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Background: Lung adenocarcinoma (LUAD) is the most common subtype of non-
small cell lung cancer. Ferroptosis is a newly recognized process of cell death, which is
different from other forms of cell death in morphology, biochemistry, and genetics, and
has played a vital role in cancer biology. This study aimed to identify a ferroptosis-related
gene signature associated with LUAD prognosis.

Methods: Dataset TCGA-LUAD which came from the TCGA portal was taken as
the training cohort. GSE72094 and GSE68465 from the GEO database were treated
as validation cohorts. Two hundred fifty-nine ferroptosis-related genes were retrieved
from the FerrDb database. In the training cohort, Kaplan–Meier and univariate Cox
analyses were conducted for preliminary screening of ferroptosis-related genes with
potential prognostic capacity. These genes then entered into the LASSO Cox regression
model, constructing a gene signature. The latter was then evaluated in the training
and validation cohorts via Kaplan–Meier, Cox, and ROC analyses. In addition, the
correlations between risk score and autophagy were examined by Pearson correlation
coefficient. The analyses of GSEA and immune infiltrating were performed for better
studying the function annotation of the gene signature and the character of each kind of
immune cells played in the tumor microenvironment.

Results: A 15-gene signature was found from the training cohort and validated by
Kaplan–Meier and Cox regression analyses, revealing its independent prognosis value in
LUAD. Moreover, the ROC analysis was conducted, confirming a strong predictive ability
that this signature owned for LUAD prognosis. One hundred fifty-one of 222 (68.01%)
autophagy-related genes were discovered significantly correlated with risk scores.
Analyses of GSEA and immune infiltration exhibited in detail the specific pathways that
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associate with the 15-gene signature and identified the crucial roles of resting mast cells
and resting dendritic cells owned in the prognosis of the 15-gene signature.

Conclusion: In this present study, a novel ferroptosis-related 15-gene signature
(RELA, ACSL3, YWHAE, EIF2S1, CISD1, DDIT4, RRM2, PANX1, TLR4, ARNTL, LPIN1,
HERPUD1, NCOA4, PEBP1, and GLS2) was built. It could accurately predict the
prognosis of LUAD and was related to resting mast cells and resting dendritic cells,
which provide potential for the personalized outcome prediction and the development
of new therapies in LUAD population.

Keywords: biomarkers, tumor immunity, prognosis, risk score, gene signature, ferroptosis, lung adenocarcinoma

INTRODUCTION

Lung cancer is the leading cause of death from cancer. In
the United States, there will be approximately 228,820 newly
diagnosed cases and 135,720 deaths in 2020 (Siegel et al., 2020).
Lung cancer mainly consists of two subtypes: non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC
accounts for almost 80% of lung cancer cases and is made up
of two major types, lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (Herbst et al., 2018). LUAD is the
predominant histology, and the rates are still increasing (Siegel
et al., 2020). In recent years, several treatment advances have been
made, especially the advancement of targeted therapy and the
emergence of immunotherapy (Li et al., 2018; Low et al., 2019).
However, these two methods can only benefit a limited number
of subtypes, and the overall survival rate of LUAD is still very
low (Wang et al., 2020). Therefore, further studies on therapeutic
monitoring and prognostic assessment of LUAD are crucial for
clinicians and patients.

Ferroptosis is a novel type of cell death that was discovered
in recent years and is usually accompanied by a large amount
of iron accumulation and lipid peroxidation during the cell
death process (Li et al., 2020). It is characterized by increased
mitochondrial membrane density and cell volume contraction,
which is different from other morphological, biochemical, and
genetically regulated cell deaths (Li et al., 2020; Tao et al.,
2020). Recent research has shown that ferroptosis is closely
associated with the pathophysiological process of many diseases,
such as tumors, neurological disorders, ischemia–reperfusion
injury, kidney injury, and blood diseases (Li et al., 2020). For
the past few years, the induction of ferroptosis has emerged
as a promising therapeutic alternative to trigger cancer cell
death, especially for malignancies that are resistant to traditional
treatments (Hassannia et al., 2019; Liang et al., 2019; Bebber
et al., 2020). Apart from ferroptosis-inducing agents, numerous
genes have also been identified as modulators or markers of
ferroptosis (Stockwell et al., 2017; Bersuker et al., 2019; Doll et al.,
2019; Hassannia et al., 2019; Liu et al., 2020). The fast-growing
studies of ferroptosis in cancer have boosted a perspective for its
usage in cancer therapeutics (Mou et al., 2019). The expression
of FSP1 is correlated with the ferroptosis resistance of lung
cancer cell lines, indicating that the upregulation of FSP1 is a
strategy of ferroptosis escape in lung cancer (Doll et al., 2019).

Additionally, in non-small-cell lung cancer (NSCLC) cell lines,
it was shown that the level of MAPK pathway activity correlates
with sensitivity to ferroptosis induced by cystine deprivation
(Poursaitidis et al., 2017). Interestingly, LSH inhibits ferroptosis
and promotes lung tumorigenesis by affecting metabolic genes
through chromatin modification (Jiang et al., 2017). RNA
sequencing in NSCLC cells showed that SLC7A11, a key gene
associated with ferroptosis through its role in controlling iron
concentrations, can be downregulated by XAV939 (an inhibitor
of NSCLC), as the target genes of lncRNAs, and suppress the
development of NSCLC via ferroptosis-mediated pathways (Yu
et al., 2019). LSH promotes the expression of LINC00336 by
upregulating ELAVL1 through the p53 signaling pathway in lung
cancer (Wang M. et al., 2019; Wu et al., 2020). LINC00336
acts as a crucial inhibitor of ferroptosis in carcinogenesis by
decreasing intracellular levels of iron and lipid ROS through
interacting with ELAVL1 (ELAV-like RNA-binding protein 1),
which has been recognized as a novel regulator of ferroptosis
(Wang M. et al., 2019; Wu et al., 2020). The above evidence
has highlighted the importance of ferroptosis in lung cancer
therapeutics, but the roles of ferroptosis in tumorigenesis and
development remain unclear.

Autophagy is the natural, regulated mechanism of the cell
that removes unnecessary or dysfunctional components. It allows
the orderly degradation and recycling of cellular components
(Mizushima and Komatsu, 2011). The original study shows that
ferroptosis is morphologically, biochemically, and genetically
distinct from autophagy and other types of cell death (Kang and
Tang, 2017). However, recent studies demonstrate that activation
of ferroptosis is indeed dependent on the induction of autophagy
(Kang and Tang, 2017). In addition, accumulating studies have
revealed cross talk between autophagy and ferroptosis at the
molecular level (Zhou et al., 2019).

Currently, several studies were mining prognostic gene
signatures related to ferroptosis in tumors from public databases
(Liang et al., 2020; Liu et al., 2020). Liu confirmed that
the ferroptosis-related 19-gene signature could predict glioma
patient survival (Liu et al., 2020). Liang et al. discovered a novel
ferroptosis-related prognostic gene signature for hepatocellular
carcinoma (Liang et al., 2020). However, there is still no study
to declare whether there is a ferroptosis-related prognostic gene
signature able to predict LUAD outcomes. In order to fill this
blank and widen the potential of diagnosis and therapy of
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LUAD, the present study performed comprehensive analyses
utilizing TCGA and GEO, along with ferroptosis-related genes
identified in previous studies to determine and validate the
minimum number of potentially robust prognostic genes of

LUAD. In addition, we determined the correlations between the
signature and autophagy and studied the characteristics of the
gene signature in the tumor microenvironment through GSEA
and immune infiltration analysis.

FIGURE 1 | Flowchart of the study. LASSO, the least absolute shrinkage and selection operator Cox regression model; ROC, receiver operating characteristic; UM,
uveal melanoma; TICs, tumor-infiltrating immune cells.
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TABLE 1 | Clinical characteristics of patients involved in the study.

Characteristics Training
cohort

(TCGA-LUAD,
500 cases)

Validation
cohort

(GSE72094,
442 cases)

Validation
cohort

(GSE68465,
443 cases)

Age

< 65 219 (43.8%) 115 (26.02%) 214 (48.31%)

> = 65 271 (54.2%) 306 (69.23%) 229 (51.69%)

Unknown 10 (2%) 21 (4.75%) 0

Gender

Female 270 (54%) 240 (54.3%) 220 (49.66%)

Male 230 (46%) 202 (45.7%) 223 (50.34%)

T classification

T1 167 (33.4%) NA 150 (33.86%)

T2 267 (53.4%) NA 251 (56.66%)

T3 45 (9%) NA 28 (6.32%)

T4 18 (3.6%) NA 12 (2.71%)

Unknown 3 (0.6%) NA 2 (0.45%)

N classification

N0 324 (64.8%) NA 299 (67.49%)

N1 94 (18.8%) NA 88 (19.86%)

N2 69 (13.8%) NA 53 (11.96%)

N3 2 (0.4%) NA 0

Unknown 11 (2.2%) NA 3 (0.68%)

M classification

M0 332 (66.4%) NA NA

M1 24 (4.8%) NA NA

Unknown 144 (28.8%) NA NA

Tumor stage

Stage I 268 (53.6%) 265 (59.95%) NA

Stage II 119 (23.8%) 69 (15.61%) NA

Stage III 80 (16%) 63 (14.25%) NA

Stage IV 25 (5%) 17 (3.85%) NA

Unknown 8 (1.6%) 28 (6.33%) NA

Race

White 386 (77.2%) 399 (90.27%) 295 (66.59%)

Black or
African

American

52 (10.4%) 13 (2.94%) 12 (2.71%)

American
Indian or
Alaska
native

1 (0.2%) 0 1 (0.23%)

Asian 7 (1.4%) 3 (0.68%) 6 (1.35%)

Unknown 54 (10.8%) 27 (6.11%) 129 (29.12%)

Ethnicity

Hispanic
or Latino

7 (1.4%) 10 (2.26%) NA

Not
Hispanic
or Latino

381 (76.2%) 402 (90.95%) NA

Unknown 112 (22.4%) 30 (6.79%) NA

Tobacco smoking history

Ever 415 (83%) 335 (75.79%) 300 (67.72%)

Never 71 (14.2%) 33 (7.47%) 49 (11.06%)

Unknown 14 (2.8%) 74 (16.74%) 94 (21.22%)

Number pack years smoked

< 30 115 (23%) NA NA

> = 30 227 (45.4%) NA NA

Unknown 158 (31.6%) NA NA

(Continued)

TABLE 1 | Continued

Characteristics Training
cohort

(TCGA-LUAD,
500 cases)

Validation
cohort

(GSE72094,
442 cases)

Validation
cohort

(GSE68465,
443 cases)

Radiation therapy

Yes 58 (11.6%) NA 65 (14.67%)

No 361 (72.2%) NA 364 (82.17%)

Unknown 81 (16.2%) NA 14 (3.16%)

Chemotherapy

Yes NA NA 89 (20.09%)

No NA NA 341 (76.98%)

Unknown NA NA 13 (2.93%)

Additional pharmaceutical therapy

Yes 61 (12.2%) NA NA

No 68 (13.6%) NA NA

Unknown 371 (74.2%) NA NA

Additional radiation therapy

Yes 61 (12.2%) NA NA

No 71 (14.2%) NA NA

Unknown 368 (73.6%) NA NA

EGFR mutation

Yes 80 (16%) 47 (10.63%) NA

No 191 (38.2%) 395 (89.37%) NA

Unknown 229 (45.8%) 0 NA

KRAS mutation

Yes 23 (4.6%) 154 (34.84%) NA

No 39 (7.8%) 288 (65.16%) NA

Unknown 438 (87.6%) 0 NA

STK11 mutation

Yes NA 68 (15.38%) NA

No NA 374 (84.62%) NA

TP53 mutation

Yes NA 111 (25.11%) NA

No NA 331 (74.89%) NA

EML4-ALK mutation

Yes 34 (6.8%) NA NA

No 207 (41.4%) NA NA

Unknown 259 (51.8%) NA NA

Tumor intermediate dimension

< 1 287 (57.4%) NA NA

> = 1 88 (17.6%) NA NA

Unknown 125 (25%) NA NA

Location in lung parenchyma

Central
lung

62 (12.4%) NA NA

Peripheral
lung

118 (23.6%) NA NA

Unknown 320 (64%) NA NA

Person neoplasm cancer status

With tumor 134 (26.8%) NA NA

Tumor free 243 (48.6%) NA NA

Unknown 123 (24.6%) NA NA

Vital status

Alive 318 (63.6%) 298 (67.42%) 207 (46.73%)

Dead 182 (36.4%) 122 (27.6%) 236 (53.27%)

Unknown 0 22 (4.98%) 0
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MATERIALS AND METHODS

Mining From TCGA and GEO Databases
We selected the TCGA-LUAD dataset as the training cohort and
only included cases that meet the following criteria: (1) gene
expression data is available; (2) survival data is available; (3) and
follow-up time is greater than 0 days. Finally, 500 LUADs were
included, and their gene expression profile, survival data, and
clinical characteristics were downloaded from GDC Xena Hub1.
Besides, datasets of GSE72094 (n = 442) and GSE68465 (n = 443)
were downloaded from the GEO database and taken as validation
cohorts to examine the gene signature we trained.

Ferroptosis-Related Genes
FerrDb2 is the world’s first manually curated database for
regulators and markers of ferroptosis and ferroptosis–disease
associations (Zhou and Bao, 2020). In this database, genes
of drivers, suppressors, and markers of ferroptosis were listed
based on the knowledge of previous studies (Supplementary
Table 1). The unique 259 genes (Supplementary Table 2)
were identified as the ferroptosis-related genes and entered to
the next procedure.

Construction and Validation of the
Prognostic Ferroptosis-Related Gene
Signature in LUAD
Kaplan–Meier and univariate Cox analyses were applied in the
training cohort to determine the association between the gene
expression and patients’ overall survival for potential prognostic
genes, and P-value < 0.05 was considered to be statistically
significant. The genes in the overlapped part of potential
prognostic genes and ferroptosis-related genes were identified
as potential prognostic ferroptosis-related genes, which then
entered into an overall survival-based LASSO Cox regression
model with penalty parameter tuning conducted by 10−fold
cross-validation to detect the best penalty parameter lambda
(Tibshirani, 1997; Sauerbrei et al., 2007; Friedman et al., 2010;
Goeman, 2010). Based on the best lambda value, a list of
prognostic genes with coefficients was harvested. As shown in
the below formula, the risk score of each LUAD case could be
obtained based on the expression level of each prognostic gene
and its corresponding coefficient. In the formula, n, Expi, and
βi indicate the number of hub genes, gene expression level, and
regression coefficient value, respectively.

Risk score =
n∑
i

Expi ∗ βi

In the training cohort, patients were divided into low- and
high-risk groups by using the median risk score as a cutoff point,
and the survival difference of the two groups was measured
by Kaplan–Meier analysis. Also, Cox and ROC analyses were
conducted for further assessing of the gene signature prognostic

1https://gdc.xenahubs.net
2http://www.zhounan.org/ferrdb/index.html

ability. Moreover, in the validation cohorts, the same formula
and statistical methods was adopted to validate the prognostic
capacity of the gene signature.

Relationships Between Gene Signature
and Autophagy in LUAD
To explore the relationship between autophagy and our gene
signature, we identified 222 autophagy-associated genes from
the Human Autophagy Database (HADb3), which contains
an exhaustive, up-to-date list of human autophagy-related
genes (Abdul Rahim et al., 2017) (Supplementary Table 3).
The Pearson correlation coefficient was applied to assess the
correlation between autophagy and gene signature risk score.
In addition, the GEPIA2 online tool4 was applied to plot
survival heatmaps of top 10 correlated genes (Tang et al., 2019).
P-value < 0.05 was considered statistically significant.

Gene-Set Enrichment Analysis (GSEA)
Gene-set enrichment analysis was performed based on Hallmark
(v7.15) gene-set collections using GSEA software (v4.1.06) in the
training cohort to uncover the functions and pathways in the
differentially expressed genes (DEGs) between high- and low-risk
groups. Gene sets with | NES | > 1, NOM p-value < 0.05, and
FDR q-value < 0.25 were considered significant.

Identification of the Relationship
Between Gene Signature and 22
Tumor-Infiltrating Immune Cells (TIC)
The relative proportion of 22 TICs in the training cohort was
calculated using the CIBERSORT algorithm (Thorsson et al.,
2018; Newman et al., 2019). After the quality filtering (P-
value < 0.05), 391 LUADs were selected for the next analysis.
The correlations between 22 kinds of TICs were examined by the
Pearson coefficient.

For identifying the relationship between the 22-TIC
proportion and risk score, an integrated analysis of consisting
of the Spearman coefficient and Wilcoxon rank-sum was
applied. Based on the 22-TIC proportion and survival data, Cox
and Kaplan–Meier analysis were deployed to screen 22 TICs
with prognostic meaning. P-value < 0.05 was a statistically
significant threshold.

Statistical Analysis
The LASSO analysis was conducted applying the “glmnet” R
package. Kaplan–Meier analysis was conducted using “survival”
and “survminer” R packages. Univariate and multivariate Cox
proportional hazard regression analyses were conducted using
“survival” R package. The ROC analysis was applied using
“survivalROC” R package. P-value < 0.05 was a statistically
significant threshold.

3http://www.autophagy.lu/index.html
4http://gepia2.cancer-pku.cn
5https://www.gsea-msigdb.org/gsea/downloads.jsp
6https://www.gsea-msigdb.org/
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TABLE 2 | Twenty-nine ferroptosis-related potential prognostic genes generated from the training cohort.

Gene symbol Description Category Kaplan–Meier
analysis
(P-value)

Univariate Cox regression analysis

HR HR_95L HR_95H P-value

ACSL3 Acyl-CoA synthetase long-chain family member 3 Protein
coding

1.82E-02 1.435 1.157 1.780 1.00E-03

ARNTL Aryl hydrocarbon receptor nuclear translocator like Protein
coding

1.14E-02 0.676 0.492 0.929 1.59E-02

AURKA Aurora kinase A Protein
coding

1.97E-02 1.268 1.103 1.458 8.61E-04

BACH1 BTB domain and CNC homolog 1 Protein
coding

9.67E-03 1.310 1.012 1.696 4.05E-02

CDO1 Cysteine dioxygenase type 1 Protein
coding

4.11E-02 0.713 0.522 0.973 3.30E-02

CISD1 CDGSH iron sulfur domain 1 Protein
coding

2.41E-03 1.403 1.041 1.891 2.59E-02

CISD2 CDGSH iron sulfur domain 2 Protein
coding

1.98E-03 1.372 1.005 1.872 4.64E-02

DDIT4 DNA damage inducible transcript 4 Protein
coding

8.47E-03 1.214 1.072 1.374 2.22E-03

EIF2S1 Eukaryotic translation initiation factor 2 subunit alpha Protein
coding

6.52E-03 1.655 1.219 2.248 1.24E-03

FANCD2 FA complementation group D2 Protein
coding

4.87E-03 1.428 1.095 1.861 8.48E-03

FLT3 Fms-related receptor tyrosine kinase 3 Protein
coding

2.24E-02 0.452 0.247 0.829 1.02E-02

GLS2 Glutaminase 2 Protein
coding

5.27E-03 0.356 0.177 0.718 3.91E-03

HELLS Helicase, lymphoid specific Protein
coding

3.45E-03 1.282 1.025 1.604 2.96E-02

HERPUD1 Homocysteine-inducible ER protein with ubiquitin-like
domain 1

Protein
coding

8.21E-05 0.656 0.523 0.823 2.67E-04

IL33 Interleukin 33 Protein
coding

3.77E-02 0.841 0.740 0.956 8.11E-03

KLHL24 Kelch-like family member 24 Protein
coding

4.06E-02 0.761 0.580 0.998 4.81E-02

LINC00336 Long intergenic non-protein-coding RNA 336 RNA Gene 2.25E-02 0.339 0.120 0.952 4.01E-02

LPIN1 Lipin 1 Protein
coding

4.63E-02 0.788 0.623 0.997 4.67E-02

NCOA4 Nuclear receptor coactivator 4 Protein
coding

1.33E-02 0.776 0.603 0.999 4.89E-02

NRAS NRAS proto-oncogene, GTPase Protein
coding

3.23E-02 1.360 1.077 1.717 9.68E-03

PANX1 Pannexin 1 Protein
coding

3.25E-04 1.489 1.147 1.932 2.75E-03

PEBP1 Phosphatidylethanolamine-binding protein 1 Protein
coding

6.95E-04 0.604 0.465 0.784 1.53E-04

RELA RELA proto-oncogene, NF-KB subunit Protein
coding

4.45E-02 1.745 1.129 2.698 1.23E-02

RRM2 Ribonucleotide reductase regulatory subunit M2 Protein
coding

5.69E-04 1.323 1.164 1.503 1.73E-05

SLC2A1 Solute carrier family 2 member 1 Protein
coding

4.18E-05 1.261 1.134 1.401 1.71E-05

SLC3A2 Solute carrier family 3 member 2 Protein
coding

2.93E-02 1.345 1.067 1.695 1.21E-02

TLR4 Toll-like receptor 4 Protein
coding

4.18E-02 0.834 0.699 0.996 4.47E-02

VDAC2 Voltage-dependent anion channel 2 Protein
coding

7.90E-03 1.592 1.213 2.090 7.99E-04

YWHAE Tyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation Protein Epsilon

Protein
coding

4.52E-02 1.435 1.046 1.969 2.51E-02
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RESULTS

Cohort Characteristics
The flowchart of the present research is shown in Figure 1. Five
hundred LUAD cases that came from the TCGA-LUAD cohort
were taken as the training cohort. The datasets GSE72094 and
GSE68465, containing 442 and 443 LUAD cases, respectively,
were selected as the validation cohorts. The detailed clinical
characteristics of cohorts included in this study are summarized
in Table 1.

Identification of Prognostic
Ferroptosis-Related Gene Signature
From the Training Cohort
Kaplan–Meier and univariate Cox analyses were conducted
on 500 LUAD cases in the training cohort to examine the
prognostic relationship between each gene and overall survival.
Only the gene showing P-values < 0.05 in both Kaplan–Meier
and univariate Cox analyses was considered having potential
prognostic capacity. Finally, 4,138 genes were identified as
potential prognostic genes (Supplementary Table 4). The 4,138
potential prognostic genes and 259 ferroptosis-related genes
were intersected to obtain a list containing 29 ferroptosis-
related potential prognostic genes (Table 2). An overall survival-
based LASSO Cox regression model was built using the 29
ferroptosis-related potential prognostic genes (Figure 2A). When
15 genes were included, the model achieved the best performance
(Figure 2B). The regression coefficient of each gene was
calculated and shown in Table 3.

Prognostic Value of the 15-Gene
Signature in the Training and Validation
Cohorts
The risk score of each LUAD case was a linear combination of
each 15-gene signature expression level and its risk coefficient.

Patients were sorted to high- and low-risk groups based on
their median. The distribution of risk scores, outcome status,
and gene profiles of the 15-gene signature in training and
validation cohorts are shown in Figure 3. As demonstrated in
the graph (Figures 3A,D), more deaths or events happened
in the high-risk groups than those in their corresponding
low-risk groups. We checked the performance of this 15-
gene signature in 5-year survival (Figures 3E,H) and found
consistent patterns. The boxplots in Supplementary Figure 1
show the 15-gene expression distributions in the high- and
low-risk groups. The analysis in the training cohort witnesses
that ACSL3, YWHAE, DDIT4, PANX1, RELA, CISD1, EIF2S1,
and RRM2 were overexpressed, while GLS2, PEBP1, ARNTL,
NCOA4, LPIN1, HERPUD1, and TLR4 were downregulated in
high-risk groups.

Kaplan–Meier curves displayed that the high-risk groups
have poor overall survival in TCGA-LUAD (P-value < 0.0001,
Figure 4A), GSE72094 (P-value < 0.0001, Figure 4C), and
GSE68465 (P-value = 0.0001, Figure 4D), and progression-
free survival in TCGA-LUAD (P-value = 0.00022, Figure 4B)
compared to specific low-risk patients. The Kaplan–Meier curves
of 5-year survival showed the same pattern that high-risk score
patients owned significant unfavorable outcomes than their
corresponding low-risk groups (Figures 4E–H).

Univariate and multivariate Cox analyses were applied in the
training and two validation cohorts based on overall survival
or progression-free survival, using the available co-variables
including risk score, gender, age, race, tumor stage, tobacco
smoking history, radiation therapy, KRAS mutation, and EML4-
ALK mutation to validate the prognostic capacity and the
independence of the 15-gene signature among other clinic-
pathologic characteristics (Table 4). In the overall survival-based
Cox regression model of the training cohort, both univariate and
multivariate results suggested that the 15-gene signature was a
powerful player (HR = 3.77, 95% CI = 2.77–5.14, P-value = 4.59E-
17, and HR = 6.52, 95% CI = 2.74–15.5, P-value = 2.20E-05,
respectively). Consistent with that in the training cohort, in either

FIGURE 2 | Construction of prognostic gene signature using LASSO regression analysis. (A) LASSO coefficient profiles of 29 ferroptosis-related potential prognostic
genes. Each curve corresponds to a gene. (B) Selection of the optimal parameter in LASSO regression with 10-fold cross-validation. LASSO, the least absolute
shrinkage and selection operator Cox regression model.
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TABLE 3 | Fifteen ferroptosis-related prognostic genes obtained from LASSO Cox
regression model.

Gene
symbol

Description Annotation* Risk
coefficient

ACSL3 Acyl-CoA synthetase long-chain
family member 3

Ferroptosis
suppressor

0.292079905

ARNTL Aryl hydrocarbon receptor nuclear
translocator-like

Ferroptosis
suppressor

−0.052913519

CISD1 CDGSH iron sulfur domain 1 Ferroptosis
suppressor

0.156274215

DDIT4 DNA damage-inducible transcript 4 Ferroptosis
marker

0.079830296

EIF2S1 Eukaryotic translation initiation
factor 2 subunit alpha

Ferroptosis
marker

0.159470859

GLS2 Glutaminase 2 Ferroptosis
driver

−0.267566406

HERPUD1 Homocysteine-inducible ER protein
with ubiquitin-like domain 1

Ferroptosis
marker

−0.213560347

LPIN1 Lipin 1 Ferroptosis
driver

−0.179354454

NCOA4 Nuclear receptor coactivator 4 Ferroptosis
driver

−0.253508649

PANX1 Pannexin 1 Ferroptosis
driver

0.013029525

PEBP1 Phosphatidylethanolamine-binding
protein 1

Ferroptosis
driver

−0.262091825

RELA RELA proto-oncogene, NF-KB
subunit

Ferroptosis
marker

0.31121564

RRM2 Ribonucleotide reductase
regulatory subunit M2

Ferroptosis
marker

0.043449128

TLR4 Toll-like receptor 4 Ferroptosis
driver

−0.010188709

YWHAE Tyrosine
3-monooxygenase/tryptophan
5-monooxygenase activation
protein epsilon

Ferroptosis
marker

0.160823922

*Drivers are genes that promote ferroptosis; suppressors are genes that prevent
ferroptosis; markers are genes that indicate the occurrence of ferroptosis.

univariate or multivariate analysis, the 15-gene signature showed
excellent ability in the other two independent validation cohorts
in predicting overall survival (P-value < = 1.04E-04). Also, we
utilized progression-free survival data in the training cohort to
perform the Cox analysis and found that the 15-gene signature
had the ability not only in univariate but also in multivariate
models to predict the outcomes (P-value < = 2.84E-03). These
evidences demonstrated that the 15-gene signature was to be an
independent and strong variable of prognosis.

We built ROC curves and time-dependent dynamic AUC
comparisons with other variates that showed an independent
prognostic value in the multivariate Cox analysis in Table 4 to
evaluate how the 15-gene signature could behave in predicting
outcome and whether risk score is superior to other variates.
As shown in Figure 5A, the AUCs of the 15-gene risk score
model performed in the training cohort were 0.724, 0.755, and
0.681 at 1, 3, and 5 years, respectively, and the time-dependent
dynamic AUC plot exhibited that the risk score displayed the best
performance among the independent variates at all time points
within the 5-year period. Consistently, the AUCs of the risk

score in the GSE72094 (Figure 5C) and GSE68465 (Figure 5D)
cohorts were > = 0.681 at 1, 3, and 5 years and were greater
than other vital variates at any time within 5 years. Besides,
we used progression-free survival data in the training cohort to
evaluate the predicting ability of risk score and found a similar
pattern that in the other three cohorts, risk score had the best
capacity (Figure 5B).

Identification of the Autophagy
Correlation With the Gene Signature Risk
Score
Moreover, we conducted Pearson correlation to evaluate the
relationship between autophagy-related genes and the 15-gene
signature risk score. Of the 222 autophagy-related genes, 151
(68.01%) were significantly correlated with risk scores, of which
74 were positively correlated and 77 were negatively correlated
(Supplementary Table 5). As shown in Figure 6, GAPDH,
BIRC5, ERO1L, EIF2S1, SPHK1, ATIC, GNAI3, NAMPT,
EIF4EBP1, and FADD are the top 10 autophagy-related genes
that positively corrected with the risk score; 8/10 showed
a significant elevated hazard ratio in LUAD (Supplementary
Figure 2A). ERN1, ATG16L2, CCR2, IKBKB, HSPB8, PRKCD,
DAPK1, DRAM1, DLC1, and DAPK2 are the leading 10
that have negative relationships with the 15-gene signature
risk score; three of them exhibited a decreased hazard ratio
(Supplementary Figure 2B).

GSEA With the 15-Gene Signature
In view of the negative correlation between the 15-gene
signature risk score level and the LUAD outcomes, GSEA
was performed between the high-risk and low-risk groups. As
displayed in Figure 7A and Supplementary Table 6, enriched
gene sets of HALLMARK collection in the high-risk group
were mainly involved in pathways related to glycolysis, unfolded
protein response, mTORC1, MYC, G2/M checkpoint, E2F, DNA
repair, mitotic spindle assembly, ultraviolet radiation, hypoxia,
cholesterol homeostasis, and reactive oxygen species, whereas
the gene set concerned with metabolism of bile acids and salts
was primary enriched in the low-risk group (Figure 7B and
Supplementary Table 6).

Identification of the Relationship
Between the Fifteen-Gene Signature and
22 TICs
To better study how the 15-gene signature and the immune
microenvironment interact, we used the CIBERSORT algorithm
to evaluate the proportion of tumor-infiltrating immune
subpopulations and made comprehensive comparisons with the
risk score. The relative content distribution of 22 TICs in the
TCGA-LUAD cohort and the correlation between 22 TICs are
shown in Supplementary Figure 3.

Incorporating the results of difference analysis (Figure 8A)
and correlation analysis (Figure 8B and Supplementary Table 7),
10 TICs, including resting mast cells, activated mast cells, M0
macrophages, activated CD4 memory T cells, resting dendritic
cells, resting memory CD4 T cells, neutrophils, B cell memory,
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FIGURE 3 | The overall performance of the 15-gene signature in the training and validation cohorts. (A,C–E,G,H) The upper parts indicate the distributions of risk
score, and the middle parts indicate the patients’ survival status and survival time. (B,F) The upper parts indicate the distributions of risk score, and the middle parts
indicate the patients’ event status and event time. The bold numbers in the middle-upper part of each graph represent the death/event counts in the low-risk and
high-risk groups. The bottom part of each graph shows the heatmap of 15 gene expression profiles. Exp, expression level.

monocytes, and regulatory T cells (Tregs), were identified
associating with the 15-gene signature risk score (Figure 8C).
Among them, mast cells activated, macrophages M0, and T cells
CD4 memory activated were positively correlated with risk score,
the remaining negatively correlated.

Furthermore, the prognostic capacity of each TIC was
examined using univariate Cox and Kaplan–Meier analyses.
As shown in Figure 9, the univariate Cox regression model
(Figure 9A) highlighted that resting mast cells, resting dendritic
cells, and M0 macrophages impacted the prognosis; besides,
Kaplan–Meier analysis (Figure 9B and Supplementary Table 8)
indicated that resting mast cells and resting dendritic cells can
predict the survival of LUAD. It can be seen that resting mast
cells and resting dendritic cells showed significance in both
analyses and may have potential prognostic ability in LUAD.
Also, resting mast cells and resting dendritic cells not only had
prognostic value but also owned significant correlations with
the risk score, as mentioned earlier. Therefore, the significant
infiltration with resting mast cells and resting dendritic cells may

play a vital role in contributing to the prognosis value of the
15-gene signature in LUAD.

DISCUSSION

In this study, we built a ferroptosis-related 15-gene signature for
the prognosis of LUAD by comprehensively mining the TCGA
and GEO databases. After discovering the potential ferroptosis-
related prognosis genes using Kaplan–Meier and univariate
Cox analyses in the TCGA-LUAD cohort, the LASSO Cox
regression model was applied, and a 15-gene signature was
generated which was related to outcome of LUAD. By applying
the 15-gene signature in the training and validation cohorts,
pronounced statistical differences were seen in Kaplan–Meier
analysis, univariate and multivariate Cox regression models,
and ROC curves, demonstrating the effectiveness and broadness
of the gene signature in predicting LUAD prognosis. In the
following correlation analysis, the 15-gene signature was found
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FIGURE 4 | Kaplan–Meier curves of the 15-gene signature risk score in the training (A,B,E,F) and validation (C,D,G,H) cohorts. The middle part of each graph
indicates the number of patients at risk. The differences between the high- and low-risk groups were measured by the two-side log-rank test with a P-value < 0.05.
OS, overall survival; PFS, progression-free survival.

correlated with most autophagy-related genes. The GSEA and
analysis of immune infiltration exhibited important pathways
that relate to the 15-gene signature and vital roles that resting
mast cells and resting dendritic cells may have played backing the
15-gene signature influencing the outcome of LUAD. Compared
with previous studies discovering the prognostic gene signature
in LUAD, we are the first to utilize ferroptosis-related genes for
training and validation in two independent cohorts (more than
400 cases each). This work we have done aimed to present more
hints in future LUAD research.

The ferroptosis-related 15-gene signature that we discovered
showed strong prognostic prediction capabilities not only
in the training cohort but also in the two independent
validation cohorts after being examined by a variety of statistical

methods. The signature was composed of 15 genes (Table 3),
which were RELA, ACSL3, YWHAE, EIF2S1, CISD1, DDIT4,
RRM2, PANX1, TLR4, ARNTL, LPIN1, HERPUD1, NCOA4,
PEBP1, and GLS2, respectively. In our research, RELA, ACSL3,
YWHAE, EIF2S1, CISD1, DDIT4, RRM2, and PANX1 show
unfavorable impacts on LUAD prognosis, while other genes
displayed protective effects on the outcome. Interestingly,
in the gene signature, 83.3% (5/6) ferroptosis markers and
66.7% (2/3) ferroptosis suppressors predicted bad prognosis,
while 83.3% (5/6) ferroptosis drivers indicated favor outcomes.
RELA activation has been found to be correlated with cancer
development, suggesting the potential of RELA as a cancer
biomarker (Ali et al., 2017; Onishi et al., 2018; Ahmed
et al., 2019; Vlahopoulos et al., 2019). RELA is implicated
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TABLE 4 | Univariate analysis and multivariate analysis of the correlation of gene-signature risk score with outcomes among lung adenocarcinoma patients in
three cohorts*.

Variable Univariate Cox analysis Multivariate Cox analysis

coef HR (95% CI) z P-value coef HR (95% CI) z P-value

TCGA-LUAD (overall survival)ˆ

Gender (male vs. female) 0.048 1.05
(0.784–1.4)

0.322 7.47E-01

Age 0.00816 1.01
(0.993–1.02)

1.05 2.94E-01

Tumor stage II (vs. stage I) 0.905 2.47
(1.72–3.56)

4.87 1.09E-06 1.49 4.43
(1.69–11.6)

3.02 2.49E-03

Tumor stage III (vs. stage I) 1.25 3.49
(2.38–5.12)

6.4 1.51E-10 0.705 2.02
(0.613–6.68)

1.16 2.48E-01

Tumor stage IV (vs. stage I) 1.34 3.82 (2.2–6.62) 4.76 1.92E-06 -0.125 0.882
(0.248–3.14)

−0.193 8.47E-01

Tobacco smoking history (ever vs.
never)

−0.127 0.88
(0.583–1.33)

−0.605 5.45E-01

Number pack years smoked 0.00327 1 (0.996–1.01) 0.938 3.48E-01

Race (white vs. non-white) 0.36 1.43
(0.875–2.34)

1.43 1.53E-01

Ethnicity (Hispanic or Latino vs.
non-Hispanic or Latino)

0.387 1.47
(0.466–4.65)

0.658 5.10E-01

Tumor intermediate dimension 0.441 1.55
(0.922–2.62)

1.65 9.80E-02

Radiation therapy (yes vs. no) 0.763 2.14
(1.44–3.19)

3.76 1.73E-04 0.397 1.49
(0.451–4.9)

0.653 5.14E-01

Additional pharmaceutical therapy (yes
vs. no)

−0.502 0.605
(0.382–0.959)

−2.14 3.26E-02 -0.567 0.567
(0.263–1.22)

−1.45 1.48E-01

Additional radiation therapy (yes vs. no) −0.0153 0.985
(0.625–1.55)

−0.0661 9.47E-01

Location in lung parenchyma (central
lung vs. peripheral lung)

0.0908 1.09
(0.684–1.75)

0.378 7.06E-01

KRAS mutation (yes vs. no) 0.492 1.63
(0.672–3.98)

1.08 2.78E-01

EGFR mutation (yes vs. no) 0.268 1.31
(0.828–2.06)

1.15 2.50E-01

EML4-ALK mutation (yes vs. no) 0.592 1.81
(1.01–3.24)

1.98 4.73E-02 1.52 4.55
(1.62–12.8)

2.88 3.98E-03

Risk score 1.33 3.77
(2.77–5.14)

8.4 4.59E-17 1.87 6.52
(2.74–15.5)

4.24 2.20E-05

TCGA-LUAD (progression-free
survival) #

Gender (male vs. female) 0.07 1.07
(0.815–1.41)

0.499 6.17E-01

Age −0.000998 0.999
(0.985–1.01)

−0.141 8.88E-01

Tumor stage II (vs. stage I) 0.798 2.22
(1.61–3.07)

4.85 1.22E-06 1.18 3.26
(1.88–5.66)

4.22 2.44E-05

Tumor stage III (vs. stage I) 0.709 2.03
(1.38–2.99)

3.61 3.10E-04 0.866 2.38 (1.2–4.69) 2.49 1.26E-02

Tumor stage IV (vs. stage I) 0.849 2.34
(1.32–4.13)

2.93 3.40E-03 0.697 2.01
(0.846–4.77)

1.58 1.14E-01

Tobacco smoking history (ever vs.
never)

−0.0557 0.946
(0.637–1.4)

−0.276 7.82E-01

Number pack years smoked −0.000552 0.999
(0.993–1.01)

−0.165 8.69E-01

Race (white vs. non-white) 0.0557 1.06
(0.703–1.59)

0.268 7.89E-01

Ethnicity (Hispanic or Latino vs.
non-Hispanic or Latino)

0.291 1.34
(0.495–3.62)

0.574 5.66E-01

(Continued)
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TABLE 4 | Continued

Variable Univariate Cox analysis Multivariate Cox analysis

coef HR (95% CI) z P-value coef HR (95% CI) z P-value

Tumor intermediate dimension 0.328 1.39
(0.84–2.29)

1.28 2.01E-01

Radiation therapy (yes vs. no) 0.707 2.03
(1.42–2.89)

3.92 9.01E-05 0.43 1.54
(0.827–2.86)

1.36 1.74E-01

Additional pharmaceutical therapy (yes
vs. no)

0.27 1.31
(0.914–1.88)

1.47 1.41E-01

Additional radiation therapy (yes vs. no) 0.16 1.17
(0.825–1.67)

0.89 3.73E-01

Location in lung parenchyma (central
lung vs. peripheral lung)

−0.0709 0.932
(0.584–1.49)

−0.298 7.66E-01

KRAS mutation (yes vs. no) −0.275 0.759
(0.316–1.82)

−0.616 5.38E-01

EGFR mutation (yes vs. no) 0.483 1.62
(1.06–2.49)

2.21 2.71E-02 0.319 1.38
(0.846–2.24)

1.29 1.98E-01

EML4-ALK mutation (yes vs. no) 0.509 1.66
(0.965–2.87)

1.83 6.72E-02

Risk score 0.83 2.29
(1.72–3.06)

5.63 1.79E-08 0.756 2.13 (1.3–3.5) 2.98 2.84E-03

GSE72094 (overall survival) &

Gender (male vs. female) 0.44 1.55
(1.07–2.25)

2.33 1.98E-02 0.444 1.56
(1.07–2.28)

2.29 2.20E-02

Age 0.00696 1.01
(0.988–1.03)

0.702 4.83E-01

Race (white vs. non-white) −0.0694 0.933
(0.38–2.29)

−0.151 8.80E-01

Ethnicity (Hispanic or Latino vs.
non-Hispanic or Latino)

−0.642 0.526
(0.0733–3.78)

−0.638 5.24E-01

Tobacco smoking history (ever vs.
never)

0.314 1.37
(0.597–3.14)

0.741 4.59E-01

Tumor stage II (vs. stage I) 0.758 2.13
(1.32–3.44)

3.11 1.85E-03 0.69 1.99
(1.23–3.23)

2.81 4.92E-03

Tumor stage III (vs. stage I) 1.13 3.09
(1.93–4.97)

4.67 3.00E-06 1.15 3.14
(1.95–5.07)

4.69 2.79E-06

Tumor stage IV (vs. stage I) 1.21 3.35
(1.59–7.06)

3.18 1.48E-03 1.22 3.39 (1.6–7.15) 3.2 1.37E-03

KRAS mutation (yes vs. no) 0.376 1.46 (1–2.12) 1.97 4.92E-02 0.13 1.14
(0.774–1.68)

0.66 5.09E-01

EGFR mutation (yes vs. no) −1.34 0.262
(0.0965–0.71)

−2.63 8.49E-03 -0.822 0.44
(0.158–1.22)

−1.57 1.16E-01

STK11 mutation (yes vs. no) −0.0393 0.961
(0.58–1.59)

−0.153 8.79E-01

TP53 mutation (yes vs. no) 0.211 1.23
(0.82–1.86)

1.01 3.13E-01

Risk score 0.855 2.35
(1.76–3.14)

5.77 8.07E-09 0.734 2.08
(1.53–2.84)

4.64 3.50E-06

GSE68465 (overall survival) $

Gender (male vs. female) 0.33 1.39 (1.07–1.8) 2.5 1.25E-02 0.271 1.31
(0.991–1.74)

1.9 5.78E-02

Age 0.0266 1.03
(1.01–1.04)

3.97 7.16E-05 0.035 1.04
(1.02–1.05)

4.84 1.28E-06

Race (white vs. non-white) 0.32 1.38
(0.702–2.71)

0.931 3.52E-01

Chemotherapy (yes vs. no) 0.488 1.63
(1.22–2.18)

3.29 9.99E-04 0.222 1.25
(0.84–1.86)

1.1 2.72E-01

Radiation therapy (yes vs. no) 0.698 2.01
(1.47–2.75)

4.37 1.26E-05 0.274 1.31
(0.848–2.04)

1.22 2.21E-01

(Continued)
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TABLE 4 | Continued

Variable Univariate Cox analysis Multivariate Cox analysis

coef HR (95% CI) z P-value coef HR (95% CI) z P-value

T classification (T2 vs. T1) 0.381 1.46
(1.09–1.97)

2.52 1.18E-02 0.145 1.16
(0.846–1.58)

0.912 3.62E-01

T classification (T3 vs. T1) 1.2 3.31
(2.06–5.34)

4.92 8.78E-07 0.758 2.13
(1.29–3.53)

2.95 3.22E-03

T classification (T4 vs. T1) 1.45 4.26
(2.17–8.34)

4.22 2.41E-05 1.04 2.82
(1.33–5.98)

2.7 6.92E-03

N classification (N1 vs. N0) 0.821 2.27
(1.67–3.09)

5.23 1.74E-07 0.773 2.17 (1.57–3) 4.67 3.02E-06

N classification (N2 vs. N0) 1.36 3.9 (2.77–5.48) 7.82 5.47E-15 1.23 3.41
(2.31–5.02)

6.19 5.97E-10

Tobacco smoking history (ever vs.
never)

0.22 1.25
(0.79–1.96)

0.946 3.44E-01

Risk score 0.452 1.57
(1.29–1.92)

4.43 9.27E-06 0.44 1.55
(1.24–1.94)

3.88 1.04E-04

*Only variables identified having prognostic capacity in the univariate Cox analysis were included in the multivariate Cox analysis;
ˆConcordance = 0.762 (se = 0.045), likelihood ratio test = 32.74 on 7 df, P = 3e-05, Wald test = 29.51 on 7 df, P = 1e-04, score (log-rank) test = 32.24 on 7 df, P = 4e-05;
#Concordance = 0.725 (se = 0.031), likelihood ratio test = 44.91 on 6 df, P = 5e-08, Wald test = 42.61 on 6 df, P = 1e-07, score (log-rank) test = 48.02 on 6 df, P = 1e-08;
&Concordance = 0.727 (se = 0.024), likelihood ratio test = 65.11 on 7 df, P = 1e-11, Wald test = 65.31 on 7 df, P = 1e-11, score (log-rank) test = 69.38 on 7 df, P = 2e-12;
$ Concordance = 0.717 (se = 0.018), Likelihood ratio test = 125 on 10 df, P = < 2e-16, Wald test = 130 on 10 df, P = < 2e-16, score (log-rank) test = 143.4
on 10 df, P = < 2e-16;
P-value in bold indicates < 0.05.

in tumor–stroma interactions and correlates strongly with the
severity of tumor infiltration by inflammatory cells in NSCLC
patients (Giopanou et al., 2015). ACSL3 activity was previously
demonstrated specifically to promote a ferroptosis-resistant cell
state (Magtanong et al., 2019). ACSL3 overexpression increased
cell proliferation, migration, and invasion altering the metabolic
properties of lung cancer cells and was associated with worse
clinical outcomes in patients with high-grade NSCLC (Fernandez
et al., 2020). YWHAE was upregulated in breast cancer (Yang
et al., 2019), high-grade endometrial stromal sarcoma (Hemming
et al., 2017), gastric cancer (Leal et al., 2016), and colorectal
cancer (Bjeije et al., 2019) and associated with poor outcomes.
However, the role of YWHAE in LUAD has not been adequately
evaluated. The interaction between TIPRL and EIF2S1 leads
to phosphorylation of EIF2S1 and activation of the EIF2S1-
ATF4 pathway, thereby inducing autophagy and playing a role
in affecting the prognosis of LUAD (Jeon et al., 2019). CISD1
inhibits ferroptosis by protection against mitochondrial lipid
peroxidation (Yuan et al., 2016). A recent study revealed that
the NEET protein CISD1 plays a critical role in promoting
the proliferation of cancer cells, supporting tumor growth and
metastasis (Mittler et al., 2019). The function of CISD1 in cancer
cells was found to be dependent on the degree of lability of their
2Fe-2S clusters (Mittler et al., 2019), whereas the mechanism of
CISD1 in LUAD remained unclear. In multiple malignancies,
studies have shown that DDIT4 participates in tumorigenesis
and impacts patient survival (Cheng et al., 2020). Mu et al.
(2019) showed that inhibition of SIRT1/2 induces pro-survival
autophagy via acetylation of HSPA5 and subsequent activation
of ATF4 and DDIT4 to inhibit the mTOR signaling pathway
in NSCLC cells. It is reported that RRM2 is involved in the
progression of various cancers, including glioma, colorectal

cancer, bladder cancer, and NSCLC (Huang et al., 2019). In
a recent study, Su provided important evidence that PANX1
plays an important role in ferroptotic cell death (Su et al.,
2019). In addition, Jalaleddine identified a role for PANX1 in
breast cancer progression and that PANX1 mediates this tumor-
promoting role by modification of the EMT pathway (Jalaleddine
et al., 2019). However, the impact of PANX1 on LUAD and
its prognosis remained unknown. The expression of TLR4 is
highly observed in the cells of the immune system such as
monocytes, lymphocytes, and splenocytes, but it is also expressed
in lower levels in epithelial and endothelial cells as well as
cancer cells (Shetab Boushehri and Lamprecht, 2018). TLR4
agonists have thus been, and are still being, wildly explored as
highly potentially immunotherapeutic for the treatment of cancer
(Shetab Boushehri and Lamprecht, 2018). Previous study has
shown that ARNTL played a role in tumor suppression (Liu
et al., 2019). Nevertheless, few studies have found that ARNTL
has tumor promotion properties (Liu et al., 2019). LPIN1 plays
an important role in cell proliferation and tumor development
through the regulation of intracellular signaling pathways.
However, the underlying molecular mechanisms and the specific
signaling pathway of LPIN1 during tumor development remains
to be elucidated (Kim et al., 2016). HERPUD1 protects against
oxidative stress-induced apoptosis through downregulation of
the inositol 1,4,5-trisphosphate receptor (Paredes et al., 2016).
However, little is known about the links between HERPUD1 and
cancers. Tang’s research shows that overexpression of NCOA4
increases ferritin degradation and promotes ferroptosis (Hou
et al., 2016). However, how NCOA4 affects the occurrence and
progression of tumors is still largely unknown (Hou et al., 2016).
It has been well-established that PEBP1 suppresses the metastatic
spread of tumor cells; moreover, the downregulated expression
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FIGURE 5 | ROC and time-dependent dynamic AUC curves of the 15-gene signature risk score in the training (A,B) and validation (C,D) cohorts. The ROC curve
shows prognostic abilities with risk scores at 1, 3, and 5 years. The time-dependent dynamic AUC curve shows a comparison between the risk score and other
independent factors. ROC, receiver operating characteristic; AUC, area under the ROC curve.

of PEBP1 is observed in a number of human cancers (Xu et al.,
2010). According to one recent study, downregulation of PEBP1
is associated with poor prognosis of hepatocellular carcinoma,

while the relationship between PEBP1 and LUAD is still unknown
(Xu et al., 2010). The GLS2 gene is a transcriptional target of p53,
and in glioblastoma and liver cancer GLS2 has been described as a
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FIGURE 6 | The correlations between the 15-gene signature and autophagy-related genes in the training cohort. The figure shows the top ten autophagy-related
genes that positively (A) and negatively (B) correlated with the risk score, respectively. The blue line in each graph fits a linear model that indicates the proportional
trend of expression level of each gene and the risk score. The shading around the blue line represents the 95% confidence interval. The Pearson coefficient was
applied for correlation test.

tumor suppressor (Lukey et al., 2019). The role of GLS2 in LUAD
needs to be studied.

Autophagy is the natural, regulated mechanism of the
cell that removes unnecessary or dysfunctional components.
It allows the orderly degradation and recycling of cellular
components (Mizushima and Komatsu, 2011). The original
study shows that ferroptosis is morphologically, biochemically,
and genetically distinct from autophagy and other types of
cell death (Kang and Tang, 2017). However, recent studies
demonstrate that activation of ferroptosis is indeed dependent on
the induction of autophagy (Kang and Tang, 2017). In addition,
accumulating studies have revealed cross talk between autophagy
and ferroptosis at the molecular level (Zhou et al., 2019).

Autophagy has been shown to exert pleiotropy, exhibiting anti-
carcinogenic, pro-survival, and pro-apoptotic effects in different
stages of lung cancers (Ryter and Choi, 2015). Recent efforts
to develop lung cancer treatment strategies have focused on
understanding the role of autophagy as a tumor-suppressing
or tumor-promoting mechanism (Jeon et al., 2019). In this
study, we discovered that the risk score correlated with more
than half of the autophagy-related genes (68.01%, 151/222) and
found that the top 10 correlated genes hold the same effect
predicting the LUAD outcomes, which elaborated further the
relation between the ferroptosis-related 15-gene signature and
LUAD and also provided more possibilities for autophagy-
targeted strategies.
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FIGURE 7 | Gene set enrichment analysis performed using HALLMARK collection. The figure shows the enriched gene sets in the high-risk (A) and low-risk (B)
groups, respectively. Gene sets with | NES | > 1, NOM p-value <0.05, and FDR q-value < 0.25 were considered significantly enriched. H, high-risk group; l, low-risk
group.

The GSEA in HALLMARK collection found that gene sets
about glycolysis, unfolded protein response, and mTORC1
were top enriched. Changes in energy metabolism are the

biochemical fingerprints of cancer cells and represent one of the
“hallmarks of cancer.” This metabolic phenotype is characterized
by preferentially relying on glycolysis to produce energy in
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FIGURE 8 | Relationship between TICs and 15-gene signature risk score. (A) The Violin plot shows the ratio differentiation of each of 22 TICs between the high- and
low-risk groups. Wilcoxon rank sum was applied for the significance test. (B) The correlations between the TICs and 15-gene signature risk score (only correlations
with significance were plotted). The blue line in each graph fits a linear model that indicates the proportional trend of the TICs and the risk score. The shading around
the blue line represents the 95% confidence interval. The Spearman coefficient was applied for the correlation test. (C) The Venn diagram shows that 10 TICs have a
pronounced correlation with the risk score, which is determined by the results of the violin and the scatter plot. P-value < 0.05 is the cutoff. TIC, tumor-infiltrating
immune cell. *, P-value < 0.05.

an oxygen-independent manner (Ganapathy-Kanniappan and
Geschwind, 2013; Liberti and Locasale, 2016). Tumor cells
(including lung cancer cells) ingesting a large amount of glucose
will hinder the supply of nutrients to adjacent normal cells

(Sotgia et al., 2011; Chang et al., 2020). Glycolysis can also
induce deoxyribonucleic acid (DNA) mutations and peroxide
production, both of which are conducive to the proliferation and
metastasis of tumor cells (Sotgia et al., 2011; Chang et al., 2020).
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FIGURE 9 | Evaluation of the prognostic ability of 22 TICs. (A) Univariate Cox regression model built for 22 TICs based on overall survival. Asterisk shown in the B
plot indicates P-value < 0.05. (B) Kaplan–Meier survival curves. Only graphs with P-value < 0.05 in the log-rank test were plotted.

The unfolded protein response is a cellular stress response related
to the endoplasmic reticulum stress (Madden et al., 2019). The
internal pressure in the tumor (such as oncogenic activation)
and the external pressure exerted by the tumor environment
can increase the level of misfolded proteins in the endoplasmic
reticulum, which triggers the activation of the unfolded protein
response pathway (Madden et al., 2019). The tumor environment
is an environment of hypoxia, acidity, and nutritional deficiency.
The three arms of unfolded protein response are highly active
in many types of cancers (including breast, lung, liver, and
colorectal and glioma) (Madden et al., 2019). mTOR is a pathway
found to be dysregulated in many disease states including cancer
(lung cancer) (Ekman et al., 2012; Kim et al., 2017). Studies
have shown that mTOR signal inhibition blocks tumor cell
progression, disrupts angiogenesis, and induces apoptosis and
autophagy (Ekman et al., 2012; Kim et al., 2017). Growth factors,
stress, amino acids, energy, and oxygen give inputs to mTOR
which activate the mTORC1 (Vicary and Roman, 2016; Murugan,
2019). Activated mTORC1 regulates stress/DNA damage and
enhances nucleotide synthesis, protein synthesis, and metabolism
that promote cell proliferation, cell survival metastasis, etc.
(Vicary and Roman, 2016; Murugan, 2019). Targeting of mTOR
is thus an attractive strategy in the development of therapeutic
agents against lung cancer (Ekman et al., 2012). These GSEA
results described in detail the ways and methods that the 15-gene
signature participates in the progress of LUAD, which can benefit
future targeted therapy research.

Moreover, the CIBERSORT algorithm-based TIC analysis
discovered that resting mast cells and resting dendritic cells
have strong prognostic capacity in LUAD and a significant

correlation with the ferroptosis-related 15-gene signature risk
score, revealing that the infiltration of resting mast cells and
resting dendritic cells may play key roles affecting the prognostic
ability of the 15-gene signature. Mast cells can be used as
an important innate immune sentinel and have the ability
to enhance the immune response mediated by T cells but
in other cases also show the ability to suppress the immune
response (Dudeck et al., 2019; Kaesler et al., 2019). Consistent
with their functional plasticity, the number of mast cells in
TME is reported to be associated with cancer progression
and improvement in patient survival (Kaesler et al., 2019).
In NSCLC, mast cell infiltration of tumor islets confers a
survival advantage independently of tumor stage (Varricchi
et al., 2017). In another study, it was found that only in
stage I NSCLC were increased peritumoral mast cells associated
with a better prognosis (Varricchi et al., 2017). Dendritic
cells represent a heterogeneous group of innate immune cells
that infiltrate and process tumors and present tumor-derived
antigens to naive T cells (Wylie et al., 2019). Dendritic cells
play a key role in triggering antitumor T cell immunity
and therefore represent the main therapeutic target of cancer
immunotherapy (Wylie et al., 2019). Dendritic cells are a
key factor in providing protective immunity against lung
tumors (Wang J.B. et al., 2019). Clinical trials have proved
that the DC function of lung cancer patients is reduced
(Wang J.B. et al., 2019). Based on our research, resting mast
cells and resting dendritic cells have the potential to target
the 15-gene signature for the treatment means of LUAD,
and good efforts should be carried out to investigate these
immune cells further.
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CONCLUSION

Our study found a novel robust ferroptosis-related 15-gene
signature for LUAD. The signature is strongly associated with the
prognosis of LUAD and can precisely detect the LUAD risk level.
Remarkably, we validated the reliability and applicability of this
signature by applying two independent validation cohorts and
identified the vital role resting mast cells and resting dendritic
cells may interplay in the prognostic capacity of the gene
signature, which could potentially advance the discovery of new
treatments for LUAD.
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