest grid T0 consists of a partition of Ω into two congruent subtriangles. In the first

time step, we start the derefinement process described in Section 2.2.2 from Told obtained

by 8 uniform refinements of T0.

3.3.2. Evolution of concentration

In our first simulation, we apply no boundary stress and select the initial condition c0

as shown in the upper left picture of Figure 3.6. We chose these default data in the

sequel, if not otherwise stated. The colors blue and red indicate high concentrations

of silver and copper, respectively. The remaining pictures in Figure 3.6 illustrate the

evolution of the approximate concentration cmT together with the corresponding final

grids of the adaptive procedure over various time steps m = 50, . . . , 2000. Observe that

the coarsening significantly slows down during the evolution (see Subsection 3.3.3 for

details).

Mass conservation of the constituents is a key feature of the physical process which

should be preserved in numerical simulations. In our computation of over 2000 time

steps, we found the maximal relative deviation from the initial mass of copper of

max
m=1,...,2000

|
∫

Ω
cmT −

∫
Ω
c0|∫

Ω
c0

≈ 1.9 · 10−11.
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3.3. Coarsening of microstructure in a eutectic AgCu brazing alloy

Figure 3.6 – Initial value c0 and approximation cmT at time steps m =
50, 100, 200, 300, 400, 800, 1000, 2000.

The equilibrium concentrations

cα = 0.05096976816135458 and cβ = 0.9460270077128279

of the Ag-rich α- and the Cu-rich β-phase are determined from Ψ by the Maxwell-tangent

construction (see e.g. [97]). In our computations the phase equilibria are recovered up to

about 4 · 10−4. This is illustrated by Figure 3.7 showing the cross section of the initial

condition (black) and of the approximate solution c2000
T (red) along the y-axis.

In order to study the influence of thermomechanical stress on the evolution of the phase
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Figure 3.7 – Cross section of the initial condition (black) and of the approxi-
mate solution c2000

T (red) along the y-axis. The dotted lines represent the
equilibrium concentrations cα and cβ.

field we applied boundary stress of the form

g = −gn on ∂Ω

g(x) = g0 GPa, if x = (x1,±L) and g(x) = 0 GPa, otherwise
(3.28)

with the different values g0 = 0, . . . , 20 GPa, but observed only minor changes in the

evolution (see also Subsection 3.3.3). In this and the following experiment the error

tolerance ϑadapt = 0.05 was chosen.

In order to (unphysically!) enhance the influence of thermomechanical stress, the elastic

energy densityW(c, ε(u)) is multiplied by a factor of ω = 1, 1000, 1 · 104, 2 · 104, 5 · 104, 1 ·
105, 2 · 105, 4 · 105 while zero boundary stress is prescribed. This leads to a significantly

faster dynamics and oblong phase shapes oriented along the coordinate directions. This

is illustrated in Figure 3.8 that shows the initial condition c0 and the approximate

concentration cmT together with the underlying grids for ω = 4 · 105 and the time steps

m = 30, 50, 70, 90, 130.

Due to the unified grid interface of the numerics library DUNE (cf. Section 2.2.4) and

its extensive use of templates, we may switch from 2D to 3D computations by simply

resetting a compile-time parameter. All it requires is a little additional care while coding.

The numerical solution illustrated in Figure 3.9 have thus been computed by the same

code as above but with τ = 10−4.
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3.3. Coarsening of microstructure in a eutectic AgCu brazing alloy

Figure 3.8 – Initial value c0 and approximation cmT at time steps m =
30, 50, 70, 90, 130 for (unphysically!) increased elastic energy density
W(c, ε(u)).

3.3.3. Evolution of mean intercept length

In this subsection, we investigate the dynamics of coarsening in terms of the evolution of

the mean intercept length in more detail.

In our first experiment we investigate the sensitivity of the evolution of mean intercept

length with respect to a smooth approximation of the logarithmic Margules potential

Ψ as described in (3.2) with parameters βi given in Table 3.3. To this end, we consider

the quartic Hermite polynomial PΨ(c) =
∑4

i=0 αic
i interpolating Ψ at the equilibrium

concentrations cα, cβ, and at the eutectic point ceut, characterized by

PΨ(cα) = Ψ(cα), PΨ(cβ) = Ψ(cβ), PΨ(ceut) = Ψ(ceut)

(PΨ)′(cα) = Ψ′(cα), (PΨ)′(cβ) = Ψ′(cβ).

The left and the right picture in Figure 3.10 show Ψ (solid), PΨ (dashed), and their

derivatives, respectively. The splitting (2.2) of PΨ is selected according to PΦ =
∑4

i=0
i 6=3

αic
i

and PΥ = α3c
3.
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Figure 3.9 – 0.47-levelset and cross-section of the numerical approximation
at timestep 5 of the described 3D problem

We prescribe zero boundary stress (see Figure 3.6 for the corresponding evolution of the

approximate concentrations). Now Figure 3.11 shows the evolution of the mean intercept

length for the Margules potential Ψ (black) and its quartic approximation PΨ (red),

respectively. It turns out that quartic approximation strongly perturbs the coarsening

behavior which is in agreement with the engineering literature [42, 43].

In our next experiment, we investigate the influence of strongly varying boundary pressure

g0 = 0, 1, 2, 3, 4, 5, 10, 20 GPa in the boundary condition (3.28). Figure 3.12 shows that

even large mechanical stress has only minor influence on the coarsening behavior. This

effect has also been observed in previous simulations [43, Section 4.3].

For a qualitative investigation of mechanically induced coarsening, the elastic energy

density W(c, ε(u)) is replaced by ωW(c, ε(u)) with (unphysical!) amplification factors

ω = 1, 1000, 1·104, 2·104, 5·104, 1·105, 2·105, 4·105. Figure 3.13 shows that the coarsening

speed increases with increasing ω, as expected (recall the evolution of concentrations for

ω = 4 · 105 depicted in Figure 3.8).
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Figure 3.10 – Left: Margules potential Ψ (solid), quartic approximation PΨ

(dashed). Right: First derivatives.
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Figure 3.11 – Approximate evolution of mean intercept length for Margules
potential Ψ (thin solid) and its quartic approximation PΨ (bold solid).

3.3.4. Numerical aspects

We now briefly illustrate the performance of the main building blocks of our numerical

solution algorithm. For more detailed numerical experiments, we refer to [66, 61, 67, 68].

We first consider a posteriori error estimation and adaptive mesh refinement as described

in Subsections 2.2.2 and 3.2.2. The corresponding adaptive algorithm is applied to

the spatial problem arising in the m = 1st time step of the discretized Cahn–Larché

system (3.13) with material data and discretization parameters given in Subsection 3.3.1.

The grid T satisfying the stopping criterion (2.39) with ϑadapt = 0.015 after 9 adaptive

refinement steps and a grid detail are shown in Figure 3.14. The final grid contains

2793228 nodes of which 2426748 are nonhanging. Observe how the initial, 8 times

uniformly refined grid Told has been adaptively coarsened and then refined according
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3. Cahn–Larché Equations and Simulation of a AgCu Brazing Alloy

100 101 102 103

time

10-2

m
e
a
n
 i
n
te

rc
e
p
t 

le
n
g
th

Figure 3.12 – Approximate evolution of mean intercept length for boundary
pressure g0 = 0 GPa (black), 1 GPa (blue), 2 GPa (red), 3 GPa (green),
4 GPa (magenta), 5 GPa (darkblue), 10 GPa (orange), and 20 GPa (brown).

to the new approximation in the new time step. Further note how the regions of high

curvature are finely resolved whereas the regions of highest gradients in the middle of the

interface are not, as opposed to simple gradient based refinement strategies. Figure 3.15

shows the corresponding estimated error η, as introduced in (3.19), over
√
n, n denoting

the corresponding number of unknowns. Note that h = n−1/2 is the mesh size in case of

uniform refinement. The dashed line indicates O(n−1/2). A comparison suggests that

our adaptive refinement algorithm provides approximations with optimal order.

Using the same problem as above, we now illustrate the iterative solution of the discretized

phase field system (3.18a), (3.18b). On each computational grid the overall iteration

is stopped once the termination criterion (3.26) with ϑNSNMG = 10−12 is matched. The

initial iterate is selected as the final iterate from the preceding refinement step (nested

iteration). The resulting number of Nonsmooth Schur–Newton Multigrid (NSNMG)

iterations required to reach this tolerance ranges from 5 on the coarser grids to 3 on the

finer grids.

Recall that each step of NSNMG is quite expensive (cf. Subsection 3.2.3): It involves the

approximate solution of the discrete Allen–Cahn-type system (3.25) by V(3,3) cycles of

truncated nonsmooth Newton multigrid (TNNMG) and of the linear saddle point problem

(3.24) by a GMRES method with a multigrid preconditioner with block Gauß–Seidel

smoother. In order to illustrate the share of the numerical solution of each of these

two subproblems in the computational effort of an NSNMG iteration step, we consider

the discrete spatial problems occurring in the first time step after j = 0, . . . , 9 adaptive

refinement cycles. This leads to a minimal mesh size
√

2 · 2−11 and 2426748 unknowns
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Figure 3.13 – Approximate evolution of mean intercept length for (unphys-
ically!) amplified elastic energy by the factor ω = 1 (black), 1000 (blue),
1 · 104 (red), 2 · 104 (green), 5 · 104 (magenta), 1 · 105 (darkblue), 2 · 105

(orange), 4 · 105 (brown).

Figure 3.14 – Left: Adaptively refined grid T. Right: Grid detail.

on the final level.

For a fair comparison, the required computational work is measured in work units rather

than iteration steps. One work unit is chosen to be the cpu time for one V(3,3) cycle of

TNNMG on the corresponding grid. While the sum of work units for all subproblems

on each refinement level is ranging from 12 to 21 for the discrete Allen–Cahn-type

system (TNNMG), it reaches values from 753 to 2515 for the linear saddle point problem

(preconditioned GMRES). Similarly, for TNNMG the average error reduction over all

subproblems occurring on each refinement level j = 1, . . . , 9 never exceeds 0.05, but even

reaches values of 0.98 for preconditioned GMRES on finer grids.

Thus, the overall computational work is obviously dominated by the linear saddle point
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Figure 3.15 – Estimated error η over n1/2 (solid) in comparison with O(n−1/2)
(dashed).

solver. A first, simple, reason is that the linear saddle point problem (3.24) is larger: It

involves twice the number of unknowns of the discrete Allen–Cahn-type system (3.25).

Another reason is that an equivalent reformulation of the discrete Allen–Cahn-type

system in terms of convex minimization could be directly exploited in the algebraic

solution process. This is not the case for linear saddle point problems.

We now consider the (indefinite) linear elasticity problem (3.18c). To that end we perform

some numerical tests on a model problem which is illustrated in Figure 3.16 left. We

consider the isotropic linear elasticity problem with Young’s modulus E = 1000 and

Poisson’s ratio ν = 0.3 and zero eigenstrain on a cube Ω = [−1, 1]d in two and three

space dimensions and prescribe compressing Dirichlet conditions on the top and bottom

boundaries and homogeneous Neumann conditions on the remainder:

u = 0± 0.1 · ed on (∂Ω)D∓

σ · n = 0 on (∂Ω)N ,

where ed is the d-th unit vector and (∂Ω)D∓ are the bottom and top boundary respectively.

The corresponding Neumann problem is then obtained by calculating its right-hand side

according to

(Cε(uD), ε(v)) = (f ,v) ∀v ∈ (H1(Ω))d,

with uD being the solution of the Dirichlet problem.

Figure 3.16 right shows the average error reduction ρk per iteration step of the Quotient

Space Multigrid method (QSMG) described in Subsection 3.2.3 for a Dirichlet problem

of linear elasticity (triangles) and the corresponding Neumann problem (circles) in 2D
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(solid) and 3D (dashed).The iteration is stopped once the estimated relative accuracy of

10−10 is reached and the initial iterates are obtained by nested iteration. The average

error reduction ρk seems to saturate with increasing refinement level. This is in perfect

agreement with theoretical considerations (cf., e.g., [90]).

Finally Figure 3.17 shows the error, measured in the norm of relative corrections, over
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Figure 3.16 – Left: Sketch of the 2D model problem with Dirichlet conditions
on the top and bottom boundaries. Right: Averaged error reduction per
iteration step of QSMG over number of unknowns for a Dirichlet problem of
linear elasticity (triangles) and the corresponding Neumann problem (circles)
in 2D (solid) and 3D (dashed).

the iteration step for the indefinite elasticity problem (3.18c) arising in the computation

to Figure 3.15 on the finest grid. Here the iteration was stopped when the estimated

relative accuracy dropped below 10−7.
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Figure 3.17 – Iteration history of QSMG for the elasticity problem arising
in the computation to Figure 3.15 on the finest grid. The graph shows the
norm of corrections divided by norm of the iterate over the iteration number.
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systems

The key to phase-field simulations of multicomponent alloys is a fast and reliable solver

for Cahn–Hilliard-type equations. Hence in our final chapter we consider multicomponent

Cahn–Hilliard systems – i.e. Cahn–Hilliard systems with vector-valued order parameter.

While the numerical analysis of multicomponent Cahn–Hilliard systems with logarithmic

free energy and the associated deep quench limit model is well developed (cf. [16, 5, 6]),

the fast and robust numerical solution of large-scale algebraic systems arising in each

time step still seems to be largely open. Existing solvers typically suffer from severe

mesh dependance ([16, 5, 6]) or rely on smooth approximations of the free energy ([80,

26]). To our best knowledge, efficient, reliable and robust solvers for multicomponent

Cahn–Hilliard systems with logarithmic free energy are previously unknown.

In this work we present the extension of the Nonsmooth Schur–Newton methods (see

Section 3.2.3 and references therein) to the vector-valued spatial problems arising from

the discretizations of multicomponent Cahn–Hilliard systems suggested in [5, 6, 16] up

to lumping of lower order terms. Though our approach is applicable to both implicit

and semi-implicit time discretizations (see [66, Section 3.4.2]), we concentrate on the

semi-implicit variant for ease of presentation.

The chapter is organized as follows. After presentation of the continuous problem and

its discretization, Section 4.2.1 concentrates on a unified formulation of the spatial

problems as a variational inequality that includes both the logarithmic potential and the

deep quench limit. We show existence, uniqueness, and equivalence to a, generally set-

valued, nonlinear saddle point problem. In Section 4.2.2 we extend truncated nonsmooth

Schur–Newton methods for the iterative solution of an algebraic reformulation of the

spatial problem, prove global convergence and discuss some algorithmic issues. Numerical

experiments, as reported in Section 4.3, illustrate efficiency and robustness of our
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approach.

4.1. Continuous Problem

As before we consider isothermal phase separation in a polyhedral domain Ω ⊂ Rd,

d = 1, 2, 3. The concentrations of the different constituents i = 1, . . . , N at (x, t) ∈
Ω × [0, T ], T > 0, are represented by the components ci(x, t) of the order parameter

c = (c1, . . . , cN)T .

Same as earlier, we denote the Euclidean scalar product by 〈·, ·〉 and the L2(Ω) scalar

product by (·, ·). Furthermore we will use the scalar products

(v,w) =

∫
Ω

〈v(x),w(x)〉 dx

in L2(Ω)N with canonical norm ‖ · ‖0 and

(v,w)1 = (v,w) + (∇v,∇w) , (∇v,∇w) =
N∑
i=1

∫
Ω

〈∇vi(x),∇wi(x)〉 dx

in H1(Ω)N with canonical norm ‖ · ‖1 and semi-norm | · |21 = (∇·,∇·). Generic constants

are denoted by λ, Λ and can have different values at different occurrences.

The order parameter c satisfies the constraints

c(x, t) ∈ G = {r ∈ RN | r > 0,
∑N

i=1 ri = 1} ∀(x, t) ∈ Ω× [0, T0],

because concentrations are non-negative and add up to unity. Here and in the following

inequalities of the form RN 3 r > s ∈ R are to be understood componentwise. The

closed convex set G ⊂ RN is often called Gibbs simplex. Note that the indicator function

χG, defined by χG(r) = 0 for r ∈ G and χG(r) = +∞ for r 6∈ G can be decomposed

according to

χG(r) =
N∑
i=1

χ[0,∞)(ri) + χV1(r)
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with χ[0,∞) and χV1 denoting the indicator functions of [0,∞) and V1, respectively, where

Vs = {r ∈ RN |
∑N

i=1 ri = s}. (4.1)

4.1.1. Ginzburg-Landau free energy

We assume that the Ginzburg–Landau total free energy of our system takes the form

E(c) =

∫
Ω

ε

2

N∑
i=1

|∇ci|2 +
1

ε
Ψ(c) dx (4.2)

with fixed interface parameter ε > 0. Here we concentrate on a quadratic interfacial

energy and a multi-phase version of the well-known logarithmic free energy (2.5),(2.4)

(cf. [5, 16]). More precisely, Ψ = Ψθ is given by

Ψθ(r) = Φθ(r) + χV1(r) + 1
2
〈Kr, r〉 (4.3)

with the convex function

Φθ(r) =
N∑
i=1

θri ln(ri) +
N∑
i=1

χ[0,∞)(ri) (4.4)

and a symmetric interaction matrix K = (Kij)
N
i,j=1 (cf. De Fontaine [51]). Here, as before

θ denotes normalized temperature. Note that in slight abuse of previous notation Φ does

not represent the (full) convex part of Ψ in the sense of the splitting (2.2), which would

be given here by Φθ + χV1 . For θ < 1, we assume that Ψθ has exactly N distinct local

minima on G, corresponding to dominant components i = 1, . . . , N . For example, this is

achieved by choosing the interaction matrix

K = N(1− δij)Ni,j=1 (Kronecker-δ) (4.5)

which means that the interaction of all different components is equal and no self-inter-

action occurs. In the deep quench limit θ = 0, we then obtain the classical obstacle

potential (cf. Blowey & Barrett [6])

Ψ0(c) = χG(c) + N
2

N∑
i=1

ci(1− ci).
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For θ > 0 and N = 2 the well-known scalar logarithmic free energy given by (2.5),(2.4)

for the scalar order parameter c̃ := c2 − c1 ∈ [−1, 1] is recovered up to a constant in this

way. In the shallow quench, i.e. for θ ≈ 1, polynomial free energies generalizing the

quartic potential (1− c̃2)2 provide good approximations of Ψθ (cf. Steinbach et al. [115]).

As polynomials are defined everywhere, the contributions from the non-differentiable

indicator function χ[0,∞) are usually skipped in this case.

4.1.2. Vector-valued Cahn–Hilliard Equations

For θ > 0 the multicomponent Cahn–Hilliard system

ct = L∆w,

w = −ε2∆c + PΨ′θ(c)
(4.6)

is obtained by postulating that c satisfies a conservation law with flux −L∇w and w

is given by the derivative of the total free energy E defined in (4.2). In this way, the

mass of all components ci is conserved and (4.6) is thermodynamically consistent in the

sense that E decreases monotonically throughout the evolution. We assume that the

matrix L is symmetric and positive semi-definite with one-dimensional kernel spanned

by 1 = (1, . . . , 1)T ∈ RN . The latter condition accounts for the fact that 〈ct,1〉 ≡ 0 and

therefore 〈c,1〉 ≡ 〈c0,1〉. For ease of presentation, we concentrate on constant mobilities

L ∈ RN×N . However, all our algorithms and theoretical considerations to be presented

below extend to discretizations of solution dependent mobilities as suggested in [8], where

L = L(c) is replaced by a suitable constant.

The orthogonal projection

P = IdN − 1
N

11T ∈ RN×N ,

maps RN onto the linear subspace V0 =⊂ RN (cf. Eq. (4.1)). It accounts for the fact

that admissible variations of c(x, t) ∈ V1 must be in V0.

The weak formulation of (4.6) is now given by

Find c ∈ L2(0, T ;H1(Ω)N) ∩H1(0, T ; (H1(Ω)N)′) with the property c(·, 0) = c0, w ∈
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L2(0, T ;H1(Ω)N) such that,

〈ct,v〉+ (L∇w,∇v) = 0 ∀v ∈ H1(Ω)N , (4.7a)

ε2 (∇c,∇v) + (PΦ′θ(c),v) + (PKc,v) = (w,v) ∀v ∈ H1(Ω)N , (4.7b)

holds a.e. in (0, T ].

In the singular deep quench limit θ = 0, the second equation in (4.6) becomes

w ∈ −ε2∆c + P∂Ψ0(c). (4.8)

We assume that the initial condition c0 ∈ H1(Ω) satisfies c0(x) ∈ V1 for almost all x ∈ Ω

and the componentwise inequality

0 <
1

|Ω|

∫
Ω

c0(x) dx < 1 (4.9)

which means that the given problem is non-degenerate in the sense that exactly N

different components are actually occurring. We further impose Neumann boundary

conditions for c and w so that mass conservation∫
Ω

c(x, t) dx =

∫
Ω

c0(x) dx,

and

(Id− P )c(x, t) = 1
N

1, (Id− P )w(x, t) = 0

hold for almost all x ∈ Ω and t > 0.

On these assumptions, existence and uniqueness was shown by Elliott and Luckhaus [91]

for θ > 0. Note that Garcke’s existence and uniqueness result ([52, Theroem 3.1]), which

is stated here for the binary case as Theorem 3.1, also covers the vector-valued setting.

For sharp interface limits, we refer to Bronsard et al. [89].

4.2. Numerical solution

This section introduces a method for the efficient, reliable, and robust numerical ap-

proximation of multicomponent Cahn–Hilliard systems. The presentation follows that
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of [64] and extends the corresponding scalar version [66, 61]. Again we will employ

Rothe’s method and finite elements in conjunction with adaptive mesh refinement for

discretization and Nonsmooth Schur–Newton Multigrid methods for the solution of the

algebraic problems. However, the simplex constraint c(x, t) ∈ G requires some extra

care.

4.2.1. Discretization

Starting out from a fully discrete system for the case θ > 0 we derive a unified formulation

of the spatial problems for all θ > 0 that incorporates a weak form of the simplex constraint

and go on to prove an existence and uniqueness theorem for this system. Adaptive mesh

refinement is carried out as in the previous chapters. Note that the hierarchical error

estimator is derived exactly as in the scalar case (cf. Section 3.2.2).

Semi-implicit time discretization and finite elements

Let us first consider the case θ > 0. Then time discretization of the weak problem (4.7)

by the implicit Euler scheme and subsequent finite element discretization leads to spatial

problems of the form

(FI) Find cT ∈ GT,wT ∈ SN
T such that

ε2 (∇cT,∇v) + (PΦ′θ(cT),v)T + (PKcT,v) = (wT,v) ∀v ∈ SN
T ,

(cT,v) + τ (L∇wT,∇v) =
(
cold,v

)
∀v ∈ SN

T .

Again, τ > 0 denotes the uniform time step size and cold denotes the approximate order

parameter in the preceding time step while cT and wT stand for the finite element

approximations of the order parameter and chemical potential in the given time step,

respectively. If no confusion is likely in the following we drop the subscript T for discrete

solutions. The finite element space SN
T is the tensor product of scalar, piecewise affine

finite elements as defined in (2.32).

As before, we assume that T = L(T0, . . . ,Tj) together with an underlying hierarchy

T0, . . . ,Tj is obtained by successive adaptive refinements of a conforming, intentionally
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4.2. Numerical solution

coarse partition T0. Recall that by F•0 we denote the set of nonhanging vertices, i.e. the

nodes that define the nodal basis for a conforming finite element space on T.

Further we used the closed convex subset

GT = {v ∈ SN
T | v(p) ∈ G ∀p ∈ F•0},

and the lumped L2 scalar product

(c,v)T =

∫
Ω

IT(〈c(x),v(x)〉) dx

induced by canonical nodal interpolation ITv =
∑

p∈F•0
v(p)bp. Note that lumping has

been applied only to the nonlinear term (Φ′θ(c),v) in order to separate the unknowns

associated with different nodes with respect to the nonlinearity. Full lumping, i.e.,

lumping of all other zero-order terms, is quite common in the literature (cf., e.g. [5,

6, 8, 7, 16]) but is avoided here, because it would destroy either symmetry or mass

conservation if the underlying grids have changed from the preceding to the given time

step (cf. Section 3.2.2).

All reasoning to be presented below extends a fully lumped version of (FI) as proposed

and analyzed by Blowey et al. [16] and Barrett and Blowey [5]. Existence and uniqueness

of corresponding discrete solutions has been shown in [16, Theorem 2.4] for the fully

lumped version on the time step constraint

τ < 4ε2/(λ2
K ‖L‖).

Here, λK denotes the largest positive eigenvalue of K and ‖L‖ stands for the spectral

norm of L. For example, for K taken as in (4.5) the time step τ has to satisfy τ <

4ε2/(N2(N − 1)2 ‖L‖). In order to avoid such severe stability restrictions, the expanding

linear part K of Ψ′θ = Φ′θ+K on GT is often discretized explicitly (cf., e.g., [16, 17, 70, 9]).

More precisely, PKc is replaced by Kcold + (P − Id)Kc providing the unconditionally

stable semi-implicit scheme

(SI) Find c ∈ GT,w ∈ SN
T such that

ε2 (∇c,∇v) + (PΦ′θ(c),v)T +
(
Kcold + (P − Id)Kc,v

)
= (w,v) ∀v ∈ SN

T ,

(c,v) + τ (L∇w,∇v) =
(
cold,v

)
∀v ∈ SN

T .
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4. Multicomponent Cahn–Hilliard systems

By construction c(p) ∈ G ∀p ∈ F•0. Orthogonality of P with respect to the Euclidean

scalar product immediately provides (Id− P )w ≡ 0 for the fully implicit discretization

(FI). For the semi-implicit version (SI), testing with v = bp1 and a short calculation

shows

(〈w,1〉 , bp) =
(〈
K(cold − c),1

〉
, bp
)
. (4.10)

Hence (Id− P )w ≡ 0 is no longer true in general but only holds in special cases, e.g. for

the choice (4.5) of K.

Unified formulation of spatial problems for θ > 0

The occurrence of P in the projected derivative PΦ′θ(·) in the discretizations (FI) and

(SI) prevents a direct reformulation as a variational inequality that would allow to pass

to the deep quench limit θ = 0. Utilizing (Id−P )w ≡ 0, such a formulation can be easily

obtained for the fully implicit version (FI). We therefore concentrate on the semi-implicit

variant and first introduce the (affine) subspaces

Vr,T = {v ∈ SN
T | v(p) ∈ Vr ∀p ∈ F•0}, r ∈ {0, 1}

and the lumped nonlinear functional φθT, defined analogously to (2.33)

φθT(v) =

∫
Ω

IT
(
Φθ(v)

)
dx.

Using the reduced test space V0,T ⊂ SN
T in the first equation of (SI), we obtain

ε2 (∇c,∇v) + (Φ′θ(c),v)T +
(
Kcold,v

)
= (w0,v) ∀v ∈ V0,T

with the new variable w0 = Pw ∈ V0,T. We now rewrite this equation as a variational

inequality and use the reduced test space V0,T ⊂ SN
T in the second equation of (SI) to

obtain
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4.2. Numerical solution

(V̂I) Find c ∈ V1,T,w0 ∈ V0,T such that

ε2 (∇c,∇(v − c)) + φθT(v)− φθT(c)

− (w0,v − c) > −
(
Kcold,v − c

)
∀v ∈ V1,T,

(c,v) + τ (L∇w0,∇v) =
(
cold,v

)
∀v ∈ V0,T.

The variational problem (V̂I) has the advantage that it allows for a straightforward

extension to the deep quench limit θ = 0. In this case, φ0
T just accounts for the inequality

constraints ci > 0. For positive temperature, the variational formulation (V̂I) is equivalent

to (SI) in the following sense.

Proposition 4.1. Let θ > 0. If (c,w) is a solution of (SI) then (c, Pw) is a solution

of (V̂I), and if (c,w0) is a solution of (V̂I), then there is a solution (c,w) of (SI) with

w0 = Pw.

Proof. Let (c,w) be a solution of (SI). Then (c, Pw) is a solution of (V̂I) by construction.

Now let (c,w0) be a solution of (V̂I). Then we use the decomposition

v = Pv + (Id− P )v = v0 + v11, v0 = Pv ∈ V0,T, v1 = 1
N
〈v,1〉

of all v ∈ SN
T to define (cf. (4.10))

w = w0 + w11, (w1, bp) = 1
N

(〈
K(cold − c),1

〉
, bp
)
∀p ∈ F•0.

Note that w is well defined because the mass matrix
(

(bp, bq)
)
p,q∈F•0

is invertible. Now,

exploiting the orthogonality of P and the properties of L, it is easily checked that c, w

solve (SI).

Weak formulation of affine constraints

In order to simplify the algebraic solution, we now derive a version of (SI) that incorporates

the affine constraints 〈c(p),1〉 = 1 in the weak form

(c,1v) = (〈c,1〉 , v) = (1, v) ∀v ∈ ST (4.11)
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4. Multicomponent Cahn–Hilliard systems

and not in the strong form c ∈ V1,T. Introducing the Lagrange multiplier 1η ∈ SN
T

associated with (4.11), the solution of (V̂I) amounts to find c ∈ SN
T , w0 ∈ V0,T, η ∈ ST

such that

ε2 (∇c,∇(v − c)) + φθT(v)− φθT(c)

− (w0 + 1η,v − c) > −
(
Kcold,v − c

)
∀v ∈ SN

T ,

− (c,v) − τ (L∇w0,∇v) = −
(
cold,v

)
∀v ∈ V0,T

− (c,1v) = −
(
cold,1v

)
∀v ∈ ST.

For the deep quench limit θ = 0 a fully implicit and fully lumped version of this

discretization has been suggested and analyzed by Barrett and Blowey [6].

Introducing the new variable w̃ = w0 + 1η, adding the last two equations, and using

L1 = 0, we see that this problem is equivalent to finding c ∈ SN
T , w̃ ∈ SN

T such that

ε2 (∇c,∇(v − c)) + φθT(v)− φθT(c)

− (w̃,v − c) > −
(
Kcold,v − c

)
∀v ∈ SN

T ,

− (c,v) − τ (L∇w̃,∇v) = −
(
cold,v

)
∀v ∈ SN

T .

In the final step, we enforce coercivity of the primal operator by exploiting mass conser-

vation ∫
Ω

ci(x) dx =

∫
Ω

cold
i (x) dx.

in a similar way as introduced in [60, 66, 63]. More precisely, we add the identity

ε2

〈∫
Ω

c dx,

∫
Ω

v − c dx

〉
= ε2

〈∫
Ω

cold dx,

∫
Ω

v − c dx

〉
∀v ∈ SN

T .

to the variational inequality above, to obtain the final form of the spatial problem
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4.2. Numerical solution

(VI) Find (c,w) ∈ SN
T × SN

T such that

ε2 (∇c,∇(v − c)) + ε2

〈∫
Ω

c dx,

∫
Ω

v − c dx

〉
+ φθT(v)− φθT(c)

− (w,v − c) > ε2

〈∫
Ω

cold dx,

∫
Ω

v − c dx

〉
−
(
Kcold,v − c

)
∀v ∈ SN

T ,

− (c,v) − τ (L∇w,∇v) = −
(
cold,v

)
∀v ∈ SN

T .

In the light of the above considerations and Proposition 4.1, the formulations (SI) and

(VI) are equivalent for positive temperature in the following sense.

Proposition 4.2. Let θ > 0. If (c,w) is a solution of (SI) then there is a solution

(c, w̃) of (VI) satisfying Pw = P w̃ and vice versa.

The common idea behind the above reformulations is to use the part (Id− P )w ∈ ST as

a kind of dustbin, e.g., for the Lagrange multiplier in η ∈ ST.

Existence and uniqueness of discrete solutions

Analogously to the scalar case (cf. Section 3.2) the variational problem (VI) is equivalent

to a saddle point problem for the Lagrangian

L(v, z) = J (v) + (cold − v, z)− τ

2
(L∇z,∇z)

to find (c,w) ∈ SN
T × SN

T such that

L(c,w) = inf
v∈SNT

sup
z∈SNT

L(v, z) (4.12)

This involves the coercive, convex, lower semi-continuous energy functional

J (v) =
ε2

2
(∇v,∇v) +

ε2

2

∣∣∣∣∫
Ω

v − cold dx

∣∣∣∣2 + φθT(v) +
(
Kcold,v

)
.

The Lagrangian L has finite values on the closed, convex set

dom(J )× SN
T = {v ∈ SN

T | ∀i∈{1...N}vi > 0} × SN
T .
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The proof of existence of discrete solutions to (4.12) was given in [64] and is based on

the same ideas as in the scalar case (cf. e.g. 3.2.2) but requires a little more care in the

details, which is why we repeat it here despite a certain redundancy. As before the key

ingredient of the proof is the following result.

Lemma 4.3. The functional h = − infv∈ dom(J ) L(v, ·) is coercive on SN
T .

Proof. Let z ∈ SN
T be arbitrary and define a corresponding v0 = v(1) + v(2) ∈ SN

T with

v(1),v(2) ∈ SN
T given by the nodal values

v(1)(p) = 1
2

(
1 + sgn(z(1))

)
, v(2)(p) = ρ

(
1 + sgn(〈1, z(p)〉)

)
1, ∀p ∈ F•0.

Here we have used the componentwise mean value of z,

z(1) = |Ω|−1

∫
Ω

z dx, |Ω| =
∫

Ω

dx,

and some positive ρ ∈ R to be specified later. In the light of

− inf
v∈ dom(J )

L(v, z) > −L(v0, z) = −J (v0)− (cold − v0, z) +
τ

2
(L∇z,∇z) (4.13)

we now derive an upper bound for (cold − v0, z). To this end, we first decompose z

according to

z = z(0) + z(1), z(0) = z − z(1) = z − |Ω|−1

∫
Ω

z dx.

Utilizing cold(p) ∈ V1 and the definition of z(0) and v(1), we then have

(cold, (Id− P )z(0)) =
1

N
(1, z(0)) = 0 = ρ(1, z(0)), (v(1), z(0)) = 0.

These identities and the properties of P provide

(
cold − v0, z

)
=
(
cold, Pz(0)

)
+
(
cold, (Id− P )z(0)

)
−
(
v0, z

(0)
)

+
(
cold − v(1), z(1)

)
−
(
v(2), z(1)

)
=
(
cold, Pz(0)

)
+
(
ρ1, z(0)

)
+
(
cold − v(1), z(1)

)
−
(
v(2), z

)
=
(
cold, Pz(0)

)
+
(
cold − ρ1− v(1), z(1)

)
+
(
ρ1− v(2), z

)
.
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Using the Poincaré inequality, the first term can be estimated by

(
cold, Pz(0)

)
6
∥∥cold

∥∥
0

∥∥Pz(0)
∥∥

0
6 Λ0

∣∣Pz(0)
∣∣
1

= Λ0 |Pz|1 (4.14)

with Λ0 independent of z. In order to estimate the second term, we now select

ρ =
1

2|Ω|
min

i=1,...,N

∫
Ω

cold
i dx > 0

and set µi = |Ω|−1
∫

Ω
cold
i − ρ dx. Note that 0 < µi < 1. Investigating the three cases

v
(1)
i ∈ {0, 1

2
, 1}, using the equivalence of norms on RN , and that the orthogonal projection

has unit norm, we obtain

(
cold − ρ1− v, z(1)

)
=

N∑
i=1

(µi − v(1)
i )

∫
Ω

zi dx = −
N∑
i=1

|µi − v(1)
i |
∣∣∣∣∫

Ω

zi dx

∣∣∣∣
6 −λ0

N∑
i=1

∣∣∣∣∫
Ω

zi dx

∣∣∣∣ 6 −λ0

√
N

∣∣∣∣∫
Ω

z dx

∣∣∣∣ 6 −λ0

√
N

∣∣∣∣∫
Ω

Pz dx

∣∣∣∣
Here, λ0 is defined by

λ0 = min
i=1,...,N

z
(1)
i
6=0

|µi − v(1)
i | > 0

if there is at least one i such that z
(1)
i = |Ω|−1|

∫
Ω
zi dx| 6= 0 and λ0 = 1 otherwise. In

order to treat the third term
(
ρ1− v(2), z

)
, we utilize the identities

〈
(ρ1− v(2)(p)), z(p)

〉
= −ρ sgn(〈1, z(p)〉) 〈1, (Id− P )z(p)〉 = −ρ| 〈1, z(p)〉 |

|(Id− P )z(p)| = 1√
N
| 〈1, z(p)〉 |

to obtain

(
ρ1− v(2), z

)
= −ρ

∫
Ω

| 〈1, z〉 | dx = −ρ
√
N

∫
Ω

|(Id− P )z| dx.

Inserting these three estimates and the identity (L∇z,∇z) = |Pz|21 into (4.13), we have

−L(v0, z) > Λ

(
|Pz|21 − |Pz|1 +

∣∣∣∣∫
Ω

Pz dx

∣∣∣∣+

∫
Ω

|(Id− P )z| dx− 1

)
(4.15)

with a constant Λ independent of z. In order to show that the right hand side of this
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inequality tends to infinity, if (a suitable norm of) z tends to infinity, observe that

Poincaré’s inequality yields

|Pz|21 − |Pz|1 +

∣∣∣∣∫
Ω

Pz dx

∣∣∣∣ > |Pz|1 +

∣∣∣∣∫
Ω

Pz dx

∣∣∣∣− 1

> λ (|Pz|1 + ‖Pz‖0 − 1) > λ(‖Pz‖1 − 1)

with positive λ independent of z. Inserting this estimate into (4.15), we finally get

−L(v0, z) > Λ

(
‖Pz‖1 +

∫
Ω

|(Id− P )z| − 1

)
. (4.16)

with a constant Λ independent of z. This concludes the proof.

Now we are ready to show existence and uniqueness. Here, the condition

0 <

∫
Ω

cold dx. (4.17)

follows from the non-degeneracy condition (4.9) by componentwise mass conservation of

(VI).

Theorem 4.4. Assume that cold satisfies the non-degeneracy condition (4.17). Then

(VI) has a solution (c,w).

Proof. Later, we will show in Proposition 4.10 that (i) the functional h defined in

Lemma 4.3 is convex, continuous, and finite and (ii) that minimizing h over SN
T is

equivalent to (VI). Hence existence of a minimizer w of h and thus of a solution (c,w)

of (VI) follows from convexity and continuity stated in Proposition 4.10 together with

coercivity stated in Lemma 4.3, see, e.g., [45, Chapter II, Proposition 1.2].

An important feature of (VI) is that it provides a unified formulation for θ > 0 and θ = 0.

The following results show that (VI) is robust in the sense that solutions (c,w) depend

continuously on θ for all θ > 0.

Theorem 4.5. Assume that cold satisfies the non-degeneracy condition (4.17) and let

(c,w) be a solution of (VI). Then c and ∇Pw depend Hölder continuously on θ with

Hölder exponent 0.5 and a constant only depending on Ω and L. Particularly, c and

∇Pw are unique for each θ > 0.
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Proof. Let (c1,w1) ∈ SN
T × SN

T and (c2,w2) ∈ SN
T × SN

T be solutions of (VI) for θ1 > 0

and θ2 > 0, respectively. Testing the variational inequalities for (c1,w1) with c2 and

vice versa and adding the inequalities yields

ε2|c1 − c2|21 + ε2

∣∣∣∣∫
Ω

c1 − c2 dx

∣∣∣∣2 +
(
w1 −w2, c2 − c1

)
6 φT

θ1
(c2)− φT

θ1
(c1) + φT

θ2
(c1)− φT

θ2
(c2). (4.18)

Similarly testing the variational equation with w1 −w2 yields

(
c1 − c2,w1 −w2

)
+ τ

(
L∇(w1 −w2),∇(w1 −w2)

)
= 0.

Inserting this in (4.18) and using the Poincaré inequality, properties of L, the definition

of Φθ, and boundedness −1
e
6 Φ1 6 0 on [0, 1] then gives

ε2
∥∥c1 − c2

∥∥2

1
+ τ |P (w1 −w2)|21
6 Λ

(
φT
θ1

(c2)− φT
θ1

(c1) + φT
θ2

(c1)− φT
θ2

(c2)
)

= Λ(θ1 − θ2)
(
φT

1 (c2)− φT
1 (c1)

)
6 Λ

N |Ω|
e
|θ1 − θ2|

with Λ being the maximum of the Poincaré constant and the smallest nonzero eigenvalue

of L. Using θ1 = θ2 shows uniqueness of c and ∇Pw.

For the chemical potential w uniqueness and continuous dependence on θ are available

on additional conditions.

Theorem 4.6. Denote by (cθ,wθ) a solution of (VI) for θ > 0. In addition to the

non-degeneracy condition (4.17) of Theorem 4.5, assume that for some fixed θ0 > 0 there

is a subset

B = {ηi,j = ei − ej | i 6= j and ∃p ∈ F•0 : cθ0i (p), cθ0j (p) > 0} ⊂ V0 (4.19)

such that span B = V0. Then there is a relatively open neighborhood of θ0 in R+
0 where

(cθ,wθ) is unique and depends continuously on θ.

Proof. By continuity of θ 7→ cθ there is a relatively open neighborhood U of θ0 in R+
0

and α > 0 such that for all ηi,j ∈ B there is a p ∈ F•0 with cθi (p), cθj(p) > α > 0 for all
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θ ∈ U . To show continuity of θ 7→ wθ in U let (in abuse of notation) θ0 ∈ U be arbitrary

and fixed and θ ∈ U arbitrary.

First we show Pwθ → Pwθ0 as θ → θ0. To this end, we consider some arbitrary ηi,j ∈ B
with associated vertex p ∈ F•0 such that cθi (p), cθj(p) > α > 0 for all θ ∈ U . Then

vθ± = cθ ± δv > 0 with v = ηi,jbp holds for δ < α and all θ ∈ U . Testing the variational

inequality for θ with vθ+ and for θ0 with vθ0− , adding both, and dividing by δ yields

(
wθ −wθ0 ,v

)
6 ε2

(
∇(cθ − cθ0),∇v

)
+ ε2

〈∫
Ω

cθ − cθ0 dx,

∫
Ω

v dx

〉
+ θ

φ1
T(cθ + δv)− φ1

T(cθ)

δ
− θ0

φ1
T(cθ0)− φ1

T(cθ0 − δv)

δ
.

As cθi (p), cθj(p), cθ
0

i (p), cθ0j (p) > 0, the scalar functions ξ 7→ φθT(cθ + ξv) and ξ 7→ φθT(cθ0 −
ξv) are differentiable in ξ = 0. Hence, we can pass to the limit δ = 0 and use the Hölder

continuity of Theorem 4.5 to get

(
wθ −wθ0 ,v

)
6 Λ

(
|θ − θ0|

1
2 ‖v‖1 + θΦ′1(cθ) + θ0Φ′1(cθ0)

)
−→
θ→θ0

0.

Exchanging the role of θ1 and θ2 and using Pv = v we finally get

|
(〈
P (wθ −wθ0), ηi,j

〉
, bp
)
| = |

(
wθ −wθ0 ,v

)
| −→
θ→θ0

0. (4.20)

In combination with ∇P (wθ −wθ0)→ 0, (4.20) provides
〈
P (wθ −wθ0), ηi,j

〉
→ 0, since

| · |1 +
∣∣(·, bp)∣∣ is a norm on ST. As ηi,j ∈ B was arbitrarily chosen, we have shown

P (wθ −wθ0)→ 0. This holds for all solutions wθ0 . Hence, Pwθ0 must be unique.

Finally we show wθ → wθ0 as θ → θ0. To this end, we select for each node p ∈ F•0

some 1 6 ip 6 N such that cθ0ip (p) > 2β > 0 for some β > 0. This is possible, because〈
cθ0(p),1

〉
= 1 holds for all nodes p ∈ F•0. By continuity of θ 7→ cθ, we also have

cθip(p) > β > 0 for all θ ∈ U ′ ⊂ U with a possibly smaller neighborhood U ′ of θ0.

For any p ∈ F•0, θ ∈ U ′, and δ < β we then have vθ± = cθ ± δv > 0 with v = eipbp.

Proceeding literally as above, we get

|
(
(wθ −wθ0)ip , bp

)
| = |

(
wθ −wθ0 ,v

)
| −→
θ→θ0

0. (4.21)

Since v 7→ ‖Pv‖1 +
∑

p∈F•0
|
(
vip , bp

)
| is a norm on SN

T , (4.21) in conjunction with
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P (wθ −wθ0)→ 0 gives wθ −wθ0 → 0. Again this implies uniqueness of wθ0 .

The assumption on F•0 in Theorem 4.6 essentially means that the discrete interfacial

region is rich enough to contain a suitable set of nodal basis functions. This assumption

can be replaced by the more instructive, but much stronger condition that at least one

of the components that are present at a certain vertex must also be present at each

neighboring one. This property can always be achieved by resolving the diffuse interface

sufficiently well.

Lemma 4.7. Assume that for some fixed θ0 > 0 the given cold satisfies the non-degeneracy

condition (4.17) and that for any pair (p, q) of neighboring vertices we have

{1 6 i 6 N | ci(p) > 0} ∩ {1 6 i 6 N | ci(q) > 0} 6= ∅. (4.22)

Then there is a set B ⊂ V0 of vertices satisfying the assumption in Theorem 4.6.

Proof. It is sufficient to construct subsets Bi, i = 1, . . . , N , of the form (4.19), i.e.,

Bi = {ηk,j | ηk,j = ek − ej with k 6= j and ck(p), cj(p) > 0 for some p ∈ F•0}

such that ei − e1 ∈ span Bi, because then the vectors ei − e1, i = 1, . . . , N , spanning V0,

are contained in the span of

B :=
N⋃
i=1

Bi.

Let us consider some fixed i ∈ {1, . . . , N}. By the degeneracy condition (4.17) there are

vertices q1, qi ∈ F•0 such that c1(q1) > 0, ci(qi) > 0. Since the grid T is a connect graph,

there is a path p1, . . . , pK of neighboring vertices with p1 = q1 and pK = qi.

We now assign a component jk ∈ {1, . . . , N} to each pk in the following way. We start

by setting j1 = 1 so that cj1(p
1) > 0 and assume cjk−1

(pk−1) > 0 for some k > 1. Then

we keep jk := jk−1, if cjk−1
(pk) > 0, i.e., if the component jk−1 is still present at the

neighboring vertex pk. If this is not the case, then we switch to a new component jk with

cjk(p
k) > 0 and cjk(p

k−1) > 0, i.e. to a new component which is present in both vertices

pk and pk−1. This is possible due to assumption (4.22). Finally we formally set jK+1 = i

and define

Bi = {ejk − ejk−1 | jk 6= jk−1, k = 2, . . . , K + 1}
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By construction, cjk(p
k−1), cjk−1

(pk−1) > 0 holds for all k = 2, . . . , K + 1 so that Bi is of

the desired form. Moreover, we have ei − e1 ∈ span Bi using the telescope sum

ei − e1 =
K+1∑
k=2

ejk − ejk−1 ∈ span Bi.

Obviously, the assumption in Lemma 4.7 can be weakened by applying the same arguments

to certain paths of not necessarily neighboring vertices. However, this essentially amounts

to a reformulation of the abstract assumption of Theorem 4.6 again.

Algebraic formulation

Similar to Section 3.2.2 we rewrite the discrete problem (VI) in an algebraic fashion.

This will simplify the derivation and convergence analysis of nonsmooth Schur–Newton

methods for the iterative solution of (VI) to be presented in the next section. Certain

redundancies are intended for compactness of presentation. Starting from an enumeration

F•0 = {p1, . . . , pm} of the m = |F•0| vertices, here we enumerate the n = mN nodal basis

functions of SN
T according to

{b1, b2, . . . , bn}, bπ(i,k) = eibpk , i = 1, . . . , N, k = 1, . . .m,

utilizing the bijective index map π : {1, . . . , N} × {1, . . . ,m} → {1, . . . , n} defined by

π(i, k) = i + N(k − 1). Utilizing the canonical isomorphism SN
T 3 v 7→ v = (vi) ∈ Rn

induced by the basis representation

v =
n∑
i=1

vib
i, v ∈ SN

T ,

we arrive at the vector-valued analogue of (3.20), to find c, w ∈ Rn such that

〈Ac, (v − c)〉+ ϕ(v)− ϕ(c)− 〈Bw, (v − c)〉 > 〈f , (v − c)〉 ∀v ∈ Rn

Bc + Cw = −g.
(4.23)
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Here we have used the matrices A = (Aij), B = (Bij), C = (Cij) ∈ Rn,n given by

Aij = ε2
(
∇bj,∇bi

)
+ (MTM)ij, Bij =

(
bj, bi

)
, Cij = τ

(
L∇bj,∇bi

)
, (4.24)

where the definition

Mi,j = ε

(∫
Ω

bj
)
i

, i = 1, . . . , N, j = 1, . . . n, (4.25)

of M = (Mij) ∈ RN,n provides
〈
MTMc,v

〉
= ε2

〈∫
Ω
c dx,

∫
Ω
v dx

〉
. The algebraic

representation

ϕ(v) =
n∑
i=1

ϕi(vi), with ϕi(ξ) = Φθ(ξ)

∫
Ω

bi dx (4.26)

of the nonlinearity φθ satisfies ϕ(v) = φθ(v) and the right-hand sides f = (fi), g = (gi) ∈
Rn are given by

fi = −
(
Kcold, bi

)
+

(
MTM

∫
Ω

cold dx

)
i

, gi = −
(
cold, bi

)
. (4.27)

In analogy to (4.12) the variational problem (4.23) can be reformulated as the saddle

point problem

L(c,w) = inf
v∈Rn

sup
Z∈SNT

L(v, Z) (4.28)

for the Lagrangian

L(c,w) =
1

2
〈Ac, c〉 − 〈f , c〉+ ϕ(c)− 〈(Bc + g),w〉 − 1

2
〈Cw,w〉 .

The construction and convergence analysis of nonsmooth Schur–Newton methods to be

presented below will rely on the following reformulation.

Proposition 4.8. The discrete spatial problem (VI) is equivalent to the set-valued saddle

point problem

(VIA) Find c, w ∈ Rn such thatA+ ∂ϕ −BT

−B −C


 c

w

 3
f

g


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with the symmetric, positive definite matrix A ∈ Rn,n, B ∈ Rn,n, the symmetric, positive

semi-definite matrix C ∈ Rn,n, the subdifferential ∂ϕ of the lower semi-continuous, proper

convex functional ϕ : Rn → R and f , g ∈ Rn given in (4.24) – (4.27).

4.2.2. Nonsmooth Schur–Newton methods

In this section we consider the efficient algebraic solution of set-valued saddle point

problems of the form (VIA) with a symmetric, positive definite matrix A ∈ Rn,n, some

matrix B ∈ Rn,n, a symmetric, positive semi-definite matrix C ∈ Rn,n, the subdifferential

∂ϕ of a lower semi-continuous, proper convex functional ϕ : Rn → R, and f , g ∈ Rn by

nonsmooth Schur–Newton methods. This approach has been introduced and applied to

discretized binary Cahn–Hilliard equations with obstacle potential in [63]. It was extended

to more general nonsmooth nonlinearities and applied to a binary Cahn–Hilliardequation

with logarithmic potential in [66, 61]. For completeness, we present the basic ideas and

convergence results, referring to [61, 63] for details.

Nonlinear Schur complement and unconstrained minimization

Nonsmooth Schur–Newton methods are based on the reformulation of the set-valued

saddle point problem (VIA) as a dual, unconstrained minimization problem. In a first

step, we eliminate the primal variable c from (VIA).

Lemma 4.9. The set-valued saddle point problem (VIA) is equivalent to the nonlinear

system

H(w) = 0 (4.29)

with the single-valued, Lipschitz continuous nonlinear Schur complement

H(w) = B(A+ ∂ϕ)−1(f +BTw) + Cw + g (4.30)

in the sense that (c,w) is a solution of (VIA) if and only if w solves (4.29) and

c = (A+ ∂ϕ)−1(f +BTw).

Proof. The inverse (A+ ∂ϕ)−1 of A+ ∂ϕ is single-valued and Lipschitz continuous with

Lipschitz constant given by the inverse of the coercivity constant of A, because A is
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4.2. Numerical solution

s.p.d. and ϕ is lower semi-continuous, proper convex [45, Part One, Chapter II]. Now

the assertion follows from straightforward computation.

In the linear case ∂ϕ ≡ 0, it is well-known that the Schur complement BA−1BT + C is

symmetric and positive definite. We now provide an extension of this property to the

present nonlinear case.

Proposition 4.10. There is a Fréchet-differentiable convex functional h : Rn → R such

that H = ∇h.

Proof. Using Corollary 5.2 in [45, p. 22], it follows that H = ∂h is the subdifferential of

h(w) = − inf
v∈Rn
L(v,w) = −L((A+ ∂ϕ)−1(f +BTw),w).

As ∂h = H is single-valued and continuous, h is even Fréchet-differentiable and H = ∇h
is the Fréchet derivative of h.

As a direct consequence of Lemma 4.9 and Proposition 4.10, the set-valued saddle point

problem (VIA) is equivalent to find w ∈ Rn such that

h(w) 6 h(v) ∀v ∈ Rn (4.31)

and then solve Ac+∂ϕ(c) 3 f +BTw. We emphasize that (4.31) now is an unconstrained

convex minimization problem for a C1,1 function to which classical gradient-related descent

methods can be applied.

Gradient-related descent methods

We give a short summary of this approach referring to text books like, e.g., [104] for the

general theory or to [66, 63] for a more specific presentation.

We consider iterative methods for the approximation of minimizers of a given functional

h : Rn → R of the form

wν+1 = wν + ρνd
ν . (4.32)
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The search directions dν ∈ Rn are called gradient-related, if for any sequence (wν) ⊂ Rn

the conditions

∇h(wν) = 0 ⇐⇒ dν = 0

and

−〈∇h(wν),dν〉 > λd|∇h(wν)||dν |

hold for all ν ∈ N with a constant λd > 0 independent of ν. For example, the gradients

dν = −∇h(wν) are gradient-related, and we obtain the classical gradient method for this

choice. Faster convergence speed can be expected for preconditioned gradient methods

as resulting from search directions of the form

dν = −S−1
ν ∇h(wν) (4.33)

with a sequence (Sν) ⊂ Rn,n of suitable symmetric, positive definite preconditioners.

Such search directions are gradient-related, if there are constants λ,Λ > 0 such that

λ|v|2 6 〈Sνv,v〉 6 Λ|v|2 (4.34)

holds uniformly in ν ∈ N.

While the search directions dν are constructed to allow for suitable descent of the

functional h, the step sizes ρν should guarantee that this descent is actually realized. A

sequence (ρν) ⊂ R of step sizes is called efficient, if

h(wν + ρνd
ν) 6 h(wν)− λS

(
〈∇h(wν),dν〉

|dν |

)2

(4.35)

holds with a constant λS > 0 independent of ν.

Theorem 4.11. Assume that the search directions take the form dν = −S−1
ν ∇h(wν)

with symmetric, positive definite preconditioners Sν ∈ Rn,n satisfying (4.34), that the

step sizes ρν are efficient in the sense of (4.35), and that h has a unique minimizer.

Then the sequence (wν) produced by (4.32) converges to the minimizer of h for ν →∞.

Proof. See Theorem 5.2 and Theorem 5.7 in [66]. The proof presented there is based

on the fact that uniqueness of the minimizer implies compactness of the sublevel set

{w ∈ Rn | h(w) 6 h(w0)}. Using this the rest can essentially be shown with standard

arguments as, e.g. in, [104].
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Efficiency of the step sizes ρν can be guaranteed by various strategies such as, e.g., the

Armijo rule (see, e.g., [38, Chapter 3] for a detailed discussion). In order to reduce the

number of tuning parameters involved, we propose a strategy that approximates the

minimizer of h along wν + ρdν , ρ ∈ R.

Proposition 4.12. Assume that the search directions in the descent method (4.32) take

the form dν = −S−1
ν ∇h(wν) and that

〈∇h(wν + ρνd
ν),dν〉 ∈ [α 〈∇h(wν),dν〉 , 0 ]

holds for all ν ∈ N with some α ∈ [0, 1) independent of ν. Then the step sizes ρν are

efficient.

Proof. See Proposition 5.4 in [66].

Remark 4.1. Utilizing Proposition 4.12 with fixed α ∈ (0, 1), efficient step sizes ρν can

be computed by a simple bisection algorithm. However, as each iteration step requires the

evaluation of H = ∇h and thus of (A+ ϕ)−1, this procedure might be quite costly. The

actual computation of ρν can be avoided, if the monotonicity test

|dν | 6 σ|dν−1| (4.36)

holds with some fixed σ < 1. In this case, convergence is preserved for ρν = 1. We refer

to [66, Theorem 5.4] for details.

Remark 4.2. The above convergence results also remain valid, if the descent directions

dν are replaced by approximations d̃ν which are sufficiently accurate in the sense that

the conditions 〈
d̃ν ,∇h(wν)

〉
< 0, |dν − d̃ν |/|d̃ν | → 0

are satisfied. For a detailed analysis of such inexact versions we refer to [66].

In particular, Remark 4.2 allows for inexact evaluation of the preconditioner S−1
ν .

Nonsmooth Newton-like descent directions

In the light of Theorem 4.11 the gradient-related descent method (4.32) with search

directions of the form (4.33) converges globally for any sequence of symmetric positive
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definite preconditioners Sν with the property (4.34). We now aim at selecting Sν in

such a way that the convergence is locally fast. For a sufficiently smooth functional h,

the Jacobian Sν = ∇2h(wν) would clearly be a desirable choice, because it leads to the

classical Newton method with asymptotically quadratic convergence. Since for the given

problem we cannot expect ∇h = H to be differentiable but only to be Lipschitz, the

choice Sν ∈ ∂CH(wν) with ∂C denoting the generalized Jacobian in the sense of Clarke

[35] would be a natural generalization. However, an element of ∂CH(wν) is difficult to

obtain, since, in general, we cannot make use of the chain rule. Following [66, 63], we

will therefore construct related nonsmooth Newton-like preconditioners Sν by postulating

the chain rule. We will focus on the basic ideas of construction and present the resulting

preconditioner for the given problem (4.29), referring to [66, 63] for details.

Our starting point is the observation that some of the components of (A + ∂ϕ)−1 are

smooth in a given y ∈ Rn while the others are not. To be precise, we introduce the

inactive set

I(y) := {1 6 i 6 n | ∂ϕi is single-valued and differentiable in yi}.

For the given ϕ defined in (4.26), we obtain

I(y) = {1 6 i 6 n | yi > 0}. (4.37)

It turns out that the i-th component of the inverse (A+ ∂ϕ)−1 is differentiable in y, if

i ∈ I((A+ ∂ϕ)−1y). This observation motivates the linearization

∂(A+ ∂ϕ)−1(y) := (A+ ϕ′′(x))+
I(x) (4.38)

of (A + ∂ϕ)−1 at a given y ∈ (A + ∂ϕ)(x). Here, ϕ′′(x) denotes the diagonal matrix

with diagonal entries ϕ′′i (xi), the matrix M+ ∈ Rn,n stands for the Moore–Penrose

pseudoinverse of M ∈ Rn,n, and MI ∈ Rn,n again denotes the truncated matrix as

in (2.54). Recall that truncation of a matrix means that certain lines and columns

defined by the index set I are set to zero. Note that the multiplication of the matrix

(A+ϕ′′(x))+
I(x) with a vector amounts to the solution of a truncated linear system, i.e., of

a reduced linear system with a coefficient matrix consisting of the i-th row and column

unit vector in Rn, if i /∈ I(x) and remaining entries taken from A+ ϕ′′(x), respectively.

The definition (4.37) of inactive sets is well-suited for the deep quench limit θ = 0,
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because then the second derivatives of ϕi(yi) are uniformly bounded, in fact equal to

zero. This is different for the logarithmic potential, where the property ϕ′′(yi)→∞ for

yi → 0 might lead to badly scaled linearizations of the form (4.38). As a remedy we

modify the definition of the inactive set according to

I ′′(y) := {1 6 i 6 n | yi > δ} (4.39)

with some fixed δ > 0 such that ϕi(yi) 6 λT holds with a corresponding fixed constant

λT . We will use λT = 108 in our numerical computations. On this background, we finally

define the linearization

∂(A+ ∂ϕ)−1(y) = (A+ ϕ′′(x))+
I′′(x), x = (A+ ∂ϕ)−1(y),

of (A+∂ϕ)−1 at some given y ∈ Rn. Now, postulating the chain rule with ∂(A+∂ϕ)−1as

inner derivative, we obtain the nonsmooth Newton-like linearization

∂H(y) = B(A+ ϕ′′(x))+
I′′(x)B

T + C, x = (A+ ∂ϕ)−1(f +BTy),

of H defined in (4.30) at some given y ∈ Rn.

The candidate ∂H(wν) for a preconditioner Sν is symmetric and positive definite, if

and only if I ′′(cν) 6= ∅ holds with cν = (A+ ∂ϕ)−1(wν), because we get ∂H(wν) = C

otherwise, and C is only positive semi-definite. Hence, in the non-generic case I ′′(cν) = ∅,

we regularize ∂H(wν), e.g., by adding the scaled mass matrix τB to obtain

Sν =

∂H(wν) if I ′′(cν) 6= ∅,

∂H(wν) + τB else.
(4.40)

Definition 4.1: The gradient-related descent method (4.32) with search directions

dν = −S−1
ν H(wν), preconditioners Sν ∈ Rn,n defined in (4.40), and efficient step sizes

ρν is called nonsmooth Schur–Newton iteration for the set-valued saddle point problem

(VIA). 4

Recall that efficient step sizes ρν can be computed utilizing Proposition 4.12.
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Theorem 4.13. Assume that (VIA) has a unique solution (c,w). Then, for any initial

iterate w0 ∈ Rn, the nonsmooth Schur–Newton iteration converges to the solution w and

c = (A+ ∂ϕ)−1(f +BTw).

Proof. In the light of Theorem 4.11, it only remains to show that the preconditioners

Sν , defined in (4.40) are s.p.d. and satisfy condition (4.34). We refer to Theorem 5.7 in

[66].

Recall that sufficient conditions for uniqueness are given in Theorem 4.6. Global conver-

gence also holds for suitable inexact versions of (4.32) according to Remark 4.2.

By construction, we generally cannot expect ∂H(wν) to be contained in the set of

generalized Jacobians in the sense of Clarke. Hence, the general theory of semi-smooth

Newton methods cannot be applied to show local quadratic convergence. However,

exploiting that the underlying solution space is finite dimensional, related results can

easily be shown directly.

Remark 4.3. Assume that the parameter δ > 0 in (4.39) is sufficiently small and that

the monotonicity test in (4.36) is not used. Then the nonsmooth Schur–Newton method

as applied to the set-valued saddle point problem (VIA) locally reduces to a classical

Newton iteration in case of the logarithmic potential θ > 0, and is even locally exact in

the deep quench limit θ = 0.

The numerical relevance of these asymptotic results is limited: For θ > 0 sufficiently

small parameters δ > 0 typically lead to severe ill-conditioning of the arising Hessian

matrices and to convergence radii of the Newton iteration that are smaller than machine

precision.

The general convergence analysis of nonsmooth Schur–Newton methods is based on

arguments restricted to finite dimensional spaces (see [66, 63] for a detailed discussion).

Convergence results in function spaces are available only in special cases [76]. However,

numerical computations indicate mesh-independent convergence speed for initial iterates

provided by nested iteration (cf. [66, 63] and the numerical experiments to be reported

below). Theoretical validation of such kind of local mesh independence is still open.
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Algorithmic aspects

Rewriting the nonsmooth Schur–Newton iteration introduced in Definition 4.1 in primal-

dual form

cν = (A+ ∂ϕ)−1(f +BTwν)

wν+1 = wν + ρνS
−1
ν (−Bcν + Cwν + g),

we obtain a preconditioned Uzawa method. Each iteration step amounts to the update of

the primal variable cν , the evaluation of the preconditioned residual S−1
ν (−Bcν+Cwν+g),

and the selection of a suitable step size ρν .

The first substep is equivalent to the solution of the minimization problem

cν = arg min
v∈Rn

1
2
〈Av,v〉+ ϕ(v)−

〈
(f +BTwν),v

〉
. (4.41)

While there is a vast literature about elliptic obstacle problems emerging in the deep

quench limit θ = 0 (cf., e.g., [41, 62] and the references cited therein), fast solvers for

the logarithmic potential θ > 0 that show a robust convergence behavior for θ → 0 are

still rare (see, however, [85, 86]). In the numerical experiments to be reported below, we

apply the truncated nonsmooth Newton method (TNNMG) [66, 62, 65] that combines

robustness for θ → 0 with similar efficiency as observed for classical multigrid methods

in the linear self-adjoint case. Note that optimal complexity of each iteration step even

for the dense matrix A is achieved by exploiting that A is the sum of a sparse matrix

and a dense low-rank matrix with a known product representation [60].

The preconditioned residual wν+1/2 = S−1
ν (−Bcν + Cwν + g) can be computed by

(approximately) solving a truncated linear saddle point problem of the form Â −B̂T

−B̂ −Ĉ


 ĉ

wν+1/2

 =

 f̂

g

 (4.42)

with the symmetric, positive definite matrix Â ∈ Rn̂,n̂, n̂ = |I ′′(cν)|, obtained by

eliminating the i-th row and column of A for all i /∈ I ′′(cν), the matrix B̂ ∈ Rn̂,n obtained

by eliminating the i-th column of B for all i /∈ I ′′(cν), and Ĉ = C, if n̂ > 0 or C = C+τB

otherwise. In the numerical experiments to be reported below, we use a preconditioned
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GMRES iteration with a truncated version of the multigrid method with successive

Vanka smoother suggested by Schöberl and Zulehner [113] as a preconditioner. For an

overview on other methods for the numerical solution of linear saddle point problems, we

refer to [14].

Efficient step sizes ρν can be computed utilizing Remark 4.1 which requires the evaluation

of ∇h(wν + ρdν) = H(wν + ρdν) and thus the solution of a minimization problem of

the form (4.41) in each bisection step. Recall that this costly procedure can be avoided

for iterates that are sufficiently accurate in the sense that the monotonicity test (4.36) is

passed.

4.3. Numerical Results

4.3.1. Problem, discretization and subproblem solvers

We consider the multicomponent Cahn–Hilliard system (4.6) on the computational domain

Ω = [−1, 1]d with L = P = Id− 1
N

(1, . . . ,1), ε2 = 5 · 10−3 for the 2D computations and

2 · 10−2 for the 3D computation. We use the logarithmic potential Ψθ defined by (4.3),

where K is given by (4.5). We select N = 4 components and the temperature θ = 0.1, if

not stated otherwise. To obtain initial conditions with similar granularity for varying

N , 200 circles with radius 0.1 − 0.15 are randomly distributed over Ω and randomly

assigned to the different components. For the 3D computation we used 150 balls with

radii ranging from 0.1 to 0.5.

Throughout the following, we use the uniform time step size τ = 10−3 and a grid

hierarchy T0, . . . ,Tj as obtained by successive refinement of the initial triangulation T0

consisting of two triangles resp. five tetrahedra. Again adaptivity is clearly mandatory

in practical applications due to the strongly locally varying solutions. However, in order

not to introduce any effects due to differing grids we avoid adaptivity in all but the

3D computation and the final 2D experiment that focusses on adaptivity. If not stated

otherwise, we select j = 8 uniform refinement steps, providing the triangulation T8 with

m8 = 66049 vertices and the mesh size h8 = 2−7 ≈ ε/9. In this case, we found that the

interface is resolved by about 11 grid points.

For the iterative solution of the resulting algebraic subproblems, we consider the non-
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smooth Schur–Newton method (NSNMG) presented in Section 4.2.2 with a multigrid

solver for the nonlinear non-smooth minimization problems (4.41) and a preconditioned

GMRES iteration for the linearized saddle point problems (4.42).

More precisely, non-smooth subproblems (4.41) are solved by a truncated nonsmooth

Newton multigrid method (TNNMG) [66, 62, 65]. Throughout the following, the iteration

is executed almost up to machine precision, i.e., we use the stopping criterion

∥∥cν,k+1 − cν,k
∥∥
A
< ϑTNNMG (4.43)

for the iterates cν,k, k = 1, . . . , with ‖ · ‖A denoting the energy norm induced by the

matrix A. In the computations reported on below we chose ϑTNNMG = 10−13.

The linear saddle point problems (4.42) are solved by a preconditioned GMRES iteration

with restart after 50 steps. The preconditioner is based on a straightforward extension of

a truncated multigrid method with block-Gauß-Seidel smoother as suggested in [85, 113]

to the case of vector-valued order parameters. In the light of Remark 4.2 the iteration

is stopped, if the ratio of the Euclidean norms of the preconditioned residual and the

actual iterate is less than min
(
ζν1 , ζ2 ‖wν −wν−1‖2

C,B

)
. Here, we chose ζ1 = 10−1 and

ζ2 = 10−2 and the corrections wν −wν−1 of the overall NSNMG iteration are measured

in the norm

‖v‖C,B = ‖v‖C + τ ‖v‖B , v ∈ Rn, (4.44)

generated by the positive semi-definite matrix C and the mass matrix B defined in (4.24).

The step sizes ρν are computed according to Proposition 4.12.

The overall NSNMG iteration is terminated once its target, the dual variable w, is

approximated sufficiently well, i.e. once the stopping criterion

∥∥wν+1 −wν
∥∥
C,B

< ϑNSNMG = κ · 10−11. (4.45)

is satisfied with some κ > 0. We chose the default value κ = 1, if not stated otherwise.

4.3.2. Evolution and distribution of computational work

In our first experiment, we consider the evolution of N = 6 components. Here, we chose

κ = 2 in the stopping criterion (4.45) in order to avoid the influence of round-off errors
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in our linear saddle point solver. The evolution over 1000 time steps is illustrated in

Figure 4.2. As expected, we observe fast separation in the beginning and slower dynamics

in course of the evolution. It is interesting to see that the evolution tends to a hexagonal

structure of grains with equilibrated mass. Mass conservation is fulfilled up to 0.0053%

over all time steps, which is in good accordance with our prescribed algebraic accuracy.

In a second computation we consider N = 4 components in 3D with κ = 10 over 100

timesteps. The evolution is illustrated in Figure 4.3. In this case mass is conserved up to

0.0024% over all time steps.
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Figure 4.1 – Total number of iterations by NSNMG (red), TNNMG (blue),
and preconditioned GMRES (green) for the described 2D (top) and 3D
(bottom) evolutions, scaled by their value in the first timestep 6 (NSNMG),
45 (TNNMG), and 281 (preconditioned GMRES) resp. 5, 61, 351, over the
number of time steps.

To illustrate the amount of computational work, Figure 4.1 shows the total number of

iterations by NSNMG (red), TNNMG (blue), and preconditioned GMRES (green) for each

spatial problem for the 2D (top) and 3D computation (bottom), scaled by their respective

values in the first timestep (6 (NSNMG), 45 (TNNMG), and 281 (preconditioned GMRES)

for 2D and 5, 61, 351 for 3D), over the number of time steps. The initial iterate is
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4.3. Numerical Results

Figure 4.2 – Initial condition c0 and approximate order parameter c(·, t) at
time t = 1τ, 20τ, 50τ, 200τ, 1000τ .

121



4. Multicomponent Cahn–Hilliard systems

Figure 4.3 – The initial value of the phase-field on the surface of the com-
putational domain and 0.51-levelsets of 3 phases in a 4-phase computation
at timesteps 1, 5, 20, 40, 80 together with a grid cross-section. Note that
white in the initial value is a homogeneous mixed state and the red phase
has been rendered invisible in the latter images.
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4.3. Numerical Results

obtained by nested iteration in each case. We observe exactly 6 resp. 5 NSNMG iterations

in the 2D resp. 3D case for all but one spatial problems and only slight changes in

the performance of TNNMG and preconditioned GMRES. No damping was needed

throughout the evolutions. Hence, the solution of each subproblem (4.41) only required

about 7 resp. 12 iterations of TNNMG. This is in accordance with previous computations,

where TNNMG exhibited linear multigrid efficiency and mesh-independent convergence

rates for initial iterates provided by nested iteration [66, 65]. The preconditioned GMRES

needed more than 40 resp. 70 iterations for each linear solve and thus strongly dominates

the overall computational work. Moreover, we found that our straightforward multigrid

preconditioning did not provide mesh independence. Hence, the overall efficiency of

NSNMG will benefit from more sophisticated linear saddle point solvers as have been

studied elsewhere (see, e.g.,[98]).

4.3.3. Influence of initial iterate, temperature, number of

components, and spatial mesh size on the convergence speed

In our next experiment, we come back to N = 4 components and study the influence

of initial iterates w0 and temperature θ on the convergence speed of NSNMG. As the
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Figure 4.4 – Approximate algebraic error
∥∥wν −wν−1

∥∥
C,B

over
the number of NSNMG iterations for the temperatures θ =
0.0 (red •), 0.001 (green �), 0.1 (black �), 0.5 (blue H) with initial iter-
ates w0 = 0 (dashed lines) and nested iteration (solid lines) for the first
spatial problem.

performance of NSNMG hardly changed for different spatial problems (cf. Section 4.3.2),
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4. Multicomponent Cahn–Hilliard systems

we concentrate on the first one. Figure 4.4 shows the approximate algebraic error

‖wν −wν−1‖C,B over the number of NSNMG iterations for the temperatures θ = 0.5

(blue), 0.1 (black), 0.001 (green), 0 (red) with “bad” initial iterates w0 = 0 (dashed

lines) and “good” initial iterates obtained by nested iteration (solid lines). For bad

initial iterates, the iteration history can be separated into a preasymptotic phase with

slow convergence and step sizes ρν < 1 and into an asymptotic phase with superlinear

convergence speed. The asymptotic phase is entered immediately for initial iterates

obtained by nested iteration. While we observe a strong influence of the temperature

θ on the duration of the preasymptotic phase, it hardly seems to affect the asymptotic

superlinear convergence speed.

This suggests robustness of NSNMG with respect to temperature θ for initial iterates as

obtained by nested iteration, which is confirmed by our next experiment, as illustrated

in Figure 4.5. The left picture shows the number of iterations as required to meet the

stopping criterion (4.45) with κ = 1 over the inverse temperature 1/θ. We chose the

values θ = i · 10−1, i = 1, . . . 9, and θ = 10−i, i = 2, . . . 10. The corresponding averaged
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Figure 4.5 – Number of NSNMG iterations over inverse temperature 1/θ
(left) and averaged convergence rates of NSNMG over 1/θ (right).

convergence rates are shown in the picture on the right. In a sense, problems with θ ≈ 1

and θ ≈ 0 seem to be a little bit easier to solve than problems with medium temperatures,

such as, e.g. θ = 0.1. Observe that the convergence behavior for θ = 10−5 can not be

distinguished from the deep quench limit θ = 0. At most 6 NSNMG iterations were

required to reduce the approximate error by 10 orders of magnitude. The averaged

NSNMG convergence rate is always far below 0.05 so that usually one or two NSNMG

steps would be enough to reduce the algebraic error below discretization accuracy. Each
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4.3. Numerical Results

NSNMG step amounts to the total number of at most 23 TNNMG iterations and one

inexact linear saddle point solution. This means that the average number of TNNMG

iterations for each occurring subproblem (4.41) is less than 6, which nicely confirms

efficiency and robustness of this method [66, 65]. Again the overall computational work

is strongly dominated by the inexact linear saddle point solution which is partly due to

the larger number of unknowns.
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Figure 4.6 – Number of NSNMG iterations over the number N of components
(left) and averaged convergence rates of NSNMG over N (right).

In the next experiment, we assess the influence of the number N of components on the

convergence speed of NSNMG. Here, we had to chose κ = 7 in the stopping criterion

(4.45) in order to avoid the influence of round-off errors in our linear saddle point solver.

The left picture of Figure 4.6 shows the number of NSNMG iterations over N , while

the right picture shows the corresponding averaged convergence rates. Again, the initial

iterates are obtained by nested iteration. The number of NSNMG iterations is varying

between 5 and 6 over N = 2, . . . , 10 components, indicating considerable robustness of

the convergence speed of NSNMG with respect to the number of components. This

robustness is preserved by TNNMG, which required less than a total number of 45

TNNMG iterations in each NSNMG step to solve the nonlinear nonsmooth subproblems

(4.41) almost up to machine accuracy.

As the convergence theory presented in Section 4.2.2 is partly based on arguments that

are restricted to finite dimensional spaces, we now investigate the mesh dependence of

NSNMG. As we are interested in the local asymptotic convergence speed, the initial

iterates are obtained by nested iteration. The left picture of Figure 4.7 shows the number

of NSNMG iterations over the number mj of vertices of the triangulations Tj for two

125



4. Multicomponent Cahn–Hilliard systems
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Figure 4.7 – Number of NSNMG iterations over the number of vertices m
(left) and averaged convergence rates of NSNMG over m (right) in 2D (black)
and 3D (red).

(black) and three (red) space dimensions, while the right picture shows the corresponding

averaged convergence rates. The 3D data stems from the computation already described

above. The plotted data is taken from the first timestep. For the mesh size ranging from

h4 = 2−3 to h8 = 2−7, the number of NSNMG iterations is bounded by 9 in 2D and

similarly for 3D. This suggests local mesh-independent convergence of NSNMG and even

local convergence of a related approach in function space (see [76] for a first result in

this direction). Theoretical justification will be the subject of future research.

4.3.4. Adaptive mesh refinement and order of convergence

The final experiment addresses the order of convergence of the adaptive refinement

algorithm. We chose a checkerboard pattern as initial value for adaptive computations in

order to have comparable overall interface lengths for different N ∈ {2, 4, 6} (cf. Figure 4.9

left). We consider the second timestep in order to avoid artifacts that may arise due

to the sharp interfaces of the initial values. The tolerances in the termination criterion

(2.39) were chosen as ϑadapt(N = 2) = 2 · 10−2, ϑadapt(4) = 2.5 · 10−2, ϑadapt(6) = 3 · 10−2

such that the resulting numbers of (nonhanging) nodes in the final grids are roughly of

the same size m(N = 2, 4, 6) = (136790, 133727, 112377). All other parameters of our

refinement cycle were chosen as in previous chapters. Figure 4.8 shows the corresponding

estimated errors η, as introduced in (3.19), over
√
m. Note that h = m−1/2 is the mesh

size in case of uniform refinement. The dashed line indicates O(m−1/2). A comparison
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4.3. Numerical Results

suggests that our adaptive refinement algorithm provides approximations with optimal

order independently of the number of components.
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Figure 4.8 – Estimated error η over m1/2 for N = 2 (black), N = 4 (blue),
N = 6 (red) in comparison with O(m−1/2) (dashed).
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4. Multicomponent Cahn–Hilliard systems

Figure 4.9 – Initial values (left), final grids (middle), and grid details (right)
for adaptive computations with N = 2, 4, 6
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Appendix A.2 is a loose collection of a few functional analytic results which are used in

the proofs given in Chapters 2-4. The crucial theorem of monotone operator theory, on

which the existence and uniqueness proof in Chapter 2 is based, is given and developed

in Appendix A.1.

A.1. Maximal Monotone Operators

In this section we will state the definition of maximal monotone operators on a Hilbert

space H and collect some important examples, lemmata, and theorems. The contents

of this section are taken from the monograph by Brézis [27] with some elaboration of

proofs. Subject of study are (set-valued) mappings A : H → P(H ) from a Hilbert space

into its powerset.

Definition A.1: The set dom(A) = {x ∈ H | Ax 6= ∅} is called the domain of A and

range(A) =
⋃
x∈H Ax its range. The set graph(A) = {(x; y) ∈ H ×H | y ∈ Ax} will be

called the graph of A. The inverse operator A−1 is defined by y ∈ A−1x⇔ x ∈ Ay. 4

Definition A.2: An operator A : H → P(H ) is called monotone iff

∀x1,x2∈dom(A)∀y1∈Ax1∀y2∈Ax2 (y1 − y2, x1 − x2)H > 0

A monotone operator is called maximal monotone, if it is maximal in the set of monotone

operators on H wrt to the subset relation on their graphs; or more explicitely, for all

(x; y) ∈ H ×H with (y − η, x− ξ)H > 0 for all ξ ∈ dom(A), η ∈ Aξ it follows y ∈ Ax,

i.e. (x; y) ∈ graph(A). 4

The set of monotone operators on H is inductively ordered, which together with Zorn’s

lemma guarantees the existence of a maximal extension of any monotone operator (cf. [27,
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Corollaire 2.1]). The following lemma ([27, Proposition 2.2]) states criteria for maximal

monotonicity which may be easier to verify.

Lemma A.1. Let A be an operator on H , then the following properties of A are equivalent

1. A is maximal monotone

2. A is monotone and range(Id + A) = H

3. (Id + λA)−1 is a contraction defined everywhere on H , for all λ > 0

Given a maximal monotone operator one can construct others from it:

Lemma A.2. Let A be a maximal monotone operator, then λA for λ > 0 and A−1 are

maximal monotone. If B is a maximal monotone operator such that ˚dom(A)∩dom(B) 6=
∅ then A+B is maximal monotone and dom(A) ∩ dom(B) = dom(A) ∩ dom(B).

The proof of the latter result can be found in [27, Corollaire 2.7], the former are immediate.

The following important result was proven by Moreau [96] and extended to general

Banach spaces by Rockafellar [110]. We give the proof from [27, Exemple 2.3.4] in a

slightly more elaborate version.

Theorem A.3. Let φ be a proper convex and lower semicontinuous functional on H ,

then the subdifferential ∂φ is a maximal monotone operator on H (identifying H with

its dual H ′ via the Riesz isomorphism).

Proof. Monotonicity of the subdifferential follows directly from the definition. We have

for any x1, x2 ∈ H and y1 ∈ ∂φ(x1), y2 ∈ ∂φ(x2)

φ(x1) > φ(x2) + (y2, x1 − x2) and

φ(x2) > φ(x1) + (y1, x2 − x1) .

Addition of the inequalities yields (y1 − y2, x1 − x2) > 0.

In order to prove maximality we will use Lemma A.1 and the following result: For a proper

convex function φ on H , y ∈ H and α > 0 the convex function ψα(x) = φ(x)+α
2
‖x− y‖2

H

takes on its minimum in x0 ∈ H iff α(y− x0) ∈ ∂φ(x0). Indeed if α(y− x0) ∈ ∂φ(x0) we

have φ(x0) < +∞. The definition of the subgradient and a simple computation yield

φ(ξ)− φ(x0) > α (y − x0, ξ − x0) >
α

2

(
‖x0 − y‖2 − ‖ξ − y‖2) , ∀ξ ∈ H
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and thus

φ(x0) +
α

2
‖x0 − y‖2 6 φ(ξ) +

α

2
‖ξ − y‖2 ∀ξ ∈ H

Conversely taking ξ = (1− t)x0 + tη with t ∈ (0, 1) and some η ∈ H we have

t (φ(η)− φ(x0)) > φ(ξ)− φ(x0)

>
α

2

(
‖x0 − y‖2 − ‖(1− t)x0 + tη − y‖2)

= t
α

2
(2(x0 − y) + t(η − x0), x0 − η)

where the first inequality is due to convexity of φ, and the second to the minimizing

quality of x0. The equality is a simple application of the binomial rule. Division by t

and passing to the limit yields

φ(η)− φ(x0) > α(y − x0, η − x0)

i.e. α(y − x0) is a subgradient of φ at x0.

Now observe that for any y ∈ H ψ1 is convex, lsc and - by virtue of the Hahn-Banach

theorem - coercive. Hence ψ1 takes on its minimum x0 ∈ H and by the preceding result

we have y ∈ x0 +∂φ(x0). Thus we have shown range(Id+∂φ) = H which yields maximal

monotonicity of ∂φ by Lemma A.1.

In the following we state without further proof some important results concerning

evolution equations of maximal monotone operators du
dt

+ Au 3 f, u(0) = u0. We begin

by stating the definitions of strong and weak solutions to the evolution equation.

Definition A.3: Let A be an operator on H and f ∈ L1(0, T ; H ). A function

u ∈ C ([0, T ]; H ) that is absolutely continuous on each compact subset of (0, T ) is a

(strong) solution of f ∈ du
dt

+ Au iff u(t) ∈ dom(A) and du
dt

(t) + Au(t) 3 f(t) for a.e.

t ∈ (0, T ).

We call u ∈ C ([0, T ]; H ) a weak solution iff there exist sequences fn ∈ L1(0, T ; H ) and

un ∈ C ([0, T ]; H ) with fn → f in L1(0, T ; H ) and un → u uniformly in C ([0, T ]; H ) and

un is a strong solution to dun
dt

+ Aun 3 fn. 4

For the weak solutions of evolution equations we state some useful estimates:

Lemma A.4 ([27], Lemme 3.1). Let A be a maximal monotone operator on H , f and

g ∈ L1(0, T ; H ), u and v weak solutions to du
dt

+ Au 3 f and dv
dt

+ Au 3 g respectively.
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Then we have the estimates

‖u(t)− v(t)‖ 6 ‖u(s)− v(s)‖ +

∫ t

s

‖f(r)− g(r)‖ dr ∀0 6 s 6 t 6 T (A.1)

(u(t)− u(s), u(s)− x) 6
1

2
‖u(t)− x‖2 − 1

2
‖u(s)− x‖2

6
∫ t

s

(f(r)− y, u(r)− x) dr ∀0 6 s 6 t 6 T ; ∀x, y ∈ A

(A.2)

The following theorem ensures existence of unique weak solutions under certain conditions

on the right hand side and the initial conditions.

Theorem A.5 ([27], Theorème 3.4). Let A be a maximal monotone operator on H . For

every f ∈ L1(0, T ; H ) and every u0 ∈ dom(A) there is a unique weak solution u to the

inclusion du
dt

+ Au 3 f with u(0) = u0.

In the case of A being a subdifferential of a proper convex lsc function, and f an L2 right

hand side, weak solutions are in fact strong solutions as stated by the following theorem.

Theorem A.6 ([27], Theorème 3.6). Let f ∈ L2(0, T ; H ) and u0 ∈ dom(φ) then every

weak solution to du
dt

+ ∂φ(u) 3 f is a strong solution and
√
tdu
dt
∈ L2(0, T ; H ). φ(u(·)) is

in L1(0, T ) and absolutely continuous on every interval [δ, T ], δ ∈ (0, T ) with∥∥du
dt

(t)
∥∥2

+ d
dt
φ(u(t)) =

(
f(t), du

dt
(t)
)

a.e. in (0, T ).

If u0 ∈ dom(φ) we have du
dt
∈ L2(0, T ; H ) with

(∫ T

0

∥∥∥∥dudt (t)

∥∥∥∥2

dt

) 1
2

6

(∫ T

0

‖f(t)‖2

) 1
2

+ φ(u0)
1
2

and φ(u(·)) is absolutely continuous on [0, T ].

We are now ready to state the final result of this section. The proof is not omitted in

this case as it plays an essential role in the existence proof of chapter 2.

Theorem A.7 ([27], Proposition 3.12). Let φ be a proper convex and lsc function on H
and B : [0, T ]× dom(φ)→ H such that

1. ∃ω>0∀x,y∈H ∀t∈[0,T ] ‖B(t, x)−B(t, y)‖ 6 ω ‖x− y‖
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2. ∀x∈dom(φ) B(·, x) ∈ L2(0, T ; H )

Then for every u0 ∈ dom(φ) there exists a unique solution to

du

dt
(t) + ∂φ(u(t)) +B(t, u(t)) 3 0 for a.e. t ∈ (0, T ), u(0) = u0

and √
t
du

dt
∈ L2(0, T ; H )

If u0 ∈ dom(φ) then du
dt
∈ L2(0, T ; H ).

Proof. For each u ∈ C ([0, T ]; H ) with values in dom(φ) the function B(·, u(·)) is in

L2(0, T ; H ) which is verified by an easy calculation. Hence the following sequence is well

defined by theorems A.5 and A.6: Let un be the solution of

dun
dt

(t) + ∂φ(un(t)) 3 −B(t, un−1(t)), un(0) = u0

From Lemma A.4 and the assumptions on B follow

‖un+1(t)− un(t)‖ 6
∫ t

0

‖B(s, un(s))−B(s, un−1(s))‖ ds 6 ω

∫ t

0

‖un(s)− un−1(s)‖ ds

and then by recursion

‖un+1(t)− un(t)‖ 6 (ωt)n

n!
‖u1 − u0‖L∞

Hence we have uniform convergence of un on [0, T ] towards some u and by continuity of B

in the second argument we have B(t, un(t))→ B(t, u(t)). Therefore u is a weak solution to
du
dt

+ ∂φ(u) 3 −B(t, u(t)) and by Theorem A.6 a strong solution with
√
tdu
dt
∈ L2(0, T ; H )

respectively du
dt
∈ L2(0, T ; H ) if u0 ∈ dom(φ).

A.2. Miscellaneous

An important tool to deduce lower semicontinuity of integral operators from the lower

semicontinuity of the integrand is known by the name of Fatou’s lemma.

Lemma A.8 (Fatou). Let (fn) ∈ L1(Ω) be a sequence of integrable functions uniformly
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bounded from below. Then the pointwise limes inferior is in L1(Ω) and

lim inf
n−→∞

∫
Ω

fn(x) dx >
∫

Ω

lim inf
n−→∞

fn(x) dx.

That a converging L2-sequence also converges pointwise almost everywhere is in general

not true, but holds for a subsequence as stated by the following theorem.

Theorem A.9 ([48], Korollar 2.7). Let vn be a sequence converging in L2(Ω)N towards

v. Then there is a subsequence vnk converging towards v almost everywhere.

Definition A.4 (Carathéodory function): Let Ω be an open subset of Rd. A function

f : Ω× RN → R is called a Carathéodory function if

(i) f(·, ξ) is measurable for each ξ ∈ RN

(ii) f(x, ·) is continuous on RN for a.e. x ∈ Ω

4

Definition A.5 (Superposition operator): Let f : Ω × RN → R. The operator

mapping RN -valued functions on Ω to scalar functions defined by

F (v)(x) = f(x, v(x))

is called superposition operator or Nemytskij operator. 4

The following theorem provides continuity of such superposition operators and integrabil-

ity of composed functions under few assumptions.

Theorem A.10 ([111], Sect. 5.2.2, Propositions 2 & 3). Let Ω ⊂ Rd be a non-empty,

open, bounded domain and f : Ω× RN → R a Carathéodory function satisfying for some

constant c ∈ R and some a ∈ Lq(Ω)

|f(x, ξ)| 6 a(x) + c

N∑
i=0

|ξi|
p
q for a.e. x ∈ Ω, ∀ξ ∈ RN .

Furthermore let 1 6 p, q < ∞. Then the superposition operator F induced by f maps

Lp(Ω)N into Lq(Ω) and F is continuous and bounded.
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Lemma A.11. Let H be a Hilbert space and T : H → R be differentiable in H such

that is T ′ Lipschitz continuous with Lipschitz constant L. Then

|T (x)− T (x0)− 〈T ′(x0), x− x0〉| 6
L

2
‖x− x0‖2

H ∀x, x0 ∈ H

Proof. Let x, x0 ∈ H be arbitrary but fixed and define g : R→ R, s 7→ T (x0 +s(x−x0)).

Then by the chain rule g′(s) = 〈T ′(x0 + s(x− x0)), x− x0〉. By the fundamental theorem

of calculus, the Cauchy–Schwarz inequality, and the Lipschitz continuity of T ′ we now

have

|T (x)− T (x0)− 〈T ′(x0), x− x0〉| = |g(1)− g(0)− g′(0)|

=

∣∣∣∣∫ 1

0

g′(s) ds− g′(0)

∣∣∣∣
=

∣∣∣∣∫ 1

0

g′(s)− g′(0) ds

∣∣∣∣
=

∣∣∣∣∫ 1

0

〈T ′(x0 + s(x− x0))− T ′(x0), x− x0〉 ds
∣∣∣∣

6
∫ 1

0

|〈T ′(x0 + s(x− x0))− T ′(x0), x− x0〉| ds

6
∫ 1

0

‖T ′(x0 + s(x− x0))− T ′(x0)‖H ′ ‖x− x0‖H ds

6
∫ 1

0

sL ‖x− x0‖2
H ds

=
L

2
‖x− x0‖2

H
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[20] T. Böhme, W. Dreyer, F. Duderstadt, and W. H. Müller. “A higher gradient
theory of mixtures for multi-component materials with numerical examples for
binary alloys”. Preprint 1286. WIAS Berlin, 2007.

[21] E. Bonetti, W. Dreyer, and G. Schimperna. “Global solutions to generalized
Cahn–Hilliard equation with viscosity”. Advances in Differential Equations 8.2
(2003), pp. 231–256.

[22] E. Bonetti, P. Colli, W. Dreyer, G. Gilardi, G. Schimperna, and J. Sprekels. “On
mathematical models for phase separation in elastically stressed solids”. Physica
D 165 (2002), pp. 48–65.

[23] F. Bornemann. “An adaptive multilevel approach to parabolic equations in two
space dimensions”. PhD thesis. Freie Universität Berlin, 1991.

[24] F. Bornemann, B. Erdmann, and R. Kornhuber. “A Posteriori Error Estimates
for Elliptic Problems in Two and Three Space Dimensions”. SIAM J. Numer.
Anal. 33 (1996), pp. 1188–1204.

[25] J. C. Bowman and A. Hammerlindl. “Asymptote: A vector graphics language”.
TUGBOAT: The Communications of the TeX Users Group 29.2 (2008), pp. 288–
294.

[26] P. Boyanova and M. Neytcheva. “Efficient Numerical Solution of Discrete Multi-
Component Cahn-Hilliard Systems”. Preprint 09. Department of Information
Technology, Uppsala Universitet, 2012.

138

http://dx.doi.org/DOI: 10.1016/j.apnum.2004.05.001


Bibliography
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[70] C. Gräser, R. Kornhuber, and U. Sack. “Time discretizations of anisotropic Allen–
Cahn equations”. IMA Journal of Numerical Analysis (2013). doi: 10.1093/
imanum/drs043.
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[95] T. Merkle. “The Cahn–Larché system: A model for spinodal decomposition in
eutectic solder”. PhD thesis. Universität Stuttgart, 2005.
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Larché Gleichung”. PhD thesis. Rheinische Friedrich-Wilhelms-Universität Bonn,
2002.

144

http://aam.mathematik.uni-freiburg.de/IAM/Research/alugrid/
http://aam.mathematik.uni-freiburg.de/IAM/Research/alugrid/
http://dune-project.org
http://dune-project.org
http://dx.doi.org/10.1038/ncomms3955


Bibliography

[122] F. Wendler, J. K. Becker, B. Nestler, P. D. Bons, and N. P. Walte. “Phase–field
simulations of partial melts in geological materials”. Computers & Geosciences
35.9 (2009), pp. 1907–1916.

[123] G. Wulff. “Zur Frage der Geschwindigkeit des Wachstums und der Auflösung
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Zusammenfassung
Mit dem EU weiten Verbot von bleihaltigen Loten in elektronischen Bauteilen ergibt sich die
Notwendigkeit, Ersatzlegierungen mit vergleichbaren Verarbeitungseigenschaften und vergleich-
barer Lebensdauer zu entwickeln. Numerische Simulationen der Evolution der Mikrostruktur
können dazu beitragen, geeignete Kandidaten auszuwählen und damit den großen experi-
mentellen Aufwand zu verringern bzw. zu fokussieren. Als Standardmodell der Phasensepa-
ration und Vergröberung unter mechanischen Spannungen hat sich das Cahn–Larché Modell
herauskristallisiert. Es koppelt das nichtlineare Cahn–Hilliard Modell der Phasenseparation mit
der Gleichung der linearen Elastostatik. Es existieren schnelle Löser sowohl für linearen mech-
anischen Teilprobleme als auch die skalare Cahn–Hilliard-Gleichung. Publizierte numerische
Löser für die Cahn–Larché Gleichung sind jedoch typischerweise beschränkt auf periodische
Randbedingungen und uniforme Gitter [42, 43, 20] oder auf glatte Potentiale [121, 95]. Schnelle
Löser für die mehrkomponentige Cahn–Hilliard Gleichung mit logarithmischem Potential sind
bislang nicht bekannt.

Ziel dieser Arbeit ist zum einen ein numerisches Framework zur effizienten und robusten Lösung
der Cahn–Larché Gleichung mit reellen Materialparametern zu erarbeiten. Dieses soll adaptive
Finite-Elemente-Verfahren mit den schnellen Lösern für die Cahn–Hilliard-Gleichung und die
elastischen Teilprobleme kombinieren. Zum anderen sollen die Nichtglatten Schur-Newton
Verfahren [63, 61] zur Lösung der diskreten skalaren Cahn–Hilliard Gleichung auf den mehrkom-
ponentigen Fall, d.h. mit vektorwertigem Ordnungsparameter, erweitert werden.
Nach einführenden Bemerkungen zu Phasendiagrammen, Phasenseparation und Phasenfeldmod-
ellen in Kapitel 1 wird in Kapitel 2 zunächst die anisotrope Allen–Cahn-Gleichung untersucht.
Allen–Cahn-artige Probleme treten als Teilprobleme bei der Lösung der Cahn–Hilliard Gle-
ichung in den Kapiteln 3 und 4 auf. Hier werden Existenz- und Eindeutigkeit von Lösungen
mithilfe der Theorie maximal monotoner Operatoren bewiesen. Für die numerische Lösung
werden ein adaptiver Ortsgitter-Verfeinerungszyklus für zeitabhängige Probleme und mehrere
Varianten impliziter Euler-Zeitdiskretisierung eingeführt. Für letztere wird Stabilität bewiesen
und numerische Experimente illustrieren die Genauigkeit der Diskretisierungen sowie den Verlust
der Rotationsinvarianz unter Anisotropie.
Kapitel 3 fügt bereits existierende und neu entwickelte numerische Werkzeuge zu einem Sim-
ulationstool für Mikrostrukturevolutionen in binären Legierungen zusammen. Wesentliche
Bausteine sind dabei der adaptive Gitterverfeinerungszyklus aus Kapitel 2, der NSNMG Löser
[61], ein Quantifizierungsalgorithmus für den Grad der Vergröberung der Mikrostruktur und ein
Quotientenraum-Mehrgitterverfahren für die indefiniten Elastizitätsprobleme. Die Anwendung
dieses Simulationstools für eine eutektische AgCu-Legierung zeigt nur marginalen Einfluss
der Elastizität auf die Vergröberung im betrachteten Setting. Die Verwendung eines glatten
Potentials anstelle des logarithmischen verfälscht die Vergröberungsdynamik hingegen erheblich.
Im letzten Kapitel wird für die vektorwertige Cahn–Hilliard-Gleichung eine vereinheitlichende
Formulierung für die diskretisierten Ortsprobleme hergeleitet, welche die direkte Anwendung
des NSNMG Verfahrens erlaubt. Existenz und Eindeutigkeit von diskreten Lösungen werden
gezeigt und numerische Beispiele illustrieren die Robustheit des Verfahrens bzgl. Temperatur
und Anzahl der Komponenten.

147


	Introduction
	Preliminaries
	Phase Transformations, Phase Separation and Phase Diagrams
	Phase-field modelling

	Anisotropic Allen–Cahn Equations
	Continuous Problem
	Ginzburg-Landau free energy
	Allen–Cahn Equation
	Analytic properties

	Numerical Solution
	Euler Time Discretizations
	Adaptive Space Discretization for Evolution Problems
	Algebraic Solution of Discrete Spatial Problems
	Notes on Implementation
	Numerical Results


	Cahn–Larché Equations and Simulation of a AgCu Brazing Alloy
	Continuous Problem
	Ginzburg–Landau free energy
	Generalized Cahn–Larché equations
	Analytic properties

	Numerical Solution
	Time Discretization
	Adaptive Space Discretization
	Algebraic Solution of Discrete Spatial Problems
	Quantification of Coarsening

	Coarsening of microstructure in a eutectic AgCu brazing alloy
	Problem setting
	Evolution of concentration
	Evolution of mean intercept length
	Numerical aspects


	Multicomponent Cahn–Hilliard systems
	Continuous Problem
	Ginzburg-Landau free energy
	Vector-valued Cahn–Hilliard Equations

	Numerical solution
	Discretization
	Nonsmooth Schur–Newton methods

	Numerical Results
	Problem, discretization and subproblem solvers
	Evolution and distribution of computational work
	Influence of initial iterate, temperature, number of components, and spatial mesh size on the convergence speed 
	Adaptive mesh refinement and order of convergence


	Appendices
	Maximal Monotone Operators
	Miscellaneous

	Zusammenfassung

