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Abstract

Voluntary movements are usually preceded by a slow, negative-going brain signal over motor areas, the so-
called readiness potential (RP). To date, the exact nature and causal role of the RP in movement preparation
have remained heavily debated. Although the RP is influenced by several motorical and cognitive factors, it
has remained unclear whether people can learn to exert mental control over their RP, for example, by deliber-
ately suppressing it. If people were able to initiate spontaneous movements without eliciting an RP, this would
challenge the idea that the RP is a necessary stage of the causal chain leading up to a voluntary movement.
We tested the ability of participants to control the magnitude of their RP in a neurofeedback experiment.
Participants performed self-initiated movements, and after every movement, they were provided with immedi-
ate feedback about the magnitude of their RP. They were asked to find a strategy to perform voluntary move-
ments such that the RPs were as small as possible. We found no evidence that participants were able to to
willfully modulate or suppress their RPs while still eliciting voluntary movements. This suggests that the RP
might be an involuntary component of voluntary action over which people cannot exert conscious control.
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The readiness potential (RP), a brain signal that precedes spontaneous, voluntary movements, has been a
matter of controversial research for several decades. There has been a long debate on the nature of this sig-
nal and the degree to which it undermines the control a person has over their behavior. Thus, assessing the
degree to which people are able to exert control over this brain signal is of vital importance. We addressed
this question in a neurofeedback experiment. Our results show that people are unable to willfully suppress
their RPs, even when explicitly trying to do so. This suggests that the RP is an involuntary and irrevocable
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Introduction

The readiness potential (RP) is a slow scalp negativity
observed over motor areas in the electroencephalogram
(EEG) and can start >1 s before spontaneous, voluntary
movements (Kornhuber and Deecke, 1965; Shibasaki and
Hallett, 2006). One traditional account of the RP is that it
is a causal precursor to voluntary action and that it re-
flects an unconscious decision to act (Libet et al., 19883;
Libet, 1985). While recent studies indeed suggest that the
RP is involved in the formation of conscious intention
(Parés-Pujolras et al., 2019; Schulize-Kraft et al., 2020)
and that it is a signal specific to voluntary action (Travers
et al., 2020), other studies have raised questions about its
role in movement preparation (Schurger et al.,, 2012;
Schmidt et al., 2016; Schurger, 2018) and its role in
human volition has remained unclear (Frith and Haggard,
2018).

The precise causal role of the RP in movement prepara-
tion notwithstanding, it is frequently assumed that it is a
necessary part of the causal chain that allows for volun-
tary action (although this is debated, see Radder and
Meynen, 2012). A related and more specific possibility
could be that the RP is an “involuntary component of vol-
untary action.” That is, that the RP occurs automatically
and irreversibly (i.e., involuntarily) once a person has vol-
untarily decided to move. In contrast, an alternative possi-
bility is that people can exert conscious control over their
RP, for example, by learning to suppress or abolish it
completely, while still being able to elicit spontaneous
movements. This possibility has not yet been tested di-
rectly. One way to test this would be to provide people
with immediate and graded neural feedback about the
size of the RP they just produced and ask them to reduce
it. Such an approach could potentially enable people in a
trial-and-error fashion to learn how to modulate and sup-
press their RPs, as with examples of neurofeedback for
other cognitive processes (Papo, 2019).

We distinguish two principles which could enable peo-
ple to achieve control over their RP. First, the RP has
been shown to be modulated by various attributes of vol-
untary movement, such as its inertial load and force de-
ployment (Becker and Kristeva, 1980; Kristeva et al.,
1990; Slobounov et al., 2004), its complexity (Benecke et
al., 1985; Simonetta et al., 1991; Kitamura et al., 1993), its
purposiveness and selection mode (Praamstra et al.,
1995; Masaki et al., 1998), and by explicit demands on
timing (Bortoletto and Cunnington, 2010; Baker et al.,
2012; Verleger et al., 2016). Further, compared with RPs
observed in classical Libet-style studies (Libet et al.,
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1983), RPs are considerably smaller when spontaneous
movements are executed unconsciously (Keller and
Heckhausen, 1990), and almost absent when movements
are initiated by deliberate, value-based decisions (Maoz
et al., 2019). In all these studies, the modulation of the RP
resulted from an experimental manipulation, that is by in-
structing participants to change specific characteristics of
voluntary movements. However, it seems plausible that,
when provided with trial-by-trial feedback of their RP,
people would be able to identify how changing specific
movement features allows them to modulate their RPs.

Second, studies have investigated the self-regulation of
slow cortical potentials (SCPs), which are polarizations of
EEG that can last up to several seconds (Birbaumer,
1999), and of which RPs are considered a specific type.
Using a training based on visual feedback of SCP shifts
and operant learning principles (Elbert et al., 1980;
Rockstroh et al., 1984), people can learn to self-regulate
their SCPs, which has been used in communication sys-
tems for paralyzed patients (Kibler et al., 1999, 2001;
Neumann et al., 2004). The mechanisms that allow such
self-regulation are not well understood but are assumed
to be based on a redistribution of attentional resources
(Birbaumer, 1999). This learning of self-regulation could in
principle be employed by participants when provided with
a trial-by-trial feedback of RP magnitude.

Here, we tested the possibility of a voluntary suppres-
sion of RPs in a neurofeedback experiment. Our core re-
search question was whether people could suppress RPs
by purely mental efforts, and not by changing physical
movement characteristics that are known to modulate
RPs. Participants performed self-paced pedal presses in
single trials. After each pedal press, we used a machine
learning approach to derive a score that reflected the size
of the RP that had just been produced and that was
shown to participants as feedback. Participants were
challenged to find a mental strategy to perform move-
ments such that the scores (and therefore their RPs) were
as small as possible.

Materials and Methods

Participants

Based on the average sample size of previous studies
(Schurger et al.,, 2012; Parés-Pujolras et al., 2019;
Schultze-Kraft et al., 2020), we aimed for a minimum sam-
ple size of 15 participants. Considering that some would
have to be excluded, we tested a total of 22 participants.
Following our exclusion criteria (see section “Data selec-
tion”), 19 participants were included in the final sample
(11 female, mean age 26.9, SD 5.7 years). The experiment
was approved by the local ethics board and was con-
ducted in accordance with the Declaration of Helsinki. All
participants gave their informed oral and written consent,
and were paid €10 per hour.

Experimental setup

Participants were seated in a chair facing a computer
screen at a distance of ~1 m. They were asked to place
their hands in their lap and to position their right foot to
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Figure 1. Experiment paradigm. In both the preparatory and the feedback stage, trial start was signaled by a white circle appearing
on the screen. When a pedal press was executed, the circle turned red for 1 s. In the preparatory stage, the trial ended and a fixa-
tion cross was shown for an intertrial period of 3 s. In the feedback stage, before the trial ended a number was shown on the screen

for 1.5 s, after which the fixation cross was shown.

the right of a 10 x 20cm floor-mounted switch pedal
(Marquardt Mechatronik GmbH). Throughout the experi-
ment, EEG was recorded at 1 kHz with a 64-electrode Ag/
AgCl cap (EasyCap, Brain Products GmbH) mounted ac-
cording to the 10-20 system, referenced to FCz and re-
referenced offline to a common average. EEG was re-
corded from the following 51 electrodes: AF7, AF3, Fpz,
AF4, AF8, FT7, F5, F3, F1, Fz, F2, F4, F6, FT8, FC5, FC3,
FC1, FC2, FC4, FCe6, C5, C3, C1, Cz, C2, C4, C6, CP5,
CP3, CP1, CPz, CP2, CP4, CPS6, TP7, P5, P3, P1, Pz, P2,
P4, P6, TP8, PO3, PO1, POz, PO2, PO2, O1, Oz, 02. In
order to obtain the earliest measure of movement onset,
3D acceleration of the right leg was recorded with an ac-
celerometer (Brain Products GmbH) that was attached
with an elastic band to the right calf. The amplified signal
(analog filters: 0.1, 250Hz) was converted to digital
(BrainAmp MR Plus and BrainAmp ExG, Brain Products
GmbH), saved for offline analysis, and simultaneously
processed online by the Berlin Brain-Computer Interface
toolbox (BBCI; https://github.com/bbci/bbci_public). The
Pythonic Feedback Framework (Venthur et al., 2010) was
used to generate visual feedback.

Experimental design

The experiment consisted of two stages (Fig. 1), a pre-
paratory stage, and a feedback stage. The preparatory
stage was performed to obtain data for training a classifier
in preparation for the subsequent feedback stage. During
the preparatory stage participants performed a simple
self-paced movement task. The start of a trial was
signaled by a white circle appearing on the screen.
Participants were instructed to wait for roughly 2 s, after
which they could press the pedal at any time. In accord-
ance with standard definitions of the RP they were asked
to avoid preplanning the movement, avoid any obvious
rhythm, and to press when they felt the spontaneous urge
to move (Kornhuber and Deecke, 1965; Libet et al., 1983).

March/April 2021, 8(2) ENEURO.0425-20.2020

When the pedal was pressed the white circle turned red
for 1 s, after which it disappeared and was replaced by a
fixation cross. This constituted the end of a trial. The fixa-
tion cross remained onscreen for a 3-s intertrial period.
Each participant performed a total of 100 trials in the pre-
paratory stage, with the possibility of taking a break after
each 25 trials.

During the second part of the experiment, the feedback
stage, participants again performed self-paced pedal
presses in single trials, as during the preparatory stage.
However, after the participants had moved, an integer
number was displayed on the screen for 1.5 s.
Participants were informed that “this number reflects a
brain signal recorded when you decided to press the
pedal. Larger numbers mean large signals, small numbers
mean small signals.” They were given the additional task
to develop strategies to achieve preferably low numbers.
Participants were (1) instructed to move spontaneously
and to not execute abnormal (e.g., very slow, interrupted)
movements, but were otherwise free to find a strategy to
achieve the goal, (2) informed that, based on noisy meas-
urements, scores might greatly vary from trial to trial and
that they might thus need many trials to realize if a strat-
egy works or not, and (3) instructed to keep using a strat-
egy to further lower the scores if they happen to find one
that works. Participants performed 300 trials during the
feedback stage, with the possibility of taking a break after
each 25 trials.

Training of classifiers from preparatory stage data
Before the feedback stage, we performed three con-
secutive analyses on the data recorded during the prepar-
atory stage: (1) we trained an accelerometer classifier that
detected physical movement onset times in real time from
accelerometer data, (2) we selected the most informative
EEG channels, and (3) we trained a real-time EEG classi-
fier. Both the accelerometer and EEG classifiers were
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then used during the feedback stage to assess the move-
ment and the RP produced in each trial and to derive a
score in real time that was shown to participants as feed-
back at the end of the trial.

Detection of movement onsets from accelerometer

The accelerometer device attached to the right calf re-
corded acceleration in the direction of three orthogonal
space axes. We determined the time of movement onset
in each trial with a variance-based approach. We trained a
linear classifier on log-variance features extracted from
two time windows: (1) a time window from —200 to O ms,
time-locked to pedal press (“movement” class), and (2) a
time window from 300 to 500 ms, time-locked to trial start
(“idle” class). The former time window was expected to
contain the acceleration of the foot during the movement,
and thus have a large variance, while in the latter the ac-
celeration was expected to be at baseline during the in-
structed self-paced waiting time (WT) of 2 s. In order to
determine the movement onsets of each trial, a classifier
was trained on the movement and idle time windows of
99 trials, and then applied with a sliding window on the re-
maining trial. The analysis worked backward from the
physical completion of the pedal press, looking for the
last time window preceding the pedal press where there
was no evidence for movement. For this, a first window
was time-locked to the pedal press and then it was sam-
ple-wise shifted back in time until the classifier output in-
dicated being in the idle class. The time of this last idle
window before movement was registered as the time of
movement onset. This procedure was applied to each of
the 100 trials per participant in a leave-one-out scheme.
Trials with movement onsets times 3 SDs below or above
the individual mean were excluded from further analysis.
Finally, a classifier (hereafter referred to as “accelerometer
classifier”) was trained on the accelerometer data from all
remaining trials and subsequently used during the feed-
back stage for real-time detection of movement onset
(see section “Real-time feedback”).

EEG channel selection

We preselected a subset of channels that would be
used for the assessment of RP magnitude during the
feedback stage. This selection was done using the inde-
pendent data recorded during the preparatory stage. By
selecting channels near the vertex, we focused on chan-
nels where the RP is assumed to predominate, and further
aimed to minimize the impact of movement or eye arti-
facts that predominantly occur at peripheral electrodes.
For each of the selected trials of the preparatory stage,
we defined two EEG segments: (1) a 1000-ms-long seg-
ment time-locked to and preceding movement onset
(“movement onset” class), and (2) a 1000-ms-long seg-
ment time-locked to and preceding trial start (“trial start”
class). The former was expected to contain an RP-typical
negativation of EEG signals at certain channels, while the
latter did not contain RPs. For each segment, we sub-
tracted the average signal in the last 200 ms of the seg-
ment from the average signal in the first 200 ms of the
segment. For each segment, this value thus represented
how much the signal had changed in the 1000ms
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preceding either movement onset, or trial start, respec-
tively. For each EEG-channel individually, we then per-
formed two one-sided t tests to test (1) if the signal
changes throughout the segment in the movement onset
class were smaller than zero (to reflect the negative-going
RP), and (2) if the signal in the movement onset class was
smaller than that in the trial start class (to account for po-
tential negative-going signal drifts before trial start cues).
The criterion for selecting a channel was then that the null
hypothesis of both these tests on the preparatory data
could be rejected at an « level of 0.05. The number of se-
lected channels thus varied between participants.
Channel Cz was selected for all 22 participants, reflecting
the fact that RPs preceding foot movements are typically
most distinct over that channel (Brunia et al., 1985;
Schultze-Kraft et al., 2016). Channels further away from
Cz were selected with less frequency. On average, 10
(SEM =1) channels were selected per participant.

Training of EEG classifier

In order to extract RP-related spatiotemporal features
from the EEG, we performed the following analysis,
using data from the preparatory stage: for each trial and
each selected channel, we defined two EEG segments:
(1) a 1000-ms-long segment time-locked to and pre-
ceding movement onset (movement onset class), and
(2) a 1000-ms-long segment time-locked to and pre-
ceding trial start (trial start class). These segments were
first baseline corrected in the interval —1000 to
—900 ms and then downsampled by averaging the data
in consecutive 100-ms intervals, thus obtaining 10 tem-
poral features per segment and channel. Finally, these
features were concatenated across all selected chan-
nels to obtain a spatiotemporal feature vector per seg-
ment. In order to derive an estimate of the distribution
of classifier outputs for EEG segments containing RPs,
we performed the following analysis: a regularized line-
ar discriminant analysis (LDA) classifier with automatic
shrinkage (Blankertz et al., 2011) was trained on the
movement onset and trial start segments of all but one
trial in the preparatory data, and then applied to the
movement onset segment of the left out trial. This pro-
cedure was applied to each trial in a leave-one-out
scheme, resulting in one classifier output value per sin-
gle-trial RP. The mean ug and SD o of the resulting dis-
tribution were calculated. These values were used
during the feedback stage for transforming the EEG
classifier outputs into a feedback score. Finally, the
same classifier (hereafter referred to as “EEG classifier”)
was trained on all trials and subsequently used during
the feedback stage (see section “Real-time feedback?).

Real-time feedback

During the feedback stage, every 20 ms both previously
trained classifiers were applied to the real-time data ac-
quired at that moment. That is, the accelerometer data
acquired in the last 200 ms was subjected to the acceler-
ometer classifier, and the EEG data acquired in the last
1000 ms was subjected to the EEG classifier. This yielded
one output value per classifier at each sample point. The
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logic was as follows. First, we wait until the button is
pressed. Then we use the accelerometer classifier to look
back in time from the button press and identify the time of
movement onset, defined as the classifier switching from
idle to movement class. Then the EEG classifier output
value at the time of this movement onset was identified.
Finally, to be easily interpreted by the participants, this
value x was transformed to a score as following:

score = ((X — )/ 7o) - 15+50.

That is, after being normalized by the parameters ob-
tained from the classifier outputs in the preparatory stage,
the output was transformed such that an average value
would result in a score of 50, and a value being 1 SD
above or below the mean would result in a score of 65 or
35, respectively. The resulting value was rounded to an in-
teger and then showed to the participant as the feedback
score after the pedal press.

Questionnaire

After finishing the feedback stage, participants were
asked to fill out a questionnaire, which consisted of four
questions: (1) “Overall, how much did you feel you could
influence the scores shown on screen? (1 —notatall,5-a
lot)”; (2) “How hard/easy was it to find a strategy that had
an effect on the scores? (1 — very hard, 5 — very easy)”; (3)
“Please use the table on the back of this sheet to write
down your experience on the strategy/strategies that you
used to achieve lower scores. On the left, please describe
the strategy you used. On the right, please rate the suc-
cess of the strategy and comment on anything that you
find worth mentioning”; and (4) “Did you have the feeling
that one or more of the strategies work better over time,
as if they were trainable? If so, which ones? (Please speci-
fy in the table)”.

Data selection
Before analysis, we performed a data selection ap-
proach based on two criteria.

Accuracy of real-time movement onsets

We measured RPs in real time by time-locking the EEG
to the time of movement onset, not the time of the pedal
press. As outlined in section “Detection of movement on-
sets from accelerometer”, our definition of movement
onset uses the accelerometer classifier and looks back-
wards from the button press and identifies the latest time
point before pedal press that is classified as idle.
However, participants might not always perform smooth
and continuous movements but instead perform multi-
phasic movements where they briefly pause or move
slowly in between. In those cases, the accelerometer
classifier at times failed to detect the true time of move-
ment onset. Therefore, we had to ensure that movements
onsets were not simply a later stage of a multiphasic
movement with the participant having initiated the
movement much earlier. Thus, we additionally required
that there was no sign of movement in the phase before
the detected movement onset. We excluded trials
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based on the following criterion: from trials in the pre-
paratory stage, we defined the baseline variance of the
accelerometer signals during rest. A feedback stage
trial was then excluded if the accelerometer signal var-
iance in the interval from —1000 to 0 ms before the real-
time assigned movement onset was three SD above the
baseline, thereby excluding on average 62 (SEM=15)
trials per participant.

Premature movement executions

We also focused on those trials where participants ad-
hered to the instruction to wait for roughly 2 s after trial
onset before deciding to press the pedal. This was to en-
sure that the time window used to extract RP features
from the EEG (a 1000-ms window time-locked to and pre-
ceding movement onset) did not fall into the pretrial start
period. If participants did not follow this instruction, the
extracted EEG features in that trial would be contami-
nated by the presentation of the trial start cue. Thus, we
excluded trials where the delay between trial start and
movement onset was <1000 ms, excluding on average 7
(SEM =5) trials per participant.

The total number of trials excluded by these two criteria
varied considerably across participants. Three patrtici-
pants with >50% excluded trials were excluded from all
further analysis. The final sample thus included 19 partici-
pants, with an average of 255 (SEM =9) trials.

Statistical analysis

Four explanatory variables were defined to examine the
ability of participants to alter their RPs. One variable was
trial number (TN), which was the key focus in this study: if
participants were successful in gradually finding and
training a strategy to lower their RP feedback scores dur-
ing the feedback stage, this would be reflected in a de-
crease of RP feedback scores as a function of TN. In
addition, three additional measurements that characterize
how participants generated the movement in each trial
were defined as explanatory variables, despite not being
the key focus here: WT (time from trial start to movement
onset), movement duration (MD; time from movement
onset to pedal press), and peak acceleration (PA; maxi-
mum acceleration measured between movement onset
and pedal press). All four variables were z-transformed for
each participant individually.

To test for an effect of the four variables on the RP, for
each participant individually a linear regression was fitted
on the trial-wise feedback scores (i.e., the linearly trans-
formed EEG classifier outputs), using TN, WT, MD, PA,
and a constant regressor as predictors. This yielded one
estimated regression coefficient for each participant and
each variable, on which we then performed one-sample t
tests as a second-level analysis. Our main variable of in-
terest was TN: a gradual decrease of feedback scores in
the course of the feedback stage would be reflected in a
negative coefficient for the variable TN. Thus, a one-sided
t test was used to test whether the estimates were smaller
than zero. For the movement characteristic variables WT,
MD, and PA, we had no specific assumption about the di-
rection of the effect. Thus, for each of these variables, a
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Figure 2. Waveforms and topographies of RPs for different
feedback levels. For each participant, trials were grouped into
five quantiles depending on the feedback score that was calcu-
lated in real time, color coded in all panels from low (light) to
high (dark). The left shows the grand average waveforms of RPs
at channel Cz for the five quintiles, baseline corrected in the in-
terval [-1000,—900] ms. SE is shown as a shaded area. The
right shows the corresponding scalp topographies of the aver-
age voltage in the interval [-100,0] ms for the five quintiles.

two-sided t test was performed. Finally, given the ab-
sence of an effect for all four variables (see Results), we
validated the evidence for this absence using Bayesian t
tests, implemented in the open-source project JASP
(Love et al., 2019). The prior used for the t tests is de-
scribed by a Cauchy distribution centered around zero
and with a scale parameter of r = \/§/2 ~ 0.707, as sug-
gested in Morey and Rouder (2011). Bayesian hypothesis
testing aims to quantify the relative plausibility of the null
and alternative hypotheses, and the Bayes factor (BF) ob-
tained by a Bayesian t test is a continuous measure of evi-
dence for either hypothesis (Keysers et al., 2020).

Code accessibility

Analyses for this study were implemented in MATLAB,
version R2016b (The MathWorks Inc.), and run on a com-
puter using Intel core-i7 CPUs running the Ubuntu Linux
operating system version 16.04. Analysis code is available
by request from the authors.

Results

Validity of feedback scores

We first verified that the feedback scores presented to
participants indeed reflected the size of the RP (as would
be expected by our method for defining feedback). Figure
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2 shows average RPs for the five different quintiles of feed-
back scores (low to high). RPs with high scores had early
onsets and high amplitudes, whereas RPs with low scores
had late onsets and small amplitudes. While RPs at all score
levels had their largest amplitudes at the vertex (channel
Cz), they were spatially less pronounced in more distant
electrodes at lower scores. The correlation between feed-
back score and RP amplitude was confirmed with a mixed-
effects regression (8 = —1.434, p <0.001). Thus, on aver-
age, a decrease in 1.4 units of feedback score was equiva-
lent to a 1-uV decrease in RP amplitude.

Manipulation of scores by participants

We examined whether participants were successful in
finding a strategy to execute movements with lower
scores. If they were, this should be reflected in a gradual
decrease of scores over the course of the 300 trials. A vis-
ual inspection of scores as a function of TN showed no in-
dication of such decrease, and the shape RP waveform
did not change over time (Fig. 3). A one-sided t test on the
regression coefficient estimates obtained for each partici-
pant showed that they were not smaller than zero (tg) =
0.103, p=0.541), and the BF,. = 4.539 indicates that the
data are 4.5 times more likely under the null hypothesis
which provides moderate evidence for absence (Jeffreys,
1961) of an effect of TN. The lack of a negative (linear)
trend of feedback scores during the 300 trials of the feed-
back stage suggests that participants were not success-
ful in finding a strategy to willfully reduce their RPs.

Next, we examined whether the RP was modulated by
either of the three movement characteristics WT, MD, and
PA. A visual comparison of RPs averaged according to a
median split of the three measures of movement charac-
teristics showed only minor differences (Fig. 4), as com-
pared with the inherent variability of RP waveforms (Fig.
2). There is an apparent small difference in early time peri-
ods between short and long WTs (Fig. 4A) that is not de-
tected as significant in our regression analysis. Our data
do not allow us to tell whether this is a spurious effect be-
cause any testing of this time period would be post hoc.
Two-sided t tests on the regression coefficient estimates
obtained for each participant showed that they were not
significantly different from zero (WT: tqyg = —1.121,
p=0277, MD: t(18) = 70373, p=0713, PA: t(18) = 1114,
p=0.279). BFs for all three variables (WT: BFq1 = 2.432;
MD: BFg1 = 3.955; PA: BFyq = 2.448) furthermore show
that the data are more likely under the null hypothesis and
indicate a moderate evidence for absence of an effect.
Thus, these results suggest the absence of a relationship
between RPs and the range of movement parameter vari-
ation observed in this study. Please note that the effects
of these variables are not of interest for our core research
question because they are (1) not used by the participants
to improve their scores and (2) reflect physical changes in
the movements.

Self-assessment of task
We used a questionnaire after the feedback stage to as-
sess participants’ experiences and strategies (Fig. 5).
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Figure 3. Change of feedback scores and RP waveform in the course of the feedback stage. A, Gray dots show single-trial feed-
back scores, pooled across all participants, as a function of TN. Black circles and vertical lines show averages of individual partici-
pants and population medians, respectively, both calculated over consecutive, non-overlapping bins of 25 trials. B, Grand average
RPs in channel Cz, computed for the first (blue) and the second (red) half of trials, respectively. SE is shown as a shaded area.

Baseline correction was in the interval —1000 to —900.

When asked to rate how much they felt they could influ-
ence scores, the most frequent rating was 3 (“average”).
When asked to rate how difficult it was to find a strategy
that had an effect on the scores, the most frequent ratings
were 1 and 2 (“very hard” and “rather hard”). Participants
were also asked to describe in written form the used strat-
egies and whether they were successful. Among the strat-
egies reported as “successful” or “partly successful,”
participants named strategies involving attention/relaxa-
tion (11), changing the physical attributes of the move-
ment such as speed or force (5), changing WT (4), and
involving emotion (3). For detailed reports of participants’
answers, please see the Extended Data Figure 1-1.

Discussion

Can people learn to suppress their RP? We tested this
possibility in a neurofeedback experiment. Participants
performed self-paced pedal presses in single trials, and
after each pedal press, they were provided with a feed-
back score that reflected the magnitude of the RP preced-
ing that movement.

To extract the scores from RPs, we employed a ma-
chine learning approach: we used data acquired during a
preparatory stage to train a classifier to distinguish EEG
segments preceding movements from the idle period be-
fore onset of the trial. By extracting spatiotemporal fea-
tures from the EEG, the classifier learned both the spatial
distribution of the RP across channels, and the character-
istics of its waveform. Thus, when the classifier was ap-
plied to an EEG segment preceding a movement onset
during the feedback stage, the resulting classifier output,
and thereby the feedback score, was a continuous indica-
tor of the degree to which an RP was present in that seg-
ment (Fig. 2).

Participants were challenged to find a way to perform
self-paced movements with small RPs, and were in-
structed to keep using and extending any potentially ef-
fective strategies. If they were successful, this would be

March/April 2021, 8(2) ENEURO.0425-20.2020

reflected in a gradual decrease of feedback scores in the
course of the 300 trials of the feedback stage. However,
we found no evidence for such a decrease (Fig. 3), sug-
gesting that participants were not able to find or train a
successful strategy.

This finding does not rule out the possibility that partici-
pants were able to occasionally modulate their RPs.
Possibly some weaker potential effects of their strategies
went unnoticed and were thus not further explored. One
way to test this is to examine the relationship between
feedback scores and the movement characteristics that
participants were able to modulate and that we could
measure in every trial: how long participants waited from
trial start until initiating the movement (WT), how fast they
executed the movement (MD), and how much force they
applied to the movement, as reflected by the PA during
movement execution. Although WT slightly modulated the
shape of the RP (Fig. 4A), we found no evidence for an ef-
fect of either of the three movement parameters on the
feedback score.

The failure to deliberately suppress the RP does not re-
flect a fundamental impossibility that small RPs occur.
Our data clearly show that many RPs recorded during the
feedback stage were remarkably small in size: one out of
five movements were preceded by RPs with very late on-
sets of only a few 100 ms, had amplitudes >50% smaller
as compared with the average, and a substantially more
confined spatial distribution (Fig. 2, light color code).
These small RPs occurred with a fairly constant rate
throughout the feedback stage (Fig. 3). We cannot fully
exclude the possibility that the small amplitude of these
RPs was somewhat influenced by mental strategies; how-
ever, if so, then participants failed to notice or systemati-
cally exploit the effects of these strategies.

When asked how difficult it was to find a successful
strategy, most participants (14 out of 19) reported it was
hard or very hard (Fig. 5). This self-assessment is in agree-
ment with our finding that scores did not decrease over
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Figure 4. Modulation of RPs by movement characteristics (channel Cz). We checked whether basic spontaneous movement charac-
teristics included in the model as effects of no interest modulated the RP waveforms (as reported in previous literature). Top,
Boxplots show, for each participant individually, the distribution of WT (A), MD (B), and PA (C) of movements executed. Bottom, For
each participant individually, two average RPs were generated each using half of the trials (according to a median split of the corre-
sponding measure, indicated in the color coded regions of the boxplots). The curves show grand averages across participants. Blue
and red traces show the average RP for the shorter and longer half of WT (A), for the faster and slower half of movements (B), and
for the smaller and larger half of PAs (C), respectively. SE is shown as a shaded area. Baseline correction was in the interval —1000
to —900. Gray bars indicate in which consecutive, non-overlapping 100-ms windows a paired t test showed a significant (p < 0.05)
difference of RP averages. The small differences in the waveform in A did not affect the EEG classifier (and therefore the feedback

scores), which takes into account the RP waveform across all selected channels.

the course of the feedback stage. Interestingly, there ap-
pears to be some kind of “illusion of control”: when asked
to rate their general ability to influence scores, partici-
pants’ ratings peaked at the midpoint of the scale, reflect-
ing a “moderate” perceived ability to influence scores.
In the absence of true control over RP scores this could
suggest alternative interpretations. Possibly participants
were biased to remember more of those trials in which an
intended strategy happened to coincide with a purely ran-
dom low score, and less those in which the effect was
contrary (Thompson et al., 1998). Alternatively, people
often tend to choose scores in the middle of Likert scales
(which is known as the central tendency bias), particularly
when they are unsure about their answer (Nadler et al.,
2015). Thus, the predominance of central ratings in this
question could be interpreted as participants meaning “I

March/April 2021, 8(2) ENEURO.0425-20.2020

don’t know,” rather than as reporting a perceived ability to
influence scores.

Finally, it is worth noting that we cannot exclude the
possibility that participants were effectively able to
slightly modulate their RPs, for instance by employing
strategies based on attention which we did not measure
and therefore could not test. It has been shown that
RPs are smaller when spontaneous movements are ini-
tiated unconsciously, that is without attention (Keller and
Heckhausen, 1990; Takashima et al., 2018; Houdayer et
al., 2020). Furthermore, Birbaumer (1999) suggested that
learning the self-regulation of SCPs is based on a “redis-
tribution of attentional resources.” Interestingly, when we
asked our participants to describe strategies that (partly)
worked, the most frequently reported strategy involved at-
tention (Extended Data Fig. 1-1). However, even if
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participants were effectively able to slightly modulate their
RPs by employing strategies based on attention, this mod-
ulation effect was too small for participants to train it or to
sustain it over longer periods. This is possibly because of
the inherent contradictoriness of the intent to attentively
(and constantly) shift attention away from a task.

At first sight, our data seem to differ from previous find-
ings that paralyzed patients can learn to self-regulate their
SCPs by means of real-time visual feedback (Kibler et al.,
1999, 2001; Neumann et al., 2004). This raises the ques-
tion why participants in our study were not able to use
comparable mechanisms to suppress their RPs. We con-
sider two potential reasons: first and foremost, in those
studies paralyzed patients learn and train the task of SCP
self-regulation in multiple sessions over the course of sev-
eral weeks or months. While such an approach would be
prohibitively expensive for the purposes of this study, it is
conceivable that learning our task might be possible if
participants were to be provided with much more time.
Thus, future research is required to assess whether peo-
ple can learn to exert control over their RPs using longer
training protocols. Second, SCPs investigated in those
studies reflect changes in cortical polarization that occur
spontaneously in the ongoing EEG. In contrast, RPs are
defined as time-locked to the onset of a voluntary move-
ment, and it has been recently debated whether they
occur in the absence of voluntary action (Travers et al.,
2020). Thus, it is possible that the event-related nature of
RPs impedes their conscious self-regulation by the mech-
anisms through which other SCPs are influenced. Finally,
it is worth noting that we deliberately did not provide par-
ticipants with any specific instructions as to how they
could achieve the task of suppressing their RPs. We ab-
stained from doing so because we did not make specific
assumptions about whether or how this task was possi-
ble. Thus, we aimed to test whether a trial-and-error ap-
proach was sufficient for participants to find a successful
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strategy, without introducing a bias on potential strat-
egies. It is however possible that providing specific in-
structions for mental strategies might have facilitated
participants to identify and train a successful strategy.

Our data confirm and expand findings from a recent
study, where stop signals were elicited in real time on de-
tection of RPs while participants were performing self-ini-
tiated movements (Schultze-Kraft et al., 2016). In one
condition, participants were instructed to “move unpre-
dictably” so as to not cause stop signals. However, the
shape of the RP remained unchanged and stop signals
thus continued to be elicited, suggesting that partici-
pants were unsuccessful in reducing or suppressing
their RPs. In that study, to avoid stop signals being trig-
gered by noise in the EEG, they were only elicited if the
magnitude of an RP was above a certain threshold.
Thus, those stop signals can be considered a binary
feedback of the RP, since they were triggered by large
but not by small RPs. In contrast, in the current study,
the feedback of the RP was continuous: in every trial, a
feedback score was shown that directly reflected RP
magnitude on a continuous scale. The trial-by-trial
feedback in this study thus provided considerably more
information about the RP to the participant, compared
with the binary stop signals used in our previous study
(Schultze-Kraft et al., 2016). However, the data of both
studies suggest that the inability of participants to exert
control over their RPs does not depend on the type or
scale of the provided feedback.

Our main finding that participants were not able to con-
sciously suppress or modulate their RPs suggests that
the RP is a signal over which people cannot exert con-
scious control, and thus that it is an “involuntary precursor
signal of voluntary action.” Please note, however, that our
data remain silent as to whether the RP is a causal precur-
sor signal of voluntary action, as has been the traditional
account of the RP (Libet et al., 1983; Libet, 1985).
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Alternative accounts suggest that the RP reflects the
leaky integration of spontaneous fluctuations in a drift-dif-
fusion process (Schurger et al., 2012; Schurger, 2018),
and that spontaneous movements occur when the accu-
mulation of autocorrelated noise reaches a threshold,
with either the output (Schurger et al., 2012) or the input
(Schurger, 2018) of this accumulation giving rise to the
shape of the RP.

The accumulation-to-bound model makes several pre-
dictions relevant for the interpretation of our data. First,
the RP-as-input model (Schurger, 2018) predicts that the
shape of the RP is influenced by the delay between trial
start and movement onset, i.e., the WT. Indeed, visual in-
spection of our data show a slight modulation of RP
waveform in channel Cz by WT (Fig. 4A), compatible with
the report by Schurger (2018; their Fig. 6). Note, however,
that this modulation is not detected as significant in our
regression analysis on the feedback scores, where the BF
supports the absence of an effect. This is possibly be-
cause our EEG classifier was trained in a more robust
fashion on changes in RP across all channels selected in
the training data. Thus, it is unclear whether this effect is
spurious. Second, in the accumulator model framework
people could potentially exert influence over their RPs,
e.g., by modulating parameters such as drift rate or
threshold, as long as these were in turn to change the
shape of the RP. Nonetheless, if this accumulation is nec-
essary for voluntary movements then such movements
would necessarily be preceded by an RP. Our data show
that participants seem unable to affect the amplitude of
the RP, even when explicitly trying to do so.

In sum, we performed a neurofeedback experiment to
test whether people are able to suppress their RP. We
found no evidence for the ability of participants to con-
sciously suppress their RPs. Our findings thus suggest
that the RP is an involuntary precursor signal of voluntary
action over which people cannot exert conscious control.

References

Baker KS, Piriyapunyaporn T, Cunnington R (2012) Neural activity
in readiness for incidental and explicitly timed actions.
Neuropsychologia 50:715-722.

Becker W, Kristeva R (1980) Cerebral potentials prior to various force
deployments. Prog Brain Res 54:189-194.

Benecke R, Dick JPR, Rothwell JC, Day BL, Marsden CD (1985)
Increase of the Bereitschaftspotential in simultaneous and se-
quential movements. Neurosci Lett 62:347-352.

Birbaumer N (1999) Slow cortical potentials: plasticity. Neuroscientist
5:74-78.

Blankertz B, Lemm S, Treder M, Haufe S, Muller K-R (2011) Single-
trial analysis and classification of ERP components — A tutorial.
Neuroimage 56:814-825.

Bortoletto M, Cunnington R (2010) Motor timing and motor sequenc-
ing contribute differently to the preparation for voluntary move-
ment. Neuroimage 49:3338-3348.

Brunia CHM, Voorn FJ, Berger MPF (1985) Movement related slow
potentials. Il. A contrast between finger and foot movements in
left-handed subjects. Electroencephalogr Clin Neurophysiol
60:135-145.

Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (1980)
Biofeedback of slow cortical potentials. I. Electroencephalogr Clin
Neurophysiol 48:293-301.

March/April 2021, 8(2) ENEURO.0425-20.2020

Research Article: New Research 10 of 11

Frith CD, Haggard P (2018) Volition and the brain — revisiting a classic
experimental study. Trends Neurosci 41:405-407.

Houdayer E, Lee S-J, Hallett M (2020) Cerebral preparation of spon-
taneous movements: an EEG study. Clin Neurophysiol 131:2561-
2565.

Jeffreys H (1961) Theory of probability. Oxford: Oxford University
Press.

Keller 1, Heckhausen H (1990) Readiness potentials preceding
spontaneous motor acts: voluntary vs. involuntary control.
Electroencephalogr Clin Neurophysiol 76:351-361.

Keysers C, Gazzola V, Wagenmakers E-J (2020) Using Bayes factor
hypothesis testing in neuroscience to establish evidence of ab-
sence. Nat Neurosci 23:788-799.

Kitamura J, Shibasaki H, Kondo T (1993) A cortical slow potential is
larger before an isolated movement of a single finger than simulta-
neous movement of two fingers. Electroencephalogr Clin
Neurophysiol 86:252-258.

Kristeva R, Cheyne D, Lang W, Lindinger G, Deecke L (1990)
Movement-related potentials accompanying unilateral and bilateral
finger movements with different inertial loads. Electroencephalogr
Clin Neurophysiol 75:410-418.

Kornhuber HH, Deecke L (1965) Hirnpotentialdanderungen bei
Willkirbewegungen und passiven Bewegungen des Menschen:
Bereitschaftspotential und reafferente Potentiale. Pfliigers Arch
284:1-17.

Kubler A, Kotchoubey B, Hinterberger T, Ghanayim N, Perelmouter
J, Schauer M, Fritsch C, Taub E, Birbaumer N (1999) The thought
translation device: a neurophysiological approach to communica-
tion in total motor paralysis. Exp Brain Res 124:223-232.

Klbler A, Neumann N, Kaiser J, Kotchoubey B, Hinterberger T,
Birbaumer NP (2001) Brain-computer communication: self-regula-
tion of slow cortical potentials for verbal communication. Arch
Phys Med Rehabil 82:1533-1539.

Libet B (1985) Unconscious cerebral initiative and the role of con-
scious will in voluntary action. Behav Brain Sci 8:529-539.

Libet B, Gleason CA, Wright EW, Pearl DK (1983) Time of conscious
intention to act in relation to onset of cerebral activity (readiness-
potential). Brain 106:623-642.

Love J, Selker R, Marsman M, Jamil T, Dropmann D, Verhagen J, Ly
A, Gronau QF, Smira M, Epskamp S, Matzke D, Wild A, Knight P,
Rouder JN, Morey RD, Wagenmakers E-J (2019) JASP: graphical
statistical software for common statistical designs. J Stat Soft
88:1-17.

Masaki H, Takasawa N, Yamazaki K (1998) Enhanced negative slope
of the readiness potential preceding a target force production
task. Electroencephalogr Clin Neurophysiol 108:390-397.

Maoz U, Yaffe G, Koch C, Mudrik L (2019) Neural precursors of deci-
sions that matter—an ERP study of deliberate and arbitrary choice.
Elife 8:e39787.

Morey RD, Rouder JN (2011) Bayes factor approaches for testing in-
terval null hypotheses. Psychol Methods 16:406-419.

Nadler JT, Weston R, Voyles EC (2015) Stuck in the middle: the use
and interpretation of mid-points in items on questionnaires. J Gen
Psychol 142:71-89.

Neumann N, Hinterberger T, Kaiser J, Leins U, Birbaumer N, Kibler
A (2004) Automatic processing of self-regulation of slow cortical
potentials: evidence from brain-computer communication in para-
lysed patients. Clin Neurophysiol 115:628-635.

Papo D (2019) Neurofeedback: principles, appraisal, and outstand-
ing issues. Eur J Neurosci 49:1454-14609.

Parés-Pujolras E, Kim Y-W, Im C-H, Haggard P (2019) Latent aware-
ness: early conscious access to motor preparation processes is
linked to the readiness potential. Neuroimage 202:116140.

Praamstra P, Stegeman DF, Horstink MWIM, Brunia CHM, Cools AR
(1995) Movement-related potentials preceding voluntary move-
ment are modulated by the mode of movement selection. Exp
Brain Res 103:429-439.

Radder H, Meynen G (2012) Does the brain “initiate” freely willed
processes? A philosophy of science critique of Libet-type experi-
ments and their interpretation. Theory Psychol 23:3-21.

eNeuro.org


http://dx.doi.org/10.1016/j.neuropsychologia.2011.12.026
https://www.ncbi.nlm.nih.gov/pubmed/22245011
http://dx.doi.org/10.1016/0304-3940(85)90573-7
https://www.ncbi.nlm.nih.gov/pubmed/4094721
http://dx.doi.org/10.1177/107385849900500211
http://dx.doi.org/10.1016/j.neuroimage.2010.06.048
https://www.ncbi.nlm.nih.gov/pubmed/20600976
http://dx.doi.org/10.1016/j.neuroimage.2009.11.048
https://www.ncbi.nlm.nih.gov/pubmed/19945535
http://dx.doi.org/10.1016/0013-4694(85)90020-3
http://dx.doi.org/10.1016/0013-4694(80)90265-5
https://www.ncbi.nlm.nih.gov/pubmed/6153348
http://dx.doi.org/10.1016/j.tins.2018.04.009
https://www.ncbi.nlm.nih.gov/pubmed/29933770
http://dx.doi.org/10.1016/j.clinph.2020.08.002
https://www.ncbi.nlm.nih.gov/pubmed/32927211
http://dx.doi.org/10.1016/0013-4694(90)90036-j
https://www.ncbi.nlm.nih.gov/pubmed/1699728
http://dx.doi.org/10.1038/s41593-020-0660-4
https://www.ncbi.nlm.nih.gov/pubmed/32601411
http://dx.doi.org/10.1016/0013-4694(93)90106-6
https://www.ncbi.nlm.nih.gov/pubmed/7682928
http://dx.doi.org/10.1016/0013-4694(90)90086-y
https://www.ncbi.nlm.nih.gov/pubmed/1692276
http://dx.doi.org/10.1007/BF00412364
http://dx.doi.org/10.1007/s002210050617
https://www.ncbi.nlm.nih.gov/pubmed/9928845
http://dx.doi.org/10.1053/apmr.2001.26621
https://www.ncbi.nlm.nih.gov/pubmed/11689972
http://dx.doi.org/10.1017/S0140525X00044903
http://dx.doi.org/10.1093/brain/106.3.623
http://dx.doi.org/10.1016/S0168-5597(98)00019-7
http://dx.doi.org/10.7554/eLife.39787
http://dx.doi.org/10.1037/a0024377
https://www.ncbi.nlm.nih.gov/pubmed/21787084
http://dx.doi.org/10.1080/00221309.2014.994590
https://www.ncbi.nlm.nih.gov/pubmed/25832738
http://dx.doi.org/10.1016/j.clinph.2003.10.030
https://www.ncbi.nlm.nih.gov/pubmed/15036059
http://dx.doi.org/10.1111/ejn.14312
https://www.ncbi.nlm.nih.gov/pubmed/30570194
http://dx.doi.org/10.1016/j.neuroimage.2019.116140
https://www.ncbi.nlm.nih.gov/pubmed/31473350
http://dx.doi.org/10.1007/BF00241502
http://dx.doi.org/10.1177/0959354312460926

eMeuro

Rockstroh B, Birbaumer N, Elbert T, Lutzenberger W (1984) Operant
control of EEG and event-related and slow brain potentials.
Biofeedback Self Regul 9:139-160.

Schmidt S, Jo HG, Wittmann M, Hinterberger T (2016) ‘Catching the
waves’ — slow cortical potentials as moderator of voluntary action.
Neurosci Biobehav Rev 68:639-650.

Schurger A (2018) Specific relationship between the shape of the
readiness potential, subjective decision time, and waiting time pre-
dicted by an accumulator model with temporally autocorrelated
input noise. eNeuro 5:ENEURO.0302-17.2018.

Schurger A, Sitt JD, Dehaene S (2012) An accumulator model for
spontaneous neural activity prior to self-initiated movement. Proc
Natl Acad Sci USA 109:E2904-E2913.

Schultze-Kraft M, Birman D, Rusconi M, Allefeld C, Gorgen K, Dahne
S, Blankertz B, Haynes JD (2016) The point of no return in vetoing
self-initiated movements. Proc Natl Acad Sci USA 113:1080-
1085.

Schultze-Kraft M, Parés-Pujolras E, Mati¢ K, Haggard P, Haynes JD
(2020) Preparation and execution of voluntary action both contrib-
ute to awareness of intention. Proc R Soc B 287:20192928.

Shibasaki H, Hallett M (2006) What is the Bereitschaftspotential? Clin
Neurophysiol 117:2341-2356.

March/April 2021, 8(2) ENEURO.0425-20.2020

Research Article: New Research 11 of 11

Simonetta M, Clanet M, Rascol O (1991) Bereitschaftspotential in a
simple movement or in a motor sequence starting with the same
simple movement. Electroencephalogr Clin Neurophysiol 81:129-
134.

Slobounov S, Hallett M, Newell KM (2004) Perceived effort in force
production as reflected in motor-related cortical potentials. Clin
Neurophysiol 115:2391-2402.

Takashima S, Cravo AM, Sameshima K, Ramos RT (2018) The effect
of conscious intention to act on the Bereitschaftspotential. Exp
Brain Res 236:2287-2297.

Thompson SC, Armstrong W, Thomas C (1998) lllusions of control,
underestimations, and accuracy: a control heuristic explanation.
Psychol Bull 123:143-161.

Travers E, Khalighinejad N, Schurger A, Haggard P (2020) Do
readiness potentials happen all the time? Neuroimage
206:116286.

Venthur B, Scholler S, Williamson J, Dahne S, Treder MS, Kramarek
MT, Miller K-R, Blankertz B (2010) Pyff — A Pythonic Framework for
Feedback Applications and Stimulus Presentation in Neuroscience.
Front Neurosci 4:179. )

Verleger R, Haake M, Baur A, Smigasiewicz K (2016) Time to move
again: does the Bereitschaftspotential covary with demands on in-
ternal timing? Front Hum Neurosci 10:642.

eNeuro.org


http://dx.doi.org/10.1007/BF00998830
https://www.ncbi.nlm.nih.gov/pubmed/6509107
http://dx.doi.org/10.1016/j.neubiorev.2016.06.023
https://www.ncbi.nlm.nih.gov/pubmed/27328786
http://dx.doi.org/10.1523/ENEURO.0302-17.2018
http://dx.doi.org/10.1073/pnas.1210467109
https://www.ncbi.nlm.nih.gov/pubmed/22869750
http://dx.doi.org/10.1073/pnas.1513569112
https://www.ncbi.nlm.nih.gov/pubmed/26668390
http://dx.doi.org/10.1098/rspb.2019.2928
https://www.ncbi.nlm.nih.gov/pubmed/32208835
http://dx.doi.org/10.1016/j.clinph.2006.04.025
https://www.ncbi.nlm.nih.gov/pubmed/16876476
http://dx.doi.org/10.1016/0168-5597(91)90006-J
http://dx.doi.org/10.1016/j.clinph.2004.05.021
https://www.ncbi.nlm.nih.gov/pubmed/15351382
http://dx.doi.org/10.1007/s00221-018-5302-7
https://www.ncbi.nlm.nih.gov/pubmed/29860629
http://dx.doi.org/10.1037/0033-2909.123.2.143
https://www.ncbi.nlm.nih.gov/pubmed/9522682
http://dx.doi.org/10.1016/j.neuroimage.2019.116286
https://www.ncbi.nlm.nih.gov/pubmed/31629833

	Suppress Me if You Can: Neurofeedback of the Readiness Potential
	Introduction
	Materials and Methods
	Participants
	Experimental setup
	Experimental design
	Training of classifiers from preparatory stage data
	Detection of movement onsets from accelerometer
	EEG channel selection
	Training of EEG classifier

	Real-time feedback
	Questionnaire
	Data selection
	Accuracy of real-time movement onsets
	Premature movement executions

	Statistical analysis
	Code accessibility

	Results
	Validity of feedback scores
	Manipulation of scores by participants
	Self-assessment of task

	Discussion
	References


