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A C K N O W L E D G M E N T S

People claim that 2020 is the year of things that do not happen, get canceled, or post-
poned. One of the many things that Christian has taught me, is that most conjectures
are false and that you should rather go out and look for counterexamples instead of
proof. In this sense, I want to give a counterexample to the hypothesis above by making
this thesis happen.1

Of course, doing a PhD wasn’t all just about quarantining myself with the very same
LATEX file for months, but about the great math that I have learned and about the great
people who have accompanied me on my way (and also a little about the great food,
maybe).

First and foremost, I want thank my advisor Christian Haase. I am extremely grateful
for your incomparable excitement for all kinds of mathematical problems and that you
truly care sharing it with, and passing it on to all of your students. Thank you for being
there and taking the time to discuss math, teaching, and life with me although there
were always 547896724 emails and a full calendar waiting. You have made my time in
Berlin very special and will make it hard to leave.

I would like to extend my sincere thanks to Alex Küronya for introducing me to
the beautiful world of Newton–Okounkov bodies, for the valuable collaboration, and
for the opportunity to experience a lot of interesting math and great desserts at BIRS.
I also had the great pleasure of working with Giulia Codenotti and Francisco Santos,
thanks for all the interesting discussions.

I cannot begin to express my gratitude to all members of ‘Team Haase’! I have had an
amazing time, thanks to Jan Hofmann and Florian Kohl, who used to be my colleagues
and office mates and who became my friends. It would have been way harder and a lot
less fun without you, guys. Special thanks to Carlos Améndola for all the board games
in between and after work and to Karin Schaller for all the waffle lunches.

Even though I have technically not been part of the Villa, I really enjoyed all the
time I have spent there, talking (math) and eating cake. Thanks to all the inhabitants
of the Villa, in particular to Matthias Beck for making everyone feel like they belong.
Special thanks to Giulia Codenotti for your friendship, our talks and for getting upset to-
gether, when necessary. A heartfelt thank-you goes out to the members of my amazing

1Rumor has it that people only tend to read this particular page of one’s thesis — but there is also a lot
of great math about to come. I promise.
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‘infection/toric reading group’ Marie-Charlotte Brandenburg and Amy Wiebe. What
can I say, it has been a great opportunity and always a pleasure. Thanks for making it
through quarantine with me, online and offline — this is how we do toric reading group!

Math brings people together, not only in Berlin. I have had the pleasure to visit
great places and meet great people from all around the world. I am particularly happy
that I kept meeting Christopher Borger, thanks for all our talks.

I am truly grateful to Christopher Borger, Marie-Charlotte Brandenburg, Jan Hof-
mann, Florian Kohl, Karin Schaller, Annika Walter, Benedikt Weygandt, Amy Wiebe,
and Jan-Hendrik de Wiljes, for reading parts of this thesis, searching for typos or even
trying to make it through the math.

Finally, I want to express my gratitude to my family and friends for their uncon-
ditional support from outside the math bubble. And thanks to Benedikt Weygandt for
also being a part of it. We discussed my first Analysis 1 exercise sheet together and
now we have finished our theses. There is no one I would rather have done this with,
thanks for everything.
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N O TAT I O N

Polyhedral Geometry

H hyperplane defined by α(x) = 0 for some α ∈ (Rn)∗

H+ half space defined by α(x) ≥ 0 for some α ∈ (Rn)∗

cone(A) convex cone generated by A
σ rational convex polyhedral cone in NR

σ∨ dual cone of σ

ρ 1-dimensional strongly convex cone (a ray) in NR

uρ minimal ray generator of ρ ∩ N, ρ a rational ray in NR

Nσ sublattice Z(σ ∩ N)

N(σ) quotient lattice N/Nσ

Σ fan in NR

Σ(i) i-dimensional cones in Σ
star(σ) star of σ, a fan in N(σ)

Σ∗(σ) star subdivision of Σ for σ ∈ Σ
|Σ| support of a fan Σ
conv(A) convex hull of A
P polytope or polyhedron
dim(P) dimension of a polyhedron P
deg(P) normalized volume of a polytope P
F � P F is a face of P
vert(P) set of vertices of a polytope or polyhedron
vert(P, v) relevant vertex set of a polytope w.r.t a direction v
P∨ polar dual of a polytope P
NP normal fan of a polytope or polyhedron P
NP( f ) Newton polytope of a Laurent polynomial f
lengthM(L) lattice length of a segment L w.r.t. lattice M
length(P, p, v) relative length of a polytope P at vertex a p w.r.t. direction v
Pv(m) feasible region of a polytope P w.r.t. direction v given m ∈ P
widthu(P) width of a polytope P ⊆ MR w.r.t. linear functional u ∈ N
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notation

MV(P, Q) mixed volume of polytopes P, Q
sun(P, v) sunny side of a polytope P w.r.t. direction v
wedgeF(P) wedge of a polytope P over a face F
PFA(c) fine adjoint of a polytope P and a parameter c > 0
η(D) codegree of a polytope associated to the divisor D
ηF(P) fine codegree of a polytope P
core(P) core of a polytope P
coreF(P) fine core of a polytope P
(Π,≤Π) poset
O(Π) order polytope of a poset Π
K(Π) order cone of a poset Π

(Toric ) Varieties

X variety
z a point in X
R a general point in X
Z a subvariety of X
M, χm character lattice of a torus and a character of m ∈ M
N lattice of one-parameter subgroups of a torus
T torus N ⊗Z C∗ = homZ(M, C∗) associated to N and M
MR vector space M⊗Z R built from M
NR vector space N ⊗Z R built from N
〈m, u〉 pairing of m ∈ M or MR with u ∈ N or NR

Sσ affine semigroup σ∨ ∩M
C [Sσ] semigroup algebra
Uσ affine toric variety of a cone σ ⊆ NR

XΣ toric variety of a fan Σ in NR

XP projective toric variety of a polytope or polyhedron P
Hd d-th Hirzebruch surface
S Cox ring of XΣ

xρ variable in S corresponding to ρ ∈ Σ(1)
Sd graded piece of S in degree d ∈ Cl(XΣ)
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notation

D ivisors

D divisor
div( f ) principal divisor of a rational function f
D ∼ D′ linear equivalence of divisors D and D′

CDiv(X) group of Cartier divisors
Cl(X) divisor class group of a normal variety X
Pic(X) Picard group of a normal variety X
D|U restriction of a divisor to an open set U
|D| complete linear system of D
Dρ torus-invariant prime divisor on XΣ of ray ρ ∈ Σ(1)
{mσ}σ∈Σ Cartier data of a torus-invariant Cartier divisor on XΣ

PD polyhedron of a torus-invariant divisor D
OX structure sheaf of a variety X
SFD support function of a Cartier divisor D
OX(D) sheaf of a Weil divisor D on X
s global section
H0(X,OX(D)) global sections of the sheaf OX(D) on X
h0(X,OX(D)) dimension of H0(X,OX(D))

L line bundle (invertible sheaf)
π : VL → X rank 1 vector bundle of an invertible sheaf L

C curve
D.C intersection product of Cartier divisor D and complete curve C
D ≡ D′ numerically equivalent Cartier divisors D and D′

N1(X) Néron–Severi group
N1(X)R Néron–Severi space
Nef(X) cone in N1(X)R generated by nef divisor classes
Amp(X) cone in N1(X)R generated by ample divisor classes
Big(X) cone in N1(X)R generated by big divisor classes
Eff(X) closure of the cone in N1(X)R generated by effective divisor classes
D+ positive part of the Zariski decomposition of a divisor D
D− negative part of the Zariski decomposition of a divisor D
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notation

Newton–Okounkov Bodies and Seshadri Constants

val valuation-like map
ValY• set of valuative point associated to a flag Y•
ΓY•(D) valuation semigroup associated to a divisor D and a flag Y•
ordZ(s) order of vanishing of a global section s along a subvariety Z
Y• full flag of subvarieties
∆Y•(D) Newton–Okounkov body of a big divisor D w.r.t. the flag Y•
ϕZ Newton–Okounkov function coming

from the geometric valuation ordZ

µC(D) pseudo-effective threshold of a divisor D and a curve C
ε(X, D; z) Seshadri constant of a divisor D at a point z ∈ X
s(L , z) degree of jet separation of a line bundle L at a point z ∈ X

Population Genetics

P (E) probability of an event E
Var variance
ρ density function
π partition
Pn set of all set partitions of [n]
Rn

k equivalence class of set partitions of [n] after k coalescent events
t′ waiting time measured in generations
t waiting time measured in coalescent units
T tree
V set of vertices of a tree
E set of edges of a tree
r root of a rooted tree
`(e) length of an edge e
L set of leaves
[[T]] tree topology (of a tree T)
[T] ranked tree topology (of a tree T)
g gene
Tg gene tree
C coalescent event
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notation

C set of all coalescent events
DTMn space of dissimilarity maps that are tree metrics on n leaves
DUMn space of dissimilarity maps that are ultrametrics on n leaves
MTMn space of metrics that are tree metrics on n leaves
MUMn space of metrics that are ultrametrics on n leaves
S species
TS species tree
τS species divergence time of a species S
S set of all species
Cn set of compatible species and gene trees on n leaves
h (pre-)history
H set of all histories
RTS([[Tg]], h) history region of a gene tree topology [[Tg]] and history h,

given a species tree TS

Matroids and Tropical Geometry

M matroid
E ground set
I independent sets
c circuit
(c+, c−) signed circuit
trop tropicalization
G(2, n) Grassmannian of 2-planes in n-space
Kn complete graph on n vertices
M0,n moduli space of n distinct labeled points on P1

M0,n moduli space of stable genus zero curves with
n distinct marked points

M ixed Subdivisions

A point configuration
ω weight vector
S subdivision
T triangulation

xi



notation

C cell
Cayley(P1, . . . , Pn) Cayley embedding of the polytopes P1, . . . , Pn

ΦA(T ) GKZ-vector of a triangulation T of a point configuration A
Σ -poly(A) secondary polytope of a point configuration A
Σ -fan(A) secondary fan of a point configuration A
γn moment curve
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1
I N T R O D U C T I O N

Geometry is the art

of reasoning well from

badly drawn figures .

— Henri Poincaré

When asked what I am doing all day long, my family has been known to say ‘Drawing
parallelograms into trapezoids’, which is not entirely false, compare Figure 2.23. How-
ever, this thesis has 69 additional figures and beyond that a lot of reasoning to offer.
Here, Poincaré’s quote applies quite accurately. On the one hand, we are studying
objects originating from discrete geometry, and on the other hand, we are looking
for polyhedral structures in settings that originate from (toric or numerical) algebraic
geometry or mathematical population genetics.

Discrete structures such as convex polytopes, polyhedra, and polyhedral fans are
relevant for various areas of mathematical research, pure and applied: Combinatorial
optimization, combinatorics, commutative algebra, (toric) algebraic geometry, tropical
geometry, statistics, and mathematical biology, to name just some of them.

In Chapter 2 we develop combinatorial tools to determine Newton–Okounkov bodies
and Newton–Okounkov functions in the case of toric varieties. In analogy to the
enriching dictionary of toric geometry, Newton–Okounkov bodies are convex bodies
that encode information about the underlying line bundle on a projective variety, such
as its positivity in the form of the Seshadri constant. Going back to [LM09; KK12], a lot
of structural results have been obtained over the past decade, see among others [BC11a;
Wit12; KMS13; Wit14; Bou+15; MR15; Dum+16b; Fuj16; KL18; KMR19]. However,
concrete computations have remained very difficult. Motivated by this, we provide a
combinatorial version of Zariski decomposition on toric surfaces, see Theorem 2.3.3. As
a corollary we derive a piecewise linear isomorphism between the associated Newton–
Okounkov body when the flag is centered at a general point, and the toric moment
polytope, compare Corollary 2.3.8. This is reminiscent of the recently described ‘geo-
metric wall-crossing maps’ in [EH19]. In 2.4.15, we conjecture that the valuation at a
general point also transforms according to our map.
Our main contribution is the development of combinatorial tools to determine Newton–
Okounkov functions concretely. This applies to a completely toric setting, where we
even obtain a linear function (Proposition 2.4.1). The focus of our studies are functions
that stem from valuations at a general point. In the latter case we can determine the

1



introduction

function for polytopes that we call ‘zonotopally well-covered’ (see Definition 2.4.16,
and Theorem 2.4.17) and prove that Corollary 2.3.8 holds in these cases. The result of
Theorem 2.4.9 holds in particular for anti-blocking polytopes.

One of the main open questions about Seshadri constants is that of their rationality. A
positive answer on surfaces would imply the failure of Nagata’s conjecture [Dum+16a].
Existing criteria include Ito’s width bound [Ito14], Lundman’s core criterion [Lun20],
and Sano’s anti-canonical pencil [San14]. Applying our methods, we deduce rationality
on toric surfaces in the case of what we call ‘weakly zonotopally well-covered’ poly-
topes, see Definition 2.5.12 and Theorem 2.5.13, and for a class of polytopes for which
none of the above criteria apply, compare Theorem 2.5.16.

In Chapter 3 we study spaces of phylogenetic trees and models stemming from mathe-
matical population genetics from a polyhedral point of view. In order to do that we
analyse polyhedral structures on the underlying spaces of trees. Billera and Holmes
started to investigate the geometry of a space of trees in [BHV01] and its connection
to objects from tropical geometry has been examined in [SS04; AK06]. This has led to
recent progress regarding the establishment of tropical methods for probability and
statistics on the space of phylogenetic trees, see for instance [Lin+17; Nye+17; Mon+20].
We define a coarse and a fine structure on our space of trees that recover the tropical
connection and also link the geometry to certain order cones from discrete geometry,
compare Propositions 3.3.9 and 3.3.12.

These considerations form the basis for considering two stochastic processes which
are fundamental to mathematical population genetics, namely the Kingman coalescent
[Kin82a; Kin82b; Kin82c] and the multispecies coalescent process [Tak89; RY03; Liu+09].
We show that the former is given as a density on a space of trees in Proposition 3.4.1.
Motivated by the tropical connection we also define a forgetful map and examine how
densities are related when increasing the sample size, compare Proposition 3.5.3.

Finally, we examine the multispecies coalescent model from a polyhedral point of view.
We first describe compatibility of the involved gene and species trees in combinatorial
terms in Proposition 3.6.5. A very relevant question for real world applications is the
question of identifiability of the underlying species tree from a given distribution of
observed gene trees. This is a highly active area of research, see for instance [DR06;
ADR11; DRS12a; DRS12b]. The first step towards an answer is describing the condi-
tional probability distribution. Based on fundamental results in [RY03; DS05; DR09],
we provide a density on our space of trees, see Theorem 3.6.14.

Chapter 4 is dedicated to the study of the tropical version of Smale’s famous 17th
problem. At the end of the 20th century he asked whether ‘a zero of n complex polyno-
mial equations in n unknowns could be found approximately, on average, in polynomial
time with a uniform algorithm’. This question was progressively answered by Beltrán
and Pardo [BP08a; BP08b], Bürgisser and Chucker [BC11b] and Lairez [Lai17] over the
past decade.

2



1.1 polyhedral geometry : background and notation

With regard to real world applications, it makes sense to investigate sparse polynomial
systems. The link to discrete geometry is given by the BKK-Theorem [Ber79], which
relates the number of finite solutions to the mixed volume of the involved Newton
polytopes. This link is the foundation for (polyhedral) homotopy methods, see [Stu02,
Chapter 3] and [VVC94; HS95] or [Mal17; Mal19; Mal20] for recent developments.
Furthermore, from the perspective of tropical geometry, a fully mixed cell in a regular
fine mixed subdivision of the Minkowski sum (or a triangulation of the Cayley, respec-
tively) corresponds to an intersection of the associated tropical hypersurfaces. Solving
tropical analogues of polynomial systems is an active area of research, see for instance
[Jen16].
Based on the above relation we investigate the tropical version of Smale’s problem:
‘Given n Newton polytopes in Rn and a random weight vector, can we find one fully
mixed cell in the induced subdivision in expected polynomial time?’ In Section 4.2 we
fix notation and introduce the objects of interest and their correspondences. Our main
contribution to this area is the construction of Example 4.3.2 in Section 4.3, which might
lead to a lower exponential bound on the running time of a homotopy continuation
approach.

1 .1 polyhedral geometry : background and notation

In this section we introduce the reader to the main players of this thesis. To fix notation,
we recall the definitions of the main discrete structures that we will work with, following
the presentation in [Zie95], [LRS10], and [HNP12]. For more details we refer to these
books which give a broad introduction.

1.1.1 Polyhedra and Polytopes

A half space is a set of the form

H+ := {x ∈ Rn : α(x) ≥ b},

where α ∈ (Rn)∗ is a linear functional and b ∈ R is some constant. An intersection of
finitely many half spaces is called a polyhedron and is denoted by P. We often refer to
the defining inequalities using matrix notation, i.e.,

P := {x ∈ Rn : Ax ≥ b},

where the rows of the (d×n) matrix A stand for the linear functionals α1, . . . , αd ∈ (Rn)∗

and b ∈ Rd is the vector of the respective constants b1, . . . , bd.

The dimension of P is defined to be the dimension of its affine hull and is denoted
by dim(P). A linear inequality α(x) ≥ b is valid for P, if it is satisfied for all x ∈ P. For

3



introduction

a valid inequality α(x) ≥ b, we call a set of the form

F := P ∩ {x ∈ Rn : α(x) = b}

a face of the polyhedron P, denoted by F � P. By P(i) we denote the set of i-dimensional
faces. The elements of the set vert(P) of 0-dimensional faces of an n-dimensional poly-
hedron are called vertices, and the (n− 1)-dimensional faces are called facets.

A polyhedral complex P is a finite collection of polyhedra in Rn such that

1. the empty polyhedron is in P .

2. if P ∈ P , then all faces of P are also in P .

3. the intersection P ∩Q of two polyhedra P, Q ∈ P is a face of both, P and Q.

A polytope P is the convex hull of a finite number of points in Rn, i.e.,

P = conv(x1, . . . , xd) :=

{
d

∑
i=1

λixi :
d

∑
i=1

λi = 1 and λi ≥ 0 for 1 ≤ i ≤ d

}
.

Due to Weyl–Minkowski-Duality a bounded set P ⊆ Rn is a polytope if and only if it
is the bounded intersection of a finite number of affine half spaces, compare [HNP12,
Theorem 1.2.3]. A polytope P is called a lattice polytope, if all its vertices lie in a common
lattice Λ.

For a full-dimensional polytope P ⊆ Rn with 0 ∈ P its dual polytope or the polar
dual of P is defined as

P∨ := {α ∈ (Rn)∗ : α(x) ≥ −1 for all x ∈ P}.

Given a Laurent polynomial f ∈ C[x±1
1 , . . . , x±1

n ], one can associate a polytope to it. The
support supp( f ) of f is the set of all monomials that appear with non-zero coefficient.
Each monomial is regarded as an exponent vector in Zn. Then the Newton polytope of f ,
denoted by NP( f ), is the convex hull of the exponent vectors of the monomials in the
support of f .

Let P ⊆ Rn be an n-dimensional polytope and F � P a face that is defined by α(x) ≥ b
for some α ∈ (Rn)∗ and some b ∈ R. Then the wedge of P over F is the polytope defined
as

wedgeF(P) := {(x, xn+1) ∈ Rn+1 : x ∈ P, 0 ≥ α(x)− xn+1 ≥ b}.

The Minkowski sum of two sets P, Q ⊆ Rn is defined to be

P + Q := {x + x′ : x ∈ P, x′ ∈ Q}.

4



1.1 polyhedral geometry : background and notation

There are different ways to ‘measure’ polytopes. Let P ⊆ Rn be a polytope. The width
of P with respect to a linear functional α ∈ (Rn)∗ is defined as

widthα(P) := max
p,q∈P

|α(p)− α(q)|.

For a rational line segment L ⊂ Rn with respect to a lattice Λ there is the notion of
lattice length, denoted by lengthΛ(L). Let for that L be the segment connecting two
rational points p, q ∈ Qn and denote by u ∈ Λ the shortest lattice vector on the ray
spanned by p− q. Then we define lengthΛ(L) := |j|, where j ∈ Q such that p− q = ju.

Given n polytopes P1, . . . , Pn in Rn, their mixed volume MV(P1, . . . , Pn) equals the fol-
lowing sum of ordinary volumes

∑
I⊆{1,...,n}

(−1)|I| vol(∑
i∈I

Pi).

1.1.2 Cones and Fans

A subset σ ⊆ Rn is a cone if for all x, y ∈ σ and λ, µ ∈ R≥0 also λx + µy ∈ σ. A cone is
polyhedral if there are linear functionals α1, . . . , αm ∈ (Rn)∗ such that

σ = {x ∈ Rn : αi(x) ≥ 0 for 1 ≤ i ≤ m}.

A cone is called finitely generated by vectors x1, . . . , xd ∈ Rn if

σ = cone(x1, . . . , xd) :=

{
d

∑
i=1

λixi : λi ≥ 0 for 1 ≤ i ≤ d

}
.

By the Weyl-Minkowski-Duality for cones, a cone is polyhedral if and only if it is
finitely generated, see [HNP12, Theorem 1.1.3]. We call a polyhedral cone pointed if
its lineality space lineal(σ) := {y ∈ Rn : x + λy ∈ σ for all x ∈ σ, λ ∈ R} equals {0}.
The afore mentioned notion of dimension and faces translates to the cone setting. An
(n− 1)-dimensional face of an n-dimensional cone is called facet, and a 1-dimensional
face ρ � σ is called ray. If a ray ρ � σ is spanned by a rational vector, then there exists
a shortest integer vector uρ ∈ ρ, which we call the primitive ray generator of ρ. If the
primitive ray generators of an n-dimensional cone form a lattice basis of the underlying
lattice Λ, then the cone is called unimodular. If the primitive ray generators form part of
a lattice basis, then the corresponding cone is called smooth.

Given a polyhedral cone σ ⊆ Rn, its dual cone is defined by

σ∨ := {α ∈ (Rn)∗ : α(x) ≥ 0 for all x ∈ σ}.

5
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A fan Σ in Rn is a collection of non-empty polyhedral cones with the following two
properties:

1. Every non-empty face of a cone in Σ is also a cone in Σ.

2. The intersection of any two cones in Σ is a face of both.

If all cones of a fan are unimodular, then the fan itself is called unimodular and similarly,
a fan is called smooth if all of its cones are smooth. A fan Σ in Rn is called complete if
for its support |Σ| := ∪σ∈Σσ, we have that |Σ| = Rn.

We can associate a certain fan to a given polyhedron (or a polytope). Let P be a
polyhedron in Rn. For a point x ∈ P we define the inner normal cone of x in P in Rn as

NP(x) := {α ∈ (Rn)∗ : α(x) ≤ α(y) for all y ∈ P},

i.e., NP(x) consists of all linear functionals whose minimum on P is achieved at x.
Similarly, for a face F � P, we say NF(x) equals the cone NP(x) for any x in the relative
interior of F. The set

NP := {NF(x) : F � P} = {NP(x) : x ∈ P}

is called the inner normal fan of P.
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2
T O R I C N E W T O N – O K O U N K O V F U N C T I O N S

This chapter is joint work with Christian Haase and Alex Küronya and is based on
[HKW20].

2 .1 introduction

In the present chapter, we start to develop methods to determine Newton–Okounkov
functions in the case of toric varieties. As a by-product, we can show rationality of
Seshadri constants for many new examples of toric surfaces.

Newton–Okounkov bodies are convex bodies which encode various facets of algebraic
and symplectic geometry, such as the local positivity of line bundles on varieties and go-
ing as far as geometric quantization [HHK16]. To be more specific, it is possible to gain
information on asymptotic invariants (Seshadri constants, pseudo-effective thresholds,
Diophantine approximation constants) from well-chosen Newton–Okounkov bodies
and concave (Newton–Okounkov) functions on them.

Over the past decade, Newton–Okounkov theory has attracted a lot of attention. Many
deep structural results have been proven, extracting information about varieties and
their line bundles from Newton–Okounkov bodies. At the same time it also became
apparent that it is often very difficult to obtain precise information about Newton–
Okounkov bodies and Newton–Okounkov functions in concrete cases.

Newton–Okounkov Functions

Newton–Okounkov functions are concave functions on Newton–Okounkov bodies
arising from multiplicative filtrations on the section ring of a line bundle. They have
proven to be even more evasive than Newton–Okounkov bodies themselves.

The first definition of Newton–Okounkov functions (in other terminology, concave
transforms of multiplicative filtrations) in print is due to Boucksom–Chen [BC11a].
These functions on the Newton–Okounkov body yield refined information [Bou+15;
Dum+16b; Fuj16; KMS13; KMR19; MR15] about the arithmetic and the geometry of the
underlying variety.

7
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Already the most basic invariants of Newton–Okounkov functions contain highly non-
trivial information. Perhaps the most notable example is the average of such a function
— called the β-invariant of the line bundle and the filtration — , which is closely related
to Diophantine approximation [MR15], and K-stability [Fuj16]. By the connection of
the β-invariant to Seshadri constants [KMR19], its rationality could decide Nagata’s
conjecture [Dum+16a]. Not surprisingly, concrete descriptions of these functions are
very hard to obtain.

A structure theorem of [KMR19] identifies the subgraph of a Newton–Okounkov
function coming from a geometric situation as the Newton–Okounkov body of a projec-
tive bundle over the variety in question. (Compare Section 2.4.2 below.)

Based on earlier work of Donaldson [Don02], Witt–Nyström [Wit12] made the ob-
servation that the Newton–Okounkov function coming from a fully toric situation
(meaning all of the line bundle, admissible flag, and filtration are torus-invariant) is
piecewise affine linear with rational coefficients on the underlying Newton–Okounkov
body, which happens to coincide with the appropriate moment polytope. In this very
special situation, the function is in fact linear. (Compare Proposition 2.4.1 below.)

The next interesting case arises when we keep the toric polytope (that is, we work with
a torus-invariant line bundle and a torus-invariant admissible flag), but we consider
the order of vanishing at a general point to define the function. To our knowledge, no
such function has been computed for toric varieties other than projective space.

While the usual dictionary between geometry and combinatorics is very effective
in explaining torus-invariant geometry, when it comes to non-torus-invariant phenom-
ena, one does need the more general framework of Newton–Okounkov theory. Broadly
speaking Newton–Okounkov theory would be toric geometry without a torus action;
in more technical terms Newton–Okounkov theory replaces the natural gradings on
cohomology spaces by filtrations.

In determining Newton–Okounkov functions in a not completely toric setting, our first
goal is to devise a strategy to determine Newton–Okounkov functions associated to
orders of vanishing on toric surfaces, and to apply it to interesting examples. The trick
is to avoid blowing up the valuation point, which could result in losing control of the
Mori cone.

Instead, we change the flag defining the Newton–Okounkov polytope to one which
contains the valuation point and show that there is a piecewise linear transformation of
the moment polytope into the new Newton–Okounkov polytope (see Corollary 2.3.8).
This is reminiscent of the transformation constructed in [EH19]. But the connection is,
as of yet, unclear. It is worth mentioning at this point that certain pairs of subgraphs
of Newton–Okounkov functions associated to torus-invariant and non-torus-invariant
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2.1 introduction

flags happen to be equidecomposable (compare Remark 2.4.14). This is an exciting and
unexpected phenomenon with possible ties to the mutations studied in [Cil+17]. We
offer a conjectural explanation for this phenomenon.

We can then employ arguments from convex geometry to provide upper and lower
bounds for the desired function. We study combinatorial conditions which guarantee
that the obtained upper and lower bounds agree.

In the case of anti-blocking polyhedra in the sense of Fulkerson [Ful71; Ful72] we
obtain a particularly easy answer. Nevertheless, the strategy works much more gener-
ally.

Theorem (Newton–Okounkov functions on toric surfaces, Theorem 2.4.9, Corol-
lary 2.4.11). Let X be a smooth projective toric surface, D an ample divisor, and Y• an
admissible torus-invariant flag on X so that the Newton–Okounkov body ∆Y•(D) is
anti-blocking.
Let Y′• be a torus-invariant flag opposite to the origin. Then the Newton–Okounkov
function ϕR on ∆Y′•(D) coming from the geometric valuation ordR in a general point
R ∈ X is linear with integral slope.

Along the way, we formulate and prove existence and uniqueness of Zariski decompo-
sition on toric surfaces in the language of polyhedra. One can ‘see’ the decomposition
in terms of the polygons, compare Theorem 2.3.3.

Local Positivity

Newton–Okounkov theory reveals a lot about positivity properties of line bundles.
Just like in the toric case, one can use convex geometric information to decide, for
instance, if the underlying line bundle is ample or nef [KL17a; KL17b]. One can even
obtain localized information. A line bundle is called positive or ample at a point of
our variety if global sections of a high enough multiple yield an embedding of an
open neighborhood of the point. Local positivity can be decided and measured via
Newton–Okounkov bodies [KL17a; KL17b; Roé16].

Local positivity is traditionally measured by Seshadri constants [KL18; Laz04]. Origi-
nally invented by Demailly [Dem92] to attack Fujita’s conjecture on global generation,
Seshadri constants have become the main numerical asymptotic positivity invariant
(compare [Laz04, Chapter 5],[Bau99]). While there has been considerable interest in
this invariant’s behavior, many of its properties are still shrouded in mystery [Sze12].

One interesting question about Seshadri constants is if they are always rational numbers.
This is widely believed to be false, but there has only been sporadic progress towards
this issue. On surfaces, the rationality of Seshadri constants would imply the failure of
Nagata’s conjecture [Dum+16a].

9
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The rationality of Seshadri constants and related asymptotic invariants often follows
from finite generation of an appropriate multi-graded ring or semigroup [Ein+06; CL12].
However, finite generation questions tend to be wide open, and are typically skew to
the major finite generation theorems of birational geometry.

In the literature around Newton–Okounkov bodies the involved valuation semigroups
are frequently assumed, from the outset, to be finitely generated (see [HK15; KM19],
this is to obtain a toric degeneration as in [And13]). However, deciding finite generation
of multigraded algebras or semigroups arising from a geometric setting is an utterly
hard question.

We obtain results on the rationality of Seshadri constants in general points of toric
surfaces using asymptotic considerations and convexity to circumvent some of these
difficulties.

Previously, Ito [Ito13; Ito14], Lundman [Lun20], and Sano [San14] have verified ratio-
nality of these same Seshadri constants for restricted classes of (line bundles on) toric
surfaces. As it turns out, a condition we call ‘weakly zonotopally well-covered’, is
sufficient to guarantee rationality of the Seshadri constant.

Theorem (Rationality of certain Seshadri constants, Theorem 2.5.13). Let X be a
smooth projective toric surface and D an ample torus-invariant divisor on X with
associated Newton–Okounkov body ∆Y•(D) for an admissible torus-invariant flag Y•.
If the polytope ∆Y•(D) is weakly zonotopally well-covered, then

1. we can determine
∫

∆Y• (D) ϕR.

2. the Seshadri constant ε(X, D; R) is rational.

3. the maximum max∆Y• (D) ϕR is attained at the boundary of ∆Y•(D).

This theorem reproves some of the cases covered in [Ito13; Ito14; Lun20; San14] and
adds many new cases, even some, where we can only conjecture what the Newton–
Okounkov function looks like. We construct specific examples where the methods of
Ito, Sano, or Lundman do not apply, see Theorem 2.5.16.

Organization of the Chapter

This chapter is structured as follows. We start in Section 2.2 by fixing notation and
giving necessary background information. Since our work sits on the fence between
two areas, we give ample information on both. Section 2.3 is devoted to a self-contained
combinatorial proof of Zariski decomposition on toric surfaces and the existence of the
‘tilting isomorphism’ between certain Newton–Okounkov bodies. In Section 2.4 we give
a description of Newton–Okounkov functions/concave transforms in the two relevant
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cases: when every actor is torus-invariant (Subsection 2.4.1) and when we are looking
at the order of vanishing filtration coming from a general point (Subsection 2.4.3).
The latter part contains the outline of our general strategy. Moreover, we give a
polyhedral description of the interpretation of a subgraph as a Newton–Okounkov
body (Subsection 2.4.2). Section 2.5 contains the application of our results on Newton–
Okounkov functions to the rationality of Seshadri constants. Finally, we formulate
further research questions in Section 2.6.

2 .2 background and notation

This section provides the necessary background and also fixes notation. At first we
will recall basic properties of divisors and state associated criteria in Subsection 2.2.1.
Since we will mostly consider toric varieties, we recall relevant facts in Subsection 2.2.2.
Hereby we focus on the behaviour of divisors and their positivity in the toric case. In
Subsection 2.2.3 we introduce the main player of our study, namely Newton–Okounkov
bodies. We will review some properties, in particular in the surface case. We will finally
define Newton–Okounkov functions in Subsection 2.2.4 and list some of their properties.

We work over an algebraically closed field K. Although no arguments depend on
characteristic zero, for convenience we will assume K = C.

2.2.1 Positivity

In this section we will recall basic facts about positivity of divisors and associated
criteria and fix notation. For more details and proofs see for example [Laz04, Chapters
1 and 2], [Har77, Chapter II.6] or [Smi+04].
Let X be a projective variety of dimension n with function field C(X). A divisor D on X
will always assumed to be a Cartier divisor if not mentioned otherwise and the group
of Cartier divisors is denoted by CDiv(X). To a Cartier divisor D one can associate
the sheaf L = OX(D) which is the sheaf of sections of a line bundle VL → X, which
we will denote by L for short. Let h0(X,OX(D)) for that denote the dimension of
H0(X,OX(D)) which is the vector space of global sections.

We will often consider divisors with rational or real coefficients, meaning elements of

CDiv(X)Q := CDiv(X)⊗Z Q, and CDiv(X)R := CDiv(X)⊗Z R.

The properties of divisors with Z-coefficients, that we are interested in, extend in a
natural way. Two divisors D and D′ are called linearly equivalent, denoted by D ∼ D′,
if their difference is a principal divisor and numerically equivalent, written D ≡ D′, if
D.C = D′.C for all irreducible curves C ⊆ X. Note, that linear equivalence implies
numerical equivalence. The group of numerical equivalence classes of integral Cartier
divisors is called the Néron–Severi group and is denoted by N1(X) := CDiv(X)/ ≡. The
associated real vector space N1(X)R := (CDiv(X)/ ≡)⊗Z R is called the Néron–Severi
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space. Inside this space there exist some interesting subsets of divisors with certain
properties which we will define in the following.

Let L be a line bundle on X. Then the set of global sections H0(X, L ) is a finite
dimensional K-vector space. Let {s0, . . . , sd} be a basis of the complete linear system
|L |. This determines a rational map

X → Pd

x 7→ [s0(x) : . . . : sd(x)] . (2.2.1)

Definition 2.2.1. Let X be a projective variety. A line bundle L on X is called

1. very ample if the map defined in (2.2.1) is an everywhere defined morphism that
defines an isomorphism onto its image, and

2. ample if L ⊗k is very ample for some multiple k > 0.

A Cartier divisor D on X is called (very) ample if the associated line bundle OX(D) is
(very) ample.

The definition suggests to consider global sections of all multiples of a line bundle at
the same time. The construction of Newton–Okounkov bodies will take this idea into
account. There are several criteria to decide whether a given divisor is (very) ample.

Theorem 2.2.2 ([Laz04, Nakai–Moishezon–Kleinman criterion, Theorem 1.2.23]). Let
D be a Cartier divisor on a projective variety X. Then D is ample if and only if

Ddim(Z).Z > 0

for every positive-dimensional irreducible subvariety Z ⊆ X.

In particular, this means that ampleness is a numerical property, saying that if D and
D′ are numerically equivalent Cartier divisors on X, then D is ample if and only if D′

is [Laz04, Corollary 1.2.24].

In the case of surfaces this criterion becomes easier to check.

Theorem 2.2.3 ([Har77, Chapter V, Theorem 1.10]). Let D be a divisor on a surface
X. Then D is ample if and only if

D.D > 0 and D.C > 0

for all irreducible curves C in X.

Another important definition is the following.
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Definition 2.2.4. Let X be a complete variety. A Cartier divisor D on X is called
numerically effective or nef, if for all irreducible curves C ⊆ X we have

D.C ≥ 0.

Note, that being nef is again a numerical property. By definition, any ample class is nef
and the sum of two nef classes is again nef. The construction of Newton–Okounkov
bodies requires that the given divisor has ‘many global sections’. This is made precise
in the next definition.

Definition 2.2.5. Let X be an irreducible projective variety of dimension n, and let L
be a line bundle on X. The volume of L is defined to be the non-negative real number

vol(L ) = volX(L ) := lim sup
k→∞

h0(X, L ⊗k)

kn/n!
. (2.2.2)

The volume vol(D) of a Cartier divisor is defined by passing to OX(D). A divisor is
called big if vol(D) > 0.

It turns out that bigness also only depends on the numerical equivalence class [Laz04,
Corollary 2.2.8]. For nef divisors it has a particularly nice characterization. If D is nef,
then vol(D) is its top-self-intersection [Laz04, Equation (2.9)].

Theorem 2.2.6 ([Laz04, Theorem 2.2.16]). Let D be a nef divisor on an irreducible
projective variety X of dimension n. Then D is big if and only if for its top self-
intersection we have (Dn) > 0.

The criteria that involve the intersection product justify to consider the respective
properties inside Néron–Severi space. This is captured by the following definition.

Definition 2.2.7. Let X be a complete variety. The ample cone

Amp(X) ⊆ N1(X)R

of X is the convex cone of all ample R-divisor classes on X. The nef cone

Nef(X) ⊆ N1(X)R

of X is the convex cone of all nef R-divisor classes. The big cone

Big(X) ⊆ N1(X)R

of X is the convex cone of all big R-divisor classes on X. The pseudo-effective cone

Eff(X) ⊆ N1(X)R

is the closure of the convex cone spanned by the classes of all effective R-divisors. A
divisor is called pseudo-effective if its class lies in the pseudo-effective cone.
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2.2.2 Toric Varieties

Since we will mostly consider the case of toric varieties, we review some basic results
and fix notation regarding toric varieties and divisors, in particular on the interplay
between algebraic geometry and combinatorics. We will mainly follow the conventions
used in [CLS11] which gives a broad introduction to toric varieties.

A toric variety is an irreducible variety X containing a torus T ∼= (C∗)n as a Zariski
open subset such that the action of T on itself extends to an algebraic action of T

on X, that is a morphism T× X → X. We want X to be an n-dimensional smooth
projective toric variety. Then X = XΣ is determined by a complete unimodular fan Σ in
NR = N ⊗Z R ∼= Rn, where N ∼= Zn denotes the underlying lattice of one-parameter
subgroups. Its dual, the lattice of characters χ, is denoted by M = HomZ(N, Z) and
the associated vector space by MR = M⊗Z R.

Let Σ(i) denote the set of i-dimensional cones of Σ. Each ray ρ ∈ Σ(1) is deter-
mined by a primitive ray generator uρ ∈ N. Since Σ is unimodular, the primitive ray
generators of each maximal cone σ ∈ Σ form a basis of N. The affine toric patches will
be denoted by Uσ for σ ∈ Σ. There is a bijective correspondence between cones σ ∈ Σ
and T-orbits in X. For a cone σ ∈ Σ we denote its corresponding orbit closure by V(σ).

For a strongly convex rational polyhedral cone τ in NR, let Nτ be the sublattice of N
spanned by points in N ∩ τ, then we denote the quotient lattice by N(τ) = N/Nτ. Let
Σ be a fan in NR and τ ∈ Σ. We consider the quotient map NR → N(τ)R and denote
by σ the image of a cone σ ∈ Σ containing τ. Then

star(τ) := {σ ⊆ N(τ)R : τ � σ ∈ Σ}

is a fan in N(τ)R.

There is again a toric variety associated to this fan. Let P ⊆ MR be a full-dimensional
lattice polytope with normal fan ΣP and associated toric variety XP. Then each face
F � P corresponds to a cone σF ∈ ΣP. According to Propositions 3.2.7 and 3.2.9
in [CLS11] we obtain the isomorphisms

Xstar(σF)
∼= V(σF) ∼= XF

between the resulting varieties, where XF is the variety that is associated to the lattice
polytope F.

2.2.2.1 Divisors on Toric Varieties

Since X is smooth, a divisor D is a Weil divisor if and only if it is a Cartier divisor,
i.e., Pic(X) = Cl(X). Due to the orbit-cone-correspondence, a ray ρ ∈ Σ(1) gives
a codimension 1 orbit whose closure V(ρ) is a torus-invariant prime divisor on X
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which we denote by Dρ. Let KX = −∑ρ∈Σ(1) Dρ denote the canonical divisor on X. A
torus-invariant divisor D = ∑ρ∈Σ(1) aρDρ on X determines a polyhedron

PD :=
{

m ∈ MR : 〈m, uρ〉 ≥ −aρ for all ρ ∈ Σ(1)
}

, (2.2.3)

which is actually a polytope, since Σ is complete.

Furthermore, we can describe a Cartier divisor D = ∑ρ∈Σ(1) aρDρ in terms of its support
function SFD : |Σ| → R, which is linear on each σ ∈ Σ and satisfies SFD(uρ) = −aρ for
all ρ ∈ Σ(1). Additionally, a Cartier divisor is determined by its Cartier data {mσ}σ∈Σ,
where the mσ ∈ M satisfy D|Uσ = div(χ−mσ)|Uσ for all σ ∈ Σ. The vector space of global
sections arises from the characters for the lattice points inside the polytope, namely

H0(X,OX(D)) =
⊕

m∈PD∩M

C · χm. (2.2.4)

2.2.2.2 Intersection Product and Positivity on Toric Varieties

Intersection products on toric varieties are given in combinatorial terms if the curve is
torus-invariant, according to Proposition 6.3.8 in [CLS11]. More precisely, let C = V(τ)
be the complete torus-invariant curve in XΣ, coming from the wall τ = σ ∩ σ′ ∈ Σ(n− 1)
with σ, σ′ ∈ Σ(n). Let D be a Cartier divisor with Cartier data mσ, mσ′ ∈ M correspond-
ing to σ, σ′. Also pick u ∈ σ′ ∩ N that maps to the minimal generator of σ′ ⊆ N(τ)R.
Then

D.C = 〈mσ −mσ′ , u〉 ∈ Z. (2.2.5)

For a smooth complete toric surface XΣ the intersection number D.C is defined for all
divisors D, C. Let Dρ be the divisor corresponding to the ray ρ = cone(uρ) which is the
intersection of two 2-dimensional cones cone(uρ, u1) and cone(uρ, u2) in Σ. Then due
to Theorem 10.4.4 in [CLS11] we have

1. Dρ.Dρ = −λ, where u1 + u2 = λuρ.

2. For a divisor Dρ′ 6= Dρ, we have

Dρ′ .Dρ =

1 if ρ′ = cone(ui) with i ∈ {1, 2}

0 otherwise.
(2.2.6)

A lot of properties of the divisor D can be read off the polytope PD in the following
sense. Let D = ∑ρ∈Σ(1) aρDρ be a Cartier divisor on a complete toric variety X of
dimension n. Then D is big if and only if the polytope PD is full-dimensional, i.e.,
dim(PD) = n.
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Theorem 2.2.8 ([CLS11, Proposition 6.1.10, Theorem 6.1.15, and Theorem 6.3.13]).
Let XΣ be a complete toric variety associated to the fan Σ and let D be a Cartier divisor
on X. Then the following holds.

1. Let Σ be smooth. Then D is ample if and only if it is very ample.

2. (Toric Kleinman criterion) D is ample if and only if D.C > 0 for all torus-invariant
irreducible curves C ⊆ XΣ.

3. D is ample if and only if the normal fan ΣPD coincides with the fan Σ.

Let D be an ample divisor on X with corresponding polytope PD. Then for each vertex
p ∈ vert(PD) the primitive vectors mp

1 , . . . , mp
n in its adjacent edge directions are a lattice

basis for the lattice M and therefore specify an associated coordinate system of the
space MR.

There is again a criterion in terms of the corresponding polytope to decide, whether a
given divisor is nef.

Theorem 2.2.9 ([CLS11, Theorem 6.3.12]). Let D be a Cartier divisor on a toric
variety XΣ whose fan Σ has convex support of full dimension. Then we have the
following.

1. D is nef if and only if D.C ≥ 0 for all torus-invariant irreducible complete curves
C ⊆ X.

2. Let D = ∑ρ∈Σ(1) aρDρ and PD the corresponding polytope. Then D is nef if
and only if the fan Σ refines the normal fan ΣPD of the polytope PD and if all
inequalities are tight, i.e., for all ρ ∈ Σ(1) there exists a point m ∈ PD such that
〈m, uρ〉 = −aρ.

Note that the characterization of tight inequalities for nefness is sufficient for surfaces
but does not apply in higher dimensions in general.

2.2.3 Newton–Okounkov Bodies

The rich theory of toric varieties provides a very useful dictionary between algebraic
geometry and convex geometry. It turns out that there is a one-to-one correspondence
between the following sets, see Theorem 6.2.1 in [CLS11].

{P ⊆ MR : P is a full-dimensional lattice polytope}
l

{(XΣ, D) : Σ is a complete fan in NR, D a torus-invariant ample divisor on XΣ}

This allows us to translate questions about algebro-geometric properties of the pair
(XΣ, D) into questions about PD on the polytopal side and the other way round. In the
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90’s in [Oko96], Okounkov laid the groundwork to generalize this idea to arbitrary
projective varieties motivated by questions coming from representation theory. Based
on that, Lazarsfeld–Mustaţă [LM09] and Kaveh–Khovanskii [KK12] independently
developed a systematic theory of Newton–Okounkov bodies about ten years later. It
lets us assign a convex body to a given pair (X, D) that captures much of the asymptotic
information about its geometry.

We review the construction of Newton–Okounkov bodies and will hereby mostly
follow the approach and notation in [LM09].

Let X be an irreducible projective variety of dimension n. We fix an admissible flag

Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn

of irreducible subvarieties, where admissible requires that codimX(Yi) = i for all
0 ≤ i ≤ n, and that Yi is smooth at the point Yn for all 0 ≤ i ≤ n.

Additionally, let D be a big Cartier divisor on X and L = OX(D) the associated
big line bundle.

We define a valuation-like map

val = valY• : H0(X,OX(kD)) \ {0} → Zn

s 7→ (val1(s), . . . , valn(s))

for any k ∈ Z≥1 in the following way. Given a global section s ∈ H0(X,OX(kD)) \ {0}
set

val1 = val1(s) := ordY1(s).

More explicitly, since Y0 = X is smooth at Yn, there exists an open neighborhood B0 of
Yn in which Y1 is a Cartier divisor. Let f1 denote its locally defining regular function
and let g1 be the regular function that locally defines s. Then ordY1(s) is the maximal
integer j such that f j

1 divides g1. This determines a section

s̃1 ∈ H0(X,OX(kD− val1 Y1))

which does not vanish identically along Y1. Therefore its restriction yields a non-zero
section

s1 ∈ H0(Y1,OY1(kD− val1 Y1)) (2.2.7)

that is locally given as g1

f val1
1

|Y1 in terms of regular functions. Next, choose a suitable

open set B1 on Y1 and define

val2(s) := ordY2(s1)
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in the same manner. Proceed iteratively to determine val by the successive orders of
vanishing along the subvarieties Yi, i.e.,

vali(s) := ordYi(si−1).

Having this map, we want to associate a convex body to the given data.

Definition 2.2.10. The Newton–Okounkov body ∆Y•(D) of D (with respect to the flag Y•)
is defined to be the set

∆Y•(D) :=
⋃
k≥1

1
k
{valY•(s) : s ∈ H0(X,OX(kD)) \ {0}} ⊆ Rn.

An equivalent way of defining the Newton–Okounkov body is in terms of semigroups.
Given the above data, we can associate the following semigroup to it

ΓY•(D) :=
{
(valY•(s), k) : s ∈ H0(X,OX(kD)) \ {0}, k ∈ Z≥1

}
⊆ Zn+1

≥1 .

Then the Newton–Okounkov body of D with respect to the flag Y• is given by the
level-1-slice of the following cone

∆Y•(D) := cone(ΓY•(D)) ∩ (Rn × {1}).

Example 2.2.11. We consider the Hirzebruch surface X = H1 associated to the fan in
Figure 2.1, where the torus-invariant prime divisor Di corresponds to the ray ρi ∈ Σ(1)
for 1 ≤ i ≤ 4.

Figure 2.1: The fan Σ of the first Hirzebruch surface XΣ = H1.

As an admissible flag Y• choose the curve Y1 = D1 and Y2 = D1 ∩ D2 as a smooth
point on it. Then we have a local system of coordinates x, y such that Y1 = {x = 0}
and Y2 = (0, 0). The ample divisor D = D3 + 2D4 determines a polytope PD and, due
to (2.2.4), the global sections of H0(X,OX(D)) involve the monomials 1, x, y, xy, and y2,
given in local coordinates as depicted in Figure 2.2. The global section s(x, y) = 2x+ 8xy
for instance gets mapped to (1, 0) by the map valY• , because its divisible by x, but
s1(x, y) = 2 + 8y is not divisible by y. Altogether, computing the Newton–Okounkov
body ∆Y•(D) recovers the polytope PD, which is not a coincidence.

18



2.2 background and notation

Figure 2.2: The polytope PD with the monomials corresponding to its lattice points.

2.2.3.1 Properties of Newton–Okounkov Bodies

By definition, the Newton–Okounkov body ∆Y•(D) is a convex set. Lemma 1.11

in [LM09] states that it is also bounded and therefore compact. The construction
preserves an important invariant.

Theorem 2.2.12 ([LM09, Theorem 2.3]). Let D be a big divisor on a projective variety
X of dimension n. Then

n! · volRn(∆Y•(D)) = vol(D), (2.2.8)

in particular, the volume of the Newton–Okounkov body is independent of the flag
Y•.

Moreover, we will make use of the following properties.

Proposition 2.2.13 ([LM09, Proposition 4.1]). Let X be an irreducible projective
variety of dimension n, and fix any admissible flag Y•. Let D be a big divisor on X.

1. The Newton–Okounkov body ∆Y•(D) depends only on the numerical equiva-
lence class of D.

2. For any integer k > 0, one has

∆Y•(kD) = k · ∆Y•(D).

Note, that 2. justifies to extend to definition of Newton–Okounkov bodies to Q-divisors
and combined with 1. to also have the notion of ∆Y•([D]) for a divisor class from
N1(X)Q. Using a continuity argument, the definition is extended even further to
N1(X)R in [LM09].

2.2.3.2 Newton–Okounkov Bodies on Surfaces

Given the data X, Y•, and D, there is no straight forward way to compute the corre-
sponding Newton–Okounkov body that works in general. For the case of surfaces,
the existence of Zariski decomposition plays the key role for a promising approach.
In its original form it goes back to Zariski [Zar62], where he gave a way to uniquely
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decompose a given effective Q-divisor D into a positive part D+ and a negative part
D−. This result was reproved by Bauer [Bau09] and also Fujita provided an alternative
proof in [Fuj79] which also extends to pseudo-effective R-divisors. Here we review the
statement in its most general form.

Theorem 2.2.14 ([KMM87, Theorem 7.3.1]). Let D be a pseudo-effective R-divisor
on a smooth projective surface X. Then there exists a unique effective R-divisor

D− =
`

∑
i=1

aiNi

such that

1. D+ = D− D− is nef,

2. D− is either zero or its intersection matrix (Ni.Nj)i,j is negative definite,

3. D+.Ni = 0 for i ∈ {1, . . . , `}.

Furthermore, D− is uniquely determined as a cycle by the numerical equivalence class
of D; if D is a Q-divisor, then so are D+ and D−. The decomposition

D = D+ + D−

is called the Zariski decomposition of D.

The above theorem provides a decomposition D = D+ + D− for a given divisor D.
To receive information about the shape of the resulting Newton–Okounkov body, it
is important to know how that decomposition varies once we perturb the divisor.
This variation of Zariski decomposition has for instance been explored in [BKS04],
see also [KL18, Chapter 2]. It turns out that the big cone Big(X) has a locally finite
decomposition into locally rational polyhedral chambers such that the support of the
negative part D− is constant on each individual chamber.

Let C = Y1 denote the curve in the flag. Start at D, move in direction of −C to-
wards the boundary of the big cone Big(X) and keep track of the variation of the
Zariski decomposition of Dt := D − tC, when increasing t ≥ 0. The next theorem
is a fundamental result that applies this procedure in order to compute the Newton–
Okounkov body ∆Y•(D).
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Theorem 2.2.15 ([LM09, Theorem 6.4]). Let X be a smooth projective surface, D
a big divisor (or more generally, a big divisor class), and Y• : X ⊇ C ⊇ {z} an
admissible flag on X. Then there exist continuous functions α, β : [ν, µ]→ R≥0 such
that 0 ≤ ν ≤ µ =: µC(D) are real numbers,

1. ν is the coefficient of C in D−,

2. α(t) = ordz(D−t |C),

3. β(t) = α(t) + (D+
t .C).

Then the associated Newton–Okounkov body is given by

∆Y•(D) =
{
(t, m) ∈ R2 : ν ≤ t ≤ µ, α(t) ≤ m ≤ β(t)

}
.

Moreover, α is convex, β is concave, and both are piecewise linear.

As an immediate consequence, the Newton–Okounkov body will always be a polytope
in R2. Note, that this is not true in general. In Section 6.3 in [LM09] the authors give
an example of a non-polyhedral Newton–Okounkov body living in R4.

2.2.4 Functions on Newton–Okounkov Bodies Coming from Geometric Valuations

The construction of Newton–Okounkov functions in the sense of concave transforms
of filtrations goes back to Boucksom–Chen [BC11a] and Witt-Nyström [Wit14] who
introduced them from different perspectives and in a more general way than considered
in the following. We will focus on functions coming from geometric valuations as dealt
with in [KMS13] and recall the definition restricted to that case.

Given an irreducible projective variety X, an admissible flag Y•, and a big divisor D,
let ∆Y•(D) be the corresponding Newton–Okounkov body. Let Z ⊆ X be a smooth
irreducible subvariety. Then we define a Newton–Okounkov function ϕZ in a two-step
process. A point m ∈ ∆Y•(D) is called a valuative point if

m ∈ ValY• :=
⋃
k≥1

1
k
{

valY•(s) : s ∈ H0(X,OX(kD)) \ {0}
}

.

For a valuative point m ∈ ∆Y•(D) set

ϕ̃Z : ValY• → R

m 7→ lim
k→∞

1
k

sup{t ∈ R : it exists s ∈ H0(X,OX(kD))

with valY•(s) = km, ordZ(s) ≥ t}.
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Due to Lemma 2.6 in [KMS13], the set of valuative points ValY• is dense in ∆Y•(D). For
all non-valuative points m ∈ ∆Y•(D) \ ValY• set ϕ̃Z(m) := 0. To define a meaningful
function on the whole Newton–Okounkov body, we use the concave envelope.

Definition 2.2.16. Let ∆ ⊆ Rn be a compact convex set and f : ∆ → R a bounded
real-valued function on ∆. The closed convex envelope f c of f is defined as

f c := inf{g(x) : g ≥ f and g : ∆→ R is concave and upper-semicontinuous}.

Definition 2.2.17. Define the Newton–Okounkov function ϕZ coming from the geometric
valuation associated to Z as

ϕZ : ∆Y•(D) → R

m 7→ ϕ̃c
Z(m).

Due to Lemma 4.4 in [KMS13], taking the concave envelope does not effect the values
of the underlying function ϕ̃Z(m) for valuative points m ∈ ValY• .

Computing the actual values of a Newton–Okounkov function ϕZ becomes extremely
difficult and thus the functions are not well-known even in some of the easiest cases.
In general, regarding the formal properties of ϕZ, we will make use of the following
known facts.

• ϕZ is non-negative and concave [Wit14] or [BC11a, Lemma 1.6, 1.7].

• ϕZ depends only on the numerical equivalence class of D [KMS13, Proposi-
tion 5.6].

• ϕZ is continuous if ∆Y•(D) is a polytope [KMS13, Theorem 1.1]. Note, that in
general, concavity only yields continuity on the interior and not on the boundary
of the Newton–Okounkov body.

• Since the Newton–Okounkov body ∆Y•(D) varies heavily under changing the
flag Y•, one is always interested in properties that stay invariant. The numbers

max
∆Y• (D)

ϕZ and
∫

∆Y• (D)
ϕZ

are independent of the choice of Y• [Dum+16b, Theorem 3.4] and [BC11a, Corol-
lary 1.13].

• Let π : X′ → X be a proper birational morphism. Then∫
∆Y• (D)

ϕZ =
∫

∆Y′•
(π∗D)

ϕZ,

where Y• and Y′• are arbitrary admissible flags on X and X′, respectively [KMR19,
Lemma 4.2].

22



2.2 background and notation

A fairly easy but important observation for our considerations is the following.

Lemma 2.2.18 ([KL18, Lemma 1.4.10]). Let D be an integral Cartier divisor on a
projective (not necessarily smooth) variety X and let s ∈ H0(X,OX(D)) be a non-zero
global section. Then

ordYn(s) ≤
n

∑
i=1

vali(s), (2.2.9)

for any admissible flag Y• : X = Y0 ⊇ · · · ⊇ Yn, where valY• = (val1, . . . , valn) is the
valuation map arising from Y•.

Note, that it might happen that the zero locus of the section s does not intersect an ele-
ment of the flag transversely and therefore we do not have equality in (2.2.9) in general.
In [KL18, Remark 1.4.11] the authors give an easy example of this fact. Consider the pro-
jective plane X = P2 and the admissible flag Y• : X ⊇ Y1 = {x = 0} ⊇ Y2 = [0 : 0 : 1].
Take s(x, y) = xz− y2 as a section of H0(P2,OP2(2)). Then we have

ordY2(s) = 1 < 0 + 2 = val1(s) + val2(−y2),

since Y2 is a smooth point of the zero set of s.

In our setting, Lemma 2.2.18 has the following immediate consequence. Consider the
Newton–Okounkov body ∆Y•(D) with respect to the big divisor D and the admissible
flag Y• : X ⊇ Y1 ⊇ · · · ⊇ Yn . Whenever we consider the function ϕYn coming from the
geometric valuation ordYn of the point Yn in the flag Y•, then it is bounded from above
by the sum of coordinates, i.e.,

ϕYn : ∆Y•(D) → R

(m1, . . . , mn) 7→ ϕYn(m1, . . . , mn) ≤ m1 + · · ·+ mn. (2.2.10)

There are plenty of examples for which the inequality in (2.2.10) is strict.

Example 2.2.19. Consider for instance the situation from Example 2.2.11, namely the
Hirzebruch surface X = H1 with big divisor D = D3 + 2D4 on X. Choose the flag
Y• : X ⊇ Y1 ⊇ Y2, where Y1 is the curve given by the binomial Y1 = {xy−2 − 1 = 0} in
local coordinates and Y2 is a generic point on Y1. Similar computations to the ones in
Example 2.2.11 show that the Newton–Okounkov body ∆Y•(D) is the polytope depicted
in Figure 2.3. We are interested in the function ϕ coming from ordY2 on ∆Y•(D) that
measures the maximal order of vanishing in the center Y2 of the flag. Assuming that
ϕ(a, b) = a + b for all (a, b) ∈ ∆Y•(D) yields

∫
∆Y• (D) ϕ = 2 for its integral. But we will

see later in Example 2.4.13, that we actually have
∫

∆Y• (D) ϕ = 11
6 < 2. This implies

ϕ(a, b) < a + b for some (a, b) ∈ ∆Y•(D).
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Figure 2.3: The Newton–Okounkov body ∆Y•(D) for the choice Y1 = {xy−2 − 1 = 0}.

2 .3 zariski decomposition for toric varieties in combinatorial terms

The focus of this section is the determination of Newton–Okounkov bodies in the
toric case. For that we will first review the key-correspondence between the Newton–
Okounkov body and the polytope associated to a torus-invariant divisor and give an
interpretation in terms of Newton polytopes. Then we give a combinatorial way to
find a torus-invariant representative for a class of certain divisors, see Proposition 2.3.1.
This leads to a combinatorial version of Zariski decomposition for the toric case, see
Theorem 2.3.3. Building on this, we illustrate a combinatorial way to define a piecewise
linear isomorphism between the involved Newton Okounkov bodies, when changing to
a non-invariant flag on a toric surface, see Subsection 2.3.1, in particular Corollary 2.3.8.

Given a smooth projective toric variety X of dimension n, a torus-invariant flag Y•, and
a big divisor D, then the construction of the Newton–Okounkov body ∆Y•(D) recovers
the polytope PD by Proposition 6.1 in [LM09]. This can be seen as follows.

Let Dρ1 , . . . , Dρd denote the torus-invariant prime divisors. Since the flag Y• is torus-
invariant, we can assume an ordering of the divisors such that the subvarieties in the
flag are given as Yi = Dρ1 ∩ · · · ∩ Dρi for 1 ≤ i ≤ n. The divisor ∑d

i=1 Dρi has simple
normal crossings, hence the orders of vanishing of a section s ∈ H0(X,OX(D)) that has
∑d

i=1 aρi Dρi as its divisor of zeros can be directly read off as valY•(s) = (aρ1 , . . . , aρn).

The underlying fan Σ is smooth and thus the primitive ray generators uρ1 , . . . , uρn ∈ N
span a maximal cone σ and form a basis of the lattice N. This gives an isomorphism
N ∼= Zn and the dual isomorphism is given by

Φ : M → Zn

m 7→ (〈m, uρi〉)1≤i≤n, (2.3.1)

which extends linearly to the map ΦR : MR

∼=−→ Rn.

The Newton–Okounkov body remains the same if one changes the divisor D within its
linear equivalence class. Hence we can assume D|Uσ = 0, i.e., if the divisor is given as
D = ∑ρ∈Σ(1) aρDρ, then we have aρ = 0 for all ρ ∈ σ(1).
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The characters χm of points m in PD are exactly the characters of T that extend to
sections of OX(D) on X and according to (2.2.4) the characters associated to the lattice
points of PD form a basis of the vector space of global sections. Given a lattice point
m ∈ PD ∩M its associated character χm has divisor of zeros D + ∑d

i=1〈m, uρi〉Dρi . Thus
for ρ ∈ Σ(1) the inequality 〈m, uρ〉 ≥ −aρ reflects the condition that χm is regular at the
generic point of the divisor Dρ. Since we assumed D|Uσ = 0 this yields

valY•(χ
m) = (〈m, uρ1〉, . . . , 〈m, uρn〉) = Φ(m).

Thus
conv

({
valY•(s) : s ∈ H0(X,OX(D)) \ {0}

})
= Φ(PD ∩M). (2.3.2)

We have dim(OX(D)) = |PD ∩M|. For all k ≥ 1 it holds that PkD = kPD. This gives
∆Y•(D) = ΦR(PD).

We interpret this identification in terms of Newton polytopes. This approach will
play a key role for ‘guessing’ suitable global sections in Section 2.4. For convenience,
we assume D to be ample. Each divisor Dρ corresponds to a facet Fρ of PD and all
facets Fρ1 , . . . , Fρn intersect in a vertex pσ that is associated to σ. Assuming D|Uσ = 0
on the polytope side means to embed the polytope PD in Rn such that the vertex pσ is
translated to the origin.

Let s ∈ H0(X,OX(D)) be a global section with Newton polytope NP(s) ⊆ PD. Then
the order of vanishing of s along Y1 = Dρ1 is given by the minimal lattice distance to Fρ1 ,
that is

ordY1(s) = min
m∈NP(s)

〈uρ1 , m〉. (2.3.3)

Let F1 � NP(s) denote the face of the Newton polytope NP(s) that has minimal lattice
distance to Fρ1 . Then ordY2(s1) = minm∈F1〈uρ2 , m〉 and in general we have

ordYi+1(si) = min
m∈Fi
〈uρi+1 , m〉 (2.3.4)

for 1 ≤ i ≤ n− 1. Thus the map val sends the section s to the point m ∈ NP(s) whose
coordinates are lexicographically the smallest among all points of the Newton polytope.
A similar argument applies to k > 1. Thus we obtain ∆Y•(D) ⊆ PD. Since in particular
all the vertices p � PD correspond to respective global sections extending characters χp,
this yields PD ⊆ ∆Y•(D) and therefore PD ∼= ∆Y•(D). For our convenience we identify
PD with its image under ΦR.

As the Newton–Okounkov bodies only depend on the numerical equivalence class of
D, we can and often want to choose a torus-invariant representative. If D is given by a
defining local equation, then there is a combinatorial way to find one.
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Proposition 2.3.1. Let X be a smooth projective toric variety with associated fan
Σ, and D a divisor on X that is given by the local equation f in the torus for some
f ∈ C(X) \ {0}. Then D′ := ∑ρ∈Σ(1)−aρDρ with coefficients

aρ := min
m∈supp( f )

〈m, uρ〉 (2.3.5)

is a torus-invariant divisor that is linearly equivalent to D.

Proof. Consider the Cox ring S = C
[
xρ : ρ ∈ Σ(1)

]
which is graded by the class

group Cl(X), see Chapter 5 in [CLS11] for details. For a cone σ ∈ Σ we denote
by xσ̂ = ∏ρ/∈σ(1) xρ the associated monomial in S and by Sxσ̂ the localization of S at xσ̂.
Applying Lemma 2.2 in [Cox95] to the {0}-cone σ0 ∈ Σ gives an isomorphism of rings

C [M] = C
[
σ∨0 ∩M

] ∼= (Sxσ̂0 )0 ,

where xσ̂0 = ∏ρ xρ and (Sxσ̂0 )0 is the graded piece of degree 0.

Given a lattice point m ∈ M, the character χm is homogenized to the monomial

x〈m〉 = ∏ρ x〈m,uρ〉
ρ by the corresponding map θ : C [M] → (Sxσ̂0 )0. Thus homogenizing

f = ∑m∈supp( f ) bmχm ∈ C [M] yields

f̃ = θ( f ) = θ

 ∑
m∈supp( f )

bmχm

 = ∑
m∈supp( f )

bm ∏
ρ

x〈m,uρ〉
ρ =

g(
∏ρ xρ

)k

for some homogeneous g ∈ S and some k ∈ Z≥1. We can rewrite this as

f̃ =
g(

∏ρ xρ

)k = ∏
ρ

xρ
aρ · h (2.3.6)

for h ∈ S coprime with ∏ρ xρ and uniquely determined aρ ∈ Z.

Since f̃ is homogeneous of degree 0, it gives a rational function on X and we have
0 ∼ div( f̃ ) = div

(
∏ρ xρ

aρ

)
+ div (h). On the torus the zero sets of f and h agree.

Since h is coprime with xρ for all ρ ∈ Σ(1), it has no zeros or poles along the boundary
components. Altogether we have

D = div (h) ∼ div

(
∏

ρ

xρ
−aρ

)
=: D′.

Then D′ is torus-invariant by construction. It remains to show, that the coefficients aρ

from Equation (2.3.6) satisfy Equation (2.3.5). To see that, note, that the homogenization
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of f consists of summands of the form bm ∏ρ x〈m,uρ〉
ρ , where we sum over m ∈ supp( f ).

But h is an element of the Cox ring and it is supposed to be coprime with ∏ρ xρ.
Therefore, to obtain the expression in Equation (2.3.6), we have to bracket the factor
xj

ρ for j maximal that is a common factor of all the summands for each ρ ∈ Σ(1). The
maximal j is precisely

aρ = min
m∈supp( f )

〈m, uρ〉

as claimed.

We give an example to illustrate the proof of Proposition 2.3.1.

Example 2.3.2. We consider the Hirzebruch surface X = H1 as in Example 2.2.11 and
work with the divisor

D = {(x, y) ∈ T : f (x, y) = xy−2 − 1 = 0}.

Then the Cox ring is given by S = C [x1, x2, x3, x4] = C
[
x, y, x−1, x−1y−1], where we

write xi for xρi . Homogenizing f yields

θ( f ) = ∑
m∈supp( f )

bm ∏
ρ

x〈m,uρ〉
ρ = x1

1x−2
2 x−1

3 x1
4 − 1

=
g(

∏ρ xρ

)k =
x3

1x3x3
4 − x2

1x2
2x2

3x2
4

(x1x2x3x4)2

= ∏
ρ

xρ
aρ · h = x−2

2 x−1
3 · (x1x4 − x2

2x3)

with exponents aρ1 = aρ4 = 0, aρ2 = −2, and aρ3 = −1 and h = x1x4 − x2
2x3 is coprime

with x1x2x3x4. The same coefficients are obtained using Proposition 2.3.1.

aρ1 = min(〈(0, 0), (1, 0)〉, 〈(1,−2), (1, 0)〉) = 0,
aρ2 = min(〈(0, 0), (0, 1)〉, 〈(1,−2), (0, 1)〉) = −2,
aρ3 = min(〈(0, 0), (−1, 0)〉, 〈(1,−2), (−1, 0)〉) = −1,
aρ4 = min(〈(0, 0), (−1,−1)〉, 〈(1,−2), (−1,−1)〉) = 0.

Thus D′ = ∑ρ∈Σ(1)−aρDρ = 2D2 + D3 is a torus-invariant divisor which is linearly
equivalent to D.

With Proposition 2.3.1 in hand, we can provide a combinatorial proof for the existence
and uniqueness of Zariski decomposition for smooth toric surfaces independently of
Theorem 2.2.14.
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Theorem 2.3.3. Let X be a smooth projective toric surface associated to the fan Σ
and let D be a pseudo-effective torus-invariant R-divisor on X. Then there exists a
unique effective R-divisor

D− =
`

∑
i=1

ciNi

such that

1. D+ = D− D− is nef,

2. D− is either zero or its intersection matrix (Ni.Nj)i,j is negative definite, and

3. D+.Ni = 0 for i ∈ {1, . . . , `}.

If D is a Q-divisor, then so are D+ and D−.

For the proof we will need the following Lemma.

Lemma 2.3.4. Let X be the toric surface associated to the fan Σ. Let D0, . . . , Dk+1
be torus-invariant prime divisors with adjacent associated primitive ray generators
u0, . . . , uk+1 ∈ R2 such that cone(u0, uk+1) is pointed and u1, . . . , uk ∈ cone(u0, uk+1).
Then

det((−Di.Dj)1≤i,j≤k) = det(u0, uk+1). (2.3.7)

Proof. By (2.2.6) the intersection numbers of the torus-invariant prime divisors D1, . . . , Dk
are given as

• Di.Di = −λi, where ui−1 + ui+1 = λiui

• and for i 6= j as

Di.Dj =

1 if ρi and ρj are adjacent

0 otherwise.

Thus the intersection matrix is of the form

Ak := (−Di.Dj)1≤i,j≤k =



λ1 −1 0 · · · · · · 0
−1 λ2 −1 0 · · · 0

0
. . . . . . . . . · · · 0

0 · · · . . . . . . . . . 0
0 · · · 0 −1 λk−1 −1
0 · · · · · · 0 −1 λk


. (2.3.8)
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We will prove by induction on k that (2.3.7) holds.
Base case: For k = 1 we have

det(u0, u2) = u(1)
0 u(2)

2 − u(2)
0 u(1)

2

= λ1

(
u(1)

0 u(2)
1 − u(2)

0 u(1)
1

)
= λ1,

since Σ is smooth. A similar computation applies to k = 2.
Induction step: Let k ≥ 3 be given and suppose (2.3.7) is true for all integers smaller
than k. Note that the determinant of the tridiagonal matrix Ak fulfills a particular
recurrence relation, since it is an extended continuant. The recurrence relation is given
by

det(A0) = 0 , det(A1) = 1 , and det(Ak) = λk det(Ak−1)− det(Ak−2).

Thus we have

det(Ak) = λk det(Ak−1)− det(Ak−2)
IH
= λk det(u0, uk)− det(u0, uk−1)

= det(u0, λkuk − uk−1)

= det(u0, uk+1)

as claimed.

Proof of Theorem 2.3.3. Since D is torus-invariant, it is given as D = ∑ρ∈Σ(1) aρDρ. We
can assume, that D is effective, i.e., aρ ≥ 0 for all ρ ∈ Σ(1). This defines the polygon

PD =
{

m ∈ MR : 〈m, uρ〉 ≥ −aρ for all ρ ∈ Σ(1)
}

.

Let ãρ ∈ R be the coefficients such that

PD =
{

m ∈ MR : 〈m, uρ〉 ≥ −ãρ for all ρ ∈ Σ(1)
}

and all the inequalities are tight on PD, i.e., for every ρ ∈ Σ(1) there exists some point
m ∈ PD such that 〈m, uρ〉 = −ãρ.

Set D+ := ∑ρ∈Σ(1) ãρDρ and D− := ∑ρ∈Σ(1)(aρ − ãρ)Dρ. Then

D = ∑
ρ∈Σ(1)

aρDρ = D+ + D−

and (aρ − ãρ) ≥ 0 by definition. We now show that the divisors satisfy 1.-3.

1. Since X is a surface, the divisor D+ is nef by construction due to Theorem 2.2.9.
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2. Let Dρ be a curve with Dρ.Dρ ≥ 0 for some ρ ∈ Σ(1). There exists a vector v ∈ M
such that v is orthogonal to uρ′ and 〈v, uρ〉 < 0, where ρ′ is a ray adjacent to
ρ. Then the inequality corresponding to ρ is tight on PD, i.e., aρ = ãρ, because
otherwise the polytope PD would be unbounded in the direction of v. Thus only
negative curves will appear in D−.

The matrix (Ni.Nj)i,j is negative definite if all leading principal minors of
(−Ni.Nj)i,j are positive. Label the negative curves that appear in the nega-
tive part D− as {N1, . . . , N`} in such a way that adjacent rays are given con-
secutive indices counter-clockwise. Then the intersection matrix (Ni.Nj)i,j is a
block matrix, where each block is of the form (2.3.8) as in Lemma 2.3.4. Let
{N1, . . . , Nk} ⊆ {N1, . . . , N`} be adjacent negative curves that form a sub block
(−Ni.Nj)1≤i,j≤k of the matrix (−Ni.Nj)1≤i,j≤` and denote by C0 and Ck+1 the
remaining curves whose rays are adjacent to ρ1 and ρk as indicated in Figure 2.4.

Figure 2.4: Adjacent rays ρ0, . . . , ρk+1 of the prime divisors C0, . . . , Ck+1.

For the ray generators we have u1, . . . , uk ∈ cone(u0, uk+1) and that cone(u0, uk+1)
is convex, for otherwise the polytope PD would be unbounded in the direction of
v′, where v′ ∈ M is chosen to be orthogonal to u0 and fulfill 〈v′, uk+1〉 > 0.

Thus it remains to show that the determinant of each such sub block matrix
is positive. According to Lemma 2.3.4 we have

det(−Ni.Nj)1≤i,j≤k = det(u0, uk+1).

Let u0 = (m1, m2) and uk+1 = (m′1, m′2), and assume without loss of generality
that m1 > 0. Since cone(u0, uk+1) is convex and u1, . . . , uk ∈ cone(u0, uk+1), we
have m′2 > m2

m1
m′1, because otherwise the polytope PD would be unbounded. It

follows that

det(u0, uk+1) = det

(
m1 m′1
m2 m′2

)
= m1m′2 −m′1m2 > 0.
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2.3 zariski decomposition

A similar argument works for m1 ≤ 0. Thus altogether, we have that (Ni.Nj)i,j
is negative definite, since all sub block matrices of (−Ni.Nj)i,j have a positive
determinant.

3. Let ρ ∈ Σ(1) be a ray for which Dρ appears in the negative part D− of the
decomposition. Then by construction of D+ its corresponding face Fρ � PD+ is a
vertex. Using (2.2.5) it follows that

D+.Dρ = |Fρ ∩M| − 1 = 0,

when PD is a lattice polytope. A similar argument works in the non-integral case
using lengthM(Fρ).

The above gives the existence of a Zariski decomposition. It remains to show uniqueness
of D−. Assume we have a decomposition

D = D+
+ D− = ∑

ρ∈Σ(1)
aρDρ + ∑

ρ∈Σ(1)
(aρ − aρ)Dρ.

Since D− is supposed to be effective and D+ is supposed to be nef which translates
into only tight inequalities for PD+ , we have aρ ≤ ãρ for all ρ ∈ Σ(1). Let ρ ∈ Σ(1) be

the ray of a divisor Dρ that appears in the negative part D−. Then as argued before
this has to be a negative curve. But due to 3. the corresponding face Fρ of PD+ has to

be a vertex and therefore it follows that aρ = ãρ. This yields uniqueness of D−.

2.3.1 The ‘Tilting-Isomorphism’ for Newton-Okounkov Bodies

Although, we can always assume the divisor D to be torus-invariant, the shape of the
Newton–Okounkov body ∆Y•(D) will heavily depend on the flag Y• which on the other
hand is not necessarily torus-invariant. If the curve Y1 in the flag is determined by
an equation of the form xv − 1 = 0 for some primitive v ∈ Z2, then we can give a
combinatorial way to compute ∆Y•(D).

Proposition 2.3.5. Let X be a smooth projective toric surface, D a big divisor, and
Y• : X ⊇ C ⊇ {z} an admissible flag on X, where the curve is C = {x ∈ T : xv = 1}
for some primitive v ∈ Z2 and z a general smooth point on C. Then the associated
function β(t) in Theorem 2.2.15 is given by

β(t) = (D− tC)+.C (2.3.9)
= (D− tC′)+.C (2.3.10)

= MV
(

P(D−tC′)+ , NP(xv − 1)
)

(2.3.11)

= MV (PD ∩ (PD + tv), NP(xv − 1)) (2.3.12)

for 0 ≤ t ≤ µ, where C′ is a torus-invariant curve that is linearly equivalent to C.
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Proof. Since the Newton–Okounkov body only depends on the numerical equivalence
class, we may assume that the divisor D is torus-invariant, i.e., D = ∑ρ∈Σ(1) aρDρ, where
Σ is the fan associated to X.

From Theorem 2.2.15 we know that β(t) = (D− tC)+.C for ν ≤ t ≤ µ, where (D− tC)+

is the positive part of the Zariski decomposition of D− tC and for C not part of
(D− tC)− we have ν = 0. Theorem 2.2.14 states that the decomposition is unique up
to the numerical equivalence class of the given divisor. Let

C′ = ∑
ρ∈Σ(1)

− min
m∈supp(xv−1)

〈m, uρ〉Dρ

be the torus-invariant curve given in Proposition 2.3.1. This means C′ ∼ C and the
curves are in particular numerically equivalent which yields (2.3.10). Due to Sec-
tions 5.4/5.5 in [Ful93] the intersection product of two curves equals the mixed volume
of the associated Newton polytopes and therefore we have (2.3.11).

To verify the remaining equality, we show that

P(D−tC′)+ = PD ∩ (PD + tv)

holds up to translation. For the torus-invariant curve D− tC′ the construction of its
Zariski decomposition as in Theorem 2.3.3 guarantees the equality

P(D−tC′)+ = P(D−tC′)

for the corresponding polytopes. Consider its translation by tv, this gives

P(D−tC′) + tv

=
{

m + tv ∈ MR : 〈m, uρ〉 ≥ −
(
aρ + t ·min (0, 〈v, uρ〉)

)
for all ρ ∈ Σ(1)

}
=
{

m ∈ MR : 〈m− tv, uρ〉 ≥ −
(
aρ + t ·min (0, 〈v, uρ〉)

)
for all ρ ∈ Σ(1)

}
=
{

m ∈ MR : 〈m, uρ〉 ≥ −aρ − t ·min (0, 〈v, uρ〉) + t〈v, uρ〉 for all ρ ∈ Σ(1)
}

=
{

m ∈ MR : 〈m, uρ〉 ≥ −aρ + max (0, t〈v, uρ〉) for all ρ ∈ Σ(1)
}

.

On the other hand, we have

PD =
{

m ∈ MR : 〈m, uρ〉 ≥ −aρ for all ρ ∈ Σ(1)
}

and
PD + tv =

{
m ∈ MR : 〈m, uρ〉 ≥ −aρ + t〈v, uρ〉 for all ρ ∈ Σ(1)

}
.
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2.3 zariski decomposition

Thus their intersection is the set

PD ∩ (PD + tv)
=
{

m ∈ MR : 〈m, uρ〉 ≥ −aρ and 〈m, uρ〉 ≥ −aρ + t〈v, uρ〉 for all ρ ∈ Σ(1)
}

=
{

m ∈ MR : 〈m, uρ〉 ≥ −aρ + max (0, t〈v, uρ〉) for all ρ ∈ Σ(1)
}

.

This verifies equality in (2.3.12).

Example 2.3.6. We return to the Hirzebruch surface X = H1 from Example 2.2.11, and
consider the big divisor D = D3 + 2D4 on X. Then for any admissible torus-invariant
flag Y′• the associated Newton–Okounkov body ∆Y′•(D) coincides with a translate of
the polytope PD which can be seen in Figure 2.5.

We wish to determine the Newton–Okounkov body ∆Y•(D) given by a different flag
Y• : X ⊇ C ⊇ {z}, where C = {(x, y) ∈ T : y−1 − 1 = 0} is a non-invariant curve, and
z is a general smooth point on C. In local coordinates the curve C is given by the bi-
nomial y−1 − 1 for v = (0,−1) and has the line segment NP (C) = conv((0, 0), (0,−1))
as its Newton polytope. Using Proposition 2.3.1 we obtain the torus-invariant curve
C′ = D2 which is linearly equivalent to C.

To determine the Newton–Okounkov body we use variation of Zariski decomposition
for the divisor Dt = D− tC. To compute the upper part of the Newton–Okounkov
body in terms of the piecewise linear function β, we move a copy of the polytope PD in
the direction of v as indicated in Figure 2.5.

Figure 2.5: Moving a copy of PD in the direction of v to obtain PD ∩ (PD + tv) = P(D−tC′)+ .

The intersection PD ∩ (PD + tv) gives the polytope associated to P(D−tC′)+ . By Proposi-
tion 2.3.5 the function β is then given as

β(t) = D+
t .C = MV

(
PD ∩ (PD + t · (0,−1)), NP(y−1 − 1)

)
=

1 if 0 ≤ t ≤ 1

2− t if 1 ≤ t ≤ 2,
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toric newton–okounkov functions

where the mixed volume MV
(

PD ∩ (PD + t · (0,−1)), NP(y−1 − 1)
)

can be seen as the
area of the shaded region in Figure 2.6.

Figure 2.6: The mixed volume MV
(

PD ∩ (PD + t · (0,−1)), NP(y−1 − 1)
)
.

Since D is nef, we have ν = 0 and since z can be chosen general enough on C, we also
have α(t) ≡ 0. Therefore the Newton–Okounkov body ∆Y•(D) is the polytope shown
in Figure 2.7.

Figure 2.7: The Newton–Okounkov body ∆Y•(D).

Let us for simplicity assume that ν = 0 and that α ≡ 0. Then the Newton–Okounkov
body ∆Y•(D) is completely determined by β.

Given the polytope PD and the vector v, the procedure described in Proposition 2.3.5 to
compute the function β divides the polytope PD into chambers. In the following we
consider this process in detail. For that we introduce the following definition.

Definition 2.3.7. Let P ⊆ R2 be a 2-dimensional polytope and let v ∈ R2 be a direction.
Then we call a facet F � P sunny with respect to v if 〈v, uF〉 > 0, where uF is the inner
facet normal of F. We call the set of all sunny facets of P with respect to v the sunny
side of P with respect to v and denote it by sun(P, v).

Let sun(PD, v) be the sunny side of PD with respect to v. By construction the function
β is piecewise linear. There is a break point at time t̃ ≥ 0 if and only if there exists a
vertex p ∈ vert(PD) such that

p ∈ PD ∩ (sun(PD, v) + t̃v).
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2.3 zariski decomposition

Thus we move the sunny side sun(PD, v) along the polytope PD in the direction of v.
We start at time t0 = 0. Whenever we hit a vertex pi ∈ vert(PD) at time ti, we enter a
new chamber as indicated in Figure 2.8.

Figure 2.8: Break points p1, p2, and p3 of shifting the sunny side sun(PD, v) through PD in the
direction of v.

Then β(t) is linear in each time interval [ti, ti+1] for i ∈ Z≥0.

The other part of the chamber structure comes from inserting a wall in the direc-
tion of v for each vertex p ∈ sun(PD, v) and in the direction of −v for each vertex
p ∈ sun(PD,−v) as it can be seen in Figure 2.9.

Figure 2.9: The chamber structure on PD induced by the shifting process.

In the following, we verify that for this particular chamber structure there exists a map
between PD and ∆Y•(D) that is linear on each of the chambers.

For that, we choose a coordinate system m1, m2 for MR
∼= R2 such that v = (1, 0)

without loss of generality. Consider the polytope PD ⊆ R2 in (m1, m2)-coordinates, and
assume without loss of generality that PD lies in the positive orthant. We can write it as

PD =
{
(m1, m2) ∈ R2 : γ ≤ m2 ≤ δ, `(m2) ≤ m1 ≤ r(m2)

}
,
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for some γ, δ ∈ R and some piecewise linear functions ` and r that determine the sunny
sides sun(PD, v) and sun(PD,−v), respectively. To determine the function β using
the combinatorial approach from Proposition 2.3.5, we shift the sunny side sun(PD, v)
through the polytope as depicted in Figure 2.8. Now we want to ‘tilt the polytope
leftwards’ such that the m1-coordinate of each point in the image expresses exactly the
time at which the point in the original polytope is visited in the shifting process. This
is shown in Figure 2.10. To make this precise, map the polytope PD via

Ψleft : PD ⊆ R2 → R2

(m1, m2) 7→ (m1 − `(m2), m2).

Figure 2.10: Tilting the polytope PD leftwards via the map Ψleft.

By construction, the map Ψleft is a piecewise shearing of the original polytope and
therefore volume-preserving. Additionally, Ψleft(PD) ∩ {m1 = t} are exactly the images
of the points of PD that are visited at time t. Given m1 = t we now want to determine
β(t). According to (2.3.12) it is given by

β(t) = MV (PD ∩ (PD + tv), NP(xv − 1))
= MV (PD ∩ (sun(PD, v) + tv), NP(xv − 1))
= MV (Ψleft(PD) ∩ {m1 = t}, NP(xv − 1))
= lengthM(Ψleft(PD) ∩ {m1 = t}).

The last equation holds, since v was chosen to be (1, 0). In the last step we want to ‘tilt
the polytope downwards’ similarly to the previous process as can be seen in Figure 2.11.
Therefore we can describe the polytope Ψleft(PD) as

Ψleft(PD) =
{
(m1, m2) ∈ R2 : γ ≤ m2 ≤ δ, 0 ≤ m1 ≤ r(m2)− `(m2)

}
=

{
(m1, m2) ∈ R2 : 0 ≤ m1 ≤ δ̂, ˆ̀(m1) ≤ m2 ≤ r̂(m2)

}
,

for some δ̂ ∈ R and some piecewise linear functions ˆ̀ and r̂ that determine the bottom
and top of the polytope.
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2.3 zariski decomposition

So set

Ψdown : Ψleft(PD) ⊆ R2 → R2

(m1, m2) 7→ (m1, m2 − ˆ̀(m1)).

Figure 2.11: Tilting the polytope Ψleft(PD) downwards via the map Ψdown.

By construction this is again a piecewise shearing of the polytope and therefore volume-
preserving. The image Ψdown(Ψleft(PD)) is the subgraph of β and thus it coincides with
the Newton–Okounkov body ∆Y•(D) with respect to the new flag Y•.

The above shows the following.

Corollary 2.3.8. Let X be a smooth projective toric surface, D a big divisor, and
Y• : X ⊇ C ⊇ {z} an admissible flag on X, where the curve C is given by a binomial
xv − 1 for a primitive v ∈ Z2 and z is a general smooth point on C. Then there exists
a piecewise linear, volume-preserving isomorphism Ψ = Ψdown ◦ Ψleft between the
two Newton–Okounkov bodies PD and ∆Y•(D).

Moreover, the image under Ψ can explicitly be described in terms of measurements of
the polytope. For that we need to introduce more terminology.

Definition 2.3.9. Let P ⊆ Rn be a polytope, v ∈ Zn a primitive vector, and u ∈ v⊥

a primitive integral functional.

For a point m ∈ P we define the length of P at m with respect to v to be

length(P, m, v) := max {t ∈ R : m− tv ∈ P},

and length(P, v) is the maximal length over all m ∈ P.
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Further, we denote by Pv(m) the intersection of

P ∩ (P + length(P, m, v) · v)

with the half plane given by 〈u, ·〉 ≥ 〈u, m〉.

Figure 2.12: The feasible region in P with respect to v and u, given m ∈ P.

Observe that with the above notation Ψ(m) = (length(P, m, v), widthu(Pv(m))) for
v = (1, 0) and u = (0,−1).
Remark 2.3.10. Note, that the piecewise linear, volume-preserving isomorphism Ψ is
reminiscent of the transformation constructed in [EH19]. The authors give geometric
maps between the Newton–Okounkov bodies corresponding to two adjacent maximal-
dimensional prime cones in the tropicalization of the variety X. This can also be studied
from the perspective of complexity-one T-varieties.

2 .4 newton–okounkov functions on toric varieties

This section examines Newton–Okounkov functions in three settings. To start with,
we consider the completely toric case in Subsection 2.4.1 and show that in this case
the resulting function will be linear, see Proposition 2.4.1. This is related to a result
that identifies the subgraph of a Newton–Okounkov function as a certain Newton–
Okounkov body. We translate this relation into polyhedral language in Subsection 2.4.2.
Eventually, we return to the surface case in Subsection 2.4.3 and examine Newton–
Okounkov functions coming from the geometric valuation at a general point and give
combinatorial criteria for when we can fully determine the function, see Theorem 2.4.9,
Corollary 2.4.11 and Theorem 2.4.17.

2.4.1 The Completely Toric Case

Whenever we determine the value of a Newton–Okounkov function ϕ(m) for a point
m ∈ ∆Y•(D), we will often assume that m is a valuative point if not mentioned otherwise.
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In the case, when all the given data is toric, we can completely describe the function ϕZ,
and it even has a nice geometric interpretation.

By ‘all data toric’ we mean that X is a smooth toric variety, Y• is a flag consisting
of torus-invariant subvarieties, D is a big torus-invariant divisor on X, and Z ⊆ X
a torus-invariant subvariety.

In order to formulate and prove Proposition 2.4.1 below, we recall the combinatorics of
the blow-up πZ : X∗ → X of Z. As Z is torus-invariant, it corresponds to a cone τ ∈ Σ
of the fan. According to [CLS11, Definition 3.3.17] the fan Σ∗ in NR of the variety X∗

is given by the star subdivision of Σ relative to τ. Set uτ = ∑ρ∈τ(1) uρ, ρZ = cone(uτ),
and for each cone σ ∈ Σ containing τ, set

Σ∗σ(τ) =
{

σ′ + ρZ : τ * σ′ ⊂ σ
}

and the star subdivision of Σ relative to τ is the fan

Σ∗ = Σ∗(τ) =
{

σ ∈ Σ : τ * σ
}
∪
⋃

σ⊇τ

Σ∗σ(τ).

Then the exceptional divisor E of the blow-up πZ corresponds to the ray ρZ ∈ Σ∗, and
the order of vanishing of a section s along Z is, by definition, the order of vanishing of
π∗Z(s) along E.

The Cartier data {m∗σ∗}σ∗∈Σ∗(n) of π∗ZD is given by m∗σ∗ = mσ∗ for σ∗ ∈ Σ(n) (i.e.,
σ∗ 6⊇ ρZ), and m∗σ∗ = mσ for σ∗ ∈ Σ∗σ(τ)(n).

Proposition 2.4.1. Let X be an n-dimensional smooth projective toric variety
associated to the unimodular fan Σ in NR. Furthermore, let Y• be an admissible
torus-invariant flag and D a big torus-invariant divisor on X with resulting Newton–
Okounkov body ∆Y•(D).

Let Z ⊆ X be an irreducible torus-invariant subvariety. Then the geometric val-
uation ordZ yields a linear function ϕZ on ∆Y•(D). More explicitly, it is given by

ϕZ : ∆Y•(D)→ R

m 7→ 〈m−mτ, uτ〉,

where mτ := mσ is part of the Cartier data {mσ}σ∈Σ(n) of D for any cone σ ∈ Σ
containing τ.

This function ϕZ measures the lattice distance of a given point m in the Newton–
Okounkov body to the hyperplane with equation 〈m, uτ〉 = 〈mτ, uτ〉. If D is ample this
is the lattice distance to a face of ∆Y•(D).
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Proof. Since the flag Y• and the divisor D are torus-invariant, the resulting Newton–
Okounkov body ∆Y•(D) coincides with a translate of the polytope PD.

We consider the blow-up πZ : X∗ → X of Z. Let Y∗• denote the proper transform
of Y• on X∗. The pullback π∗ZD of the given divisor D determines a polytope Pπ∗Z D
and by construction we have PD ∼= Pπ∗Z D. To embed the Newton–Okounkov body
∆Y∗• (π

∗
ZD) ∼= Pπ∗Z D in Rn we have to fix a trivialization of the line bundle. Fix the

origin 0 of Rn to be mτ. If mτ ∈ Pπ∗Z D, this means that the corresponding character χ0

is identified with a global section s of OX∗(π
∗
ZD) that does not vanish along Z.

Then according to [CLS11, Proposition 4.1.1] the order of vanishing of a character
χm along Z is given as

ordZ(χ
m) = ordE(χ

m) = 〈m, uτ〉

for m ∈ ∆Y∗• (π
∗
ZD).

For a given point m ∈ ∆Y∗• (π
∗
ZD) let s ∈ H0(X∗,OX∗(kπ∗ZD)) be an arbitrary global

section that gets mapped to m by the flag valuation associated to Y∗• for some suitable
k ∈ Z≥1. Write s in local coordinates xi with respect to the flag Y∗• , that is, Y∗i is given
by x1 = . . . = xi = 0 and in particular 0 = Y∗n .

The change of coordinates is obtained by multiplication by the monomial χmτ on
the level of functions and by a respective translation by the vector mτ ∈ M on the level
of points. This yields

ordZ(χ
m) = 〈m−mτ, uτ〉.

The section s is identified with a linear combination of characters, in which χm appears
with non-zero coefficient. This gives the upper bound

ordZ(s) = min
m′∈supp(s)

ordZ(χ
m′) ≤ ordZ(χ

m).

The lower bound is realized by the monomial χm itself. Hence, the function that comes
from the geometric valuation along the subvariety Z is given as

ϕZ(m) = ordZ(χ
m) = 〈m−mτ, uτ〉

for m ∈ ∆Y∗• (π
∗
ZD) = ∆Y•(D).

We give an example to illustrate the proof.

Example 2.4.2. As in Example 2.3.6 we consider the Hirzebruch surface X = H1, an
admissible torus-invariant flag Y•, and the big divisor D = D3 + 2D4. As a torus-
invariant subvariety Z ⊆ X consider the torus fixed point associated to the cone
τ = cone((−1, 0), (0, 1)).
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Figure 2.13: Star subdivision of the fan Σ relative to τ.

Then the additional primitive ray generator uτ = (−1, 1) = (−1, 0) + (0, 1) for the
fan Σ∗ comes from the star subdivision of the fan Σ relative to the cone τ as indi-
cated in Figure 2.13. The Newton–Okounkov function ϕZ on the Newton–Okounkov
body ∆Y∗• (π

∗
ZD) is given by

ϕZ(m) = 〈m−mτ, uτ〉 = 〈m− (1, 0), (−1, 1)〉,

which gives the values shown in Figure 2.14.

Figure 2.14: Values of the Newton–Okounkov function ϕZ associated to the distance to mτ .

2.4.2 Interpretation of a Subgraph as a Newton–Okounkov Body

Let X be a smooth projective variety, Y• an admissible flag, and D a big Q-Cartier
divisor on X. This determines the Newton–Okounkov body ∆Y•(D). Given a smooth
subvariety Z ⊆ X we consider the function ϕZ on ∆Y•(D) that comes from the geometric
valuation ordZ.

In [KMR19] Küronya, Maclean, and Roé construct a variety X̂, a flag Ŷ•, and a di-
visor D̂ on X̂ so that the resulting Newton–Okounkov body is the subgraph of ϕZ over
∆Y•(D). We translate their construction into polyhedral language in the toric case.
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2.4.2.1 The General Framework

Theorem 2.4.3 ([KMR19, Theorem 4.1]). Let X be a smooth projective variety, Y•
an admissible flag on X, and D a big divisor on X. Furthermore, let Z ⊆ X be a
smooth subvariety and ϕZ the Newton–Okounkov function associated to the geometric
valuation ordZ. Then there exists a projective variety X̂, an admissible flag Ŷ• on X̂,
and a big divisor D̂ on X̂ such that

∆Ŷ•(D̂) = ∆̂ := subgraph of ϕZ : ∆Y•(D)→ R≥0.

In particular, ∫
∆Y• (D)

ϕZ = volX̂ (D̂).

According to Lemma 4.2 in [KMR19] we may assume that the geometric valuation
ordZ comes from a smooth effective Cartier divisor L on X, i.e., ordZ = ordL. This can
always be guaranteed by possibly blowing up X (compare Section 2.4.1).

Set
X̂ := PX(OX ⊕OX(L)).

In other words, we consider the total space of the line bundle OX(L) and compactify
each fiber to a P1. There exist two distinguished sections, namely the zero-section and
the ∞-section. The natural surjections OX ⊕OX(L)→ OX(L) and OX ⊕OX(L)→ OX

yield embeddings X ↪
ι0−→ X̂ and X ↪

ι∞−→ X̂. We denote the respective images by X0 := ι0(X)
and X∞ := ι∞(X) and by construction we have X0 ∩ X∞ = ∅.

We can identify these with X, by restricting the natural projection X̂ π−→ X to X0,
X∞, respectively, i.e., X0 ∼= X and X∞ ∼= X.

In addition, the construction gives rise to the linear equivalence X0 ∼ X∞ + π∗L, when
X0 and X∞ are considered as divisors on X̂. Since X0 and X∞ intersect transversely this
gives the following isomorphisms of sheaves of sections

OX̂(X0)|X0
∼= OX̂(X∞ + π∗L)|X0

∼= OX̂(π
∗L)|X0

∼= OX0(L)
OX̂(X∞)|X∞

∼= OX̂(X0 − π∗L)|X∞
∼= OX̂(−π∗L)|X∞

∼= OX∞(−L).

For a suitable line bundle on X̂ we fix some rational number b such that

b > sup{t > 0 : D− tL is big }

and define D̂ := π∗D + bX∞. As an admissible flag Ŷ• we set

Ŷ1 := X0, Ŷi := ι0(Yi−1) for all i ≥ 2.
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In the proof of Theorem 2.4.3 Küronya, Maclean, and Roé show that X̂ and D̂ are the
suitable objects to obtain the desired identification

∆̂ = ∆Ŷ•(D̂).

2.4.2.2 The Toric Case on the Level of Fans and Polytopes

Let X = XΣ now be a smooth projective toric variety, Y• an admissible torus-invariant
flag, and D a big torus-invariant divisor. Furthermore, let L be a smooth effective
torus-invariant Cartier divisor on X.

In this case we can associate fans or polytopes to the given objects, respectively. We
want to build the combinatorial objects that correspond to X̂ and D̂ in terms of this
information.

G iven X and D. Which fan corresponds to VL ?
The Cartier divisor D = ∑ρ∈Σ(1) aρDρ has an associated sheaf L = OX(D). This is the
sheaf of sections of a rank 1 vector bundle ψ : VL → X. According to Proposition 7.3.1
in [CLS11], VL is again a toric variety and the associated fan Σ × D in NR ×R is
constructed as follows.

Given σ ∈ Σ, set

σ̃ := {(u, h) ∈ NR ×R : u ∈ σ, h ≥ SFD(u)} (2.4.1)
= cone((0, 1), (uρ,−aρ) : ρ ∈ σ(1)),

where SFD : |Σ| → R is the support function associated to D. Define Σ× D to be the
fan consisting of the cones σ̃ for σ ∈ Σ and their faces.

The projection ψ̄ : N ×Z → N gives a toric morphism ψ : XΣ×D = VL → X and
a rank 1 vector bundle whose sheaf of sections is OX(D).

Example 2.4.4. Let X = P1 be the projective line. Its corresponding fan Σ in R is
depicted in Figure 2.15, where the torus-invariant prime divisors D0 and D1 correspond
to σ0 = R≥0 and σ1 = R≤0 with primitive ray generators u0 = 1 and u1 = −1.

Figure 2.15: The fan Σ of the projective line X = P1.
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Consider the divisor D = 2D0. Then Σ× D is a fan in R2 and its two top-dimensional
cones are spanned by

σ̃0 = cone((0, 1), (1,−2)) and
σ̃1 = cone((0, 1), (−1, 0))

as depicted in Figure 2.16.

Figure 2.16: The fan Σ× D.

G iven X and L. Which fan corresponds to X̂?
In our toric situation, X̂ = PX(OX ⊕OX(L)) is again toric, and its fan is described in
Proposition 7.3.3 in [CLS11] as follows. The local equation of L as a Cartier divisor along
a toric patch Uσ is a torus character which corresponds to a linear function on σ. These
linear functions glue to the support function SFL : |Σ| → R of L (see Definition 4.2.11 &
Theorem 4.2.12 in [CLS11]). Using SFL, we define an upper and a lower cone in NR ×R

for every σ ∈ Σ:

σ̂ := {(u, h) ∈ NR ×R : u ∈ σ , h ≥ SFL(u)} (2.4.2)
σ̂′ := {(u, h) ∈ NR ×R : u ∈ σ , h ≤ SFL(u)} .

Together with their faces, these cones form a fan Σ̂ which determines our X̂.

Example 2.4.5. We continue with Example 2.4.4. Hence X = P1 and the corresponding
fan Σ has maximal cones σ0 = cone(u0) and σ1 = cone(u1). Consider the divisor
L = D0. Then Σ̂ is a fan in R2 and its top-dimensional cones are

σ̂0 = cone((0, 1), (1,−1)) ,
σ̂′0 = cone((0,−1), (1,−1)) ,
σ̂1 = cone((0, 1), (−1, 0)) , and
σ̂′1 = cone((0,−1), (−1, 0)) .

We obtain the fan of the Hirzebruch surface H1 as depicted in Figure 2.17.
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Figure 2.17: The fan Σ̂ of PP1(OP1 ⊕OP1(1)).

G iven X̂ and D. Which divisor corresponds to π∗D?
In general, the pullback of a divisor is explicitly given in terms of support functions. For
the divisor D = ∑ρ∈Σ(1) aρDρ we have SFD(uρ) = −aρ for all ρ ∈ Σ(1) for its correspond-
ing support function. According to the construction of Σ̂, the morphism π : X̂ → X is
induced by the homomorphsim of lattices π̄ : N ×Z→ N that sends (u, h) to u.

We denote by D̂ρ̂ the torus-invariant prime divisor that corresponds to the ray ρ̂ of the
fan Σ̂ having primitive ray generator uρ̂. Applying Theorem 4.2.12 and Proposition 6.2.7
in [CLS11] yields π∗D = ∑ρ̂∈Σ̂(1) a∗ρ̂D̂ρ̂, where the coefficients are given as

a∗ρ̂ = − SFπ∗D(uρ̂) = − SFD(π̄(uρ̂)).

Example 2.4.6. As in Examples 2.4.4 and 2.4.5, we consider X = P1, D = 2D0, and
X̂ = PP1(OP1 ⊕OP1(L)) for L = D0.
Let ûi denote the primitive generator of the ray ρ̂i that corresponds to the divisor D̂i,
i.e., û1 = (1,−1), û2 = (0, 1), û3 = (−1, 0), and û4 = (0,−1). Under the lattice
morphism π̄ : Z2 → Z they map to π̄(û1) = 1, π̄(û2) = 0, π̄(û3) = −1, and π̄(û4) = 0.
This means that π̄(ρ̂1) ⊆ σ0 and π̄(ρ̂3) ⊆ σ1. Hence for the divisor on X̂ we have

π∗D = −
(
SFD(1)D̂1 + SFD(−1)D̂3

)
= 2D̂1.

G iven X̂ . What do X0 and X∞ correspond to?
In the general setup, we have defined X0 := ι0(X) and X∞ := ι∞(X). As varieties,
both are isomorphic to X, and considered as divisors on X̂ the linear equivalence
X0 ∼ X∞ + π∗L holds.

We want to consider what this translates to in the combinatorial toric picture. Given
the variety X̂ we have already seen how to construct the associated fan Σ̂ in NR ×R.
The upper and lower cones of the origin 0 ∈ Σ are rays 0̂ and 0̂′ whose toric divisors in
X̂ are X0 and X∞, respectively. The projection N ×Z→ N identifies both star(0̂) and
star(0̂′) with Σ. This can be seen as follows.
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By construction (2.4.2) each maximal cone σ̂ of Σ̂ contains exactly one of the rays 0̂ and
0̂′. We consider the quotient maps

η̄R : NR ×R→ N(0̂)R and η̄′R : NR ×R→ N(0̂′)R,

where N(0̂) ∼= N and N(0̂′) ∼= N are the respective quotient lattices. More precisely,
let N0̂ be the sublattice of N ×Z spanned by the points in 0̂ ∩ (N ×Z), then we set
N(0̂) = (N ×Z)/N0̂. According to (2.4.2) the images of the cones σ̂ ∈ Σ̂ can be identi-
fied with the cones σ ∈ Σ and thus the fan Σ can be recovered as star(0̂) and star(0̂′).
Thus as orbit closures X0 = V(0̂) and X∞ = V(0̂′) are isomorphic to the variety X by
Proposition 3.2.7 in [CLS11].

If we consider X0 and X∞ as divisors on X̂, it remains to argue, that the desired
linear equivalence holds. Since L = ∑ρ∈Σ(1) cρDρ is an effective Cartier divisor on X,
we have cρ ≥ 0 for all ρ ∈ Σ(1). The associated support function SFπ∗L of the pullback
π∗L takes values SFπ∗L(uρ̂) = −cρ for the corresponding rays ρ̂ in Σ̂ with π̄(uρ̂) = uρ.
Whereas SFπ∗L(u0̂) = SFπ∗L(u0̂′) = 0. Let SFX0 denote the support function that cor-
responds to X0, i.e., SFX0(u0̂) = −1 and it has value 0 on all the other primitive ray
generators. Similarly, we define SFX∞ to be the support function associated to X∞.
We consider the linear function f : |Σ̂| → R that gives the height, meaning the last
coordinate of each primitive ray generator. This means f (u0̂) = 1, f (u0̂′) = −1 and
f (uρ̂) = −cρ for all the other rays ρ̂ ∈ Σ̂(1). Thus we have X0 ∼ X∞ + π∗L.

Example 2.4.7. As in our ongoing Example 2.4.5 we consider the variety X̂ = H1 for
the divisor L = D0 on X = P1. Then X0 is the prime divisor of the ray spanned by
û2 = (0, 1) and X∞ the prime divisor of the ray spanned by û4 = (0,−1).

G iven X̂ and D̂. What is the relation between the Newton–Okounkov

body ∆Ŷ•(D̂) and the subgraph ∆̂?
We are given the divisor D̂ = π∗D + bX∞ on X̂. This means D̂ = ∑ρ̂∈Σ̂(1) aρ̂D̂ρ̂, where
a0̂′ = b and aρ̂ = a∗ρ̂ for all other rays ρ̂ ∈ Σ̂(1) \ {0̂′}. The associated fan Σ̂× D̂ can be
constructed as in (2.4.1). Now we are interested in the correspondence between the
Newton–Okounkov body ∆Ŷ•(D̂) and the subgraph ∆̂ on a geometric level.

Since D is a torus-invariant Cartier divisor on X, the divisor π∗D is torus-invariant
on X̂. In the previous section, we have seen that X∞ is torus-invariant as well and hence
D̂ is a torus-invariant Cartier divisor on X̂. Thus the Newton–Okounkov body ∆Ŷ•(D̂)

coincides with a translate of the rational polytope PD̂ that is determined by D̂.

According to (2.2.3) this polytope is defined as

PD̂ = {(m, y) ∈ MR ×R : 〈(m, y), uρ̂〉 ≥ −aρ̂ for all ρ̂ ∈ Σ̂(1)}.
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Let us first consider the situation for the divisor π∗D. Since this is the pullback of a
divisor on X, it has coefficients − SFπ∗D((0, 1)) = − SFπ∗D((0,−1)) = 0 for the corre-
sponding divisors X0 and X∞.

The resulting polyhedron Pπ∗D in MR ×R is

Pπ∗D = {(m, y) ∈ MR ×R : m ∈ ∆Y•(D) , y ≥ 0, y ≤ 0} .

If we now start adding tX∞ to the divisor π∗D for small t > 0, the resulting polytope
Pπ∗D+tX∞ becomes full-dimensional and has Pπ∗D as a facet that corresponds to the ray
0̂. This means that Pπ∗D determines a divisor on X0 ∼= V(0̂). Since X0 ∩ X∞ = ∅, this is
actually the divisor π∗D. In addition, we have X0 ∼= X and hence Pπ∗D ∼= PD ∼= ∆Y•(D).

Let us now consider the facet of Pπ∗D+tX∞ that corresponds to the ray 0̂′. Anal-
ogously, this polytope corresponds to a divisor on X ∼= X∞ ∼= V(0̂′). Due to
π∗D + tX∞ ∼ π∗D + t(X0 − π∗L) = π∗(D − tL) + tX0 and X0 ∩ X∞ = ∅ this is the
divisor D − tL on X. For t small enough, this polytope appears as a facet and thus
has codimension 1, meaning, that the divisor D− tL is big on X. The required con-
dition b > sup{t > 0 : D − tL is big } means on the polytope side that we have
〈m, u0̂′〉 > −a0̂′ = −b for all m ∈ PD̂ and thus the facet disappears.

We claim that the polytope ∆Ŷ•(D̂) is isomorphic to the wedge of PD over its facet FL
associated to L if D is ample and the other divisor is L = DρL for some ray ρL ∈ Σ.

To verify the claim, we must review the involved defining inequalities. For L its
corresponding facet FL � PD in the polytope PD is determined by an inequality of the
form

〈m, uρL〉 ≥ −aρL ,

for m ∈ MR. According to the construction of the fan Σ̂ as in (2.4.2) there is a unique
ray ρ̂L ∈ Σ̂(1) generated by uρ̂L = (uρL ,−1) that corresponds to ρL. The only other
ray generators uρ̂ for ρ̂ ∈ Σ̂(1) having a non-zero last coordinate are u0̂ = (0, 1) and
u0̂′ = (0,−1).

In the new polytope PD̂ the ray ρ̂L is associated to a facet F̂L � PD̂ that is determined
by the inequality

〈m, uρL〉 − y = 〈(m, y), uρ̂L〉 ≥ −aρ̂L = −aρL ,

for (m, y) ∈ MR ×R.

This shows that
PD̂
∼= wedgeF̂L

(PD).
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According to Proposition 2.4.1 it follows that the Newton–Okounkov body ∆Ŷ•(D̂) = PD̂
coincides with the subgraph of ϕL over ∆Y•(D).

Example 2.4.8. We continue with Example 2.4.5. In addition to the data X = P1,
L = D0, we choose the toric flag Y1 = V(σ0) and the big divisor D = 2D0. Then the flag
Ŷ• consists of Ŷ1 = V(0̂) and Ŷ2 = ι0(Y1) = V(σ̂0). We have seen in Example 2.4.6 that
π∗D = 2D̂1, where D̂1 is the prime divisor associated to the ray generator û1 = (1,−1).
Due to Example 2.4.7 the divisor X∞ is D̂4, associated to û2 = (0,−1).

For the line segment PD the facet FL is determined by the inequality m ≥ −2, for
m ∈ R. It turns into the facet-defining inequality m− y ≥ −2 for (m, y) ∈ R2 for the
polytope PD̂.

The left part of Figure 2.18 shows the polytope Pπ∗D+tX∞ corresponding to the di-
visor π∗D + tX∞ = 2D̂1 + tD̂4 for small t > 0 and the right part shows the polytope PD̂
for t = b.

Figure 2.18: The polytope Pπ∗D+tX∞ for small t on the left and for t = b on the right.

2.4.3 Geometric Valuation Coming from a General Point

Let X be a smooth projective toric surface and D an ample divisor on X. In this
section we relax the requirements in the sense that the function ϕR now comes from
the geometric valuation ordR at a general point R, not necessarily torus-invariant. Here
we can determine the values of ϕR on parts of ∆Y•(D) and give an upper bound on the
entire Newton–Okounkov body.

In order to do so, we need to introduce some more terminology. We are given an
admissible torus-invariant flag Y• : X ⊇ Y1 ⊇ Y2 on X. Since Y• is toric, the Newton–
Okounkov body ∆Y•(D) ⊆ R2 is isomorphic to PD and one of its facets corresponds
to Y1. Let u ∈

(
R2)∗ denote the defining linear functional that selects this face Y1,

when minimized over the polytope ∆Y•(D). We denote by F � ∆Y•(D) the face that

48



2.4 newton–okounkov functions on toric varieties

is selected, when maximizing u over ∆Y•(D). Either this already is a vertex or if not,
we maximize u′ over F, where u′ ∈

(
R2)∗ is a linear functional selecting Y2, when

minimized over ∆Y•(D). Denote the resulting vertex in vert(∆Y•(D)) by pY• . We say
that the vertex pY• lies at the opposite side of the polytope ∆Y•(D) with respect to the
flag Y•.

Theorem 2.4.9. Let X be a smooth projective toric surface, D an ample divisor, and
Y• an admissible torus-invariant flag on X. Denote by ∆Y•(D) the corresponding
Newton–Okounkov body and by p = pY• the vertex at the opposite side of ∆Y•(D)
with respect to Y•. Moreover let R ∈ T be a general point. Then for the Newton–
Okounkov function ϕR coming from the geometric valuation ordR we have

1.
ϕR(a, b) ≤ a + b

for all (a, b) ∈ ∆Y•(D), where (a, b) are the coordinates in the coordinate system
associated to p.

2. Furthermore, we have
ϕR(a, b) = a + b

for all

(a, b) ∈ {(a′, b′) ∈ ∆Y•(D) : NP((x− 1)a′(y− 1)b′) ⊆ ∆Y•(D)}.

Proof. 1. Let (a, b) ∈ ∆Y•(D) be a valuative point in the Newton–Okounkov body. We
want to determine ϕR(a, b), where ϕR is the function coming from the geometric
valuation ordR. Consider an arbitrary section s ∈ H0(X,OX(kD)) that is mapped
to (a, b) = 1

k valY•(s) for some k ∈ Z≥1. Let u, u′ ∈
(
R2)∗ be as above. Then, by

construction, the rescaled exponent vectors of all monomials that can occur in s
have to be an element of the set

H+ := {m ∈ ∆Y•(D) : u(m) > u(a, b) or
(u(m) = u(a, b) and u′(m) ≥ u′(a, b))

}
.

As indicated in Figure 2.19, this region is obtained by intersecting ∆Y•(D) with
the positive halfspace associated to the hyperplane H = {m : u(m) = u(a, b)}.
Moreover, we can assume, without loss of generality that the general point
R is given as R = (1, 1). To determine the order of vanishing of s at R we
substitute x by x′ + 1 and y by y′ + 1 and bound the order of vanishing of
s′(x′, y′) = s(x′ + 1, y′ + 1) at (0, 0). Assuming, without loss of generality that the
monomial xkaykb itself occurs in s with coefficient 1, multiplying out gives

s′(x′, y′) = s(x′ + 1, y′ + 1) = (x′ + 1)ka(y′ + 1)kb + ∗ ∗ ∗
= (x′)ka(y′)kb + lower order terms + ∗ ∗ ∗.
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Figure 2.19: Admissible region H+ of rescaled exponent vectors associated to monomials of s
inside the Newton–Okounkov body ∆Y•(D).

Claim: The monomial (x′)ka(y′)kb cannot be canceled out by terms coming from
∗ ∗ ∗.

Aiming at a contradiction, assume that ∗ ∗ ∗ contains a monomial
(x′ + 1)kc(y′ + 1)kd for some kc, kd ∈ Z≥1 that produces (x′)ka(y′)kb when multi-
plied out. Observe that multiplying out (x′ + 1)kc(y′ + 1)kd produces all monomi-
als in

{
(x′)e(y′) f : e ≤ kc and f ≤ kd

}
. Thus kc ≥ ka and kd ≥ kb. In addition,

as an exponent vector of a monomial in s, the point (c, d) is required to be an
element of the set H+, which forces the hyperplane H to have positive slope as
indicated in Figure 2.20.

Figure 2.20: A non-empty region of points (c, d) ∈ H+ that satisfy c ≥ a and d ≥ b forcing H to
have positive slope.
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Let F′ � ∆Y•(D) denote the face that corresponds to {x = 0} and let p′ denote its
second vertex. Then u(p′) > u(p) which contradicts the fact that u is maximized
at p over ∆Y•(D). Thus such a monomial (x′ + 1)kc(y′ + 1)kd cannot exist and
(x′)ka(y′)kb does not cancel out.

Consequently, k(a + b) is an upper bound for the order of vanishing of s′ at (0, 0)
and thus for s at R. Since this is true for all sections s that get mapped to (a, b),
this yields ϕR(a, b) ≤ a + b.

2. Consider a point

(a, b) ∈ Par := {(a′, b′) ∈ ∆Y•(D) : NP((x− 1)a′(y− 1)b′) ⊆ ∆Y•(D)} ,

and set s(x, y) = (x− 1)ka(y− 1)kb, for a k ∈ Z≥1 such that s is a global section of
kD, whose Newton polytope can be seen in Figure 2.21. Then by construction, s is
a section associated to the point (a, b) and its Newton polytope fits inside k∆Y•(D).
We have ordR(s) = k(a + b) which gives the lower bound ϕR(a, b) ≥ 1

k ordR(s).
Combined with 1. we obtain ϕR(a, b) = a + b.

Figure 2.21: The scaled Newton polytope 1
k NP(s) of the section s(x, y) = (x− 1)ka(y− 1)kb.

We illustrate the use of Theorem 2.4.9 by the following example.

Example 2.4.10. We continue our running example of the Hirzebruch surface X = H1
and the ample divisor D = D3 + 2D4 as in Example 2.3.6. Furthermore, fix the torus-
invariant flag Y• : X ⊇ Y1 ⊇ Y2, where Y1 = D1 and Y2 = D1 ∩ D2. Then the vertex
p = pY• of the Newton–Okounkov body ∆Y•(D) ∼= PD that lies at the opposite side of
the polytope PD with respect to the flag Y• is the one indicated in Figure 2.22. The
associated coordinate system specifies coordinates a, b for the plane R2 and local toric
coordinates x, y.
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Figure 2.22: The coordinate system associated to the vertex p which lies at the opposite side of
PD with respect to the flag Y•.

We want to determine the Newton–Okounkov function coming from the geometric
valuation at the point R = (1, 1). Theorem 2.4.9 yields the upper bound ϕR(a, b) ≤ a + b
on the entire Newton–Okounkov body ∆Y•(D), and ϕR(a, b) = a + b for (a, b) satisfying
a, b ≤ 1, as indicated by the shaded region in Figure 2.22. It will turn out in Exam-
ple 2.4.13 that there exist points (a, b) ∈ ∆Y•(D) for which we have ϕR(a, b) < a + b.

For a particularly nice class of polygons, Theorem 2.4.9 alone is enough to determine
the function ϕR. A polytope P ⊆ Rn

≥0 is called anti-blocking if P = (P + Rn
≤0) ∩Rn

≥0
(compare [Ful71; Ful72]). Observe that this coordinate dependent property implies
(and for n = 2 is equivalent to) the fact that the parallelepiped spanned by the edges at
the origin covers P.

Corollary 2.4.11. Let X, Y•, D and R be as in Theorem 2.4.9. Suppose ∆Y•(D)
is anti-blocking. Let Y′• be a torus-invariant flag opposite to the origin. Then the
Newton–Okounkov function ϕR on ∆Y′•(D) is given by

ϕR(a, b) = a + b

on the entire Newton–Okounkov body ∆Y′•(D) ∼= PD in the coordinate system associ-
ated to Y•.

Using the tools from Section 2.5, Corollary 2.4.11 implies that the Seshadri constant of D
at R is rational. This can also be seen from Sano’s Theorem [San14] as dim | − KX| ≥ 3
in the anti-blocking case.

If we are not in the lucky situation of Corollary 2.4.11, then things are getting more
complicated and more interesting. We give an approach that works in numerous cases.
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The general strategy

For the remainder of the chapter we will consider the following situation.

The general set -up 2.4.12.

X a smooth projective toric surface,
D an ample torus-invariant divisor on X,
Y• an admissible torus-invariant flag,
v the primitive direction of the edge of PD ∼= ∆Y•(D) corresponding to

Y1, towards the vertex corresponding to Y2,
u the primitive ray generator corresponding to Y1,
C the curve in X given by the binomial xv − 1,
R a general point on C,
Y′• the admissible flag X ⊇ C ⊇ {R},
Ψ the piecewise linear, volume-preserving isomorphism

∆Y•(D)→ ∆Y′•(D) from Corollary 2.3.8,
ϕR the function ∆Y•(D)→ R coming from the geometric valuation ordR,
ϕ′R the function ∆Y′•(D)→ R coming from the geometric valuation ordR.

Goal : Determine the function

ϕR : ∆Y•(D) ∼= PD → R.

Approach :

1. For each valuative point (a, b) ∈ ∆Y•(D) ‘guess’ a Newton polytope 1
k NP(s) ⊆ PD

of a global section s ∈ H0(X,OX(kD)) for some k ∈ Z≥1 to maximize the order
of vanishing ordR(s) according to the following rules:

• The section s has to correspond to the point (a, b).

• Choose a Newton polytope NP(s) that is a zonotope whose edge directions
all come from edges in PD.

• Try to maximize the perimeter of the Newton polytope 1
k NP(s) among the

above.

2. Determine the values of the function ϕ : ∆Y•(D) → R that takes 1
k ordR(s) as

a value with respect to the chosen sections s for a point (a, b) ∈ ∆Y•(D) and
compute the integral

∫
∆Y• (D) ϕ .

53



toric newton–okounkov functions

3. Compute the Newton–Okounkov body ∆Y′•(D) with respect to the new flag Y′•
using variation of Zariski decomposition or the combinatorial methods from
Section 2.3.

4. Compute the integral
∫

∆Y′•
(D) ϕ′, where we assume the function to be given by

ϕ′ : ∆Y′•(D) → R

(a′, b′) 7→ a′ + b′.

5. Compare the value of the integrals
∫

∆Y• (D) ϕ and
∫

∆Y′•
(D) ϕ′. It holds that

∫
∆Y• (D)

ϕ ≤
∫

∆Y• (D)
ϕR =

∫
∆Y′•

(D)
ϕ′R ≤

∫
∆Y′•

(D)
ϕ′. (2.4.3)

• If
∫

∆Y• (D) ϕ =
∫

∆Y′•
(D) ϕ′, then we have equality in (2.4.3) and therefore a

certificate that the choices that we have made were valid and we are done.

• If
∫

∆Y• (D) ϕ <
∫

∆Y′•
(D) ϕ′, then either we have chosen sections with non-

maximal orders of vanishing at R in step 1 or for the chosen vector v the
function ϕ′R takes values smaller than a′ + b′ somewhere on ∆Y′•(D).

Example 2.4.13. We return to Example 2.4.10, and again consider the Hirzebruch surface
X = H1 equipped with the torus-invariant flag Y• : X ⊇ Y1 ⊇ Y2, where Y1 = D1 and
Y2 = D1 ∩ D2 and the ample divisor D = D3 + 2D4 on X. We want to determine the
values of a function on ∆Y•(D) coming from a geometric valuation at a general point,
so let R = (1, 1) ∈ X in local coordinates. More precisely, for the rational points in
∆Y•(D) in the coordinate system associated to the flag Y• we study

ϕR : ∆Y•(D) → R

(a, b) 7→ lim
k→∞

1
k

sup
{

t ∈ R : there exists s ∈ H0(X,OX(kD)) :

valY•(s) = k(a, b), ordR(s) ≥ t}

= lim
k→∞

1
k

sup
{

t ∈ R : there exists s ∈ H0(X,OX(kD)) :

ordY1(s) = ka, ordY2(s1) = kb, ordR(s) ≥ t} ,

where s1 is given as in (2.2.7).
We claim that ϕR coincides with the function ϕ given by

ϕ(a, b) =

2− a if 0 ≤ a + b ≤ 1

3− 2a− b if 1 ≤ a + b ≤ 2

at a point (a, b) ∈ ∆Y•(D).
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To verify this claim, we will give explicit respective sections and argue that the max-
imal value of ordR is achieved for these particular sections. We treat the two cases
individually.

Figure 2.23: Newton polytopes 1
k NP(s) of the respective sections s.

0 ≤ a + b ≤ 1:

Set
s(x, y) = (xa(y− 1)2−a−b(x− y)b)k

in local coordinates x, y for suitable k ∈ Z≥1. The corresponding Newton polytope
1
k NP(s) is depicted in Figure 2.23. Since the leftmost part of it has coordinates (a, ·), we
have ordY1(s) = ka. If we restrict to the line (a, ·), then the lowest point of the Newton
polytope is (a, b) and thus ordY2(s1) = kb. Together with the fact that the Newton poly-
tope 1

k NP(s) fits inside the Newton–Okounkov body ∆Y•(D), this guarantees that the
section s is actually mapped to the point (a, b) when computing ∆Y•(D).

For the order of vanishing of interest we obtain

ordR(s) = k((2− a− b) + b) = k(2− a) .

1 ≤ a + b ≤ 2:

Set
s(x, y) = (xaya+b−1(y− 1)2−a−b(x− y)1−a)k.

That all the requirements are fulfilled by s follows by using the same arguments as in
the previous case. For the order of vanishing of interest we obtain

ordR(s) = k((2− a− b) + (1− a)) = k(3− 2a− b) .

The values of the resulting piecewise linear function are depicted in Figure 2.24.
If we integrate ϕ over ∆Y•(D), we obtain∫

∆Y• (D)
ϕ =

11
6

.
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Figure 2.24: The values of the function ϕ on ∆Y•(D).

Now it remains to show that these values are actually the maximal ones that can be
realized. In order to do this, we make use of the fact that the integral of our function ϕ
over the Newton–Okounkov body ∆Y•(D) is independent of the flag Y•.

We keep the underlying variety X and the ample divisor D. Choose a new admissible
flag Y′• : X ⊇ Y′1 ⊇ Y′2, where Y′1 is the curve defined by the local equation y−1 − 1 = 0
and Y′2 = R = (1, 1) is the point of the geometric valuation. Since this flag is no longer
torus-invariant, the corresponding Newton–Okounkov body ∆Y′•(D) will differ from
the polytope PD. As shown in Example 2.3.6, we obtain the new Newton–Okounkov
body ∆Y′•(D) depicted in Figure 2.7.

For the function ϕ′R on ∆Y′•(D), we are still working with the geometric valuation
associated to ordR. Thus, set

ϕ′ : ∆Y′•(D) → R

(a′, b′) 7→ a′ + b′.

Figure 2.25: The values of the function ϕ′ on ∆Y′•(D).

The values of ϕ′ are depicted in Figure 2.25. If we integrate ϕ′ over ∆Y′•(D), we obtain∫
∆Y′•

(D)
ϕ′ =

11
6

.

Overall, we have
∫

∆Y• (D) ϕ =
∫

∆Y′•
(D) ϕ′. This shows that our choice for the section s was

indeed maximal with respect to ordR(s) and thus determines the value of ϕR = ϕ.
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Remark 2.4.14. In the previous example the integrals
∫

∆Y• (D) ϕ and
∫

∆Y′•
(D) ϕ′ coincide.

Observe that even more is true. Let

G(ϕ) = {(a, b, ϕ(a, b)) : (a, b) ∈ ∆Y•(D)}

denote the graph of ϕ. Since ϕ is a concave and piecewise linear function, the set

∆Y•(D)ϕ := conv ((∆Y•(D)× {0}) ∪ G(ϕ)) ⊆ R3

is a 3-dimensional polytope. If we compare ∆Y•(D)ϕ and ∆Y′•(D)ϕ′ , it turns out that
they are SL3(Q)-equidecomposable, where the respective maps are volume-preserving.
To see this, we give the explicit maps, where ψ1 and ψ2 come from the piecewise linear
pieces of Ψ on the respective domains of linearity. Use

ψ1 : R3 → R3a
b
c

 7→
−1 −1 0
−1 0 0
0 0 1

 ·
a

b
c

+

2
1
0



to map the parallelogram in ∆Y•(D) with its corresponding heights, and use

ψ2 : R3 → R3a
b
c

 7→
−1 −1 0

0 1 0
0 0 1

 ·
a

b
c

+

2
0
0



for mapping the triangle in ∆Y•(D) with its corresponding heights. This is illustrated
in Figure 2.26, where the respective heights are given in green.

Figure 2.26: SL3(Q)-equidecomposable pieces of the Newton–Okounkov bodies ∆Y•(D) on the
left and ∆Y′•(D) on the right.
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We conjecture that this in not a coincidence but holds in our general set-up.

Conjecture 2.4.15. In the situation of our general set-up 2.4.12, ϕR = ϕ′R ◦Ψ.

The approach for determining the Newton–Okounkov function via Ψ applies to a
certain class of polytopes. To describe this class we need to introduce the following
term.

Definition 2.4.16. Let P ⊆ R2 be a polygon. Let v ∈ Z2 be a primitive vector, and
u ∈ v⊥ a primitive integral functional.
We call P zonotopally well-covered with respect to (v, u) if for all points m ∈ P the set Pv(m)
contains a zonotope L1 + . . . + L` with none of the Li parallel to v, such that

`

∑
i=1

lengthZ2(Li) = widthu(Pv(m)) .

The polygon P is zonotopally well-covered if it is so with respect to some (v, u).

In fact, it is enough to check the condition for the finitely many vertices of domains of
linearity of Ψ.

Theorem 2.4.17. In the situation of our general set-up 2.4.12, if the polytope
∆Y•(D) is zonotopally well-covered with respect to (v, u), then ϕR = ϕ′R ◦Ψ and
ϕ′R(a′, b′) = a′ + b′.

In particular, Conjecture 2.4.15 holds in this case.

Proof. According to our general strategy, it is sufficient to certify, for every valua-
tive point m ∈ ∆Y•(D) ∩Q2, the existence of a section s ∈ H0(X,OX(kD)) for some
k ∈ Z≥1 with 1

k valY•(s) = m and with order of vanishing ordR(s) = k(a′ + b′) where
Ψ(m) =: (a′, b′).
To this end, let L1 + . . . + L` be the zonotope inside Pv(m) which must exist because
∆Y•(D) is zonotopally well-covered. Add the segment L0 from 0 to length(P, m, v) · v
to obtain a rational zonotope

L0 + L1 + . . . + L` ⊆ L0 + Pv(m) ⊆ ∆Y•(D)

inside ∆Y•(D) with valuation vertex m. If k is a common denominator of its vertices, the
k-th dilate is the Newton polytope of a product of binomials which vanishes to order

k ·
`

∑
i=0

lengthM(Li) = k · (length(P, m, v) + widthu(Pv(m))) = k · (a′ + b′)

as required.
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Remark 2.4.18. The property of being centrally-symmetric is not sufficient for being
zonotopally well-covered. Consider for instance the polytope

P = conv((0, 0), (2, 1), (1, 3), (−1, 2)) ⊆ R2

in Figure 2.27 and the direction v = (−1, 0) with u = (0, 1). Then for the point
m = (− 1

2 , 1) the polygon has length length(P, m, v) = 5
2 at m with respect to v. The

intersection Pv(m) = P ∩ (P + 5
2 · (−1, 0)) is just a line segment L whose lattice length

is lengthZ2(L) = 1
2 . But on the other hand, we have widthu(Pv(m)) = 1 > 1

2 .

Figure 2.27: An instance of a centrally-symmetric polytope P that is not zonotopally well-
covered.

It remains to argue, why any other direction v ∈ Z2 will also fail. If we interpret P
as the Newton–Okounkov body ∆Y•(D) for some completely toric situation X, D, Y•
then the shifting process by the vector v = (−1, 0) yields the polytope on right in
Figure 2.27 as the Newton–Okounkov body ∆Y′•(D) for the adjusted flag Y′•, where Y′1
is the curve determined by v and Y′2 = R = (1, 1). Consider the Newton–Okounkov
function ϕ′R : ∆Y′•(D) → R. Since ϕ′R(a′, b′) ≤ a′ + b′ and max(a′,b′)∈∆Y′•

(D) ϕ′R(a′, b′)

is independent of the flag, this yields that max ϕ′R ≤ 7
2 . A straight forward compu-

tation shows that any primitive direction v ∈ Z2 with ‖v‖ > 1 results in a vertex
(0, b′) ∈ ∆Y′•(D) with b′ > 7

2 which is a contradiction to the above.

Although P is not the polytope of an ample divisor on a smooth surface, it can be used
as a starting point to construct such an example: The minimal resolution π : X∗P → XP
has a centrally-symmetric fan. There is a ‘centrally-symmetric’ ample Q-divisor on X∗P
near the nef divisor π∗D. Now scale up the resulting rational polygon to a lattice
polygon.

A similar argument applies to the polygon from Example 4.6 in [Cas+20], which
is depicted in Figure 2.28. The authors construct examples of projective toric surfaces
whose blow-up at a general point has a non-polyhedral pseudo-effective cone. In this
context they introduce, what they call good polytopes. For our particular instance of a
good polytope the authors argue, that all sections s ∈ H0(X,OX(kD)) will have order
of vanishing at most 7k at the general point. However, all primitive directions v ∈ Z2

will produce a vertex of Ψ(P) with coordinate sum > 7.
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Figure 2.28: A polygon for which our approach does not work.

We give another example for which our strategy works.

Example 2.4.19. Let π : X → P2 be the blow-up of the projective plane in the three
torus fixed points with corresponding exceptional divisors E1, E2 and E3. We denote by
H the pullback of the hyperplane class and by Eij := H − Ei − Ej the strict transforms
of the lines through two distinct blown-up points zi and zj for i, j ∈ {1, 2, 3} and i 6= j,
respectively. The corresponding fan is shown in Figure 2.29.

Figure 2.29: The fan Σ with prime divisors E1, . . . , E23.

We fix an admissible torus-invariant flag Y• : X = Y0 ⊇ Y1 ⊇ Y2 such that Y1 = {x = 0}
and Y2 = (0, 0) for the local coordinates as in Figure 2.30. As a big Cartier divisor we
choose D = 3H − E1 − E2 − E3. Since we are again in a toric situation, the Newton–
Okounkov body ∆Y•(D) is given by a translate of the polytope PD as depicted in
Figure 2.30.

Figure 2.30: Local toric coordinates x, y for the Newton–Okounkov body ∆Y•(D).
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We now want to study the function ϕR on ∆Y•(D) coming from the geometric valuation
associated to the order of vanishing of a section at the general point R = (1, 1). We claim,
that the following sections achieve the maximal order of vanishing at R for suitable
k ∈ Z≥1. The fact that they fulfill the required conditions follows as in Example 2.4.13.

Figure 2.31: Newton polytopes 1
k NP(s) of the respective sections s inside ∆Y•(D).

a ≤ 1, a ≤ b:

Set
s(x, y) = (xayb(x− 1)(y− 1)1+a−b(1− xy)1−a)k.

For the order of vanishing of interest we obtain

ordR(s) = k(1 + (1 + a− b) + (1− a)) = k(3− b).

b ≤ 1, b ≤ a:

Set
s(x, y) = (xayb(x− 1)1−a+b(y− 1)(1− xy)1−b)k.

For the order of vanishing of interest we obtain

ordR(s) = k((1− a + b) + 1 + (1− b)) = k(3− a).

a ≥ 1, b ≥ 1:

Set
s(x, y) = (xayb(x− 1)2−a(y− 1)2−b)k.

For the order of vanishing of interest we obtain

ordR(s) = k((2− a) + (2− b)) = k(4− a− b).
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This determines a function

ϕ(a, b) =


3− b if a ≤ 1, a ≤ b

3− a if b ≤ 1, b ≤ a

4− a− b if a ≥ 1, b ≥ 1

at a point (a, b) ∈ ∆Y•(D).

Figure 2.32: The values of the function ϕ on the Newton–Okounkov body ∆Y•(D).

The integral of ϕ over ∆Y•(D) can be easily computed by computing the volume over
the square and the two parallelogramms, which are depicted in Figure 2.32, with the
respective values of ϕ in green.

∫
∆Y• (D)

ϕ = 1 · 1
4
(0 + 1 + 1 + 2) + 1 · 1

4
(1 + 2 + 2 + 3) + 1 · 1

4
(1 + 2 + 2 + 3) = 5.

It remains to show that it is not possible to find sections, having higher orders of
vanishing at R. In order to do that, we consider the toric variety X with another flag
Y′• : X ⊇ Y′1 ⊇ Y′2, where the curve is chosen as Y′1 = {y−1 = 1} and Y′2 = (1, 1) in local
coordinates, i.e., the point of the flag is the valuation point R of the function.

Thus, what remains to be determined, is the shape of the Newton–Okounkov body
∆Y′•(D). Since the flag is no longer torus-invariant, this is not immediate from the
divisor. Although our methods from Section 2.3 can be used here, we want to give
an explicit example of how to compute the Newton–Okounkov body via variation of
Zariski decomposition. By Proposition 2.3.1 the curve C = Y′1 is linearly equivalent
to the torus-invariant divisor H − E3. We apply Theorems 2.2.14 and 2.2.15 by using
variation of the Zariski-decomposition for Dt := D− t(H − E3) for t ≥ 0.

We first give the intersection numbers that will be needed in the computations. The
Picard group of X is generated by H and the exceptional curves. The only irreducible
curves having negative self-intersection are E1, E2, E3, E12, E13 and E23. Note, that we
are lacking this information about negative curves in general.
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Their intersection numbers are

H.H = 1, H.Ei = 0, Ei.Ej = −δij

and therefore for i, j, k, l ∈ {1, 2, 3} we obtain H.Eij = 1,

Ei.Ejk =

1 if i ∈ {j, k}

0 if i /∈ {j, k}
, Eij.Ekl =


−1 if {i, j} = {k, l}

0 if |{i, j} ∩ {k, l}| = 1

1 if |{i, j} ∩ {k, l}| = 0

.

Since D is nef, we obtain D+ = D for t = 0 and thus the coefficient of C in D− is
ν = 0. Thus for small t > 0, the Zariski decomposition is given by D+

t = Dt and D−t = 0.

If we assume R to be chosen general enough on Y′1, then α(t) ≡ 0, and we will
only have to deal with the computation of β(t).

By the openness of ampleness in the Néron–Severi space, Dt is still nef for small
t > 0. By the Kleinman–Nakai–Moishezon criterion 2.2.8, this stays true if and only if
Dt has a non-negative intersection number with all irreducible torus-invariant curves
on X. This yields

Dt.Ei =

1 if i 6= 3

1− t if i = 3
, Dt.Eij =

1− t if {i, j} = {1, 2}

1 otherwise
(2.4.4)

and hereby the bound is t = 1. For 0 ≤ t ≤ 1 we have D+
t = Dt and thus the upper

part of the Newton–Okounkov body is then given by

β(t) = α(t) + (D+
t .(H − E3)) = 0 + Dt.(H − E3) = 3− t− (1− t) = 2.

In the case t > 1, negative curves will appear in the Zariski decomposition. According
to (2.4.4), the curves that can appear in D−t are E3 and E12, which gives

D+
t = Dt − D−t = Dt − γ3(t)E3 − γ12(t)E12

for certain γ3, γ12 ∈ R [t]. On the one hand we have Dt.E1 = Dt.E23 = 1− t and on the
other hand, we have

Dt.E3 = (D+
t + D−t ).E3 = 0 + D−t .E3 = −γ1(t)

Dt.E12 = (D+ + D−t ).E12 = 0 + D−t .E12 = −γ12(t).

It follows that γ3(t) = γ12(t) = t− 1 and therefore

β(t) = α(t) + D+
t .(H − E3) = 0 + Dt.(H − E3) = (3− t) + (1− t) = 4− 2t.
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Figure 2.33: The Newton–Okounkov body ∆Y′•(D).

We have to determine the Zariski decomposition of Dt, while Dt stays in the pseudo-
effective cone. We claim that this bound is given by t = 2 and that we do not cross
various chambers for t > 1. For verifying that claim, we compare certain volumes. On
the one hand, since D is nef, vol(D) = D.D = 6 by Theorem 2.2.6. On the other hand,
consider the volume of the resulting Newton–Okounkov body. Under our assumption,
∆Y′•(D) is the polygon depicted in Figure 2.33 and consequently volR2(∆Y′•(D)) = 3.
Now Theorem 2.2.12 tells us that for any big divisor D

volR2(∆Y′•(D)) =
1
2!

vol(D)

which in our case means that volR2(∆Y′•(D)) is 6
2! = 3. Together with the fact, that β is

concave by Theorem 2.2.15 it follows, that we have determined the Newton–Okounkov
body ∆Y′•(D).

We consider the function

ϕ′ : ∆Y′•(D) → R

(a′, b′) 7→ a′ + b′ ≥ ϕ′R(a′, b′).

We can read the respective values at the vertices of the Newton–Okounkov body off
Figure 2.34.

Figure 2.34: The values of the function ϕ′ on the Newton–Okounkov body ∆Y′•(D).

This gives ∫
∆Y′•

(D)
ϕ′ = 2 · 1

4
(0 + 1 + 2 + 3) + 1 · 1

3
(1 + 2 + 3) = 5.
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Comparing the integrals of the functions ϕ and ϕ′ over the respective Newton–Okounkov
bodies yields ∫

∆Y′•
(D)

ϕ′ =
∫

∆Y• (D)
ϕ

and this shows again, that the choices made for the sections in Figure 2.31 yield the
maximal orders of vanishing.

2 .5 rationality of certain seshadri constants on toric surfaces

Finally, in this section we apply our methods to deduce the rationality of certain invari-
ants. We first recover the rationality of Newton–Okounkov bodies on toric surfaces, by
considering the invariant µC(D), see Lemma 2.5.2. Then we recall known criteria for
the rationality of another important invariant, namely the Seshadri constant ε(X, D; z).
We prove that we can guarantee rationality, given a combinatorial property, that we call
weakly zonotopally well-covered, see Theorem 2.5.13. Moreover we construct a class of
polytopes for which the other above criteria do not apply and prove rationality in these
cases, see Theorem 2.5.16.

Given a smooth projective surface X, a big divisor D, and an admissible flag
Y• : X ⊇ C ⊇ {z}, one can use Zariski decomposition of Dt = D− tC to determine the
corresponding Newton–Okounkov body ∆Y•(D). According to Theorem 2.2.15, the
coordinates of some of the vertices involve the pseudo-effective threshold invariant

µC(D) = sup{t > 0 : D− tC is big}.

Due to Theorem 2.2.12, we have

(D− tC)2 = vol(D− tC) = 2 · volR2(∆Y•(D− tC)) (2.5.1)

and therefore µC(D) is in general determined by a quadratic equation and thus not
necessarily rational. The following proposition states that the rationality of µC(D) is
the crucial criterion that determines the rationality of the whole Newton–Okounkov
body.

Proposition 2.5.1 ([KLM12, Proposition 2.2]). Let X be a smooth projective surface,
D a big rational divisor on X, and Y• an admissible flag on X. Then the following
holds.

1. All the vertices of the polygon ∆Y•(D) contained in the set {[ν, µ)×R} have
rational coordinates.

2. µC(D) is either rational or satisfies a quadratic equation over Q.

In the toric case we can guarantee rationality.
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Lemma 2.5.2. Let X be a smooth projective toric surface, D a big Q-divisor on X and
Y• : X ⊇ C ⊇ {z} an admissible flag. Then µC(D) is rational.

Proof. Due to (2.5.1) the value µC(D) is a root of an equation that is invariant under
linear equivalence of the involved divisors. Hence let D′ = ∑ρ∈Σ(1) aρDρ be a torus-
invariant divisor such that D′ ∼ D. Moreover fix an admissible torus-invariant flag Y′•,
since the volume of the Newton–Okounkov body is independent of the flag. In particu-
lar, there exists a torus-invariant curve C′ = ∑ρ∈Σ(1) a′ρDρ that is linearly equivalent to
C and whose coefficients a′ρ are rational for all rays ρ ∈ Σ(1).

Then the Newton–Okounkov body ∆Y′•(D′) coincides with a translate of the poly-
tope PD′ . This polytope can be described in terms of the intersection of finitely many
half spaces, i.e.,

PD′ = {m ∈ MR : A ·m ≥ b} (2.5.2)

for some matrix A ∈ Zr×2 and vector b ∈ Qr, where r is the number of rays.

The polytope PC′ associated to C′ is given as PC′ = {m ∈ MR : A ·m ≥ b′} for some
vector b′ ∈ Qr.

We consider the polytope

Pt = PD′−tC′ =
{

m ∈ MR : A ·m ≥ b− tb′
}

for t ≥ 0. Then being big on the divisorial side translates into being full-dimensional
on the polytopal side, i.e.,

µC(D) = µC′(D′) = sup{t > 0 : D′ − tC′ is big}
= sup{t > 0 : Pt full-dimensional}.

Thus for t = µC(D) the polytope Pt is lower-dimensional. Let p be a vertex of PµC(D).
Let Ai denote the i-th row of the matrix A. There are two possible cases.

1. dim(PµC(D)) = 1:
Then there exist two parallel defining hyperplanes of PD′ whose translates are
defining hyperplanes for PµC(D). This yields Ai = −Aj for some i 6= j ∈ {1, . . . , r}
and

Ai p = bi − µC(D)b′i
−Ai p = bj − µC(D)b′j.

Since µC(D) is then determined by a linear equation with rational coefficients, it
follows that µC(D) itself is rational.

2. dim(PµC(D)) = 0:
Then PµC(D) = p and there exist three defining hyperplanes of PD′ whose translates
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are defining hyperplanes for PµC(D). This yields

Ai p = bi − µC(D)b′i
Aj p = bj − µC(D)b′j
Ak p = bk − µC(D)b′k

for some pairwise different i, j, k ∈ {1, . . . , r}. This again determines rational p
and µC(D).

As a corollary we recover the following.

Corollary 2.5.3. Let X be a smooth projective toric surface, D a big Q-divisor,
and Y• an admissible flag. Then the Newton–Okounkov body ∆Y•(D) is a rational
polygon.

The invariant µ is closely related to another invariant. Let X be a smooth projective
surface, D an ample divisor, and z ∈ X a point. We denote the blow-up of z with
exceptional divisor E by π : X′ → X. The Seshadri constant is the invariant

ε(X, D; z) := sup{t > 0 : π∗D− tE is nef}. (2.5.3)

According to Remark 3.1 in [Dum+16b] ε(X, D; z) is rational if the invariant µE(π
∗D) is.

The problem is that we have to consider the blown-up situation here, in which things
can get out of hand.

The Seshadri constant measures the local positivity of D at the point z. Seshadri
constants provide information on the shape of the nef and effective cones of the surface
X′ in the direction of −E. Although they have been studied for over thirty years, several
basic questions about them remain unanswered. One of the main questions is the
rationality of ε(X, D; z). It is expected that there will be instances (even in dimension
two) when irrational Seshadri constants occur (in fact, this would be consistent with
Nagata’s conjecture [Dum+16a]), at the same time, no irrational example has been found
so far. In particular, it is known that Seshadri constants on del Pezzo, Enriques [Sze01],
abelian [Bau98] and certain K3 surfaces [Bau97; GK13; Knu08] are rational. Certainly, if
the blow-up of X at z has a finite rational polyhedral effective cone, then ε(X, D; z) is
forced to be rational.

Our lack of knowledge about the rationality of Seshadri constants on surfaces is all the
more mysterious, since in dimension two there is one way in which ε(X, D; z) can be
irrational: if it is equal to

√
(D2) [Laz04, Section 5.1] and (D2) is not a square. If the

latter arithmetic condition does not hold, then the rationality of ε(X, D; z) is equivalent
to the existence of a (necessarily negative) curve C on the blow-up of X at z orthogonal
to π∗D− tE for some t <

√
(D2). In this sense the irrationality of ε(X, D; z) is evidence
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for the non-existence of certain irreducible curves of negative self-intersection on the
blow-up.
Remark 2.5.4. By the duality between the nef and effective cones on a surface, if
ε(X, D; z) < µE(π

∗D) then both numbers are rational. As a consequence, if one
can find an effective divisor of the form π∗D− tE with

√
(D2) < t then ε(X, D; z) ∈ Q.

As the first known rationality criterion we adjust Theorem 3.6 and Remark 3.7 from
[Ito14] to our situation.

Theorem 2.5.5. In the situation of our general set-up 2.4.12, if the width
widthu(P) ≤ length(P, v) then ε(X, D; R) = widthu(P).
In particular, in this case, ε(X, D; R) is rational.

In [San14] Sano studies Seshadri constants on rational surfaces with anti-canonical
pencils. More precisely, he considers a smooth rational surface X that is either a com-
position of blow-ups of P2 or of a Hirzebruch surface Hd such that dim | − KX| ≥ 1. In
terms of the corresponding polytope this means that P−KX contains at least two lattice
points. In these cases, he gives explicit formulas for the Seshadri constant ε(X, D; R) of
an ample divisor D at a general point R ∈ X in [San14, Theorem 3.3 and Corollary 4.12].
As a consequence he obtains rationality in the cases above as observed in Remark 4.2.

In [Lun20] Lundman computes Seshadri constants at a general point R for some
classes of smooth projective toric surfaces. It follows in particular that the Seshadri con-
stant is rational in these cases. The characterization of the classes involve the following
definitions.

Definition 2.5.6. Let L be a line bundle on a smooth variety X and z ∈ X a smooth
point with maximal ideal mz ⊆ OX. For a k ∈ Z≥1 consider the map

jk
z : H0(X, L ) → H0(X, L ⊗OX/mk+1

z )

s 7→
(

s(z), . . . ,
∂ts
∂zt (z), . . .

)
t≤k

,

where z = (z1, . . . , zn) is a local system of coordinates around z. We say that L is k-jet
spanned at z if the map jk

z is surjective. We denote by s(L , z) the largest k such that X is
k-jet spanned at z and call it the degree of jet separation of L at z.

So the map jk
z takes s to the terms of degree at most k in the Taylor expansion of s

around z. For X a projective toric variety let s0, . . . , sd be a basis for H0(X, L ). Then L
is k-jet spanned at z ∈ X if and only if the matrix of k-jets

Jk(L ) := (Jk(L ))i,j :=

(
∂|t|

∂zt1
∂zt2
· · · ∂ztn

(si)

)
0≤i≤d,0≤|t|≤k

has maximal rank when evaluated at the point z, where t = (t1, . . . , tn) ∈ Zn
≥1 and

|t| = |t1 + · · ·+ tn|.
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Definition 2.5.7 ([Di +13, compare Definition 1.15]). Let X be a smooth projective toric
variety and D a torus-invariant divisor on X. We define the codegree η(D) as

η(D) := (sup{t > 0 : PtKX+D is non-empty })−1

and call the polytope core(PD) := Pη(D)−1KX+D the core of PD.

Theorem 2.5.8 ([Lun20, Theorem 1]). Let X be a smooth toric surface and L an
ample line bundle. If X is a projective bundle or s(L , R) ≤ 2, then ε(X, L ; R) =
s(L , R).

The other Theorems in [Lun20] that yield rationality of Seshadri constants both require
core(PD) to be a line segment.

Just as the rationality of Seshadri constants follows from that of the corresponding
pseudo-effective thresholds, it can also be deduced from the rationality of the associated
integral in the following way.

Corollary 2.5.9 ([KMR19, Corollary 4.5]). Let X be a smooth projective surface,
z ∈ X, and D an ample Cartier divisor on X. Then ε(X, D; z) is rational if

∫
∆Y• (D) ϕz

is rational, where ϕz is the Newton–Okounkov function coming from the geometric
valuation associated to z and Y• any admissible flag.

We apply this criterion to an example for which Lundman’s and Sano’s criteria do not
apply.

Example 2.5.10. We consider a blow-up π : X → P2 of the projective plane in 13 points,
namely the toric variety X whose associated fan Σ is depicted in Figure 2.35.

Figure 2.35: The fan Σ with associated torus-invariant prime divisors D0, . . . , D15.

The torus-invariant prime divisors are denoted by D0, . . . , D15 and choose
D = D1 + 2D2 + 6D3 + 5D4 + 15D5 + 11D6 + 19D7 + 9D8 + 18D9 + 10D10 + 13D11 +
4D12 + 4D13 +D14 as an ample divisor on X. For the torus-invariant flag Y• : X ⊇ Y1 ⊇ Y2

with Y1 = {y = 0} and Y2 = (0, 0) this gives the polytope PD in Figure 2.36 as the
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Newton–Okounkov body ∆Y•(D). We have dim | − KX| = 0, core(PD) is a point and
the degree of jet separation is s(L , R) = 9. Thus this example does not fall in any of
the classes covered by Sano or Lundman.

Figure 2.36: The Newton–Okounkov body ∆Y•(D) ∼= PD with core(PD) highlighted.

We claim that the Seshadri constant ε(X, D; R) is rational. To verify this claim we
consider the Newton–Okounkov function ϕ′R on ∆Y′•(D) coming from the geometric
valuation ordR at the general point R = (1, 1) and argue that its integral takes a rational
value. In order to do this, consider the flag Y′• : X ⊇ Y′1 ⊇ Y′2, where Y′1 is the curve given
by the local equation x−1 − 1 = 0 and Y′2 = R. Thus we obtain the Newton–Okounkov
body ∆Y′•(D) with respect to this flag by the shifting process via the vector v = (−1, 0)
as explained in Section 2.3. This gives the polytope ∆Y′•(D) shown in Figure 2.37.

Figure 2.37: The Newton–Okounkov body ∆Y′•(D) with respective values of ϕ′R.

We claim that the Newton-Okounkov function ϕ′R on ∆Y′•(D) that comes from the
geometric valuation ordR is given as ϕ′R(a′, b′) = a′ + b′ for all (a′, b′) ∈ ∆Y′•(D). To
prove this, we consider the following global sections of H0(X,OX(D)) as in Table 2.1.
The sections are chosen in a way such that they get mapped to the vertices, when build-
ing the new Newton–Okounkov body ∆Y′•(D) and a such that the order of vanishing
is ordR(s) = a′ + b′ for a section s that gets mapped to the point (a′, b′) ∈ ∆Y′•(D). For
the vertices in vert(∆Y′•(D)) these values realize a lower bound for the function ϕ′R.
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global section s image in ∆Y•(D) image in ∆Y′•(D) ordR(s)

s1(x, y) = (x− 1)(x2y− 1)9 (0, 0) (1, 9) 10

s2(x, y) = x(x2y− 1)9 (1, 0) (0, 9) 9

s3(x, y) = x4y4(x− 1)9(x2y− 1) (4, 4) (9, 1) 10

s4(x, y) = x6y5(x− 1)9 (6, 5) (9, 0) 9

s5(x, y) = y(x− 1)5(x2y− 1)7 (0, 1) (5, 7) 12

s6(x, y) = xy2(x− 1)7(x2y− 1)5 (1, 2) (7, 5) 12

s7(x, y) = x19y9 (19, 9) (0, 0) 0

Table 2.1: Global sections of OX(D) that realize lower bounds for the order of vanishing ordR.

Since the function ϕ′R has to be concave, this yields ϕ′R(a′, b′) = a′ + b′ on the entire
Newton–Okounkov body. For the integral we obtain∫

∆Y′•
(D)

ϕ′R =
1295

3
,

which is rational and therefore the Seshadri constant ε(X, D; R) is rational.
Although proving rationality of the Seshadri constant did not require knowing the
values of the function ϕR on the Newton–Okounkov body ∆Y•(D), determining these
values in this particular example is of independent interest. It turns out that the
approach of choosing sections whose Newton polytopes are zonotopes with prescribed
edge directions is not always sufficient to maximize the order of vanishing at the general
point R. For the function ϕR we expect 22 domains of linearity as shown in Figure 2.38

that arise from the shifting process in the direction of v = (−1, 0).

Figure 2.38: Expected domains of linearity of the function ϕR on the Newton–Okounkov body
∆Y•(D).

As seen in the Appendix in Table A.1 for the domains 1, . . . , 9, 13, 14, 15, and 19 zono-
topes using only edge directions of ∆Y•(D) are sufficient. For the domains 10, 11, and
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12 we need a Minkowski sum of those edge directions and ‘small’ triangles that have a
high order of vanishing at (1, 1). The section s(x, y) = x3y2 − 3xy + y + 1 for instance
has order of vanishing ordR(s) = 2 and its Newton polytope NP(s) is depicted in
Figure 2.39.

Figure 2.39: The Newton polytope NP(s) of the section s(x, y) = x3y2 − 3xy + y + 1.

For the remaining regions 16, 17, 18, 20, 21, and 22 global sections with the desired order
of vanishing at R could not be found via computations up to k = 12. We expect ϕ to
take the values shown in Figure 2.40.

Figure 2.40: The values of ϕ on the Newton–Okounkov body ∆Y•(D).

The approach for proving rationality of the Seshadri constant applies to a certain class
of polytopes. To describe this class we need to introduce the following terms.

Definition 2.5.11. Let P ⊆ R2 be a polygon and v ∈ Z2 a primitive direction. Set
vert(P, v) := Ψ−1(vert(Ψ(P))) for the piecewise linear isomorphism from Section 2.3.1
and call it the relevant vertex set of P with respect to v.

Definition 2.5.12. Let P ⊆ R2 be a polygon. Let v ∈ Z2 be a primitive vector, and
u ∈ v⊥ a primitive integral functional. We call P weakly zonotopally well-covered with
respect to (v, u) if for all points m ∈ vert(P, v) the set Pv(m) contains a zonotope
L1 + . . . + L` with none of the Li parallel to v, such that

`

∑
i=1

lengthZ2(Li) = widthu(Pv(m)).

The polygon P is weakly zonotopally well-covered if it is with respect to some (v, u).

72



2.5 rationality of certain seshadri constants

Theorem 2.5.13. Let X be a smooth projective toric surface and D an ample torus-
invariant divisor on X with associated Newton–Okounkov body ∆Y•(D) for an admissi-
ble torus-invariant flag Y•. If the polytope ∆Y•(D) is weakly zonotopally well-covered,
then

1. we can determine
∫

∆Y• (D) ϕR.

2. the Seshadri constant ε(X, D; R) is rational.

3. the maximum max∆Y• (D) ϕR is attained at the boundary of ∆Y•(D).

Proof. Since all input data is torus-invariant, the Newton–Okounkov body ∆Y•(D) is
isomorphic to the polytope PD for any admissible torus-invariant flag Y•. By assump-
tion, this polytope is weakly zonotopally well-covered, so let v = (v1, v2) ∈ Z2 be its
associated primitive direction. Consider the flag Y′• : X ⊇ C ⊇ {R}, where C is the
curve given by the local equation xv1 yv2 − 1 = 0 and R = (1, 1) is a general point on
C. Then the shifting process explained in Section 2.3 yields the Newton–Okounkov
body ∆Y′•(D) with respect to this new flag. By Corollary 2.3.8 this process relates the
Newton–Okounkov bodies via a piecewise linear isomorphism Ψ : ∆Y•(D)

∼−→ ∆Y′•(D).

We show that the Newton–Okounkov function ϕ′R : ∆Y′•(D) → R, that comes from
ordR, satisfies ϕ′R(a′, b′) = a′ + b′ for all vertices T = (a′, b′) ∈ vert(∆Y′•(D)). In order
to do so, apply the arguments of the proof of Theorem 2.4.17 to all m ∈ vert(∆Y•(D), v).
Together with the facts that ϕ′R is concave and has a′ + b′ as an upper bound it fol-
lows that ϕ′R(a′, b′) = a′ + b′ on the entire Newton–Okounkov body. Rationality of
the integral

∫
∆Y′•

(D) ϕ′R yields rationality of the Seshadri constant ε(X, D; R). Since the

maximum is independent of the flag, and ϕ′R is linear, it is attained at the boundary of
∆Y•(D).

Note, that zonotopally well-covered implies weakly zonotopally well-covered.

Example 2.5.14. To illustrate the proof we stick to Example 2.5.10. The polytope ∆Y•(D)
is weakly zonotopally well-covered with respect to (v, u) = ((−1, 0), (0, 1)). Consider,
for instance, the vertex T = (7, 5) ∈ ∆Y′•(D). Its preimage under the piecewise linear
isomorphism Ψ is m = (1, 2) ∈ ∆Y•(D) and length(∆Y•(D), m, v) = 7. A global section
which is mapped to m and T respectively, is

s(x, y) = xy2 · (x− 1)7 · (x2y− 1)5

as seen in Figure 2.41 with ordR(s) = 7 + 5 = 12.

We can construct classes of polarized toric surfaces for which our method of guessing
sections using convex geometry yields rationality of the Seshadri constant while other
methods like Ito’s width bound, Lundman’s core criterion or Sano’s anti-canonical
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Figure 2.41: The setup of the proof of Theorem 2.5.13 in the context of Example 2.5.10.

pencil do not apply. We explain the general method and illustrate it with an explicit
example. (The hard part is to find polygons for which the above methods do not work.)

In order to ensure that the core of our polygons is a point, we need to introduce
some machinery which might be of independent interest. In analogy with the Fine
interior of a rational polytope (compare [Fin83, §4.2], [BKS20]) we define the Fine adjoint
PFA(c) of a convex body P ⊆ MR and a parameter c > 0 as follows.

PFA(c) :=
⋂

u∈N\{0}
{m ∈ MR : 〈u, m〉 ≥ min〈u, P〉+ c}

If P is a rational polytope and c ∈ Q>0, this is again a rational polytope; PFA(1) is called
Fine interior in [BKS20]. If the toric variety XP associated with P has at most canonical
singularities, this agrees with the standard adjoint P(c) where the intersection is taken
only over facet defining u’s (see [Di +13]).
The Fine codegree ηF(P) of P is then the minimal c for which PFA(1/c) 6= ∅. Finally, we
call the last non-empty Fine adjoint PFA(1/ηF(P)) of P its Fine core coreF(P).
If m ∈ relint(coreF(P)), call those u ∈ N \ {0} for which 〈u, m〉 = min〈u, P〉+ 1/ηF(P)
essential for P (compare [Di +13, Lemma 2.2]).
For rational P the Fine codegree will be a rational number and hence the Fine core will
be a rational polytope of positive codimension. Figure 2.42 illustrates that in the case of
non-canonical singularities, the dimensions of core and Fine core can differ, and even if
both are points, they need not agree.

Lemma 2.5.15. Suppose P and Q are polytopes in MR whose Fine cores are points
coreF(P) = {mP} and coreF(Q) = {mQ}, respectively. Suppose further that the
u ∈ N \ {0} which are essential for both P and Q positively span NR.
Then the Fine core of kP + Q is the point kmP + mQ for all k ≥ 1.
In particular, if XP+Q has at most canonical singularities, then the (usual) core of
kP + Q is this point.

74



2.5 rationality of certain seshadri constants

Figure 2.42: Core versus Fine core.

With these preparations, we can describe our construction. We write deg(P) = 2 area(P)
for the normalized volume of P.

Theorem 2.5.16. Suppose P is a lattice polygon whose Fine core is a point such
that width(P) >

√
deg(P) and P supports a Laurent polynomial s which vanishes to

order >
√

deg(P) at R.
Then there is a lattice polygon Q so that for k� 0 the polygon kP + Q satisfies

1. XkP+Q is smooth,

2. core(kP + Q) is a point,

3. s(DkP+Q, R) ≥ k + 1,

4. h0(−KXkP+Q) = 1,

5. width(kP + Q) >
√

deg(kP + Q)

6. kP+Q supports a Laurent polynomial which vanishes to order >
√

deg(kP + Q)
at R.

In particular, ε(XkP+Q, DkP+Q; R) ∈ Q.

Example 2.5.17. Specific examples of such polygons P are the triangles

∆(d) = conv (d · ∆ ∪ {(−1,−1)}) ,

where ∆ denotes the standard triangle conv ((0, 0), (1, 0), (0, 1)) from Figure 2.43. Their
parameters are deg(∆(d)) = d2 + 2d, width(∆(d)) = d + 1, and they support a sec-
tion which vanishes to order ≥ d + 1 at R simply because they contain more than
dimC C[x, y]/〈x, y〉d = (d+1

2 ) lattice points so that the linear map

{s ∈ C[x, y] : supp(s) ⊆ P + (1, 1)} → C[x, y]/〈x, y〉d

s(x, y) 7→ s(x + 1, y + 1)

must have a kernel. Specifically, for P = ∆(1), we have deg(P) = 3, width(P) = 2, and
s = x + y + 1/xy− 3 is a section which vanishes to order 2 at R.
For our specific P = ∆(1), the polygon Q in Figure 2.44 does the job.
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Figure 2.43: Examples of wide polygons ∆(d) with small area for d = 1, 2, 3.

Figure 2.44: Resolving ∆(1), eliminating anti-canonical sections, and ensuring that the core is a
point.

In order to proof the theorem, we need another lemma.

Lemma 2.5.18. Let P be a polygon whose Fine core is a point. Then the origin is the
only lattice point in the interior of

Ess := conv({u ∈ N \ {0} : u is primitive and essential for P}).

Proof. Assume there exists a lattice point u0 ∈ N \ {0} in the interior of Ess. Then
there exist adjacent vertices u1, u2 ∈ N of Ess and coefficients λ1, λ2 > 0, such that
u0 = λ1u1 + λ2u2 with λ1 + λ2 < 1. For the essential vertices it holds that
〈u1, coreF(P)〉 = min〈u1, P〉+ 1/ηF(P) and 〈u2, coreF(P)〉 = min〈u2, P〉+ 1/ηF(P), re-
spectively. Thus for u0 we have

〈u0, coreF(P)〉 = 〈λ1u1 + λ2u2, coreF(P)〉
= (λ1 + λ2) · 1/ηF(P) + λ1 ·min〈u1, P〉+ λ2 ·min〈u2, P〉
≤ (λ1 + λ2) · 1/ηF(P) + min〈u0, P〉
< 1/ηF(P) + min〈u0, P〉.

This is a contradiction to the definition of coreF(P). Thus, such a lattice point cannot
exist and therefore the origin is the only interior lattice point.

Proof of Theorem 2.5.16. The inequalities 5 and 6 hold by assumption for large k, no
matter what Q is. Inequality 3 holds for all k because kP + Q will contain a k + 1 fold
dilate of a unimodular triangle.
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Toric resolution of singularities is a standard procedure, see [CLS11, Chapters 10 & 11].
If necessary, we blow up further torus fixed points until only one anti-canonical section
is left. This determines the normal fan of Q.
It remains to pick Q with the given fan so that the Fine core is a point and so that we
can apply Lemma 2.5.15. To this end, consider the set of primitive ray generators which
are essential for the given P. As coreF(P) is a point, the origin is the only lattice point
in the interior of their convex hull Q∨1 ⊂ NR due to Lemma 2.5.18. Denote E the set of
vertices of Q∨1 and denote Q1 ⊂ MR the polar dual of Q∨1 . As Q1 is a simple polytope,
we can pick a large J ∈ Z>0 so that for every u0 ∈ E there is a polygon Qu0 with the
same normal fan as Q1 such that min〈u0, Qu0〉 = −1 + 1/J while min〈u, Qu〉 = −1 for
all other u ∈ E \ {u0}. By adding appropriate multiples of the JQu for u ∈ E to Q1, we
can assure that all u ∈ E are essential for the resulting Q.

2 .6 outlook

A lot of question remain open and require further examination and also new questions
arise from our studies. We will mention a few concrete ones.

• What is the connection between our tilting isomorphism Ψ and the geometric
wall-crossing maps from [EH19], compare Remark 2.3.10?

• Does Conjecture 2.4.15 hold, that is, does the function transform according to Ψ?

• (When) is the maximum max∆Y• (D) ϕR always attained at the boundary of ∆Y•(D)?

• Can we extend our general strategy to a larger class of polytopes?

• Is there an invariant in analogy to the Seshadri constant in terms of the corre-
sponding polytope and what properties does it have?

• Do all polytopes fall into a class for which we have a rationality criterion, i.e., are
Seshadri constants rational on all toric surfaces?
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3
T H E K I N G M A N C O A L E S C E N T A N D T H E M U LT I S P E C I E S
C O A L E S C E N T A S D E N S I T I E S O N A S PA C E O F T R E E S

This chapter is joint work with Christian Haase.

3 .1 introduction

The graph-theoretical concept of a tree has been used as a mathematical tool to describe
numerous hierarchical relationships appearing in real world settings. One famous
example that dates back to the beginning of the nineteenth century is the idea of the
existence of a tree of life. Tree-like diagrams were already being used in the medieval era.
Figure 3.1 shows a page from Darwin’s notebook dating from around 1837, displaying
his first attempt to conceptualize an evolutionary tree. Although research in population
genetics has moved far beyond that stage today, trees are still omnipresent when it
comes to modeling genealogical relationships.

Figure 3.1: Darwin’s tree of life.

Against this background, spaces of phylogenetic trees have been studied from various
perspectives. In 2001 Billera, Holmes, and Vogtmann [BHV01] laid the groundwork for
also studying the geometry of such spaces of trees and provided a fundamentally new
perspective. In this light, we approach models from mathematical population genetics
in terms of polyhedral geometry.

There are interesting links to objects coming from tropical geometry. Speyer and
Sturmfels proved a first formal connection by identifying the space of phylogenetic
trees with the tropical Grassmannian, compare [SS04]. Ardila and Klivans relate it to
the tropicalization of the graphical matroid of a complete graph, see [AK06]. Thus,
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there is also a connection to the tropicalization of the moduli space of marked genus
zero curves. Consequently, efforts have recently been made to establish foundations of
tropical methods for probability and statistics on the space of phylogenetic trees, see
for instance [Lin+17; Nye+17; Mon+20].

The two models at the center of our studies are the Kingman coalescent process
[Kin82a; Kin82b; Kin82c] and the multispecies coalescent process [Tak89; RY03; Liu+09].
The former models the gene divergence of a sample within a population. This is
extended by the latter model, in the sense that it deals with the evolution of genes
within multiple species. Although these models require major simplifications regarding
the corresponding real world situation, they are the foundation which many current
research questions are based on.

Apart from the extreme technical advances that have been made throughout the last
decades, a lot of theoretical progress has been achieved with regard to phylogenetic
inference. One of the main lines of research that we follow tries to answer the question
of identifiability of the underlying species tree from a given distribution of observed
gene trees. This is a very active area of research, see for instance [DR06; ADR11; DRS12a;
DRS12b]. The first step towards an answer is to describe the conditional probability
distribution. This was done in [DS05; DR09; RY03].

Our objects of interest have been studied from very different perspectives, mean-
ing that problems have been approached from the viewpoint of biology, population
genetics, medicine, mathematics, computer science, or statistics. This has resulted in a
wide range of models, notations, and conventions in the existing literature. One aims of
ours is to bring order into this situation and to furthermore bring together the different
inner mathematical perspectives.
This chapter is organized as follows. Section 3.2 provides the necessary background on
the underlying models, namely the Fisher–Wright model and the Kingman n-coalescent,
and fixes notation. The focus of Section 3.3 is to define the spaces of trees that our
work is based on and examine their geometry. This lays the groundwork for proving
that the Kingman n-coalescent is given as a density on one of these spaces of trees, see
Proposition 3.4.1 in Section 3.4. In Section 3.5, we discuss how the respective densities
are related once we increase n, compare Proposition 3.5.3. We conclude in Section 3.6
by applying our methods to the multispecies coalescent.

3 .2 the fisher–wright model and the kingman n-coalescent

In this section we present the population genealogical models that our studies are based
on. We give an introduction that focuses on the aspects relevant to our setting. We
follow [Yan14, in particular Chapter 9], which offers a more detailed discussion, as
does [Wak09]. For readability, we will mostly omit proves and point the reader to the
referenced literature. To begin with, we review the Fisher–Wright model in Subsec-
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tion 3.2.1. In order to do so, we focus on tree topology in 3.2.2 and on waiting times in
3.2.3. Based on that, we can describe the Kingman n-coalescent in Subsection 3.2.4.

The coalescent models gene divergence within a genealogy. Here, ‘to coalesce’ means
‘to merge’ or ‘to join’. Thus as the term ‘coalesce’ suggests, our study focuses on a given
population for which we are tracing their genealogy backwards in time. So, we make
historical rather than predictive statements.

3.2.1 The Fisher–Wright Model

To get to these statements, we have to make several assumptions that simplify the real
world situation. The underlying population genetic model that is used here is called the
Fisher–Wright model. It was established in the ’30s first by Fisher in [Fis23] and Wright
in [Wri31]. Its characteristics are

• a constant population size,

• non-overlapping generations,

• random mating,

• no selection,

• no mutation, and

• no recombination.

This means that we start with a finite population, consisting of N ∈ Z≥1 individuals,
respectively lineages or genes. These terms will be used interchangeably. The model
refers to a haploid organism, but the same model also works for diploid organisms, for
which N would be replaced by 2N genes. If we visualize the process, one generation is
usually depicted as a row as it can be seen on the left in Figure 3.2. Each dot represents
one individual. In every generation, each individual chooses at random a parent of the
previous generation, as indicated by the arrows.

Figure 3.2: The Fisher–Wright model with n = 4.
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In coalescent theory, we consider a sample of size n ∈ Z≥1 with n � N from the
current population and trace its ancestry backwards in time, indicated by the colored
dots. We keep going until we reach the sample’s MRCA, which stands for Most Recent
Common Ancestor. This process consists of at most n− 1 coalescent events. Each time a
coalescent event takes place, at least two lineages are merged — they coalesce — and
the number of considered lineages is reduced. When the MRCA of the entire sample is
reached, there is only one lineage left. If we only consider the genes that are involved
in the process, this yields a tree as a result, as indicated by the dark-shaded dots on the
left in Figure 3.2. The resulting tree is depicted on the right. It consists of two kinds of
information. One is the branching pattern of the tree, which in general is often referred
to as the topology or the combinatorial type of the tree. There are different levels of detail
in which this topology is described. The second part of information is the waiting times
t′2, . . . , t′n, where t′j denotes the time, during which there are exactly j lineages in the
sample. We will formalize these terms in the following.

3.2.2 Tree Topology

Let us focus on the topology first. In the literature, the term phylogenetic tree which
emphasizes the connection to population genetics is used for diverse objects. Thus, we
specify which kind of trees we are considering. For us a (phylogenetic) n-tree T = (V, E)
with set of vertices V and set of edges E, has at most one vertex of degree 2, and is
required to have exactly n vertices of degree 1, the leaves L ⊂ V, which we label with
L = [n] := {1, . . . , n} or with letters a, b, c, . . .. If not mentioned otherwise, we will also
require it to be non-degenerate, meaning that

• it is rooted, i.e., has a distinguished vertex of degree two, its root, denoted by r,

• it is binary, i.e., every vertex v ∈ V has at most two children.

Biologists often use the terms node for vertex and branch for edge. The leaves are also
called external nodes in contrast to the other internal nodes. Similarly, the edges adjacent
to the leaves are called external edges and the others internal edges.

The combinatorial information, meaning the vertex-edge adjacencies of a tree T together
with the labeling of the leaves, is encapsulated in the term tree topology of T, which is
denoted by [[T]]. If we want to refer to a tree topology independent of the representa-
tive of the equivalence class, we often write [[T∗]]. There are (2n− 3)!! different tree
topologies for a non-degenerate n-tree, see for example [BHV01]. Figure 3.3 shows all
15 tree topologies for n = 4 leaves. Since the topology has to be representable for the
use of computer programs, it is often represented by the Newick format, also called the
nested parentheses format. As the name suggests, it is iteratively built by grouping both
children (leaves or subtrees) of an internal vertex v ∈ V inside a pair of parentheses,
separated by a comma. Here the outermost parentheses represent the root. For instance,
the upper left tree topology in Figure 3.3 is represented by [[T]] = (a, (b, (c, d))). Note,
that this representation is not unique. For a tree T or a tree topology, respectively, we
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Figure 3.3: All 15 tree topologies of 4-trees.

denote a coalescent event C by the segment of the Newick representation that is involved
in the coalescent event. For instance the merging of the leaf b with the subtree (c, d) in
the first tree in Figure 3.3, is represented by C = (b, (c, d)). The set of coalescent events
is denoted by C or by C([[T]]) if we want to refer to the underlying tree topology.

In our model it sometimes plays a role in which order the associated coalescent events
take place. This information is not entirely captured by the tree topology of an n-tree.
Thus, we introduce the ranked tree topology [T] of T, that in addition keeps track of
this order. In the literature, the ranked tree topology is sometimes referred to as the
concept of labeled histories, first introduced by Edwards in [Edw70]. This term can be
thought of as an n-tree with its internal nodes ranked according to the order in which
the coalescent events took place. For a given n ∈ Z≥1, there are n!(n−1)!

2n−1 different ranked
tree topologies: Initially, there used to be n lineages in the sample. At each of the n− 1
coalescent events C ∈ C, two random lineages are merged. For the first coalescent event,
there are (n

2) potential pairs in the sample. For the next one we have (n−1
2 ) and so on.

For the number of all different combinations of pairings, in total this gives

# ranked tree topologies =

(
n
2

)(
n− 1

2

)
· . . . ·

(
2
2

)
=

n!(n− 1)!
2n−1 . (3.2.1)

Since the coalescing pairs are chosen at random in the Fisher–Wright model, all ranked
tree topologies appear with the same probability, namely

P ([T] = [T∗]) =
1

# ranked tree topologies
=

2n−1

n!(n− 1)!
(3.2.2)

for a specific ranked tree topology [T∗].
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Example 3.2.1. In our running example for n = 4 leaves, the tree topology
[[T]] = [[T′]] = ((a, b), (c, d)) cannot distinguish between the two 4-trees T and T′

depicted in Figure 3.4, whereas their ranked tree topologies are different.

Figure 3.4: Two 4-trees T and T′ of the same tree topology, but different ranked tree topology.

In order to indicate the order of coalescent events, one can add this information to the
Newick format by using the respective orders in the index of the internal parentheses.
For the two trees given in Figure 3.4 this gives [T] = ((a, b)2, (c, d)1) for the tree on the
left and [T′] = ((a, b)1, (c, d)2) for the one on the right.

3.2.3 Waiting Times

The combinatorial type does not give precise information about the actual lengths of
the edges of a tree T, so we assign an edge length `(e) ∈ R to each edge e ∈ E. For a
tree coming from a coalescent process, these lengths are just given as the sum of the
respective waiting times.

Let us now focus on the waiting times. How many generations does it take to reach
the MRCA in the Fisher–Wright model? Let t′j denote the time during which there are
exactly j lineages in the sample, measured in generations. For a sample size of n = 2
individuals, the probability that they coalesce in the immediately previous generation
is the probability that they choose the same parent. Having N potential parents present
within the population, this probability is 1

N . Similarly, the probability that they do not
coalesce is 1− 1

N . Thus, the coalescent waiting time t′2 is geometrically distributed with
parameter 1

N , meaning that the probability that the MRCA of two lineages can be found
exactly i generations ago is

P
(
t′2 = i

)
=

(
1− 1

N

)i−1 1
N

. (3.2.3)

What happens if our population size N is large? To get a meaningful answer, we need
to change our time scale. So far, time was measured discretely in generations. Let t2 be
the rescaled time such that one time unit equates to N generations, i.e., t2 = t′2/N. This
means replacing the discrete time scale by a continuous one. As a consequence of the
large population size approximation, this yields an exponentially distributed waiting
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time variable t2 with parameter 1 and density function ρ2(t2) = exp(−t2), since

P
(

t2 >
i
N

)
= P

(
t′2 > i

)
=

(
1− 1

N

)i

≈ exp
(
− i

N

)
(3.2.4)

as N goes to infinity.
The arguments generalize to the case of considering a sample of n ∈ Z≥1 individu-
als. Since we assume n � N, the probability that more than two lineages coalesce
simultaneously is negligibly small, and these terms are not taken into account in the
computations. This means, the probability that all n individuals choose pairwise
different parents in the previous generation is(

1− 1
N

)(
1− 2

N

)
· . . . ·

(
1− n− 1

N

)
= 1−

(
n
2

)
1
N

+O
(

1
N2

)
≈ 1−

(
n
2

)
1
N

.

In general, let tj denote the time during which there are exactly j lineages present in
the sample, measured in time units of N generations. Each pair coalesces with rate 1

N
per generation, this means rate 1 per N generations, and there are ( j

2) pairs present in
the sample. Consequently, j genes coalesce with rate ( j

2)
1
N per generation and tj has an

exponential distribution with parameter ( j
2). Its density is given by

ρj
(
tj
)
=

(
j
2

)
exp

(
−
(

j
2

)
tj

)
(3.2.5)

and being exponentially distributed yields

E
[
tj
]
=

1

( j
2)

and Var
[
tj
]
=

(
1

( j
2)

)2

(3.2.6)

for its mean and variance. Given a certain ranked tree topology [T∗], the waiting times
tj are independent random variables for all j = n, . . . , 2 because the exponential is
memoryless. Therefore for the density we have

ρ[n] (tn, . . . , t2 | [T∗]) =
n

∏
j=2

ρj
(
tj
)

. (3.2.7)

For the joint distribution of the ranked tree topology [T∗] and the waiting times this
yields

ρ[n] ([T
∗], tn, . . . , t2) = ρ[n] ([T

∗]) ρ[n] (tn, . . . , t2 | [T∗]) =
n

∏
j=2

exp
(
−
(

j
2

)
tj

)
, (3.2.8)

since we have (3.2.2) and since the waiting times are independent of the tree topology.
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Remark 3.2.2. For further considerations we will mostly not take the population size
N into account. Therefore, we just assume that the time t is measured in what is
called coalescent units, where this continuous time scale is defined such that the rate of
coalescence is equal to 1. So indirect information about the population size is hidden
in the rescaling.

3.2.4 The Kingman n-Coalescent

So far, we have described the two kinds of information that we got out of a large popula-
tion size approximation of the Fisher–Wright model. On the one hand, we have discrete
information about the tree topology, and on the other hand, we have information about
the waiting times. Here the two kinds of information are independent of each other.

If we take both into account, this yields a stochastic process. One common way
of describing it is as a continuous-time Markov-chain process. We will explain this
interpretation in more detail in Section 3.5. This stochastic process was first described
by Kingman and is therefore often called the Kingman n-coalescent or just n-coalescent.
In [Kin82a; Kin82b; Kin82c] he formally proved what we have roughly argued above.
Namely, that in the limit, as N tends to infinity, the ancestral process under the Fisher–
Wright model converges to the Kingman n-coalescent. This does not only apply to
the Fisher–Wright model but for the larger class of Cannings models, of which the
Fisher–Wright model is a particular case [Can74; Can75].

3 .3 spaces of trees

Having described the n-coalescent, our goal is to identify the Kingman n-coalescent as a
density on a space of trees. In order to do that, we want to build a space of trees, where
each point in the space corresponds to one particular tree, specified by its combinatorial
type and its edge lengths. The focus of this section is to establish suitable spaces of trees
as a basis of our studies. One additional aim is to bring order into the various notions
from existing literature. We define the spaces DTMn, DUMn, MTMn and in particular
MUMn, the space of metrics that are ultrametrics. In Subsection 3.3.1 we examine the
geometry of this space. It turns out, that it carries a fine structure, see Proposition 3.3.9,
and a coarse structure, see Proposition 3.3.12. Finally, we discuss the relation to objects
coming from tropical geometry in Subsection 3.3.2.

There are several ways to parametrize a tree. In [BHV01], internal edge lengths
are used for this purpose. Here, we use the approach of pairwise distance functions,
compare for instance [SS03].

Definition 3.3.1. A dissimilarity map on [n] is a map δ : [n]× [n]→ R such that δ(i, i) = 0
for all i ∈ [n], and δ(i, j) = δ(j, i) for all i, j ∈ [n].

Given a tree T, we assign a dissimilarity map δT to it, where δT(i, j) measures the
distance between leaves i, j ∈ L. The distance is given by the sum of the edge lengths
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of the unique path connecting the leaves i and j. It will be convenient to also consider
negative lengths. We call δT the distance function of the tree T.

Remark 3.3.2. We drop the index T if it is clear from the context, or if it is not relevant
for the context, which particular tree we are considering. To shorten notation, we also
often write dT ∈ R(n

2) for the associated distance vector if we refer to a distance function
δT. This enables us to associate a point in the vector space R(n

2) to a given tree. The
coordinate giving the distance between leaves i and j is denoted by dij := δT(i, j), and
the coordinates are ordered lexicographically.

Example 3.3.3. For the tree T in Figure 3.2, we obtain the distance vector

dT = (dab, dac, dad, dbc, dbd, dcd)

=
(
2(t′3 + t′4), 2(t′2 + t′3 + t′4), 2(t′2 + t′3 + t′4),

2(t′2 + t′3 + t′4), 2(t′2 + t′3 + t′4), 2t′4
)

.

We call a dissimilarity map δ on [n] a tree metric if it is the distance function of an
unrooted n-tree with non-negative internal edge lengths. There is a criterion to decide
whether a given dissimilarity map can be realized as a distance function of such a tree.
This condition is often referred to as the four-point-condition.

Theorem 3.3.4 ([SS03, Theorem 7.2.6]). A dissimilarity map δ on [n] is a tree metric,
that is, it is the distance function of an unrooted n-tree with non-negative edge lengths,
if and only if for all pairwise different i, j, k, l ∈ [n]

max(δ(i, j) + δ(k, l), δ(i, k) + δ(j, l), δ(i, l) + δ(j, k))

is attained at least twice.

Therefore, the space of all tree metrics can be characterized as

DTMn := {d ∈ R(n
2) : max(dij + dkl , dik + djl , dil + djk) is attained at least twice

for all pairwise different i, j, k, l ∈ [n]} ,

where DTM is short for Dissimilarity maps that are Tree Metrics.

When we track the history of a sample of genes, we start at the leaves until we reach
the MRCA, which becomes the root of our tree. By construction all leaves will have
the same distance from this root in the resulting tree. We call such a tree an equidistant
tree. There is also a corresponding property in terms of distance functions, which is
also referred to as the three-point-condition.

Definition 3.3.5. An ultrametric δ on [n] is a dissimilarity map such that for all pairwise
different i, j, k ∈ [n]

max(δ(i, j), δ(i, k), δ(j, k))

is attained at least twice.
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The terms are related in the following sense.

Theorem 3.3.6 ([SS03, Theorem 7.2.5]). A dissimilarity map δ on [n] is an ultrametric
if and only if it is the distance function of an equidistant n-tree with non-negative
internal edge lengths.

We set

DUMn := {d ∈ R(n
2) : max(dij, dik, djk) is attained at least twice

for all pairwise different i, j, k ∈ [n]} ,

where DUMn is short for Dissimilarity maps that are UltraMetrics.

The two spaces DTMn and DUMn and some of their geometric properties have been
studied before. We introduce two additional spaces of trees that fit our biological
context better. Since the edges of a tree are meant to model amounts of time, we want
all edge lengths to be non-negative. Then the associated distance function δ is a metric,
which requires the triangle inequality

δ(i, j) ≤ δ(i, k) + δ(k, j) to hold for all i, j, k ∈ [n] ,

which implies non-negativity, i.e., δ(i, j) ≥ 0 for all i, j ∈ [n].

The space of all such distance vectors is denoted by MTMn, which is short for Metrics
that are Tree Metrics, i.e.,

MTMn := {d ∈ R(n
2) : max(dij + dkl , dik + djl , dil + djk) is attained

at least twice for all i, j, k, l ∈ [n]} .

Note, that since the leaves i, j, k, l are not required to be pairwise different, the four-
point-condition implies the triangle inequality and therefore non-negativity. This can
be seen as follows. For k = l ∈ [n] we have that the maximum of

max(dij + dkl , dik + djl , dil + djk) = max(dij, dik + djk, dik + djk)

is attained at least twice. This implies dij ≤ dik + djk.
Thus, elements in MTMn correspond to unrooted n-trees with non-negative distances
dij for all pairs i, j ∈ [n].
Similarly, we define

MUMn :=
{

d ∈ R(n
2) : max(dij, dik, djk) is attained at least twice for all i, j, k ∈ [n]

}
,

where MUMn is short for Metrics that are UltraMetrics. This space represents the equidis-
tant n-trees with non-negative edge lengths `(e) for all e ∈ E. Here, non-negativity
is also implied by the three-point-condition, since the triple is not required to have
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pairwise different indices. Even more is true, for an ultrametric δT, we have δT(i, j) ≥ 0

for all i, j ∈ [n] if and only if `(e) ≥ 0 for all e ∈ E. Thus MUMn = DUMn ∩R
(n

2)
≥0. If a

dissimilarity map δ on [n] is an ultrametric, this implies that it is in particular a tree
metric.

The four spaces of trees are closely related in the following sense. Let

Ln := span

(
∑

j∈[n]:j 6=i
eij : 1 ≤ i ≤ n

)
,

where eij = (0, . . . , 0, 1, 0, . . . , 0) is the standard basis vector for the distance dij between
the leaves i, j ∈ L. Given a tree distance dT and i ∈ [n], then dT + λ ∑j∈[n]:j 6=i eij is again
a tree distance, for all constants λ ∈ R. The corresponding tree is obtained by adding
the constant λ to the external branch of the i-th leaf in the tree T. As a consequence, Ln
is contained in the lineality space of DTMn. On the other hand, by keeping the internal
branch lengths, every element in DTMn can be obtained by adjusting the external
branch lengths of a tree of DUMn or MUMn. When the resulting tree is supposed to be
equidistant as well, then it is sufficient to vary the external edges simultaneously. This
gives the following result.

Lemma 3.3.7.

DTMn = DUMn +Ln = MUMn +Ln

DUMn = MUMn +R · 1.

3.3.1 The Geometry of the Space of Trees MUMn

For describing the coalescent process, the resulting tree T is an equidistant rooted
n-tree having only non-negative edge lengths, or equivalently, the associated distance
vector dT is an element of MUMn. Thus, we take a closer look at the geometry of this
space as a subspace of R(n

2). The space DUMn is known to carry a fine and a coarse
combinatorial structure, as discovered in [AK06] in the context of tropical geometry.

3.3.1.1 The Ranked Tree Topology Cones

Example 3.3.8. Let us consider the case n = 3, because then (n
2) = (3

2) = 3 and the
space MUM3 is still depictable in 3-space. The pairwise distances between the leaves
L = {a, b, c} yield three global coordinates (dab, dac, dbc) ∈ R3

≥0 in the non-negative
orthant. There are three different tree topologies of 3-trees which can be seen in
Figure 3.5. Here, tree topologies and ranked tree topologies are the same. Let us fix
the ranked tree topology [T∗] = (a, (b, c)), the one on the left in Figure 3.5. Which
distance vectors dT ∈ R3 correspond to this topology? For trees of the given type
[T∗], the distance dab will always equal dac, and thus, all points corresponding to
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Figure 3.5: The (ranked) tree topologies of 3-trees.

trees having this (ranked) tree topology [T∗] will lie in the hyperplane given by the
equation dab = dac. Because the tree has to be equidistant, we also have dab = dac ≥ dbc.
Consequently, we obtain a 2-dimensional cone σ[T∗] associated to the given ranked tree
topology [T∗] which is spanned by the vectors (1, 1, 0) and (1, 1, 1). The same holds
analogously for the other ranked tree topologies. The three cones intersect nicely in
lower-dimensional cones, and thus yield a polyhedral fan Σ3, which can be seen in
Figure 3.6. We want to examine what the lower-dimensional cones correspond to.

• The three 2-dimensional cones intersect in a 1-dimensional ray, given by the
equation dab = dac = dbc. Hence, for trees on that ray we have t2 = 0, and the
edge lengths are fully described by t3 6= 0.

• If we consider the 1-dimensional rays lying in the coordinate hyperplanes, one
respective distance is equal to 0 in the corresponding tree. For instance, if dbc = 0,
this means that we cannot distinguish anymore between the leaves b and c and
thus t3 = 0. In this case, the edge lengths are just determined in terms of t2 6= 0.

Figure 3.6: Full- and lower-dimensional cones in the space MUM3.

In the general case, where we start with a sample of size n, the space MUMn can
be described in a similar way. For a given equidistant n-tree T that arose from the
n-coalescent process, its corresponding distance vector dT has (n

2) entries. How many
different entries may it have? If one expresses the entries in terms of the waiting
times tj for j = 2, . . . , n, the distances that can occur are of the form 2 ∑n

j=k tj for
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k = 2, . . . , n. Thus, independent of the tree topology, the coordinates of a distance
vector are contained in subset of cardinality at most n − 1. For a fixed ranked tree
topology, the subsets of the respective coordinate indices that coincide will always be
the same. Thus, all the corresponding distance vectors lie in a common subspace of
dimension n− 1. The intersection with MUMn is cut out by linear inequalities that
come from the tree’s property of being equidistant, and that are determined by its
ranked tree topology. As a result, we obtain an (n− 1)-dimensional ranked topology
cone σ[T∗] that corresponds to the fixed ranked tree topology [T∗]. As in Example 3.3.8,
considering all possible ranked tree topologies, these cones intersect nicely, and we
obtain a polyhedral fan Σn, whose support is MUMn. This can also be verified using a
result of Ardila and Klivans. In Theorem 3 and Proposition 3 of [AK06] they showed
that DUMn is the support of a fan, where the top-dimensional cones correspond to
ranked tree topologies. Both spaces MUMn and DUMn have the same combinatorics

by definition, and MUMn = DUMn ∩R
(n

2)
≥0. Altogether, this leads to the following

proposition.

Proposition 3.3.9. Let n ∈ Z≥1. The space MUMn ⊂ R(n
2) is the support of a

polyhedral fan Σn, whose top-dimensional cones are in one-to-one-correspondence
with ranked tree topologies.

In general, this means that in order to interpolate between n-trees, we will also need
to consider non-binary trees or trees with multiple leaf labels. Let us make this more
precise. Let T be an equidistant n-tree that arose from an n-coalescent process. We have
observed earlier that its edge lengths can be expressed in terms of the waiting times tj.
An edge e ∈ E always has a length of the form `(e) = ∑k

j=i tj for some i ≤ k ∈ {2, . . . , n}.
We will call a tree T a degenerate n-tree if it arose from an n-tree by setting tj = 0 for
some j ∈ {2, . . . , n}. Thus for a degenerate n-tree it holds that

• it has between 2 and n leaves, some of them may have multiple labels.

• its root has degree between 2 and n.

• all of its other internal vertices have degree between 3 and n.

• all leaves have the same distance to the root.

For a fixed ranked tree topology [T∗], the corresponding cone σ[T∗] ∈ Σn is an (n− 1)-
dimensional unimodular cone with respect to the lattice Z(n

2), see Section 3.3.1.2. Thus,
a face of codimension k for k ∈ {1, . . . , n− 2} consists of distance vectors of degenerate
n-trees which arose by setting k of the waiting times equal to zero. In particular, this
means that for each of the n− 1 rays, exactly one waiting time tj for a j ∈ {2, . . . , n}
remains non-zero. Thus we can give local coordinates in terms of t2, . . . , tn to this
specific cone.
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3.3.1.2 The Tree Topology Cones

Also the subsets of MUMn corresponding to an unranked tree topology [[T∗]] have a
nice geometric interpretation that relates to known objects from discrete geometry. We
did not find this interpretation in the literature. To make this more precise, we recall
the necessary definitions.

A partially ordered set (Π,≤Π), or poset for short, is a set Π together with a partial
order, which is a binary relation ≤Π, that is reflexive, antisymmetric, and transitive. A
finite poset can be represented via its Hasse diagram. A linear extension of ≤Π is a total
order that refines ≤Π.

Given a tree topology [[T∗]], this can be interpreted as a poset

(C,≤) := (Π([[T∗]]),≤Π([[T∗]])), (3.3.1)

where the partial order ≤ on the set of coalescent events C = C([[T∗]]) is determined
by the topology of the tree in the natural way: More precisely, let vC ∈ V denote the
internal vertex at which the coalescent event C ∈ C takes place. Two coalescent events
C1, C2 ∈ C are in relation C1 ≤ C2 if and only if the subtree descending from the internal
vertex vC2 ∈ V associated to C2 contains the internal vertex vC1 ∈ V associated to C1.
Note, that the Hasse diagram coincides with the tree without external edges.

Example 3.3.10. In our running example the tree topology [[T∗]] = ((a, b), (c, d)) in-
volves the three coalescent events C = {(a, b), (c, d), ((a, b), (c, d))}. For the associ-
ated poset (C,≤) we have the partial order ≤ given by (a, b) ≤ ((a, b), (c, d)) and
(c, d) ≤ ((a, b), (c, d)).

To every finite poset, Stanley associates two geometric objects.

Definition 3.3.11 ([Sta86, Definition 1.1]). The order polytope O(Π) of a finite poset
(Π,≤Π) is the subset of RΠ = { f : Π→ R} defined by the conditions

0 ≤ f (i) ≤ 1, for all i ∈ Π, (3.3.2)
f (i) ≤ f (j), if i ≤Π j in Π. (3.3.3)

In [Sta86], Stanley also states that there exists a unimodular triangulation of O(Π) such
that the maximal simplices are in bijection to the linear extensions of the partial order
≤Π. Every simplex in the triangulation also comes from some monotone path from
(0, . . . , 0) to (1, . . . , 1) in the unit cube [0, 1]Π.

If we relax the upper bound condition f (i) ≤ 1 in (3.3.2), then the resulting object will
be a pointed polyhedral cone, which is called the order cone and denoted by K(Π). It
captures all order-preserving functions from Π to R≥0. The unimodular triangulation
of O(Π) induces a unimodular triangulation of K(Π).
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3.3 spaces of trees

This relates to our space of trees in the following sense. Given a coalescent event
C ∈ C, we denote by dC the point in time at which the coalescent event takes place and
call it its coalescent time.

Proposition 3.3.12. Let [[T∗]] be a tree topology for MUMn. Then the subset

σ[[T∗]] := {dT ∈ MUMn : [[T]] = [[T∗]]} (3.3.4)

is isomorphic to the order cone K(C([[T∗]])) of the poset (C([[T∗]]),≤) given as
in (3.3.1) and is therefore called a tree topology cone. The unimodular subcones of
K(C([[T∗]])), that are in bijection to linear extensions of≤, correspond to the respective
ranked tree topologies that refine [[T∗]].

Proof. We fix a tree topology [[T∗]]. As argued in Section 3.3.1.1, a distance vector
dT ∈ MUMn can have at most (n− 1) pairwise different entries, namely ∑n

j=k tj for
k ∈ {2, . . . , n}. For the fixed tree topology [[T∗]], the indices of the coordinates that
coincide respectively, for all trees with tree topology [[T∗]], are determined by the tree
topology. Thus, we fix a maximal index set I ⊆ ([n]2 ) with |I| = n− 1 of pairwise differ-
ent coordinates. Then, we consider the subset RI

≥0
∼= Rn−1

≥0 . Within that orthant, the
restriction to the subset {dT ∈ MUMn : [[T]] = [[T∗]]} |I is cut out by hyperplanes. The
hyperplanes are determined by linear inequalities of the form dij ≤ dkl for i, j, k, l ∈ L,
that are determined by the tree topology.

Let C = C([[T∗]]) be the set of coalescent events associated to [[T∗]]. The tree topology
determines the poset (C,≤) as explained in (3.3.1). This yields the associated order
cone K(C) with coordinates (dC)C∈C, where dC is the coalescent time of the coalescent
event C ∈ C. It is an (n− 1)-dimensional cone, where each coordinate represents one
coalescent event C ∈ C. Let C ∈ C be a coalescent event, that merges the subtrees T1
and T2 of T. Then for a tree distance in (3.3.4), we have dC = 1

2 dij, for all leaves i of T1

and j of T2, respectively. This yields a change of coordinates, that identifies RC with
RI . By (3.3.3), in the definition of the order polytope, the defining inequalities cut
out the same half spaces and therefore we have the identification of cones σ[[T∗]]

∼= K(C).

A linear extension of the poset (C,≤) is a total order that refines ≤. In our con-
text this means, that we obtain a total order of all coalescent events C ∈ C. This exactly
determines a ranked tree topology [T∗] that is coarsened by the tree topology [[T∗]].
Thus, the unimodular cones in the triangulation of the order cone are in bijection with
the ranked tree topologies that refine [[T∗]].

We illustrate the proposition for our running example.

Example 3.3.13. We continue with Example 3.3.10 and consider the tree topology
[[T∗]] = ((a, b), (c, d)) for n = 4. Then MUM4 is (4

2) = 6-dimensional and the con-
sidered subspace is given by the equalities dac = dad = dbc = dbd. This gives a
3-dimensional orthant with local coordinates (dab, dac, dcd) or (d(a,b), d((a,b),(c,d)), d(c,d))
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in terms of coalescent events, respectively. The cone σ((a,b),(c,d))
∼= K(C) is depicted in

Figure 3.7. It is triangulated into two unimodular cones, corresponding to the ranked
tree topologies ((a, b)1, (c, d)2) (green) and ((a, b)2, (c, d)1) (blue).

Figure 3.7: The tree topology cone σ((a,b),(c,d)) triangulated into two unimodular ranked tree
topology cones σ((a,b)1,(c,d)2)

(green) and σ((a,b)2,(c,d)1)
(blue).

3.3.2 The Connection to Tropical Geometry

The spaces of trees that we are considering in Section 3.3 have an important connection
to objects coming from tropical geometry. We give a brief summary of these relations,
following the presentation in [MS15, Chapter 3.5] and [PS05, Chapters 4.2 and 4.3]. See
there, for detailed definitions, statements, proofs, and a broad introduction into tropical
geometry.

The Grassmannian G(2, n) ⊆ P(n
2)−1 is the smooth projective variety of dimension

2(n − 2) that parametrizes the family of 2-planes containing the origin in Rn. By
G0(2, n) = G(2, n) ∩T(n

2)−1, we denote the open variety which corresponds to remov-
ing the coordinate hyperplanes. Then the tropical Grassmannian trop(G0(2, n)) can
be thought of as follows. Let A = (aij)i,j be a symmetric (n× n)-matrix with zeros
on the diagonal. The remaining (n

2) distinct entries are unknown. Each quadruple
{i, j, k, l} ⊆ [n] with |{i, j, k, l}| = 4 gives a tropical polynomial

pijkl(A) = max (aij + akl , aik + ajl , ail + ajk) (3.3.5)

which defines a tropical hypersurface in R(n
2). It consists of the points, for which the

maximum is attained at least twice. Then, the tropical Grassmannian is the intersection
of these (n

4) hypersurfaces. It is a pure 2(n− 2)-dimensional rational polyhedral fan
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in R(n
2)−1 ∼= R(n

2)/R1. The polynomials in (3.3.5) are reminiscent of the four-point-
condition, which is not a coincidence.

Theorem 3.3.14 ([SS04, Theorem 4.2]). The tropical Grassmannian trop(G0(2, n))
coincides with the space of trees DTMn /R1, up to sign.

Let Kn denote the complete graph on n vertices. We consider the associated graphical
matroid M(Kn), where the ground set is given by the set of edges of Kn labeled by ([n]2 ).
The smallest circuits c of the matroid are given by the triangles in the graph Kn. The
linear tropical space trop(M(Kn)) is the set of vectors ω ∈ R(n

2) such that for any circuit c
of M(Kn), the maximum of the numbers ωij is attained at least twice, when ij ranges
over c [MS15, compare Definition 4.2.5]. For triangles this condition describes the set
of all weights ω ∈ R(n

2) such that max (ωij, ωik, ωjk) is attained at least twice for all
pairwise different i, j, k ∈

{
1, . . . , (n

2)
}

. If the condition is fulfilled for all triangles, then
it holds for all bigger circuits as well. Therefore we have the following connection.

Theorem 3.3.15 ([AK06, Theorem 3]). The space of trees DUMn coincides with
trop(M(Kn)).

For ω ∈ trop(M(Kn)), we have ω + λ1 ∈ trop(M(Kn)) for any λ ∈ R. Thus
trop(M(Kn)) is often regarded as a subset of the quotient space R(n

2)−1. If we divide out
its lineality space, the set carries a fan structure that comes out of the combinatorics of
the underlying matroid. This fan is called the Bergman fan. It has a coarse and a fine fan
structure. In Proposition 3 in [AK06], Ardila and Klivans show that these correspond
to (ranked) tree topologies, respectively, compare Sections 3.3.1.1 and 3.3.1.2

The above yields another insightful connection. Consider the moduli space M0,n
of n distinct labeled points on the projective line P1 up to an automorphisms of P1.
This can be thought of as

M0,n = (P1 \ {0, 1, ∞})n−3 \ diagonals

= Pn−3 \ {xi = 0, xi = xj for all 0 ≤ i, j ≤ n− 3}.

Since this realizesM0,n as the complement of (n−1
2 ) hyperplanes in Pn−3, it defines a

closed embedding into a suitable torus T(n−1
2 )−1. It can be read off the defining linear

equalities that the tropicalization trop(M0,n) ⊆ R(n−1
2 )−1 coincides with the tropical-

ization of the graphical matroid trop(M(Kn−1)) and by Theorem 3.3.15 therefore with
the space of trees DUMn−1. Hence, it carries a fan structure, which determines a toric
variety. Actually, the closure of M0,n in the corresponding toric variety equals the
Deligne–Mumford compactification M0,n. Here, M0,n is the moduli space of stable
genus zero curves with n distinct marked points. See [MS15, Chapter 6.4], [Tev07,
Theorem 5.5], or [GM10, Theorem 5.7] for more details.
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Moduli spaces carry universal families. In the case ofM0,n, the universal family arises
via the so called forgetful maps. In [FH13], the authors introduce a tropical counterpart
by giving a suitable definition of a family of tropical curves and prove that the forgetful
map between the moduli spaces of tropical curves

ftn :Mtrop
0,n →M

trop
0,n−1, (3.3.6)

is then indeed a universal family. This map can be thought of as forgetting the n-th
marked point. We will come back to this in Section 3.5.2, when we consider a forgetful-
like map in the context of spaces of trees.

3 .4 the kingman n-coalescent as a density on a space of trees

The discussion of Sections 3.2 and 3.3 enables us to describe the Kingman n-coalescent
by a density on MUMn with respect to a well defined Lebesgue-measure.

Proposition 3.4.1. The Kingman n-coalescent is locally given by the continuous
density

ρ[n] (tn, . . . , t2) =
n

∏
j=2

exp
(
−
(

j
2

)
tj

)
, (3.4.1)

where t2, . . . , tn are waiting times and local coordinates for each top-dimensional
cone σ[T∗] ∈ Σn on MUMn corresponding to a ranked tree topology [T∗]. On the
lower-dimensional intersections the densities coming from different top-dimensional
cones agree, and thus, this yields a global continuous density on MUMn.

Proof. We consider the fan Σn. Let σ[T∗] be a top-dimensional cone, corresponding to
the ranked tree topology [T∗]. Then, as argued before, σ[T∗] is an (n− 1)-dimensional
unimodular cone, whose rays correspond to the local coordinates t2, . . . , tn. Since the
cone is unimodular, we can map it to the positive (n− 1)-dimensional orthant in Rn−1,
such that the primitive ray generators of σ[T∗] are mapped to the standard basis vectors
of Rn−1 via a unimodular transformation. On Rn−1 we have the Lebesgue-measure
which we pull back. By (3.2.5) and (3.2.7), given a fixed ranked tree topology [T∗], the
coalescent process is described by the density

ρ[n] (tn, . . . , t2 | [T∗]) =
n

∏
j=2

ρj
(
tj
)
=

n

∏
j=2

(
j
2

)
exp

(
−
(

j
2

)
tj

)
(3.4.2)

with respect to this Lebesgue-measure. Since tree topology and waiting times are
independent and all ranked tree topologies are equally likely to appear, we have to
divide by the total number of ranked tree topologies which yields

ρ[n] (tn, . . . , t2) =
n

∏
j=2

exp
(
−
(

j
2

)
tj

)
(3.4.3)
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as in (3.2.8). The tj are uniquely determined by T for all j ∈ [n], even if some are 0.
Therefore we obtain a unique value also for degenerate trees in the relative interior of
lower-dimensional cones. Thus, (3.4.3) yields a well-defined global density.

3 .5 the kingman coalescent

In Section 3.2.4 we have already mentioned that the Kingman n-coalescent is often
described as a continuous Markov-chain process on partitions of [n]. We provide the
necessary background for this approach in Subsection 3.5.1. This enables us to consider
the Kingman coalescent as a limiting process. Against this background we define a
forgetful map in Subsection 3.5.2 and discuss the relation of the respective densities for
increasing n, compare Proposition 3.5.3.

3.5.1 The Kingman n-Coalescent as a Markov-Chain Process

We will explain the basics of this description following [Kin82a; Kin82b; Kin82c]. For
simplicity, we assume our n individuals to be labeled by 1, . . . , n. Furthermore, let Pn
denote the set of all set-partitions of [n]. At the beginning of the process all individuals
are separated, which is modeled by the partition of [n] into singletons {1}, . . . , {n}.
Each time a coalescent event takes place in the n-coalescent process, two of the lineages
present in the sample are merged. This can be interpreted as merging the correspond-
ing blocks in the current partition. Thus, we define ∼k as the equivalence relation
on [n] with i ∼k j, if i and j are in the same block of the partition after k coalescent
events. In our phylogenetic context this means that the respective lineages shared a
common ancestor k generations/time units ago. We denote the equivalence classes by
Rn

k and call Rn = (Rn
k )k∈Z≥1 the ancestral process of the sample of size n. This process

is a homogeneous Markov-chain with values in Pn. So the process starts in the state
Rn

0 = {{1}, . . . , {n}}. The transition probability P (π → π′) that a partition π is turned
into a partition π′ is non-zero if and only if π′ arises from π by merging two of its blocks.

If t denotes the rescaled time in our large population size approximation, as in Sec-
tion 3.2.3, Kingman [Kin82a; Kin82b; Kin82c] and Möhle and Sagitov [MS01] showed
that in the limit, this yields the Kingman n-coalescent (Rn

t )t≥0 as an continuous-time
Markov-chain process with values in Pn starting at the partition into singletons and
having the transition rates

qπ,π′ =

1 if π′ is obtained by merging two elements of π,

0 otherwise.
(3.5.1)

for π, π′ ∈ Pn. For m > n we define Rm,n to be the restriction of Rm to Pn. One
important property of the n-coalescent is its consistency. This means that the restriction
Rm,n has the same law as the n-coalescent process Rn.
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This property with the additional application of Kolmogorov’s extension theorem
enables us to define a more general process on P∞, which denotes the set of partitions
of Z≥1.

Proposition 3.5.1 (Kingman, Möhle-Sagitov). There is a unique Markov process
on P∞, the set-partitions of Z≥1, such that for every n ∈ Z≥1 its restriction to the
partitions of any subset of size n is an n-coalescent. This process is called the Kingman
coalescent.

3.5.2 A Forgetful Map on the Space of Trees

The Kingman n-coalescent’s property of being consistent can also be interpreted in
terms of the involved trees. Let T be a tree resulting from an n-coalescent process and
let dT ∈ R(n

2) be the corresponding distance vector. If we restrict T to an (n− 1)-subtree
T̂, this means that we just forget the n− 1 entries of dT that involve the n-th leaf. None
of the leaves have a distinguishing property. Thus, for simplicity of presentation, we
always assume the n-th leaf to be removed if not specified otherwise. This yields a new
distance vector dT̂ ∈ R(n−1

2 ). We denote this linear projection by Φn, where

Φn : MUMn → MUMn−1 (3.5.2)
dT 7→ dT̂.

Graphically, we can think of this restriction as removing the external branch adjacent to
leaf n from the tree T. Consistency of the underlying process tells us that the tree T̂ can
be interpreted as the resulting tree of an (n− 1)-coalescent process on the remaining
n− 1 leaves Ln−1 = Ln \ {n}.

We are now interested in the preimage of a point under the map Φn. That is, given an
(n− 1)-tree T̂ with dT̂ ∈ MUMn−1, where can we attach an n-th external branch to T̂ in
such a way that T̂ is the image of the new tree T under the restriction map Φn? Our
answer can be understood as a tree version of Proposition 4.5 in [FH13], where they
consider DUMn from a tropical perspective.

Proposition 3.5.2. Let T̂ be an equidistant (n − 1)-tree with distance vector
dT̂ ∈ MUMn−1. Then the preimage Φ−1

n can be identified with the tree T̂ with
an additional infinitely long branch above the root.

Proof. Let T̂ = (V̂, Ê) be an equidistant (n− 1)-tree. We denote by T̂∞ the tree T̂ with
an additional infinitely long branch above the root. Given a point v̂ on T̂∞, we first
construct a point in Φ−1

n (T̂). As argued above, every tree T in the preimage of Φn arises
from T̂ by adding an external branch adjacent to a new n-th leaf to the current tree T̂.
There are three cases, as depicted in Figure 3.8.

1. v̂ is not a vertex and lies on one of the finite edges ê ∈ Ê. Split it into two edges
by inserting v̂ as a new internal vertex. Attach an external edge ên to v̂, that is
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Figure 3.8: The different ways to insert an n-th leaf to obtain a tree T in the preimage Φ−1
n (T̂).

adjacent to the new leaf n. The edge length of ên is determined by the required
property of being equidistant.

2. v̂ is an internal vertex v̂ ∈ V̂. Attach an external edge ên to v̂ that is adjacent to
the new leaf n. The edge length of ên is determined by the required property
of being equidistant. Note that the resulting tree T will be degenerate, since it
involves multiple simultaneous coalescence. If v̂ is an existing leaf, then add n as
a label to this leaf, which will then have multiple labels.

3. v̂ lies on the extra branch. Add v̂ to the set of vertices as a new root. Insert an
internal edge êr joining v̂ and the old root of T̂. Attach an external edge ên to
v̂, that is adjacent to the new leaf n. The edge length of ên is determined by the
required property of being equidistant.

All these procedures give rise to an equidistant n-tree T and do not change the pairwise
distances between the leaves Ln−1 = {1, . . . , n− 1}. Therefore, all trees obtained these
ways lie in the preimage Φ−1

n (T̂).
Conversely, let T = (V, E) be an n-tree in the preimage Φ−1

n (T̂). Then there exists a
vertex v̂ ∈ V which attaches the external branch adjacent to the n-th leaf to tree. Then
either v̂ is already a point on T̂ or it is the root of T. In this case it can be identified
with its corresponding point on the additional branch. The described procedures are
mutual inverses and thus the preimage Φ−1

n (T̂) can be identified with the tree T̂ with
an additional infinitely long branch above the root.

After dividing out R · 1, this map Φn descends to the universal family described in
[FH13].

In Proposition 3.4.1 we have shown that the Kingman n-coalescent is given as a
density on the space of trees MUMn. Let dT̂ ∈ MUMn−1 be the distance vector of an
equidistant (n− 1)-tree T̂. Moreover, let T be an equidistant n-tree with distance vector
dT ∈ MUMn with Φn(dT) = dT̂, where T arose from T̂ by attaching the additional
external branch in the k-th time interval of T̂ for a k ∈ {1, . . . , n− 1} as in Figure 3.9,
with tk+1 known.
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Figure 3.9: Adding an n-th external branch within the k-th time interval.

Since it is allowed to attach it above the root, we also have to take the time interval t̂1
into account, representing the time during which there is only one lineage present in
T̂. Having this information, we can recover the value of the density ρ[n] at dT from the
value of the density ρ[n−1] at dT̂.

Proposition 3.5.3. Let dT ∈ MUMn be the distance vector of an n-tree T that arose
from an (n− 1)-tree T̂ with dT̂ ∈ MUMn−1 by attaching an external branch within the
k-th time interval for some k ∈ {1, . . . , n− 1}. Then the value of the density ρ[n] at dT
can be recovered from the value of the density ρ[n−1] at dT̂ via

ρ[n](dT) = exp

(
−
(

n−1

∑
j=k+2

jt̂j

)
− ktk+1

)
ρ[n−1](dT̂),

where the t̂j denote the waiting times for T̂ for j ∈ {2, . . . , n− 1}.

Proof. Let T and T̂ be trees as given in the proposition. We have already discussed that
attaching a new external branch to T̂ in order to obtain T does not affect the entries
of dT̂. The computation of the value ρ[n](dT) requires to know the values of the local
coordinates t2, . . . , tn, i.e., the waiting times for T. In general it is not true that tk = t̂k
holds for all k ∈ {2, . . . , n − 1}. If the new branch is inserted during the k-th time
interval of T̂, then we consider the following cases.

1. All waiting times t̂j for j < k are not affected and for those we have tj = t̂j. They

contribute the same respective factor ρj(tj) = ρj(t̂j) = ( j
2) exp

(
−( j

2)tj

)
to ρ[n](dT)

as they did to ρ[n−1](dT̂).

2. For all j > k + 1, we have tj = t̂j−1, since the number of lineages that are present
in the sample is increased by one, respectively, and the values of the waiting times
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are not affected. Since

ρj(tj) = exp
(
−
(

j
2

)
tj

)
= exp

(
−
(

j
2

)
t̂j−1

)
= exp

(
−(j− 1)t̂j−1

)
exp

(
−
(

j− 1
2

)
t̂j−1

)
,

we have to multiply our original value ρj−1(t̂j−1) by exp
(
−(j− 1)t̂j−1

)
.

3. For j = k and j = k + 1 the contribution to ρ[n](dT) are the two factors

ρk(tk) = exp
(
−(k

2)tk

)
and ρk+1(tk+1) = exp

(
−(k+1

2 )tk+1

)
, where tk = t̂k − tk+1

and tk+1 are given. In ρ[n−1](dT̂) we already have the factor

ρk(t̂k) = exp
(
−
(

k
2

)
t̂k

)
= exp

(
−
(

k
2

)
(t̂k − tk+1)

)
exp

(
−
(

k
2

)
tk+1

)
= exp

(
−
(

k
2

)
tk

)
exp

(
−
(

k
2

)
tk+1

)
.

Thus the remaining additional factor is exp (−ktk+1).

Altogether this yields

ρ[n](dT) = exp

((
n−1

∑
j=k+2

−jt̂j

)
− ktk+1

)
ρ[n−1](dT̂).

Figure 3.10: The 4-tree T̂ and the resulting 5-tree T after attaching an additional external branch
during the third time interval.

Example 3.5.4. Let us apply Proposition 3.5.3 to the example depicted in Figure 3.10.
For the 4-tree T̂ we have

ρ[4](dT̂) = exp
(
−t̂2 − 3t̂3 − 6t̂4

)
.
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For getting from T̂ to T, the additional branch is attached during the third time interval,
i.e., k = 3, and we are given the waiting time tk+1 = t4. Furthermore, we have
t3 = t̂3 − t4. To compute ρ[5](dT), we consider the three cases mentioned in the proof of
Proposition 3.5.3.

1. j = 2: No additional factor is needed.

2. j = 5: This yields the additional factor exp
(
−4t̂4

)
.

3. j = 3, j = 4: This yields the additional factor exp (−3t4).

In total, having t2 = t̂2 and t5 = t̂4, this gives

ρ[5](dT) = exp
(
−4t̂4 − 3t4

)
ρ[4](dT̂)

= exp
(
−4t̂4 − 3t4

)
exp

(
−t̂2 − 3t̂3 − 6t̂4

)
= exp (−t2 − 3t3 − 6t4 − 10t5) .

3 .6 the multispecies coalescent — species trees and gene trees

So far, we have examined the genealogical relationships for a sample of individuals
coming from one single population or species. The terms population and species are
used interchangeably. In the following, samples from multiple species will come
into play. The corresponding model was described under different names, as the
interspecific coalescent [Tak89], or censored coalescent [RY03], and is now often referred
to as the multispecies coalescent [Liu+09]. This extends the Kingman n-coalescent process.

First, we will introduce the multispecies coalescent and fix our notation. Among
other things, we introduce the notion of compatibility and describe the resulting set
of compatible pairs in Subsection 3.6.1. We then explain approaches concerning the
distribution of gene tree topologies in Subsection 3.6.2. Theorem 3.6.14 translates this
into a density on our space of trees. We conclude in Subsection 3.6.2.2 with a brief
outlook about an interesting identifiability question.

For our summary on the multispecies coalescent we follow the presentation in [Yan14,
Chapter 9]. In the multispecies coalescent model, we keep track of how genes evolve
within multiple species. Here, a species is denoted by S and the set of all involved
species by S. These species are organized in a species tree TS which is an equidistant
n-tree for some n ∈ Z≥1, where every branch represents a whole population, as it can
be seen in Figure 3.11. In contrast to the trees considered so far, we always assume an
additional non-ending species to be present above the root. To distinguish between
species and gene trees, we denote the extant species by capital letters and the extinct
species will recursively be given the names of their two children, e.g. the species that A
and B coalesce to is denoted by AB. Such a merging is called a specification event. For
each species S ∈ S, we are given the parameter τS which we call the specification time
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of S, where we set τS = 0 for all extant species S. Here, τS is measured in coalescent
units which reflects on the assumption of a standardized population size throughout
all populations.

Figure 3.11: A species tree TS with specification times τS.

For the multispecies coalescent, the phylogeny of the underlying species tree is assumed
to be known, meaning, we fix a concrete species tree TS with dTS ∈ MUMn. We now
consider a sample of size n, where we sample one gene per extant species. The model
also applies to sampling multiple genes per species, but for our studies we concentrate
on the single sample case. For each of the species S ∈ S, we run an independent
Kingman k-coalescent process, where k is the number of lineages that enter the species
and trace the genealogy of our sample backwards in time throughout all the species.
Ignoring the individuals that are not ancestral to the individuals in our sample, we
obtain an equidistant n-tree as a result, which we call the gene tree and denote it by Tg.
By construction, the resulting gene tree always has to ‘fit’ into the given species tree,
meaning, two genes cannot be merged until they are in a population that is a common
ancestor of their associated species. We call a given gene tree Tg and a species tree TS
compatible, if Tg fits inside TS and write TS ≤ Tg. This is the case if and only if each
entry of the distance vector dTS of the species tree is a lower bound for the respective
entry of the distance vector dTg of the gene tree. We write dTS ≤ dTg which is meant
coordinate-wise.

Given enough time, all the lineages will coalesce with probability 1, at the latest
in the population above the root. Note that, since the number of generations per species
is prescribed, it may happen that the individuals that enter a species fail to completely
coalesce within this population. So it is feasible that several individuals leave the
current population without coalescing, because the Kingman j-coalescent process is
terminated before they do. This occurrence is called incomplete lineage sorting and is also
the origin of the term censored coalescent. Thus, it may happen that the combinatorics of
the species tree and a resulting gene tree do not coincide.

Example 3.6.1. As an example for n = 4, we start out with the four extant species A, B, C,
and D and we assume the species tree TS to have tree topology [TS] = (((A, B), C), D)
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as depicted in Figure 3.12 on the left, where the relevant edge lengths are given by
x = τABC − τAB and y = τABCD − τABC. From each of the extant species, we sample
single genes and these will become the leaves a, b, c, and d of the gene tree Tg. The four
Kingman 1-coalescent processes within the extant species cannot cause any coalescent
events. Since two genes enter species AB, we run a Kingman 2-coalescent. Tracing
the genealogy of the genes backwards in time, one can observe that the two lineages a
and b fail to coalesce within species AB. Therefore, three lineages enter the ancestral
species ABC and this may cause an order of coalescence that differs from the one of
the species tree. In this case, a and c merge first during the Kingman 3-coalescent
process. Hence, the resulting gene tree Tg has different ranked tree topology, namely
[Tg] = (((a, c), b), d) as can be seen on the right in Figure 3.12. The last coalescent event
is the result of a Kingman 2-coalescent within species ABCD.

Figure 3.12: Non-matching species and gene tree topologies resulting from incomplete lineage
sorting.

3.6.1 A Polyhedral Description of Compatibility

We are given a species tree TS and a gene tree Tg with n leaves, respectively, where a is
the gene that is sampled from species A and so on. Are these two trees compatible?
Both can be interpreted as elements of MUMn via the corresponding distance vectors
dTS and dTg . Here, we ignore the species ancestral to the root, since it is assumed to have
infinitely many generations for every species tree and, thus, does not give additional
specific information in terms of compatibility. We now want to build a subset of MUM2

n
that captures all the pairs of species and gene trees that are compatible. We use the
convention that the first (n

2) coordinates refer to the species tree and the last (n
2) to the

gene tree. When relevant, we denote the respective factors by MUMS
n and MUMg

n.

Definition 3.6.2. We define the compatibility set

Cn :=
{
(dTS , dTg) ∈ MUMS

n×MUMg
n
∼= MUM2

n : TS ≤ Tg

}
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to be the set of all compatible pairs of species and gene trees for n extant species or
respectively n sampled genes.

The two natural projections are denoted by πS : Cn → MUMS
n and πg : Cn → MUMg

n.
Let 1S := (1, . . . , 1, 0, . . . , 0) ∈ MUM2

n and 1g := (0, . . . , 0, 1, . . . , 1) ∈ MUM2
n denote the

distance vectors corresponding to the degenerate species, respectively gene tree, for
which all the distances coincide.

Lemma 3.6.3. For the set of compatible pairs we have

Cn = Cn + R≥0 · (1S + 1g)

= Cn + R≥0 · (1S + 1g) + R≥0 · 1g.

Proof. Let (dTS , dTg) ∈ Cn be a pair of distance vectors for compatible trees TS ≤ Tg.
If we add λ · (1S + 1g) for some λ ∈ R≥0 to the point, this can be interpreted as
increasing all the edge lengths in TS and Tg that are adjacent to a leaf simultaneously by
λ
2 . Thus, we still have TS ≤ Tg which gives the first equality. The second equality holds,
since an additional increasing of the external edge lengths of the gene tree preserves
compatibility.

Since we have MUMn +R · 1n = DUMn by Lemma 3.3.7, the set of compatible pairs
sits inside the space DUM2

n as follows.

Lemma 3.6.4. For the set of compatible pairs we have

Cn + R · 1S + R · 1g = DUM2
n .

We have already observed that MUMn has a nice combinatorial structure, namely, it
is given as a fan glued together from cones that correspond to ranked tree topologies.
The set of compatible pairs Cn has a nice combinatorial structure as well. The product
of the two fans ΣS

n and Σg
n is again a fan, which is supported on MUM2

n and which we
will denote by ΣS

n × Σg
n.

Proposition 3.6.5. The set of compatible pairs Cn ⊂ MUM2
n ⊂ R2·(n

2) is the support
of a fan ΣCn .

1. Locally, each full-dimensional cone in σ ∈ ΣCn can be derived from a correspond-
ing cone of the fan ΣS

n × Σg
n by at most (n− 1) additional inequalities.

2. Globally, (n
2) additional inequalities are needed for each ranked tree topology

[T∗S ] of a species tree to cut out the support of all cones in Cn that involve species
trees of type [T∗S ].

Proof. Let us first consider the fan ΣS
n × Σg

n. Its cones are given as the product of the
respective cones in ΣS

n and Σg
n, i.e., σ[T∗S ],[T∗g ]

:= σ[T∗S ] × σ[T∗g ] for σ[T∗S ] ∈ ΣS
n and σ[T∗g ] ∈ Σg

n

and the cones corresponding to fixed ranked tree topologies [T∗S ] and [T∗g ]. If one adds
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a large enough multiple of 1g to a given gene tree, it will be compatible with any given
species tree. This is due to the fact that when all the coalescent events take place above
the species tree’s root, all combinatorial types of gene trees are possible. Thus, all cones
σ[T∗S ],[T∗g ] ∈ ΣS

n × Σg
n contribute to Cn.

1. Let us consider a fixed cone σ[T∗S ],[T∗g ] for given ranked tree topologies [T∗S ] and
[T∗g ]. We have observed earlier that the fitting condition can be interpreted as
dTS ≤ dTg for the respective distance vectors of trees TS and Tg. Thus each of the
(n

2) pairs of entries causes an additional linear inequality, requiring that

dTS(I, J) ≤ dTg(i, j) (3.6.1)

for leaves I, J ∈ LS from the species tree TS and corresponding leaves i, j ∈ Lg
from the gene tree Tg. Since many of the distances agree, it is sufficient to have
one for every internal vertex of the gene tree. Thus we need at most (n − 1)
additional inequalities. As a result they cut out a full-dimensional cone σC[T∗S ],[T∗g ]
inside σ[T∗S ],[T∗g ].

2. Let us now fix a ranked tree topology [T∗S ] of a species tree. Given a species
tree TS of this type and an arbitrary gene tree Tg, we obtain (n

2) additional linear
inequalities of the form dTS(I, J) ≤ dTg(i, j) for leaves I, J ∈ LS from the tree
TS and corresponding leaves i, j ∈ Lg from the tree Tg, as explained above. In
this case, all inequalities are necessary. Assume that one of the inequalities is
redundant for a pair of leaves I, J ∈ LS. Then there exists a ranked tree topology
[Tg] for which the pair (i, j) is the first pair that coalesces in the corresponding
gene tree Tg. In this case, the inequality dTS(I, J) ≤ dTg(i, j) is not implied by any
other inequality and is thus necessary. As a result, the additional inequalities cut
out all the full-dimensional cones σC[T∗S ],[T∗g ]

inside σ[T∗S ],[T∗g ] for each pair of ranked

tree topologies [T∗S ], [T
∗
g ].

Remark 3.6.6. The bound of necessary additional inequalities in the local situation as
given in Proposition 3.6.5 (1.) is tight. If the ranked tree topologies of the species tree
and the gene tree coincide, then all of them are needed. In the other extremal case, only
one additional inequality is needed which implies all the other ones. This happens if
and only if the following is true for the ranked tree topologies [Tg] and [TS]. Let i, j ∈ Lg
be the first two leaves that coalesce in the gene tree, while the corresponding leaves
I, J ∈ LS in the species tree are not merged before its root. This forces all coalescent
events of the gene tree to happen above this root if it wants to fit inside the species tree.
This is guaranteed by the single inequality dTS(I, J) ≤ dTg(i, j) on the distance vectors.
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3.6.2 The Distribution of Gene Tree Topologies

We start with the probabilist’s point of view. In Section 3.6.2.2 we will then take the
statistician’s perspective. According to the properties of a given species tree, different
compatible gene trees appear with certain probabilities, which are determined by the
multispecies coalescent. Various aspects of these probabilities have been studied by
many authors, starting with [Mad97]. To begin with, we will review the discrete results
of Degnan and Salter in [DS05], [DR09] for one gene sampled per species. The concor-
dance of gene and species tree topology for a bigger sample was studied in [Ros02]. In
[DRS12b] similar considerations lead to a formula for ranked gene tree topologies.

Fix the phylogeny of a species tree TS, meaning its ranked tree topology [TS] and
the parameters τS for all its species S ∈ S are given. Running the multispecies coa-
lescent, one obtains a gene tree Tg that fits inside the species tree. We are interested
in the conditional probability, that the gene tree has a certain tree topology [[T∗g ]], i.e.,

P
(
[[T∗g ]] | TS

)
.

For a given tree topology [[T∗g ]], there are usually many different valid combinations
of species, inside which the coalescent events of the gene tree can take place. The
coalescent history keeps track of these species.

Definition 3.6.7. Let [[T∗S ]] be a species tree topology and [[T∗g ]] a gene tree topology.
We call a map h from the set of coalescent events C = C([[T∗g ]]) to the set of species S
a pre-history. Every compatible pair of a species tree TS and a gene tree Tg defines a
pre-history h(TS,Tg), in the sense that a coalescent event is mapped to the species within
which it takes place. A pre-history is called a history, if there exists a pair (TS, Tg)
inducing it. Given a species tree TS and a gene tree topology [[T∗g ]], we call a history h
valid if there exists a compatible gene tree Tg with that topology, inducing h. We denote
the set of all histories by H.

If we want to give a history explicitly, we will use a matrix notation, where the first row
contains all the coalescent events C ∈ C and the second row their respective images
S ∈ S.

Example 3.6.8. In the case of Example 3.6.1 the history of the resulting gene tree Tg
inside the species tree TS is

h1 =

(
(a, c) ((a, c), b) (((a, c), b), d)
ABC ABC ABCD

)
.

If we require the gene tree topology to be [[Tg]] = (((a, c), b), d), then there are two
additional possible coalescent histories, namely
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h2 =

(
(a, c) ((a, c), b) (((a, c), b), d)
ABC ABCD ABCD

)
and h3 =

(
(a, c) ((a, c), b) (((a, c), b), d)

ABCD ABCD ABCD

)

to realize this particular tree topology [[Tg]] as depicted in Figure 3.13.

Figure 3.13: Coalescent histories h2 and h3.

In [DS05] Degnan and Salter compute the desired probability P
(
[[T∗g ]] | TS

)
based on

the following function that is due to Tavaré [Tav84]. Fix a population. Then gk,m(t)
expresses the probability that k lineages will coalesce into m lineages in time t. It is
given by

gk,m(t) =
k

∑
j=m

exp
(
−
(

j
2

)
t
)

(2j− 1)(−1)j−m

m!(j−m)!(m + j− 1)

j−1

∏
l=0

(m + l)(k− l)
k + l

(3.6.2)

for 1 ≤ m ≤ k.

The following values will be needed in the case of n = 4 leaves.

g1,1(t) = 1
g2,1(t) = 1− exp(−t)
g2,2(t) = exp(−t)

g3,1(t) = 1− 3
2

exp(−t) +
1
2

exp(−3t)

g3,2(t) =
3
2

exp(−t)− 3
2

exp(−3t)

g3,3(t) = exp(−3t)

(3.6.3)

The respective Kingman k-coalescent processes in the multispecies coalescent model
are independent processes. To compute the probability of a specific coalescent history,
one applies the formula (3.6.2) to each species S ∈ S and takes the product of the
resulting probabilities over all species. Thus, conditioned on the underlying species
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tree, a coalescent history h ∈ H has a probability of the form

P (h | TS) = c(h) ∏
S∈S

gk(h,S),m(h,S)(`(S)), (3.6.4)

where `(S) is the duration of the species S (i.e., the branch length in TS associated to
S), k(h, S) is the number of lineages that enter species S and m(h, S) the number of
lineages that leave the species with respect to the coalescent history h. Moreover, c(h)
is a combinatorial constant factor that comes from the specific order of the coalescent
events within a species, more precisely

1
c(h)

= ∏
S∈S

# ways to coalesce k(h, S) into m(h, S) lineages.

We spell out the formula for our running example.

Example 3.6.9. We continue with Example 3.6.1 and consider the coalescent history

h1 =

(
(a, c) ((a, c), b) (((a, c), b), d)
ABC ABC ABCD

)
as depicted in Figure 3.12. Since there is only

one lineage present in each of the extant species A, B, C, and D, they are not taken
into account in the computation, because they stay single lineages with probability 1,
respectively. Because of incomplete lineage sorting, the two lineages that enter species
AB fail to coalesce within time x and do both leave the species. Thus, this contributes

g2,2 (x) = exp (−x)

to the probability of the given coalescent history. For the species ABC, three lineages
enter the population, and after two coalescent events only one lineage leaves it. The first
coalescent event merges the genes a and c. There are three potential pairs out of which
this particular one is merged with probability 1

3 . Therefore species ABC contributes

1
3
· g3,1 (y) =

1
3

(
1− 3

2
exp(−y) +

1
2

exp(−3y)
)

.

Finally, there is another coalescent event within species ABCD. Since we assume this
species above the root to have infinitely many generations, the probability that the two
remaining lineages will coalesce inside this species is 1.

Hence, in total, given TS, the coalescent history h1 appears with probability

P (h1 | TS) = g2,2 (x) · 1
3
· g3,1 (y) = exp (−x)

1
3

(
1− 3

2
exp(−y) +

1
2

exp(−3y)
)

.

To obtain the probability that we are eventually interested in, we have to sum over all
possible coalescent histories that are valid for the given tree topology [[T∗g ]]. Explicitly,
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this gives
P
(
[[T∗g ]] | TS

)
= ∑

h valid for [[T∗g ]]
P (h | TS). (3.6.5)

Example 3.6.10. Since there are three valid coalescent histories in the case of our running
example, all of the corresponding probabilities can be computed as in Example 3.6.9.
Altogether, this gives

P
(
[[T∗g ]] | TS

)
=P (h1 | TS) + P (h2 | TS) + P (h3 | TS)

=g2,2 (x) · 1
3
· g3,1 (y) + g2,2(x) · 1

3
· g3,2(y) ·

1
3
+ g2,2(x) · g33(y) ·

1
18

for the probability that a compatible gene tree will have the tree topology
[[T∗g ]] = (((a, c), b), d), given the species tree TS.

So far, we were only interested in the appearance of certain tree topologies and the
edge lengths of the resulting gene trees did not play a role. This changes as soon as we
leave the discrete setting and ask for probability distributions in terms of a continuous
density on our space of trees. This general probability density was given by Rannala
and Yang in [RY03] and will in the following be explained in our language.

Given a species tree TS, we are now interested in the distribution ρ
(
Tg | TS

)
, where Tg

is a compatible gene tree with ranked tree topology [Tg] and edge lengths in terms of
t2, . . . , tn.

For a single population consisting of n individuals, we have already argued that
the densities as stated in (3.2.5) and (3.2.7) describe the probability distribution of the
waiting times t2, . . . , tn for the Kingman n-coalescent. In the multispecies coalescent
model, we run a Kingman k-coalescent process for every species S ∈ S for respective
k = k(h(TS,Tg), S) ∈ {1, . . . , n}. Thus, in a first step, we apply the densities given above to
each species separately and in a second step, multiply them to a joint probability density.

In order to perform the first step, we need to introduce new waiting time variables for
a compatible gene tree Tg and for each species. So let t(S)j denote the time during which
there are exactly j lineages present in species S.

Let us fix a species S ∈ S in the species tree and let k = k(h(TS,Tg), S) be the num-
ber of lineages that enter the population and m = m(h(TS,Tg), S) be the number of
lineages that leave it. By S′ we denote the species immediately ancestral to the species
S. Then (3.2.5) gives

ρj

(
t(S)j

)
=

(
j
2

)
exp

(
−
(

j
2

)
t(S)j

)
, for all j = k, . . . , m + 1 (3.6.6)
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for the density of the waiting time t(S)j until the next coalescent event that reduces the
number of lineages in the population from j to j− 1. To obtain the given gene tree,
coalescing pairs are prescribed. Because all pairs are equally likely to coalesce, two
particular lineages are merged with probability 1

( j
2)

.

In case of incomplete lineage sorting, i.e., m > 1, we also have to take the proba-
bility into account that these last m lineages do not coalesce within the remaining time
τS′ − τS −

(
t(S)k + . . . + t(S)m+1

)
. Since the considered process is a Poisson-process with

rate (m
2 ), the probability of having no coalescent event is

exp
(
−
(

m
2

)(
τS′ − τS −

(
t(S)k + . . . + t(S)m+1

)))
. (3.6.7)

Altogether, for the contribution of species S this yields

ρ(S)
(
Tg | TS

)
=

(
k

∏
j=m+1

exp
(
−
(

j
2

)
t(S)j

))
(3.6.8)

· exp
(
−
(

m
2

)(
τS′ − τS −

(
t(S)k + . . . + t(S)m+1

)))
.

After doing this for all species S ∈ S in the species tree, we take the product over all
the species and obtain

ρ
(
Tg | TS

)
= ∏

S∈S
ρ(S)

(
Tg | TS

)
(3.6.9)

for the probability distribution.

Example 3.6.11. Let us reconsider what happens in population S = ABC in Exam-
ple 3.6.8. As indicated in Figure 3.14, this population has duration y = τACBD − τABC
and the considered gene tree Tg has coalescent history h2. Thus k = 3 lineages enter
population ABC and m = 2 leave it. According to Equation (3.6.8) population ABC
contributes

ρ(ABC) (Tg | TS
)
= exp

(
−3t(ABC)

3

)
· exp

(
−
(

τABCD − τABC − t(ABC)
3

))
(3.6.10)

to the desired density. Overall, taking the product over all species yields

ρ
(
Tg | TS

)
= ρ(AB) (Tg | TS

)
· ρ(ABC) (Tg | TS

)
· ρ(ABCD)

(
Tg | TS

)
= exp (− (τABC − τAB))

· exp
(
−3t(ABC)

3

)
· exp

(
−
(

τABCD − τABC − t(ABC)
3

))
· exp

(
−3t(ABCD)

3

)
· exp

(
−t(ABCD)

2

)
.
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Figure 3.14: Waiting times t(S)j within the species S ∈ S.

3.6.2.1 Density on the Space of Gene Trees

For defining the desired density on MUMg
n, we need to introduce another type of

subsets which MUMg
n can be subdivided into.

Definition 3.6.12. Given a species tree TS and a gene tree topology [[T∗g ]], let h be a
pre-history. The history region RTS([[T

∗
g ]], h) is defined as

RTS([[T
∗
g ]], h) :=

{
dTg ∈ σ[[T∗g ]] ⊆ MUMg

n : TS ≤ Tg and h(TS,Tg) = h
}

, (3.6.11)

i.e., the subset of MUMg
n within which all gene trees share the same history h with

respect to TS.

Note that, since a history contains the information of the tree topology [[T∗g ]], a non-
empty history region is always contained in a unique tree topology cone σ[[T∗g ]].
Another observation is that there is in general no inclusion relation between history
regions and ranked tree topology cones.
By definition, a history region RTS([[T

∗
g ]], h) is a polyhedron determined by the fol-

lowing inequalities: We are given a fixed species tree TS, whose branch lengths are
determined by the specification times τS for all S ∈ S. Let C ∈ C = C([[T∗g ]]) be a
coalescent event that takes place within species S ∈ S according to h and denote by S′

the species right above S. This requires

τS ≤ dC ≤ τS′ , (3.6.12)

where dC is the coalescent time and local coordinate associated to C in the tree topology
cone σ[[T∗g ]], compare Section 3.3.1.2. For each coalescent event C ∈ C, we obtain inequal-
ities of the form (3.6.12) and these fully describe the history region RTS([[T

∗
g ]], h) within

σ[[T∗g ]]. Note, that the resulting inequalities include all the compatibility requirements
from Proposition 3.6.5. This gives the following lemma. Given a species tree TS, we
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can restrict the considerations to the part of MUMg
n of compatible gene trees, that is to

πg((πS)
−1
(TS)).

Lemma 3.6.13. Given a species tree TS and a gene tree topology [[T∗g ]], the subdivision

of the polyhedral complex πg((πS)
−1
(TS))∩ σ[[T∗g ]] into history regions is a polyhedral

subdivision.

With this notion in hand, we can now define the density on MUMg
n in a suitable way.

For a unimodular ranked tree topology cone σ[T∗g ] ⊆ MUMg
n, we have the Lebesgue-

measure available, as argued in the proof of Proposition 3.4.1. Fix a tree topology [[T∗g ]].
Then by Proposition 3.3.12, the tree topology cone σ[[T∗g ]] is unimodularly triangulated
into ranked tree topology cones, and therefore, we have recourse to the same measure
on σ[[T∗g ]].

Theorem 3.6.14. Given a species tree TS, there exists a continuous density ρ on
MUMg

n that models the distribution ρ
(
Tg | TS

)
and is piecewise analytic on subsets of

the form RTS([[T
∗
g ]], h) ∩ σ[T∗g ], for all histories h ∈ H, gene tree topologies [[T∗g ]] and

ranked tree topology cones σ[T∗g ]. Furthermore, we have∫
σ[[T∗g ]]

ρ = P
(
[[T∗g ]] | TS

)
for all tree topologies [[T∗g ]].

Proof. For a gene tree outside of πg((πS)
−1
(TS)), we set ρ

(
Tg | TS

)
= 0.

Consider a history region RTS([[T
∗
g ]], h) and a gene tree Tg with dTg ∈ RTS([[T

∗
g ]], h). For

this tree Rannala and Yang [RY03] give a formula for the desired density in terms of
the specification times τS for S ∈ S and the waiting times t(S)j for the j-th coalescent
event within species S, as in (3.6.8). The formula is a product that runs over all species
S ∈ S. So, let us fix a species S ∈ S and denote by S′ the species right above S. We
assume that k = k(h, S) lineages enter the species S and m = m(h, S) lineages leave it.
Then we have to consider two cases:

• For j = k we have t(S)j = dC1 − τS, where C1 is the first coalescent event within
species S according to h.

• For j = k− 1, . . . , m + 1 we have t(S)j = dC′ − dC, where C is the coalescent at the

beginning of t(S)j and C′ the one at the end.

The remaining time for the factor (3.6.7) is given as τS′ − dC′′ , where C′′ is the last
coalescent event happening in species S. Thus, we have expressed the contribution
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of species S in terms of specification times τS for S ∈ S and coalescent times dC for
C ∈ C. For all trees sharing the same ranked tree topology, the above described change
of coordinates is given by the same linear transformation. Since the contributions
of the different species are independent, we obtain a density on MUMg

n for the joint
distribution ρ

(
Tg | TS

)
, whose formula is piecewise analytic on subsets of the form

RTS([[T
∗
g ]], h)∩ σ[T∗g ], where RTS([[T

∗
g ]], h) is a history region within a tree topology cone

σ[[T∗g ]] and σ[T∗g ] is a ranked topology cone.
By definition of the tree topology cone σ[[T∗g ]], integrating over such a cone yields∫

σ[[T∗g ]]

ρ = P
(
[[T∗g ]] | TS

)
as in (3.6.5).

3.6.2.2 Identifiability

Now we take the statistician’s point of view. In the multispecies coalescent model
our starting situation is a fixed species tree, and for a given gene tree, we are able to
decide if it is compatible with this species tree. In the real world situation, one usually
observes or derives gene trees from given data and wants to conclude information
about the underlying species tree in the next step. Many approaches have been studied
in terms of this question of indentifiability. For a long time, the working assumption
that the species tree topology coincides with the most likely gene tree topology was
not questioned. Starting with [Nei87] and [PN88], where the probability that the tree
topologies of gene and species tree coincide was studied, a lot of similar questions were
studied based on this.

For any species tree topology with five or more extant species, there exist branch
lengths for which the most likely gene tree topology to evolve along the branches of
a species tree differs from the species phylogeny, see [DR06]. The phenomenon of a
mismatching ranked tree topology can also occur, when trying to identify it from the
distribution of ranked tree topologies of gene trees, see [DRS12b]. In [DRS12a] the
authors give a complete characterization of the set of species trees that give rise to
anomalous ranked gene tree topologies. This is also called the anomaly zone.

Nevertheless, knowing the precise distribution of gene tree topologies as a whole
is very insightful. In [ADR11] Allman, Degnan, and Rhodes show that for five or more
species, the species tree topology and all its branch lengths can even be identified from
the distribution of the unrooted gene tree topologies. This raises the question, of how
precise this identification is. Further directions should investigate that question by
giving some sort of condition number. For that the recent advances that have been
made in tropical geometry could be applied to measure distances in our tree space,
compare [Lin+17; Nye+17; Mon+20].
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4
O N F I N D I N G A F U L LY M I X E D C E L L

This chapter is joint work with Giulia Codenotti, Christian Haase, and Francisco Santos
and is based on [CW19].

4 .1 introduction

At the end of the 20th century, Smale proposed his famous list of 18 unsolved problems
in mathematics, the 17th of which was the following:

‘Can a zero of n complex polynomial equations in n unknowns be found approxi-
mately, on average, in polynomial time with a uniform algorithm?’ [Sma98]

Here, a uniform algorithm is understood as an algorithm that is supposed to work
for all inputs. Its expected running time should be bounded by a polynomial in the
input size. An approximate solution is a point from which Newton’s iteration converges
quadratically. The term on average refers to the input being sampled from a certain
probability distribution. Smale and Shub extensively studied a homotopy method in
order to find a solution, starting with [SS93]. The problem has by now been solved.
Beltrán and Pardo found a uniform probabilistic algorithm [BP08a; BP08b] in 2009.
In 2011, Bürgisser and Chucker performed a smoothed analysis of the Beltrán-Pardo
algorithm and described a deterministic algorithm with complexity NO(log log N), where
N is the input size [BC11b]. Finally, Lairez was able to de-randomize the algorithm
using an alternative method and thus found a deterministic algorithm with an average
polynomial running time in 2017 [Lai17].

Even though this was an enormous breakthrough, assuming that the given system of
polynomials is dense is unrealistic when it comes to real world applications. Thus, it
makes sense to also consider systems carrying a certain sparsity structure. In a sparse
polynomial system its zero coefficients are not explicitly stored.
The structure of a sparse system of polynomials ( f1, . . . , fn) is modeled by an n-tuple
of Newton polytopes (P1, . . . , Pn) spanned by the support of the polynomial system
(A1, . . . , An) = (supp( f1), . . . , supp( fn)) .
This connection is the foundation for the method of polyhedral homotopies for solving
polynomial systems, see [Stu02, Chapter 3] and [HS95; VVC94] for more details. Recent
progress in this direction has for instance been made by Malajovich [Mal17; Mal19;
Mal20], where he investigates the cost of solving systems of sparse polynomial equations
by homotopy continuation.
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At times, we are only interested in the ‘finite’ roots of a sparse system, which are
the roots in (C∗)n. The famous Bernstein-Khovanskii-Kushnirenko theorem gives a
bound for the number of these roots and highlights an important connection to discrete
geometry.

Theorem 4.1.1 (BKK-Theorem [Ber79]). For a system of Laurent polynomials
f1, . . . , fn ∈ C[x±1

1 , . . . , x±1
n ], the number of isolated solutions to f1 = · · · = fn = 0

in (C∗)n is bounded from above by the mixed volume of the Newton polytopes
MV(NP( f1), . . . , NP( fn)). For generic non-zero coefficients there exist exactly
MV(NP( f1), . . . , NP( fn)) many solutions.

When working over a valued field, the valuation of the coefficients of the system can
be interpreted as weights and induce a regular subdivision of the Minkowski sum
A1 + . . . + An. The so called ‘fully mixed cells’ of the subdivision correspond to the
intersections of the tropical hypersurfaces (trop(V( f1)), . . . , trop(V( fn)) of the asso-
ciated tropical polynomial system, where the volume of such a cell represents the
multiplicity of the intersection. For further details on this correspondence we refer the
reader to [Stu02, Chapter 9] and [MS15, Chapter 4.6]. The correspondence has lead to
recent progress from the tropical perspective, see for instance [Jen16], where tropical
homotopy continuation methods are developed.

This motivates us to consider the ‘tropical sparse 17th Smale’s problem’:

‘Given n Newton polytopes in Rn with random weights, is there an algorithm to
find a fully mixed cell in the induced mixed subdivision of their Minkowski sum in
expected polynomial time?’

Computing the entire mixed subdivision would be the naive approach for finding
one such fully mixed cell. Since we are only interested in a small part of the informa-
tion, we want to avoid doing the whole expensive computation. Here, ‘polynomial
time’ is understood to mean polynomial in the input A1, . . . , An and ‘expected’ refers
to the expected running time when varying the weights.

The Chapter is organized as follows. In Section 4.2 we set notation and explain
the construction of the main objects of interest and the respective correspondences. In
Section 4.3 we describe a homotopy continuation approach and construct an example
that could lead to an exponential lower bound on the expected running time.

4 .2 background and notation

In this section, we give all the definitions and constructions necessary to understand
the statement of the problem, and state a few main theorems that we will need in the
following. This is based on the presentation in [LRS10, in particular Chapters 2, 5 and
9.2]. We refer to this extensive introduction for further details and proofs.
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4.2.1 Regular Subdivisions and Triangulations

A point configuration is a finite set of points A ⊆ Rn with labels. A face of a point
configuration A is the set of all points of A which minimize the value of some linear
functional among all points of A. A face which is not the whole configuration A is
called a proper face. A face of maximal dimension among proper faces is called a facet.
A (sub-)configuration A is a simplex if |A| = dim aff(conv(A)) + 1.

We can now define a (polyhedral) subdivision of A as a collection S of subsets C ⊆ A,
called cells, such that

• if C ∈ S and F is a face of C, then F ∈ S as well,

• the union of the convex hulls of all cells of S covers conv(A),

• the intersection of any two cells of S is a face of both cells.

A triangulation T of A is a subdivision, where all of the cells are simplices.
We can also speak of a subdivision of a polytope P: given any point configuration
A such that conv(A) = P and any subdivision S of A, we say that the collection of
convex hulls of all cells of S is a subdivision of P. A triangulation of P is a subdivision,
where all the elements are simplices. In Example 4.2.1 we will see that there is a
subtle difference between triangulations of the polytope and triangulations of the point
configuration.

A regular subdivision of a full-dimensional point configuration A ⊆ Rn is a sub-
division that can be obtained as the orthogonal projection of the lower facets of a lift of
A. More precisely, given weights ω ∈ RA, lift all points of A to Rn+1 using the given
weights as the last coordinate, to define

Ã :=
{
(a, ω(a)) ∈ Rn+1 : a ∈ A

}
,

a point configuration in Rn+1. Now consider the lower facets of Ã, that is, those facets
whose outer normal has negative last coordinate. Their images in A via the projection
which forgets the last coordinate form the cells of the regular subdivision Sω of A
induced by the weights ω. We can then define a regular subdivision of a polytope P
via a subdivision of A such that P = conv(A) just as before.

Example 4.2.1. Consider five points on a line, that is the point configuration
A = {1, 2, 3, 4, 5}, and let P = conv(A) ⊂ R. Let ω = (4, 3, 2, 4, 3) ∈ R5. (We
abuse notation here and denote by ω also the corresponding weight vector in R|A|.)
The regular subdivision Sω of A induced by ω has maximal cells {{1, 2, 3}, {3, 5}} as
depicted in Figure 4.1. Observe that although as a subdivision of the polytope P this is
a triangulation, as a subdivision of the point configuration A it is not, since {1, 2, 3} is
not a simplex. The weight vector ω′ = (4, 4, 2, 4, 3) instead does induce a triangulation
Tω′ with maximal cells {{1, 3}, {3, 5}}.
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on finding a fully mixed cell

As subdivisions of the polytope P both vectors induce the same triangulation, as
can be seen in Figure 4.1, which shows the subdivision induced by ω, consisting of the
two full-dimensional cells C1 = conv({1, 2, 3}) and C2 = conv({3, 5}).

1 2 3 4 5

(5, 3)

(3, 2)

(1, 4)
(4, 4)

(2, 3)

C1 C2

Figure 4.1: A regular subdivision of a line segment.

4.2.2 Minkowski Sums and Mixed Cells

In the introduction, we mentioned the term ‘fully mixed cell’; this only makes sense
if several polytopes are considered. In our situation, we are given finite integer point
configurations A = (A1, . . . , An) with Ai ⊆ Zn for each i = 1, . . . , n, whose convex
hull Pi = conv(Ai) is a lattice polytope in Rn such that dim(aff(∑n

i=1 Ai)) = n. We
denote the number of points in Ai by di, so the total number of points is d := ∑n

i=1 di.
Also given are weights ωi ∈ RAi for i = 1, . . . , n. For convenience we also define
ω := (ω1, . . . , ωn) ∈ RA.

The definition can be given by looking at two different constructions, the Minkowski
sum and the Cayley embedding. We begin by introducing the former. The latter will be
discussed in the next section. Recall that the Minkowski sum ∑n

i=1 Ai of A1, . . . , An is the
configuration defined as

n

∑
i=1

Ai := {a1 + . . . + an : ai ∈ Ai for i = 1, . . . , n} .

An example of a Minkowski sum consisting of a square and a triangle is shown in
Figure 4.2. In the previous section we introduced subdivisions of a point configuration.

Figure 4.2: The Minkowski sum of a square and a triangle.

In the case of Minkowski sums, we can define a special kind of subdivisions, the mixed
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subdivisions, which respect the structure of the summands. More precisely, a mixed
subdivision of ∑n

i=1 Ai is a subdivision, where all cells are of the form C = ∑n
i=1 Bi, for

subsets Bi ⊆ Ai, and where all cells intersect properly, that is, if ∑n
i=1 Bi and ∑n

i=1 B′i are
two cells, then

n

∑
i=1

Bi ∩
n

∑
i=1

B′i =
n

∑
i=1

(Bi ∩ B′i).

We call a cell C = ∑n
i=1 Bi itself mixed if dim(Bi) ≥ 1 for at least two i ∈ {1, . . . , n}, and

fully mixed, if dim(Bi) = 1 for all i ∈ {1, . . . , n}, i.e., if it is the Minkowski sum of n
segments, one coming from each of the configurations Ai.

To obtain a regular subdivision of the Minkowski sum ∑n
i=1 Ai, we apply a variation of

the construction described in the previous section: we lift each of the configurations Ai
to Ãi ∈ Rn+1 according to the given weights ωi. Then we project the lower convex hull
of the Minkowski sum ∑n

i=1 Ãi. This yields a regular subdivision of the Minkowski sum
∑n

i=1 Ai, see [LRS10, Theorem 1.3.5]. Regular subdivisions of Minkowski sums obtained
this way are by construction mixed. We obtain analogous notions for polytopes by
passing over to the respective convex hulls.

Example 4.2.2. Let us continue with the example shown in Figure 4.2 and give coordi-
nates in the plane to the triangle P1 = conv(A1) and the square P2 = conv(A2), where
the point configurations are

A1 =

(
0 1 0
0 0 1

)
and A2 =

(
0 1 0 1
0 0 1 1

)
.

We are slightly abusing notation here, since Ai is also used to denote the matrix having
ai1 , . . . , aidi

as columns. Choosing ω = (ω1, ω2) = (1, 2, 0, 0, 0, 0, 0) ∈ R7 as a weight
vector, one obtains the regular mixed subdivision Sω (P1 + P2) in Figure 4.3. The
induced subdivision contains two fully mixed cells, which are the unshaded ones.

Figure 4.3: A regular mixed subdivision of the Minkowski sum of a square and a triangle.

4.2.3 The Cayley Trick

There is another way to look at mixed subdivisions and mixed cells, via the Cayley
embedding of the point configurations A1, . . . , An. We embed the configurations in
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parallel affine subspaces in a higher-dimensional space: each Ai is embedded in the
subspace of R2n defined by xn+1 = 0, . . . , xn+i = 1, . . . , x2n = 0. That is, the Cayley
embedding Cayley(A1, . . . , An) ⊆ Rn ×Rn is the point configuration

Cayley(A1, . . . , An) := (A1 × {e1}) ∪ · · · ∪ (An × {en}),

where e1, . . . , en denote the standard basis vectors of Rn.
For polytopes P1 = conv(A1), . . . , Pn = conv(An), the Cayley embedding is given by

Cayley(P1, . . . , Pn) := conv(Cayley(A1, . . . , An)).

In the case of full-dimensional polytopes P1, . . . , Pn ⊆ Rn, the Cayley embedding will
be a (2n− 1)-dimensional polytope in R2n, with the unique affine relation being that
the last n coordinates add up to 1.

Example 4.2.3. Applying the Cayley embedding to our running Example 4.2.2 yields
the point configuration

Cayley(A1, A2) =


0 1 0 0 1 0 1
0 0 1 0 0 1 1
1 1 1 0 0 0 0
0 0 0 1 1 1 1

 .

The corresponding Cayley embedding Cayley(P1, P2) ⊆ R4 can be pictured by making
use of the fact that it is contained in the 3-dimensional subspace given by the equation
x3 + x4 = 1, as in Figure 4.4.

Figure 4.4: The Cayley embedding of a square and a triangle.

So far the two constructions, Minkowski sum and Cayley embedding, may seem
unrelated. But they are far from it, since the Minkowski sum is the intersection of
the Cayley embedding with the subspace

{
x ∈ R2n : xn+1 = . . . = x2n = 1/n

}
, up to

a scaling factor:

n

∑
i=1

Pi × {1} = n ·
(
Cayley(P1, . . . , Pn) ∩

{
x ∈ R2n : xn+1 = . . . = x2n = 1/n

})
.

For our running Example 4.2.2 this is illustrated in Figure 4.5.
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Figure 4.5: The connection between the Cayley embedding and the Minkowski sum.

By a cell C in the Cayley embedding, we mean a cell in some polyhedral subdivision of
Cayley(A1, . . . , An). We will often write C = (C1, . . . , Cn), where Ci = C ∩ (Ai × {ei}),
to keep track of which points of the cell belong to which point configuration. Since the
original point configurations A1, . . . , An are embedded in parallel affine subspaces, a
full-dimensional cell must always involve points of all original configurations A1, . . . , An.
A fully mixed cell will be a full-dimensional cell which involves exactly two points of
each configuration. It is not a coincidence that this reminds us of the fully mixed
cells appearing in regular subdivisions of Minkowski sums. Indeed, the following
statement relating subdivisions of the Cayley embedding and mixed subdivisions of
the Minkowski sum holds and it is referenced to as (combinatorial) Cayley trick.

Theorem 4.2.4 ([LRS10, compare Theorem 9.2.16]). Let A1, . . . , An ⊆ Rn be point
configurations. Then (regular) polyhedral subdivisions of the Cayley embedding
Cayley(A1, . . . , An) are in one-to-one correspondence with (regular) mixed subdivi-
sions of the Minkowski sum ∑n

i=1 Ai.

Explicitly, given a polyhedral subdivision of the Cayley embedding, we can recover
(a scaled version of) the corresponding mixed subdivision by intersecting the Cayley
embedding as we did above with the subspace

{
x ∈ R2n : xn+1 = . . . = x2n = 1/n

}
.

In particular, fully mixed cells of the mixed subdivision are sections of fully mixed cells
of the subdivision of the Cayley embedding. For more details on the Cayley trick, the
reader is referred to [HRS00].

Example 4.2.5. We have already seen a mixed subdivision of the Minkowski sum
P1 + P2 for our running example in Figure 4.3. Each cell corresponds to a cell in the
Cayley embedding Cayley(P1, P2) and all together they form a polyhedral subdivision
of Cayley(P1, P2). For one of the cells this correspondence is illustrated in Figure 4.6.

Figure 4.6: The correspondence between Minkowski cells and Cayley cells.
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We call a mixed subdivision of the Minkowski sum a fine mixed subdivision if it corre-
sponds to a triangulation of the Cayley embedding. The name ‘fine’ comes from the
fact that it is impossible to have a mixed subdivision strictly refining it while keeping
the vertex set.
We now have two ways of thinking of fully mixed cells, and we will often switch
between the two. There should be no ambiguity since we have given an explicit
bijection.

4.2.4 The Secondary Polytope and the Secondary Fan

If we assume the weight vector ω to be generic, the regular polyhedral subdivision
of Cayley(A1, . . . , An) it induces will be a triangulation. In this section we introduce
the secondary polytope, which captures useful information about all possible trian-
gulations of a given point configuration. Before we can give a precise definition, we
have to introduce some notation. We follow the construction of the secondary polytope
presented in [LRS10, Chapters 2 and 5].

Consider a point configuration A ⊆ Rn consisting of d points. To each triangula-
tion T of A we associate a vector ΦA(T ) ∈ Rd. The entry of this vector corresponding
to the point a ∈ A is defined as the sum of the volumes of all cells of the triangulation
which contain the point a as a vertex, where the volume is understood to be the usual
Euclidean volume of the convex hull of a cell.

Definition 4.2.6. Let A ⊆ Rn be a point configuration with d = |A| and let T be a
triangulation of A. The vector

ΦA(T ) := ∑
i∈[d]

∑
C∈T :ai∈C

vol(C)ei ∈ Rd

is called the Gelfand-Kapranov-Zelevinsky vector of T , often referred to as GKZ-vector.

Example 4.2.7. Let us come back to the one-dimensional example of five points on a
line which we studied in Example 4.2.1. The GKZ-vector for the triangulation Tω′ is
given by

Φ{1,2,3,4,5}(Tω′) =


vol(13)

0
vol(13) + vol(35)

0
vol(35)

 =


2
0
4
0
2

 .

The convex hull of the GKZ-vectors of all triangulations is called the secondary polytope.

Definition 4.2.8. Let A be a point configuration. The secondary polytope Σ -poly(A) of
A is defined as

Σ -poly(A) := conv {ΦA(T ) : T is a triangulation of A} .
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Example 4.2.9. We continue with Example 4.2.7. The given point configuration
A = {1, 2, 3, 4, 5} ⊆ R has eight different triangulations in total. For each of them
one can compute the corresponding GKZ-vector as in the previous example. The
resulting secondary polytope Σ -poly(A) has the combinatorics of a cube as shown in
Figure 4.7.

Figure 4.7: The combinatorics of the secondary polytope of five points on a line.

Let us revisit Example 4.2.5. In Figure 4.8, we have drawn fine mixed subdivisions of
the Minkowski sum. The labeling T1, . . . , T16 refers to the corresponding triangulations
of the Cayley embedding. Each of these fine mixed subdivisions corresponds to a vertex
of the secondary polytope.
An important result about the secondary polytope is that, although we took the convex
hull of GKZ-vectors of all triangulations, the vertices correspond only to the regular
triangulations, see for example [LRS10, Theorem 5.1.9].

Not only vertices, but the whole face lattice of the secondary polytope encodes infor-
mation about regular subdivisions of the original point configuration. In fact, if there is
an edge connecting two vertices, the associated triangulations are similar. That is, they
only differ by a local change, a so-called flip.

A point configuration A ⊆ Rn with |A| = d is called a corank 1 configuration if
there is a non-trivial unique affine dependence relation among its points, ∑i∈[d] λiai = 0,
with ∑i∈[d] λi = 0 for some λi ∈ R. The signed circuit, denoted by c = (c+, c−) keeps
track of the labels of the points that are involved in the dependence relation, i.e.,
c+ = {i ∈ [d] : λi > 0} and c− = {i ∈ [d] : λi < 0}. We refer to c+ or c− as one side
of the signed circuit c. Since this describes a minimal affine dependence, the convex
hulls of the points indexed by the two sides of the circuit intersect in a unique point, as
can for instance be seen in Figure 4.9.
The important property of corank 1 configurations is that they only have two possible
triangulations:

Lemma 4.2.10 ([LRS10, Lemma 2.4.2]). Let A be a configuration of corank 1 and
c = (c+, c−) the associated circuit. Then the following are the only two triangulations
of A:

T+ = {C ⊆ [d] : c+ 6⊆ C} and T− = {C ⊆ [d] : c− 6⊆ C} .

Both triangulations are regular.
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Figure 4.8: Fine mixed subdivisions of the Minkowski sum of triangle and square.

Figure 4.9: A signed circuit c = (c+, c−).

An almost triangulation is a subdivision S such that it itself is not a triangulation, but all
its proper refinements are. Any cell of an almost triangulation is composed of points
which are either affinely independent or form a configuration of corank 1, and all its
cells of corank 1 contain the same circuit. Therefore by Lemma 4.2.10 it has exactly two
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proper refinements, which are both triangulations. We say that two triangulations of
the same point configuration are connected by a flip supported on the almost triangulation S
if they are the only two triangulations refining S .

For the secondary polytope this means that two vertices are connected by an edge if the
corresponding triangulations differ by a flip, and the edge corresponds to the involved
almost triangulation. Figure 4.10 shows some flips in the plane.

Figure 4.10: Some flips in the plane.

In some contexts it is more useful to consider not the secondary polytope, but the
secondary fan. The secondary fan is the inner normal fan of the secondary polytope
and is denoted by Σ -fan(A). Since each vertex of the secondary polytope corresponds
to a regular triangulation, a full-dimensional cone in the secondary fan also does. It
actually is the closure of the set of all the weight vectors ω ∈ Rn inducing the regular
triangulation Tω.

4 .3 a lower bound on the running time of a homotopy continuation

approach

Recall, that we are given the following problem.

Input: Point configurations A = (A1, . . . , An) ⊆ Rn, where |Ai| = di and d = ∑n
i=1 di

with associated polytopes Pi = conv(Ai) and random weights ω = (ω1, . . . , ωn) ∈ RA.

Goal: Finding a fully mixed cell in the regular fine mixed subdivision of A1 + . . .+ An,
or alternatively the regular triangulation Tω of the Cayley embedding Cayley(A1, . . . , An),
induced by ω, in expected polynomial time.

One way to approach our problem of finding a fully mixed cell is the following.

Approach :

1. Choose weights ω ∈ RA for which we know how to compute a fully mixed cell
in polynomial time.

2. Apply a homotopy continuation method, where ω encodes the start system and
ω the target system and track the fully mixed cell.

There already exists an algorithm to execute step 1 which we will discuss in the
following.
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4.3.1 A Matroid Intersection Algorithm

Given our point configuration A = (A1, . . . , An) there exists a way to find a fully mixed
cell of some regular subdivision of Cayley(A1, . . . , An) in polynomial time. However,
the weight vector is not part of the input here.

In order to find such a cell, we follow the approach used in the proof of [DGH98,
Theorem 8]. This requires to translate the given problem to a matroidal setting. Back-
ground information and more details about matroid theory can be found in [Oxl11].

As a ground set we consider all segments, i.e., vectors that connect two points of
a respective point configuration. More precisely, set

Ei = {a− a′ : a, a′ ∈ Ai} for i = 1, . . . , n and E =
n⊔

i=1

Ei.

On this ground set we define two matroids M1 = (E, I1) and M2 = (E, I2). Here, M1
is the linear matroid whose independent sets I1 are the linearly independent subsets of
the vectors in E. For the matroid M2 a subset of E is independent if it contains at most
one element from Ei for all i ∈ {1, . . . , n} and it is called the transversal matroid. By
construction M1 and M2 have the same rank, namely n. Furthermore, a common basis
B chooses exactly one segment per configuration Ai for all i ∈ {1, . . . , n}. Since these
segments are linearly independent, they determine a full-dimensional subset C of the
associated Cayley embedding Cayley(A1, . . . , An). We claim that there exists a weight
vector ω ∈ Rd such that C corresponds to a fully mixed cell in the regular subdivision
Sω. For that we define the vector ω such that points from C receive weight 0 and give
weight 1 to all other points.
Finding such a common basis B — and hence a fully mixed cell — can be done in
polynomial time by the matroid intersection algorithm of Edmonds [Edm70].
We can make ω generic, by perturbing the weights a little bit. This perturbed vector
then induces a triangulation that involves C. This can also be done in polynomial time.

4.3.2 A Lower Bound on the Number of Flips

We now want to take a closer look at step 2 and give an example that suggests that it
might be more promising to search for lower bounds than for upper bounds regarding
the expected running time.

Recall that the given weight vectors ω and ω can be thought of as elements in the
support of the secondary fan Σ -fan(Cayley(A1, . . . , An)). A full-dimensional cone in
the secondary fan corresponds to a regular triangulation of the Cayley embedding, and
the codimension 1 boundary between two such cones therefore corresponds to a flip.
We now consider the segment I ⊆ |Σ -fan(Cayley(A1, . . . , An)|, connecting ω and our
objective weight ω in the secondary fan as depicted in Figure 4.11. Since ω, ω corre-
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Figure 4.11: Wall-crossing for a homotopy continuation in the secondary fan with start system
ω and target system ω.

spond to triangulations, we can assume that I is generic in the sense that it intersects
Σ -fan(Cayley(A1, . . . , An)) only in the relative interior of d- and (d− 1)-dimensional
cones. Starting at ω and moving towards ω, the points on I induce the same triangula-
tion Tω until the segment meets the boundary of the full-dimensional cone correspond-
ing to Tω. We will call these codimension 1 boundaries walls. The point of intersection
of the segment I with a wall induces an almost triangulation S , and points on the
other side of the wall induce the other triangulation refining S . Thus, intersections of
I with walls correspond to a sequence of flips transforming the triangulation Tω into Tω.

Therefore, the expected running time of step 2 can be bounded in terms of proba-
bilities of the form

∑
flips affecting

fully mixed cells

P (I intersects the wall associated to the flip). (4.3.1)

Hence, one natural question that arises is, how many summands can this expression
have, i.e., how many flips affect fully mixed cells?

For that we need to introduce the fine type of a cell.

Definition 4.3.1. For a subset C = (C1, . . . , Cn) of a configuration A = (A1, . . . , An), its
fine type τ(C) is defined as the vector (|C1|, . . . , |Cn|) ∈ Zn

≥0, which keeps track of the
number of points of Ai that contribute to C. For a signed circuit c = (c+, c−), the fine
type τ(c) is a pair of integer vectors ((|C1|+, . . . , |Cn|+), (|C1|−, . . . , |Cn|−)), with |Ci|+
and |Ci|− recording the number of labels of Ai contributing to c+ and c−, respectively.

The only flips, affecting fully mixed cells, will be those supported on a signed circuit
c of fine type τ(c) = ((1, . . . , 1), (1, . . . , 1)) or τ(c) = ((2, 1, . . . , 1), (1, . . . , 1)), up to
permutation. This means that for the ‘smaller side’ c− of the circuit, we have to choose
a subconfiguration C− ⊆ Cayley(A1, . . . , An) which consists of exactly one point per
configuration Ai × {ei} for all i ∈ {1, . . . , n}.
We give an example of a configuration A for which there exist exponentially many
‘smaller sides’ C− of fine type τ(C−) = (1, . . . , 1) in the interior of the Cayley embedding
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on finding a fully mixed cell

that can be completed to a circuit c. This yields exponentially many summands in
Equation (4.3.1).

Example 4.3.2. We define a point configuration A = (A1, . . . , An) with Ai ⊆ Rn and
|Ai| = m for an integer m ≥ 4 and all i ∈ {1, . . . , n} as follows.
Let aj

i denote the j-th point of the configuration Ai and aj
i the respective point in

Ai × {ei}. The points are chosen on the moment curve γn(t) : R → Rn, i.e., they are
of the form (t, t2, . . . , tn) for some t ∈ R. These t are chosen in a consecutive way as
illustrated in Figure 4.12, meaning that taj

i
< tak

i
for j < k and taj

i
< tal

k
for i < k and any

j, l ∈ {1, . . . , m}.

Figure 4.12: Point configurations on the moment curve for n = 4 and m = 4.

Consequently, our polytopes Pi = conv(Ai) are cyclic polytopes. We will extend Gale’s
evenness criterion to our situation. More precisely, we will use the following facts about
polynomials.

1. The derivative of a univariate polynomial of degree n can have at most n − 1
changes of sign.

2. Therefore a univariate polynomial of degree n can have at most n− 1 local extrema,
hence at most n

2 local minima or maxima.

In total there are mn possible ways to choose exactly one point per Ai for all
i ∈ {1, . . . , n} in order to form a subconfiguration C− = (aj1

1 , . . . , ajn
n ) with aji

i ∈ Ai
of fine type τ(C−) = (1, . . . , 1). To ensure, that C− actually corresponds to the smaller
side of a circuit c we have to exclude all configurations on the boundary of the Cayley
embedding, because for them we cannot guarantee, that they contribute to a desired
circuit. We now show the following.

Claim 1 : The convex hull of a configuration C− = (aj1
1 , . . . , ajn

n ) with ji /∈ {1, m}
for all i ∈ {1, . . . , n} will lie in the interior of the Cayley embedding.

We verify the claim via proof by contradiction. Assume, we pick a configuration C− as
above such that conv(C−) lies on the boundary of Cayley(P1, . . . , Pn). Then there exists
a linear functional ` = (α1, . . . , αn, β1, . . . , βn) ∈ (R2n)∗, whose minimum is attained
at C−, when minimizing over the Cayley embedding. Consider the restriction of the
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functional ` to the subspace {x ∈ R2n : xn+i = 1, xn+j = 0 for all j ∈ {1, . . . , n} \ {i}},
where the point configuration Ai × {ei} lives. Then the minimum among the points of
Ai × {ei} is still attained at aji

i , for each i, respectively.

We recall that the points aji
i lie on the moment curve. Thus, restricting ` to the moment

curve yields n local minima which is a contradiction to Fact 2. Hence, for C− to belong
to the boundary, the points of C− have to be chosen as a1

i or am
i for at least half of the

i ∈ {1, . . . , n}.

Conversely, this guarantees, that the convex hull associated to a configuration
C− = (aj1

1 , . . . , ajn
n ) with ji /∈ {1, m} for all i ∈ {1, . . . , n} will lie in the interior of

the Cayley embedding. There are (m− 2)n pairwise different such configurations.

Claim 2 : All of these (m− 2)n configurations C− correspond to one side of a circuit.

Fix a configuration C−, represented by the blue dots in Figure 4.12. Choose n + 1
points C+ to be the alternating endpoints as indicated by the green ones in Figure 4.12.
Consider the configuration C = C− ∪ C+. Since it consists of 2n + 1 points in R2n,
there exists an affine dependence relation among the points. We claim that conv(C−)
is not contained in the boundary of conv(C). Assume that it was. Then there exists
a linear functional that is minimized at conv(C−), when minimizing over conv(C).
Restricted to the moment curve, this results in n changes of sign of the derivative γ′n.
But this is a contradiction to Fact 1. Thus, conv(C−) is not contained in the boundary
of conv(C). Moreover, it is a minimal subset regarding this property. Because due to
the Cayley structure, removing a point from C− would force it to lie on the boundary.
Consequently, C− gives the smaller side of a circuit that corresponds to a flip affecting
fully mixed cells. There are (m− 2)n pairwise different such configurations. Thus, for
this particular example, the number of summands in Equation (4.3.1) is exponential in
the input size n.

This leads to the following further remarks and questions that should be examined.

• In order to obtain a lower bound we would need to answer the following ques-
tion: Can we find a lower bound on the individual summands probability in
Equation (4.3.1), for instance in terms of the volume of the respective walls?

• On the other hand the following considerations might reduce complexity: Since
we are only interested in a single fully mixed cell, not in the whole triangulation,
the secondary polytope captures more information than needed.

In [MC00] Cools and Michiels introduce the so-called mixed secondary polytope
which is related to the secondary polytope but which captures less information
and is therefore less complicated. Roughly speaking, a vertex of such a polytope
represents the collection of fully mixed cells that is involved in a given mixed
subdivision and ignores all other cells of the subdivision. Thus two mixed
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subdivisions that contain the same fully mixed cells are represented by the same
vertex.

Does considering the mixed secondary fan instead of the secondary fan reduce
the complexity?

• Note, that considering only flips involving fully mixed cells might be too much,
since not all flips will involve the specific fully mixed cell that we are tracking; it
is possible that most of the flips do not change this mixed cell at all. Does this
reduce the complexity?

• (How) can we lift the obtained tropical solution to one of the original system?
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A P P E N D I X

We give the respective global sections and Newton polytopes that realize a lower bound
for the Newton–Okounkov function ϕR on the Newton–Okounkov body ∆Y•(D) from
Example 2.5.10.

Region Inequalities Newton Polytope Section ordR(s)

1

s(x, y) = xayb

10− a + 3b
0 ≤ b ≤ 1, (x− 1)1−a+4b

0 ≤ a− 4b ≤ 1 (y− 1)b

(x2y− 1)9−2b

2

s(x, y) = xayb

11− a + 2b

1 ≤ b ≤ 2, (x− 1)2−a+3b

1 ≤ a− 3b ≤ 2 (y− 1)2−b

(x2y− 1)10−3b

(xy− 1)3b−3

3

s(x, y) = xayb

12− a + 3
2 b

2 ≤ b ≤ 4, (x− 1)3−a+ 5
2 b

4 ≤ 2a− 5b ≤ 6 (x2y− 1)7− 3
2 b

(xy− 1)2+ 1
2 b
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Region Inequalities Newton Polytope Section ordR(s)

4

s(x, y) = xayb

14− a + b
4 ≤ b ≤ 5, (x− 1)5−a+2b

4 ≤ a− 2b ≤ 5 (x2y− 1)5−b

(xy− 1)4

5

s(x, y) = xayb

33
2 − a + 1

2 b
1 ≤ b ≤ 2, (x− 1)

15
2 −a+ 3

2 b

1 ≤ a− 3b ≤ 2 (y− 1)−
5
2+

1
2 b

(xy− 1)
23
2 −

3
2 b

6

s(x, y) = xayb

20− a
7 ≤ b ≤ 8, (x− 1)11−a+b

10 ≤ a− b ≤ 11 (y− 1)

(xy− 1)8−b

7

s(x, y) = xayb

28− a− b
8 ≤ b ≤ 9, (x− 1)19−a

18 ≤ a ≤ 19 (y− 1)9−b
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Region Inequalities Newton Polytope Section ordR(s)

8

s(x, y) = xayb

47
2 −

3
4 a− b

8 ≤ b ≤ 9, (x− 1)19−a

a ≤ 18, (y− 1)
9
2+

1
4 a−b

−a + 4b ≤ 18

9

s(x, y) = xayb

35
2 −

3
4 a− 1

4 b
7 ≤ b ≤ 8, (x− 1)11−a+b

6 ≤ a− b ≤ 10 (y− 1)−3+ 1
4 a− 1

4 b

(xy− 1)8−b

10

s(x, y) = xayb

119
8 −

3
4 a + 1

8 b

(x− 1)
15
2 −a+ 3

2 b

5 ≤ b ≤ 7, (y− 1)−
5
8+

1
4 a− 3

8 b

5 ≤ 2a− 3b ≤ 13 (xy− 1)

(x3y2 − 3xy

+y + 1)
7
2−

1
2 b
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Region Inequalities Newton Polytope Section ordR(s)

11

s(x, y) = xayb

13− 3
4 a + 1

2 b

(x− 1)5−a+2b

4 ≤ b ≤ 5, (x2y− 1)5−b

0 ≤ a− 2b ≤ 4 (xy− 1)1+ 3
4 a− 3

2 b

(x3y2 − 3xy

+y + 1)1− 1
4 a+ 1

2 b

12

s(x, y) = xayb

23
2 −

3
4 a + 7

8 b

(x− 1)3−a+ 5
2 b

2 ≤ b ≤ 4, (y− 1)
1
2+

1
4 a− 5

8 b

−4 ≤ −2a + 5b, (x2y− 1)9−2b

−2a + 5b ≤ 4 (xy− 1)

(x3y2 − 3xy

+y + 1)−1+ 1
2 b

13

s(x, y) = xayb

43
4 −

3
4 a + 5

4 b

1 ≤ b ≤ 2, (x− 1)2−a+3b

−3 ≤ a− 3b ≤ 1 (y− 1)
3
4+

1
4 a− 3

4 b

(x2y− 1)9−2b

(xy− 1)−1+b

134



appendix

Region Inequalities Newton Polytope Section ordR(s)

14

s(x, y) = xayb

10− 3
4 a + 2b

5 ≤ b ≤ 7, (x− 1)1−a+4b

5 ≤ 2a− 3b ≤ 13 (y− 1)
1
4 a

(x2y− 1)9−2b

(xy− 1)−1+b

15

s(x, y) = xayb

23
2 −

1
2 a + 1

2 b
1 ≤ b ≤ 2, (x− 1)2−a+3b

−a + b ≤ 1, (x2y− 1)9−2b

−a + 3b ≥ 3 (xy− 1)
1
2+

1
2 a− 1

2 b

19

s(x, y) = xayb

16− 1
2 a− 1

2 b
7 ≤ b ≤ 8, (x− 1)11−a+b

a− b ≤ 6, (xy− 1)5+ 1
2 a− 3

2 b

−a + 3b ≤ 10

Table A.1: Sections s such that sk are global sections of H0(X,OX(kD)) that realize lower bounds
for the order of vanishing ordR for respective k ∈ Z≥1.
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Z U S A M M E N FA S S U N G

Die vorliegende Dissertation beschäftigt sich mit der Untersuchung von Problemstellungen aus
der torischen und numerischen algebraischen Geometrie, sowie der mathematischen Popula-
tionsgenetik aus dem Blickwinkel der diskreten Geometrie.
Das einleitende Kapitel 1 enthält eine kurze Zusammenfassung der Ergebnisse. Des weiteren
führen wir die Objekte aus der diskreten Geometrie ein, die im Folgenden eine zentrale Rolle
spielen und fixieren die entsprechende Notation.

Kapitel 2 widmet sich der Untersuchung von Newton–Okounkov-Körpern und Newton–
Okounkov-Funktionen. Wir betrachten den Fall torischer Varietäten. Zunächst geben wir
einen kombinatorischen Beweis für die Existenz und Eindeutigkeit der Zariski-Zerlegung auf
torischen Flächen. Darauf aufbauend konstruieren wir einen Isomorphismus zwischen dem
zu einem torusinvarianten Divisor gehörigen Polytop und dem Newton–Okounkov-Körper
einer nichttorischen Fahne. Anschließend geben wir eine explizite Beschreibung von Newton–
Okounkov-Funktionen im vollständig torischen Fall und einen Ansatz für die Bestimmung
von Funktionen, die von Bewertungen im allgemeinen Punkt kommen. Wir formulieren
kombinatorische Kriterien an die involvierten Polytope und beweisen, dass sich in diesen
Fällen die Funktion mithilfe unseres Ansatzes vollständig beschreiben lässt. Die entwickelten
Techniken lassen sich anwenden, um die Rationalität gewisser Seshadri-Konstanten zu bewei-
sen. Wir erläutern den Zusammenhang und zeigen Rationalität in Abhängigkeit von einer
kombinatorischen Bedingung. Darüber hinaus konstruieren wir eine Klasse von Beispielen, für
die bisherige Kriterien nicht greifen und zeigen Rationalität in diesen Fällen.

Im Rahmen von Kapitel 3 beschäftigen wir uns mit Modellen aus der mathematischen
Populationsgenetik und ihrer Beschreibung in polyedrischer Sprache. Zunächst definieren wir
verschiedene Räume von phylogenetischen Bäumen und definieren darauf den Kingman-n-
Koaleszent-Prozess in Form einer entsprechenden Dichte. Darauf aufbauend definieren wir
eine Vergissabbildung für variierende Stichprobengröße und zeigen, wie sich die entsprechende
Dichte davon ableiten lässt. Wir betrachten schließlich den Multispezies-Koaleszent-Prozess
und beschreiben auch diesen in polyedrischer Sprache. Insbesondere beweisen wir, wie sich die
bedingte Wahrscheinlichkeit des Auftretens eines bestimmten Genbaumes, gegeben ein Spezies-
baum, in Form einer Dichte auf unserem Raum von phylogenetischen Bäumen beschreiben lässt.

Im Fokus von Kapitel 4 steht die Untersuchung der tropischen Version von Smales be-
rühmtem 17. Problem. Die ursprüngliche Fragestellung, ob es möglich ist, zu n gegebenen
Polynomen in n Unbekannten in erwartet polynomieller Zeit eine gemeinsame Lösung zu
finden, übersetzt sich in ein Problem aus der diskreten Geometrie: das Finden einer vollständig
gemischten Zelle in einer, von den randomisierten Inputdaten induzierten, Triangulierung eines
Cayleypolytops. Wir erläutern diese Variante der Fragestellung und untersuchen darauf aufbau-
end einen Ansatz zur Lösung mittels eines Homotopieverfahrens. Insbesondere geben wir ein
Beispiel, das zu einer unteren Schranke führen kann, die exponentiell in den Eingabedaten ist.
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A B S T R A C T

The present dissertation is concerned with the study of problems from toric and
numerical algebraic geometry, as well as mathematical population genetics from the
perspective of discrete geometry. The introductory Chapter 1 contains a short summary
of the results. Furthermore, we introduce the objects stemming from discrete geometry
which play a central role in the following, and fix the corresponding notation.

Chapter 2 is devoted to the examination of Newton–Okounkov bodies and Newton–
Okounkov functions. We consider the case of toric varieties. First, we give a com-
binatorial proof for the existence and uniqueness of Zariski decomposition on toric
surfaces. Based on this, we construct an isomorphism between the polytope asso-
ciated to a torus-invariant divisor and the Newton–Okounkov body of a non-toric
flag. Subsequently, we give an explicit description of Newton–Okounkov functions
in the completely toric case and an approach to determining functions coming from
valuations in a general point. We formulate combinatorial criteria on the polytopes
involved and prove that in these cases the function can be fully described using our
approach. The developed techniques can be applied to prove the rationality of certain
Seshadri constants. We explain the connection and show rationality as a dependency
of a combinatorial condition. Furthermore, we construct a class of examples to which
existing criteria do not apply, and show rationality in these cases.

In Chapter 3, we deal with models from mathematical population genetics and
their description in polyhedral language. First, we define different spaces of phyloge-
netic trees and then define the Kingman n-coalescent process in terms of a suitable
density. Based on this, we define a forgetful map for varying sample sizes and show
how the corresponding density can be derived from it. Finally, we consider the
multispecies coalescent process and describe it in polyhedral language. In particular,
we show how the conditional probability of the occurrence of a certain gene tree, given
a species tree, can be described in terms of a density on our space of phylogenetic trees.

The focus of Chapter 4 is the investigation of the tropical version of Smale’s fa-
mous 17th problem. The original question, whether it is possible to find a common
solution of n given polynomials in n unknowns in expected polynomial time, translates
into a problem from discrete geometry: finding a fully mixed cell in a triangulation of a
Cayley polytope induced by the randomized input data. We explain this version of the
problem and, based on it, analyze an approach to solving it by means of a homotopy
continuation. In particular, we give an example that could lead to a lower bound in the
input data that is exponential.
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