
Prognostic implications of immune-related eight-gene
signature in pediatric brain tumors

Yi Wang1* 00 , Chuan Zhou2* 00 , Huan Luo3 00 , Jing Cao4 00 , Chao Ma3 00 00, Lulu Cheng5 00 , and
Yang Yang5 00

1Department of Neonatology and Neonatal Intensive Care, Zhumadian Central Hospital, Zhumadian, China
2Neonatal Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China

3Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin
Institute of Health, Berlin, Germany

4Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
5Digital Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China

Abstract

Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors (PBT)
that may lead to novel therapeutic strategies. Participants of the cohort Pediatric Brain Tumor Atlas: CBTTC (CBTTC cohort),
were randomly divided into training and validation cohorts. In the training cohort, Kaplan-Meier analysis and univariate Cox
regression model were applied to preliminary screening of prognostic genes. The LASSO Cox regression model was
implemented to build a multi-gene signature, which was then validated in the validation and CBTTC cohorts through Kaplan-
Meier, Cox, and receiver operating characteristic curve (ROC) analyses. Also, gene set enrichment analysis (GSEA) and
immune infiltrating analyses were conducted to understand function annotation and the role of the signature in the tumor
microenvironment. An eight-gene signature was built, which was examined by Kaplan-Meier analysis, revealing that a signif-
icant overall survival difference was seen, either in the training or validation cohorts. The eight-gene signature was further
proven to be independent of other clinic-pathologic parameters via the Cox regression analyses. Moreover, ROC analysis
demonstrated that this signature owned a better predictive power of PBT prognosis. Furthermore, GSEA and immune infiltrating
analyses showed that the signature had close interactions with immune-related pathways and was closely related to CD8 Tcells
and monocytes in the tumor environment. Identifying the eight-gene signature (CBX7, JADE2, IGF2BP3, OR2W6P, PRAME,
TICRR, KIF4A, and PIMREG) could accurately identify patients’ prognosis and the signature had close interactions with
the immunodominant tumor environment, which may provide insight into personalized prognosis prediction and new therapies
for PBT patients.
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Introduction

Brain tumors are the most common solid tumor in
pediatrics, accounting for 23.7% of new cancer diagnoses
in children (1), and the second most common pediatric
malignancy after leukemia (2,3). The life-saving treat-
ments these children receive may result in impaired brain
structure and function, leading to long-term major cogni-
tive deficits (1,4–8). Current treatment options include
surgical resection, cranial radiation, and chemotherapy.
Survivors treated with high-load cranial radiation likely
experience cognitive dysfunction, including difficulties
in controlled attention, such as response inhibition and
slower information processing (1,4–8). The distribution,

pathology, molecular characteristics, and treatment strat-
egies for pediatric brain tumors (PBT) have essential
differences compared to those of the adult population (9).

Although the cure rate of PBT has increased in the
past two decades of the 20th century, which was primarily
due to advances in imaging, neurosurgery, and radiation
oncology technologies and the introduction of combined
chemotherapy, unfortunately, the overall survival has
remained static (10). The lack of advances in PBT treat-
ment was hindered by our lack of knowledge about the
molecular pathogenesis of brain tumors (10). Advanced
genomic analysis of the entire spectrum of PBT heralds an
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era in which this defect can be overcome by new technol-
ogies that will help us understand the genome pattern of
PBT (10). Genomic studies have provided insights into
molecular subgroups and oncogenic PBT drivers that may
lead to novel therapeutic strategies (11).

The Gabriella Miller Kids First Data Resource Center
(Kids First DRC; ohttps://kidsfirstdrc.org4) is a new,
collaborative, pediatric research effort to understand the
genetic causes and links between childhood cancer and
structural congenital disabilities. This is a brand-new
public database that has only been launched in recent
years. It is vital that this data is expressly set up for
children’s tumor research, and few researchers have
begun to mine this database.

Here, we conducted a comprehensive mining of the
Kids First database to determine the minimum number of
potentially robust genes that can be used to predict PBT
patients’ prognosis. Importantly, we used the LASSO
algorithm, which can effectively analyze high-dimensional
sequencing data (12). Furthermore, we evaluated the
accuracy of this eight-gene signature and validated it in a
validation cohort. Moreover, gene set enrichment analy-
sis (GSEA) and immune infiltrating analyses were con-
ducted to explore the role of the signature in the tumor
microenvironment.

Material and Methods

Data mining from the Kids First program
The gene expression profiles of PBT from 973 patients

and their clinical and survival data were downloaded from
Kids First Xena Hub (ohttps://kidsfirst.xenahubs.net4)
with the cohort name: Pediatric Brain Tumor Atlas: CBTTC
(CBTTC cohort). The study was conducted following the
Declaration of Helsinki, and the Ethical Committee of
Zhumadian Central Hospital approved the study.

Identification and validation of the prognostic gene
signature

First, all patients in the CBTTC cohort were randomly
divided into training cohort (486 cases, 49.9%) and valida-
tion cohort (487 cases, 50.1%). In the training cohort,
Kaplan-Meier analysis was used to screen the prognostic
genes with a cutoff of P value o10.0E-15 in the log-rank
test. Furthermore, univariate Cox regression analysis was
performed on the training cohort to find prognostic genes
with P values o10.0E-15. The intersected genes identified
in Kaplan-Meier and univariate Cox analyses were then
entered into the LASSO Cox regression model analysis,
which was implemented in the training cohort utilizing R
software (owww.r-project.org4) and the ‘‘glmnet’’ package
(ocran.r-project.org4). Ten-time cross-validations were
applied to detect the best penalty parameter lambda
(12–15). According to the best lambda value, a list of
prognostic genes with coefficients was obtained from the
gene expression and patients’ survival data.

Moreover, each patient’s risk score was calculated
based on the expression level of each prognostic gene
and its corresponding coefficient. Using the median risk
score as the cutoff point, the patients in the training
cohort were distributed into high-risk or low-risk groups.
Kaplan-Meier analysis was applied to evaluate the
survival difference between the two groups. Cox and
ROC analyses were conducted to further assess the
gene signature’s prognostic value in the training cohort.
Furthermore, the prognostic gene signature was validated
in the validation cohort. The same formula was conducted
to compute risk scores like those in the training cohort.
Kaplan-Meier, Cox, and ROC analyses were carried out
as described earlier.

Gene set enrichment analysis
The Hallmark (v7.1) and C7 (v7.1) gene set collections

were downloaded from the Molecular Signatures Data-
base v7.1 download page (https://www.gsea-msigdb.org/
gsea/downloads.jsp). GSEA was performed based on the
downloaded gene set collections using GSEA software
(v4.0.3, https://www.gsea-msigdb.org/). The entire CBTTC
cohort was taken to GSEA to reveal the functions and
pathways in the differentially expressed genes between
high-risk and low-risk groups. Only gene sets with family-
wise error rate (FWER) P values o0.05 were considered
significant.

Correlation of risk score with the proportion of tumor-
infiltrating immune cells (TICs)

The CIBERSORT (16) and MCP-counter (17) methods
were used to estimate all tumor samples’ TIC abundance
distribution in the CBTTC cohort. The correlation was
examined by the Spearman method.

Statistical analysis
All statistical calculations were performed in the R

software. Kaplan-Meier analysis was conducted to deter-
mine the overall survival differences between groups.
Univariate and multivariate Cox proportional hazard regres-
sion analyses were conducted to assess the association
between risk score and overall survival. The ROC analysis
was applied to examine the sensitivity and specificity of
survival prediction using the gene signature risk score.
An area under the ROC curve (AUC) served as a pointer
of prognostic accuracy. The R package ‘‘pROC’’ was
used for ROC analysis, and the ‘‘Delong’’ method was
used to study the significant differences among ROC
curves. In all analyses, a P value o0.05 was considered
statistically significant.

Results

Clinical characteristics
The flowchart of the present research is shown in

Figure 1. A total of 973 cases in the CBTTC cohort were
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randomly distributed to a training cohort (N=486) and a
validation cohort (N=487). The detailed clinical character-
istics and grouping of these patients are summarized in
Table 1.

Construction of prognostic signature from the training
cohort

Ninety-two genes were extracted from the Kaplan-
Meier analysis (Table S1), while 136 genes were identified
as significant in the Cox regression analysis (Table S2).
Taken together, 72 genes in the intersection of the two
results are defined as prognostic genes for subsequent
analyses (Table S3). These prognostic genes were then
subjected to LASSO Cox regression analysis, and regres-
sion coefficients were calculated. The coefficient of each
gene is illustrated in Figure 2A. When 8 genes were
included, the model achieved the best performance
(Figure 2B). These genes and corresponding coefficients
are shown in Table 2.

Prognostic value of the eight-gene signature in the
cohorts

The distribution of risk scores and survival status and
the expression profiles of the eight-gene signature of the
patients in the training cohort were plotted and are shown

in Figure 3A. As shown in the figure, there were more
deaths in the high-risk patient group, and the survival time
was shorter than that of the low-risk patient group. The
heatmap indicates that CBX7 and JADE2 were under-
expressed in high-risk patients, while IGF2BP3, OR2W6P,
PRAME, TICRR, KIF4A, and PIMREG were highly
expressed in high-risk patients. We also verified the
performance of this eight-gene signature in the validation
cohort. As shown in Figure 3B and C, the pattern was
consistent with that in the training cohort. Furthermore, we
examined this eight-gene signature in subtypes in the
CBTTC cohort and the results were similar (Figure S1).

Kaplan-Meier survival analysis showed that patients in
the high-risk group were associated with a poor prognosis
trend in the training cohort (P value o0.0001, Figure 4A).
To confirm the efficacy of the eight-gene signature in pre-
dicting overall survival in PBT patients, it was examined in

Figure 1. Flow chart of the study. The study was carried out in
Pediatric Brain Tumor Atlas (CBTTC) cohort. The training cohort
was used to identify prognostic genes. The LASSO regression
model was used to establish a prognostic signature based on the
prognostic genes. The prognosis analysis was validated in the
validation cohort. LASSO: least absolute shrinkage and selection
operator Cox regression model; ROC: receiver operating char-
acteristic; TICs: tumor-infiltrating immune cells.

Figure 2. Establishment of prognostic gene signature by LASSO
regression analysis. A, LASSO coefficient profiles of the 72
genes in the training cohort. B, Coefficient profile plot was
generated against the log (lambda) sequence. Selection of the
optimal parameter (lambda) in the LASSO model for training
cohort. LASSO: least absolute shrinkage and selection operator
Cox regression model.
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the validation cohort. According to the median risk score,
patients were divided into high-risk and low-risk groups
using the same classification method. Consistent with
previous results, patients in the high-risk group showed
significantly worse overall survival than patients in the
low-risk group (P value o0.0001, Figure 4B). In the entire
CBTTC cohort, which was the sum of the training and
validation cohorts, the eight-gene signature also had
similar predictive ability (P value o0.0001, Figure 4C).
We tested the capacity of each of the eight genes via
Kaplan-Meier analysis and found CBX7 and JADE2
predicted favorable outcomes, while the remaining genes

had poor effects on the prognosis (Figure S2). Moreover,
the subtypes of PBT in the CBTTC cohort were also
examined by Kaplan-Meier analysis, which showed that
the eight-gene signature risk score predicted the survival
of PBT subtypes (Figure S3).

Univariate and multivariate Cox analyses were per-
formed in the training, validation, and CBTTC cohorts,
using the available co-variables including risk score, age,
gender, race, and ethnicity to confirm whether the
prognostic capacity of our eight-gene signature was
independent from the clinic-pathologic characteristics. In
the training cohort, both univariate and multivariate Cox

Table 1. Clinical characteristics of 973 pediatric brain tumor patients involved in the study.

Characteristics CBTTC cohort (N=973) Training cohort (N=486) Validation cohort (N=487)

Age at diagnosis, years

o10 449 (46.14%) 209 (43.00%) 240 (49.28%)

X10 381 (39.16%) 188 (38.69%) 193 (39.63%)

Unknown 143 (14.70%) 89 (18.31%) 54 (11.09%)

Sex

Female 379 (38.95%) 189 (38.89%) 190 (39.01%)

Male 451 (46.35%) 208 (42.80%) 243 (49.90%)

Unknown 143 (14.70%) 89 (18.31%) 54 (11.09%)

Race

American Indian or Alaskan Native 13 (1.34%) 5 (1.03%) 8 (1.64%)

Asian 28 (2.88%) 16 (3.29%) 12 (2.46%)

Black or African American 79 (8.12%) 32 (6.58%) 47 (9.65%)

More than one race 7 (0.71%) 3 (0.62%) 4 (0.82%)

Native Hawaiian or other Pacific Islander 2 (0.20%) 2 (0.41%) 0 (0%)

White 701 (72.05%) 339 (69.76%) 362 (74.34%)

Unknown 143 (14.70%) 89 (18.31%) 54 (11.09%)

Ethnicity

Hispanic or Latino 28 (2.88%) 19 (3.91%) 9 (1.85%)

Not Hispanic or Latino 802 (82.42%) 378 (77.78%) 424 (87.06%)

Unknown 143 (14.70%) 89 (18.31%) 54 (11.09%)

Histological subtype

Ependymoma 93 (9.56%) 44 (9.05%) 49 (10.06%)

Medulloblastoma 120 (12.33%) 57 (11.73%) 63 (12.94%)

Low-grade glioma/astrocytoma 252 (25.90%) 135 (27.78%) 117 (24.02%)

High-grade glioma/astrocytoma 109 (11.20%) 42 (8.64%) 67 (13.76%)

Others 399 (41.01%) 208 (42.80%) 191 (39.22%)

Data are reported as number and percent.

Table 2. Genes in the prognostic gene signatures.

Gene symbol Full name Risk coefficient

CBX7 Chromobox 7 –0.097248966
IGF2BP3 Insulin Like Growth Factor 2 MRNA Binding Protein 3 0.141763903

JADE2 Jade Family PHD Finger 2 –0.144454955
KIF4A Kinesin Family Member 4A 0.041651464

OR2W6P Olfactory Receptor Family 2 Subfamily W Member 6 Pseudogene 0.034386859

PIMREG PICALM Interacting Mitotic Regulator 0.004196815

PRAME Preferentially Expressed Antigen in Melanoma 0.010705036

TICRR TOPBP1 Interacting Checkpoint and Replication Regulator 0.164511862
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regression analyses indicated that the eight-gene signa-
ture was a powerful variable associated with prognosis
(HR=3.399, 95%CI: 2.713–4.258, P value o0.001 and
HR=3.135, 95%CI: 2.458–3.999, P valueo0.001, respec-
tively; Figure 5A). Consistent with that in the training
cohort, the eight-gene signature displayed a similar ability
in the validation and CBTTC cohorts (Figure 5B and C).
These results proved that the eight-gene signature was a
strong and independent variable.

Subsequently, we conducted ROC analyses to assess
how the eight-gene signature would behave in predicting
prognosis. As shown in Figure 6A, the area under the
ROC curve (AUC) of the eight-gene risk score model
performed in the training cohort was 0.808, which was
superior to those of age, gender, race, and ethnicity
(0.492, 0.494, 0.482, and 0.514, respectively). This finding
was also confirmed in the validation cohort (AUC=0.844,
Figure 6B) and CBTTC cohort (AUC= 0.827, Figure 6C).

Gene set enrichment analysis with the eight-gene
signature

Given the negative correlation between the eight-gene
signature risk score and the overall survival of PBT
patients, GSEA was conducted between the high- and
low-risk groups. As displayed in Figure 7A and Table S4,
genes in the high-risk group were mostly enriched in
immune-related functions and pathways. They were
relating to regulatory T cells, macrophages, CD4 T cells,
TGF beta, IL6, and naive B cells. As to the low-risk score
group, the genes were enriched in pathways involved in
macrophages, CD4 T cells, T helper type 2 cells, and
FOXP3+ regulatory T cells, which were also closely
immune-related (Figure 7A and Table S5). For HALL-
MARK collection defined by the Molecular Signatures
Database, multiple immune functional gene sets like HALL
MARK_MITOTIC_SPINDLE, HALLMARK_G2M_CHECK
POINT, and HALLMARK_E2F_TARGETS were significantly

Figure 3. Characteristics of the eight-gene signature. Upper and middle, the distribution of risk score and patient’s survival time for
training (A), validation (B), and Pediatric Brain Tumor Atlas (CBTTC) (C) cohorts. The black dotted line is the median cutoff dividing
patients into low-risk and high-risk groups. Bottom, heatmap of the eight-gene expression profiles for prognostic signature for training,
validation, and CBTTC cohorts.

Figure 4. Kaplan-Meier analyses of the overall survival based on the eight-gene signature. A, Training cohort. B, Validation cohort.
C, Pediatric Brain Tumor Atlas (CBTTC) cohort. The differences between the two curves were determined by the two-side log-rank test.
The number of patients at risk are listed in the middle plot of each cohort.
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enriched in the high-risk group (Figure 7B and Table S6);
whereas only one gene set HALLMARK_ADIPOGEN-
ESIS was enriched in the low-risk group (Figure 7B and
Table S7). These findings indicated that the risk score
was potentially closely related to the status of tumor
microenvironment.

Correlation of risk score with the proportion of TICs
To further confirm the correlation between the risk

score and the immune microenvironment, as shown in
Figure S4 and Figure S5, we used the CIBERSORT
and MCP-counter algorithm to analyze the proportion of
TICs subpopulations and constructed immune cell profiles
in PBT samples. Combining the results of correlation

analysis (Figure 8A) and differential analysis (Figure 8B),
a total of 11 TICs were associated with the eight-gene
signature risk score (Figure 8C). In the result of the MCP-
counter algorithm (Figure 9), a list containing 7 TICs iden-
tified closely with the signature. In summary, by adopting
these methods, CD8 T cells and monocytes were over-
lapped in the two results and seen as critical cells that
affected the eight-gene signature in the tumor environ-
ment of PBT.

Discussion

At present, diagnosis, prognosis, and treatment of
PBT are highly dependent on the histopathological

Figure 5. Forest plot summary of overall survival analyses. Univariate (upper) and multivariate (bottom) analyses based on the eight-
gene signature and clinical covariates in training (A), validation (B), and Pediatric Brain Tumor Atlas (CBTTC) (C) cohorts. The colored
solid squares represent the hazard ratio (HR), and the transverse lines through HR represent 95% confidence intervals (CI). All P values
were calculated using Cox hazards regression analysis.

Figure 6. Receiver operating characteristic (ROC) analysis of the eight-gene signature risk score. ROC analysis of the sensitivity and
specificity of the overall survival prediction by the eight-gene risk score, age, gender, race, and ethnicity in the training (A), validation (B),
and Pediatric Brain Tumor Atlas (CBTTC) (C) cohorts. AUC: area under the ROC curve.
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characteristics of the tumor (3,18). However, more
importantly, given the current development of precision
medicine and genetic research of tumors, in the past
decade, significant changes have taken place in pediatric
neuro-oncology, and exploring optimized tumor biomark-
ers will be the trend of future development (19,20). In this
study, we built a PBT prognostic signature by comprehen-
sively analyzing the Kids First database, designed to
understand the genetic causes and connections of child-
hood cancer and congenital structural disabilities.

After we constructed the eight-gene signature, we
firstly confirmed its capacity to distinguish the survival time
and survival status of patients effectively. As shown in
Figure 3A, the high-risk zone not only counted more
deaths, but also the patients in it presented a shorter
survival time than those in the low-risk zone. Moreover,
the heatmap indicated that each of these eight genes had
a differential expression pattern between the low- and
high-risk groups. Importantly, this eight-gene signature
had the same or similar performance in the validation
cohort (Figure 3B) and the CBTTC cohort (Figure 3C).

In addition, we examined the prognostic value of the
eight-gene signature by Kaplan-Meier analysis in training,
validation, and CBTTC cohorts, finding its predicting ability in
PBT patients significant (Figure 4). Furthermore, univariate
and multivariate analyses were performed in the three
cohorts to confirm whether our eight-gene signature could
be independent from other variables in predicting PBT
overall survival. As plotted in Figure 5, no matter in which
cohort, whether it was univariate or multivariate Cox regres-
sion analysis, the variable of risk score was always statis-
tically significant, and the results confirmed the predictive
ability of the risk score, and its independence.

To further assess the predictive power of this eight-gene
signature, ROC analysis was conducted. In diagnostic
tests, AUC is used to check accuracy and determine the
predictive capacity of biomarkers (21). ROC analysis
indicated that the AUC of the eight-gene signature stayed
above 0.8 in these three cohorts and was superior to age,
gender, race, and ethnicity. These ROC results again
suggested that our signature strengthened the predictive
accuracy of prognosis in PBT.

Figure 7. Gene Set Enrichment Analysis. A, Top ten enriched gene sets annotated by the C7 collection between the high- and low-risk
groups in the CBTTC cohort. B, Enriched gene sets annotated by the HALLMARK collection between the high- and low-risk groups in
the CBTTC cohort. Each line represents one specific gene set with unique color. Up-regulated genes are located at the left, approaching
the origin of the coordinates, and the down-regulated are located at the right of the x-axis. Only gene sets with family-wise error rate
(FWER) P values o0.05 were considered significant.
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Figure 8. Correlation of TICs proportion with the eight-gene signature risk score in the Pediatric Brain Tumor Atlas (CBTTC) cohort
(CIBERSORT method). A, Violin plot showing the ratio differentiation of 22 kinds of immune cells between PBT samples from low- and
high-risk groups to the median risk score. Wilcoxon rank sum test was used to assess for significance. B, The blue line in each plot is the
fitted linear model indicating the proportion tropism of the immune cell with risk score. The shade around the blue line represents the
95% confidence interval. Spearman coefficient was used for the correlation test. C, Venn plot displayed 11 TICs correlated with risk
score co-determined by difference and correlation tests shown in violin and scatter plots, respectively. P value o0.05 was the cutoff.
TIC: tumor-infiltrating immune cell; PBT: pediatric brain tumor.
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Figure 9. Correlation of TICs proportion with the eight-gene signature risk score in the Pediatric Brain Tumor Atlas (CBTTC) cohort
(MCP-counter method). A, The blue line in each plot is the fitted linear model indicating the proportion tropism of the immune cell with
risk score. The shade around the blue line represents the 95% confidence interval. Spearman coefficient was used for the correlation
test. B, Violin plot showing the ratio differentiation of 10 types of immune cells between PBT samples from low- and high-risk groups to
the median risk score. Wilcoxon rank sum test was used to assess for significance. C, Venn plot displays 7 TICs correlated with risk
score co-determined by difference and correlation tests shown in violin and scatter plots, respectively. P value o0.05 was the cutoff.
TIC: tumor-infiltrating immune cell; PBT: pediatric brain tumor.
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Our signature was composed of eight genes, which
are CBX7, JADE2, IGF2BP3, OR2W6P, PRAME, TICRR,
KIF4A, and PIMREG. In the signature model, CBX7
and JADE2 were protective genes, whereas other genes
were unfavorable on the overall survival of PBT patients.
IGF2BP3 is an oncofetal protein that binds RNA,
thereby influencing the fate of target transcripts, and it is
up-expressed in a variety of malignant tumors and represents
a promising cancer biomarker (22). PRAME is a tumor-
associated antigen that was first identified through
analysis of the specificity of tumor-reactive T-cell clones
derived from a patient with metastatic cutaneous mela-
noma (23). Subsequently, it was found that PRAME is not
only expressed in cutaneous melanoma, but also in ocular
melanoma and various non-melanoma cell malignancies
(24). PRAME expression can be detected in 82% of
medulloblastoma samples, regardless of molecular and
histopathological subgroups. The high expression of
PRAME is also related to poor outcomes of patients
with medulloblastoma. Studies have shown that adoptive
immunotherapy that redirects T cells to PRAME antigen
may represent an innovative treatment for medulloblas-
toma (25). TICRR is one of the important replication
initiation factors. The knockout of TICRR significantly
inhibits tumor cell growth, migration, and colony formation
in vitro, and inhibits tumor growth in xenograft models
(26). A recent study demonstrated that TICRR is a major
carcinogen, which can accelerate the proliferation of
cancer cells by promoting the initiation and progression
of DNA replication (27). KIF4A was found to be implicated
in the regulation of chromosome condensation and
segregation during mitotic cell division, which is essential
for eukaryotic cell proliferation (28). KIF4A is aberrantly
expressed in a variety of cancers, and it is overexpressed
in most tumors but also low-expressed in a few tumors,
suggesting distinct functions and mechanisms for different
tumors (29,30). PIMREG plays a key role in regulating cell
proliferation and is induced by mitogens, and its protein
level is related to the cell cycle (31). Jiang et al. found that
PIMREG played a crucial role in the promotion of breast
cancer aggressiveness via constitutive activation of the
NF-kB signaling pathway (32). There are relatively few
studies related to these genes and PBT. However, the
eight-gene signature had a significant role in predicting
and diagnosing PBT in our research. The eight-gene
signature or each of them may indicate specific directions
for future research on PBT.

The findings of the GSEA analysis demonstrated that
the eight-gene signature might potentially participate in the
immune-dominant tumor microenvironment. The analysis
based on CIBERSORT algorithm for the proportion of TICs
showed that half of TICs (11/22) were correlated with the

eight-gene signature risk score in PBT patients, further
supporting that the signature interacted closely with the
tumor environment. Combining the CIBERSORTand MCP-
counter methods, we found CD8 T cells and monocytes
were in a close relationship with the eight-gene signature in
the tumor environment of PBT. Strategies targeting the
tumor microenvironment of pediatric brain cancers have the
potential to improve the efficacy of standard and genome-
based molecular therapeutics and to help resolve many of
the challenges associated with developing new drugs and
running clinical trials for a relatively small PBT population
(33). The specific pathways and TICs revealed in our
analysis have potential for tumor microenvironment targets
in further studies.

Our research also had some limitations. For the study
of PBT, currently available public databases are very
limited. The datasets in GEO and TCGA are not eligible
for validation purposes because of the population’s age
distribution. Our eight-gene signature came from retro-
spective data, and more prospective data is needed for
proving the clinical utility of it. In addition, due to the very
limited clinical characteristics of patients included in the
CBTTC cohort, we could not perform certain clinical
subgroup analyses. Furthermore, there are currently no
wet experimental data explaining the relationship between
these eight genes and their mechanism in PBT samples.
Therefore, more research is needed to clarify the potential
relationship.

In conclusion, our research defined a robust eight-
gene signature in PBT. It was a comprehensive analysis
of the new Kids First database. This signature was related
to PBT’s overall survival and accurately identified the
prognostic risk of patients. Notably, we assessed the
reliability and accuracy of the signature in a validation
cohort. In addition, the functions and immune infiltrating
analyses showed that the signature had close interactions
with CD8 Tcells and monocytes in the tumor environment,
which may advance the development of new therapies for
PBT treatment.
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