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Chapter 9  Analytic Explorations and Evolutionary Processes 

Studying strategies for social interactions suggests a theoretical analysis, including a 

classical game-theoretical analysis as well as evolutionary simulations. Such a theoretical 

analysis may indicate the superiority of particular strategies about others. If a strategy 

outperforms others, it is psychologically plausible that individuals actually select it, 

promoted by either severe deliberation and/or learning processes. Especially if a strategy 

that outperforms others is simple to apply, it is reasonable to assume that this strategy is 

actually applied by individuals.  

Therefore, the central goal of study 3 reported in the chapter is to illustrate how 

strategies compete against one another and to show the advantages of particular strategies 

compared to others. Of special interest are those strategies which lead to efficient 

outcomes, and thereby, can explain trust and reciprocity. Unfortunately, this evaluation of 

different strategies will illustrate that the well-established Nash equilibrium concept is not 

sufficient to indicate the superiority of certain strategies about others. On the contrary, it 

will get clear that many strategy combinations are classified as equilibria, and a superiority 

of one single or at least a few strategies cannot be assessed. Therefore, another reasonable 

criterion for evaluating strategies is introduced, namely the evolutionary stability of 

strategies. An evolutionary stable strategy is a “strategy such that if all the members of a 

population adopt it, then no mutant strategy could invade the population under the 

influence of natural selection” (Maynard Smith, 1982, p. 10). Both concepts, namely the 

Nash equilibrium concept and the evolutionary stability concept, are applied for evaluating 

a selected set of strategies, and thereby, illustrate the advantages of particular features of 

the strategies.  

Whereas in the first section of this chapter the analytic exploration is presented, in 

the second section the results of the simulations of evolutionary processes are reported. 

With these simulations, it is possible to evaluate a large set of strategies. In addition, the 

goal is to show how the potential complexity of strategies influences the outcome of an 

evolutionary process. The second goal is to illustrate how small errors in the application of 

strategies can influence an evolutionary outcome. Finally, it is analyzed how a potentially 

produced surplus is distributed between both players and if efficient outcomes are 

obtained. 
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9.1 Folk Theorem for Indefinitely Repeated Games  

First, I will define the indefinitely repeated investment game, as is used for the 

following theoretical analysis and simulations: The game consists of two players, A and B. 

After each period, a new period follows with a continuation probability of δ, so that the 

probability that the game will last for exactly t periods is δ t-1(1-δ). The expected number 

of periods for one game is therefore ∑∞

=
− −

0
1 )1(

t
tt δδ , which is a geometrical series that 

converges to 1/(1-δ), which gives an expected number of t=100 periods for δ=0.99.  

In every period, both players earn an endowment of 10. Player A decides whether to invest 

any integer percentage of the endowment. If an investment is made, it is multiplied by 3 

and sent to player B who decides whether to return any integer percentage of the trebled 

investment to player A. If one wishes to evaluate the performance of a particular strategy 

for the entire repeated game against another strategy, the problem arises that the payoff 

depends on the length of the game, which is determined randomly. There is, therefore, an 

established technique to evaluate the payoff for one strategy by using the expected average 

payoff a strategy obtains against another strategy (Binmore, 1992, pp. 360-366).  

The game-theoretical equilibrium prediction for the investment game can be drawn 

from the folk theorem8 for indefinitely repeated games (Fudenberg & Tirole, 1991). It 

restricts all outcomes to those that are “individually rational.” All possible payoff 

combinations for the investment game are shown in Figure 9. It is obvious that, for player 

A, it is individually not rational to agree on any average payoff that is below the 

endowment of 10. For player B, it is individually not rational to agree on any average 

payoff that is below the endowment plus 1% of the trebled investment since it is more 

profitable for player B to retain the entire trebled investment in any period than to retain 

less than 1% in all periods (given a constant investment rate). These are the only two 

restrictions made by the folk theorem, yielding a large number of equilibria (see Figure 9).  

 

 
8 The theorem is called “folk” theorem, even though it is well-known nobody knows to whom it should be 
attributed (Binmore, 1992).  
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Figure 9.  Payoff region and prediction of the folk theorem for indefinitely repeated games. 

The large triangle indicates all possible payoff combinations (payoff region). The hatched triangle marks the 

payoff combinations for the investment game with a continuation probability of 0.99, predicted by the folk 

theorem for indefinitely repeated games. The diagonals between the two coordinates (30, 10) and (0, 40) 

represent efficient outcomes, that maximize mutual payoffs.  

 

This prediction is unsatisfying for two reasons. First, the number of equilibria is very 

large, and which of the many equilibria people finally select is left open. Additionally, the 

prediction ignores with what kind of decision strategies the equilibria are reached. In order 

to explain how the different outcomes are finally reached, one has to study the repeated 

game strategies that define decisions for the game. These strategies can be rather complex 

as they can define a decision for any possible eventuality. A candidate group of strategies 

for describing repeated game strategies are finite state automata, which are precise 

strategies that can vary in their complexity and can result in being rather simple. By 

studying these automata and eliciting the type of strategies that perform well in 

competition against each other, one may gain some insight on the decision strategies 

people implement for the game and one obtains models that can be tested experimentally. I 

will first analyze strategies by the Nash equilibrium concept.  

Restricting the set of possible strategies to finite state automata has been proposed by 

many authors (Abreu & Ariel, 1988; Aumann, 1981; Binmore & Samuelson, 1992). An 

automata consists of various states and each of the states determines an output. Given some 

input, the automata possibly moves to a different state. The state in which the automata 

commences is the initial state. For applying automata to the investment game, the 
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automata’s output is defined as the investment rates or return rates. The input is defined as 

the opponent’s last decision. The number of states can be utilized as an indicator of the 

automata’s complexity. Given the sequential game structure, automata representing player 

B determines their decision subsequent to player A, therefore, they could have several 

initial states depending on player A’s first decision. Note, that if an automaton for player A 

invests nothing, then the automaton for player B cannot return anything. In this case, the 

automaton for player B may move to another state, but no decision can be made, and 

therefore, the automata for player A receives no input from the automata for player B. 

Hence, for any state with an investment of 0%, the automaton for player A receives no 

input from the other automaton for player B, so that there can only be one possible move to 

another state. 

9.2 Equilibria for the Investment Game  

What kind of Nash equilibrium exists if the strategies for the repeated investment 

game are restricted to finite automata? For investigating how the equilibria depend on the 

complexity of automata, first automata of the lowest complexity are considered and 

subsequently automata’s complexity is increased.  

If automata are restricted to one state, the automata can only differ in their output. If 

the output is restricted to integer percentages ranging from 0% to 100%, this gives 101 

different automata for both players. For all player A’s automata, with an investment greater 

than 0%, the best reply for player B is to return nothing. If the automata for player A make 

no investment, the best reply is any of player B’s 101 automata as they all yield a payoff of 

10. For all automata for player B, with return rates of at least 34%, the best reply for player 

A is the automaton with an investment of 100%. If player B returns less than 34%, the best 

reply automaton for player A is the one with no investment. Hence, 34 equilibria result, all 

consisting of player A’s automaton that makes no investment and the 34 player B automata 

with a return lower than 34%. This shows that if the strategies for the investment game are 

restricted to automata with lowest complexity, that is one single state, it implies that the 

opponent’s decision cannot influence the behavior of the automata which leads to the least 

efficient outcome of a payoff of 10 for both players. From this, it can be concluded that a 

minimum complexity of strategies does not enable efficient outcomes which explain trust 

and reciprocity.  

How does this result change if automata’s complexity is increased to two states? In 

general, if automata have more than one state, it has to be specified in which state the 
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automaton is. Every automata commences in the initial state. From there, the input of the 

automaton, which is the opponent’s decision of any integer percentage ranging from 0 to 

100, determines to which state the automaton moves. Following the intention to propose 

automata as models for people’s decision strategies, one has to be concerned about the 

psychological plausibility of automata’s characteristics. It appears to be psychologically 

plausible that opponent’s decisions are categorized in groups so that, for instance, no 

difference is made between a return rate of 51% or 52%. One could proceed even further 

and argue that people may apply an aspiration level to classify their opponent’s decisions. 

The assumption of an aspiration level has often been made in decision-making research. 

Simon proposes an aspiration level for the “satisficing” rule, in which decision makers take 

the shortcut of setting an aspiration level when they search for options, hence, they search 

as long as they find an option that exceeds the aspiration level (Simon, 1956, 1990). Lopes 

(1996) suggested that individuals have an aspiration level when they make choices 

between risky options (lotteries) such that they refuse lotteries with possible outcomes 

which do not reach their aspiration levels. Tversky (1972) proposes that people use 

aspiration levels for each attribute when comparing multi-attribute options. Options that do 

not exceed the aspiration level for one attribute are eliminated from further consideration.  

Concluding from this research, it is probable that people  also apply an aspiration 

level for categorizing their opponents’ behavior for the investment game. Individuals in the 

role of player A (player B) may apply an aspiration level with which they categorize the 

returns (investments) of their opponents. Following from this, each automaton implements 

an aspiration level with which the opponents’ decisions are dichotomized. The aspiration 

levels can range from 0 to 100, so that an aspiration level of, for instance, 40% categorizes 

all returns lower than 40% as “Exploitation” and any higher or equal return as 

“Reciprocity.” Likewise, an aspiration level for player B’s strategies categorizes low 

investments as “Distrust” and high or equal investments as “Trust.” The labels are for 

simplification: If, for instance, the return only slightly exceeds the aspiration level, the 

return is classified as “Reciprocity”, although the individual may still regard the return as 

rather exploiting. However, the behavioral reactions to the small return may be similar to 

higher returns, justifying the same label. The dichotomized decisions are implemented as 

input for the automata and determine to which state the automata moves. Given that 

already in the first period, player B’s decision can depend on player A’s investment, player 

B’s automata can have two possible initial states in which they commence subsequent to a 

low or high investment in the first period.  
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With this notation, strategies for the investment game can be easily represented. 

Figure 10 portrays a selected set of strategies for player A. Figure 10 also shows two Grim 

strategies, whic h commence in the initial state with an investment of 100%. If the opponent 

returns a substantial amount (higher or equal to the aspiration level), Grim remains in the 

initial state and repeats the investment of 100% in the next period. However, if in any 

period player B returns less than the Grim’s aspiration level, the strategy moves to state 2 

in which no investment is made for all subsequent periods.  

 

 
Figure 10.  Selected set of strategies for player A. 

In the case where an automata has a state in which no investment is made (e.g. Min-Grim), only one 

unconditional move is possible for this state. The same holds for one-state automata.  

 

The possible number of automata, even restricted to a maximum number of two 

states, is very large. Two-state automata can vary by 100 possible different aspiration 

levels, and by 101 different outputs of each state, yielding already 20,200 possible 

combinations. Furthermore, from each of the k  states an automata can move to k  states, 

either subsequent to a high or low return, yielding another k (2k) possibilities, which 

altogether produces 16,321,600 possible two-state automata. Given this large number of 

strategies the further analytical exploration is restricted to a very small set strategies.  

For selecting a restricted set of strategies, first possible automata for player A are 

considered. Automata for player A have basically two crucial investment rates: Either the 

interaction with player B leads, in the long-term, to a payoff greater than the endowment so 
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that an investment of 100% maximizes the payoff, or the interaction leads to a payoff 

lower than the endowment, in which case no investment maximizes the payoff. Hence, the 

automata can be restricted to these two investment rates. An aspiration level, for player A, 

of 34% guarantees a profitable relationship, whereas a level of 67% would lead to equal 

final payoffs for both players. With these restricted possibilities of investments and 

aspiration levels the total number of possible automata, for player A, is quite reduced. For 

instance, there are only two remaining one-state automata, which are used for the further 

analysis. The Never-Invest automaton never makes an investment and the Always-Invest 

automaton always makes an investment of 100%. In addition, four two-state automata, 

responsive to the behavior of the opponent, are added to the set. I select two Grim 

strategies; Min-Grim, a Grim strategy with an aspiration level of 34%, and Fair-Grim, a 

Grim strategy with an aspiration level of 67%. These Grim strategies commence with an 

investment of 100% and repeat this investment in all following periods unless they become 

exploited, hence, they move to state 2 in which they make no investment in all following 

periods. Since the Grim strategies react very sensitively to exploitation, as they do not 

return to any investment after they are exploited once, two other strategies, which are more 

tolerant to exploitation, are added. Punish-Once commences with an investment of 100% 

and repeats this investment in all following periods, unless a low return is made. In this 

case, it moves to state 2 with no investment. In contrast to the Grim strategy, in the next 

period Punish-Once returns to state 1. Punish-Once applies an aspiration level of 34%. 

Booster commences with an investment of 50% and increases the investment in the second 

state to 100%, if the other player makes a substantial return. If player B repeats high 

returns, Booster remains in the second state. If player B makes low returns Booster remains 

in or moves to the first state.  

For player B, three representative return rates are selected: 0%, 34%, and 67%. If 

player B wishes to exploit player A, the most profitable exploitation is a return rate of 0%. 

If player B wishes to keep the relationship profitable for player A, a return rate of 34% 

should be selected and a return rate of 67% yields equal final payoffs for both players. The 

number of reasonable automata, for player B, can be quite restricted (see Figure 11). Three 

one-state automata for player B, that differ only with respect to their return rate, already 

provide a good set of strategies for player B. These three automata are: No-Return, Min-

Return, and Fair-Return with a return rate of 0%, 34%, and 67% respectively. 

Additionally, the two-state automata Min-Reactive and Fair-Reactive, which are 

responsive to player A’s decision, are selected. Both strategies move to state 1 with no 
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return if an investment below the aspiration level is made (the aspiration level was set to 

90% to investigate whether it promotes high investments). Subsequent to an investment of 

at least the aspiration level, the strategies move to state 2. In state 2 Min-Reactive makes a 

return of 34%, whereas Fair-Reactive makes a return of 67%.  

 

 
Figure 11. Selected set of strategies for player B. 

In the case of one-state automata only one unconditional move is possible.  

 

If one restricts the possible strategies for the investment game to the selected set of 

automata, the strategies and their expected average payoffs against each other can be 

represented in a 5x5 matrix (see Table 1).  

The selected set of strategies includes several Nash equilibria as indicated in Table 1. 

The first equilibrium is a combination of Never-Invest and No-Return. Fair-Grim yields an 

equilibrium with Fair-Return and Fair-Reactive. Min-Grim and Punish-Once each form 

equilibria with Min-Return and Min-Reactive. Always-Invest forms no equilibrium. The 

equilibria demonstrate that, already with automata of low complexity, a large number of 

payoff combinations, predicted by the folk theorem, can be obtained and demonstrates with 

which types of strategies they can be realized.  
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Table 1 

Payoff matrix for the indefinitely repeated investment game with a restricted set of 

strategies for both player roles 

Player B strategies 
Player A 
strategies No-Return Min-Return Fair-Return Min-Reactive Fair-Reactive 

Never-Invest 10.00*, 10.00* 10.00, 10.00* 10.00, 10.00* 10.00, 10.00* 10.00, 10.00* 

Fair-Grim 9.90, 10.30 10.01, 10.20 20.10*, 19.90* 10.01, 10.20 20.10*, 19.90* 

Min-Grim 9.90, 10.30 10.200*,29.80* 20.10*, 19.90 10.20*, 29.80* 20.10*, 19.90 

Punish-Once 5.00, 25.00 10.200*,29.80* 20.10*, 19.90 10.20*, 29.80* 20.10*, 19.90 

Booster 5.00, 25.00 10.199, 29.70* 20.05, 19.85 5.00, 25.00 5.00, 25.00 

Always-Invest 0.00, 40.00* 10.200*, 29.80 20.10*, 19.90 10.20*, 29.80 20.10*, 19.90 

Note. The cells of the matrix show the expected average payoffs of the strategies for the indefinitely 

repeated investment game, with a continuation probability of 0.99. The first value represents player A’s 

payoff and the second value player B’s payoff. The asterisks indicate the best reply strategies for both 

players. The cells with two asterisks indicate the seven Nash equilibria. For a description of the strategies see 

Figure 10 and Figure 11.  

 

The best reply strategy for player A, for any player B strategy with a return rate 

lower than 34%, is the Never-Invest strategy. The best reply for player A, for any player B 

strategy, with a return rate of at least 34%, is to select, for instance, any Grim strategy 

which has, at maximum, an aspiration level that equals the return rate (the Punish-Once 

strategy is only optimal for return rates lower than 50%). This analysis demonstrates that 

simple automata of player B, consisting of only one state, can lead player A to choose 

strategies that enable player B to obtain payoffs ranging from 10 to 40 (including player 

B’s endowment).  

If player A selects one of the Grim strategies, then the best reply strategies for player 

B depend on the aspiration level of the Grim strategies: If, for instance, Grim has an 

aspiration level of 67%, then the best reply for player B is to always return 67%. Of course, 

this could also be seen vice versa, given any constant return rate by player B of at least 

34%, the best reply for player A is a Grim strategy with the corresponding aspiration level.  

The Always-Invest strategy forms no equilibrium since player B’s best reply is to 

select the No-Return strategy, which leads to player A’s worst outcome. This demonstrates 

that, for player A, it is important to incorporate a “punishment mechanism” in the strategy, 

which leads player A to “abandon” the exchange relationship with player B if player B 
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makes a low return. This implies that player A requires at least two states for an automaton 

to obtain payoffs above the endowment.  

In sum, all equilibria, that lead to efficient outcomes, consist of strategies for player 

A with at least two states and of strategies for player B with one or two states. For player 

B, a second state is not necessary. On the contrary, the strategies for player A require a 

higher complexity to incorporate a punishment mechanism which prevents player B from 

exploiting player A, and thereby, allows player A to trust player B and to produce efficient 

outcomes. 

9.3 Evolutionary Stability  

The previous sections have demonstrated the large number of possible equilibria and 

strategies that form these equilibria for the indefinitely repeated investment game. The 

result is unsatisfying as it undetermined which of the many strategies forming equilibria 

people may apply. The evaluation of the strategies, by the Nash equilibrium concepts, 

considers whether a strategy is a best reply given another strategy and mutual best replies 

form equilibria. What other criteria are reasonable to evaluate strategies?  

The concept of evolutionary stability has often been suggested for evaluating 

strategies (see Maynard Smith, 1984; Maynard Smith & Price, 1973; Samuelson, 1997; 

Weibull, 1995). The Nash equilibrium concept has the disadvantage in that for a given 

combination of strategies alternative best reply strategies may exist, which are strategies 

leading to the same payoff, so that a player may convert to these strategies. If a player 

converts to an alternative best reply strategy, the opponent may, as a consequence, also 

convert to yet another best reply strategy, so that finally, the original strategies are no 

longer applied and a new equilibria is reached. Therefore, one may argue that for 

evaluating strategies the ability to form an equilibrium, whic h is stable, is an additional 

important aspect of strategies. However, the evolutionary stability concept can only be 

applied to a symmetrical game in which the strategies for the different players are 

interchangeable. One solution to this problem is to transform the asymmetrical investment 

game into a symmetrical game (see Samuelson, 1997). It is helpful to assume a situation in 

which a population of agents select between different automata to play the game on their 

behalf. Agents play the indefinitely repeated investment game repeatedly and during this 

process different strategies evolve. Strategies that produce a low payoff in previous games 

are less likely to be selected again by the agents, whereas well performing strategies will 
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be selected more frequently. Agents, thereby, are the driving force of the evolutionary 

process, which produces viable strategies.  

In order to transform the asymmetrical investment game into a symmetric game G, it 

is assumed that player’s strategies in the symmetrical game G are a combination of a 

strategy for player A and a strategy for player B of the indefinitely repeated investment 

game. Each player in the asymmetrical investment game has a finite set of strategies (SA 

for player A and SB for player B). The payoff of a strategy for a player is defined as the 

expected average payoff of the strategy given the other player’s strategy. The asymmetrical 

game is then defined by the set of players, the set of possible strategies, and the set of 

possible payoffs.9 

It is assumed, that prior to each game the player roles in the investment game are 

randomly assigned to the players in the symmetrical game G. Subsequent to the role 

assignment, the players in the symmetrical game apply the corresponding strategy from 

their combination of strategies to the investment game. A strategy σ for the symmetrical 

game G consists of a strategy sA for player A and a strategy sB for player B in the 

investment game. Let Σ be the set of strategies, which are combinations of two strategies, 

for the symmetrical game G. The payoff πi for a strategy σi of player i, for the symmetrical 

game G, is defined as the expected average payoff for the player A strategy and for the 

player B strategy. Let πi(σi, σj) be the expected average payoff for player i if player i 

selects the strategy σi and player j selects strategy σj of the game G. The symmetrical game 

G is then defined by the set of players, the set of strategies Σ, and the set of possible 

payoffs.  

With the symmetrical game, it is possible to apply the evolutionary stability concept 

for evaluating strategies. Definition 1 provides the two conditions, which have to be 

fulfilled for a strategy to be an evolutionary stable strategy (ESS). The first condition of the 

definition corresponds to the Nash equilibrium criterion. It ascertains that a strategy σ* is 

an evolutionary stable strategy if it is a best reply against itself, so that no alternative 

strategy σ’ leads to a higher payoff against σ*. Condition 1.2 is the crucial component of 

the evolutionary stability concept as it constitutes the stability criterion: If σ* leads to the 

 
9 For a better illustration of the elaboration, the definitions are only provided for pure strategies (i.e. strategies 
which are selected by the players with a probability of 1.0). However, the definition also holds for mixed 
strategies. A mixed strategy is a probability distribution over the set of pure strategies, that defines the 
probability with which each of the pure strategies are played by the players. 
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same payoff against itself, as an alternative strategy σ’ does against σ*, then σ* must lead 

to a greater payoff against σ’ than σ’ leads against itself.  

 

Definition 1.  Evolutionary stable strategy (ESS) 

A strategy Σ∈*σ  is an evolutionary stable strategy if  

Σ∈∀≥ '*),'(*)*,( σσσπσσπ  and if          (1.1) 

*',')','()'*,(*),'(*)*,( σσσσσπσσπσσπσσπ ≠Σ∈∀>⇒= .     (1.2) 

 

In contrast to the Nash equilibrium concept, which is weak for indefinitely repeated 

games, the evolutionary stability concept is very strong. If the above presented sets of 

selected strategies are combined with each other, this yields 30 combined strategies. These 

strategies can then be applied for the symmetrical game and their payoffs can be 

determined. It results that none of these strategies are evolutionary stable, since the second 

stability criterion cannot be fulfilled. An alternative strategy always exists, which leads to 

an equal payoff against the evaluated strategy, and the evaluated strategy does not lead to a 

greater payoff against the alternative strategy, than the alternative strategy leads against 

itself. 

For instance, a population of agents applying a strategy combination of Min-Grim 

and Min-Return is evolutionary not stable, since it can be invaded by a strategy 

combination of Always-Invest and Min-Return. The strategy combination Always-Invest 

and Min-Return leads to the same payoff against the combination Min-Grim and Min-

Return than the combination Min-Grim and Min-Return does against itself, so that the 

stability criterion 1.2 remains to be proven. Against stability criterion 1.2, the strategy 

combination Min-Grim and Min-Return leads to the same payoff against the combination 

Always-Invest and Min-Return as the combination Always-Invest and Min-Return leads 

against itself, so it can be concluded that Min-Grim and Min-Return is evolutionary not 

stable. Analyses of the indefinitely repeated prisoner’s dilemma have shown that no 

evolutionary stable strategy for the game exists (Boyd & Lorberbaum, 1987; Lorberbaum, 

1994), indicating that the evolutionary stability concept is, in general, to strong for 

distinguishing strategies for an indefinitely repeated game. 

Another criterion for evaluating strategies takes into account that agents may make 

small errors when selecting or applying a strategy. These errors appear realistic given that 

human decision-making can be characterized by small unsystematic errors. The concept of 

Limit evolutionary stable strategies (Limit ESS) incorporates the possibility of errors 
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(Leimar, 1997; Samuelson, 1991; Selten, 1983, 1988). The Limit ESS concept is stronger 

than the Nash equilibrium concept, but weaker than the ESS concept. An equilibrium 

strategy has often several best reply strategies, that lead to the same payoff against the 

equilibrium, which often leads to disqualifying an equilibrium strategy as an ESS. These 

ties in payoffs can often be broken if the plausible assumption of small errors is made. 

However, there are two interpretations on how errors could occur which shall be 

investigated. First “selection errors” can occur when agents select their strategy or 

“execution errors” when they execute a particular strategy. 

The first type of “selection errors” implies that agents apply their strategies correctly, 

but, from time to time with low probability, erroneously select a strategy they did not 

intend to apply. Samuelson has elaborated this view (Samuelson, 1991, p. 122) and was 

able to indicate that Limit ESS form symmetric Nash equilibria, which are characterized by 

three conditions (see Definition 2). First, there is no alternative strategy that produces a 

higher payoff against the Limit ESS than the Limit ESS itself (this is the symmetric Nash 

equilibrium condition, see 2.1). Second, the Limit ESS is not weakly dominated10 by 

alternative strategies (weak dominance condition, see 2.2). Third, the Limit ESS is not 

composed of role equivalent strategies for one of the player roles, that is, strategies that 

produce identical payoffs to the Limit ESS in the same player role (equivalence condition, 

see 2.3).  

 

Definition 2.   Limit evolutionary stable strategy (Limit ESS) 

A strategy Σ∈*σ  is a Limit evolutionary stable strategy if  

Σ∈∀≥ '*),'(*)*,( σσσπσσπ             (2.1) 

and if there exists no strategy Σ∈'σ  such that  

Σ∈∀≥ σσσπσσπ )*,(),'(            (2.2) 

were the inequality is strict for at least one σ. 

In addition, let *σ  be composed of two strategies ** and BA ss for the player roles A and 

B, then there is no strategy 'is  for },{, BAji ∈  and ji ≠   

such that ( ) ( ) *',*,,' iijjjiijii ssSmmsms ≠∈∀= ππ .        (2.3) 

 

 
10 A strategy strictly dominates another strategy if the strictly dominating strategy leads to higher payoff 
against all strategies of the opponent than the other strategy does. A strategy weakly dominates another 
strategy if the weakly dominating strategy leads to higher or equal payoff against all strategies of the 
opponent than the other strategy does.  
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Definition 2 implies that the stability criterion 1.2 of Definition 1 could be violated, 

such that an alternative strategy leads to the same payoff against itself than the Limit ESS 

against the alternative strategy.  

Which strategies, of the 30 strategy combinations, of the selected set of strategies are 

Limit ESS when selection errors occur? The symmetrical game has 49 Nash equilibria, but 

only seven of these are symmetrical and, thereby, qualify for a test by Limit ESS. All the 

seven symmetrical equilibria correspond to combinations of the seven Nash equilibria 

indicated in Table 1. For instance, the Nash equilibrium of the strategies Min-Grim and 

Min-Return for the asymmetrical game form a symmetrical equilibrium as a combined 

strategy in the symmetrical game. From the 7 symmetrical equilibria only two consist of 

Limit ESSs.  

First, the strategy combination Never-Invest and No-Return is a Limit ESS. Although 

some strategies reach an equal payoff against Never-Invest and No-Return, no strategy 

combination reaches a higher or equal payoff against all other strategies compared to 

Never-Invest and No-Return. Second, the combination of Min-Grim and Min-Return can 

also be classified as a Limit ESS. No other strategy obtains a higher payoff against this 

Limit ESS and no alternative strategies weakly dominate the Limit ESS, that is, no 

alternative strategy reaches a higher or equal payoff against all other strategies, compared 

to the Limit ESS. Other strategies do not classify for a Limit ESS. For instance, the Fair-

Grim and Fair-Return is weakly dominated by Min-Grim and Fair-Return, since Min-Grim 

reaches a higher payoff against Min-Return than Fair-Grim.  

The other types of errors that can occur in a game are “execution errors.” Following 

this interpretation, agents do not make errors in selecting the intended strategy, but do 

make errors when they execute their selected strategy. These errors imply that with low 

probability agents sometimes deviate from the prescribed decisions of their selected 

strategy. For instance, an agent applying the Grim strategy may already make an error in 

the first period by making no investment, instead of the prescribed 100% investment. This 

interpretation of execution errors is consistent with Selten’s approach of a “trembling 

hand” (Selten, 1983, 1988). Errors (which Selten calls “trembles”) ensure that, even with 

very low probabilities, all possible combinations of decisions (all branches in the extensive 

representation of the game) are reached with low probability.11 A game in which errors  

 
11 Selten’s (1983) approach has been formulated for finite games, whereas I use it for indefinitely repeated 
games, which causes no problems since the expected average payoff for one strategy against another is well 
defined as the continuation probability is smaller than 1. 
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occur with low probability is called a “perturbed game” (Selten, 1983). In a perturbed 

game every possible choice is made with minimum probability. A strategy σ* is a Limit 

ESS for a game in which no errors occur, if it is an evolutionary stable strategy (ESS) for 

the perturbed game (Selten, 1983, p. 304). For investigating whether the set of selected 

strategies consists of Limit ESS if execution errors occur, a Monte Carlo study was 

conducted. In this Monte Carlo study the selected set of strategies played the indefinitely 

repeated investment game repeatedly against each other (each strategy played two million 

games against all other strategies of the other player role). In each period of each game an 

error occurred with a probability of 0.01. If an error occurred, the strategies execute a 

random decision, such that a return or investment ranging from 0% to 100% was chosen 

with equal probability. Table 2 shows the average payoff the selected strategies obtained 

against each other. 

 

Table 2 

Payoff matrix for the perturbed indefinitely repeated investment game - results of a Monte 

Carlo study  

Player B strategies 
Player A 
strategies No-Return Min-Return Fair-Return Min-Reactive Fair-Reactive 

Never-Invest 9.95*, 10.15* 10.00, 10.10 10.05, 10.05 9.96, 10.14 9.97, 10.13 

Fair-Grim 9.18, 12.47 10.02, 11.64 18.63, 18.55* 9.98, 11.68 17.32, 17.41 

Min-Grim 9.18, 12.49 10.228, 28.16* 19.24, 19.15 10.15, 25.36 17.72, 17.80 

Punish-Once 4.83, 25.66 10.246, 29.59* 19.97, 19.87 10.20, 29.48 19.81, 19.87 

Booster 5.05, 25.02 10.237, 28.86* 19.59, 19.50 5.68, 25.47 6.83, 24.33 

Always-Invest 0.20, 39.70* 10.247*, 29.65 20.00*, 19.90 10.21*, 29.69 19.92*, 19.98 

Note.  The cells of the matrix show the average payoff the strategies obtained against each other. The 

strategies played 2 million indefinitely repeated investment games against each other with a continuation 

probability of 0.99. In each of these games, in each period, both strategies made an error with a probability of 

0.01, so that on average a strategy made one error in one repeated game. For each repeated game the average 

payoff was determined and again for all 2 million games the average was taken.  

 
Table 2 shows that only one Nash equilibrium could be obtained for the perturbed 

indefinitely repeated investment game. This equilibrium consists of the Never-Invest and 

the No-Return strategy. From Table 2, a symmetrical game and the strategies payoffs can 

be constructed by combining all strategies for player A with the strategies for player B. 

This symmetrical game has only one symmetrical Nash equilibria formed by the strategy 
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combination Never-Invest and No-Return. No alternative strategy reaches a higher or equal 

payoff against Never-Invest and No-Return, therefore, the strategy is an evolutionary 

stable strategy for the perturbed game and, thereby, the only Limit ESS for the game 

without errors.  

By allowing execution errors in the game, ties in payoffs obtained for the Min-Grim, 

Punish-Once, and Always-Invest strategies against several strategies for player B (see 

Table 1) could be broken. As can be seen in Table 2, Always-Invest outperforms Min-

Grim and Punish-Once against four of the five strategies of player B. Interestingly, Min-

Grim obtains a lower payoff compared to Punish-Once and Always-Invest against four of 

the five strategies of player B. This can be attributed to Grim’s high sensitivity if a low 

return is made which leads to a breach of any investments for all following periods. Given 

that in a perturbed game low returns by player B occur by mistake, they induce the Grim 

strategy to produce an inefficient outcome in all periods after the error occurred and, 

thereby, reduces its payoff.  

Concluding the present section, a selected set of strategies has been evaluated 

according to three concepts. The first, namely the Nash equilibrium concept, could not 

distinguish particular strategies, since the number of equilibria is too large. The second 

concept of evolutionary stability is too strong in evaluating strategies, since no strategy of 

the selected set could be classified as an ESS. The third concept of Limit ESS, is based on 

the psychological plausible assumption that small errors occur when strategies are selected 

or applied. This concept could indicate a few strategies of the selected set as outstanding. 

First, the Min-Grim and Min-Return strategy combination, which leads to an efficient 

outcome, and thereby, explaining trust and reciprocity, is a Limit ESS under the 

assumption of selection errors. In addition, the strategy combination Never-Invest and No-

Return, which produces an inefficient outcome, could be classified as a Limit ESS for both 

kinds of errors.  

However, these results should be interpreted carefully as the investigation was made 

only for a very small selected set of strategies. This set is quite representative by consisting 

of strategies which apply a certain principle up to the limit. Thereby, the selection covers a 

broad range of strategies, which are built up on similar principles. However, having shown 

that some strategies of the selected set are Limit ESS, this does not imply that these 

strategies are Limit ESS for a broader set of strategies. Therefore, in the following, the set 

of strategies for the game is enlarged. Since the number of automata as strategies for the 
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game (and their combinations) becomes quite large,12 when the number of states of the 

automata increases, the analytic exploration is not proceeded. Instead, the results of 

computer simulations of evolutionary processes are reported. These simulations can be 

classified according to two evolutionary approaches. Following the first heterogeneous 

approach, the evolutionary process commences with a population of a variety of strategies 

and records on how this population develops over the evolutionary process. The goal of the 

heterogeneous approach is to identify any stable outcomes of an evolutionary process. The 

second homogenous approach commences with a homogenous population of strategies and 

makes them subject to a mutation of strategies. The goal of this approach is to classify 

particular strategies as evolutionary stable.  

9.4 Simulating an Evolutionary Process  

In the present section, the set of possible strategies is enlarged to all automata with a 

limited number of two states and subsequent four states. This extension leads to a large 

number of strategies, which can not be easily investigated by analytic deliberation. 

Therefore, the outcome of an evolutionary process, including potentially all strategies from 

the possible set, is studied by an evolutionary simulation. However, the main goal is 

identical: Identifying the type of strategies, which are more liable to establish a stable state 

in the evolutionary process and form the outcome of the process. The goal is not to 

describe the evolutionary process itself since the evolutionary or learning process, with 

which people might acquire their strategies, may be different.  

Described, in the first section, is the method for simulating the evolutionary 

processes. The evolutionary process commencing with a population of agents equipped 

with heterogeneous strategies is reported on in the following two simulations. These 

simulations can be interpreted as implementing selection errors, since even in a stable state 

of the evolutionary process, in which agents apply one predominate strategy, there are 

always some agents who “select” alternative strategies (due to mutation and crossover). 

Additionally in the third section, errors are implemented in executing strategies. Finally, 

the evolutionary stability of a population of agents applying particular strategies is 

explored.  

 
12 For instance, even automata consisting of only two states can vary according to their 100 possible 
aspiration levels and their 101 possible outputs, with 2 possible transitions subsequent to high and low 
reactions of the opponents for each state giving (101x2x2)2x100 strategies for player A. For player B 
(101x2x2)2x100x2 strategies are possible resulting in 5x1014 combinations altogether. 
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Method: Representing Strategies and Applying a Genetic Algorithm  

Finite state automata are implemented as descriptions of strategies. Each state 

determines an output, which is restricted for simplification to multiples of 10.13 Each 

automaton has an aspiration level for categorizing the opponent’s decision. Technically, an 

automaton is represented by a one-dimensional array. Each state requires three elements 

determining the output and the two possible moves to other states. Two additional states, 

for player A, (three states for player B) are necessary for specifying the aspiration level and 

the initial state(s). Note, that the number of states specifies the maximum of states to which 

the automata is restricted, which does not imply that all states have to be implemented. 

Different automata, although they may have a different number of states, can be equivalent 

according to their behavioral output. The automaton from the set of equivalent automata 

with the minimum number of states is called the “minimal automaton.” For a set of 

equivalent automata it has been proven that always only one single minimal automaton 

exists (see Hopcroft & Ullman, 1979, pp. 67-68). There is a requirement to transform 

automata to the minimal automaton for a better interpretation and, therefore, all automata 

reported in this paper are minimal automata. 

A genetic algorithm is applied for simulating the evolutionary processes (Goldberg, 

1989; Michalewicy, 1996; Mitchell, 1996). Genetic algorithms are commonly applied as 

techniques for solving optimization problems in which analytic solutions are too complex. 

Recently, they have also found applications in an evolutionary game theory (e.g. Axelrod, 

1987; Hoffmann, 1999; Menczer & Belew, 1996). In general the simulated evolutionary 

process consists of a population of agents. In every single generation, the agents play the 

investment game against each other for determining agents’ fitness. Agents with a higher 

fitness are more likely to be selected for the next generation, and their strategies eventually 

modified via a crossover or mutation process, which finally improves their fitness in the 

next generation. 

In the following, the evolutionary process is described in more detail. A population 

of agents equipped with a pair of automata, one for player A and one for player B, is the 

subject of the evolutionary selection process. In the first generation of the evolutionary 

process, 100 pairs of automata are generated by the genetic algorithm. For the first 

generation, agent’s automata are generated randomly, so that the output (investment or  

 
13 This simplification was necessary to reduce the computational time required to run the simulations. 
Additionally, it avoided a too larger variance between only slightly different strategies.  
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return rates) is drawn from a uniform distribution of multiples of 10 ranging from 0 to 100. 

The states, to which the automata move, are also drawn with equal probability from the set 

of possible states. The aspiration levels are drawn from a uniform distribution of integers 

ranging from 0 to 100. At every generation, each agent plays the game 50 times in both 

player roles. For each of these 100 games the opponent is another agent, who is drawn 

randomly from the population of agents. Due to the varying number of periods per game, 

the average payoff is determined for each game. The fitness of an agent is defined as the 

average payoff across the 50 games the agent plays as player A and the 50 games the agent 

plays as player B. Theoretically, an agent can reach a maximum payoff of 35 and a 

minimum of 5 as fitness (composed of the average of player A’s payoff [0,30] and player 

B’s payoff [10,40]). 

After the fitness is determined, agents are selected for the next generation via a 

tournament selection procedure (for different selection procedures see Goldberg & Deb, 

1991; Michalewicy, 1996). The tournament is conducted 100 times. For each tournament 

six agents are selected randomly. The agent (respectively their two automata), with the 

highest fitness, is selected from each tournament. If no agent outperforms the other five 

agents, one agent from the set is selected randomly with equal probability. By 

implementing this procedure, agents with a high fitness have a chance of being represented 

six times in the next generation. However, even agents with low fitness can be selected if 

they are grouped with agents of lower fitness. Subsequent to the selection procedure, 

agents’ strategies are eventually, with a probability of 0.8, mixed via a two-point crossover 

procedure. If a crossover takes place, two array positions representing the automata are 

determined randomly, with equal probability. Subsequently, the elements of the array, 

from the lowest to the highest position, are interchanged between both automata. After the 

crossover procedure, automata are eventually modified via a mutation procedure. For each 

element of the array representing automata, a mutation occurs with a particular probability. 

The mutation probability depends on automata’s number of states, so that with a 

probability of 0.33 a mutation occurs at least for one element of the array representing the 

automaton (e.g. for a two state automata this implies a mutation probability of 0.049). If a 

mutation occurs for the possible moves of the automata, new states, to which the automata 

could move, are drawn with equal probability from the set of possible states. If a mutation 

occurs for the automata’s output, new values, as multiples of 10, are drawn with equal 

probability. A mutation of the aspiration level has, in general, a strong effect on the 

behavior of automata, since it could effect the automata’s reactions to the opponents’ 
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behavior at every state. Therefore, in the case of a mutation for the aspiration level, new 

values are drawn from a normal distribution with the mean of the old aspiration level and a 

standard deviation of 5 (with 0 and 100 as distribution borders), thereby, the aspiration 

level changed only smoothly.  

Starting From a Heterogeneous Population  

For the first simulations, a heterogeneous population of agents’ strategies is 

generated initially according to the above description. Agents’ strategies are made subject 

to a selection and mutation process. Each evolutionary process is simulated for 10,000 

generations. After each 100 generations, automata are transformed to minimal automata, 

and the means of the automata’s parameters are recorded. For analyzing the outcome of the 

evolutionary processes, the last 10,000th generation is of particular interest. However, due 

to the permanent mutation and crossover procedure, the 10,000th generation is also only a 

snapshot of an ongoing evolutionary process. This implies that some new strategies are 

generated, which do not have high fitness and will not be transferred to the next 

generation. For sorting out these poor performing strategies, the evolutionary process 

continues for 200 generations only subject to the selection process without any strategy 

changes via crossover or mutation. The constitution of these homogenized populations is 

reported below. Fifty genetic algorithms are run to compensate for random features of 

particular runs. For transparency in the following, although the agents were subject to the 

evolutionary process, the strategies of the agents are described separately for player A and 

player B.  

The simulation can be interpreted as incorporating the above described concept of 

selection errors. At any state of the evolutionary process, even in stable situations due to 

the mutation and crossover procedure, the population of agents always consisted of some 

agents who do not select the predominate strategy combination, but instead apply an 

alternative strategy for either one or both players. In accordance with this fact, the agents 

were always exposed to mutant strategies attempting to invade the population of agents 

applying the predominant strategy.  

Two simulations are determined with different constraints on the complexity of the 

strategies. In the first simulation, the automata are restricted to a maximum of two states, 

whereas in the second simulation the number of states is restricted to four states. The 

interesting question is whether the evolutionary process will make any utilization of the 
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potential complexity, that is, the higher number of states, which is offered to the strategies, 

so that other strategies in the condition with a restriction of two states then emerge.  

Simulation of automata with two states. 

The evolutionary processes can be characterized by some general patterns. In the 

beginning (first 100th generations), one-state automata evolved quickly: For player A the 

automata Never-Invest, and for player B No-Return, are the baseline automata which 

appear in the beginning. This formation is often retained for long periods until suddenly 

new automata appear. The new formation often consisted of the Min-Grim strategy for 

player A and the Min-Return strategy for player B. The new formation was often stable for 

a long period before it suddenly returned to the Never-Invest and No-Return formation. 

Figure 12 shows the development of the average payoffs for agents’ strategies for two 

sample runs. 

 

Figure 12a. 
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Figure 12b. 

0

10

20

30

40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

generation

p
ay

o
ff

s

0

0.25

0.5

0.75

1

p
o

rt
io

n
 M

in
-G

ri
m

 o
f p

la
ye

r 
A

 s
tr

at
eg

ie
s

payoff player A payoff player B Min-Grim

 
Figure 12. Evolutionary process of two sample runs. 

The figures show the development of the average payoff for both strategies of the agents. Additionally, the 

portion of the Min-Grim strategy of player A strategies is shown mapped on the right ordinate.  

 

Generations dominated by the Never-Invest strategies for player A and No-Return 

strategies for player B led to a payoff of approximately 10 for both players. “Attempts” by 

player A’s strategies to gain higher payoffs, by making any investment, failed since 

nothing would be returned. These attempts can explain why player B’s payoffs are, on 

average, a little above 10 compared to player A’s payoffs, which are a little below 10. 

Figure 12 also shows the portion of the Min-Grim strategy of the strategies for player A. It 

becomes apparent that an increase of payoffs for both players corresponds to an increase of 

the portion of the Min-Grim strategy.  

For investigating a potential outcome of the evolutionary process, the last 

homogenized generation is studied. In sum, from the 50 runs, inefficient outcomes with 

payoffs of approximately 10 for both players were observed in 12 runs, whereas in the 

other 38 runs the payoffs were efficient. Surprisingly, the efficient outcomes always lead to 

a payoff of approximately 12 for player A and of approximately 28 for player B. Due to the 

restricted outputs of multiples of 10, a payoff of 12 is the minimum highest payoff player 

A could obtain above player A’s endowment of 10. This is a crucial result as it shows that 
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an efficient outcome can be obtained frequently, however, the outcomes lead to an unequal 

distribution of the payoff for the two players, hence, an equal or “fair” distribution of 

payoff is not observed.  

For player A, two predominant strategies were observed, that is, the majority of the 

population of strategies in the last generation consisted of these strategies. For the 12 

inefficient outcomes, player A’s strategies consisted of 11 times the one-state strategy 

Never-Invest. In the 38 efficient runs, the Min-Grim strategy was observed 32 times. For 

the remaining six efficient runs, the last generation consisted of different strategies. For 

instance, the Punish-Once could also be observed (for all strategies see Figure 10). The 

aspiration level outcome for player A strategies were between 30% to 40% in 33 runs from 

the 38 efficient runs. This level ensures that if player A makes an investment of 100% a 

minimum return above the aspiration level will provide player A with a higher payoff than 

player A’s endowment. The average aspiration level for the 38 efficient runs was 34% with 

a standard deviation of 4%.  

For player B, two predominant strategies were observed. In the 12 inefficient runs, 

the populations of the last generation consisted of 11 times the No-Return strategy. For the 

38 efficient runs, the population consisted of Min-Return strategies in 20 runs. All 

strategies can also be found in the set of selected strategies described in Figure 11. (In 

contrast to the description of Figure 11, the Min-Return strategy in the simulations 

implemented a return rate of 40%, since all return and investment rates were restricted to 

multiples of 10.) In the remaining 18 runs, from the efficient runs, various strategies were 

observed, which could not be clustered easily. However, in 12 of these runs the strategies 

started with a return of 40%, if a high investment was made, and repeated this return rate 

unless lower investments were made. The aspiration level for classifying the investments 

as “Trust” or “Distrust” varied substantially across the different strategies. The average 

aspiration level was 25% with a standard deviation of 25%, indicating that the evolutionary 

process does not move to a specif ic level and dilute the role of the aspiration level for 

player B.  

The agents, in 12 inefficient runs, in 11 cases, combined the Never-Invest strategy 

for player A and the No-Return strategy for player B. In 17 of the 38 efficient runs, in 

which agents used the Min-Grim strategy for player A, they applied the Min-Return 

strategy for player B. These were the two predominant combinations of strategies, and as 

stated above, they form mutual best reply strategies, that is, they form Nash equilibria. 
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Increasing the potential complexity of strategies. 

In the second simulation, the number of states for each automaton was increased to 

four states. This change had a strong effect on the evolutionary process. In only 2 of the 50 

runs, compared to 12 runs in the first simulation, the evolutionary process led to an 

inefficient result. In all the other 48 runs, the agents concluded with an average payoff of 

approximately 20, producing efficient outcomes, composed of an average payoff of 

approximately 12 for player A and approximately 28 for player B.  

In contrast to the first simulation, these efficient outcomes were predominately not 

only produced by Min-Grim strategies, which was the case in 15 runs. In 17 runs, variants 

of the Grim strategy were observed. All of the variants also commenced with an 

investment of 100%, and repeated the investment if the return was above the aspiration 

level. However, in contrast to the pure Grim strategy the variants do not punish low returns 

as strongly as the pure Grim strategy. For instance, one variant moves to the second state 

subsequent to a low return, in which only half of the endowment is invested in all the 

following periods, and following a repeated low return, the strategy moves to the third 

state, in which no investment is made in all the following periods. Although these variants 

differ from the pure Grim strategy, the best reply strategy for player B is still the Min-

Return strategy. Therefore, these variants do not develop any substantial differences to the 

pure Grim strategy. In contrast to these variants of the Grim strategies, new strategies were 

also observed (see Figure 13). In 11 of the 50 runs a strategy, called Cautious, was 

observed. This strategy is partly created by the Grim strategy. In comparison to the Grim 

strategy, it has an additional preliminary initial state with no investment. From this state, it 

always moves to the second state, which would represent the initial state of the Grim 

strategy. In five other runs, a strategy called Forgiving-Once (or variants) was observed.  

This strategy commences with an investment of 100%, and maintains this investment 

for the duration where player B’s returns are above or equal to the aspiration level. If 

player B’s returns are less than the aspiration level, the strategy moves to the second state 

where again an investment of 100% is made and is repeated unless player B returns less 

than the aspiration level. After a second low return, the strategy moves to a third state in 

which no return is made for all the following periods. A best reply strategy for Forgiving-

Once, returns nothing in the first period, and then always makes a return equal to the 

aspiration level of Forgiving-Once. In 43 runs, the aspiration level of the strategies for 

player A concluded to be quite narrow, between 30% and 40% (M=34%, SD=4%), hence, 

only returns of at least 40% were categorized as reciprocity.  



 

 

- 75 - 

 
Figure 13. Evolved strategies under the condition of a maximum of 4 states. 

Since the aspiration levels varied between the different runs no specific level was chosen. 

 

Compared to the first simulation, the No-Return strategy was only observed in two 

runs from the 50 runs. The Min-Return strategy, which would have been a possible best 

reply strategy for player A strategies in 40 runs, was observed in only eight runs from the 

50 runs. In the remaining 40 runs from 50 runs, no single strategy was observed frequently, 

making additional classifications difficult. However, most strategies share a common 

feature: In 30 runs from 40 runs, the strategies for player B always return 40% in the initial 

state, if player A makes an investment above the aspiration level of the player B strategy. 

When player A repeats this investment, a return of 40% is always made. In five of the 40 

runs, the strategies for player B commence with a low return of 0% and increase this return 

to 40% in the following period. In sum, although diverse strategies evolve, most of them 

only differ in their reaction to low investments. The aspiration level for classifying 

investments varied substantially (M=41%, SD=29%). 

To summarize the results of the second simulations, two aspects should be 

emphasized. First, the number of efficient outcomes increased. This result may be due to 

the circumstance that strategies, which incorporate a punishment mechanism, are more 

liable to evolve if more states are available for building up such a mechanism. Second, due 

to the higher number of possible states more variants of strategies were observed. 

However, the decision pattern, produced by the pair of player A and player B strategies, 

were quite similar. In 35 of the 48 efficient runs, the strategies for player A commenced 

with an investment of 100%, and strategies for player B always returned 40% of the trebled 

investment. Given that different kinds of strategies produce this behavior, they are 
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interchangeable. For a given population of strategies, strategies, which produce the same 

behavior, are able to invade the population. For instance, a three-state automaton for player 

A, which starts with an investment of 100% and only reduces the investment successively 

to 50% and 0% in two additional states if a return below 34% is made, produces the same 

behavior as the Min-Grim strategy and leads to the same payoffs if paired with the Min-

Return strategy. 

Errors in Execution Strategies  

The above-mentioned simulations can be interpreted as incorporating selection 

errors. Another possibility on how alternative behavior could emerge, and thereby, 

influence the evolutionary process, are execution errors, also described above. This implies 

that strategies are not applied deterministically, but execution errors occur with low 

probability. For instance, an agent executing a strategy may invest only 10% by mistake 

instead of the prescribed 100% investment. When agents make errors in executing a 

strategy, this could strongly affect the opponent’s subsequent decisions. For instance, an 

agent applying the Grim strategy reacts to low returns by the opponent with unconditional 

low investments in all following periods. This strong reaction may be unjustified if the 

opponent’s low return only occurred accidentally. The analytical exploration described 

above has shown, for the selected set of strategies, that only one combination of strategies, 

Never-Invest and No-Return, are a Limit ESS if execution errors occur. Does this result 

hold true if the set of strategies is extended to all automata with a maximum of two (four) 

states? To investigate the effect of execution errors, the above simulations are repeated 

with the only difference being that, with a probability of 0.01, the prescribed decision of a 

strategy was not performed, but a decision was randomly determined instead. Given the 

expected number of 100 periods per game, an error occurred, on average, in only one 

period.  

Two-state automata. 

For simplification, I only report the results for the last generations. The result was 

that none of the population of agents in the last generation, from the 50 runs, obtained 

efficient outcomes. The population of strategies for player A always consisted of Never-

Invest automata. The population of strategies for player B consisted in 47 runs of No-

Return automata. This result is consistent with our theoretical analysis and shows that only 

the Never-Invest and No-Return strategies appeared to be Limit ESS when the strategies 

were restricted to two-state automata. If execution errors occur, the frequently obtained 
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strategy combination of Min-Grim and Min-Return of the previous simulations are not 

observed. 

Four-state automata. 

The above simulations were repeated, in which the automata were restricted to a 

maximum of four states, with the only difference being execution errors occurring with a 

probability of 0.01. The introduction of errors had, again, a strong effect on the 

evolutionary outcome. In the last generation of the 38 runs from 50 runs, inefficient 

outcomes were obtained, hence, both players reached a payoff of approximately 10. In 37 

of the inefficient 38 runs, the Never-Invest strategy was the predominate strategy for player 

A in the last generation, and in 29 runs from the 38 runs the No-Return strategy evolved 

for player B. This result is, again, a strong reduction of efficiency compared to the 48 

efficient outcomes of the previous simulations without execution errors.  

However, efficient outcomes were obtained in 12 runs. In these runs, the Min-Grim 

strategy, observed frequently in the previous simulations without errors, was not once 

obtained in the last generation. On the contrary, a variety of strategies evolved, which 

could hardly be clustered. Most of the strategies for player A commence with an 

investment of 100%, and repeat this investment if high returns are made by player B. If a 

low return is made, most strategies decrease their investments. Subsequently, high returns 

allow them to return to the initial state with high investments. Only two of the strategies 

comprise of a “terminal state,” which is a state where the automaton will remain for all 

following periods (e.g. the second state of the Grim strategy is a terminal state). Also, for 

player B various strategies were observed. The frequently obtained Min-Return strategy of 

the previous simulations without errors was predominately observed in the last generation 

for four runs from the 12 efficient runs. In the other runs, different strategies were 

observed. All returned at least 40% of the trebled investment if repeated high investments 

were made. In the case of low investments, the returns were reduced—frequently to 0%. 

The simulations show that when execution errors occur, the Never-Invest and No-

Return is observed more frequently as an outcome of the evolutionary process. With the 

increased maximum number of states, compared to the previous simulation, efficient 

outcomes were also obtained. However, in comparison to the simulation without execution 

errors, the observed strategies for player A are more “forgiving” as they only seldom 

incorporate a terminal state such as the Grim strategy does. The increase in the maximum 

number of states allow the strategies to incorporate forgivingness mechanisms, which 

appeared to be important for obtaining efficient outcomes if execution errors occur. 
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Starting From a Homogenous Population  

The previous simulations have shown that, when commencing from a heterogeneous 

population, the evolutionary process will frequently lead to an efficient outcome if no 

execution errors occur, which can predominantly be attributed to the Min-Grim and the 

Min-Return strategies. To test the stability of the Min-Grim and Min-Return strategy 

combination, the “homogenous approach” is followed.  

Min-Grim and Min-Return. 

An evolutionary simulation is conducted to analyze whether a homogenous 

population of agents, who apply only the Min-Grim and Min-Return strategy combination, 

could maintain their strategies during an evolutionary process, in which no execution 

errors occur. Given that the Min-Grim and Min-Return strategy combination produce 

efficient outcomes, the only possibility to invade a population of agents who use this 

combination are strategy combinations, which also produce efficient outcomes.  

A simulation was conducted identical to the one reported above without execution 

errors and a maximum number of two states of the automata, with the difference that all 

agents in the first generation applied the Min-Grim and Min-Return strategy combination. 

Additionally, the evolutionary process was only observed for 400 periods, where this 

number of generations appeared to be sufficient for a potential invasion by mutant 

strategies. Again, the last generation was homogenized by 200 additional generations, 

without any strategy modifications. 

It turned out that for all runs efficient outcomes were sustained. For player A, the 

Min-Grim strategy was sustained in 44 runs from the 50 runs, and for player B, the Min-

Return strategy could be sustained in 41 runs. In 9 runs, the strategies for player B were 

most frequently replaced by two-state automata, which reduced the return rate if a low 

investment was made by player A. In four runs, Punish-Once invaded and replaced the 

Min-Return strategy, for player B, as the predominant strategy. The evolutionary 

simulation shows that in most of the 50 runs the Min-Grim and Min-Return strategy 

combination was the predominate combination of strategies implemented by the agent 

subsequent to a mutation and crossover process, and that the combination often resisted 

invasion by other strategies. 

Fair-Grim and Fair-Return.  

One striking result from the above-mentioned simulations without execution errors 

commencing with a heterogeneous population is that, if an efficient outcome was obtained 

in an evolutionary process, in most cases it led to a higher payoff for player B than for 
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player A. In contrast to this finding, as the experiments reported in chapter 8 have shown, 

people often strive for equal payoffs. To explore why this outcome of “fair payoffs” was 

not obtained more frequently in the above reported evolutionary simulations, an additional 

simulation was conducted. This second simulation again focuses on the Grim strategy for 

player A. The simulation was conducted almost identically to the one in the previous 

section. However, this time Grim’s aspiration level was changed to 67%. The strategies for 

player B consisted of one-state automaton with a return rate of 70%. These strategies lead 

to a payoff of approximately 20 for both players. The interesting question is whether the 

population of agents using the “fair” strategies will survive under selection pressure.  

Figure 14 shows the development of the median of central main strategies’ 

parameters. The proportion of Grim strategies falls to 62% after 10 generations, which can 

be attributed to the mutation procedure modifying 33% of all strategies in each generation. 

Subsequent to this reduction, the proportion of Grim strategies remained constant. The 

median investment rate of player A’s strategies also remained constant at approximately 

100%. On the contrary, the aspiration level of player A’s strategies reduced to 

approximately 34% after 100 generations and remained at this level. During the entire 

evolutionary process, the strategies for player B mainly consisted of one-state automata 

(with a median state of 1.05 in the last generation), although the 70% return rate from 

player B’s strategies, in the first generation, reduced to approximately 40% after 70 

generations.  
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Figure 14. Evolutionary process commencing from a homogenous population of agents applying the 

strategy combination Fair-Grim and Fair-Return.  

The figure shows the development of the median values of main variables. The payoffs of the players are 

plotted on the right y-axis whereas all other variables are plotted on the left y-axis. Initial investment stands 

for the investment rate of player A in the first period. Aspiration level indicates the level of player A 

strategies for categorizing the returns of player B as “Reciprocity” or “Exploitation.” Grim indicates the 

proportion of Grim strategies regardless of their aspiration levels. Return player B indicates player B’s return 

rate in the first period, which is a constant return rate in the case of one-state automata. The payoff player A 

and payoff player B indicate the strategies’ payoffs for both player roles.  

 

The simulations demonstrate that strategies, which produce an almost equal payoff 

for both players, will not sustain for a long period during an evolutionary process. Why is 

this the case? Given that the strategies for player A consist of Fair-Grim strategies, with an 

aspiration level of 67%, the best reply strategy for player B is to return at least 67% (i.e. 

70% due to the restriction to multiples of 10). However, due to the crossover and mutation 

process, there will always be some proportion of strategies for player B that will return 

less. Given the existence of these strategies, an alternative Grim strategy with a lower 

aspiration level can invade a population of Fair-Grim strategies: On the one hand, these 

Grim strategies earn the 70% returns from the Fair-Return strategies, on the other hand, 

they also obtain lower returns from other strategies, unless they are lower than the 

aspiration level of the alternative Grim strategy. Therefore, the alternative Grim strategy 

finally outperforms the Grim strategies with high aspiration levels. Once Grim strategies 

with low aspiration levels have replaced Fair-Grim strategies for player A, the strategies 

for player B will also reduce their return rates. This co-evolutionary cycle continues until 

there is no additional possibility for the Grim strategies to reduce their aspiration levels any 

further, which is the case when the return rates are a little more than player A’s 

endowments. This process can be seen in Figure 14. In the initiation of the process, the 

median return rate of strategies for player B is below the median aspiration level of player 

A, and subsequently, the return rate is reduced. The aspiration level is also reduced in the 

initiation of the evolutionary process but it is always above the return rate until it can not 

be reduced any further, since player A would then obtain a payoff below the endowment. 

In this situation, the return rate of player B is adapted to player A’s aspiration level, hence, 

it exceeds the aspiration level. 
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9.5 Discussion  

The goal of the present chapter was to investigate strategies for the indefinitely 

repeated investment game and to indicate those strategies that outperform the others. As a 

criterion for evaluating the strengths of strategies, the Nash equilibrium concept and two 

evolutionary stability concepts were applied.  

What are “well performing” strategies for the indefinitely repeated investment game? 

To illustrate this, an analytic exploration was followed for a restricted set of strategies, 

which demonstrates the strengths and weaknesses of particular strategies. By applying the 

Nash equilibrium to the restricted set of strategies, it became apparent that many strategies 

can form equilibria. In principle, all payoff combinations, predicted by the folk theorem, 

could be obtained with simple finite automata. If, for instance, player A applies a Grim 

strategy with an aspiration level of an arbitrary return rate of 88%, then it is optimal for 

player B to apply a strategy with a return rate of 88%, and given this strategy, the Grim 

strategy is then also optimal for player A. Therefore, the Nash equilibrium concept could 

not classify any payoff combinations as particularly appealing. However, it became 

apparent that for reaching an equilibrium a strategy for player A needs to incorporate a 

punishment mechanism for low returns. If this punishment mechanism is not present, it is 

never optimal for player B to make any return. In contrast, a punishment mechanism for 

low investments is not necessary for player B, since if player B makes a substantial return 

it is in the self-interest of player A to make a high investment. 

Additionally, the strategies were evaluated by considering their evolutionary 

stability. The concept of evolutionary stable strategies resulted in being too strong, since 

no strategy could be identified as being an ESS. If the psychological plausible assumption 

is made, that small errors occur when agents apply or select strategies, the concept of Limit 

evolutionary stability can be applied. A strategy is a Limit ESS for a game if it is an ESS 

for the game in which these errors occur. For the selected set of strategies, two 

combinations of strategies could be distinguished as a Limit ESS if errors in selecting 

strategies occur: the combination of the Never-Invest and No-Return strategies and the 

combination of the Min-Grim and Min-Return strategies.  

Evolutionary simulations were conducted to evaluate a larger set of strategies. The 

results of the simulations are consistent with the analytic explorations. Beginning with a 

heterogeneous population of agents using different strategies, the evolutionary process 

frequently led to two outcomes. Either the Never-Invest and No-Return combination or the 
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Min-Grim and Min-Return combination was applied by the agents in the last generation of 

the evolutionary process.  

How does an increase in potential complexity change the results? It was most 

striking that when the maximum number of automata's states was increased Min-Grim, or 

variants, and Min-Return was still the modal outcome. Strategies applying all four 

available states were observed rather seldom. The reason for this may be that two states are 

sufficient for obtaining efficient outcomes, but any additional states will not improve 

strategies. For instance, the two strategies Cautious and Forgiving-Once do not outperform 

the simpler Grim strategy if player B makes a constant return of 40%. On the contrary, 

given a constant return of 40% Cautious is not even a best reply strategy for player A, 

since player A could make a higher payoff in the first period. The Forgiving-Once strategy 

has the disadvantage in that it could be exploited in one period. In sum, a strategy, which 

incorporates more states, does not necessarily improve in enabling a higher payoff, and on 

the contrary, the larger number of states often provides exploitation possibilities.  

What is the reason for the frequent emergence of the Grim strategy? One important 

reason is that Grim is almost non-exploitable, since it can only be exploited once. 

However, this advantage is, at the same time, a disadvantage, since it disables Grim from 

obtaining efficient outcomes again once the strategy has moved to an inefficient decision 

(i.e. moved to it’s terminal state). What would more cooperative decision strategies, than 

the Grim strategy for the investment game, look like? Possible candidates are the Punish-

Once and the Forgiving-Once strategies obtained in a few simulations. Agents who apply 

Punish-Once or Forgiving-Once reach the same payoff as Min-Grim does against Min-

Return. However, neither strategy is a Limit ESS. The Min-Grim strategy weakly 

dominates both strategies, since, if the No-Return strategy was played by a few agents, the 

Min-Grim strategy would earn higher payoffs than the alternative strategies. Therefore, 

both the Punish-Once and the Forgiving-Once strategy do not appear to be a stable 

outcome of an evolutionary process.  

The general problem for a strategy of player A is that it is only possible for player A 

to resume efficient outcomes by making a risky outlay that has no negative consequences 

for player B. In this respect, the asymmetric investment game varies from the prisoner’s 

dilemma. In the prisoner’s dilemma a player, who causes an uncooperative situation, can 

initiate cooperation by a cooperative decision in a subsequent period, which will give them 

a lower payoff than the other player, who does not cooperate. Thereby, a gain, by means of 

an exploitive decision, is compensated by a loss in another period by resuming 
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cooperation. In contrast, in the investment game, the gain of an exploitive decision by 

player B is not compensated by a loss for player B when returning to a reciprocal 

interaction. It is even worse for player A: A loss, resulting from player B’s exploitation, 

will not be compensated when the players return to a reciprocal interaction. Furthermore, 

in order to return to the reciprocal interaction, player A needs to take the risk of a repeated 

exploitation with an additional loss into account. This appears to be the main reason why 

strategies, kinder than Grim, do not evolve more frequently. 

However, if agents make errors in executing their strategy, the outcome of an 

evolutionary process changes. If the automata’s number of states were restricted to two 

states, efficient outcomes would not be obtained under the condition of execution errors. If 

the number of states was increased to four states, efficient outcomes would, again, be 

frequently obtained. However, the Min-Grim strategy was not observed once. In contrast, 

strategies appeared to be more tolerant concerning low returns, since terminal states with 

no investments for all following periods were seldom observed. Although the strategies 

reduce their investments if player B makes a low return, they often return to high 

investments in following periods. The Forgiving-Once strategy, for instance, appears 

reasonable as it tolerates one single error by the opponent (i.e. no return) during the whole 

game. Therefore, in the case of execution errors, higher complexity measured in the 

number of states allows the incorporation of a forgivingness mechanism that tolerates these 

errors, and thereby, improves the strategies. 

Another striking result of the simulations is that in almost all cases, in which an 

efficient outcome evolved, the players obtained unequal payoffs. The player A only 

obtained a payoff, which is a little above player A’s endowment, whereas the player B 

received almost all of the produced surplus. This result was expected from the theoretical 

analysis, since the Fair-Grim and Fair-Return strategy combination is weakly dominated by 

the Min-Grim and Min-Return combination. The last simulation, in which all agents in the 

first generation applied the Fair-Grim and Fair-Return strategy combinations, could 

illustrate the development of unequal outcomes. Fair-Grim is unable to prevent other Grim 

strategies, with lower aspiration levels, from invading the population. In the beginning, 

upcoming strategies for player B that return less than Fair-Return produce a lower payoff 

for their agents. However, these strategies clear the way for Grim strategies with low 

aspiration levels, and subsequently, for strategies with lower returns for player B. The 

simulation shows that, from generation to generation, the average aspiration level 

decreases, and, after a short period of 80 generations, it already reaches the Min-Grim 
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level. In other words, there are Grim strategies that “underbid” the Fair-Grim strategy with 

a lower aspiration level, and thereby, undermine the “social norm” of high returns. This 

process resembles a public good problem (Ledyard, 1995) in which the public good is 

represented by all possible returns of player B. If agents in the role of player A restrict 

themselves to accepting only high returns, the public good of high returns will be 

maintained in the long-term, and therefore, this restriction is socially preferable. However, 

it is individually rational for agents, in the role of player A, to also accept low returns in 

every period to increase the individual payoff. If a large number of agents make this 

individual rational decision, it also becomes individually rational for agents, in the role of 

player B, to lower their return rates. Not surprisingly, the other simulation, which 

commenced with a homogenous population of agents applying the Min-Grim and Min-

Return strategy combination, employ a “social norm” of low returns from the beginning, 

resulting in having a greater evolutionary stability.  
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