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Background: Lung cancer has been the focus of attention for many researchers in recent years due to its 
leading contribution to cancer-related death worldwide, with lung adenocarcinoma (LUAD) being the most 
common histological type. Ferroptosis, a novel iron-dependent form of regulated cell death, can be induced 
by sorafenib. Emerging evidence shows that triggering ferroptosis has potential as a cancer therapy. This 
work aimed to build a ferroptosis-related gene signature for predicting the outcome of LUAD.
Methods: The TCGA-LUAD dataset was set as the training cohort, and the GSE72094 and GSE68465 
datasets were set as the validation cohorts. Sixty-two ferroptosis-related genes were retrieved from the 
literature. A univariate Cox regression model was constructed for the training cohort to preliminarily 
screen for potential prognostic ferroptosis-related genes. A gene signature was generated from a LASSO 
Cox regression model and assessed with the training and validation cohorts through Kaplan-Meier, Cox, 
and ROC analyses. In addition, the correlation between the risk score and autophagy-related genes was 
determined by the Pearson test. Finally, GSEA and immune infiltrating analyses were performed to better 
study the functional annotation of the signature and the role of each kind of immune cell.
Results: A ten-gene signature was constructed from the training cohort and validated in three cohorts by 
Kaplan-Meier and Cox regression analyses, revealing its independent prognostic value in LUAD. Moreover, 
a ROC analysis conducted with all cohort data confirmed the predictive ability of the ten-gene signature for 
LUAD prognosis. A total of 62.85% (308/490) of autophagy-related genes were found to be significantly 
correlated with risk scores. GSEA detailed the exact pathways related to the gene signature, and immune-
infiltrating analyses identified crucial roles for resting mast cells and resting dendritic cells in the prognosis 
of LUAD.
Conclusions: We identified a novel ferroptosis-related ten-gene signature (PHKG2, PGD, PEBP1, 
NCOA4, GLS2, CISD1, ATP5G3, ALOX15, ALOX12B, and ACSL3) that can accurately predict LUAD 
prognosis and is closely linked to resting mast cells and resting dendritic cells.
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Introduction

Lung cancer is the most common malignant tumor in 
humans and causes more cancer-related mortality worldwide 
than any other disease (1). Lung cancer mainly consists of 
two subtypes, non-small cell lung cancer (NSCLC) and 
small cell lung cancer (SCLC). NSCLC accounts for almost 
80% of lung cancer cases and comprises two major types, 
lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (2). LUAD is the predominant histology, and 
the incidence rate is still increasing (1). Several treatment 
advances have been made in recent years, in particular, the 
advancement of targeted therapy and the emergence of 
immunotherapy (3,4). However, these two methods can 
only benefit a limited number of subtypes, and the overall 
survival rate of patients with LUAD is still very low (5). 
Therefore, it is important to continue efforts to find specific 
prognostic methods for the survival of specific patients so 
that the most suitable treatment and management programs 
can be designed for different subgroups of patients with 
LUAD (6).

Ferroptosis is a type of programmed cell  death 
dependent on iron and characterized by the accumulation 
of lipid peroxides. It is genetically and biochemically 
distinct from other forms of regulated cell death, such as 
apoptosis (7). The induction of ferroptosis has become a 
promising treatment option for cancer cell death over the 
past few years, especially for malignant tumors resistant 
to traditional therapies (8-10). In addition to ferroptosis-
inducing agents, many genes have also been identified as 
regulators or hypertrophy markers (10-14).

Recently, several studies have mined the prognostic 
gene signature related to ferroptosis in tumors from public 
databases (11,15). Liu confirmed that the ferroptosis-related 
nineteen-gene signature could predict survival in patients 
with glioma (11). Liang et al. discovered a novel ferroptosis-
related prognostic gene signature for hepatocellular 
carcinoma (15). Several studies have identified prognostic 
gene signatures of LUAD involving glycolysis (16), 
metabolism (17), or immunity (18). These studies did not 
explain the role of ferroptosis in their models. To date, 
no studies have determined whether a ferroptosis-related 
prognostic gene signature can predict LUAD outcomes. 
To fill this gap and discover potential diagnostic methods 
potentially targeting ferroptosis, this study used ferroptosis-
related genes identified in previous studies and public 
databases to identify a ferroptosis-related prognostic gene 
signature, which was also validated in independent datasets. 
Gene Set Enrichment Analysis (GSEA) and immune 

infiltration analysis were used to better understand the gene 
signature. We present the following article in accordance 
with the TRIPOD reporting checklist (available at  
https://dx.doi.org/10.21037/atm-20-7936).

Methods

Cohorts and ferroptosis-related genes

The TCGA-LUAD dataset was chosen as the training 
cohort and downloaded from the GDC Xena Hub  
(https://gdc.xenahubs.net). Five hundred patients with 
LUAD in the TCGA-LUAD dataset who had both gene 
expression and survival data available were included in 
our research. Two independent cohorts, GSE72094 and 
GSE68465, which consisted of 442 and 443 LUAD cases, 
respectively, were selected for the study as validation 
cohorts to validate the developed prognostic model. The 
detailed survival data of the cohorts are shown in https://
cdn.amegroups.cn/static/public/atm-20-7936-1.pdf. A 
comprehensive list consisting of a total of 62 ferroptosis-
related genes was retrieved from the literature (10-14) and 
is provided in https://cdn.amegroups.cn/static/public/atm-
20-7936-2.pdf. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Identification and validation of the prognostic ferroptosis-
related gene signature

A univariate Cox regression analysis was performed based 
on overall survival in the training cohort to identify 
potential prognostic genes (P value <0.05). The potential 
prognostic genes that overlapped with ferroptosis-related 
genes were identified as potential prognostic ferroptosis-
related genes, which were then entered into an overall 
survival-based LASSO Cox regression model in the 
training cohort. The “glmnet” R package with a setting 
of 10-fold cross-validations was applied for LASSO 
analysis (19-22). R software generated a list of prognostic 
genes with coefficients according to the selected optimal 
lambda value. Each patient’s risk score can be obtained 
based on the expression level of each prognostic gene and 
its corresponding coefficient, as shown in the following 
formula:

n

i
Risk score Expi iβ= ∗∑  [1]

where n, Expi, and βi represent the number of hub genes, 
gene expression level, and regression coefficient value, 

https://cdn.amegroups.cn/static/public/atm-20-7936-1.pdf
https://cdn.amegroups.cn/static/public/atm-20-7936-1.pdf
https://cdn.amegroups.cn/static/public/atm-20-7936-2.pdf
https://cdn.amegroups.cn/static/public/atm-20-7936-2.pdf
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respectively.
Kaplan-Meier analysis, univariate and multivariate Cox 

analyses and ROC analyses were conducted for the training 
and validation cohorts to assess the prognostic value of the 
gene signature risk score.

Relationship between gene signature and autophagy

Autophagy is a conserved intracellular degradation system 
that plays a dual role in cell death; thus, therapies targeting 
autophagy in cancer are somewhat controversial (23). 
Accumulating studies have revealed crosstalk between 
autophagy and ferroptosis at the molecular level (23). We 
explored the relationship between autophagy and our gene 
signature and first identified 232 autophagy-associated 
genes from the Human Autophagy Database (HADb; 
http://www.autophagylu/index.html), which consists of 
an exhaustive, up-to-date list of human autophagy-related 
genes (24). Another 363 autophagy-related genes were 
retrieved from the Molecular Signatures Database (version 
7.1, https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp). A list of 490 autophagy-related genes was obtained by 
merging these lists (https://cdn.amegroups.cn/static/public/
atm-20-7936-3.pdf). The Pearson correlation coefficient 
was used to evaluate the correlation between autophagy and 
the risk score. A P value<0.05 was considered statistically 
significant.

GSEA

GSEA was performed based on Hallmark gene set 
collections (v7.1, https://www.gsea-msigdb.org/gsea/
downloads.jsp) to uncover the pathways and functions of the 
genes that were differentially expressed in the high-risk and 
low-risk groups. The significant gene set selection criteria 
were as follows: | NES | >1, NOM p-val <0.05, and FDR 
q-val <0.25.

Relationship between the gene signature and 22 tumor-
infiltrating immune cells (TICs)

The relative proportion of 22 TICs in the training group 
was downloaded from the National Cancer Institute web 
portal (https://gdc.cancer.gov/about-data/publications/
panimmune); it had been calculated using the CIBERSORT 
algorithm (25,26). Three-hundred-ninety LUAD cases 
were eligible to be entered into the subsequent analysis after 

quality filtering (P value <0.05), and the Pearson coefficient 
was used to evaluate the correlations between the 22 TICs 
and LUAD. The Spearman coefficient and Wilcoxon 
rank-sum tests were applied to identify the relationship 
between the proportions of the 22 TICs and the risk score. 
Additionally, univariate Cox and Kaplan-Meier analyses 
were used to assess the prognostic value of the 22 TICs. 
The potential candidate TIC that plays a role in the gene 
signature’s prognostic capacity was found by combining the 
results of these analyses.

Statistical analysis

Univariate and multivariate Cox proportional hazard 
regression analyses were conducted using the “survival” R 
package. Kaplan-Meier analysis was performed using the 
“survival” and “survminer” R packages. ROC analysis was 
applied using the “survivalROC” R package. The area under 
the ROC curve (AUC) served as a marker of prognostic 
accuracy. A P value <0.05 was considered statistically 
significant.

Results

Cohorts’ characteristics

This research flowchart is shown in Figure 1. Five hundred 
LUAD cases from the TCGA-LUAD cohort were taken as 
the training cohort. The GSE72094 and GSE68465 cohorts 
from the GEO database, consisting of 442 and 443 LUAD 
cases, respectively, were selected as the validation cohorts. 
Table 1 summarizes the detailed clinical characteristics of 
the cohorts in this study.

Identification of a prognostic ferroptosis-related gene 
signature from the training cohort

A total of 7,596 genes were identified from the overall 
survival-based univariate Cox regression analysis in the 
training cohort (https://cdn.amegroups.cn/static/public/
atm-20-7936-4.pdf). The 7,596 potential prognostic 
genes and 62 ferroptosis-related genes were intersected to 
obtain a list consisting of 14 ferroptosis-related potential 
prognostic genes (Table 2). The 14 ferroptosis-related 
potential prognostic genes were then subjected to an overall 
survival-based LASSO Cox regression model (Figure 2A). 
The model achieved the best performance when 10 genes 
were included (Figure 2B). The regression coefficient of 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.gsea-msigdb.org/gsea/downloads.jsp
https://gdc.cancer.gov/about-data/publications/panimmune
https://gdc.cancer.gov/about-data/publications/panimmune
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Figure 1 Flow chart of the study. LASSO, least absolute shrinkage and selection operator Cox regression model; ROC, receiver operating 
characteristic; LUAD, lung adenocarcinoma; TICs, tumor-infiltrating immune cells.
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Table 1 Clinical characteristics of patients involved in the study

Characteristics
Training cohort  

(TCGA-LUAD, 500 cases)
Validation cohort  

(GSE72094, 442 cases)
Validation cohort  

(GSE68465, 443 cases)

Age

<65 219 (43.8%) 115 (26.02%) 214 (48.31%)

≥65 271 (54.2%) 306 (69.23%) 229 (51.69%)

Unknown 10 (2%) 21 (4.75%) 0

Gender

Female 270 (54%) 240 (54.3%) 220 (49.66%)

Male 230 (46%) 202 (45.7%) 223 (50.34%)

T classification

T1 167 (33.4%) NA 150 (33.86%)

T2 267 (53.4%) NA 251 (56.66%)

T3 45 (9%) NA 28 (6.32%)

T4 18 (3.6%) NA 12 (2.71%)

Unknown 3 (0.6%) NA 2 (0.45%)

N classification

N0 324 (64.8%) NA 299 (67.49%)

N1 94 (18.8%) NA 88 (19.86%)

N2 69 (13.8%) NA 53 (11.96%)

N3 2 (0.4%) NA 0

Unknown 11 (2.2%) NA 3 (0.68%)

M classification

M0 332 (66.4%) NA NA

M1 24 (4.8%) NA NA

Unknown 144 (28.8%) NA NA

Tumor stage

Stage I 268 (53.6%) 265 (59.95%) NA

Stage II 119 (23.8%) 69 (15.61%) NA

Stage III 80 (16%) 63 (14.25%) NA

Stage IV 25 (5%) 17 (3.85%) NA

Unknown 8 (1.6%) 28 (6.33%) NA

Race

White 386 (77.2%) 399 (90.27%) 295 (66.59%)

Black or African American 52 (10.4%) 13 (2.94%) 12 (2.71%)

American Indian or Alaska 
Native

1 (0.2%) 0 1 (0.23%)

Table 1 (continued)



Ma et al. Ten-gene signature in LUAD

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(13):1058 | https://dx.doi.org/10.21037/atm-20-7936

Page 6 of 26

Table 1 (continued)

Characteristics
Training cohort  

(TCGA-LUAD, 500 cases)
Validation cohort  

(GSE72094, 442 cases)
Validation cohort  

(GSE68465, 443 cases)

Asian 7 (1.4%) 3 (0.68%) 6 (1.35%)

Unknown 54 (10.8%) 27 (6.11%) 129 (29.12%)

Ethnicity

Hispanic or Latino 7 (1.4%) 10 (2.26%) NA

Not Hispanic or Latino 381 (76.2%) 402 (90.95%) NA

Unknown 112 (22.4%) 30 (6.79%) NA

Tobacco smoking history

Ever 415 (83%) 335 (75.79%) 300 (67.72%)

Never 71 (14.2%) 33 (7.47%) 49 (11.06%)

Unknown 14 (2.8%) 74 (16.74%) 94 (21.22%)

Number pack-years smoked

<30 115 (23%) NA NA

≥30 227 (45.4%) NA NA

Unknown 158 (31.6%) NA NA

Radiation therapy

Yes 58 (11.6%) NA 65 (14.67%)

No 361 (72.2%) NA 364 (82.17%)

Unknown 81 (16.2%) NA 14 (3.16%)

Chemotherapy

Yes NA NA 89 (20.09%)

No NA NA 341 (76.98%)

Unknown NA NA 13 (2.93%)

Additional pharmaceutical therapy

Yes 61 (12.2%) NA NA

No 68 (13.6%) NA NA

Unknown 371 (74.2%) NA NA

Additional radiation therapy

Yes 61 (12.2%) NA NA

No 71 (14.2%) NA NA

Unknown 368 (73.6%) NA NA

EGFR mutation

Yes 80 (16%) 47 (10.63%) NA

No 191 (38.2%) 395 (89.37%) NA

Table 1 (continued)
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Table 1 (continued)

Characteristics
Training cohort  

(TCGA-LUAD, 500 cases)
Validation cohort  

(GSE72094, 442 cases)
Validation cohort  

(GSE68465, 443 cases)

Unknown 229 (45.8%) 0 NA

KRAS mutation

Yes 23 (4.6%) 154 (34.84%) NA

No 39 (7.8%) 288 (65.16%) NA

Unknown 438 (87.6%) 0 NA

STK11 mutation

Yes NA 68 (15.38%) NA

No NA 374 (84.62%) NA

TP53 mutation

Yes NA 111 (25.11%) NA

No NA 331 (74.89%) NA

EML4-ALK mutation

Yes 34 (6.8%) NA NA

No 207 (41.4%) NA NA

Unknown 259 (51.8%) NA NA

Tumor intermediate dimension

<1 287 (57.4%) NA NA

≥1 88 (17.6%) NA NA

Unknown 125 (25%) NA NA

Location in lung parenchyma

Central lung 62 (12.4%) NA NA

Peripheral lung 118 (23.6%) NA NA

Unknown 320 (64%) NA NA

Person neoplasm cancer status

With tumor 134 (26.8%) NA NA

Tumor free 243 (48.6%) NA NA

Unknown 123 (24.6%) NA NA

Vital status

Alive 318 (63.6%) 298 (67.42%) 207 (46.73%)

Dead 182 (36.4%) 122 (27.6%) 236 (53.27%)

Unknown 0 22 (4.98%) NA
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Figure 2 Construction of the prognostic gene signature using LASSO regression analysis. (A) LASSO coefficient profiles of 14 ferroptosis-
related potential prognostic genes. Each curve corresponds to a gene. (B) Tenfold cross-validation for tuning parameter selection in the 
LASSO model. The partial likelihood deviance is plotted against log (Lambda), where Lambda is the tuning parameter. Partial likelihood 
deviance values are shown, with error bars representing SE. The dotted vertical lines are drawn at the optimal values by minimum criteria 
and 1-SE criteria. LASSO: the least absolute shrinkage and selection operator Cox regression model.

Log Lambda Log Lambda

–6 –5 –4 –3

11 11 10 9 12 11 11 11 11 10 10 10 6 2 0

–6 –5 –4 –3

C
oe

ffi
ci

en
ts

P
ar

tia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

0.4

0.2

0.0

–0.2

–0.4

–0.6

12.4

12.3

12.2

12.1

12.0

Table 2 14 ferroptosis-related potential prognostic genes generated from the training cohort

Gene symbol Description HR
95% confidence interval

P value
Lower Upper

PEBP1 Phosphatidylethanolamine-Binding 
Protein 1

0.603658936 0.464865289 0.78389185 0.000152746

ACSL3 Acyl-CoA Synthetase Long-Chain 
Family Member 3

1.435108616 1.157210163 1.779743045 0.001003251

GLS2 Glutaminase 2 0.356469987 0.176890046 0.71836067 0.003911814

GCLC Glutamate-Cysteine Ligase Catalytic 
Subunit

1.135847381 1.034367787 1.24728292 0.007639188

SLC7A11 Solute Carrier Family 7 Member 11 1.137868621 1.023951703 1.264459052 0.016406631

PHKG2 Phosphorylase Kinase Catalytic 
Subunit Gamma 2

0.69374619 0.511654438 0.940642238 0.018577862

PGD Phosphogluconate Dehydrogenase 1.177966423 1.02132216 1.358635842 0.02446422

CISD1 CDGSH Iron Sulfur Domain 1 1.403301444 1.041497232 1.890792296 0.025931782

ALOX12B Arachidonate 12-Lipoxygenase, 12R 
Type

1.528527805 1.03748207 2.251988076 0.031866869

DPP4 Dipeptidyl Peptidase 4 0.911077238 0.836744384 0.992013511 0.031983077

ALOX15 Arachidonate 15-Lipoxygenase 0.857033797 0.740142144 0.992386306 0.039196308

ATP5G3 ATP Synthase Membrane Subunit C 
Locus 3

1.311553769 1.01163069 1.700396506 0.040633369

ABCC1 ATP Binding Cassette Subfamily C 
Member 1

1.23437377 1.007318781 1.512608156 0.042328557

NCOA4 Nuclear Receptor Coactivator 4 0.776056577 0.603024235 0.998738982 0.048865024
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each gene was calculated and is shown in Table 3.

Prognostic ability of the ten-gene signature

Each patient’s risk score was a linear combination of each 
ten-gene signature expression and its risk coefficient. 
LUAD cases were assigned to high- and low-risk groups 
based on the median risk score. The distribution plots of 
risk scores, outcome status, and expression profiles of the 
gene signature in the three cohorts are shown in Figure 3. 
As demonstrated in Figure 3A,B,C,D, more events occurred 
in the high-risk groups than in their corresponding low-risk 
groups. Additionally, the patients in the high-risk groups 
had a shorter survival time than those in the respective low-
risk groups. The heat maps show that in high-risk cases, 
ACSL3, PGD, ATP5G3, CISD1, and ALOX12B were 
overexpressed, while the expression of NCOA4, GLS2, 
ALOX15, PEBP1, and PHKG2 was downregulated. In 
addition, we checked the five-year survival prediction 
capacity of the ten-gene signature (Figure 3E,F,G,H) and 
found that more events and less survival time existed in the 
high-risk groups than in the low-risk groups, which were 
consistent with those shown in Figure 3A,B,C,D.

Kaplan-Meier curves showed that the high-risk patients 
had poor survival rates in the TCGA-LUAD (overall 
survival: P value <0.0001, Figure 4A; progression-free 
survival: P value =0.00064, Figure 4B), GSE72094 (P value 
<0.0001, Figure 4C), and GSE68465 (P value =0.00043, 
Figure 4D) cohorts compared to the survival of specific low-
risk patients among the cohorts. The Kaplan-Meier curves 
of five-year survival showed the same pattern: high-risk 

score groups had significantly more unfavorable outcomes 
than their corresponding low-risk groups (Figure 4E,F,G,H).

Univariate and multivariate Cox analyses were applied 
in the three cohorts based on overall or progression-free 
survival using available covariables, including ten-gene 
signature risk score, sex, age, race, tumor stage, tobacco 
smoking history, radiation therapy, KRAS mutation, and 
EML4-ALK mutation to validate the prognostic capacity 
and the independence of the ten-gene signature among 
other clinicopathological characteristics (Table 4). In the 
overall survival-based Cox regression model of the training 
cohort, both univariate Cox and multivariate Cox models 
suggested that the ten-gene signature was a powerful 
player (HR =3.39, 95% CI, 2.49–4.62, P value =8.78E-15,  
and HR =7.32, 95% CI, 2.88–18.6, P value =2.94E-05, 
respectively). Consistent with that in the training cohort, 
in both univariate and multivariate analyses, the ten-
gene signature showed excellent ability in the other two 
independent validation cohorts to predict overall survival 
(P value ≤1.22E-04). Additionally, we utilized progression-
free survival data in the training cohort to perform the 
Cox analysis. We found that the ten-gene signature had 
the ability to predict the outcomes in both the univariate 
and multivariate models (P value ≤7.35E-03). The above 
evidence shows that the ten-gene signature is a powerful 
independent prognostic factor.

Then, we established a ROC curve to evaluate the 
performance of the ten-gene signature in predicting LUAD 
overall survival rates. As shown in Figure 5A, the training 
cohort’s ROC analysis demonstrated that the AUC of 
the ten-gene signature risk score was 0.728, the highest 

Table 3 10 ferroptosis-related prognostic genes obtained from LASSO Cox regression model

Gene symbol Description Risk coefficient

PHKG2 Phosphorylase Kinase Catalytic Subunit Gamma 2 −0.376487238

PGD Phosphogluconate Dehydrogenase 0.027750809

PEBP1 Phosphatidylethanolamine Binding Protein 1 −0.369553219

NCOA4 Nuclear Receptor Coactivator 4 −0.498545244

GLS2 Glutaminase 2 −0.399525822

CISD1 CDGSH Iron Sulfur Domain 1 0.313326653

ATP5G3 ATP Synthase Membrane Subunit C Locus 3 0.019018653

ALOX15 Arachidonate 15-Lipoxygenase −0.049973524

ALOX12B Arachidonate 12-Lipoxygenase, 12R Type 0.323899465

ACSL3 Acyl-CoA Synthetase Long Chain Family Member 3 0.246495026
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Figure 5 ROC analysis of the ten-gene signature risk score. ROC curves show the sensitivity and specificity of the prognosis prediction by 
the ten-gene signature risk score, age, sex, race, T classification, N classification, M classification, tumor stage, race, KRAS status, etc., or 
risk score + N classification in the training cohort (A) and two validation cohorts (B,C) based on overall survival. ROC, receiver operating 
characteristic; AUC, area under the ROC curve.

TCGA-LUAD

GSE72094

GSE68465

False positive rate (1-specificity)

False positive rate (1-specificity)

False positive rate (1-specificity)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Tr
ue

 p
os

iti
ve

 r
at

e 
(s

en
si

tiv
ity

)
Tr

ue
 p

os
iti

ve
 r

at
e 

(s
en

si
tiv

ity
)

Tr
ue

 p
os

iti
ve

 r
at

e 
(s

en
si

tiv
ity

)

A

B

C



Ma et al. Ten-gene signature in LUAD

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(13):1058 | https://dx.doi.org/10.21037/atm-20-7936

Page 16 of 26

among all clinical characteristics. The AUC of the ten-
gene signature in the GSE72094 cohort also reached 0.774, 
which was the leading variable compared to other factors 
(Figure 5B). In the GSE68465 cohort, the AUC of the gene 
signature was 0.663, which was the best and superior to 
that of the N classification (AUC =0.657). Interestingly, 
when combined with the risk score and N classification for 
analysis, the AUC reached 0.711 (Figure 5C).

Identification of the correlation between autophagy and the 
ten-gene signature

We conducted a correlation Pearson correlation coefficient 
to evaluate the relationship between autophagy-related 
genes and the ten-gene signature risk score. Of the 490 
autophagy-related genes, 308 (62.85%) were significantly 
correlated with risk scores, of which 129 were positively 
correlated, and 179 were negatively correlated (https://cdn.
amegroups.cn/static/public/atm-20-7936-5.pdf). As shown 
in Figure 6, GAPDH, ERO1 L, BIRC5, SPHK1, VDAC1, 
ITGB1, NAMPT, HK2, CISD2, and GNAI3 were the top 
ten autophagy-related genes that were positively correlated 
with the risk score, while DAPK2, NOD1, LRRK2, DLC1, 
TMEM150A, PRKCD, TFEB, SESN1, DRAM1, and 
KAT8 were the ten most enriched genes that had negative 
relationships with the ten-gene signature risk score.

GSEA with the ten-gene signature

Given the negative correlation between the risk score and 
the outcomes, GSEA was performed between the high-risk 
and low-risk groups. As shown in https://cdn.amegroups.
cn/static/public/atm-20-7936-6.pdf and Figure 7A, the 
enriched gene sets in the high-risk group were mainly 
involved in pathways related to glycolysis, mTORC1, MYC, 
G2/M checkpoint, unfolded protein response, E2F, hypoxia, 
mitotic spindle assembly, epithelial-mesenchymal transition, 
and late response to estrogen. Gene sets concerned with the 
metabolism of bile acids and salts, metabolism of heme, and 
genes downregulated by KRAS activation were primarily 
enriched in the low-risk group (Figure 7B and https://cdn.
amegroups.cn/static/public/atm-20-7936-7.pdf).

Identification of the relationship between the ten-gene 
signature and 22 TICs

The CIBERSORT algorithm was applied to evaluate the 
proportion of tumor-infiltrating immune subpopulations 

to better study how the ten-gene signature and the 
immune microenvironment interact. The relative content 
distribution of the 22 TICs in the TCGA-LUAD cohort 
and the correlation between the 22 TICs are shown in 
Figure 8.

Combining the results of the difference analysis  
(Figure 9A) and the correlation analysis (Figure 9B, https://
cdn.amegroups.cn/static/public/atm-20-7936-8.pdf) 
identified a total of eight TICs associated with the signature 
(Figure 9C). Among the eight TICs, M0 macrophages, M1 
macrophages, activated memory CD4 T cells, and activated 
mast cells were positively correlated with the risk score. 
Monocytes, resting memory CD4 T cells, resting mast cells, 
and resting dendritic cells were negatively correlated with 
the risk score.

Furthermore, to examine the prognostic capacity of 
each TIC, univariate Cox and Kaplan-Meier analyses 
based on overall survival were conducted. As shown in  
Figure 10, Kaplan-Meier analysis (Figure 10A and https://
cdn.amegroups.cn/static/public/atm-20-7936-9.pdf) 
indicated that resting mast cells and resting dendritic cells 
can predict the survival rate of LUAD. Additionally, the 
univariate Cox regression model (Figure 10B) highlighted 
that resting mast cells, resting dendritic cells, and M0 
macrophages impacted prognosis. From the above survival 
analysis, resting mast cells and resting dendritic cells can 
be identified as having a potential prognostic capacity in 
LUAD.

The analysis in this section found that resting mast 
cells and resting dendritic cells not only had pronounced 
correlations with the gene signature but also predicted the 
outcomes of LUAD. Therefore, the significant infiltration 
of resting mast cells and resting dendritic cells potentially 
plays a vital role in the prognostic ability of the ten-gene 
signature in LUAD.

Discussion

In this study, we mined the public databases of the TCGA 
and GEO and constructed a ten-gene signature related 
to ferroptosis that can be used to predict the prognosis of 
LUAD. The LASSO Cox regression model was applied 
after discovering the potential ferroptosis-related prognostic 
genes using univariate Cox analyses in the TCGA-LUAD 
cohort. A ten-gene signature associated with LUAD 
prognosis was generated. The ten-gene signature was then 
applied to the training cohort and two validation cohorts 
by performing univariate and multivariate Cox analyses, 

https://cdn.amegroups.cn/static/public/atm-20-7936-5.pdf
https://cdn.amegroups.cn/static/public/atm-20-7936-5.pdf
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Figure 6 The correlations between the ten-gene signature and autophagy-related genes in the training (A,B) cohort. Each graph’s blue line 
fits a linear model that indicates the proportional trend of the expression level of each gene and the risk score. The shading around the blue 
line represents the 95% confidence interval. Pearson coefficient was applied for correlation testing.
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Figure 7 Gene set enrichment analysis performed using the HALLMARK collection (A,B). Gene sets with | NES | >1, NOM p-val <0.05, 
and FDR q-val <0.25 were considered significantly enriched.

A

B

Enriched gene sets of the HALLMARK collection in the high-risk group

Enriched gene sets of the HALLMARK collection in the low-risk group
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ROC analysis, and Kaplan-Meier analysis. It was found that 
the ten-gene signature had a powerful prognostic ability, 
which also showed the effectiveness and broadness of the 
gene signature in LUAD prediction. In the subsequent 
correlation analysis, the ten-gene signature was found to 
be correlated with most autophagy-related genes. GSEA 
revealed essential pathways related to the gene signature. 
The TIC analysis revealed that resting mast cells and resting 
dendritic cells may play crucial roles in the gene signature 
that affects prognosis in LUAD. We are the first to utilize 
ferroptosis-related genes for training and validation in two 
independent cohorts (more than 400 cases each) to evaluate 
LUAD prognostic gene signatures. We anticipate that this 
study will guide future LUAD research.

Ferroptosis is a type of iron-dependent programmed 
cell death that is characterized by the accumulation of 
lipid peroxides and is genetically and biochemically 
different from other forms of regulatory cell death (such as 
apoptosis) (7). Ferroptosis-inducing factors can directly or 
indirectly affect glutathione peroxidase through different 
pathways, resulting in a decrease in antioxidant capacity 
and accumulation of lipid reactive oxygen species (ROS) in 
cells, ultimately leading to oxidative cell death (7). Recent 
studies have shown that ferroptosis is closely linked to 
many diseases, such as cancers, blood diseases, nervous 
system diseases, kidney diseases, and local ischemia-
reperfusion injury (7). The increasing number of studies 
investigating ferroptosis in cancer have revealed its potential 
as a therapeutic target (27). The expression of FSP1 is 
correlated with the ferroptosis resistance of lung cancer cell 
lines, indicating that the upregulation of FSP1 expression 
is a strategy of ferroptosis escape in lung cancer (13). 
Additionally, in non-small cell lung cancer (NSCLC) cell 
lines, it was shown that the level of MAPK pathway activity 
correlates with sensitivity to ferroptosis induced by cystine 
deprivation (28). Interestingly, LSH affects metabolic 
genes through chromatin modification, thereby inhibiting 
hypertrophy and promoting lung tumors (29). RNA 
sequencing in NSCLC cells showed that the expression 
of SLC7A11, an essential gene associated with ferroptosis 
through its role in controlling iron concentrations, can be 
downregulated by XAV939 (an inhibitor of NSCLC), a 
target gene of lncRNAs, which suppressed the development 
of NSCLC via ferroptosis-mediated pathways (30). LSH 
promotes the expression of LINC00336 by upregulating 

Figure 8 TIC profile in tumor samples in the training cohort 
and correlation analysis. (A) Bar plot showing the relative content 
distribution of 22 TICs in high- and low-risk LUAD samples in 
the training cohort. Each column represents a sample. (B) Heatmap 
showing the correlation between 22 TICs. The shade and numeric 
in each small color box indicate the coefficient between two 
TICs. The coefficients covered by the X shape are not significant. 
Pearson coefficient was applied for correlation tests. P value <0.05 
is the cutoff. TIC, tumor-infiltrating immune cell; LUAD, lung 
adenocarcinoma.
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Figure 9 Relationship between TICs and ten-gene signature risk score. (A) The violin plot shows the ratio differentiation of each of 22 TICs 
between the high- and low-risk groups. Wilcoxon rank-sum was applied for the significance test. (B) The correlations between the TICs 
and ten-gene signature risk score (only correlations with significance were plotted). Each graph’s blue line fits a linear model that indicates 
the proportional trend of the TICs and the risk score. The shading around the blue line represents the 95% confidence interval. Spearman 
coefficient was applied for the correlation test. (C) The Venn diagram shows that ten TICs have a pronounced correlation with the risk score, 
which is determined by the results of the violin and the scatter plot. P value <0.05 is the cutoff. TIC, tumor-infiltrating immune cell.
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Figure 10 Evaluation of the prognostic ability of 22 TICs. (A) Kaplan-Meier survival curves. Only graphs with a P value <0.05 in the log-
rank test were plotted. (B) Univariate Cox regression model built for 22 TICs based on overall survival. The asterisks shown in plot B 
indicate a P value <0.05.

ELAVL1 expression through the p53 signaling pathway in 
lung cancer (31,32). LINC00336 interacts with ELAVL1 
to reduce intracellular iron and lipid ROS levels, thereby 
acting as a critical inhibitor of ferroptosis in carcinogenesis 
(31,32). These findings have highlighted the importance 
of ferroptosis in lung cancer therapeutics, but the roles 
of ferroptosis in tumorigenesis and development remain 
unclear. Recently, many studies have begun to mine the 
prognostic gene signature related to ferroptosis in tumor 
information available from public databases. For example, 
Liu et al. investigated ferroptotic gene expression patterns 
in patients with glioma, identified their relationship to 
patient outcome, and confirmed that the ferroptosis-
related nineteen-gene s ignature they discovered 
could predict glioma cell death and glioma disease  
progression (11). Liang et al. defined a novel prognostic 
model of 10 ferroptosis-related genes, which proved 
to be independently associated with overall survival in 

both the derivation and validation cohorts, providing 
insight into the prediction of hepatocellular carcinoma  
prognosis (15). However, a prognostic gene signature had 
yet to be determined in LUAD. Our study conducted in-
depth research to fill this gap and discovered a ferroptosis-
related ten-gene signature that is closely associated with 
LUAD prognosis.

The ferroptosis-related ten-gene signature that we 
discovered showed strong prognostic prediction capabilities 
in the training cohort and two independent validation 
cohorts after being tested by a variety of statistical methods. 
Our signature was composed of the following ten genes: 
PHKG2, PGD, PEBP1, NCOA4, GLS2, CISD1, ATP5G3, 
ALOX15, ALOX12B, and ACSL3. In the signature model, 
ATP5G3, PGD, ACSL3, CISD1, and ALOX12B were 
unfavorable genes for LUAD prognosis, while other 
genes showed a protective effect. ATP5G3 was reported 
to be involved in diverse processes in human cancer 
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cells and suppressed erastin-induced ferroptosis upon  
knockdown (33). PGD is involved in the pentose phosphate 
pathway, and its knockdown suppresses elastin-induced 
ferroptosis in the NSCLC cell line Calu-1 (33). ACSL3-
dependent MUFA metabolism is a critical regulator of 
ferroptotic cell death, and ACSL3 activity specifically 
promotes a ferroptosis-resistant cell state (34). CISD1, 
located in the mitochondrial outer membrane, inhibits 
the uptake of iron ions by mitochondria and blocks 
ferroptosis (35,36). Lipoxygenases, including ALOX15 
and ALOX12B, are a family of non-heme iron enzymes 
involved in generating leukotrienes from arachidonic  
acid (31). Several lipoxygenases are engaged in promoting 
ferroptosis in human cells (31). The ALOX15 protein 
is involved in FIN‐ induced ferroptosis in cancer  
cells (37). In addition, the P53-SAT1-ALOX15 pathway 
is also involved in the regulation of ferroptosis (38). 
SAT1 is a transcription target of P53 and a crucial rate-
limiting enzyme of polyamine catabolism. The activation 
of SAT1 induces lipid peroxidation and ferroptosis caused 
by ROS, which is closely related to the expression level of  
ALOX15 (7). PHKG2 positively regulates ferroptosis 
through the modulation of available iron, and PHKG2 
silencing may function as iron chelation. The detailed 
mechanism of PHKG2 in iron metabolism regulation is 
unknown and needs further investigation (39-41). Zhao  
et al. found that PEBP1 is pivotal for dynamic interactions 
between the ferroptosis cell death process and prosurvival 
autophagy. The concurrent activation of autophagy  
protects cells from ferroptosis death and mitochondrial 
DNA release (42). Furthermore, PEBP1 is a vital regulator 
of relevant intracellular signaling pathways, including 
signaling pathways controlled by EGFR, such as MAPK. 
It has been reported that PEBP1 can inhibit metastasis and 
has prognostic value in various solid tumors, including lung 
cancer (43). Recent studies show that NCOA4-mediated 
ferritinophagy modulates susceptibility to ferroptosis 
(44,45). The GLS2 gene is a transcriptional target of 
the tumor suppressor p53, and upregulation of GLS2 
expression contributes to p53-dependent ferroptosis (14). A 
previous comprehensive bioinformatics analysis showed that 
the expression of GLS2 is decreased in lung cancer and is 
associated with a better prognosis (46), which is consistent 
with our research.

Autophagy is the natural, regulated mechanism that 
removes unnecessary or dysfunctional cellular components. 
It allows the orderly degradation and recycling of cellular 
components (47). The original study shows that ferroptosis 

is morphologically, biochemically, and genetically distinct 
from autophagy and other cell death types (48). However, 
more recent studies have demonstrated that the activation 
of ferroptosis is indeed dependent on the induction of 
autophagy (48). In addition, accumulating studies have 
revealed crosstalk between autophagy and ferroptosis 
at the molecular level (23). Autophagy is critical to the 
maintenance of glucose homeostasis and tumor growth in 
lung cancer (49). Numerous studies have demonstrated that 
autophagy is involved in epidermal growth factor receptor 
tyrosine kinase inhibitor (EGFR-TKI)-acquired resistance 
in NSCLC, partially due to the inhibition of the PI3K/
AKT/mTOR signaling pathway (50-54). In this study, 
we found that the risk score correlated with most of the 
autophagy-related genes (62.85%, 308/40), which can be 
used to further measure the connection between the gene 
signature and LUAD and provide potential explanations 
and inspirations for further research and development of 
autophagy-targeted tumor therapy.

GSEA of the HALLMARK collection found that the 
glycolysis, mTORC1, MYC, and G2/M checkpoint gene 
sets were the most enriched in the high-risk group. Altered 
energy metabolism is a biochemical fingerprint of cancer 
cells representing one of the “hallmarks of cancer”. This 
metabolic phenotype is characterized by preferential 
dependence on glycolysis for energy production in an 
oxygen-independent manner (55,56). Mammalian target 
of rapamycin (mTOR) is a key signal node that integrates 
environmental cues to regulate cell survival, proliferation, 
and metabolism and is often deregulated in human  
cancers (57). mTOR kinase works in two functionally 
different complexes whose activity and substrate specificity 
are regulated by complex cofactors; namely, mTORC1 
and mTORC2. The dysregulation of this central signaling 
pathway is related to a variety of human diseases, including 
cancer (57). Recent research in NSCLC cells showed that 
overactivated AKT-mTOR signaling directly increases the 
expression of PD-L1 (58). The MYC oncogene contributes 
to the genesis of many human cancers. Recent insights 
into its expression and function have led to new cancer 
therapeutic opportunities. MYC activation by bromodomain 
proteins could be inhibited by drug-like molecules, resulting 
in tumor inhibition in vivo (59). In addition, MYC is usually 
amplified in lung cancer cells, and MYC transfection can 
enhance the in vitro proliferation ability of human small cell 
lung cancer cells (60). The G2/M checkpoint is activated 
by DNA damage and by incompletely replicated DNA (61). 
This checkpoint prevents chromosome segregation when 
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the chromosome is not intact (61). The signaling pathway 
leading to G2 arrest after DNA damage is frequently 
altered or mutated in human cancer (61,62). Deficient G2/
M checkpoints increase the risk of lung cancer (63). The 
GSEA results detail the methods by which the genes in the 
signature participate in the progression of LUAD, which 
can benefit future targeted therapy research.

Moreover, the CIBERSORT algorithm-based TIC 
analysis revealed that resting mast cells and resting dendritic 
cells have strong prognostic capacity and a pronounced 
correlation with the gene signature, suggesting that the 
infiltration of resting mast cells and resting dendritic cells 
may play a key role in the gene signature prediction ability. 
Mast cells are immune cells that accumulate in tumors and 
their microenvironment during disease progression. They 
play a vital role in the early stages of the innate immune 
response to pathogens. Studies have shown that mast cells 
can trigger different mechanisms, affecting the functional 
homeostasis of the lung (64,65). Imada and colleagues 
showed that patients with LUAD with a higher number 
of mast cells have a worse prognosis than patients with a 
lower number of mast cells (66). Dendritic cells represent a 
heterogeneous group of innate immune cells that infiltrate 
tumors and process and present tumor-derived antigens 
to naïve T cells (67). Dendritic cells play a critical role in 
priming antitumor T cell immunity and thereby represent 
a major therapeutic target for cancer immunotherapy (67). 
Dendritic cells are the key factors providing protective 
immunity against lung tumors, and clinical trials have 
proven that dendritic cell function is reduced in lung cancer 
patients (68). It is evident that the immunoregulatory 
network may play a key role in the immune response’s 
failure to terminate tumors (68). Dendritic cell-based 
immunotherapy has become an important strategy for 
cancer treatment, mainly via the direct activation of 
cytotoxic T cell responses (68). The recent development 
of dendritic cell vaccines has furthered our understanding 
of the vital roles of dendritic cells in the control of tumor 
progression (68). Our research shows that resting mast cells 
and resting dendritic cells can potentially target the gene 
signature in LUAD treatments, suggesting that these cells 
should be given more attention in future research.

This study also has some limitations. The ten-
gene signature came from retrospective data, and more 
prospective data are needed to prove its clinical utility. Due 
to the limited patient clinical characteristics included in 
the TCGA cohort and the other two independent cohorts, 
we could not perform specific clinical subgroup analyses. 

Additionally, there are currently no laboratory data to 
explain and support the relationship between these ten 
genes and the progression of LUAD. Therefore, further 
research is expected to reveal the connection between the 
ten-gene signature and LUAD development.

Conclusions

The present study defined a novel, robust ferroptosis-related 
ten-gene signature for LUAD. The signature was strongly 
associated with the outcome of LUAD and can precisely 
detect the prognostic risk. Additionally, we examined the 
reliability and applicability of the signature by applying it 
to two independent validation cohorts and identified the 
vital roles of resting mast cells and resting dendritic cells in 
the prognostic capacity of the signature, which potentially 
further advances the discovery of treatments for LUAD.
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